USIMPL: An Extension of Isabelle/UTP with Simpl-like Control Flow

Joshua Alexander Bockenek

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Masters of Science
in
Computer Engineering

Binoy Ravindran, Chair
Peter Lammich
Robert P. Broadwater

December 8, 2017
Blacksburg, Virginia

Keywords: Formal Verification, Formal Methods, Isabelle, Unifying Theories of Programming, Verification Condition Generation
© 2018, Joshua Alexander Bockenek
Writing bug-free code is fraught with difficulty, and existing tools for the formal verification of programs do not scale well to large, complicated codebases such as that of systems software. This thesis presents USIMPL, a component of the Orca project for formal verification that builds on Foster’s Isabelle/UTP with features of Schirmer’s Simpl in order to achieve a modular, scalable framework for deductive proofs of program correctness utilizing Hoare logic and Hoare-style algebraic laws of programming.

This work is supported in part by the Office of Naval Research (ONR) under grants N00014-17-1-2297 and N00014-16-1-2818, and the Naval Sea Systems Command (NAVSEA)/the Naval Engineering Education Consortium (NEEC) under grant N00174-16-C-0018. Any opinions, findings, and conclusions or recommendations expressed in this thesis are those of the author and do not necessarily reflect the views of ONR or NAVSEA/NEEC.
USIMPL: An Extension of Isabelle/UTP with Simpl-like Control Flow

Joshua Alexander Bockenek

(GENERAL AUDIENCE ABSTRACT)

Writing bug-free code is fraught with difficulty, and existing tools for the formal verification of programs do not scale well to large, complicated codebases such as that of systems software (OSes, compilers, and similar programs that have a high level of complexity but work on a lower level than typical user applications such as text editors, image viewers, and the like). This thesis presents USIMPL, a component of the Orca project for formal verification that builds on an existing framework for computer-aided, deductive mathematical proofs (Foster’s Isabelle/UTP) with features inspired by a simple but featureful language used for verification (Schirmer’s Simpl) in order to achieve a modular, scalable framework for proofs of program correctness utilizing the rule-based mathematical representation of program behavior known as Hoare logic and Hoare-style algebraic laws of programming, which provide a formal methodology for transforming programs to equivalent formulations.

This work is supported in part by ONR under grants N00014-17-1-2297 and N00014-16-1-2818, and NAVSEA/NEEC under grant N00174-16-C-0018. Any opinions, findings, and conclusions or recommendations expressed in this thesis are those of the author and do not necessarily reflect the views of ONR or NAVSEA/NEEC.
This thesis is dedicated to Mike Gordon, a significant figure in the field of formal verification who unfortunately passed away earlier this year.
Acknowledgments

This work was done in collaboration with Dr. Yakoub Nemouchi, the showrunner of the Orca project, who has implemented most of the extensions to Isabelle/UTP on which I have based my verification condition generator work; Dr. Lammich’s assistance was also invaluable due to his experience in developing VCGs and his insights into invariants. I would also like to thank my advisor, Dr. Ravindran, for his support in my academic career so far and want to give a general thanks to the members of committee for taking time out of their schedules to serve on it. It would also be untoward of me to leave out my comrades in the Systems Software Research Group, who deserve thanks as well.

Lastly, but not leastly, I would like to send a shout-out to my family, the members of which have fully supported me in my endeavors of obtaining graduate degrees.
A.2.8 Hoare for Sequential Composition 83
A.2.9 Hoare for Conditional ... 84
A.2.10 Hoare for assert .. 84
A.2.11 Hoare for assume .. 84
A.2.12 Hoare for While-loop .. 84
A.3 Strongest Postcondition .. 85
A.4 SP VCG ... 86

Appendix B Proof Helpers .. 90
B.1 Binary Operations ... 90
 B.1.1 Building blocks ... 90
 B.1.2 Base definitions for AND/OR/XOR 92
 B.1.3 Bit shifting ... 92
 B.1.4 Negation .. 92
B.2 Syntax extensions for UTP .. 92
 B.2.1 Notation .. 93
 B.2.2 Extra stuff to work more-arg functions into UTP 94
B.3 VCG Helpers .. 95
 B.3.1 Swap ... 96
 B.3.2 Slice ... 97
 B.3.3 Swap and Slice together 100
 B.3.4 Sorting pivots .. 101
 B.3.5 Miscellaneous ... 101
List of Figures

2.1 Apply Style Versus Isar ... 15
2.2 Some Isabelle/UTP Syntax Comparisons 21
2.3 Control Flow for Blocks ... 24
3.1 Procedure Scoping ... 30
List of Tables

2.1 Statements in Various Orders of Logic ... 7
List of Algorithms

3.1 VCG ... 35
4.2 Insertion Sort 37
4.3 Lomuto-style Quicksort 43
List of Listings

2.1 Recursive Types and Records ... 12
2.2 Syntax Translation Examples ... 14
2.3 Ways of Adding to the Simpset .. 15
2.4 Eisbach Example ... 16
2.5 Locale Example ... 16
2.6 Hoare Logic and WP/SP ... 18
2.7 Bubble Sort in Simpl .. 23
2.8 Abrupt Termination Syntax ... 23
2.9 Block Syntax ... 24
2.10 Binary Search in Dafny ... 26
3.1 Differentiating Local and Global Variables 28
3.2 A Sampling of Algebraic Laws .. 29
3.3 Floyd is strongest postcondition .. 32
3.4 VCG Methods ... 35
4.1 Insertion Sort in Isabelle/UTP ... 37
4.2 Proof of Insertion Sort Correctness 39
4.3 Insertion Sort Outer Invariant ... 39
4.4 Insertion Sort Inner Invariant ... 39
4.5 Insertion Sort Outer Invariant Initial Condition 40
4.6 Insertion Sort Outer Invariant Step Condition 40
4.9 Insertion Sort Inner Invariant Step Condition 40
List of Abbreviations

AFP Archive of Formal Proofs
API application programming interface
AST abstract syntax tree
ATP automated theorem proving
CDCL Conflict-Driven Clause Learning
CLR common language runtime
CRAB CoRnucopia of ABstractions
CVC Cooperating Validity Checker
DPLL Davis–Putnam–Logemann–Loveland
FSM finite state machine
GFP greatest fixed point
HOL higher-order logic
IDE integrated development environment
ISM infinite state machine
ITP interactive theorem prover
LCF Logic for Computable Functions
LFP least fixed point
LHS left-hand side
MBT model-based testing
ML Meta Language
NAVSEA the Naval Sea Systems Command
NEEC the Naval Engineering Education Consortium
NP nondeterministic polynomial time
ONR the Office of Naval Research
OS operating system
PVS Prototype Verification System
RHS right-hand side
SAL Symbolic Analysis Laboratory
SAT satisfiability
sel4 secure embedded L4
SLOC source lines of code
SML Standard ML
SMT satisfiability modulo theories
SP strongest postcondition
SSRG Systems Software Research Group
STS Space Transportation System
TCB trusted computing base
UTP Unifying Theories of Programming
VC verification condition
VCG verification condition generator
WP weakest precondition
Chapter 1

Introduction

1.1 General Motivation

Writing software is a complicated business. Programmers encounter bugs in their own code on a regular basis, and in critical systems bugs can have deadly consequences (such as the lethal radiation exposures caused by a mix of issues with the Therac-25 electron accelerator just under four decades ago [63] or the arithmetic errors in the Patriot missile defense system that resulted in the deaths of 28 soldiers during the Gulf War [11]); even in more commonplace modern systems, bugs can cause serious security flaws, such as the OpenSSL Heartbleed vulnerability caused by a missing bounds check (which was present for three years without [publicly-announced] detection!) [92] or the recent macOS Sierra vulnerability that allowed root access without a password even remotely [3]1. It would be very nice to be able to know with certainty that a program is bug-free, and the field of formal methods (using math to reliably prove properties of a system, further explicated in section 2.1), or more specifically formal verification [10] (also covered in that section), provides ways of doing this as well as of establishing other correctness properties for security (tools like ProVerif2), timing constraints [1, 27], and the like.

Even with existing tools that have been developed over the years, however, the process of formal verification often proves intractable for large pieces of software, with the amount of correctness proofs developed for theorem-based proving (the focus of this thesis and described briefly in section 1.4) often eclipsing the amount of code being verified [56]. Model checking (described in section 2.1.4) and model-based testing (MBT) (described in section 2.1.5) can also be used, but those methodologies have their own scalability issues (such as state [space] explosion for the state-machine-based model checkers, again discussed in the model-checker

1Strictly speaking, a similar vulnerability also exists in many Linux systems that provide recovery accounts/single-user mode with superuser access that do not have root passwords, but people do not make as big a deal out of that as it is limited to physical access only.

2http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
Ultimately, what is needed are lightweight, modular, extensible systems that can handle scaling to large codebases of existing and future systems software such as operating system (OS) kernels and modern compiler collections like GCC\(^3\) and LLVM\(^4\); this thesis features work on such a system being developed within Virginia Tech’s Systems Software Research Group (SSRG), named Orca, that aims to fit those requirements by combining a theorem-based proving approach with MBT. Those two approaches provide complementary methodologies for proving programs correct, with theorem-proving approaches being a form of static verification and MBT providing dynamic testing, much like the unit tests that many programmers already do (but more formal).

1.2 Contributions

As previously mentioned, this thesis presents the theorem-based proving aspect of Orca, referred to as USIMPL; it builds upon Isabelle/UTP [30, 31] and the Simpl language presented by Schirmer [87] as implied by the title of this thesis, adding additional features such as:

- extensions to the Isabelle/UTP language with Simpl constructs, providing a fuller-featured language for verification (though the implementation of these features was not fully complete and tested by the time of this thesis);
- algebraic laws of programming for the full set of features provided by USIMPL, progress on which is still progressing as we do not yet have an exhaustive library;
- and my major contribution, the forward (strongest postcondition (SP)) verification condition generator (VCG) (also still a work in progress).

Isabelle/UTP is an implementation of the formalized programming language introduced by the book Unifying Theories of Programming (UTP) of Hoare and He [47] (described in detail in section 2.3) in the interactive theorem prover (ITP) Isabelle (described in section 2.2) and is elaborated on in section 2.4. Meanwhile, Simpl is an extension of the IMP language of Winskel [100] that adds a few nice features like scoping and abrupt termination; further reading on Simpl can be found in section 2.5.

Those components that are most important for usage but are still a work in progress include proper handling for procedure calls as well as nested scoping, plus a fully operational heap model; lack of these features currently limits the ability of USIMPL to model many typical real-world programs at this point in time. Another aspect that has not been fully tested is support for total correctness, which allows proving program termination; currently, USIMPL

\(^3\)https://gcc.gnu.org/
\(^4\)https://llvm.org/
only uses *partial correctness*, which assumes termination and thus that there are no infinite loops or infinitely recursing procedures (though as mentioned, USIMPL does not currently support those anyway).

