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SCIENTIFIC ABSTRACT 

 

 

The Midwest US has experienced significant changes in agricultural land use and 

management practices in recent decades. Cropland expansion, crop rotation change, and 

crop phenology changes could lead to divergent environmental impacts on linked 

ecosystems. The overall objective is to examine agricultural land use and management 

changes and their impacts on water quality in the Midwest US, which is addressed in 

three separate studies. The first study examined spatial and temporal dimensions of 

agricultural land use dynamics in east-central Iowa, 2001-2012. Results of this study 

indicated that increases in corn production in response to US biofuel policies had been 

achieved mainly by altering crop rotation. This study also examined spatial relationships 

between cultivated fields and crop rotation practices with respect to underlying soils and 

terrain. The most intensively cultivated land had shallower slopes and fewer pedologic 

limitations than others, and the corn was planted on the most suitable soils. The second 

study characterized key crop phenological parameters (SOS and EOS) for corn and 

soybean and analyzed their spatial patterns to evaluate their change trends in the Midwest 

US, 2001-2015. Results showed that MODIS-derived SOS and EOS values are sensitive 

to input time-series data and threshold values chosen for crop phenology detection. The 

non-winter MODIS NDVI time-series input data, and a lower threshold value (i.e., 40%) 

both generated better results for SOS and EOS estimates. Spatial analyses of SOS and 

EOS values displayed clear south-north gradient for corn and trend analyses of SOS 

revealed only a small percentage of counties showed statistically significant earlier trends 

within a user-defined temporal window (2001-2012). The third study integrated remote 

sensing-derived products from the first two studies with the SWAT model to assess 

impacts of agricultural management changes on sediment and nutrient yields for three 

selected watersheds in the Midwest US. With satisfied calibration and validation results 

for stream flows, sediment and nutrient yields, considered under differing management 

scenarios, were compared at different spatial scales. Results showed that intensive crop 

rotation, advancing the planting date with the same length of growing season, and longer 

growing seasons, dramatically increased, maintained, and slightly reduced sediment, total 

nitrogen, and total phosphorous yields, respectively. Overall, these studies together 

illuminate relationships between broad-scale agricultural policies, management decisions, 

and environmental impacts, and the value of multi-temporal, broad-scale, geospatial 

analysis of agricultural landscapes.  
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GENERAL ABSTRACT 

 

 

Agricultural land use and management is an important component of how humans use the 

landscape, as it reflects human actions and values. Changes in agricultural land use and 

management may have dramatic effects on soil erosion and nutrient export. This research 

examined agricultural land use and management changes and their impacts on water 

quality in the Midwest US. Firstly, this research examined spatial and temporal patterns 

of agricultural extensification and intensification in east-central Iowa, 2001-2012, and 

related them to variations underlying soils and terrain. This research found that increases 

in corn production in response to US biofuel policies were realized mainly by altering 

crop rotation. The most intensively cultivated land had shallower slopes and fewer 

pedologic limitations than others, and the corn was planted on the most suitable soils. 

Secondly, this research characterized key crop phenological parameters (start of season 

(SOS), and end of season (EOS)) for corn and soybean crops in the Midwest US, 2001-

2015, and found that remote sensing-derived SOS and EOS values are sensitive to input 

time-series data and threshold values. With spatial and trend analyses,  the south-north 

gradient for corn SOS and EOS were clearly displayed and only a small percentage of 

counties showed statistically significant downwards trends for corn and soybean SOS 

within a user-defined temporal window (2001-2012). Finally, this research assessed 

impacts of changes of cropping systems and planting/harvest dates under different 

management scenarios on sediment and nutrient yields for three selected watersheds in 

the Midwestern US. Intensive crop rotation resulted in greater sediment and nutrient 

losses while longer growing seasons reduced sediment and nutrient losses slightly. 
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Chapter 1 Introduction 

1. Research Context and Justification 

In United States, total land in crop production has remained roughly constant over 

the past century, but its distribution and composition have varied (Lubowski et al., 2006). 

Agricultural management practices have also changed dramatically in recent decades. 

Changes in agricultural land use and management practices have contributed to 

substantial environmental issues, such as CO2 emission, soil degradation, biodiversity 

loss, and water degradation (Foley et al., 2011). Formation of policy to support 

sustainable agriculture should be recognized present and future development trends and 

their potential economic, social and environmental impacts.  

As one of the key grain-producing regions of the world, the Midwest US has 

experienced significant changes in agricultural land use (extensification and 

intensification) in response to federal policies implemented to encourage production of 

biofuels (Secchi et al., 2009; Secchi et al., 2011; Stern, Doraiswamy, & Hunt, 2012). The 

United States Department of Agriculture’s (USDA) National Agricultural Statistics 

Service (NASS) reported that corn acreage in 2007 reached its highest levels since 1944. 

Increased corn production is generally related to decreases in other agricultural croplands 

(i.e., soybean and winter wheat), pasture land (Keeney & Hertel, 2009; Westcott, 2007), 

and marginal lands in the Conservation Reserve Program (CRP) (Langpap & Wu, 2011; 

Swinton et al., 2011), and replacing standard crop rotation (i.e., corn-soybean/soybean-

corn) with continuous corn rotation (Lunetta et al., 2010). Furthermore, elevated corn 

prices may also promote farmers to plant corn earlier, thereby rising corn yields (Bastidas 

et al., 2008; Nielsen et al., 2002; Wilcox & Frankenberger, 1987). Current expansion of 
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corn acreage, changing crop rotation practices, changing crop phenological phases in the 

Midwest US are expected to have significant impacts on sediment and nutrient loading 

into streams and water bodies, affecting agro-ecosystem functions and services. 

My goal for this research is to better understand spatial and temporal dimensions 

of cropland change, crop rotation change, and crop phenology change in response to 

changes in ethanol policy, and access their impacts on water quality. Recognition of 

spatial and temporal dimensions of agricultural land use and management changes is 

important if we seek to understand local economic and environmental consequences, and 

to improve predictive models used in decision support. 

It is often difficult to obtain detailed agricultural land use and management 

information, especially for large study areas (Borah & Bera, 2003). Remote sensing can 

provide detailed and reliable spatial information concerning cropland change, crop 

rotation patterns, and planting/harvesting dates for corn and soybeans. In this research, I 

used the Cropland Data Layer (CDL) from 2001 through 2012 produced by USDA NASS 

to examine changes in cultivated area and crop rotation sequences on a pixel-by-pixel 

basis. I used Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized 

Difference Vegetation Index (NDVI) data to estimate planting/harvesting dates for corn 

and soybeans a pixel-by-pixel basis. In order to access impacts of changes in agricultural 

land use and management on water quality, I selected the Soil and Water Assessment 

Tool (SWAT) model. Accurate representation of agricultural management practices like 

crop rotation and planting/harvest dates are an important component of the SWAT model, 

however, detailed management map products are often unavailable, or offer limited 

spatial and temporal coverage. Integrating pixel-by-pixel crop rotation patterns and 
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planting/harvesting dates derived by satellite images, sediment and nutrient yields for 

current conditions and simulated future agricultural management scenarios were 

predicted for selected large ungauged watersheds. 

  

2. Dissertation Components, Attribution, and Research Objectives 

This dissertation is composed of three manuscript chapters prepared for 

submission to peer-reviewed academic journals. The three manuscripts present a 

comprehensive study of changes in agricultural land use and management and their 

impacts on water quality. The first manuscript (Chapter 2) examines site-specific 

temporal and spatial patterns of agricultural land use from 2001 to 2012 in a region of 

East-Central Iowa with USDA-NASS CDLs. This manuscript, with coauthors Dr. James 

B. Campbell (chair) and Dr. Yang Shao was submitted to Agricultural Systems. The 

second manuscript (Chapter 3) characterizes key crop phenological parameters (SOS and 

EOS) for corn and soybean crops within the Midwestern US using 250m MODIS 16-day 

NDVI composites. This manuscript, with coauthors Dr. James B. Campbell (chair) and 

Dr. Yang Shao was submitted to Remote Sensing of Environment. The third manuscript 

(Chapter 4) examines impacts of changes of cropping systems and planting/harvest dates 

on sediment and nutrient yields with the SWAT model for selected watersheds in the 

Midwest US. This manuscript, with coauthors Dr. James B. Campbell (chair) and Dr. 

Yang Shao is in preparation for submission to a journal yet to be identified.  
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Abstract 

In central regions of the U. S. Corn Belt, agricultural production since 2001 has changed 

in response to federal policies implemented to encourage production of biofuels. As a 

result, increasing demand for sustainable bioenergy resources has accelerated biofuel 

production, and led to changes in agricultural land use.  This study examines: (1) 

increases and decreases in cultivated area, and (2) pixel-by-pixel crop rotation sequences 

within a region of East-Central Iowa.  The practice of agriculture brings lands in and out 

of production in response to variations in local landscapes, markets, and technologies.  

Further, crops are rotated in response to environmental and market concerns.  Knowledge 

of how such lands are used, and of their topographic and pedologic properties, forms a 

prerequisite for understanding the context for developing sustainable management 

practices and policies. This study examines site-specific temporal and spatial patterns of 

agricultural land use from 2001 to 2012 in a region of East-Central Iowa within United 

States Department of Agriculture National Agricultural Statistics Service Cropland Data 

Layer. After 2007, intensity of cultivated land use increased and crop rotation changed 

from standard corn-soybean or soybean-corn cycles to more intensive rotations. These 

changes may be correlated with market forces, although variations suggest a multiplicity 

causes. Intensity of cultivated land use depended on topographic and pedologic 

properties, although motivations and constraints perceived by producers and managers as 

they plan their use of landscapes are important. 

 

Keywords: agricultural pattern; land intensification; land extensification; crop rotation; 

biofuels 
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1. Introduction 

The Energy Policy Act of 2005 and the Energy Independence and Security Act of 

2007 requires blending of renewable fuels such as ethanol and biodiesel in transportation 

fuels, thereby increasing demand for corn and dedicated energy crops such as switchgrass 

that can supply fuels to meet this requirement. Increased corn production has been 

achieved through combinations of expansion of cultivated land and intensification of 

production practices. The former might be based upon cultivation of lands formally held 

in Conservation Reserve Program (CRP) or upon uses of marginal lands previously 

devoted to less intensive uses (Langpap & Wu, 2011; Swinton et al., 2011; Westcott, 

2007). The latter could be achieved through changes in existing crop rotation practices 

(Plourde et al., 2013; Stern et al., 2012), or by more intensive use of fertilizers (Simpson 

et al., 2006). 

Broad-scale production of biofuels has wide impacts on agriculture and land use 

(Keeney & Hertel, 2009; Miao, 2010; Miyake et al., 2012; Mueller & Copenhaver, 2009; 

Stan et al., 2014; Wallander et al., 2011; Wu et al., 2012). Researchers recognize that 

meeting increased demand for corn driven by ethanol production must be based upon 

either extensification or intensification of production, but have disagreed about specifics. 

Wright and Wimberly (2013) analyzed spatial changes from grassland to cropland 

between 2006 and 2011 in the western Corn Belt based upon analysis of the United States 

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) 

Cropland Data Layer (CDL). They reported that increased corn and soybean production 

is based upon extensification, not intensification.  This study generated a rebuttal from a 

study in Kansas (Brown et al., 2014). Brown et al. (2014) examined CDL and interview 
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data from Kansas farmers to explore relationships between distance to an ethanol plant 

and extensification and intensification of corn production at county level between 2007 

and 2009. Their study indicated that farmers devoted much more land to intensification 

than to extensification. In addition, recognition of spatial and temporal dimensions of 

land use changes in agricultural systems caused by biofuel production is important if we 

seek to understand local economic and environmental consequences, and to improve 

predictive models used in decision support. Recent papers have incorporated spatially 

explicit analyses (Johnston, 2014), focus primarily on particular land use change 

practices, such as crop rotation or reclamation of CRP lands, and their environmental 

impacts. For example, Secchi et al. (2011) linked economic, geographical and 

environmental models by using spatially explicit common units of analysis and used 

remotely sensed crop cover maps and digitized soils data as inputs. They predict changes 

in land use, crop rotation, and tillage practice, including the environmental impact of 

these choices, under different corn price scenarios in Iowa. They assessed environmental 

impacts on the extensive margin (CRP lands with no cropping) and the intensive margin 

(lands currently under row crop agriculture) using the Environmental Policy Integrated 

Climate (EPIC) model. They found that land already in row crops would be converted to 

continuous corn cropping before any land in CRP would be converted to any corn 

production. Stern et al. (2012) examined crop rotation practices based upon USDA CDL 

information, aggregated by county. They examined relationships between corn 

production increases and crop rotation changes in Iowa, finding regional differences in 

crop rotation decisions relative to expansion of cultivated land. 
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There is yet little research devoted to immediate and long-term impacts of increased 

ethanol production for domestic agriculture, especially the spatial dimensions of these 

impacts. Spatial details of the crop location, extent and distribution, and patterns of 

changes in crop rotation illuminate how agricultural practices have responded to changes 

in ethanol policy. Existing work pays less attention to examine spatial relationships 

between cultivated fields, and crop rotation practices, with respect to underlying soils and 

terrain.   

We provide an in-depth geographical analysis of land use dynamics to better 

understand spatial dimensions of cropland change. We examine two hypotheses. First, as 

there has been a notable increase in biofuel production over previous years, crop 

production expanded into areas such as those formerly enrolled in the CRP, and into 

marginal or poor lands that are less suitable for growing crops. Second, as most of the 

land in Iowa is already used for agriculture, increases in corn production have been 

largely achieved by altering crop rotation patterns, causing a decline in crop diversity and 

redistribution of cornfields to most fertile and productive lands. We examine these 

hypotheses by analyzing 12 years of sequential Landsat imagery of a nine-county region 

of East-Central Iowa. 

