The Simple View, Instructional Level, and the Plight of Struggling Fifth-/Sixth-Grade Readers

Darrell Morris, Carla Meyer, Woodrow Trathen, Jennifer McGee, Nora Vines, Trevor Stewart, Tom Gill & Robert Schlagal

To cite this article: Darrell Morris, Carla Meyer, Woodrow Trathen, Jennifer McGee, Nora Vines, Trevor Stewart, Tom Gill & Robert Schlagal (2017) The Simple View, Instructional Level, and the Plight of Struggling Fifth-/Sixth-Grade Readers, Reading & Writing Quarterly, 33:3, 278-289, DOI: 10.1080/10573569.2016.1203272

To link to this article: http://dx.doi.org/10.1080/10573569.2016.1203272

Published online: 08 Nov 2016.

Submit your article to this journal

Article views: 157

View related articles

View Crossmark data
The Simple View, Instructional Level, and the Plight of Struggling Fifth-/Sixth-Grade Readers

Darrell Morris1, Carla Meyer2, Woodrow Trathen1, Jennifer McGee1, Nora Vines3, Trevor Stewart4, Tom Gill1, and Robert Schlagal1

1Appalachian State University, Boone, North Carolina, USA; 2Duquesne University, Pittsburgh, Pennsylvania, USA; 3University of Tennessee, Knoxville, Tennessee, USA; 4Virginia Tech, Blacksburg, Virginia, USA

ABSTRACT
This study explored print-processing and vocabulary differences among a group of 5th- and 6th-grade students who had scored below the 50th percentile on a standardized reading test. Guided by the simple view of reading, we applied cut scores (low/high) to the students' performance on print-processing and vocabulary tasks. The design allowed for the placement of students in 1 of 4 reader profiles: (a) high print processing/low vocabulary (25%), (b) high print processing/high vocabulary (14%), (c) low print processing/high vocabulary (14%), or (d) low print processing/low vocabulary (48%). An important finding was that 62% of the students could not read grade-level text with adequate accuracy and rate. In fact, many could not read comfortably a full level below their grade placement. We consider instructional implications.

Most reading educators would agree that if a child does not learn to read at or near grade level by the end of third grade, then his or her educational future is at risk (Hernandez, 2011; Slavin, 2003). The reason for this bleak prediction is clear enough: From fourth grade on, schools emphasize the reading of grade-level texts (narrative and expository). If a fifth- or sixth-grade student has serious difficulty reading these assigned texts—difficulty decoding the words, reading the sentences fluently, or understanding the message—then frustration and confusion set in. Over several years, feelings of failure can accrue, sometimes resulting in a defensive withdrawal from the very act of reading (Stanovich, 1986).

How big is this problem? The biennial National Assessment of Educational Progress (NAEP) reports three achievement levels for reading: basic, proficient, and advanced. The basic level involves being able to locate relevant details; make simple inferences; and, at eighth grade, identify a main idea or theme. The most recent NAEP results showed that 31% of fourth-grade students and 24% of eighth-grade students performed below the basic level (NAEP, 2015). And note that these percentages were even larger for children attending high-poverty urban and rural schools.

In the mid-1990s, most states began mandating end-of-grade (EOG) reading comprehension tests starting at third or fourth grade. These standardized tests serve a dipstick function, measuring the percentage of students in a school, county, or state who can achieve a passing score on a grade-level reading comprehension test. However, the tests say little about why some children perform poorly. Is it because they are deficient in print-processing skill, vocabulary, background knowledge, verbal reasoning ability, or some combination of these? With this question in mind, several researchers have examined characteristics of upper elementary and middle school readers who score low on EOG standardized tests.