A short elaboration on the usefulness of the above contributions is covered below as well.

1.2.1 Contribution Motivation

More Language Features

By providing more features for improved control flow, we can better model fancier control-flow features such as early loop termination or loop continuations. In doing so, we thus reduce the amount of work that must be done to convert programs utilizing such features into our own formulation, which eases the task of verification as our representation remains closer to the original. This does require more work in the early stages, as in order to represent such features formally their precise semantics must be determined; the difficulty of doing so can differ depending on the feature in question.

Algebraic Laws of Programming

Such laws provide formal equivalences between program fragments, which can be useful for verified compiler transformations and simplification of programs as it is often easy to represent the same calculations or effective control flow in different ways. This has potential usefulness for improving reusability of USIMPL proofs as well by providing the capability to convert common programming paradigms into some canonical form that has already been proven correct.

Forward VCG

The toolset chosen for verifying program correctness in USIMPL, *Hoare logic* [46] (covered in section 2.1.2), requires generation of intermediate *verification conditions* (*VCs*) that must themselves be proven in order to prove the correctness of the full program. This process would take far too much time and result in long, boring proofs if done manually, and thus USIMPL requires a VCG in order to automate the process of VC generation. There are two main ways of approaching this process as well: start at the beginning and proceed to the end or start at the end and proceed to the beginning. The latter, called weakest precondition (WP) or backward reasoning [24], seems to be more common, but for our purposes we found SP reasoning [41] to be more reasonable.
1.3 Further Organization

USIMPL itself is explained in chapter 3, and if you are familiar enough with the previously-mentioned concepts then you can skip directly there to read; otherwise, it is my recommendation that you peruse the background information mentioned above as well as the other background concepts and work described in chapter 2. After reading about the design of USIMPL, you can check out chapter 4 to browse correctness proofs for two commonly-used algorithms that prove the usability of USIMPL even in its incomplete state. Finally, the features of USIMPL that are incomplete or are planned for future development are again discussed in chapter 5, which concludes this thesis in a succinct manner.

1.4 Automated theorem proving

Not everyone reading this thesis knows what theorem proving in the sense I’m using it in my thesis is, of course, so here is a brief introduction before diving into the bulk of things.

The theorem proving discussed here is specifically automated theorem proving (ATP) [15, 64] (often done via tools such as the ITPs described in section 2.1.6, though noninteractive development is possible as well), which is much like proving by hand, but done in a manner such that users do not have to rely on their own understanding to know that the proof is correct, rather relying on a trusted system to determine parts of the proof/validate existing components of the proof. This enables much more rapid development of correct proofs than could be done simply by sticking with pencil or pen and paper, though it of course requires trusting the system that validates the proof (but then, manual proofs require trusting the person who developed the proof, so ultimately you have to trust something, and in the end you can at least rely on a computer to—usually—give you the same result for the same input).

1.5 Notation

As this thesis contains a lot of Isabelle text, I have used similar notation in other parts of the document as well. For example, the type of a two-tuple is represented as $a \times b$ (or $'a \times 'b$, if type variable distinction is required); a function with two arguments has type $a \Rightarrow b \Rightarrow c$; and a set of two-tuples with the same type for each field (in other words, a relation) has type $(a \times a)$ set. Theorems and lemmas will be presented in the form $P \Rightarrow Q$, $A \Rightarrow B \Rightarrow C$, etc., where \Rightarrow represents a top-level implication (\rightarrow is used for inner implications in Isabelle/HOL). As with the two different implication types, Isabelle/HOL offers both \forall and \exists for existential quantifiers and \land and \forall for universal quantifiers. To match typical functional programming notation, function calls such as $f(a, b)$ will instead be written
as \(f \ a \ b \). This usage is not entirely consistent due to differences in Isabelle/UTP style as well as some simplification of notation used for section 3.4.1.
Chapter 2

Background

This chapter covers the ground work and backing topics that USIMPL builds upon, giving an introduction to formal methods, Isabelle, UTP, Isabelle/UTP, and the Simpl language as well as some other related works.

2.1 Formal Methods

The field of formal methods is broad, but can be succinctly generalized as the usage of logical inference rules to derive well-formed conclusions in sound mathematical frameworks applied to the domains of hardware and software development [14]. In general, this means conclusions derived via formal methods can be trusted with a high degree of certainty, which is of great importance for security and safety purposes as noted in chapter 1. This work is primarily focusing on using formal methods for software verification; in other words, formal verification [10].

2.1.1 Orders of Logic

First-order logic, also known as predicate logic, is an extension of typical propositional (zeroth-order) logic that adds universal (∀) and existential (∃) quantifiers for individual elements in the domain of discourse; extending that to quantifying over sets/relations/functions gets you second-order or, more generally (sets of sets, sets of sets of sets, functions, etc.), higher-order logic (HOL) [91]. HOL is the most flexible, but usage can increase the complexity of proofs. This thesis involves work that builds on HOL in Isabelle.

1domain/universe/set over which individual elements may be quantified
2.1. Formal Methods

<table>
<thead>
<tr>
<th>Zeroth</th>
<th>First</th>
<th>Second</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P \rightarrow Q)</td>
<td>(\exists a. \ P a)</td>
<td>(\forall x. \ (x \in P \lor x \notin P))</td>
<td>(\exists f. \ \forall x. \ f \ x = x)</td>
</tr>
</tbody>
</table>

Table 2.1: Statements in Various Orders of Logic

2.1.2 Semantics

There are three main types of semantics used in formal methods: denotational, operational, and axiomatic. The methodologies involved are described as follows.

Denotational

Originally presented by Scott [88], denotational semantics provide a method of representing expressions in a program language as composable mathematical objects, such as functions of the form \(s \Rightarrow s \) or relations between states \((s \times s)\) set), with \(s \) being the type of the program state. In Isabelle/HOL, this type of semantics can be implemented using shallow embedding, wherein program language features are directly mapped to HOL constructs [99]. While popular, denotational semantics prevent introspection; it is not possible to observe the intermediate state of a program, only the starting and ending states.

Operational

As first used in the development of ALGOL 68 [95] and named by Scott [88], operational semantics are unlike denotational semantics (which are a direct translation to a mathematical form) in that they reason about execution; that is, transitions between program states. To some extent, this can be thought of as (a mathematical formalization of) program interpretation. There are two major forms of operational semantics:

- **small-step** Also known as structural operational semantics [84, 85], wherein a program is evaluated step by step. One can think of it as a (potentially recursive) function of the form \(c \times s \Rightarrow c \times s \) that evaluates the first part of a program/command (represented with type \(c \)) on some input state of type \(s \) and produces the remainder of the program to evaluate along with the state after evaluation of that first component. If the output program is a no-op (\texttt{skip}), the resultant state is the final state of the program.

- **big-step** Also known as natural semantics [51]; unlike small-step semantics, a big-step operation will generally be represented with inductive definitions of the form \((c \times s) \Rightarrow s \). As it is concerned solely with the state after program execution, there is no easy way to make determinations regarding intermediate state as can be done with small-step.
Operational semantics are often implemented using _deep embedding_, wherein the language constructs are structured in an abstract syntax tree (AST) and then the function(s) encoding the semantics is/are used to evaluate the AST [99].

Axiomatic

Unlike denotational or operational semantics, axiomatic semantics state program behavior in terms of assertions (logical predicates) on state. The most famous example of axiomatic semantics is Hoare logic [46]; in this formalization, the notation \{P\}C\{Q\} represents a program C with precondition P and postcondition Q. It is often used with Dijkstra’s WP reasoning [24], as \{P\}C\{Q\} holds if and only if P \implies C \wp Q, but can be used with SP methodologies as well (P sp C \implies Q) [41]; in fact, the equivalence is provable in Isabelle/UTP despite the original formulation being axiomatic. For my purposes, this is the most relevant type of semantics as the VCG designed for USIMPL is built off of Hoare rules as shown in section 3.4.1.

A closely related concept is that of algebraic semantics [37, 97] such as Hoare’s algebraic laws of programming [48]; this methodology gives algebraic meaning to program semantics and, at least in the case of Hoare’s laws of programming, establishes formal equivalences between commonly-encountered program expressions.

2.1.3 Solvers

Satisfiability (SAT) solvers [38, 96] work on Boolean formulas, identifying satisfying assignments for the variables involved (meaning they are zeroth-order solvers). The SAT problem (with more than two variables) is famous for being the first known nondeterministic polynomial time (NP)-complete problem [17], which means that there is no algorithm to determine a solution in polynomial time\(^2\) or faster, but any potential solution can be verified in at most polynomial time. In general, SAT problems tend to be solvable in exponential time\(^3\), which is still not very feasible for extremely large problem sets. Thus, modern SAT solvers focus on optimizing algorithms and minimizing execution time even if worst-case time is still exponential, and they have become very good at it [55]. At the same time, the necessary heuristics may mean decreased flexibility; many SAT solvers work well on problems with specific formulations but are not guaranteed to perform as well on more general problems. That is one of the unfortunate trade-offs that must be made for NP problems and means that no single SAT solver is best for all SAT problems.

SAT solvers can be grouped into two main categories: _conflict-driven backtrackers_ (example algorithms being Conflict-Driven Clause Learning (CDCL), and its predecessor, the Davis–

\(^2\)Runtime bounded as \(O(n^k)\)

\(^3\)\(O(2^{n^k})\)
Putnam–Logemann–Loveland (DPLL) algorithm [22]) and stochastic local searchers such as GSAT [82] and its successor WalkSat [90]. There are also look-ahead solvers, which use backtracking algorithms based on DPLL like conflict-driven solvers but in a predictive fashion [12, 34, 44]; these do not seem to be as common, however. The main differentiation for CDCL solvers and DPLL solvers is that CDCL solvers perform non-chronological backjumping rather than simple backtracking in the search tree when conflicts occur. Another useful SAT solver is Glucose⁴, based on the older MiniSAT⁵ [28].

In contrast to SAT solvers, satisfiability modulo theories (SMT) solvers [6, 23, 71] are first-order, working with formulas involving quantifiers. The performance limitations of SAT solvers still apply to SMT solvers, unfortunately, but certain SMT problems have known polynomial-time conversions to SAT forms, which can reduce performance costs if the available SMT solvers are not so useful on the specific problems under consideration. Some commonly-used SMT solvers are Microsoft Research’s Z3 solver⁶ and the Cooperating Validity Checker (CVC) series, with the most recent iteration being CVC4⁷; another one often integrated with other tools is Yices [26] (now up to version 2 [25]) as well as MathSAT5⁸.