 

2. Study Area 

This research investigates a nine-county region in East-Central Iowa (Figure 1), an 

area of low relief and gentle topography formed as glacial terrain and loess deposits. The 

southern half (approximately) of this area includes a portion of the Southern Iowa Drift 

Plain, rolling hills of Wisconsin-aged loess superimposed on Illinoian glacial till, forming 
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some of the world’s most productive agricultural land. Here northwest-southeast oriented 

drainage interfingers into glacial surfaces as forested channels.  The southeastern corner 

includes a section of the Mississippi Alluvial Plain— alluvial deposits associated with the 

Mississippi River and its tributaries, bordered by limestone and dolomite cliffs.  Locally 

it is formed largely as stream terraces, abandoned river channels, oxbow lakes, and 

backwater sloughs.  The northern edge of the study area is the Iowan Surface, a low-relief 

surface of glacial till covered by shallow loess. 

Approximately 90% of the total land in Iowa is used for agriculture with cropland 

mainly in private ownership (Petrov & Sugumaran, 2005). Iowa agriculture focuses upon 

production of cattle, hogs, corn, soybeans, oats, and eggs—a list that includes several 

products that compete for corn. Iowa is the United States’ largest producer of corn and 

ethanol, and often leads in soybean production. As is typical for Corn Belt agriculture, 

corn and soybeans are grown in rotation—as noted below, increases in ethanol 

production have disrupted the accepted corn-soybean rotation, now often replaced by 

corn-corn-soybean rotation cycles (Bain & Selfa, 2013; Secchi et al., 2011; Stern et al., 

2012). The study area covers three main markets for corn inputs (Gallagher, Wisner, & 

Brubacker, 2005). At least eleven biodiesel and ethanol plants within and near the study 

area rely upon local corn crops (Figure 2.1), including three established during the past 

seven years, after the change in biofuel policy (Iowa Department of Natural Resources, 

2007). These plants are situated not only in proximity to corn production, but also near 

transport, including road, rail, and water. Despite the significance of ethanol production, 

locally and nationally, not all ethanol plants are successful.  
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3. Methods 

3.1 Data 

Four sources of data were used to identify changes of agricultural land use. The first 

set of data was the CDL for Iowa from 2001 through 2012 produced by USDA NASS 

(http://nassgeodata.gmu.edu/CropScape/). The spatial resolution is 56m for CDLs from 

2006 to 2009 and 30m for CDLs from the other years. In order to analyze crop rotation 

changes over 12 years and compare with other data sets, CDLs from 2006 to 2009 were 

resampled to 30m. NASS indicates that CDLs have high user’s and producer’s accuracies 

for corn and soybeans, usually above 90% for Iowa (Table 2.1). Thus, the CDL appears 

to be a reliable source of data for crop rotation analysis. The second set was county-level 

CRP statistics from the US Department of Agriculture and a spatial data of land enrolled 

in USDA CRP in Iowa in 2008 from University of Iowa. There was no publically 

available spatial data on CRP lands for other years. The third set was the USGS National 

Elevation Data (NED) at 30m for Iowa (http://viewer.nationalmap.gov/viewer/), used to 

extract topographic slope. Lastly, Gridded Soil Survey Geographic (gSSURGO) 

Database for Iowa produced by USDA Natural Resources Conservation Service (NRCS) 

was used to identify Corn Suitability Rating (CSR) and land capability class 

(http://datagateway.nrcs.usda.gov/GDGOrder.aspx). 

 

3.2 Analysis of Land Intensity 

The CDLs from 2001 to 2012 were used to identify patterns of summer crops (corn 

and soybeans) within our region. These CDLs were converted to binary images, labeling 

pixels classified as corn or soybeans as “1” and labeling other land cover types as “0”. A 

http://datagateway.nrcs.usda.gov/GDGOrder.aspx
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3 × 3 majority filter was applied to all binary images to reduce “salt and pepper” effects. 

Intensification of production practices for summer crops on a pixel-by-pixel basis were 

obtained by summarizing lands that were kept in production during 12 years. A five-year 

moving window (8 windows from 2001 to 2012) was applied to track spatial patterns of 

such intensification.  

 

3.3 Characterizing Physical Factors  

To evaluate the impacts of implementation of 2005/2007 biofuel policies upon long-

term sustainability of agricultural land use, we associated land use (re)distribution with 

land quality and investigated the utilization of lands that have been under the CRP. 

Firstly, we used slope, land capability class and CSR to determine whether higher 

corn prices may have encouraged farmers to use land that is not suited for production. 

Topographic slope values were extracted from USGS NED 30m DEM. Land capability 

class values and CSR values were obtained from 10m gSSURGO Database and they were 

resampled to 30m using the majority class value of 3 by 3 matrixes to represent each new 

pixel value. Land capability classification shows the suitability of soils for most kinds of 

field crops which is based on landscape location, slope of the field, depth, texture, and 

reaction of the soil (Douglas, 1992). It includes eight classes — classes 1 to 4 are arable 

lands in which classes 3 and 4 have severe to very severe limitations, respectively, and 

classes 5 to 8 are suitable mainly as pasture or rangeland. The CSR is a standard index of 

soil suitability for row crop production developed by the Iowa State University Extension 

(Miller, 2012). This index is based on soil type, slope, drainage, weather, and frequency 

of use for row crop production. The CSR varies from 0 to 100, where 100 is ideal soil for 
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corn production. CSR for high productivity lands typically exceeds 80, and for low 

productivity lands generally remains under 65. We computed and compared the 

percentages of planted corn/soybeans in areas where the CSR was above and below 65 

prior and after the implementation of 2005/2007 biofuel policies.  

Secondly, we used county-level CRP statistics to determine CRP change pattern 

during 12 years. This data does not specify the land cover for CRP land as the great 

majority of CRP land in Iowa is covered with grasses (USDA Farm Service Agency, 

2007). We then used 2008 CRP data to determine the overlap with lands planted with 

corn or other crops to identify weather CRP lands were used in production after the 

widespread of biofuel production. For our study area, the shapefile has 33,327 polygons 

covering 223,422 acres. Many of the areas that are set aside for CRP land are wetlands or 

drainage-ways and therefore are frequently small and irregular in shape. In order to 

remove these lands from the analysis, any polygons with areas less than 15 acres were 

excluded. Those remaining were intersected with the 2009 CDL to estimate an amount of 

2008 CRP land converted to corn cultivation in 2009. 

 

3.4 Determination of Crop Rotation Patterns 

Crop rotation refers to the sequence of crops from year to year for a single field. The 

standard crop rotation in Iowa has been to alternate between corn and soybeans in 

consecutive years (Bain & Selfa, 2013; Sahajpal et al., 2014; Stern et al., 2012). 

Alternatively, some crop producers have chosen to plant corn or soybeans year after year 

in the same field. For the purpose of this study, CDLs were combined in two ways to 

determine changes in crop rotation before and after the widespread increases in biofuel 
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production. First, areas with corn for three consecutive years from 2001 to 2012 were 

measured using conditional statements. A binary classification was created where pixels 

classified as corn were labeled 1 and other land cover types were labeled 0. Three years 

were added sequentially and pixels with 3 were considered as continuous corn rotation.  

Second, we analyzed crop rotation patterns for corn and soybeans over six-year intervals 

(2002-2007 and 2007-2012), which will give us 64 possible permutations. Except for the 

standard crop rotation, two or more years of continuous corn provide several choices of 

rotation sequences. Continuous soybean rotation is not a common occurrence in Iowa 

(Secchi et al., 2011) because growing soybeans year-after-year in the same field create 

serious problems with soybean nematodes which have negative effects on soybean yield 

(Koenning et al., 1995). For a six-year period, we classified all the possible rotation 

choices into 5 classes by the number of years with corn: corn-soybean/soybean-corn, 

corn-corn-soybean/soybean-corn-corn, continuous corn, more than three years of 

continuous corn, and other which including two or more years of continuous soybean. 

 

4. Results 

4.1 Intensity of Cultivated Land 

Using a five-year moving window, production trends can be analyzed. Over five 

years, the area in summer crop cultivation for both more than two years and more than 

three years increased in the period from 2001 to 2012 (Figure 2.2). These trends 

corresponded to price trends for corn and soybeans based on NASS statistics. From 2001 

to 2012, both corn and soybean prices increased from 2009, reaching a maximum in 

2012, with, at the state level, other peaks in 2003 and 2007 (USDA National Agricultural 
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Statistics Service). These trends indicated increases in cultivated land intensity, which 

may be attributed to the higher demand for corn created by the increasing production 

capacity of ethanol plants (Renewable Fuels Association, 2013). 

Summer crops were cultivated in a way that illustrates place-to-place differences in 

timing and intensity of land uses (Figure 2.3). Most areas were planted with continuous 

summer crops, but fragmented terrain bordering rivers and valleys were used less 

intensively, perhaps because floodplains may be narrow, have steep slopes, or 

problematic soils.  Areas at edges of fields, known as headlands, or turnrows (narrow, 

uncropped, strips for turning farm machinery at the ends of rows), were often 

uncultivated or used less intensively. Together, such conditions may lead these areas to 

be used for secondary crops, grasslands, or pastures. 

At county level, Benton County had the least proportion of area (10.21%), used only 

for 1 to 3 years while Keokuk County had the most proportion of such areas (27.07%). 

Cedar County had the most proportion of areas (67.87%) that were used for 11 or 12 

years while Keokuk County had the least proportion of such areas (41.86%). 

 

4.2 Cropland Redistribution and Land Suitability  

Slope values for areas with different cultivated land intensity within the study area 

were compared. Land with shallow slopes was used more intensely (Figure 2.4). The 

most intensively used land (11 or 12 years with summer crop) had slopes of less than six 

degrees, suitable for mechanization. Slope values of these five classes were significantly 

different (P < 0.0001) according to Wilcoxon Rank Sums/ Kruskal-Wallis Tests. There 

were less than 0.01% outliers (black crosses in Figure 2.4), most located at edges of 
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fields. Some had extremely high slopes which are impossible for cultivation, perhaps 

caused by misclassification.  

Capability class values for areas with different cultivated land intensities in the study 

area were compared (Figure 2.5). The smaller the class value designation, the fewer 

limitations for cultivation. The majority of lands (above 82%) in the study area are arable, 

within which 56% have few limitations. As land intensity (measured by numbers of years 

in cultivation) increased, more land with fewer limitations was brought in cultivation 

(Figure 2.5). Thirty-five percent (35%) of the least intensively used land (1-3 years with 

summer crops) had fewer limitations while above 63% most intensively used land (11 or 

12 years with summer crop) had fewer limitations. 

The quality of agricultural land in Iowa is often assessed using CSR for a given type 

of soil (ISU, 2005). Lands with CSR higher than 65 are generally considered as highly 

productive lands. The percentage of total corn planted land on high CSR soil increased 

from 50% in 2000 to 60% in 2007. Since 2007, the percentage of corn on high CSR soil 

has fluctuated and returned to 50% in 2012. In contrast, the percentage of total soybeans 

planted land on high CSR soil decreased from 37% in 2000 to 27% in 2007, but has 

fluctuated and back up to 37% in 2012 (Figure 2.6). At the same time, both area under 

corn and soybeans planted in low CSR soil remained constant, with about 0.7% increase 

for corn and about 0.7% decrease for soybeans from 2000 to 2007. These data provide 

evidence that the most productive lands were used the most intensively (Figure 2.7) and 

were allocated to grow corn (Figure 2.6). During the interval 2006 to 2007, more and 

more corn was placed on high-quality soils whereas soybeans were removed from high 

quality soils. Major corn acreage gains were generally at the expense of soybeans. At the 
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same time, the increasing percentage of corn on low quality soils suggest that expansion 

of lands used for planting corn also occurred at the expense of other land cover types, 

such as grasslands (Wright & Wimberly, 2013) and wetlands (Johnston, 2013).   

USDA stated that CRP has shifted from designating entire fields for conservation 

purposes towards the alternative of  implementing high-priority “buffer” practices (e.g., 

filter strips, grassed waterways) that support working lands by reducing the 

environmental implications of on-going agricultural production (USDA 2006). CRP 

statistics show that in 2007 the total amount of area under CRP remained high. CRP land 

dynamics depend on enrollment and re-enrollment cycles set by a 10-15 year contract 

that commits CRP status until the expiration date. This 10-year cycle resulted in over 16 

million acres enrolled in 1997, potentially expiring in 2007 (Stubbs, 2014). Thus, there 

were very few CRP contract expirations before the widespread increases in biofuel 

production. Since 2007, CRP enrollment declined sharply, especially for Iowa County 

and Keokuk County (USDA Farm Service Agency, 2014). This trend indicates that 

producers may be allowing their contracts to expire in favor of using productive land for 

crops. Econometric models also predict that landowners will be likely to withdraw some 

land from expiring CRP contracts and put the land back into crop production within the 

high-priced commodity market (Hellerstein & Malcolm, 2011; Secchi et al., 2009).  

With spatial data analysis, total amount of CRP land classified as corn in 2009 was 

extremely small: in 2009 only about 4200 acres of cornfield were in 2008 CRP areas. 

This area is not significantly large, as it represents only 2% of the total CRP acreage in 

the study area and could be a result of misclassification. According to 2007 FSA (USDA 

Farm Service Agency, 2007), only about 2% of corn and soybean farms in 2008 brought 
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CRP acreage into production between 2006 and 2008. It is very difficult to appropriately 

attribute certain CRP lands to particular land cover types because of differences in the 

spatial resolution of CRP data in comparison to CDL data. Thus, there is no indication 

that the widespread increases in biofuel production have had a particularly negative effect 

on the CRP program. Given the tendency to plant more corn on higher quality soils that 

we mentioned earlier, it is unlikely that CRP lands would be used for corn production. 