Buly and Valencia (2002), for example, administered a battery of reading and reading-related tasks to fourth graders (N = 108) who had scored below proficient on an EOG standardized test. The tasks
measured phoneme segmentation, word recognition, fluency, receptive vocabulary, and comprehension. Using a cluster analysis technique, the researchers identified six profiles (or types) among the students tested and labeled the profiles descriptively. For example, automatic word callers read fairly fluently but had difficulty with comprehension, slow word callers struggled with both fluency and comprehension, slow and steady comprehenders read slowly but comprehended fairly well, and so on. Dennis (2013) conducted a similar study with middle school students (Grades 6–8; N = 94) who had scored below proficient on an EOG standardized reading test. She used a slightly different set of reading tasks that again covered the areas of word recognition, fluency, vocabulary, and comprehension. Using cluster analysis, Dennis identified four profiles among her low-reading middle school students, and these profiles overlapped with those reported by Buly and Valencia. Although number and type of reader profiles may differ in such cluster analysis studies (owing to differences in their respective test batteries), a clear finding emerges from this type of research: Students who score poorly on standardized tests are not a homogenous group. They differ on important reading-related dimensions (word recognition, fluency, vocabulary, comprehension), and these underlying weaknesses and strengths can and should inform instruction. This finding led us to conduct the present study.

The present study

Our goal was similar to that of the aforementioned reading profile studies: that is, to examine possible differences among fifth- and sixth-grade students who performed poorly on EOG standardized reading tests. However, we took a different tack. After administering a set of reading and vocabulary tasks to low-performing readers, we used Gough and Tunmer’s (1986) simple view of reading to place readers in four a priori categories across the dimensions of (a) print-processing skill and (b) vocabulary knowledge (see Catts, Hogan, & Fey, 2003). Next, within each category (or profile), we examined students’ ability to read accurately and fluently a series of graded reading passages. Such an examination of print-processing skill, we believed, might hold important implications for instruction.

The simple view

In their original conceptualization of the simple view, Gough and his colleagues argued that reading (R) is the product of decoding (D) and linguistic comprehension (L)—or, \(R = D \times L \) (see Gough & Tunmer, 1986; Hoover & Gough, 1990). The researchers defined decoding as automatic word recognition—the ability to quickly derive, from printed input, a given word in the mental lexicon. They defined linguistic comprehension as the ability to take in lexical (or word) information by ear and derive meaning at the sentence and discourse levels. (Note that reading comprehension involves the same ability, except that the lexical information is taken in by eye.) Hoover and Gough (1990) maintained that the two processes central to reading (decoding and linguistic comprehension) could be separated, measured, taught, and remeasured. Moreover, they posited that growth in either process would increase reading ability.

The simple view, specifically the decoding component’s relation to comprehension, is supported by a respected line of reading process research. For example, LaBerge and Samuels (1974) described reading as a zero-sum game in which the reader, at a given moment, has a finite amount of attentional resources to be divided between word recognition and comprehension. Hence, the goal is to automate word processing so that maximum attention can be devoted to comprehension. Stanovich (1980) and Perfetti (1985) provided empirical support for LaBerge and Samuels’s position, and Adams (1990), in reviewing more than a decade of research on word recognition processes, stated the following:

In reading as in listening, the process of individual word perception must proceed with relative automaticity, and such automaticity is afforded only through learning … Only as the perception
[of individual words] has become relatively automatic can we devote our active attention to the process of understanding them. (pp. 228–229)

The simple view is a cognitive approach to understanding reading. It posits two main components—automatic word recognition and linguistic comprehension—and argues that each should be assessed and considered in instructional planning for readers across the grade levels (Gough, Hoover, & Peterson, 1996). We recognize that purposeful reading involves more than pure cognition. Today, particularly in the field of adolescent literacy, there is an emphasis on student motivation to read; that is, researchers give deserved attention to important issues such as reading interests, personal agency, and a community of learners (both in and outside the classroom; see Alexander & Fox, 2011; Broaddus & Ivy, 2002; Wigfield, 2004). Still, we note that the entrance of printed language into the mind—the gateway to potential comprehension and reward—is through automatic word processing, the decoding side of the simple view. Furthermore, we believe that accurate, fluent print processing of text may be a significant problem for many struggling middle school readers. This is why we chose the simple view as our conceptual frame.