2.1.4 Model Checkers

While not directly related to my thesis work, model checkers are an interesting comparison for verification. As briefly mentioned in the introduction, these tools represent the systems they analyze as finite state machines (FSMs), or sometimes infinite state machines (ISMs), exhaustively examining the space of possible states for a system in order to prove properties about it [2, 33]. The usage of state machines can be troublesome as the number of states can become quite large, particularly for very complex systems; workarounds include abstraction (simplifying the model), representing the state machines implicitly via Boolean formulas (which reduces the model checking to a SAT or an SMT problem), and putting bounds on the number of state transitions (very useful for ISMs), but the problem will likely never go away completely [16, 83]. Some of the model checkers I have previously been exposed to are Sally⁹, which can use the Yices 2 and MathSAT5 solvers as well as Z3 if available, and (for concurrent systems) Symbolic Analysis Laboratory (SAL)¹⁰, which uses Yices 1 (not 2!).

⁴https://www.labri.fr/perso/lsimon/glucose/
⁵http://minisat.se/
⁶https://github.com/Z3Prover/z3
⁷http://cvc4.cs.stanford.edu/web/
⁸http://mathsat.fbk.eu/
⁹https://sri-csl.github.io/sally/
¹⁰http://sal.csl.sri.com/
2.1.5 Model-based testing

Again not directly related to my thesis work, MBT [8, 35, 94] provides another way of checking the correctness of programs by formally generating tests that a program must pass to verify that it matches the formal model (i.e. the specification) used to generate the tests. It can be thought of as a form of dynamic testing, much like the unit and integration tests many programmers write by hand, and serves as a complement to static, theorem-based proving by allowing testing of compiled programs on actual hardware, meaning the hardware and compiler can be excluded from the trusted computing base (TCB). The downside of this approach is that tests and their expected results cannot necessarily be accurately generated for all possible inputs due to the fact that the model may not account for certain aspects of the language the code is written in; put another way, the abstract tests generated from the specification may not be mappable to concrete tests that can actually be executed.

There are various methodologies for MBT, including model checking as well as theorem proving; we plan to integrate the theorem-based test-case generator HOL-TestGen\(^{11}\) [13] as part of Orca eventually.

2.1.6 Proof Assistants

The most relevant formal methods tools for this thesis are ITPs, also known as proof assistants. These tools consist of generic frameworks, and often environments, for the development and discharging of formal proofs, possibly with integration of SAT and SMT solvers. Some major examples are: Coq\(^{12}\) [9], used for the CompCert compiler certification project\(^{13}\) [62]; Prototype Verification System (PVS)\(^{14}\) [78–80], used to formalize software requirements for the Space Transportation System (STS) [21] among other things [81]; and, of course, Isabelle\(^{15}\) [72], discussed in section 2.2.

2.2 Isabelle

Designed as a successor to the HOL\(^{16}\) series of ITPs [39] (which were and are, in turn, based on Logic for Computable Functions (LCF) [68, 89]), Isabelle is written in a descendant of the functional language Meta Language (ML) (developed for the aforementioned LCF) called Standard ML (SML) [69]. The implementation of SML used, Poly/ML\(^{17}\), supports

\(^{11}\)https://www.brucker.ch/projects/hol-testgen/
\(^{12}\)https://coq.inria.fr/
\(^{13}\)http://compcert.inria.fr/
\(^{14}\)http://pvs.csl.sri.com/
\(^{15}\)https://isabelle.in.tum.de/
\(^{16}\)https://hol-theorem-prover.org/
\(^{17}\)http://www.polyml.org/
multi-threaded execution, which is widely used by Isabelle for parallel and asynchronous proof checking when editing Isabelle files (called theories and having the .thy extension). Isabelle’s SML-level application programming interface (API) is available for use by user code as well, which can be written within the Isabelle interface and even embedded in theories if so desired.

At the core of Isabelle is its logical kernel, which handles type-checking, term implementations, and the management of global contexts that contain, among many other things, signature information and basic logical axioms. The kernel certifies that all theorems are derived only from theory contexts and cannot be removed or overwritten. Many different logics can be implemented on top of the kernel using a minimal metalogic known as Pure. For example, the HOL extension of Pure, which is probably the most widely-used base theory, consists of only eleven additional axioms [73]. As axioms, we must of course trust that these statements and those of Pure provide a sound framework, but they are all we need to trust as all further extensions of HOL are conservative. That is, the vast majority of Isabelle theories building on HOL and the like use specification constructs that call directly to the primitives of the logical kernel, allowing theories to be extended without affecting the soundness of the aforementioned axioms. Plenty of such theories are distributed with Isabelle, such as implementations of the Owicki-Gries [77] and rely-guarantee [102] logics for verification of parallel algorithms; even more libraries, maintained to work with current versions of Isabelle, are available from the online Archive of Formal Proofs (AFP)\(^\text{18} \) The current Isabelle interface is a version of the integrated development environment (IDE) jEdit\(^\text{19} \), though previous versions\(^\text{20} \) permitted usage of the venerable text editor emacs and experimental support has been added for Visual Studio Code in the most recent version of Isabelle released at the time of this thesis (Isabelle 2017). The rest of this section covers general features of Isabelle relevant to our work.

2.2.1 Types and Functions

Isabelle/HOL supports the typical primitive types used in functional languages, such as integers, natural numbers, reals, and booleans as well as characters. It also provides the usual structural types, such as tuples, (linked) lists, and sets, and most importantly it provides a strong setup for definitions of functions. There is notation for macro-style abbreviations with the abbreviation keyword, non-recursive functions with the definition keyword, and recursive pattern-matching functions with the fun keyword (or, for more primitive functionality, primrec). The ability to create notations for commonly-used functions, definitions, and abbreviations further extends Isabelle’s usability and can be encountered quite often in the declarations of many built-in types. Users may also provide their own types, building on existing types and using the datatype keyword for recursive implementations (also used by many built-in types such as the aforementioned lists and sets as shown in

\(^{18}\)https://www.isa-afp.org/
\(^{19}\)http://www.jedit.org/
\(^{20}\)http://isabelle.in.tum.de/download_past.html
Chapter 2. Background

(* From Isabelle's HOL/List.thy *)

datatype (set: 'a) list =
 Nil ("[]")
 | Cons (hd: 'a) (tl: ('a list)) (infixr "#" 65)

for -- <extra bits to flesh out the type, not strictly necessary>

 map: map
 rel: list_all2
 pred: list_all

where

 <tl [] = []>

(* Record example *)

record Point2D =
 x :: real
 y :: real

record Point3D = Point2D +
 z :: real

Listing 2.1: Recursive Types and Records

listing 2.1). Additionally, inductive predicates may be designed using the inductive keyword. As an extension to tuples, Isabelle has an extensible record type with named fields, also shown in listing 2.1; records provide <field> and update_<field> functions for each of their fields to get and update their values, respectively. The transfer package, along with the lift_definition command, can also be used to ease the pain of building layers of syntax.

Unlike systems such as PVS, Isabelle does not provide predicate subtyping (as an example, PVS defines natural numbers as the subset of integers that are greater than or equal to zero); instead, such restrictions must be established directly as predicates/assumptions in lemmas and theorems. However, Isabelle does provide type classes, which define non-type-specific properties. For example, one can specify a type variable restricted to those types that have partial ordering with 'a :: order or total ordering with 'a :: linorder (with linorder being an extension of the order class). This is much like how non-type variables can be annotated with their types (a :: int).

2.2.2 Syntax Translations

For cases where simple notation definitions are not enough, users may define their own syntax tokens and the necessary translations as shown in listing 2.2, which demonstrates how such translations can be used to preserve a name; the v used there is replaced by whatever is used with the syntax, so $S \ v$ becomes select $V \ x$ becomes select (x, x_update), which
2.2. Isabelle

produces x. This sort of setup can be used when program state is stored in a concrete record as records provide select/get and update/put functions for each of their fields.

As a side note, that example also demonstrates a simple shallow embedding of expressions and commands (statements), though it is very minimal.

2.2.3 Proofs

The most important component of Isabelle and its primary purpose is the proof system. Every new lemma or theorem added by users introduces one or more proof goals that must be discharged to introduce the lemma/theorem into the containing theory context, and as an LCF-based tool, Isabelle’s logical kernel ensures that only valid, proved theorems and lemmas can be used in further proofs (though there are workarounds such as use of the sorry command, which is solely intended as a placeholder for a real proof and is barred from proofs intended for archival [57]).

To discharge proofs, Isabelle/HOL uses term rewriting [49] and natural deduction [36, 50]. For simple rewriting of terms in proof goals, the basic simp method can be used. This method relies on a standard set of simplification theorems (the simpset) to rewrite terms from the left-hand side (LHS) of HOL equalities to the right-hand side (RHS). The simpset can be extended with new theorems by attaching the simp attribute to a given proven theorem either in the definition itself or at a later point via the declare command (or supplied directly to simp itself) as shown in listing 2.3. For goals with logical connectives, natural deduction can be used via the tactics intro for introduction rules, elim for elimination rules, and dest for destruction rules. For more complicated proof goals, Isabelle provides the auto method. In addition to rewriting, auto performs many other modifications on proof goals such as application of arithmetic and natural deduction rules. There are many more methods for use in specific situations, such as blast (for first-order logic and introduction rules for sets) and fastforce.

Going beyond individual tactics and methods, there are two ways of discharging proof contexts in Isabelle: apply-script style and Isar (structured) style. While the two can be mixed, Isar methodology tends to look more like the sort of proof a mathematician would develop and thus is preferred by those who like their proofs to be human-readable in isolation. However, apply style (the traditional way of doing Isabelle proofs; Isar was introduced later by Wenzel [98]) is quite useful and produces just the same results; it simply makes most of the proof context implicit and thus requires examination of the proof and subgoal state via Isabelle mechanisms rather than in isolation. A simple example comparing Isar style and apply style can be seen in fig. 2.1.