 

4.3 Crop Rotation  

NASS’s Prospective Plantings (USDA Agricultural Statistics Board, 2007) report 

indicated that much of the 2007 increase in corn acreage would come from reduced 

soybean plantings. Based on our crop rotation analysis over three-year intervals, more 

crop producers chose to plant corn for three consecutive years in the year of 2007 (Figure 

2.8). As mentioned earlier, corn prices were high in 2003, 2007 and after 2009, thus, 

producers preferred to plant corn in that year and the following year (Wallander et al., 

2011). 

All 64 possible permutations of corn and soybean rotations were recorded before 

2007 but only half of them were used after 2007. Crop producers preferred to plant corn 

or soybean consecutively after 2007. During the 2002-2007 periods, there was 36.09% 

cultivated land with standard rotation (either corn-soybean or soybean-corn) (Figure 2.9). 

These lands were located in the most intensively used lands. Two years of continuous 

corn was another common occurrence during this period. Both lands with more than three 

years continuous corn and lands with two or more years of continuous soybeans were less 

than 10%. During the 2007-2012 periods, standard rotation was replaced by more 
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intensive rotation, such as continuous corn or soybeans for two years, or even longer 

(Figure 2.10). Two or more years of continuous soybeans also became a common 

occurrence. As its negative effects on soybean yield (Koenning et al., 1995), this kind of 

rotation was selected because of high soybean price or because of the classification error 

of CDLs. During this period, area under corn-corn rotations decreased, while area under 

three and more years of continuous corn and area under two or more years of continuous 

soybeans increased. Our results are inconsistent with the rotation change patterns 

reported in the central US for four-year intervals (2003-2006 and 2007-2010), where area 

under corn-soybean rotation decreased, and area under corn-corn rotations increased 

(Plourde et al., 2013). One explanation is that we used six-year intervals, so crop rotation 

patterns for two or more years of continuous corn during the 2007-2012 periods were 

determined by the first four years after 2007 — more than 80% of such rotations were 

during the 2007-2010 periods.  After 2010, the standard rotation pattern appeared again. 

It is obvious that crop rotation changes after 2007 (Figure 2.11). 59.11% of standard 

rotation was changed to more two or more years of continuous corn, and 40.89% of 

standard rotation was changed to two or more years of continuous soybeans. Lands with 

two or more years of continuous corn were more abundant than lands with two or more 

years of continuous soybeans. These results clearly indicate that increases in corn 

production over multiple years have been achieved mainly by altering crop rotation. 

 

5. Discussions
2
  

This study examines both spatial and temporal dimensions of agricultural land use 

dynamics using NASS CDLs. According to the Iowa’s CDL metadata, most of the 

                                                 
2
 Additional section for the original manuscript submitted to Agricultural Systems. 



 

21 

 

producer’s accuracies and user’s accuracies (starting in 2007) for corn and soybeans for 

each year are above 90% (Table 2.1). When compared to the county-level, survey-based 

planted acreage data for corn and soybeans for each year (USDA National Agricultural 

Statistics Service), CDLs underestimate corn and soybeans acreage in most years (Table 

2.2). Large differences occur in 2001 (for corn), 2002 (for soybeans), 2003 (for 

soybeans), and 2007 (for corn and soybeans). The uncertainty caused by misclassification 

would influence the patterns of total acreage of summer crops within a five-year moving 

window and land intensity. For example, more land were actually used for summer crops 

production than CDLs estimates in the 2003-2007 moving window, thus, the total acreage 

of more than two/three years within five years of summer crops should be larger than the 

values based on CDLs estimates (Figure 2a). Crop rotation patterns for corn and soybeans 

over six-year intervals based on these data would be more accurate as the differences 

have fewer impacts for longer periods. 

In order to measure the effect of ethanol plants on land use choices, we calculated 

land use change from 2004 to 2010 within a 10-mile radius of each ethanol plant. 

According to the interview response from some farmers in Iowa, farmers would like to 

sell their corn products directly to ethanol plants if the ethanol plants are not far away 

(i.e., around 10min driving). Thus, a 10-mile radius is reasonable for our analysis. We 

first calculated corn acreage and soybean acreage for each year within a 10-mile radius of 

each ethanol plant. We found that compared to 2006, corn acreage in 2007 increased by 6% 

while soybean acreage decreased by 29%, and the total summer crop decreased by 11% 

(Figure 2.12). In 2007, more land was used for corn production and expansion of corn 

acreage may result from a reduction in soybean acreage. After 2007, corn acreage 
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increased steadily and soybean acreage increased to a stable level. We than examined 

three crop rotation patterns for corn and soybeans over three-year intervals (i.e., standard 

corn-soybean/soybean-corn, two years of continuous corn, and continuous corn) within a 

10-mile radius of each ethanol plant. We found that land under standard corn-

soybean/soybean-corn rotation increased constantly, land under two years of continuous 

corn rotation reached its highest level in 2006-2008, and land under continuous corn 

rotation reached its highest level in 2007-2009 (Figure 2.13). The expansion of corn 

acreage after 2007 was also realized by altering crop rotation patterns to more intensive 

corn rotation. 

 

6. Conclusions 

This study examines both spatial and temporal dimensions of agricultural land use 

dynamics 2001-2012 in east-central Iowa. This interval includes the years immediately 

preceding and immediately following changes in US biofuel policy, which has resulted in 

notable changes in the region’s agricultural land use.  Agricultural producers can respond 

to demands or incentives for increased production either through land extensification or 

land intensification.  

From 2001 to 2012, biofuel production has increased in Iowa. As biofuel production 

increased, demand for corn and its market price have increased, likely leading to changes 

in land-use intensity and changes in crop rotation. Corn acreage growth occurred 

generally at the expense of soybeans, other crops, and grasslands. As recorded by NASS 

CDLs, after 2007, cultivated acreage increased, and standard crop rotation was changed 

to more intensive series of corn or soybeans plant, on a pixel-by-pixel basis. In addition, 
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area used for both corn cultivation and soybeans cultivation increased. The most 

intensively cultivated land had shallower slopes and fewer pedologic limitations than 

others, and the most valuable crop (corn) was planted on the most suitable soils. CRP 

lands were brought into cultivation since 2007, but they may be used for other crops 

displaced by corn because they are usually unsuitable for corn production. From our 

analysis, it is clear that the expansion of corn production after 2007 was realized by 

altering crop rotation patterns.  

However, some producers were not as committed to changes in crop rotation 

strategies when they applied two years of continuous corn rotation — our analysis shows 

a pattern that displays coherent groupings that did not change crop rotation strategies. In 

a small area with similar climate and soil, nearby fields were also applied different types 

of crop rotation (Figures 2.9, 2.10, and 2.11). Considerations for these differences may 

include fertilizer application rates, tillage choices, and propinquity to biofuel plants, 

although specifics are not clear from our analysis.  Fertilizer application rates and tillage 

choices vary spatially and influence yields, which are linked to choices of crop rotation 

(Katsvairo & Cox, 2000; Vetsch et al., 2007). There is field-level evidence that corn 

yields under standard crop rotation exceed yields under two or three years of continuous 

corn (Katsvairo & Cox, 2000; Pikul et al., 2005). Therefore, two or three years of 

continuous corn tend to be more heavily fertilized in order to increase yields, leading to 

larger nutrient and soil losses. Production capacities of biofuel plants increased as new 

plants were constructed in our study region after 2007. Local availability of multiple 

biofuel plants provided convenient and inexpensive options for the regional corn market, 

offering alternative choices for corn producers. In the future, we will explore the context 
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in which producers and other agricultural managers are motivated and constrained in their 

land use and cropping decisions. 
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Table 2.1. Producer’s accuracy (Prod.Acc.) and user’s accuracy (User Acc.) for corn and 

soybeans, and overall accuracy (Overall Acc.) by year for the Iowa Cropland Data Layer 

(CDL). 

  Corn Soybeans   

  Prod.Acc. User Acc. Prod.Acc. User Acc. Overall Acc. 

2001 89.6% NA 91.0% NA 81.3% 

2002 96.3% NA 95.0% NA 88.6% 

2003 92.5% NA 93.0% NA 88.5% 

2004 97.4% NA 98.7% NA 93.2% 

2005 94.0% NA 95.4% NA 88.0% 

2006 87.5% NA 86.9% NA 83.2% 

2007 97.5% 97.6% 97.0% 96.7% 97.2% 

2008 96.6% 97.9% 96.2% 95.8% 95.7% 

2009 97.9% 98.1% 97.0% 97.7% 95.5% 

2010 96.6% 97.6% 95.8% 97.3% 93.2% 

2011 98.3% 98.4% 97.4% 97.8% 94.3% 

2012 96.6% 98.3% 95.6% 97.0% 93.6% 

NA: User’s accuracies are not provided in CDL metadata from 2001 to 2006.  
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Table 2.2. Total acreage for corn and soybeans based on Cropland Data Layers (CDLs) 

and USDA National Agricultural Statistics Service (NASS) Acreage data, and the 

differences between these two datasets, 2001-2012. 

  Corn Soybeans 

  CDL (acre) Survey (acre) Diff CDL (acre) Survey (acre) Diff 

2001 892279 1056000 -16% 953263 962000 -1% 

2002 1203476 1112500 8% 694836 920000 -24% 

2003 1143077 1133500 1% 785676 933000 -16% 

2004 1118461 1165000 -4% 908376 897500 1% 

2005 1053451 1158000 -9% 831540 884500 -6% 

2006 1078191 1125000 -4% 898897 906500 -1% 

2007 1161047 1317000 -12% 634356 733500 -14% 

2008 1149874 1213000 -5% 780460 838200 -7% 

2009 1159278 1243000 -7% 820395 851500 -4% 

2010 1253974 1237500 1% 819436 860200 -5% 

2011 1263732 1304500 -3% 780382 818900 -5% 

2012 1182490 1283000 -8% 776598 844900 -8% 
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Figure 2.1. Study area in south-eastern Iowa, shown with major landforms of Iowa, 

adapted from Prior (1991). Locations of ethanol plants are symbolized with grey filled 

circles and locations of biodiesel plants are symbolized with grey filled boxes. 

 



 

34 

 

 

Figure 2.2. Left: Total acres of summer crops by a five-year moving window from 2001 

to 2012 in the study area. Lines with black squares indicates more than two years within 

five years of summer crops, and lines with black triangles indicate more than three years 

within five years with summer crop within a five-year window. Right: Prices in US 

dollars (USD) for corn and soybean in Iowa, 2001-2012. 
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Figure 2.3. Cultivated land intensity class from 2001 to 2012 in the study area, the lighter 

the color, the more intensively the land in cultivation. CRP land is only for 2008. 
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Figure 2.4. Relationships between cultivated land intensity and terrain slope (degrees) 

within the study area. Lands with shallower slopes are used more intensely. Black crosses 

represent outliers (they are few in number relative to the totals, almost all located at edges 

of fields). 
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Figure 2.5. Relationships between cultivated land intensity and land capability class 

within the study area. Land capability classes 1 to 4 are arable lands in which classes 3 

and 4 have severe to very severe limitations, respectively, and land capability classes 5 to 

8 are suitable mainly as pasture or rangeland. The most intensively used lands tend to 

have fewer limitations (capability classes 1 and 2). 
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Figure 2.6. The percent of corn and soybeans on high (CSR > 65) and low (CSR < 65) 

Corn Suitability Rating (CSR) soil for 2002 to 2012. The percentage of total corn-planted 

land on high CSR soil increased from 2002 to 2007, and then fluctuated; while the 

percentage of total soybean-planted land on high CSR soil decreased from 2002 to 2007, 

and then fluctuated thereafter. During the same time, area both under corn and soybeans 

planted in low CSR soils remained constant. 
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Figure 2.7. Relationship between cultivated land intensity and Corn Suitability Rating 

(CSR) in the study area. Lands with high CSR soil are used more intensely. Black crosses 

represent outliers. 
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Figure 2.8. Acreage of three-year consecutive plantings of corn in the study area.  
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Figure 2.9. Location of 2002-2007 crop rotations in the study area, rotation types include 

standard rotation (either corn-soybean or soybean-corn), two years of continuous corn, 

three years of continuous corn, more than three years of continuous corn, and other 

rotation including two and more years of continuous soybeans. Along with 2008 CRP 

land. 
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Figure 2.10. Location of 2007-2012 crop rotations in the study area, rotation types 

include two years of continuous corn, three years of continuous corn, more than three 

years of continuous corn, and other rotation including two and more years of continuous 

soybeans. Along with 2008 CRP land. 
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Figure 2.11. Location of crop rotation changes and 2008 CRP land in the study area. 

Rotation change types include standard rotation to two and more years of continuous corn, 

standard rotations to two and more years of continuous soybeans, other rotation to two 

and more years of continuous corn, and other rotations to two and more years of 

continuous soybeans. 
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Figure 2.12. Acreage of area planted in corn and soybeans within a 10-mile radius of 

each ethanol plant, 2004-2010.  
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Figure 2.13. Three-year period with acreage of area planted in standard corn-

soybean/soybean-corn, two years of continuous corn, and continuous corn within a 10-

mile radius of each ethanol plant, 2004-2010. 
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Abstract 

Understanding crop phenology is fundamental to agricultural production, management, 

planning and decision-making. This study used 250m 16-day MODIS NDVI time-series 

data to detect crop phenology across the Midwestern United States, 2001-2015. Key crop 

phenologial metrics, start of season (SOS) and end of season (EOS), were estimated for 

corn and soybean. For such a large study region, we found that MODIS-estimated SOS 

and EOS values are highly depending on the nature of input time-series data and 

threshold values chosen for crop phenology detection. With the entire sequence of 

MODIS NDVI time-series data as input, SOS and EOS values were inconsistent 

compared to crop emerged and crop mature dates from the USDA crop progress reports. 