In the present study, we used the simple view of reading but modified how its components were measured. For example, our measure of decoding, termed print processing, was contextual in nature—that is, a student’s accuracy and rate in reading short passages (171–216 words in length). Our measure of linguistic comprehension, termed vocabulary, was a student’s score on a receptive vocabulary test in which no reading was required. Vocabulary, to be sure, is only one part of language comprehension. However, it is an important part—a good estimate of overall verbal ability (see Sternberg, 1987; Terman, 1916) and one that can be measured reliably (Semel, Wiig, & Secord, 2003). By establishing cutoff scores (high vs. low) for both print processing and vocabulary, we were able to place readers in four categories: (a) high print processing/low vocabulary (H/L), (b) high print processing/high vocabulary (H/H), (c) low print processing/high vocabulary (L/H), and (d) low print processing/low vocabulary (L/L; see the Results section).

Instructional level

Instructional level in reading is thought to be the optimal level for learning, a level at which the reader is challenged but not overwhelmed. The concept has traditionally been defined as the highest grade (or difficulty) level at which a student can read with 95% accuracy and 75% comprehension (Betts, 1946; Johnson & Kress, 1965; McKenna & Stahl, 2003). In recent years, several researchers have argued that along with accuracy and comprehension, reading rate (or fluency) should also be considered in determining a student’s instructional level (see Morris et al., 2013; Hasbrouck & Tindal, 2006; Pinnell et al., 1995). To this end, criteria for oral reading rate have been proposed across the grade levels; for example, Morris et al. suggested the following EOG rate minimums: second grade = 80 words per minute (wpm), third grade = 90 wpm, fourth grade = 100 wpm, fifth grade = 105 wpm, and sixth grade = 110 wpm.

Given the present study’s focus on low readers’ print-processing skill, we examined possible changes in both oral reading accuracy and rate as students read a series of graded passages. For example, sixth-grade students read a sixth-grade passage but also a fifth-grade and a fourth-grade passage. In summary, our dual purpose in conducting this study was to (a) discern whether, according to the simple view, there are different profiles among readers who perform poorly on an EOG standardized test; and (b) examine the print-processing ability of these different types of low readers from an instructional-level perspective.

Method

Participants

The 65 participating students attended three elementary schools in a small mountain county in western North Carolina. The students comprised nearly all fifth graders ($n = 36$) and sixth graders.
(n = 29) in the school district who had scored below the 50th percentile on the EOG reading test administered the previous spring. Regarding demographics, the county’s school population was 84% Caucasian, 15% Hispanic, and 1% African American, with 63% of the students receiving free or reduced-cost lunch.

Assessment tasks

Testing was conducted during a 2-week period in March. The reading and language tasks were administered to individual students over two sessions by a team of university-based reading educators. Session 1 included word recognition–timed and oral reading. Session 2 included a vocabulary test. Total testing time per student was approximately 45 min.

Word recognition–timed

In this task, a measure of automatic word recognition, single words were flashed on a computer screen for a half second. To receive credit, the student had to read the word immediately. Overall, there were four 20-word lists, graded in difficulty (see Table 1). Fifth graders read the third- to fifth-grade lists; sixth graders read the fourth- to sixth-grade lists. Each student received a word recognition–timed score (0%–100% correct) for each list. Regarding interpretation, cutoff scores for independent-, instructional-, and frustration-level performance were 90%, 70%, and <50%, respectively (Morris, 2015; Stauffer, Abrams, & Pikulski, 1978).

Oral reading

The student read aloud a set of three passages taken from an informal reading inventory (IRI; Woods & Moe, 2003; see Table 2). Overall, the passages were narrative in structure, comprising a mix of realistic fiction and historical incident. Fifth graders read third- to fifth-grade passages; sixth graders read fourth- to sixth-grade passages. The examiner told the student to read each passage at his or her normal rate because questions would be asked following the reading.