Isabelle also provides the sledgehammer command, which will attempt to find proofs for a given subgoal using a variety of different solvers (including the aforementioned Z3 and CVC4, section 2.1.3). If successful, the tool will construct the proof and display it in the output.
Chapter 2. Background

(* From HOL/List.thy *)
syntax
-- <list Enumeration>
"_list" :: <args ⇒ 'a list> ("[(_)]")
translations
"[x, xs]" ⇔ "x # [xs]"
"[x]" ⇔ "x # []"
value <[1, 2, 3] = 1 # 2 # 3 # []>

(* Other stuff *)
text {*An expression takes a state and returns some value*}
type_synonym ('τ, 'σ) exp = <'σ ⇒ 'τ>
text {*A command operates on a state, producing a (possibly new) state.*}
type_synonym 'σ com = <'σ ⇒ 'σ>
type_synonym ('τ, 'σ) var = ('τ, 'σ) exp × (('τ ⇒ 'τ) ⇒ 'σ com)
lift_definition select :: ('τ, 'σ) var ⇒ ('τ, 'σ) exp is ‹λv. fst v›.
lift_definition update :: ('τ, 'σ) var ⇒ ('τ ⇒ 'σ) com is ‹λv x. snd v (λ_. x)›.
syntax
"_VAR" :: <id ⇒ ('τ, 'σ) var> ("V_")
"select_VAR" :: <id ⇒ ('τ, 'σ) exp> ("S_")
"update_VAR" :: <id ⇒ ('τ, 'σ) exp> ("U_")
translations
"V v" ⇔ "(v, _update_name v)"
"S v" → "CONST select V v"
"U v" → "CONST update V v"

Listing 2.2: Syntax Translation Examples
2.2. Isabelle

1. `lemma swap_id[simp]: \(i < \text{length} \ xs \implies \text{swap} \ i \ i \ xs = xs\)`
2. `unfolding swap_def`
3. `by simp`
4. `declare swap_id[simp]`
5. `lemma \(\text{swap} \ 1 \ 1 \ [1, 2, 3] = [1, 2, 3]\)`
6. `by (simp add: swap_id)`

Listing 2.3: Ways of Adding to the Simpset

1. `lemma \(\text{length} \ (\text{tl} \ \xs) = \text{length} \ \xs - 1\)`
2. `by (cases \xs) simp_all`

(a) Apply Style

1. `lemma \(\text{length} \ (\text{tl} \ \xs) = \text{length} \ \xs - 1\)`
2. `proof (cases \xs)`
3. `case Nil`
4. `then show ?thesis by simp`
5. `next`
6. `case Cons`
7. `then show ?thesis by simp`
8. `qed`

(b) Isar

Figure 2.1: Apply Style Versus Isar

panel, though those proofs are occasionally quite unreadable if the discovered proof requires the `metis` or `smt` tactics with many helper lemmas. As another caveat, generated proofs that use `smt` are not also accepted in archive-ready proofs due to prohibition of the oracle methodology [57]; in such cases, `sledgehammer` works best as a starting point for developing a more readable proof.

Also of use for our purposes is the Eisbach library developed by Matichuk et al. [65, 66], which provides a way of composing proof tactics and methods into other methods without needing to work on the SML level; it even works within proofs, as shown in listing 2.4. This greatly reduces the amount of work needed to automate application of the component methods and tactics of a VCG.

2.2.4 Locales

For modularity, users can create new locales that provide additional assumptions, type fixings, and the like that restrict the contained theorems and lemmas, much like type classes. As an example, the lens properties described in section 2.4.1 are associated with specific lenses.
1 (* tries simp, then tries auto if simp doesn’t fully discharge the goal *)
2 method simp_or_auto = simp; fail|auto
3
4 lemma \(A \subseteq B \cap C \implies A \subseteq B \cup C\)
5 by (simp; fail|auto)
6
7 lemma \(A \subseteq B \cap C \implies A \subseteq B \cup C\)
8 by simp_or_auto

Listing 2.4: Eisbach Example

locale less_than_100 =
fixes x :: int
assumes \(x < 100\)

5 lemma less_than_100 x \implies x < 100
6 by (simp add: less_than_100_def)
7
8 locale between_0_100 = less_than_100 +
assumes \(x > 0\)

10 lemma \(between_0_100 x \implies 0 < x \land x < 100\)
12 by (simp add: between_0_100_axioms_def between_0_100_def less_than_100_def)

Listing 2.5: Locale Example

by means of locales (e.g. using \texttt{vwb_lens x} as an assumption). Another, simpler example of using locales is presented in listing 2.5.

2.3 Unifying Theories of Programming (UTP)

A product of the work of Hoare and He [47], UTP was written to provide denotational semantics for a generalized nondeterministic imperative programming language expressed in a common setting. In the UTP framework, a theory consists of three parts: an alphabet, a signature, and healthiness conditions. A further introduction to UTP can be found in Woodcock and Foster [101], if so desired.

alphabet The set of observational variables characterizing the state of the studied system.

signature The different operations used to change the variables in the alphabet.
healthiness conditions Restrictions on the semantic machinery; can be implemented using auxiliary/logical variables to capture given behaviors.

order Not an explicit component, but defines how individual programs relate to each other.

The base UTP theory is the alphabetized predicate calculus, where the alphabet draws from UNIV and there are no healthiness conditions. An alphabetized predicate is then a pair of alphabet and predicate such that all variables used in the predicate are in the alphabet. More restrictive is the alphabetized relational calculus, which Isabelle/UTP is built around; this theory requires that a relation’s alphabet contains input (unmarked, e.g. \(v \)) variables, which are observations of program state before execution, and output (\(v' \)) variables, which are observations of state after execution. As an example, consider a simple one-statement program \(x := x + 1 \); in UTP, this would be a relation of the form \(x' = x + 1 \), where \(x \) represents the input value of the variable \(x \) (more pedantically, the value of the variable \(x \) in the initial state \(s \)), \(x + 1 \) is an expression evaluated on the initial state, and \(x' \) is the output value of the variable \(x \) (the value of the variable \(x \) in the final state \(s' \), which is an updated version of the state \(s \) after application of the assignment).

Relations

Unlike the common meaning of relation stated in section 1.5, UTP represents relations as functions with type \(\alpha \times \beta \Rightarrow \text{bool} \), taking a pair of states (input and output) and evaluating to booleans indicating whether the output state can be produced from the input state; of course, the state spaces (in other words, the state types) do not have to correspond. Relations in this form are heterogeneous \(((\alpha, \beta) \text{ rel}) \); when the state spaces are the same, the relations are homogeneous \((\alpha \text{ hrel}) \). In most of our work (including the previous assignment example), our extension of Isabelle/UTP utilizes homogeneous relations, which simplifies things down the line.

Ordering and Refinement

Though not invented by Hoare or He, refinement serves an important purpose in UTP. This is because programs and specifications are one and the same: a specification is just a more abstract/less restrictive program than its implementation, and the two share a correctness relation. If an implementation manipulates the same externally-viewable variables as its specification, their correctness relation is refinement [101]. The notation used for refinement in UTP is \(A \sqsubseteq B \), meaning \(A \) refines \(B \), or \(A \sqsubseteq B \), meaning \(A \) is refined by \(B \) (this is the version Isabelle/UTP uses). More formally, refinement is the universal closure of an implication over the given alphabet; that is, \(A \sqsubseteq B \) iff \([B \Rightarrow A] \) (using the UTP notation for implication, \(\Rightarrow \), and universal closure\(^{21}\), \([_]\)). In this way, the hierarchy of programs

\(^{21}\) universally quantifying all free variables in the enclosed expression
2.4 Isabelle/UTP

As mentioned in the introduction, this thesis would not exist in its current form without the development of an Isabelle implementation of UTP by Foster et al. [31]. While there are other mechanizations of UTP that have come before, such as the Circus implementation [74, 76], Foster’s Isabelle/UTP was chosen in part because of their usage of shallow embedding, which allows for increased proof automation due to not needing an AST parser, as well as because of their comparatively elegant generalization of UTP expressions that allows for natural derivations of the different theorems in HOL and their usage of lenses as variable and state abstraction. As an example of the strength of Isabelle/UTP, listing 2.6 shows how the Isabelle/UTP framework can be used to prove the WP/SP connections to Hoare logic described in section 2.1.2 (expressed via refinement in this framework).

The rest of this section covers some of the other design decisions made when implementing UTP in Isabelle; if you want to see their own explanations and play around with it yourself,
check out the main web page (which at the time of writing of this thesis shows an example of their own VCG, it appears) or you can go directly to the github repository and clone that.

2.4.1 Lenses

Though a deep theory in its own right, this formalization, also by Foster et al. [32], is structured quite simply; a lens consists of \(\text{get} : s \Rightarrow v \) and \(\text{put} : s \Rightarrow v \Rightarrow s \) functions that provide a “view” into some source object, where \(v \) is the view type and \(s \) is the source type. Individual variables, groups of variables, and even more exotic structures can all be represented by lenses. The notation used by Foster and co. to describe the above function pair is \(v \Rightarrow s \) and will be used from now on when typing individual lenses.

All properties of lenses are based on the interaction of their \text{get} and \text{put} functions and those of other lenses. For example, two independent lenses \((x \bowtie y)\) satisfy the properties

\[
\begin{align*}
\text{put}_x (\text{put}_y \sigma v) u &= \text{put}_x (\text{put}_y \sigma u) v \\
\text{get}_x (\text{put}_y \sigma v) &= \text{get}_x \sigma \\
\text{get}_y (\text{put}_x \sigma u) &= \text{get}_y \sigma
\end{align*}
\]

and a lens is \textit{unrestricted} [75, 76] by an expression \((l \bowtie e)\) if the following property holds:

\[
\forall \sigma v. e (\text{put}_l \sigma v) = e \sigma.
\]

The main hierarchy of lens properties is described below.

\textbf{weak} A lens that satisfies the \text{PutGet} property

\[
\text{get} (\text{put} \sigma v) = v.
\]

\textbf{well-behaved} A weak lens that also satisfies the \text{GetPut} property:

\[
\text{put} \sigma (\text{get} \sigma) = \sigma.
\]

\textbf{mainly-well-behaved} A weak lens that also satisfies the \text{PutPut} property:

\[
\text{put} \sigma (\text{put} \sigma v) u = \text{put} \sigma u.
\]

\textbf{very-well-behaved} A lens with both well-behaved and mainly-well-behaved properties.

\textbf{bijective} A weak lens that also satisfies the \text{StrongGetPut} property (making it a well-behaved lens as well):

\[
\text{put} \sigma (\text{get} \rho) = \rho.
\]

\textbf{ineffectual} A read-only weak lens (\(\text{put} \sigma v = \sigma \)). Satisfies the very-well-behaved properties by its nature.
Chapter 2. Background

Lens Operations

Lenses can also be combined in various ways, of which the following is merely a sample.

composition (;) Produces a view of a view: \((b \Rightarrow c) \Rightarrow (a \Rightarrow b) \Rightarrow (a \Rightarrow c) \).

sum (+) Combines two views with the same source: \((a \Rightarrow s) \Rightarrow (b \Rightarrow s) \Rightarrow (a \times b \Rightarrow s) \).

product (\times) Combines two views with different sources: \((a \Rightarrow b) \Rightarrow (c \Rightarrow d) \Rightarrow (a \times c \Rightarrow b \times d) \).