However, when winter NDVI images were removed from the time-series data to reduce 

snow impacts, we obtained good SOS (e.g., R
2
 = 0.75 for corn and R

2
 = 0.54 for soybean) 

and EOS (R
2
 = 0.83 for corn) estimates. We also examined two threshold values (50% 

and 40% of seasonal NDVI amplitude) to derive SOS and EOS values. A 40% threshold 

value generated results better correlated with crop progress report data. We further 

examined the spatial and temporal patterns of SOS and EOS for both crops. SOS for corn 

displayed clear south-north gradient: the southern portion of the Midwest US has earlier 

SOS and EOS dates. Across time, we found a small percentage of counties showed 

significant (p<0.05) downwards trend within a user-defined temporal window (2001-

2012). SOS values advanced by approximately 0.66-1.28 and 0.77-1.33 days per year for 

corn and soybean, respectively. However, such earlier SOS trend did not extend to the 

recent 2012-2015 study period.  

Keywords: MODIS, NDVI time series, crop phenology, growing season 
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1. Introduction 

Knowledge of crop phenology is useful in agricultural production, management, 

planning, and decision-making (Boschetti et al., 2009; Sakamoto et al., 2005; Xin et al., 

2002). Crop phenological parameters such as start of season (SOS), end of season (EOS) 

and length of growing season (LGS) have been broadly used in studies of climate-crop 

interactions (Tao et al., 2006), crop yield forecasting (Bolton & Friedl, 2013), crop-

specific mapping (Pan et al., 2012; Xiao et al., 2006), and process-based crop simulation 

models (Doraiswamy et al., 2004; Fang et al., 2011). Crop phenological models can also 

support early detection of severe weather (Rojas, Vrieling, & Rembold, 2011) and inform 

national and international responses to food security (Ross et al., 2009). Crop 

phenological parameters and their spatial-temporal dynamics reveal information not only 

the usual underlying climatological drivers operating at broad spatial scales, but 

contributions from local factors such as soil conditions, landscape variations, and 

management decisions of individual farmers (White & Thomton, 1997).  

In the United States, the periodic long-term Crop Progress Report (CPR) of the 

United States Department of Agriculture (USDA) is often used to support large-scale 

crop phenological studies. CPRs are field survey-based, including weekly crop 

management and condition information (e.g., percent corn planted, emerged, matured and 

harvested) (http://usda.mannlib.cornell.edu/MannUsda/homepage.do). Based on long-

term CPR data, several studies indicated that corn planting dates have been progressively 

earlier over the past several decades (Duvik, 1989; Kucharik, 2006; Lauer, 2001; Shen & 

Liu, 2015). For example, Kucharik (2006) found that initiation of corn planting in 2005 

was approximately 2 weeks earlier compared to the early 1980s for 12 Corn Belt states. 

http://usda.mannlib.cornell.edu/MannUsda/homepage.do
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Shifts to earlier planting dates were also reported for soybeans for a few states in the 

Midwest US (Conley & Santini, 2007; Irwin et al, 2008; Sacks & Kucharik, 2011).  

Field survey-based CPRs from USDA are sufficient to characterize general crop 

conditions and trends at regional and national scales. However, such data have limited 

spatial detail because crop progress information is based on generalized field 

observations and subjective assessments by experienced respondents, aggregated and 

reported at the state level. Crop management and crop conditions may vary substantially 

within each survey state. The highly-aggregated planting/harvesting dates are clearly 

inadequate for monitoring and understanding site-specific crop phenological events 

(Sakamoto et al., 2005). Remote sensing-based phenological estimation may augment 

CPRs by providing information with improved spatial detail, and potentially reducing 

costs (Sakamoto et al., 2005; Wardlow et al., 2006).  

Time-series remote sensing data are now routinely used for characterizing vegetation 

phenology (e.g., Becket al., 2006; Eklundh & Olsson, 2003; Heumann et al, 2007; Moody 

& Johnson, 2001; Moulin et al, 1997; Zhang et al., 2003). Using time-series Advanced 

Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) data, researchers are now developing operational global 

land surface phenological data for near real-time monitoring (Tan et al., 2011; Zhang et 

al., 2003). Using time-series remote sensing data to characterize crop phenology, 

however, presents a significant challenge due to high spatial-temporal dynamics in 

agricultural landscape (Wardlow et al., 2006). Following Zhang et al. (2003) 

phenological detection method, Wardlow et al. (2006) derived green-up onset dates for 

corn, soybean, and sorghum using 16-day MODIS Normalized Difference Vegetation 
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Index (NDVI) data. They compared MODIS-derived green-up onset dates with the 

USDA CPR data (e.g., 50% crop emerged) and found large inconsistencies across 

agricultural statistics districts (ASD). One of the main confounding factors was pre-crop 

vegetation on the ground. Sakamoto et al. (2010) developed a Two-Step Filtering (TSF) 

method to detect phenological stages of maize and soybean using 6 years’ time-series 

Wide Dynamic Range Vegetation Index (WDRVI) data derived from MODIS. Their 

phenological results were highly consistent with ground-based observations for two 

irrigated sites and one rainfed site in Nebraska. Their crop phenology detection method, 

however, has yet to be examined for large geographical areas and for longer-term (e.g., > 

10~15 years) monitoring. Overall, few published studies focused on crop phenology 

detection using remote sensing, and validation efforts were largely limited. Accordingly, 

the spatial-temporal dynamics of crop phenology have not been thoroughly examined 

through remote sensing approaches.   

Accurate detection of key crop phenological phases such as SOS and EOS depend on 

remote sensing input data and selection of detection algorithms. A large number of 

phenological models or algorithms have been developed for vegetation phenology, or for 

land surface phenology in general. Most of such methods involve a two-step procedure of 

data smoothing and phenological parameter estimation. Data smoothing is important to 

reduce signal noise caused by clouds and snow in time-series remote sensing data (e.g., 

Heumann et al., 2007; Sakamoto et al., 2005; Shao et al., 2016) . Phenological parameters 

are then estimated by using derivatives of the time-series data or applying user-defined 

thresholds (e.g., 50% of seasonal amplitude) (de Beurs & Henebry, 2010; Gao et al., 

2008; Jönsson & Eklundh, 2002; Tan et al., 2011). Among the various methods or tools, 
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TIMESAT is one of the most commonly used packages because it provides an integrated 

framework for data smoothing and phenological parameter estimation (Jönsson & 

Eklundh, 2004). Using TIMESAT, Tan et al. (2011) suggested that pre-processing of 

time-series data, especially for pixels with snow cover, plays a very important role in 

estimating phenological parameters. For a large study area such as the US Corn Belt, 

snow cover has significant temporal and spatial variability. There is a need for evaluating 

how data pre-processing affect performance of crop phenology detection.  

The overall objective of this study was to characterize key crop phenological 

parameters (SOS and EOS) for corn and soybean for the Midwest US using 250m 

MODIS 16-day NDVI composites. We designed our study to examine spatial distribution 

and long-term trends of SOS and EOS from 2001 to 2015. Specific objectives were to: 

(1) examine how input data selection affects crop phenology detection, we compared two 

sets of time-series NDVI data as input, one used the entire sequence of NDVI time-series 

data and the other one removed winter images to reduce snow impacts; (2) examine how 

SOS and EOS estimates vary when TIMESAT threshold values (e.g., percent of seasonal 

amplitude) are varied; and (3) analyze spatial patterns of SOS and EOS, and evaluate 

their change trends across time, 2001-2015.  

 

2. Materials and Methods  

2.1. Study Area 

Our study focuses upon the Midwest US, defined here by the 12 states shown in 

Figure 3.1. This region is characterized by extensive crop cultivation, and its role as the 

major producer of US corn and soybean, and half of the nation’s wheat (Grace et al., 
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2011). The Corn Belt located in this region is characterized by climates favoring crop 

production. Forests are mainly in the southern part of the study area with relatively dense 

and diverse forest cover, consisting mostly of tall, broadleaf deciduous trees, and needle-

leaf conifers. According to US Environmental Protection Agency (EPA) Level III 

ecoregion classification, it encompasses 42 ecoregions (Commission for Environmental 

Cooperation, 1997). 

 

2.2. Data and Data preprocessing 

MODIS Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V005 

(MOD13Q1) acquired from the National Aeronautics and Space Administration (NASA) 

Reverb (http://reverb.echo.nasa.gov/) for 2001-2015 were used in this study. These high-

quality vegetation index products include NDVI, Enhanced Vegetation Index (EVI), and 

associated reliability index layers. Six MODIS vegetation index tiles were needed to 

cover the 12-state study area. For a study period of 2001-2015, a total of 2070 MODIS 

scenes were download. For each composite interval, we used the MODIS Reprojection 

Tool (MRT) to mosaic NDVI images and project mosaics to an Albers Equal Area Conic 

(AEA) projection, these image mosaics were then clipped to the 12-state study area 

boundary and stacked to build time-series NDVI data.  

Corn and soybean cropland masks were created with the Cropland Data Layer (CDL) 

produced by USDA National Agricultural Statistics Service (NASS) (Boryan et al., 

2011). Complete CDL coverages for all 12 states are available since 2007. Longer-term 

complete CDL data collected since 2001 are available for only 3 states – Illinois, Iowa, 

and North Dakota. NASS reports that CDLs have high levels of user’s and producer’s 

http://reverb.echo.nasa.gov/
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accuracies for major crops such as corn and soybeans, usually above 85% for Midwestern 

states. Thus, CDLs form reliable sources of data for crop-specific phenological analysis. 

We use CDLs to extract pixels for corn and soybeans from 2007 through 2015 for the 

entire study area and from 2001 through 2015 for the three states mentioned above. Note 

that CDLs have different spatial resolutions of 30m-56m, depending on producing year. 

For each year, we computed corn and soybean proportions within each 250 MODIS grid. 

Only MODIS pixels with corn or soybean proportions greater than 90% were considered 

for crop phenology detection and analysis.    

CPRs provided by USDA NASS were used to evaluate accuracy of MODIS-derived 

SOS and EOS estimates for corn and soybean. These progress reports of crop 

developmental stages are expressed as percentages of completed phases (e.g., 50% corn 

planted, emerged, and matured).   

 

2.3. Estimate crop phenology using time-series MODIS data 

TIMESAT package was used to smooth MODIS NDVI time-series data and detect 

crop phenology. Three data smoothing algorithms are available in TIMESAT package: 

adaptive Savitzky–Golay, asymmetric Gaussian, and double-logistic function (Jönsson & 

Eklundh, 2002). The adaptive Savitzky-Golay (SG) algorithm was used as our primary 

smoothing algorithm since a recent study of smoothing algorithm comparisons suggested 

that the SG algorithm better characterizes temporal signals for both corn and soybean 

(Shao et al., 2016). The SG algorithm basically applies a moving-window quadratic 

polynomial function to the original time-series data and estimates new values for the 

center point of each moving-window. Because NDVI signals with cloud contamination 
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are often negatively biased, the TIMESAT package has additional option to adapt fitted 

values to the upper envelope of the time-series data. Such adaptions were repeated twice 

to reduce potential impacts from cloud and shadow issues.  

For the northern portion of our study area, snow cover presents a significant challenge 

in curve fitting of time-series NDVI data and subsequent phenological parameter 

estimation (Tan et al., 2011). We examined two sets of time-series NDVI data for data 

smoothing and crop phenology detection. In the first set, all NDVI images from 2001 to 

2015 were used as input to TIMESAT package. For the second set, we excluded winter 

season images (Mid-November to Late-March) and the remaining NDVI images (16-day 

MODIS time series composite periods 7–20) for each year were used as input. Winter 

season was empirically defined by visual evaluation of snow coverage from time-series 

NDVI images and previous studies on summer crop mapping and monitoring (Shao et al., 

2010).  

On the basis of the smoothed NDVI time series data, we first derived MODIS pixel-

level (250m resolution) SOS and EOS values using a default threshold (50% of the 

seasonal amplitude), measured from the left minimum and right minimum, respectively 

(Jönsson & Eklundh, 2002). It should be noted that such threshold value was user-defined 

and can be easily adjusted to evaluate their impacts on crop phenology detection. In our 

study, we tested two threshold values (i.e., 50% and 40%) to see which threshold value 

generates comparable results of USDA CPRs. With 15 years’ NDVI time-series data for a 

12-state study area, TIMESAT data smoothing and phenology parameter estimation were 

computationally expensive. We divided our image processing tasks into 10 small 

segments and performed parallel processing at the Virginia Tech Advanced Research 
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Computing’s Blueridge cluster. All data sub-setting and subsequent processing were 

streamlined using TIMESAT’s setting files and Python scripts.  

 

2.4. Comparison of MODIS-derived crop phenology parameters with CPRs  

MODIS-derived phenology metrics of SOS and EOS were compared to crop progress 

statistics from CPRs. For each year and each state, 50% of corn or soybean emerged 

dates were extracted from CPRs and serve as reference for SOS comparison (Wardlow et 

al., 2006). Similarly, 50% corn mature dates were extracted from CPRs and serve as 

reference for EOS comparison. There was no data available for soybean mature dates in 

CPRs, thus EOS comparison was conducted for corn only. It should be noted that CPRs 

are survey-based and only provide weekly ‘snap-shot’ of crop conditions. In many cases, 

the exact dates for 50% crop emerged or crop mature were not available. We applied 

linear interpolation to estimate 50% events using the nearest dates (e.g, if the 25% and 

75% dates were available) for each crop type. Since CPRs are reported at state level, we 

averaged MODIS-derived SOS and EOS values for corn and soybean pixels in each state 

for each study year of 2007 to 2015. The coefficient of determination (R
2
) and root-

mean-square error (RMSE) were used to compare MODIS-derived crop phenology 

estimates and CPR values.  

 

2.5. Analysis of Phenological Trends 

Analysis of SOS and EOS trends at 250m MODIS pixel scale was confounded by 

crop rotation (e.g., corn-soybean, corn-corn-hay) issue. Therefore, we examined long-

term crop phenological trends at aggregated county-scales. The trend analysis was limited 
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to three states of Illinois, Iowa, and North Dakota, where long-term CDLs were available 

for generating crop-specific masks. For each year from 2001 to 2015 and for main crop 

producing counties (defined by > 100 MODIS crop pixels) within the above three states, 

we computed average SOS (and EOS) for corn and soybean, respectively.  