Oral reading of a passage yielded three scores: (a) *oral reading accuracy* —the percentage of words read correctly (scoreable errors were substitutions, insertions, omissions, self-corrections, and examiner help), (b) *oral reading rate* —the number of words read per minute, and (c) *oral reading comprehension* —the percentage of comprehension questions (six per passage) answered

| Table 1. Word recognition lists (third grade through sixth grade). |
|-------------------------|------------------------|-----------------|---------------------|
| Third | Fourth | Fifth | Sixth |
| accept | average | labor | elevate |
| favor | hamster | cripple | conservation |
| seal | select | hasten | tenderness |
| buffalo | tobacco | frontier | barrier |
| slicker | brilliant | riverbed | adulthood |
| receive | liberty | settlement | kennel |
| legend | prance | absent | humiliated |
| haircut | solemrn | dissolve | nonfiction |
| dresser | disease | plea | revive |
| icy | impress | surrender | wallet |
| customer | miracle | organization | depression |
| thread | wrestle | evidence | carvings |
| plop | coward | width | similarity |
| bandage | explode | rampaging | unanswered |
| further | opinion | horseshoe | fingemail |
| moat | suffer | grammar | breed |
| closet | vast | assorted | marrow |
| unroll | relationship | soybean | starter |
| storyteller | furnace | troublesome | pedestrian |
| yarn | clan | circumstance | quantity |
correctly. Comprehension questions were passage dependent, requiring logical or informational inferences (Warren, Nicholas, & Trabasso, 1979). Regarding interpretation, for oral reading accuracy we used 94%, instead of the traditional 95%, as the instructional-level cutoff. (Note that we counted self-corrections as errors, whereas some reading educators do not.) For comprehension, we used the traditional 75% correct as the instructional-level cutoff. Finally, for oral reading rate, we used the following instructional-level cutoffs across Grades 3–6: third grade = 90 wpm, fourth grade = 100 wpm, fifth/sixth grade = 105 wpm. These cutoffs represent minimum EOG reading rates for the various grade levels (see Morris et al., 2013; Hasbrouck & Tindal, 2006; Pinnell et al., 1995).

Receptive vocabulary

On the second day, the student was administered the Peabody Picture Vocabulary Test–4 (PPVT; Dunn & Dunn, 2007). In the PPVT, the child is shown four pictures while the examiner says a single word. The child’s task is to indicate which picture best represents the word spoken by the examiner. The items start off easy (below age level) and progress to difficult (above age level). The PPVT is particularly appropriate for a reading study because the child does not always need a precise dictionary definition of a word in order to respond correctly. As in many reading situations, a sense of the word’s meaning will suffice. In this study, we used the student’s PPVT percentile score (instructional-level cutoff = 40th percentile).

Design of the study

With the various tasks administered and scored, we applied cut scores to each student’s print-processing and vocabulary performance. Our aim was to choose cut scores that would represent the lower limit of an average grade-level range—in other words, a score or performance indicating that the student could benefit from grade-level instruction. For vocabulary, our cut score was the 40th percentile on the PPVT, an arbitrary but commonsense choice. A student achieving at or above the 40th percentile was considered high (H). Otherwise, he or she was considered low (L). (Keep in mind that the designations high and low are relative in this study. All participants had scored below the 50th percentile on a standardized reading test administered the previous spring.) For print processing, there were dual cut scores, one for accuracy (94%) and one for rate (105 wpm). To enhance stability in each area, we took the average of the student’s grade-level score (e.g., sixth) and one-level-below score (e.g., fifth). A student reading with 94% accuracy and at 105 wpm was considered high (H). Otherwise, he or she was considered low (L).

Applying cut scores to student performance in print processing and vocabulary created four quadrants or profiles (see Table 3). Because all of the students (N = 65) had scored below the 50th percentile on a standardized reading test administered the previous spring, we anticipated that a large number would end up in the L/L quadrant. These would represent typical, garden-variety low readers (Stanovich, 1988). However, we were very interested in how many students, if any, would end up in the other three quadrants, particularly in H/L and L/H. Membership in these quadrants would indicate relative strength in either print processing or receptive vocabulary.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Oral passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third</td>
<td>Woods & Moe (2003; Form A), “Exploring a Cave”</td>
</tr>
<tr>
<td>Fourth</td>
<td>Woods & Moe (2003; Form A), “Crossing a River”</td>
</tr>
<tr>
<td>Fifth</td>
<td>Woods & Moe (2003; Form A), “The Bicycle Race”</td>
</tr>
<tr>
<td>Sixth</td>
<td>Woods & Moe (2003; Form B), “The First Gas Mask”</td>
</tr>
</tbody>
</table>