There is also a developed notion of *sublenses*; \(x \) is a sublens of \(y \), denoted as \(x \preceq y \), if the source region of \(x \) is contained within that of \(y \). More formally, \(x \preceq y \) if there is some well-behaved lens \(z \) such that \(x = z ; y \).

2.4.2 Notation and Semantics

In order to reproduce the notation used in the UTP book, the developers of Isabelle/UTP used liberal application of syntax translations (described in section 2.2.2), though the notation does not exactly match that used in the UTP book or lens papers due to Isabelle considerations (such as usage of \(⟨⟩ \) rather than \(<> \) for building lists/sequences and \(\subseteq_u \) instead of \(\preceq \) to indicate a sublens relationship). While this works in standardizing the interface, it can cause problems when additional Isabelle libraries are utilized by theory files that incorporate UTP usage, though the developers have provided some workarounds for that. There are also occasional issues when using *sledgehammer* and term-generating tools, as the Isabelle setup is designed with the assumption that generated terms can be evaluated as-is but Isabelle/UTP violates that assumption at times due to ad-hoc overloading that requires explicit typing to resolve (when the usual Isabelle functions are differentiated enough such that explicit typing is not often required). Some examples of notation equivalence are shown in fig. 2.2, which also demonstrates the ad-hoc overloading done by Isabelle/UTP. Additional notation that is useful for future reference:

«v» This indicates an HOL literal; depending on the context, explicit usage may not be necessary (such as with numeric literals) but is usually required when reasoning with logical variables.

\([P]_e \ (s,t)\) A statement that input state \(s \) and output state \(t \) are consistent for program/predicate \(P \).

\(P[u/x]\) A substitution of the (input) expression \(u \) for accesses of lens \(x \) in program/predicate \(P \); this notation can also be used for input (\(\$/x \)) and output (\(\$/x' \)) substitutions, in which case \(u \) must be lifted with \([u]_< \) and \([u]_> \) (previously seen in listing 2.6), respectively.
2.4. Isabelle/UTP

length xs (* for lists *) \#_u(xs)
card s (* set cardinality *) \#_u(s)
pcard p (* for partial functions *) \#_u(p)
[1, 2, 3] (* list literal *) \(1, 2, 3\)
xs @ ys (* list concatenation *) xs _u ys
xs ! i (* list indexing *) xs(i)_a
f x (* (p)fun application *) f(x)_a
x :: 'a (* type fixing *) x :_u 'a
fst t (* tuple accessing *) \(\pi_1(t)\)
snd t (* "" *) \(\pi_2(t)\)
xs[i := x] (* list update *) xs(i _u x) (* also fun/map update *)
set xs (* set of list elements *) ran_u(xs)
\(\lambda x. p\) \(\Rightarrow\)

(a) Isabelle/HOL (b) Isabelle/UTP

Figure 2.2: Some Isabelle/UTP Syntax Comparisons

Σ The entire input alphabet (i.e. the whole state) as a lens; the corresponding output lens is Σ', of course.

\&x Gets value as expression from lens.

2.4.3 Language Constructs

Isabelle/UTP provides most of the language constructs detailed in the UTP book, including some of the features for parallel computation, but the main ones for our sequential, imperative purposes are

II The null operation, a no-op, SKIP; used when a statement is required but a state change is undesired.

:= Basic assignment of an expression to a lens.

;; Sequential composition; this is used to compose statements.

\(P \triangleleft b \triangleright Q\) The conditional; if \(u\) b then \(P\) else \(Q\) is the wrapper notation we use for a nicer look.

\(\mu X \bullet P\) LFP recursion of program \(P\) with \(X\) occurring in \(P\) and representing the point where the recursion is “unfolded”, so to speak.
Chapter 2. Background

\(\nu X \cdot P \) GFP recursion, otherwise same as the above.

Iteration Achieved with a wrapper around the recursion construct, either LFP or GFP depending on total or partial correctness, with notation akin to \(\text{while } b \text{ do } P \text{ od} \) where \(P \) is repeatedly executed until \(b \) becomes false.

\(a : [P] \) Frame; executes \(P \) and then restores all elements of the state referenced by lens \(a \) to their values before execution of \(P \).

\(a : [P] \) Antiframe; executes \(P \) and then restores all elements of the state other than those referenced by lens \(a \) to their values before execution of \(P \).

2.5 Simpl

Essentially an extension of the IMP language presented by Winskel [100] (meaning it lacks many fancy—or messy, depending on your perspective—programming language features), Schirmer’s Simpl adds abrupt termination via \(\text{try...catch} \) style notation as well as scoping and local-to-procedure variables via a \(\text{block} \) notation, plus state-dependent dynamic commands. Simpl also provides a one-branch \(\text{if} \) statement where the body is executed when the condition is true and is otherwise a no-op, but that is not strictly required as all such expressions can be replaced with \(\text{if} \) statements wherein the false branch is a skip (and, in fact, that is how the expression is ultimately implemented in the underlying abstract syntax). It additionally provides a guard statement that can be used to check for division by zero, integer underflow and overflow, out-of-bounds array accesses, and other failure conditions, working much like assertions in common imperative programming languages. There is also support for side effects in expressions, but we do not deal with those other than for the possibility of procedures modifying global/nonlocal state. Listing 2.7 shows a basic program written in Simpl’s concrete syntax.

2.5.1 Abrupt Termination

This is just a way of skipping over statements in a program in a controlled fashion. Basic usage occurs via the \(\text{THROW} \) statement, which puts the program in an abrupt state. If the \(\text{THROW} \) does not occur within a \(\text{TRY} \) region, this means the program just terminates; otherwise, the program will proceed to the corresponding \(\text{CATCH} \), emerge from the abrupt state, and execute the body of the \(\text{CATCH} \) (which may place the program back into an abrupt state). This is patterned off of exception handling in languages such as C++ and can be used to implement that behavior. Abrupt termination can also be used to implement \(\text{break} \) and \(\text{continue} \) for loops as shown in listing 2.8; \(\text{break} \) can be represented with try-catch containing a loop while \(\text{continue} \) can be represented with a loop containing a try-catch. This methodology can also be used to handle early \(\text{returns} \) in procedures.
2.5. Simpl

Listing 2.7: Bubble Sort in Simpl

\begin{verbatim}
1 n := length A;
2 swapped := true;
3 WHILE swapped DO
4 swapped := false;
5 i := 1;
6 WHILE i < n DO
8 A := A[i := A[i-1], i-1 := A[i]];
9 swapped := true
10 FI
11 OD
12 OD
\end{verbatim}

As there may be many different causes of abrupt termination, Simpl provides an auxiliary variable called \texttt{Abr} that should be set to an appropriate value before triggering of abrupt termination via the \texttt{THROW} keyword.

2.5.2 Blocks

This feature is ultimately quite simple; blocks provide a way of capturing state at the entry and exit point(s) of a scope or procedure call in order to restore specific variables and, if so desired, perform initialization on entry (for example, assigning function parameters that are expressions to the corresponding named arguments). Initialization is performed via the \texttt{init} function and state restoration is done via the \texttt{return} function; \texttt{c} is used to handle cases where the return value of a procedure is assigned to a variable determined via an evaluated expression that could have been affected by execution of the procedure (e.g. assigning the result to a nested object/pointer that could have been modified by the procedure), which is why it requires access to state on block entry. The states are captured via usage of Simpl’s dynamic commands, as Simpl commands normally do not have explicit access to the current state.

As noted in fig. 2.3 and listing 2.9, abrupt termination requires special handling in blocks.
Chapter 2. Background

Figure 2.3: Control Flow for Blocks

\begin{align*}
\text{definition } & \text{block :: } \langle (s \Rightarrow s) \Rightarrow (s, p, f) \text{ com} \Rightarrow (s \Rightarrow s \Rightarrow s) \Rightarrow (s \Rightarrow s \Rightarrow s) \Rightarrow (s \Rightarrow (s, p, f) \text{ com}) \Rightarrow (s, p, f) \text{ com}\rangle \text{ where}
\end{align*}

Listing 2.9: Block Syntax

If abrupt termination occurs in a block and is not resolved in the body of that block, the return function of the block must still be executed to restore the values of local variables on exit, and so every block has a try-catch construct to ensure that restoration occurs.

2.6 Other Related Work

There has been plenty of work over the years on development of tools for software verification that uses Isabelle, PVS, or some other verification framework; two works that I found very relevant to my research were the secure embedded L4 (seL4) project and the tool and language Dafny, both discussed below.

2.6.1 seL4

A major example of success in the development and verification of a specific piece of software is the seL4 project [56], which used Isabelle for all of its formal proofs. L422 is a family of OS microkernels, designed to provide the minimal amount of support necessary for a computer to run. Everything that could possibly be done in user space is excluded from kernel space, which greatly minimizes the amount of kernel code that must be written (albeit with a corresponding increase of user-space code) and can provide increased security and reliability [93]. In the case of seL4, that meant the amount of code that would need to be verified could be much less than that which would be required for large kernels like those

22http://www.l4hq.org/
used in Windows, Linux, and similar OSes (around 10,000 source lines of code (SLOC), to be specific); even so, with a kernel designed from scratch, the project took eight years to complete from its start in 2006. Usefully, the project provides a verified framework for parsing the C code of the project (restricted to a more easily verifiable subset of C) into syntax suitable for verification, which is more trustworthy than relying on manual conversion.

Leaving aside further details of the project itself, their VCG utilizes a Hoare-logic-based approach much like the one presented in this thesis. At one point I attempted to use their VCG as an inspiration for my own work, but it proved to be too specific to their purposes for any adaptation on my part.

2.6.2 Dafny

Taking a different approach to that of external verifiers and the like, Dafny23 is a tool developed at Microsoft Research, inspired by and building on previously-existing Microsoft tools such as Spec# [5] and Boogie24 [4, 61]; Written in C#, it was originally created for the purpose of analyzing dynamic frames [52–54], but it has since grown into a full-fledged imperative object-oriented language that includes a built-in verification system. For verification, Dafny code is converted to the Boogie language, which is then passed to a Boogie tool that converts the description into a form suitable for SMT solving and then supplies it to (by default) Microsoft’s Z3 solver. When using the proper tools, this happens in real time as users write code, providing responsive feedback much as an ITP does. Compilation uses Microsoft’s common language runtime (CLR) framework, producing either C# code or, by default, libraries or executables. An example of an algorithm implemented in Dafny is shown in listing 2.10, though that is quite simple and does not take advantage of Dafny’s more advanced features such as classes, dynamic frames, or theorem-proving (yes, Dafny can do that too, albeit in an equality-based manner via \texttt{calc} blocks); it does, however, demonstrate preconditions (the \texttt{requires} clauses), postconditions (the \texttt{ensures} clause), and loop invariants (the \texttt{invariant} clauses). This usage of pre-/postconditions and invariants is very much like the work that must be done for verification via Hoare logic.