Across time from 2001 to 2015, we applied the non-parametric Mann–Kendall test to 

calculate the significance of the trend for each main crop-producing county. The Mann–

Kendall test is suited to monotonic trend detection independent from its functional nature 

and, compared to other metrics, is less influenced by the presence of outliers (Lanzante, 

1996). The null hypothesis (H0) of the test states that there is no trend whereas the three 

alternative hypotheses Ha state that there is a significant negative, non-null, or positive 

trend. For counties with significant (i.e., p<0.05) trends, we fitted simple linear 

regressions to define coefficients: 

y = ax + b 

where y is SOS, EOS, respectively, x is year, a is the slope which represents annual 

change rate of each phenological metric.  

 

3. Results 

3.1. MODIS-derived crop SOS Metrics  

Figure 3.2 compares MODIS-derived corn SOS values with 50 percent corn emerged 

dates from CPRs (2007-2015) using different combinations of time-series input data and 

threshold values. With all NDVI images as input, MODIS-derived SOS estimates for 

corn showed large inconsistencies compared to CPR data (Figure 3.2a and 3.2c). R
2
 was 

0.16 and 0.05 and RMSE was 8.87 and 15.03 days for threshold value of 50% and 40%, 
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respectively. Points that are far away from scatter plot cluster are mainly from SOS 

estimates for Wisconsin, North Dakoda, and South Dakoda. R
2
 increased to 0.75 (RMSE 

= 11.34) when winter images were removed from time-series data before TIMESAT data 

smoothing and phenological metric estimation (Figure 3.2b).  

With the non-winter MODIS time-series data as input and 0.5 (50% of the NDVI 

seasonal amplitude) threshold value, on average, MODIS-predicted SOS value for corn 

was DOY (Day of Year) 154 in the Midwestern region, compared to DOY 143 for 50 

percent corn emerged dates from CRP data. When the threshold value was decreased to 

0.4 (40% of the seasonal NDVI amplitude), the average MODIS SOS decreased to DOY 

147 and RMSE value reduced to 5.73 days (Figure 3.2d).  

Figure 3.3 compares MODIS-derived SOS dates with 50 percent emerged dates for 

soybean from CPRs. With all NDVI images as TIMESAT data smoothing and crop 

phenology detection, the R
2
 was 0.08 and 0.02 for threshold value of 50% and 40%, 

respectively (Figure 3.3a and 3.3c). There was no clear linear relationship between 

MODIS-derived SOS dates and CPR dates. Similar to corn, much higher R
2
 values (0.54 

and 0.50) were obtained when winter NDVI images were removed from input data 

(Figure 3.3b and 3.3d). Threshold value of 50% seasonal amplitude led to an average 

SOS value of DOY 165 for soybean, about 8 days later than CPR average value. When a 

40% threshold value was applied to detect SOS, the average MODIS-based estimation 

was DOY 157 for soybean SOS, the same as the CPR value. Overall, the SOS detection 

for soybean had lower accuracy compared to corn when CPRs are used as references.  
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3.2. MODIS-derived crop EOS Metrics  

Figure 3.4 compares MODIS EOS estimates with 50% corn mature dates from CPRs, 

2007- 2015. With all NDVI images as TIMESAT input, R
2
 was 0.66 and 0.56 using 50% 

and 40% threshold value, respectively (Figure 3.4a and 3.4c). Corresponding RMSE 

values were 10.34 and 19.67 days. By removing winter NDVI images, MODIS EOS 

estimates were highly consistent with CPR data (Figure 3.4b and 3.4d). R
2
 were 0.83 and 

0.82 for threshold values of 50% and 40%, respectively. RMSE reduced to 6.88 and 4.97 

days. There were a couple outliers where late corn mature dates were reported in CPRs. 

For instance, the 50% corn mature was recorded on DOY 298 in CPR, while MODIS 

predicted a much earlier EOS date at DOY 272 or 278 for threshold value of 0.5 and 0.4, 

respectively. There was no clear explanation for such a large discrepancy. In general, 

however, MODIS-predicted EOS showed good agreement with CPR data.   

The choice of threshold values clearly had large impacts on MODIS EOS estimates. 

A threshold of 50% led to earlier (7 days on average) EOS dates compared to CPR data, 

while a threshold value of 40% led to almost the same average EOS date compared to the 

average value from CPRs. We note that MODIS-derived EOS values for soybean were 

not compared to the CPRs, since there was no percent soybean mature data in the CPR 

database.  

After evaluating both MODIS input data and threshold value choices for SOS and 

EOS detection, it was determined that for both corn and soybean, a threshold value of 

40% (40% of seasonal amplitude) provided better results compared to the CPR data. 

More importantly, NDVI images in the winter season need to be removed to achieve 

consistent SOS and EOS estimates.  
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3.3 Spatial and temporal patterns of SOS and EOS 

The annual SOS and EOS maps derived from 40% thresholding were used to analyze 

spatial and temporal patterns. For ease of illustration, we focused on county-scale 

analysis and used 9 years’ (2007-2015) average SOS and EOS values for visual 

assessment (Figure 3.5). For corn, SOS and EOS values increase following the south-

north gradient (Figure 3.5a and 3.5c). Earlier SOS in the southern portion of the Midwest 

US was expected because favorable climates. SOS values for soybean vary substantially 

(i.e., late April - late June) across the study region (Figure 3.5e). There was no clear 

south-north gradient and counties located at the edges of Corn Belt appear to have late 

SOS. For both corn and soybean, the standard deviation values of SOS (and EOS) were 

higher in the southern portion of the Midwest US, especially for Illinois, Indiana, and 

Missouri (Figure 3.5b, 3.5d, and 3.5f). Such high inter-annual variability can be attributed 

to favorable climates in these states. Farmers in this sub-region have more flexibility in 

managing crop planting and harvesting dates.  

SOS and EOS temporal trends were examined for different time periods with the non-

parametric Mann–Kendall test (Table 3.1). Because complete CDLs for 2001 to 2015 

were only available for North Dakota, Iowa, and Illinois, our SOS and EOS trend 

analysis was limited to these three states. Among main crop producing counties (e.g., 

each has greater than 100 MODIS pixels for corn or soybean), only a small percentage of 

counties showed significant (p<0.05) downwards temporal trends for corn and soybean 

SOS values. Note that the temporal window selected for non-parametric Mann-Kendall 

test was very important. Most noticeable downwards SOS trends were observed for 2001-

2012 temporal window. Within this temporal window, there were 35 (17%) of main corn 
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producing and 22 (9%) main soybean producing counties showed significant downwards 

trends of SOS (Figure 3.6). All remaining counties did not show significant (p<0.05) 

downwards or upwards trends.   

Simple linear trend models were developed for counties with significant temporal 

trends in 2001-2012. SOS for corn advanced about 0.66-1.28 days per year for these 

highlighted counties (Figure 3.6). For soybean, SOS advanced about 0.77-1.33 days per 

year. When all 15 years’ data (2001-2015) were included for trend analysis and non-

parametric Mann-Kendall test, however, only 2 counties showed downwards trends of 

SOS for both crops, suggesting that SOS values from 2013 to 2015 did not follow the 

observable trends of 2001 to 2012. For corn’s EOS values, only 5 counties showed 

significant downwards trends for 2001-2012 and there was no county showing a 

significant trend for 2001-2015.  

 

4. Discussion 

Accurate detection of SOS and EOS for corn and soybean depends on many factors 

such as input time-series data, smoothing algorithms chosen, and specific threshold 

values applied to pin-point phenological metrics.  For the Midwest US, SOS and EOS 

estimates were highly sensitive to input data. Initial efforts using the entire sequence of 

MODIS time-series data generated inconsistent SOS and EOS estimates compared to the 

USDA CPRs (e.g., SOS: R
2
 = 0.16 and 0.08 for corn and soybean). Snow cover presents 

a significant challenge in determining SOS and EOS. Existing time-series data smoothing 

algorithms provided in TIMESAT cannot recover NDVI temporal profiles for pixels with 

extended snow period (e.g., 2-3 months). Snow pixels and pixels with partial snow cover 
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will affect seasonal NDVI amplitude estimates, as well as SOS and EOS estimates 

defined by thresholding of seasonal amplitude. Tan et al. (Tan et al., 2011) used MODIS 

land surface temperature and MODIS quality assessment (QA) information to define 

winter season and then applied TIMESAT to derive land surface SOS and EOS. Our 

method was to remove all winter images from Mid-November to Late-March to reduce 

snow impacts. This simplified method was designed for major summer crops such as corn 

and soybean, because their growing season is well-defined and there is no need to 

incorporate NDVI signals in winter time to estimate SOS and EOS. The non-winter time-

series input data provided much improved performance in detecting SOS and EOS for 

both crops (Figure 3.2, 3.3, and 3.4).  

Threshold values used to detection SOS and EOS were also important. For a large 

study area such as the Midwest US, we were searching for a threshold applicable to the 

entire study area, rather than variable thresholds across the region. For SOS detection, the 

default 50% threshold (50% of seasonal NDVI amplitude) generated acceptable results 

for corn (RMSE = 11.34 days) and soybean (RMSE = 10.76 days). These MODIS-

estimated SOS dates were about 11 days later than CPR 50% crop emerged dates. Such 

results were consistent with Wardlow et al.’s (Wardlow et al., 2006) findings. Crops at 

the 50% emerged dates are barely detectable (i.e., low NDVI values) and may be affected 

by soil background. When a lower threshold value (i.e., 40%) was applied, the MODIS-

derived SOS matched better (RMSE < 7 days for both crops) with CPR 50% crop 

emerged dates. The same 40% threshold also generated better results for EOS estimates 

for corn. We note that MODIS-derived EOS values were compared to 50% crop mature 

dates, rather than 50% crop harvest dates.  
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Our study showed that MODIS-derived SOS (EOS) values and CPRs have general 

agreement at state level, given an appropriate threshold value and time-series data pre-

processing steps. Some uncertainties may arise when the pixel-level SOS (EOS) 

comparison is conducted. For example, Wardlow et al.’s (Wardlow et al., 2006) indicated 

that pixel-level comparison with field observation may not be appropriate because spatial 

resolution of MODIS pixel (250m) is rather coarse, thus SOS (EOS) estimates from 

MODIS could be affected by mixed land cover and soil background. In addition to spatial 

resolution limitations, SOS and EOS estimates may be affected by MODIS temporal 

compositing. Although 16-day and 8-day MODIS composite data generally provide 

sufficient temporal signals for crop monitoring and mapping (Lunetta et al., 2010; Shao 

et al., 2016), it was not clear how use of different composite data affect SOS and EOS 

detection. The 8-day composite data theoretically could improve SOS and EOS detection 

by pinpointing dates at finer temporal resolution, however, the cloud and other noise 

impacts may increase. In both cases, data smoothing is needed to reduce signal noise and 

characterize key crop temporal profiles to support crop phenology detection. Future 

studies are needed to examine how different smoothing algorithms affect SOS and EOS 

detection for major crops.  

Spatial patterns of SOS (EOS) estimates were characterized for 2007-2015. The 

south-north gradients for SOS and EOS are well defined, especially for corn. Such 

county-level crop phenological metrics augment the USDA CPRs by providing improved 

spatial details. Our data support spatial pattern analysis of SOS and EOS at finer 

resolution (e.g., 250m), however, county-level aggregates may be sufficient to support 

many agronomic management practices and understand phenological variations due to 
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environmental, social and economic factors. One main challenge in analyzing temporal 

trends of SOS and EOS is availability of long-term crop-specific map products. For three 

states with longer-term CDL data (2001-2015), only a small percentage of counties 

showed significant downwards trend in SOS. More importantly, trend analysis results 

were largely dependent on the temporal window selected. For 2001-2012, our trend 

analysis suggested earlier SOS dates for certain counties, which is consistent with 

Kucharik’s (Kucharik, 2006) finding for the Midwest region. Contributing factors may 

include climate change (e.g., Challinor et al., 2009; Kucharik, 2006; McMaster & 

Wilhelm, 2003; Oteros et al., 2015; Shen & Liu, 2015) and agronomic management 

practices to improve crop yields (e.g., Bastidas et al., 2008; Bruns & Abbas, 2006; 

Kucharik, 2008; Nielsen et al., 2002; Pedersen & Lauer, 2004; Wilcox & Frankenberger, 

1987). Other socioeconomic factors such as elevated corn/soybean prices may also 

promote farmers to potentially plant crops earlier. SOS values in the 2013-2015 interval, 

however, did not follow the trend. It should be noted that long-term trends of earlier SOS 

are unrealistic because of climate controls such as freezing temperatures, snow cover, and 

frozen soils. With consistent and extended MODIS time-series data and improved CDL 

map products, our spatial-temporal analysis of crop phenology can be expanded in both 

spatial and temporal domains and further improve our understanding of climate-crop-

human interactions.  

 

5. Conclusions  

We used 250m MODIS time-series data to estimate annual SOS and EOS for corn 

and soybean of the 12-state Midwest US, 2001-2015. MODIS-derived SOS and EOS 
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values were compared with the USDA CPR 50% crop emerged dates and 50% crop 

mature dates, respectively. Inconsistent SOS and EOS values were derived when all 

NDVI images were used as input to TIMESAT for data smoothing and subsequent 

phenological parameter estimation. When winter images from Mid-November to Late-

March were removed from MODIS time-series data, the agreement between MODIS-

derived SOS (and EOS) dates and CPR data substantially improved. We also examined 

two threshold values (50% and 40% of seasonal NDVI amplitude) for SOS and EOS 

detection. A threshold value of 40% generated better estimates compared to the default 

50% for the Midwest US. Spatial analyses of SOS and EOS values revealed clear south-

north gradient for corn – earlier SOS (and EOS) in the south and later SOS (and EOS) in 

the north portion of the study region. Trend analyses for SOS and EOS were conducted 

for three states with long-term CDL map products. We found that only a small percentage 

of counties showed statistically significant downwards trends in SOS for a user-defined 

temporal window (2001-2012). Within this temporal window, SOS advanced by 

approximately 0.66-1.28 and 0.77-1.33 days per year for corn and soybean, respectively. 
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Table 3.1. Main crop producing counties showed significant (Mann-Kendall test, p<0.05) 

downwards trend of SOS and EOS across different temporal windows. 