Table 2. Reading passages for Grades 3–6.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Passage M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifth (n=8)</td>
<td>94 (2.3)</td>
<td>Sixth (n=8)</td>
<td>96 (1.4)</td>
<td>Fifth (n=6)</td>
<td>94 (2.7)</td>
<td>Fifth (n=8)</td>
<td>94 (3.0)</td>
<td>Fifth (n=11)</td>
<td>99 (14)</td>
<td>Fifth (n=4)</td>
<td>88 (2.8)</td>
</tr>
<tr>
<td>F/L (H/L)</td>
<td>62 (10) (23)</td>
<td>H/H</td>
<td>78 (14) (25)</td>
<td>F/H</td>
<td>105 (16) (40)</td>
<td>F/H</td>
<td>107 (14) (40)</td>
<td>F/H</td>
<td>115 (16) (40)</td>
<td>F/H</td>
<td>125 (22)</td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Note. ORA = oral reading accuracy (%); ORR = oral reading rate (wpm); WR-t = word recognition-timed (%); PPVT = Peabody Picture Vocabulary Test-4; EOG = North Carolina end-of-grade reading comprehension test.
Results

First, we report the distribution of cases (students) across the four quadrants of our simple view design. Second, we consider print-processing scores for both the low- and high-performing students across grade (or difficulty) levels.

Distribution of cases according to the simple view

As expected, a large number of the fifth- and sixth-grade students (31 of 65, or 48%) ended up in the lower left quadrant of Table 3, L/L. At grade level, this group read slowly (<100 wpm), scored below the 20th percentile on receptive vocabulary, and also performed poorly on the EOG standardized reading test administered 3 months later (fifth graders = 26th percentile, sixth graders = 20th percentile). The L/L students’ deficiencies in both print-processing skill and vocabulary may well have negatively affected their standardized test performance.

In the upper right quadrant of Table 3 is a small group (n = 9) of H/H students. This group read accurately and fluently (>124 wpm), showed average or better vocabulary, and performed near the 50th percentile on the EOG reading test (fifth graders = 51st percentile, sixth graders = 43rd percentile). In the upper left quadrant is a group of students (n = 16, or 25% of the sample) who could be characterized as H/L. This group, particularly the sixth graders, showed good reading accuracy and rate yet scored at or below the 25th percentile in vocabulary. It is interesting that both the fifth and sixth graders in the H/L group achieved at or above the 40th percentile on the EOG reading test. The sixth graders, in fact, scored at the 49th percentile on the reading comprehension test despite their low performance on the PPVT (23rd percentile). Finally, in the lower right quadrant we find a small but interesting group of nine students who could be characterized as L/H. Although these students were low in oral reading accuracy (<92%) and rate (<100 wpm), they scored at or above the 70th percentile in vocabulary. Moreover, despite low print-processing scores, the L/H sixth graders scored at the 53rd percentile on the EOG reading test. The L/H fifth graders scored lower on the reading test (36th percentile).

Print-processing performance of high and low groups

There were three measures of print-processing skill: word recognition–timed, oral reading accuracy, and oral reading rate. From an instructional-level perspective, we would expect a good word recognition–timed or sight vocabulary score (70% or higher) to underpin adequate oral reading accuracy (94% or higher) and rate (105 wpm or higher; see Adams, 1990; Morris et al., 2011). In Table 3, we present the at-grade-level print-processing results by quadrant. However, two of the quadrants contained a fairly small number of students (H/H = 9, L/H = 9). In Table 4, we address this problem by (a) collapsing grade levels (fifth and sixth) within a quadrant, (b) combining the low print-processing quadrants (L/L + L/H = 40) and the high print-processing quadrants (H/L + H/H = 25), and (c) contrasting the performance of the resulting low and high print-processing groups. In Table 4, it is clear