In terms of interface, Dafny has bindings for Visual Studio as well as emacs (via Boogie friends25); there are also syntax highlighting packages for Sublime Text26 and Atom27, that do not provide real-time feedback. Listing 2.10 also shows one of the nice features of the emacs interface, its ability to pretty-print Dafny code; the code is written in plain text but displayed with more mathy characters (such as \forall for \texttt{forall}, \neq for $!=$, etc.). The old Isabelle bindings for emacs used similar functionality to pretty-print theories.

23https://github.com/Microsoft/dafny
24https://github.com/boogie-org/boogie
25https://github.com/boogie-org/boogie-friends
26https://github.com/tvi/sublime-dafny
27https://atom.io/packages/language-dafny
Chapter 2. Background

method BinSearch(a: array<int>, key: int) returns (present: bool)
 requires a ≠ null
 requires ∀ i,j • 0 ≤ i < j < a.Length ⇒ a[i] ≤ a[j] // sorted
 ensures key ∈ a[..] ⇐⇒ present
{
 var low, high := 0, a.Length - 1;

 while low ≤ high
 invariant 0 ≤ low ≤ a.Length
 invariant 0 ≤ high + 1 ≤ a.Length
 invariant key /∈ a[..low]
 invariant key /∈ a[high+1..a.Length]
 {
 // use ‘low + (high - low) / 2‘ for languages with limited precision
 var i := (low + high) / 2;

 if a[i] < key {
 low := i + 1;
 } else if a[i] > key {
 high := i - 1;
 } else {
 return true;
 }
 }
 }
 present := false;
}

Listing 2.10: Binary Search in Dafny

As a final note, Dafny itself has not been formally verified; thus, its compiler and verifier must be treated as part of the TCB when using Dafny to create verified programs.
Chapter 3

Extending Isabelle/UTP

While Isabelle/UTP is interesting by itself, its purpose here is to serve as a foundation for our work, which is an extension of Isabelle/UTP with verified algebraic laws like those mentioned in section 2.1.2, scoping and distinction between local/global variables, SP reasoning and corresponding Hoare rules, and building on that an SP VCG.

Planned features that have been implemented but not properly tested include total correctness, abrupt termination, and expressions with side effects; as such, they are not covered in this thesis aside from being mentioned for future work.

3.1 Program State

As we build on Isabelle/UTP, we also use lenses to model individual variables; in fact, using lens composition, we can divide up the regions of the state that represent different types of variables, such as locals versus globals (though this is not the only way to handle locals versus globals; it is also possible to represent the full state using lens addition, like $\text{vars} = \text{gvars} + \text{lvars}$). This can complicate the methodology, as shown in listing 3.1, but provides potentially useful behavior in situations where we do not have a full heap model to manage global state. We have not yet used this capability to any significant extent, however. Ultimately, the full state is again an alphabet that can be represented using Isabelle records.

Additionally, the Isabelle/UTP framework does not have a requirement for variable initialization or declaration; thus, we can simply set up local and global variable state in the preconditions of our Hoare triples if need be. Otherwise, we assign values at the start of whatever program fragment is being worked with. This does mean we do not capture the potential error condition of C programs wherein a variable is assigned to before it is declared, but in most C programs that will simply be a compile-time error rather than a runtime bug, and the times it would be a runtime bug involve scoping, which is covered in section 3.3.
locale globloc =

 fixes lvars :: ‹'l = 's›
 and gvars :: ‹'g = 's›
 and ret :: ‹nat = 'g›
 and x :: ‹nat = 'l›
 and y :: ‹nat = 'l›

 assumes INDEP: ‹vwb_lens lvars› ‹vwb_lens gvars› ‹vwb_lens ret› ‹vwb_lens x›
 ‹vwb_lens y› ‹lvars ./ gvars› ‹x ./ y›

begin

abbreviation ‹Lx ≡ x ;_L lvars›
abbreviation ‹Ly ≡ y ;_L lvars›
abbreviation ‹Gret ≡ ret ;_L gvars›

end

Listing 3.1: Differentiating Local and Global Variables

3.2 Algebraic Laws

Utilization of algebraic laws that have been implemented as lemmas in Isabelle allows increased potential for verified transformation (improving on the unverified transformations done by modern compilers) and simplification of the features provided by Isabelle/UTP and USIMPL; in fact, many of the laws are themselves based on the laws presented by Hoare [48], for which Isabelle/UTP provides a basic set already, but that set of laws is far from comprehensive. Some examples of the additional algebraic laws we have implemented for USIMPL are shown in listing 3.2; the full set that has been developed so far can be found in appendix A.1, and of course we plan on publishing a more comprehensive set at a later date.

3.3 Scoping

We initially planned on using Simpl’s block notation to implement local variable scoping and procedure calls, but we found that Isabelle/UTP offers framing and antiframing mechanisms built on lenses that appear more elegant than the methodology used for blocks. Much like separation logic [86], framing provides a way of restricting the state that a program fragment accesses; similar concepts of framing have appeared in the works of Leino [60] and Kassios [52]. In fact, the concept of framing goes back to initial developments in artificial intelligence and the frame problem [67].

Unfortunately, we were not able to determine a proper set of Hoare rules for framing by the time of writing of this thesis, in part due to the way lenses are formulated; this currently
3.3. Scoping

lemma skip_r_alpha_eq: \(\langle \mathcal{I} = (\Sigma' =_{\mathcal{U}} \Sigma) \rangle \)
 by rel_auto

lemma skip_r_refine_orig: \(\langle p \Rightarrow p \rangle \subseteq \mathcal{I} \rangle \)
 by pred_blast

lemma skip_r_eq[simp]: \([\mathcal{I}]_e (a, b) \iff a = b \)
 by rel_auto

lemma assign_test[symbolic_exec]:
 assumes \(\langle \text{mwb_lens} \ x \rangle \)
 shows \(\langle (x := \langle u \rangle ;; x := \langle v \rangle) = (x := \langle v \rangle) \rangle \)
 using asms
 by (simp add: assigns_comp subst_upd_comp subst_lit usubst_upd_idem)

lemma assign_r_comp[symbolic_exec]: \(\langle (x := u ;; P) = P[\langle u \rangle/\langle x \rangle] \rangle \)
 by (simp add: assigns_r_comp usubst)

lemma assign_twice[symbolic_exec]:
 assumes \(\langle \text{mwb_lens} \ x \rangle \) and \(\langle x \not\in f \rangle \)
 shows \(\langle (x := e ;; x := f) = (x := f) \rangle \)
 using asms
 by (simp add: assigns_comp usubst)

lemma assign_commute:
 assumes \(\langle x \not\in y \rangle \langle x \not\in f \rangle \langle y \not\in e \rangle \)
 shows \(\langle (x := e ;; y := f) = (y := f ;; x := e) \rangle \)
 using asms
 by (rel_auto, simp_all add: lens_indep_comm)

lemma cond_ueq_distr[urel_cond]:
 \(\langle ((P =_{\mathcal{U}} Q) \triangleleft b \triangleright (R =_{\mathcal{U}} S)) = ((P \triangleleft b \triangleright R) =_{\mathcal{U}} (Q \triangleleft b \triangleright S)) \rangle \)
 by rel_auto

lemma cond_conj_distr[urel_cond]: \(\langle ((P \land Q) \triangleleft b \triangleright (P \land S)) = (P \land (Q \triangleleft b \triangleright S)) \rangle \)
 by rel_auto

lemma cond_disj_distr [urel_cond]: \(\langle ((P \lor Q) \triangleleft b \triangleright (P \lor S)) = (P \lor (Q \triangleleft b \triangleright S)) \rangle \)
 by rel_auto

lemma comp_cond_left_distr: \(\langle ((P \triangleleft b \triangleright_{\mathcal{R}} Q) ;; R) = ((P ;; R) \triangleleft b \triangleright_{\mathcal{R}} (Q ;; R)) \rangle \)
 by rel_auto

Listing 3.2: A Sampling of Algebraic Laws
restricts the usability of USIMPL, which is unfortunate due to the ease of the scoping as shown in fig. 3.1 (this example uses the variables introduced in listing 3.1; the assignment to \(r \) functions like the usage of \(c \) mentioned in the description of Simpl’s blocks as \(r \) can be calculated before the procedure call and \(a \) is some expression that could be as simple as a lens get or something more complicated).

3.4 Strongest postcondition (SP) VCG

WP reasoning, mentioned in section 2.1.2, is also known as *backward* reasoning due to the direction of proving; by contrast, SP reasoning is known as *forward* reasoning. WP reasoning is more common, possibly due to the previously-mentioned influence of Dijkstra, but both methodologies are perfectly valid as explained by Gordon and Collavizza [41]. For our purposes, SP reasoning turned out to be easier to automate and easier to handle when encountering situations where the automated reasoning was not enough, and thus that is what we have gone with for our VCG. As we have proof of the connections between Hoare logic and SP reasoning, mentioned in listing 2.6 and shown in more detail in appendix A.3, we have a strong argument for the correctness of the VCs generated by our VCG (that is, it generates the strongest possible postconditions based on the supplied precondition(s)). Those VCs are generated by the Hoare rules presented below.

3.4.1 Forward Hoare Rules

Already mentioned in listing 2.6 and further detailed in appendix A.2, we work with a definition of Hoare logic wherein the program is a refinement of the statement of the precondition implying the postcondition. This works for partial correctness, but proper total correctness requires an additional statement of program termination/maintaining of healthiness conditions.

The Hoare rules used for an SP VCG differ slightly from those for backward reasoning due to the focus on postconditions rather than preconditions, and the placement of annotations differs as well as described in section 3.4.1. The order of premises of the following rules is, in
3.4. Strongest postcondition (SP) VCG

Fact, important, as on application of a rule, the rule’s premises become the generated subgoals that must then be proved in order for verification (and we want to approach that proving in a forward manner). The notation used here does not directly correspond to that used in the Isabelle/UTP and USIMPL source, as that notation is tweaked to avoid confusion with normal Isabelle notation; it is primarily intended to give an understanding of the basic logic without worrying about typing or Isabelle HOL-versus-Pure subtleties. Refer to appendix A.4 for the “correct” notation, which is currently just for partial correctness as total correctness had not been fully implemented and tested by the time this thesis was written.