 
2001-2010 2001-2011 2001-2012 2001-2013 2001-2014 2001-2015 

Corn_SOS (n=210) 25 10 35 1 1 2 

Soy_SOS (n=244) 10 8 22 2 6 2 

Corn_EOS (n=210) 1 2 5 0 1 0 

 

  



 

73 

 

 

Figure 3.1. Study area with land use type and Level III ecoregions. Each ecoregion is 

labeled with its US code. (Based upon NLCD 2006 and US EPA Level III ecoregions) 
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Figure 3.2. Comparison of MODIS-derived SOS values and the USDA CPR survey data 

of 50% corn emerged dates: (a) all NDVI images as input and threshold value of 0.5, (b) 

non-winter images as input and threshold value of 0.5, (c) all NDVI images as input and 

threshold value of 0.4, and (d) non-winter images as input and threshold value of 0.4.  
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Figure 3.3. Comparison of MODIS-derived SOS values and the USDA CPR survey data 

of 50% soybean emerged dates: (a) all NDVI images as input and threshold value of 0.5, 

(b) non-winter images as input and threshold value of 0.5, (c) all NDVI images as input 

and threshold value of 0.4, and (d) non-winter images as input and threshold value of 0.4.  
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Figure 3.4. Comparison of MODIS-derived EOS values and the USDA CPR survey data 

of 50% corn mature dates: (a) all NDVI images as input and threshold value of 0.5, (b) 

non-winter images as input and threshold value of 0.5, (c) all NDVI images as input and 

threshold value of 0.4, and (d) non-winter images as input and threshold value of 0.4.  
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Figure 3.5. County-scale SOS and EOS statistics for 2007-2015: (a) mean SOS for corn; 

(b) standard deviation of SOS for corn; (c) mean EOS for corn; (d) standard deviation of 

EOS for corn; (e) mean SOS for soybean; (f) standard deviation of SOS for soybean.  
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Figure 3.6. Iowa counties showed downwards temporal trends for corn (left) and soybean 

(right). Results are based on 2001-2012 temporal window.  
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Abstract 

This study integrated remote sensing-derived data for analysis using the Soil and Water 

Assessment Tool (SWAT) within a geographic information system (GIS) modeling 

environment to assess impacts of changes of cropping systems and planting/harvest dates 

within agricultural landscapes of the Central US Corn Belt. Specifically, this analysis 

examined agricultural impacts upon sediment and nutrient yields in the Embarras, the 

Upper Scioto, and the Upper White watersheds of the Midwestern US. SWAT models 

were calibrated using 2000-2005 data and validated using 2006-2010 data for stream 

flows. For the three selected watersheds, the SWAT model-predicted stream flows 

matched well with USGS observation data. The R
2
 values for the validation period were 

0.75, 0.74, and 0.81 and the corresponding NSE values were 0.73, 0.75, and 0.81 for the 

selected three watersheds, respectively. For the baseline condition, annual sediment 

yields (tons/ha/year) ranged from 0.89 to 3.98, average annual total nitrogen yields 

(tons/ha/year) ranged from 8.18 to 13.38 and average annual total phosphorus yields 

(tons/ha/year) ranged from 1.15 to 1.94. Based on various management scenarios, 

intensive crop rotation increased sediment and nutrient yields while longer growing 

seasons for crops decreased sediment and nutrient yields. 

 

Keywords: agricultural management, nutrient loadings, SWAT model, sediment yield 

 



 

81 

 

1. Introduction 

The 2004 National Water Quality Inventory reports that, in US, agricultural 

nonpoint source (NPS) pollution forms the principal source of water quality impairment 

to rivers and streams, the third largest source of impairment to lakes, ponds, and 

reservoirs, and contributes significantly to ground water contamination and degradation 

of wetlands (USEPA, 2009). Agricultural production forms a leading contributor to NPS 

in surface waters, estimated to be the source of 60% of nutrient pollution in streams in the 

US (Daniel et al., 1998). As one of the key grain-producing regions of the world, the 

Midwest US has experienced significant changes in agricultural land use and 

management practices in response to many factors, including advanced technology, 

improved agronomic management, and changing market force (Schilling et al., 2008). 

The major changes included the conversion of perennial vegetation to annual row crops 

(Donner, 2003; Johnston, 2013; Zhang & Schilling, 2006) and the shift from standard 

corn-soybean/soybean-corn rotation to more intensive corn rotation (Secchi et al., 2011; 

Stern, Doraiswamy, & Hunt, 2012). Moreover, corn planting dates have been 

progressively earlier over the past several decades in the Midwest US (Duvik, 1989; 

June, 2014; Kucharik, 2006; Lauer, 2001). Within a few regions, soybean planting dates 

have been also occurring at earlier dates for a few states (Conley & Santini, 2007; Irwin, 

Good, & Tannura, 2008; Sacks & Kucharik, 2011). All of these agriculture activities that 

magnify the agricultural footprint, in response to increased demand for corn production 

are expected to have significant impacts on sediment and nutrient loading into streams 

and water bodies, affecting agro-ecosystem functions and services. Peel (1998) reported 

that soil erosion could be reduced by more than 50% when corn was rotated with other 
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crops (barley and/or hay) instead of grown continuously. Understanding the magnitude of 

these changes will be useful for farmers and government agencies to make informed 

decisions and will be essential for resource managers and policy makers to reduce or 

control water pollution in agricultural watersheds. 

Hydrologic models have been increasingly used to assess hydrologic and 

biogeochemical responses to land use, land management, and climate change (Aouissi et 

al., 2014; Boithias et al., 2014; Jha, Gassman, & Arnold, 2007; Oeurng, Sauvage, & 

Sánchez-pérez, 2011; Santhi et al., 2014; Yang et al., 2015; Zabaleta et al., 2014; Zuo et 

al., 2016) at various spatial and temporal scales. Use of these watershed models can be 

very helpful in understanding of interactions between land use and management change, 

climate variability, water quantity, and water quality issues (Pradhanang et al., 2013). 

Among these models, Soil and Water Assessment Tool (SWAT) has been successfully 

implemented all over the world to assess hydrology and water quality in ungauged 

watersheds (see SWAT Literature database: https://www.card.iastate.edu/swat_articles/). 

For example, Chiang et al. (2010) assessed individual impacts of land use change and 

pasture management on sediment, N, and P losses using SWAT with 12 years of detailed 

spatial land use data. They differentiated impacts of land use changes from conservation 

practice implementation to determine the relative contributions of sediment and nutrients 

from pastureland and urban areas. Gassman et al. (2015) simulated alternative cropping 

systems and management practices scenarios that were analyzed in support of the Master 

Plan with SWAT for the Raccoon River watershed, west central Iowa, to provide insights 

of how widespread adoption of these alternative nutrient and cropping system practices 

could  influence water quality. 
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Furthermore, simulation of hypothetical scenarios in SWAT has proven to be an 

effective method of evaluating alternative land use and management practices (e.g., 

conservation, fertilizer, and pesticide management) on water, sediment, and agricultural 

chemical yields (Gassman et al., 2007). Many studies have investigated effects of 

cropping systems on sediment and nutrient yields. Shao et al. (2012) accessed the impacts 

of corn expansion and crop rotation change on sediment yield within four selected 

watersheds in the Laurentian Great Lakes Basin using SWAT. Results revealed 

significant increases in average annual sediment yields associated with corn expansion 

and switching to continuous corn rotation. Mbonimpa et al. (2012) assessed the impacts 

of various crop rotation patterns on sediment and phosphorus loading in Upper Rock 

River watershed in Wisconsin with SWAT. They found that conversion of corn-soybean 

rotation to corn-corn-soybean rotation and continuous corn rotation increased sediment 

yield and total phosphorus loss. Tong and Naramngam (2007) reported that corn–soybean 

rotation under no-till significantly reduced sediment, ammonia, and total phosphorus 

loads in the Little Miami River basin, compared with similar tillage treatments with 

continuous corn. No study has thus far been discussed impacts of changes of crop 

planting dates and growing season length on sediment and nutrient yields. 

The overall objective of this study was to examine impacts of changes of cropping 

systems and planting/harvest dates on sediment and nutrient yields with the SWAT model 

for selected watersheds in the Midwestern US. Specific objectives were: (1) to estimate 

baseline sediment and nutrient yields under current cropping system and planting/harvest 

dates, and (2) to predict sediment and nutrient yields for simulated future agricultural 

management scenarios to quantify impacts of changes of cropping systems and 
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planting/harvest dates on water quality. Borah and Bera (2003, 2004) extensively 

reviewed eleven continuous simulation models and single-event watershed models for 

prediction of nutrient export with different land management strategies at a watershed 

scale. They reported that the SWAT model is better than other models for long-term 

continuous simulations in predominantly agricultural watersheds. SWAT also allows crop 

rotation patterns to be defined on a yearly basis, with the timing of planting, harvest, and 

other operations being specified by the date or by heat units in the model. According to 

these justifications, the SWAT model was selected for this study. 

 

2. Methods 

2.1 Watershed Description 

The Midwestern US is one of the world’s key grain-producing regions, producing 

most of US corn and soybeans, and half of the nation’s wheat. Since 2005, this region has 

undergone significant changes in agricultural cropping patterns (Lunetta et al., 2010). We 

selected three eight-digit Midwestern HUC watersheds to assess impacts of agricultural 

management on water quality. The three selected watersheds are: the Embarras 

watershed, east-central Illinois, the Upper Scioto watershed, central Ohio, and the Upper 

White watershed, central Indiana (Figure 4.1). 

The Embarras watershed (Illinois), in the Western Corn Belt Plains, is part of the 

Wabash River basin, where it covers approximately 6309 km
2
 with 73% of agricultural 

land. Soils within the watershed range from poorly to moderately well-drained. Average 

annual precipitation is approximately 1041 mm/year and average annual snowfall is 

approximately 665 mm/year (McConkey & Johanson, 2002). The Upper Scioto 
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watershed (Ohio), in the Eastern Corn Belt Plains, covers roughly 8277 km
2
 with 54% of 

agricultural land. Soils are dominantly moderately or poorly drained. Average annual 

precipitation is approximately 1022 mm/year and average annual stream flow is 

approximately 400 mm/year (Xie, 2014). The Upper White watershed (Indiana), in the 

Central Corn Belt Plains, encompasses approximately 7075 km
2
 with 59% of agricultural 

land. Here, soils are dominantly well drained, principally in cropland. Average annual 

precipitation is about 1067 mm/year and average annual snowfall is about 737 mm/year 

(IDEM Office of Water Quality, 2001). Agriculture is the dominant land use within all of 

the selected watersheds, and large portions (i.e., >50%) of agricultural lands are devoted 

to corn and soybean production.  

 

2.2 SWAT Model Setup and Description 

The SWAT model, developed by the United States Department of Agriculture-

Agriculture Research Service (USDA-ARS), is a physically-based, continuous-time, 

watershed-scale simulation model operating on a daily time step (Arnold et al., 1998; 

Neitsch et al., 2002). Major components of the model include hydrology, weather, 

sedimentation, soil temperature, plant growth, nutrients, pesticides, and land 

management. A complete description of the SWAT model and its components can be 

found in Arnold et al. (1998) and Neitsch et al. (2002).  

We used SWAT 2012, which is compatible with the ArcGIS interface (Neitch et 

al., 2009), to model water, sediment and nutrient yields. In SWAT 2012, each watershed 

was divided spatially into subbasins or subwatersheds using a 30 m Digital Elevation 

Model (DEM) obtained from the USGS Seamless Data Distribution System. The USGS 
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National Hydrology Dataset was directly overlaid on the DEM for watershed delineation 

to ensure stream locations were correctly identified.  Each subbasin was then subdivided 

into Hydrologic Response Units (HRUs), defined by homogeneous land use, topography, 

and soil characteristics. HRUs were created by overlapping the 2006 National Land 

Cover Dataset (NLCD 2006), the State Soil Geographic dataset (STATSGO), and slope 

datasets were generated from the DEM using threshold values of 5% for land use, soil 

and slope. The threshold values were used to preserve the land use and soil properties and 

to remove minor land use and soil types so that simplified HRU definitions could be 

achieved (FitzHugh & Mackay, 2000). 

The climate data needed by the SWAT model, including daily precipitation, 

minimum and maximum temperature, were obtained from the USDA-ARS for the period 

January 1998 to December 2010. In order to improve spatial representation for 

precipitation and temperature data, all available weather stations within a watershed were 

used as the input. Wind speed, solar radiation, and relative humidity were estimated using 

the weather generator built into the SWAT model.  

The SWAT model has the ability to define the timing of planting, harvest, and 

other operations by the date or by heat units. In the SWAT management files, 

planting/harvest schedules were fixed on specific dates, based on average 

planting/harvest dates derived from USDA NASS Crop Progress Report (CPR), as 

follows: planting/beginning of growing season for corn on May 2, 7, and 8, 

planting/beginning of growing season for soybeans on May 22, 19, and 22, harvest 

operation and then kill operation to remove corn on October 13, 28, and 22, and harvest 

operation and then kill operation to remove soybeans on October 11, 12, and 11, for 
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Embarras, Upper Scioto, and Upper White watersheds, respectively. In order to make our 

analysis simple, no-till was assumed for all selected cropping systems with default 

fertilizer application rates. 