<table>
<thead>
<tr>
<th>Level</th>
<th>Oral reading accuracy (%)</th>
<th>Oral reading rate (wpm)</th>
<th>Word recognition–timed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High print-processing group (H/H, H/L; n = 25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One level below</td>
<td>96</td>
<td>136</td>
<td>82</td>
</tr>
<tr>
<td>Two levels below</td>
<td>97</td>
<td>147</td>
<td>92</td>
</tr>
<tr>
<td>Low print-processing group (L/L, L/H; n = 40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade level</td>
<td>91</td>
<td>90</td>
<td>49</td>
</tr>
<tr>
<td>One level below</td>
<td>92</td>
<td>98</td>
<td>63</td>
</tr>
<tr>
<td>Two levels below</td>
<td>94</td>
<td>111</td>
<td>77</td>
</tr>
</tbody>
</table>

Note. Mean scores were adjusted based on the proportion of students in the H/H and H/L quadrants and the proportion of students in the L/L and L/H quadrants. L/L = low print processing/low vocabulary; L/H = low print processing/high vocabulary; H/L = high print processing/low vocabulary; H/H = high print processing/high vocabulary.
that the high print-processing group outperformed the low print-processing group at each difficulty level (i.e., at grade level, one grade level below, and two grade levels below). At grade level, the high print-processing group achieved instructional-level scores in oral reading accuracy (95%), oral reading rate (126 wpm), and word recognition–timed (71%). In contrast, at grade level, the low print-processing group was clearly at a frustration level in oral reading accuracy (91%), oral reading rate (90 wpm), and word recognition–timed (49%). These group differences remained large and steady as the reading material decreased in difficulty (one and two levels below grade level). In fact, students in the low print-processing group did not seem to reach solid ground (i.e., instructional level) until they were reading material two levels below their grade placement.

Before leaving this section on print-processing results, we want to point out that the students were attending to meaning as they orally read the IRI passages. On average, fifth graders read a grade-level passage with 75% comprehension; sixth graders read with 80% comprehension.

Discussion

This study explored possible reading/vocabulary differences among a group of fifth- and sixth-grade students who, the previous school year, had scored below the 50th percentile on a standardized reading comprehension test. Using the simple view of reading (Gough & Tunmer, 1986) as an organizing frame, we found that there was a clear spread of readers across the four profiles. As expected, a large number of students (48%) ended up in the L/L profile, showing deficits in both print processing and vocabulary. A few students (14%) were in the H/H profile, performing relatively well in both tested areas. The remaining students (38%) showed mixed performance, scoring either high in print processing and low in vocabulary (H/L) or the reverse, low in print processing and high in vocabulary (L/H).

The aforementioned mixed profiles (H/L and L/H) are interesting from a theoretical perspective. Remember that the simple view argues that reading comprehension equals the product of print-processing skill and language knowledge. It seems significant that although the H/L and L/H groups performed poorly in one of these two areas (either vocabulary or print processing), both groups were still able to score relatively high (approximately the 45th percentile) on an EOG reading comprehension test. It may be that strength in one area (e.g., print processing) allowed the reader to compensate for weakness in the other (e.g., vocabulary) and thereby do reasonably well on the comprehension test. Note that when readers were low in both areas (the L/L profile), they achieved much lower scores on the comprehension test (approximately the 23rd percentile; see Table 3).

Another aim of this study was to examine, in some detail, the print-processing skill of the 65 students. We looked at the students’ oral reading accuracy and rate when they read a series of short IRI passages and at their automatic word recognition when they read graded word lists. On average, high print processors \((n = 25)\) read grade-level text with reasonable accuracy (95%) and rate (126 wpm). They also demonstrated good sight vocabulary at grade level (word recognition–timed = 71%). When the high print processors read less difficult passages (one and two levels below their grade placement), their print processing got noticeably stronger in all three areas (oral reading accuracy, rate, and word recognition–timed). In contrast, the low print processors \((n = 40)\) were frustrated when reading grade-level text: accuracy (91%), rate (90 wpm), and word recognition–timed (49%). These students on average misread 1 out of every 11 words when reading orally; read 15 wpm below the rate minimum; and clearly lacked sight vocabulary, misreading more than half the words on the grade-level list. The low print processors’ performance did improve steadily as they read the less difficult passages. However, it was not until they were reading two levels below their grade placement that they seemed to gain instructional-level footing (accuracy = 94%, rate = 111 wpm, word recognition–timed = 77%).