Sequencing and Assignment

\[
\begin{align*}
\{ p \} c_1 \{ q \} & \Rightarrow \{ q \} c_2 \{ r \} & \text{Sequential Composition} \\
\{ p \} c_1 ; c_2 \{ r \} & \Rightarrow \{ p \} \varepsilon \{ p \} & \text{Skip}
\end{align*}
\]

Isabelle/UTP provides Hoare rules for assignment, but those are geared towards WP reasoning. For forward proving, rather than relying on the usual Hoare assignment rule, we must use Floyd’s rule [29] (which we have shown produces the SP for assignment as seen in listing 3.3); as is usual for Hoare-style rules and much like the usage in Isabelle/UTP, the \(e[v/x] \) notation means “substitute \(v \) for \(x \) in expression/predicate \(e \).”

\[
\begin{align*}
\{ p \} & x \leftarrow e \{ \exists v. x = e[v/x] \land p[v/x] \} & \text{Floyd Assignment}
\end{align*}
\]

While this does introduce an existential quantifier for every assignment in a program, the \{pred|rel\}_* methods provided by Isabelle/UTP do a fine job of eliminating the quantifier when discharging the verification conditions our VCG generates. Also note the requirement that the variable (lens) assigned to must be very-well-behaved; this is a consequence of the generality of lenses, which need restrictions to behave more like typical variables in an imperative language.

Control Flow

For simplicity, our imperative control flow is handled by \textbf{if} statements and \textbf{while} loops alone, though we do have support for general recursion (rules in section 3.4.1). Part of the reason, of course, is that Hoare rules for \textbf{for} loops are tricky to set up as such loops are surprisingly complicated [40].
Chapter 3. Extending Isabelle/UTP

1 \textbf{lemma} sp_assigns_r [sp]:
2 \langle vwb_lens x \Rightarrow (p \ sp \ x \ := \ e) \Rightarrow (\exists v \cdot p[<v>/x] \land &x =_{u} e[<v>/x]) \rangle
3 \textbf{apply} rel_simp
4 \textbf{apply} transfer
5 \textbf{apply} auto
6 \textbf{apply} (\texttt{rule_tac} x = <\texttt{get} x y> \texttt{ in exI})
7 \textbf{apply} simp
8 \textbf{apply} (metis vwb_lens.put_eq)
9 \textbf{done}

Listing 3.3: Floyd is strongest postcondition

The different levels of abstraction in Isabelle/UTP and USIMPL use subtly different notations for conditionals; for this descriptive context, I chose a notation that is reasonable and consistent with the other imperative control-flow statement we use.

\[
\begin{align*}
\{b \land p\}c_{1}\{q\} & \quad \{-b \land p\}c_{2}\{r\} \\
\{p\} \text{if } b \text{ then } c_{1} \text{ else } c_{2} \text{ fi}\{q \lor r\} & \quad \text{Conditional}
\end{align*}
\]

USIMPL currently requires usage of an invariant-annotated while loop, but it would be equally feasible to introduce the invariants as part of the VCG. Either way, we still must use explicit invariants as there does not currently seem to be a highly generic framework for invariant inference.

\[
\begin{align*}
p \rightarrow i & \quad \{i \land b\}c\{q\} \quad q \rightarrow i \\
\{p\} \text{while } b \text{ invr } i \text{ do } c \text{ od}\{-b \land i\} & \quad \text{While with Invariant}
\end{align*}
\]

Recursion

As mentioned in section 2.3, recursion in UTP is based off of the least- and greatest-fixed-point operators, respectively representing total and partial correctness. However, as mentioned in the chapter introduction, our current recursion setup is only for partial correctness as our initial total correctness paradigm proved inconsistent. This means USIMPL in its current state can only be used to prove properties of programs that terminate, which is certainly a flaw but not a terrible one.

\[
\forall c. \{P\}c\{Q\} \rightarrow \{P\}F\ c\{Q\} \quad \text{Recursion}
\]

The following rule was used in our (unfinished) recursion testing:
3.4. Strongest postcondition (SP) VCG

\[
\begin{align*}
P' \rightarrow P & \quad \forall c. \{P\}c\{Q\} \rightarrow \{P\}F\{Q\} \\
\{P'\}\nu' \rightarrow PF\{Q\} & \text{ Annotated Recursion}
\end{align*}
\]

where \(\nu'\) is just a wrapper for \(\nu\) that discards \(P\).

We also have a rule regarding refinement of recursion:

\[
\begin{align*}
(C \rightarrow S) \sqsubseteq F (C \rightarrow S) \\
(C \rightarrow S) \sqsubseteq \nu F
\end{align*}
\]

\(\nu\) Refinement

Assumptions and Assertions

These annotations, predicates on state marked with \(\top\) for assumptions and \(\bot\) for assertions (this notation coming from UTP), are necessary for a full-featured VCG. For our tool, we insert them into the (converted) code directly (as opposed to introducing them during VCG application). Unlike in backward proving, assertions are not required before any non-initial control-flow statements. Instead, they may be required after conditionals and the like. To avoid having to do SML-level pattern-matching in the VCG itself in order to apply the necessary rules for assertions, we placed the pattern-matching into Hoare rules that perform the necessary matching.

\[
\begin{align*}
\{p\}q\top \rightarrow \{p \land q\} & \text{ Assumption} \\
\{p\}q\bot \rightarrow \{p \land q\} & \text{ Assertion}
\end{align*}
\]

\[
\begin{align*}
\{b \land p\}c_1\{q\} & \quad \{\neg b \land p\}c_2\{s\} \quad q \rightarrow A \quad s \rightarrow A \quad \{A\}c_3\{A'\} \\
\{p\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ fi; } A\bot; c_3\{A'\} & \text{ Cond with Assert}
\end{align*}
\]

\[
\begin{align*}
\{b \land p\}c_1\{q\} & \quad \{\neg b \land p\}c_2\{s\} \quad q \rightarrow A \quad s \rightarrow A \\
\{p\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \text{ fi; } A\bot\{A\} & \text{ Final Cond with Assert}
\end{align*}
\]

This methodology is somewhat different from other systems wherein the annotations are a necessary element of the syntax, such as in the Isabelle implementation of the Owicki-Gries method or our while loop formulation. Strictly speaking, that methodology forces users to provide the necessary annotations when porting the code to be verified, but our VCG setup, discussed in section 3.4.2, is such that the VCG will stop at any point where it cannot discharge any more VCs and our ultimate plan is for the code to be automatically transpiled from its original language with a verified source-to-source compiler, in which case users may not have the right invariants initially if they are working with legacy code.
Chapter 3. Extending Isabelle/UTP

Others

These rules allow greater flexibility in rule application, and the rule of postcondition weakening in particular is a requirement to start our VCG.

\[
\begin{align*}
\frac{p \rightarrow p'}{\{p\} c \{q\}} \quad & \text{Precondition Strengthening} \\
\frac{\{p\} c \{q'\} \quad q' \rightarrow q}{\{p\} c \{q\}} \quad & \text{Postcondition Weakening} \\
\frac{p \rightarrow p'}{\{p\} c \{q'\} \quad q' \rightarrow q} \quad & \text{Consequence} \\
\frac{\{p\} c \{r\} \quad \{p\} c \{s\}}{\{p\} c \{r \land s\}} \quad & \text{Specification conjunction}
\end{align*}
\]

3.4.2 Simp Rules

Currently, the USIMPL VCG is structured as shown in listing 3.4; separate methods are used for modularity and ease of experimentation, as well as a clearer picture of how the VCG is composed. Note the usage of \texttt{drule}; some of the generated VCs require destruction rules rather than introduction rules. That aside, the general methodology is shown in algorithm 3.1. When, in the process of a proof, the VCG fails to discharge all VCs, You can examine the goal state at the point of failure and determine what must be proved manually for the VCG to continue. This proof can be done separately and added to either \texttt{vcg_simps} or \texttt{vcg_dests}, depending on what type of rule it is, at which point the VCG should be able to discharge the subgoal it previously failed on and continue to the next goal. If the pre- and postconditions are modular enough, this allows development of libraries of potentially-reusable proof goal lemmas, which may be used to lessen proof development for future work.
3.4. Strongest postcondition (SP) VCG

1. method exp_vcg_pre = (simp only: seqr_assoc[symmetric]), rule hoare_post_weak
2. method solve_dests = safe?; simp?; drule vcg_dests; assumption?; (simp add: vcg_simps)?
3. method solve_vcg = assumption|pred_simp?, (simp add: vcg_simps)?;(solve_dests; fail)?
4. method vcg_hoare_rule = rule hoare_rules_extra|rule hoare_rules
5. method exp_vcg_step = vcg_hoare_rule|solve_vcg; fail
6. method exp_vcg = exp_vcg_pre, exp_vcg_step+

Listing 3.4: VCG Methods

Algorithm 3.1 VCG
1: procedure VCG
2: Reorder sequencing if necessary. \(\triangleright\) Isabelle/UTP's is geared towards WP
3: Weaken the postcondition.
4: while goals remain do
5: Apply a Hoare rule.
6: If Hoare rule application fails, try discharging the current goal by assumption
 application or via Isabelle/UTP simp (to drop to HOL) followed by application of existing
 VC lemmas.
7: end while
8: end procedure
Chapter 4

Case Studies

As algorithms with real-world applications that are not overly-complicated to reason about yet still have significant depth in their usage of iteration and/or recursion, sorting algorithms function as high-perfect introductory case studies for formal verification. For these reasons, I selected two sorting algorithms to test the USIMPL VCG on: one more simple (insertion sort) and one more complex (quicksort). However, USIMPL does not currently have a complete heap model, so types that would be arrays in languages like C are instead handled as Isabelle/HOL lists. This does mean that we have some additional guarantees C programmers do not (we can determine the length of a list directly and use other library functions such as \texttt{take}, \texttt{drop}, and \texttt{set}), but may introduce complexity in developing the proof framework due to adding additional abstraction that would require proving equivalence between the list and array representations.

You may also notice that, unlike much of the notation used in chapters 2 and 3, the notation in the listings in this chapter directly matches that actually used by Isabelle/UTP and USIMPL; that is due to this this chapter covering practical usage of the notation rather than giving a general insight into its meaning. Additionally, many, but not all, of the proofs shown in this chapter rely on the additional theories described in appendix B.3 due to the usage of custom definitions such as \texttt{swap}, \texttt{swap_at}, and \texttt{slice}. This is a typical methodology when using definitions in Isabelle, as the alternative is to unfold all such definitions and prove the necessary concepts inline, which can make for messy proofs as illustrated in listing 4.9.

4.1 Insertion Sort

An algorithm that provides a nice balance of simplicity and efficiency, insertion sort \cite{insertion_sort} is commonly taught in many introductory algorithms courses. Though not scalable to large collections of data, insertion sort is widely used for smaller data sets and as a component in more complex sorting algorithms that divide large lists into small fragments; thus, it served
4.1. Insertion Sort

as a nice starting point for testing USIMPL on more complex algorithms.