 

2.3 SWAT Model Calibration and Validation 

The SWAT simulation was executed on a monthly basis from 1998 to 2010, with 

1998 to 1999 serving as a two-year warm-up period, 2000 to 2005 as the calibration 

period and 2006 to 2010 as the validation period. In general, SWAT calibration starts 

with water balance and stream flow, followed by sediment and nutrients (Arnold et al. 

2000; Kirsch et al., 2002; Santhi et al. 2001).  

The model was initially calibrated for hydrology using the recommended SWAT 

model manual calibration approach for water balance and stream flow calibration 

(Neitsch et al., 2002). Before calibration, SMFMX (melt factor for snow on June 21), 

SMFMN (melt factor for snow on December 21), and n (Manning’s coefficient) were 

adjusted based on the existing documentation. Key hydrologic parameters such as CN2 

(curve number), ESCO (soil evaporation compensation factor), SOL_AWC (soil 

available water capacity), Alpha_BF (base-flow recession constant), GW_Revap 

(groundwater ‘‘revap’’ coefficient), and REVAPMN (threshold depth of water in the 

shallow aquifer for "revap" or percolation to the deep aquifer to occur) were manually 

adjusted to increase or decrease the predicted average annual surface runoff and base 

flow.  

Additional SWAT model parameters, such as SURLAG (surface runoff lag 

coefficient), were also adjusted to improve the SWAT model performance on monthly 
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basis. Table 4.1 lists descriptions and calibrated values of the common parameters used in 

Embarras, Upper Scioto, and Upper White watersheds, respectively. Simulated 

streamflows were compared with corresponding observed data collected at USGS gauge 

stations 03354000 at Ste. Marie, IL for Embarras River, 03227500 at Columbus, OH for 

Upper Scioto River, and 03354000 near Centerton, IN for Upper White River from 

January 1998 to December 2010. The SWAT model-predicted stream flow was evaluated 

against the observed data at monthly intervals using two most commonly used 

quantitative statistics, the linear regression coefficient of determination (R
2
) and the Nash 

and Sutcliffe model efficiency coefficient (NSE). According to Moriasi et al. (2007), 

threshold NSE values of 0.4, 0.5, and 0.7 are used as criteria for accepting stream flow 

estimations on a daily, monthly, and yearly basis, respectively. The same threshold values 

were used to judge the model’s performance for R
2
 (Gassman et al., 2007). 

With regard to calibration and validation of sediment and nutrient components, 

because of insufficient long-term water quality monitoring data at the gauge stations in 

the selected watersheds, it is not feasible to calibrate predicted sediment and nutrient 

load. Among the SWAT model parameters that may affect sediment yields, universal soil 

loss equation practice factor (USLE_P) is commonly adjusted for the sediment-yield 

calibration. For Upper Scioto watershed, USLE_P was reduced to represent the pre-

existing erosion control practices in agricultural lands. A value of 0.39 was applied to 

fields assigned with no-till practice (Arabi, Frankenberger, Engel, & Arnold, 2008). Default 

SWAT model parameters were used to estimate nutrient components (i.e., organic N, 

NO3, organic P, soluble P). 
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2.4 Future Management Scenarios 

The calibrated SWAT models were used to assess the sediment, total nitrogen, 

and total phosphorus yields for nine simulated future management scenarios. The nine 

scenarios are grouped according to three main categories based on cropping systems, 

planting date and length of growing season (Table 4.2). Scenarios 1-3 represent 

alternative cropping system scenarios in which standard corn-soybean or soybean-corn 

cropping systems were converted to continuous corn, two years of continuous corn, and 

two years of continuous soybean cropping systems, respectively. In scenarios 4 to 6, 

under standard corn-soybean or soybean-corn cropping systems, corn and soybeans were 

planted one, two, and three weeks earlier and the length of growing season remained the 

same as those of the baseline condition. Scenarios 7 through 9 advance planting dates and 

extend the length of growing season. In these scenarios, corn and soybeans were planted 

one, two, and three weeks earlier but were harvested at the same time as those of the 

baseline condition, still under the standard corn-soybean or soybean-corn cropping 

systems. Although these assumed management scenarios are likely unrealistic, our 

intention was to assess boundary conditions under these extreme scenarios. We replaced 

the baseline cropping system and operational data with the future cropping system and 

operational data, and kept other SWAT model inputs and parameters the same as the 

baseline condition. Sediment, total nitrogen, and total phosphorus yields for future 

management scenarios were then compared with the baseline yields. 
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3. Results and Discussion 

3.1 SWAT Model Performance 

Based on the locations of weather stations, the stream network, and basin 

topography, the SWAT model watershed-delineation procedure created total numbers of 

31, 27, and 26 sub-basins for Embarras, Upper Scioto, and Upper White watersheds, 

respectively. These basins were further divided into 791, 1008, and 960 HRUs based on 

land use, soil properties, and slope. 

To estimate the impact of management operations on sediment and nutrient 

yields, stream flows were calibrated and validated by comparing simulated monthly 

stream flows and observed stream flows at the USGS gauge stations. The statistical 

performance of the SWAT baseline calibration and validation simulation is shown in 

Table 4.3. For calibration, the R
2
 and NSE values for all three watersheds were greater 

than 0.5, which is generally viewed as a satisfactory model performance. For validation, a 

strong correlation was observed for all three watersheds, as indicated by the R
2
 and NSE 

values that ranged between 0.73 and 0.81. 

Figure 4.2 shows the comparison of between simulated monthly stream flows and 

observed values for Embarras watershed, Upper Scioto watershed, and Upper White 

watershed, respectively.  The scatter plots suggested that the SWAT model-predicted 

stream flows matched USGS observed values reasonably well. The main difficulty was 

the relatively large scatter for the medium-low stream flow values. For all three 

watersheds, the SWAT model overestimated low flows during summer months (i.e., July 

to September) while underestimating peak flows, mostly in the late winter to early spring 

months (i.e., January to March). 
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3.2 Sediment Yields under Different Scenarios 

For all three watersheds, there were no long-term observation data for calibration 

of sediment yields. Results from several other studies in similar watersheds were used to 

guide sediment calibration and determine the appropriate magnitude of sediment yields at 

annual scales. For the Upper Scioto watershed, annual average sediment yield per unit 

watershed area was calculated by SWAT with reference to Xie’s (2014) study in the same 

watershed and Whiting’s (2003) study in the Great Lakes Basin. The model reported an 

annual sediment load at 0.89 tons/ha, which is comparable to Xie’s results of 0.84 tons/ha 

and Whiting’s results of 0.85 tons/ha to Scioto River at Higby. We used default SWAT 

model parameters for the Embarras and the Upper White watersheds due to the limited 

availability of calibration data. 

For the baseline condition, the average annual sediment yields (tons/ha/year) were 

2.58, 0.89, and 3.98 for the Embarras, the Upper Scioto, and the Upper White watersheds, 

respectively. Spatial distributions of average annual sediment yields at the sub-basin level 

for the three watersheds are shown in Figure 4.3. In general, the sediment yields in 

downstream regions were higher than those in upstream regions and the sub-basins with 

high sediment yields (i.e., > 2 tons/ha/year) matched well with the location of agricultural 

lands with relatively high slope values (i.e., > 3% slope). For the Upper White watershed, 

three sub-basins with high sediment yields (2-3 tons/ha/year) are dominated by forest, 

which is related to higher slope in these regions. Moreover, there are floodplains in 

downstream regions with agricultural land. They would result high sediment yields. 

Table 4.4 shows average annual sediment yield simulated by the SWAT model 

under different management scenarios, and total percent change from baseline conditions 



 

92 

 

for selected watersheds. Differences between scenarios 1 to 3 and baseline conditions 

indicate the impact of cropping systems. Sediment yields increase dramatically as corn 

production intensifies. When switching baseline crop rotation to continuous corn rotation, 

average annual sediment yields (tons/ha/year) increased to 4.62, 1.73, and 8.62 for the 

Embarras, the Upper Scioto, and the Upper White watersheds, respectively. Compared to 

baseline conditions, average annual sediment yields almost doubled (79-117%). Average 

annual sediment yields with two years of continuous soybean rotation changed very 

slightly (< 3%) compared to baseline conditions. This result was similar to that of some 

other studies. The conversion of corn-soybean rotation to continuous corn rotation 

resulted in 20% (Intarapapong & Hite, 2002), 24% (Tong & Naramngam, 2007), and 

36% (Mbonimpa et al., 2012) increase in sediment yield in Mississippi, Florida, and 

Wisconsin, respectively, while continuous soybean rotation had the smallest amount of 

annual sediment loads (Tong & Naramngam, 2007). One possible explanation is that 

soybeans are usually planted at a higher density and their leaves and roots offer better 

protection from soil erosion than corn (Tong & Naramngam, 2007). However, this result 

was the complete opposite of others. Gassman, Secchi, and Jha (2008) found that 

sediment losses decreased across all of the corn expansion scenarios, with percentage 

reductions ranging from almost 2 to over 11% for total conversion from corn-soybean 

rotation into continuous corn rotation. Based on field experiments, corn produces about 

twice more residue than soybean (Larson, Holt, & Carlson, 1978). Corn residue also 

decomposes at a slower rate than soybean residue during the first half of the year of 

decomposition (Ghidey et al., 1985). Together, these two factors would give areas with 

corn cropping more cover and protection against raindrop detachment during the 
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overwintering period. Moreover, as the additional residue cover with corn cropping, the 

near soil surface would be better protected and would undergo less weathering and 

aggregate breakdown when compared to the soil protected by soybean residue (Alberts, 

Wendt, & Burwell, 1985). 

Differences between scenarios 4 to 9 and baseline conditions indicate the impact 

of planting date and length of growing season. With earlier planting dates (scenarios 4-6, 

advance planting date 1-3 weeks), average annual sediment yields increased slightly (1-

4%). The earlier the planting date, the more the sediment yield. With longer growing 

seasons (scenarios 7-9), average annual sediment yields increased slightly. Reductions in 

sediment loss ranged from 2% to 7%. For longer growing seasons, soil surfaces will be 

covered by crops for longer time, therefore exhibiting lower erosion rates. 

 

3.3 Total Nitrogen Yields under Different Scenarios 

For all three watersheds, there were no long-term observational data for 

calibration of total nitrogen yields. Therefore, we used default SWAT model parameters 

to estimate total nitrogen yields. For the baseline condition, average annual total nitrogen 

yields (tons/ha/year) were 8.46, 8.18, and 13.38 for the Embarras, the Upper Scioto, and 

the Upper White watersheds, respectively. Spatial distributions of average annual total 

nitrogen yields at the sub-basin level for the three selected watersheds are shown in 

Figure 4.4. In general, major contributors of total nitrogen were in sub-basins that were 

dominated by agricultural croplands, especially with relatively high slope values (i.e., > 

3% slope). The Upper White watershed had the highest overall total nitrogen yield. In 

contrast with the other two watersheds, total nitrogen yield in the downstream region was 
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lower than that in the upstream region. 

Simulated results of total nitrogen yield under the different scenarios shown in 

Table 4.4 show that intensive crop rotation increased total nitrogen yield while the longer 

growing seasons of crops decreased total nitrogen yield. When switching the baseline 

crop rotation to continuous corn rotation, average annual total nitrogen yields 

(kgs/ha/year) increased 21-25% for the selected three watersheds. This result can be 

explained by the fact that legumes (e.g., soybean) can fix large amounts of organic 

nitrogen which is less susceptible to leaching and increase the available soil nitrogen 

(Peel, 1998). Additionally, farmers may not have to apply as much inorganic nitrogen 

fertilizer, which is very soluble and more vulnerable to leaching. For the Upper White 

watershed, two years of continuous corn rotation had no effect (i.e., < 1% increase) on 

total nitrogen loss. With earlier planting dates (scenarios 4-6), the average annual total 

nitrogen yields increased slightly (< 5%) for the Embarras watershed. For the Upper 

Scioto, and the Upper White watersheds, the average annual total nitrogen yields were 

almost the same as the baseline condition. Longer growing seasons (scenarios 7-9) also 

decreased average annual total nitrogen yields slightly for the selected watersheds. Total 

nitrogen loss reductions ranged from 1% to 3%. Longer growing season which means a 

longer time of soil cover will reduce total nitrogen loss. 

 

3.4 Total Phosphorus Yields under Different Scenarios 

For all three watersheds, there were no long-term observation data for the 

calibration of total phosphorus yields. We used default SWAT model parameters to 

estimate total phosphorus yields. For the baseline condition, average annual total 
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phosphorus yields (tons/ha/year) were 1.15, 1.18, and 1.94 for the Embarras, the Upper 

Scioto, and the Upper White watersheds, respectively. The spatial distributions of 

average annual total nitrogen yields at the sub-basin level for the three selected 

watersheds are shown in Figure 4.5. In general, the major sources of total phosphorus 

were also in sub-basins that were generally dominated by agricultural croplands, 

especially with relatively high slope values (i.e., > 3% slope). Similar to results of the 

total nitrogen yield, the Upper White watershed had the highest overall total nitrogen 

yield. In contrast to the other two watersheds, total phosphorus yield in the downstream 

region was lower than that in the upstream region. 

Simulated results of total phosphorus yield under the different scenarios shown in 

Table 4.4 are similar to the simulated results of total nitrogen yield. Intensive crop 

rotation increased total phosphorus yield. When switching the baseline crop rotation to 

continuous corn rotation, the average annual total phosphorus yields increased 15-19% 

for the selected three watersheds. The average annual total phosphorus yield with two 

years of continuous corn rotation for the Upper White watershed was the same as the 

baseline condition. With earlier planting dates (scenarios 4-6), the average annual total 

phosphorus yields increased slightly (< 5%) for the Embarras watershed. For the Upper 

Scioto, and the Upper White watersheds, average annual total phosphorus yields were 

almost the same as the baseline condition. An longer growing season (scenarios 7-9) also 

decreased average annual total phosphorus yields due to a longer duration of soil cover. 