Implications for practice

The finding that there are different types of low readers in upper elementary classrooms is interesting and potentially useful. However, when we consider instructional implications for the different
profiles, the common denominator is print-processing level. For example, students in the high print-processing quadrants (H/L and H/H) can be taught at grade level because they can read grade-level text with reasonable accuracy and speed. The H/L group may require help with vocabulary, but a teacher can provide specific prereading support in this area. In contrast, students in the low print-processing quadrants, L/L and L/H, should not be taught exclusively with grade-level text. L/L students, who lack both print-processing skill and vocabulary knowledge, obviously need to read at a level at which their accuracy and rate is sufficient to support comprehension. For many L/L students, this will be two levels below their grade placement (see Table 4). L/H students present a more puzzling problem to the teacher. Although students in this group could not read grade-level text with adequate accuracy or fluency, their above-average vocabulary allowed them to score fairly high on a standardized comprehension test. It may be tempting to have L/H students read at grade level; however, we believe that they should also read below-grade-level text in order to improve their reading accuracy, rate, and underlying store of sight words.

From fourth grade on, it is common practice in schools to teach literature and subject matter (e.g., science, social studies) using grade-level text; that is, fourth graders read fourth-grade material, fifth graders read fifth-grade material, and so on (Allington, 2002). This practice is reinforced through the use of end-of-year reading comprehension tests that also feature text of grade-level difficulty. Nonetheless, in this study, 62% of the students who had scored low on a standardized comprehension test could not read grade-level text with adequate accuracy and rate (see Hock et al., 2009, for a similar finding with ninth graders). In fact, in many cases, they could not read comfortably a full level below their grade placement. It is difficult for us to envision significant improvement in reading or adequate learning from reading if 11- and 12-year-old children are required on a daily basis to read text that is too difficult. Therefore, we view print-processing ability (or instructional level), particularly in Grades 4 and above, as "the elephant in the kitchen." Schools often act as if the elephant is not present, but it is, and it will not go away unless something is done about it. How could schools address the instructional-level issue in the upper elementary and middle school grades? Obviously there is no simple answer to the question, but some commonsense steps, in the following order, could and need to be taken.

Assess the low readers

In September, a classroom teacher can screen for low readers using (a) standardized test scores from the previous school year and (b) comments from the previous year’s teacher. With perhaps 10 students tentatively identified, the teacher assesses each child using an abbreviated passage-reading inventory (i.e., the first 100 words in an IRI passage). Testing begins two levels below grade level and progresses to grade level—three passages in all. The teacher tells the child to read at his or her normal speed (“Don’t rush”) because a few questions (two or three) will be asked after the reading. Total testing time per student is about 10 min. Regarding scoring, the teacher obtains an oral reading accuracy score by subtracting the total number of errors from 100% (e.g., 100 – 5 = 95%). He or she obtains an oral reading rate by dividing 6,000 by the number of seconds it takes to read the passage (e.g., 6,000 ÷ 75 s = 80 wpm). To determine whether the student read the passage with sufficient accuracy and rate, the teacher uses the following criteria: accuracy = 95%, rate = 100 wpm at fourth grade, 105 wpm at fifth and sixth grade (see Morris, 2015, for more information on scoring). Such a brief assessment, if carefully carried out, affords an estimate of instructional level for the below-grade-level readers in the class. The following reading-level profile might result for a sixth-grade class (n = 25):

- 15 students at sixth-grade level (or higher)
- Five students at fifth-grade level
- Four students at fourth-grade level
- One student below fourth-grade level

Acquire a graded collection of reading material

To address the different levels of the 10 low-reading sixth graders mentioned previously, a teacher would need a collection of reading materials (books, magazines, Web-based articles) that ranges from
second to fifth grade in difficulty level. Such graded collections (individual titles and book sets) could be housed in the teacher’s classroom, in the school library, or in a shared book room from which many teachers could borrow and return books as needed. There is cost and time involved in acquiring a quality collection of graded reading material. Nonetheless, this step cannot be ignored. To progress, struggling readers need interesting books that match their print-processing level—books in which they do not have to struggle.