Compared with the baseline condition, annual total phosphorus yields decreased 1-3%. 
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4. Conclusion 

This study assessed the impacts of changes of cropping systems and 

planting/harvest dates on sediment and nutrient yields in the Embarras, the Upper Scioto, 

and the Upper White watersheds using the SWAT model. Sediment and nutrient losses 

under different management scenarios were compared at different spatial scales. At 

baseline conditions, individual SWAT models were calibrated and validated for stream 

flows. For the three selected watersheds, the SWAT model-predicted stream flows 

matched well with the USGS observation data. For the validation period of 2006–2010, 

the R
2
 and NSE values were greater than 0.5, which is generally viewed as a satisfactory 

model performance. 

Effects of changes of cropping systems on sediment and nutrient yields were 

assessed by using the calibrated SWAT model under three scenarios. Results showed that 

intensive crop rotation resulted in greater sediment, total nitrogen, and total phosphorus 

yields, indicating that the increases in sediment, total nitrogen, and total phosphorus 

losses were mainly due to intensification of corn production. Under the other six 

scenarios, effects of changes of planting/harvest dates on sediment and nutrient yields 

were assessed. Results showed that advancing of planting date with the same length of 

growing season had no effect on water quality. But longer growing seasons reduced 

sediment yields by 2-7%, total nitrogen by 1-3%, and total phosphorous by 1-3%, 

indicating that a longer interval with crop cover on the soil helped reduce erosion rates 

and nutrient losses.  

In this study, comparisons of the sediment and nutrient yields were conducted 

using the same climate conditions for all the management scenarios. The prediction of 
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sediment and nutrient yields for future changes of planting/harvest dates can be 

complicated by different climate-change scenarios because crop phenology is responsive 

to long-term variations in climate (White & Thomton, 1997). 
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Table 4.1. Parameters used for SWAT model calibration. 

Parameter Description Embarras 

Upper 

Scioto  

Upper 

White  

SMFMX Melt factor for snow on June 21 7.1 2.5 2.5 

SMFMN Melt factor for snow on December 21 2 2.5 2.5 

n Manning’s coefficient 0.05 0.05 0.05 

CN2 (%) Curve number -20 -5 -5 

GW_REVAP Groundwater “revap” coefficient 0 0.08 * 

GWQMN 

Threshold depth of water in shallow 

aquifer for return flow * * 500 

REVAPMN 

Threshold depth of water in shallow 

aquifer for percolation 0.2 0.02 0.02 

ESCO Soil evaporation compensation factor 0.9 * * 

SOL_AWC (%) Soil available water capacity -5 20 -15 

ALPHA_BF Baseflow alpha factor 0.02 0.02 0.05 

SURLAG Surface runoff lag coefficient 0.5 1 0.5 

USLE_P USLE practice factor * 0.39 * 
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Table 4.2. Description of future management scenarios. 

Scenario Scenario cropping system 

Scenario planting date 

(corn/soybean) 

Scenario harvest date 

(corn/soybean) 

1 continuous corn same as baseline same as baseline 

2 c-c-s/s-c-c same as baseline same as baseline 

3 c-s-s/s-s-c same as baseline same as baseline 

4 c-s/s-c one week earlier one week earlier 

5 c-s/s-c two weeks earlier two weeks earlier 

6 c-s/s-c three weeks earlier three weeks earlier 

7 c-s/s-c one week earlier same as baseline 

8 c-s/s-c two weeks earlier same as baseline 

9 c-s/s-c three weeks earlier same as baseline 

c-s/s-c: corn-soybean or soybean-corn, c-c-s/s-c-c: corn-corn-soybean or soybean-corn-corn, c-s-

s/s-s-c: corn-soybean-soybean or soybean-soybean-corn 
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Table 4.3. Assessment of SWAT model performance for the calibration (2000-2005) and 

validation (2006-2010) periods for the selected watersheds. 

Watershed  Calibration (2000-2005)   Validation (2006-2010) 

  R
2
 NSE   R

2
 NSE 

Embarras  0.78 0.77 

 

0.75 0.73 

Upper Scioto  0.69 0.67 

 

0.74 0.75 

Upper White 0.84 0.83   0.81 0.81 
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Table 4.4. Average annual sediment, total nitrogen (TN) and total phosphorus (TP) 

yields under different scenarios and total percent changes from baseline conditions for the 

selected watersheds. 

Water quality Scenario Embarras  Upper Scioto  Upper White  

Sediment 

(tons/ha/year) 

Baseline 2.58 0.89 3.98 

1 4.62 (+79) 1.73 (+94) 8.62 (+117) 

2 3.03 (+18) 1.04 (+17) 4.83 (+22) 

3 2.61 (+1) 0.89 (0) 3.91 (-2) 

4 2.60 (+1) 0.89 (0) 3.98 (0) 

5 2.64 (+2) 0.90 (+2) 4.02 (+1) 

6 2.68 (+4) 0.91 (+3) 4.06 (+2) 

7 2.52 (-2) 0.87 (-2) 3.87 (-3) 

8 2.46 (-5) 0.86 (-3) 3.79 (-5) 

9 2.39 (-7) 0.85 (-5) 3.71 (-7) 

TN 

(kg/ha/year) 

Baseline 8.46 8.18 13.38 

1 10.24 (+21) 10.24 (+25) 16.76 (+25) 

2 8.88 (+5) 8.68 (+6) 13.44 (+0.4) 

3 8.90 (+5) 8.55 (+4) 14.31 (+7) 

4 8.61 (+2) 8.15 (-0.4) 13.35 (-0.2) 

5 8.71 (+3) 8.17 (-0.2) 13.40 (+0.2) 

6 8.77 (+4) 8.19 (+0.1) 13.42 (+0.3) 

7 8.40 (-1) 8.09 (-1) 13.24 (-1) 

8 8.33 (-1) 8.02 (-2) 13.16 (-2) 

9 8.27 (-2) 7.96 (-3) 13.07 (-2) 

TP 

(kg/ha/year) 

Baseline 1.15 1.18 1.94 

1 1.33 (+16) 1.40 (+19) 2.22 (+15) 

2 1.20 (+5) 1.25 (+6) 1.94 (0) 

3 1.21 (+5) 1.21 (+3) 2.02 (+4) 

4 1.17 (+2) 1.17 (-0.2) 1.93  (-0.5) 

5 1.185 (+3) 1.18 (0) 1.93  (-0.5) 

6 1.19 (+4) 1.19 (+1) 1.94 (0) 

7 1.14 (-1) 1.16 (-1) 1.91 (-1) 

8 1.13 (-1) 1.15 (-3) 1.90 (-2) 

9 1.12 (-2) 1.14 (-3) 1.88 (-3) 

Values in () indicate percent change compared with the baseline condition. 
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Figure 4.1. Selected watersheds in the Midwestern US, with principal land use (Based 

upon NLCD 2006). The three selected watersheds are: the Embarras watershed in east-

central Illinois, the Upper White watershed in central Indiana, and the Upper Scioto 

watershed in central Ohio. 
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Figure 4.2. Comparisons of monthly stream flow estimates from SWAT model versus 

the USGS observation data (2006–2010) for the (a) Embarras watershed, (b) Upper 

Scioto watershed, and (c) Upper White watershed. 

 



 

111 

 

 

Figure 4.3. Average annual sediment yields from the SWAT model (2000–2010) for the 

(a) Embarras, (b) Upper Scioto, and (c) Upper White watersheds. The green color means 

low sediment yields while the red color means high sediment yields. 
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Figure 4.4. Average annual total nitrogen yields from the SWAT model (2000–2010) for 

the (a) Embarras, (b) Upper Scioto, and (c) Upper White watersheds. The green color 

means low total nitrogen yields while the red color means high total nitrogen yields. 
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Figure 4.5. Average annual total phosphorus yields from the SWAT model (2000–2010) 

for the (a) Embarras, (b) Upper Scioto, and (c) Upper White watersheds. The green color 

means low total phosphorus yields while the red color means high total phosphorus 

yields. 
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Chapter 5 Conclusion 

1. Summary of Findings 

The first study (Chapter 2) examined spatial and temporal dimensions of 

agricultural land use dynamics, 2001-2012, in east-central Iowa, and spatial relationships 

between cultivated fields and crop rotation practices, with respect to underlying soils and 

terrain at a pixel level. Results showed that expansion of corn production perhaps in 

response to US biofuel policies was implemented by altering crop rotation patterns. As 

recorded by USDA NASS CDLs, after 2007, cultivated acreage for both corn and 

soybeans increased, and standard crop rotation (i.e., corn-soybean/soybean-corn) was 

replaced by more intensive crop rotations. In addition, CRP lands were brought into 

cultivation since 2007, but they may be used for other crops displaced by corn. The most 

intensively cultivated land had shallower slopes and fewer pedologic limitations than 

others, and the most valuable crop (i.e., corn) was planted on the most suitable soils. 

Spatial patterns of crop rotation sequences before and after 2007 displayed variations in 

applying crop rotation strategies, suggesting effects of a multiplicity causes (e.g., 

fertilizer application rates, tillage choices, and propinquity to biofuel plants). 

 The second study (Chapter 3) estimated annual key crop phenological parameters 

(SOS and EOS) for corn and soybean in the Midwest US, 2001-2015. Results showed 

that MODIS-derived SOS and EOS values are highly dependent on the nature of input 

time-series data and threshold values chosen for crop phenology detection. With the 

entire sequence of MODIS NDVI time-series data as input, SOS and EOS values were 

inconsistent compared to the USDA CPRs. However, when winter NDVI images were 

removed from MODIS time-series data to reduce snow impacts, the agreement between 
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MODIS-derived SOS/EOS dates and CPR data improved substantially. Two threshold 

values (50% and 40% of seasonal NDVI amplitude) used to derive SOS and EOS values 

showed that a 40% threshold value generated better estimates compared to the default 

50% threshold value. This study also examined spatial and temporal patterns of SOS and 

EOS for both crops. SOS and EOS for corn displayed clear south-north gradient: the 

southern portion of the Midwest US has earlier SOS and EOS dates. Trend analyses for 

SOS and EOS were conducted for three states with long-term CDL products. For SOS, 

only a small percentage of counties showed statistically significant downward trends 

within a user-defined temporal window (2001-2012) and SOS advanced by 

approximately 0.66-1.28 and 0.77-1.33 days per year for corn and soybean, respectively. 

However, such earlier SOS trends did not extend to the recent 2012-2015 study period.  

The third study (Chapter 4) integrated remote sensing-derived products and the 

SWAT model to assess impacts of changes in cropping systems and planting/harvest 

dates on sediment and nutrient yields for three selected watersheds in the Midwest US. At 

baseline conditions, individual SWAT models were calibrated and validated for stream 

flows. For the three selected watersheds, the SWAT model-predicted stream flows 

matched well with the USGS observation data. R
2
 and NSE values were greater than 0.5 

for calibration and validation periods, values generally viewed as a satisfactory model 

performance. Sediment and nutrient yields under different management scenarios were 

compared at different spatial scales. Results showed that intensive crop rotation resulted 

in greater sediment, total nitrogen, and total phosphorus yields, indicating that increases 

in sediment, total nitrogen, and total phosphorus losses were mainly due to intensification 

of corn production. However, advancing of planting date with the same length of growing 
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season had no effect on water quality, while longer growing seasons slightly reduced 

sediment, total nitrogen, and total phosphorous yields, indicating that a longer interval 

with crop cover on the soil helped reduce erosion rates and nutrient losses.  

 

2. Contributions and Further Work 

My research contributes to an understanding of agricultural systems, and supports 

development of agricultural policy. It demonstrates the value of remote sensing imagery, 

specifically sequential imagery, to monitor trends and changes in agricultural land use 

and management with improved spatial detail, broad coverage, and low costs. Detailed 

spatial and temporal information of cropland change, crop rotation changes, and crop 

phenology change illuminate how agricultural practices have responded to changes in 

biofuel policy. It also provides site-specific agricultural land use and management data 

for SWAT model to access changes of agricultural land use and management on water 

quality. The simulation analysis using SWAT model provides boundary information 

under different management scenarios. This research is useful to guide farmers, policy 

makers and government officers to use agricultural land and to protect environment. 

I see the potential for many further works related to my dissertation. Spatial 

variations of changes in cropland use, crop rotation, and crop phenology found in the first 

two studies may be related to multiplicity causes (i.e., climate change, tillage choices, and 

socioeconomic factors). Interviews and surveys will be used to collect qualitative data to 

explore the context in which producers and other agricultural managers are motivated and 

constrained in their land use and cropping decisions. 
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Accurate detection of SOS and EOS for corn and soybean depends on many 

factors such as input time-series data, smoothing algorithms chosen, and threshold values 

applied to pin-point phenological metrics. The second study examined how input data 

range and threshold selection affect performance of crop phenology detection. Future 

studies are needed to examine how various spatial resolution and temporal compositing 

of input data and different smoothing algorithms affect SOS and EOS detection for major 

crops. The spatial resolution of the MODIS pixel is too coarse to compare with field 

observations (Wardlow et al., 2006), thus Landsat data, with its relatively high spatial 

resolution may generate better estimates. Both 16-day and 8-day MODIS composite data 

are widely used for assessing vegetation phenology, but their performance for crop 

phenology detection is not clear. Except for Savitzky-Golay algorithm, asymmetric 

Gaussian and double-logistic function are also needed to evaluate. 

In the third study, sediment and nutrient yields were compared using the same 

climate conditions for all management scenarios. But agriculture is intimately linked to 

weather and climate. Long-term variations in climate, such as continued warming and 

intense precipitation, interact with agricultural land use, and management changes may 

have dramatic effects on soil erosion and nutrient losses. Thus, the prediction of sediment 

and nutrient yields for future changes of agricultural land use and management can be 

complicated by different climate-change scenarios. 
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