Address individual differences

Informal assessment will reveal differences in students’ reading ability (Step 1). And over time an appropriate set of books can be acquired (Step 2). The major challenge is Step 3—how to address individual differences in reading ability within a classroom. The problem is an old one, nested in the very structure of schools. That is, how does one teacher, within a 60-min period, provide differentiated instruction to 25 students who read at four different levels? There is no magic solution to this problem, but several approaches at least address the issue of differentiation.

Across-class grouping. Once students within a grade (e.g., sixth grade) have been assessed, they could be assigned—during the language arts period—to different teachers according to reading level (e.g., below, at, and above grade level). The advantage to this approach is that it reduces variability in reading skill within each class, ideally creating a more manageable instructional setting. Still, a sixth-grade teacher of the below-grade-level group would most likely face more than one reading level (fifth, fourth, even third grade), necessitating further regrouping. Across-class grouping also has been negatively associated with the practice of tracking, or separating low-achieving students from their higher achieving peers.

Within-class grouping. Assigning students to within-class reading groups (e.g., low, average, and high) sounds like a good idea, but it begs the question of practicality. How does the teacher prepare and teach multiple reading lessons within a short time period? The idea of literature circles, in which students are carefully taught to run their own reading groups (see Daniels, 1994), may hold some promise. Literature circles certainly afford the use of multilevel texts within the classroom. That is, three groups could be reading three books, each written at a different difficulty level. Moreover, with the average or above-average groups off and running, the teacher could spend the time that is needed to help students in the low group function successfully in their literature circle.

Individualized reading. The idea of individualized reading—that is, each student choosing his or her own book to read based on interest and difficulty level—is an old and radical one (see Guszak, 1997; Olson, 1952; Veatch, 1978). Nonetheless, given the considerable difficulties associated with the aforementioned schemes (across-class and within-class grouping), an individualized plan might prove to be the most practical, doable alternative. An individualized program would probably work best in a language arts or reading class as opposed to a subject matter class. Such a program would require a significant investment in a graded collection of books, magazines, Web-based resources, and so on (the students must have an array of material to choose from). And the teacher would need to be familiar with the books that are being read by his or her students. Nonetheless, if sufficient reading material is available, and if students are invested in reading it, then an individualized program may be the most effective way for a teacher to differentiate and manage instruction on a day-to-day basis. Regarding the inevitable question about direct instruction in such a program, the teacher can hold mini-conferences with individual students about the books they are reading. He or she can also pull together small groups from time to time to work on specific reading strategies (e.g., monitoring meaning, making predictions, asking questions) The directed reading-thinking activity would be a valuable strategy to use in such pull-out groups (see Duffy, 2003; Hammond & Nessel, 2012).
Conclusion

It is revealing that when policymakers address the problem of reading underachievement in schools, they inevitably focus on the primary grades (e.g., Strategies for Children, 2012; North Carolina Department of Public Instruction, 2012). They cite research showing that if children are not reading proficiently by the end of third grade, then they will have a difficult time catching up and be at academic risk as they move through school (Hernandez, 2011). We actually agree with this prevention-oriented focus. But note that often the unasked question is this: Why do students who get off to a slow start have so much trouble improving their reading skill in the upper elementary and middle school grades? We believe, along with others (Allington, 2002; O’Connor et al., 2002), that it has to do with a one-size-fits-all instructional mentality. That is, from fourth grade on, low readers are usually instructed in grade-level material whether they have the requisite print-processing skill or not. To us, this is a prescription for failure, an institutional mindset that writes off or diminishes the literacy futures of far too many children. This was a small exploratory study with a simple design and descriptive statistics. Still, we do not believe for a second that our findings are uncommon or overstate the instructional-level problem facing older struggling readers. In fact, we believe that the problem is most likely greater in more disadvantaged school populations—urban and rural. If one questions this statement, this study would be very easy to replicate.

References

Broaddus, K., & Ivey, G. (2002). Taking away the struggle to read in the middle grades.