As shown in algorithm 4.2, which sorts a list in place in ascending order, this sort is typically implemented using a pair of loops, one nested in the other. The outer loop is used to keep track of all the elements in the list that are known to be sorted before execution of the inner loop, (that is, everything below \(i \) is sorted with respect to that sublist), while the inner loop then moves the next element down through the list until it is in a sorted position. Once complete, all elements in the list are sorted.

Algorithm 4.2 Insertion Sort

1: function INSERTIONSORT(A)
2: \(i \leftarrow 1 \)
3: while \(i < \text{LENGTH}(A) \) do
4: \(j \leftarrow i \)
5: while \(j > 0 \land A[j - 1] > A[j] \) do
6: \(\text{SWAP}(A[j], A[j - 1]) \)
7: \(j \leftarrow j - 1 \)
8: end while
9: \(i \leftarrow i + 1 \)
10: end while
11: end function

Using Isabelle/UTP notation (described in section 2.4.2) and USIMPL notation for loops, the code looks like listing 4.1; due to type inference, no variables needed explicit types. Also note the \(_u\) appended to swap_at on line 5; for our purposes, this indicates an HOL function that has been lifted to UTP and is thus usable with Isabelle/UTP expressions.
4.1.1 Proof Setup

In general, the insertion sort algorithm does not require any particular preconditions other than some basic lens laws (refer back to section 2.4.1) and type constraints (which in our case are satisfied by type restrictions of the syntax); however, the postcondition complicates things a bit. There are two main properties that must be proved about an insertion sort algorithm\(^1\):

1. The list is sorted afterwards.
2. The contents of the list remain the same.

By typical UTP logic, we could compare the input and output variables for the algorithm to check the second property; unfortunately, Isabelle/UTP does not allow such usage easily in proofs due to typing issues with its expressions. Thus, the easiest method was to establish an auxiliary logical variable that represents the list to be sorted in the precondition and then use that in the postcondition; this is also useful for composition of proofs later on as, when used in context, the denotational semantics of UTP do not allow reasoning about intermediate state. The full lemma used to prove the correctness of insertion sort is shown in listing 4.2; further explanation follows.

4.1.2 Invariants

Because the insertion sort algorithm has loops, it must also have invariants (section 2.3), as you can see from lines 10 and 13. For modularity and ease of proving, the invariants were extracted and represented as Isabelle/HOL definitions that were lifted to Isabelle/UTP expressions (shown in listings 4.3 and 4.4). This allowed us to formulate lemmas about the invariant interactions strictly on the HOL level, which is quite nice as it makes reasoning easier for those used to Isabelle/HOL syntax and allows usage of more Isabelle/HOL constructs such as \texttt{let...in...} for locally binding variables.

For insertion sort in particular, the outer invariant was relatively simple; it essentially establishes the statement from before, that the outer loop keeps track of what is currently sorted (as well as that the outer loop maintains the contents of the list). This information must be carried through in order to discharge the algorithm’s postcondition (which in fact becomes trivial, as when the algorithm finishes you have \(i = \text{length array}\) and thus obtain \(\text{sorted (take (length xs) xs)} = \text{sorted xs}\)). The trouble comes when the inner invariant is involved, as that requires a bit more proving (though not as much as other proofs for the

\[^1\]Strictly speaking, as insertion sort is \textit{stable}, there is a third property: that equal elements in the list maintain the same relative order in the final list. That is mainly useful for types that can be sorted in different ways (e.g., records that can be sorted using individual fields as keys, such as sorting first by family name and then by given name) and not so much for simple one-key sorting so was not considered for this example.
4.1. Insertion Sort

```
lemma insertion_sort:
  assumes \langle \text{lens\_indep\_all [i, j]} \rangle
    and \langle \text{\text{vwb\_lens array}} \rangle
    and \langle \text{\text{array \# old\_array}} \rangle
    and \langle \text{i \ll array} \rangle
    and \langle \text{i \not\in old\_array} \rangle
    and \langle \text{j \gg array} \rangle
    and \langle \text{j \not\in old\_array} \rangle
  shows
  \langle \{ \text{\text{array = old\_array}} \} \rangle
  i := 1;;
  while \&i < \text{\#(array)}
  invr outer_invr \langle \&i \rangle \langle \&array \rangle old\_array do
    j := \&i;;
    (while \&j > 0 \& \&array(\&j - 1)_u > \&array(\&j)_u
    invr inner_invr \langle \&i \rangle \langle \&j \rangle \langle \&array \rangle old\_array do
      array := swap_at \langle \&j \rangle \langle \&array \rangle;;
      j := (\&j - 1)
    od);
  i := (\&i + 1)
  od
\langle \{ \text{mset}_u(\langle \&array \rangle) = \text{mset}_u(old\_array) \& \text{sorted}_u(\langle \&array \rangle) \} \rangle
by (insert assms) exp_vcg
```

Listing 4.2: Proof of Insertion Sort Correctness

```
definition \text{outer\_invr} i array old\_array \equiv
  mset array = mset old\_array
  \& \text{sorted (take i array)} (* everything up to i-1 is sorted *)
\>
definition \text{inner\_invr} i j array old\_array \equiv
  i < \text{length array}
  \& i \geq j
  \& mset array = mset old\_array
  \& (let \text{xs}_1 = \text{take j array}; x = \text{array!j}; \text{xs}_2 = \text{drop (Suc j) (take (Suc i) array)}
  \text{in \text{sorted (xs}_1 @ xs}_2 \& (\forall y \in \text{set xs}_2. x < y))
\>
definition \text{outer\_invr}_u \equiv \text{trop outer\_invr}>
definition \text{inner\_invr}_u \equiv \text{qtop inner\_invr}
```

Listing 4.3: Insertion Sort Outer Invariant

Listing 4.4: Insertion Sort Inner Invariant
inner invariant). The lemmas required to satisfy the verification conditions generated for the outer loop are shown in listings 4.5 to 4.7.

As noted already, proofs for the inner invariant are more complicated due to the increased complexity of the inner invariant and the nature of the inner loop code. As the inner loop essentially moves an element down through the sorted portion until the element is in its sorted position, the invariant had to be formulated to describe that formally. This invariant essentially ensures that, for each iteration of the inner loop, the previously-sorted portion remains sorted except for the element being moved down and that element is less than everything above it in the sorted section. The lemmas needed for the verification conditions generated for the inner loop are shown in listings 4.8 and 4.9; there is no lemma for the final state of the inner loop as that is already handled by listing 4.6. You may observe that the proof for the inner invariant step lemma has a lot more body to it than the other lemmas shown here; this is in large part because I did not develop a useful library of simplification lemmas and properties for expressions involving swap_at.

Listing 4.9: Insertion Sort Inner Invariant Step Condition
4.1. Insertion Sort

Lemma 4.7: Insertion Sort Outer Invariant Final Condition

```plaintext
lemma outer_invr_final[vcg_dests]:
  assumes <outer_invr i array old_array>
  and ¬ i < length array
  shows <mset array = mset old_array>
  and <sorted array>
  using assms unfolding outer_invr_def
  by auto
```

Listing 4.7: Insertion Sort Outer Invariant Final Condition

Lemma 4.8: Insertion Sort Inner Invariant Initial Condition

```plaintext
lemma inner_invr_init[vcg_simps]:
  assumes <outer_invr i array old_array>
  and j = i
  and i < length array
  shows <inner_invr i j array old_array>
  using assms unfolding outer_invr_def inner_invr_def
  by auto
```

Listing 4.8: Insertion Sort Inner Invariant Initial Condition

Lemma 4.9: Insertion Sort Inner Invariant Step Condition

```plaintext
lemma inner_invr_step[vcg_simps]:
  assumes <inner_invr i j array old_array>
  and j > 0
  and array!(j - Suc 0) > array!j
  shows <inner_invr i (j - Suc 0) (swap_at j array) old_array>
  using assms unfolding inner_invr_def Let_def
  apply clarsimp
  apply (safe; (simp add: swap_at_def; fail)?)
  proof goal_cases
  case 1
  then show ?case by (simp add: swap_at_def Multiset.mset_swap)
  next
  assume 2: ¬ j < Suc 0
  ⟨array!j < array!(j - Suc 0)⟩
  ⟨i < length array⟩
  ⟨j ≤ i⟩
  ⟨mset array = mset old_array⟩
  ⟨sorted (take j array @ drop (Suc j) (take (Suc i) array))⟩
  ⟨∀x ∈ set (drop (Suc j) (take (Suc i) array)). array!j < x⟩
  define xs1 where ⟨xs1 = take j array⟩
  define xs2 where ⟨xs2 = drop (Suc j) (take (Suc i) array)⟩
  define x where ⟨x = array ! j⟩
  obtain xs1’ y where xs_last: ⟨xs1 = xs1’ @ [y]⟩
  unfolding xs1_def using 2
```

Listing 4.9: Insertion Sort Inner Invariant Step Condition
Chapter 4. Case Studies

4.2 Quicksort

Developed by none other than Tony Hoare in the early 1960s [45], quicksort has become an ubiquitous sorting algorithm implemented in many forms and present in the standard libraries of languages such as C, C++, and Java. Algorithm 4.3 is based on the Lomuto partitioning scheme [7, 18], which is less efficient than Hoare’s original method and modern improvements but is probably the easiest to reason about. It is not exactly the same as Lomuto’s because some initial values were adjusted due to Isabelle/HOL typing constraints, as well as removal of a minor optimization that is not strictly required to reduce the amount of proving needed.

\[\text{Chapter 4. Case Studies}\]

\[\text{4.2 Quicksort}\]

Developed by none other than Tony Hoare in the early 1960s [45], quicksort has become an ubiquitous sorting algorithm implemented in many forms and present in the standard libraries of languages such as C, C++, and Java. Algorithm 4.3 is based on the Lomuto partitioning scheme [7, 18], which is less efficient than Hoare’s original method and modern improvements but is probably the easiest to reason about. It is not exactly the same as Lomuto’s because some initial values were adjusted due to Isabelle/HOL typing constraints, as well as removal of a minor optimization that is not strictly required to reduce the amount of proving needed.

\[\text{Another usage of SMT}\]
Algorithm 4.3 Lomuto-style Quicksort

1: function Quicksort(A, lo, hi)
2: if lo < hi then
3: p ← Partition(A, lo, hi)
4: Quicksort(A, lo, p − 1)
5: Quicksort(A, p + 1, hi)
6: end if
7: end function

8: function Partition(A, lo, hi)
9: pivot ← A[hi]
10: i ← lo
11: j ← lo
12: for j ← lo, hi − 1 do
13: if A[j] < pivot then
14: Swap(i, j, A)
15: i ← i + 1
16: end if
17: end for
18: Swap(i, hi, A) ▷ pivot is always less than or equal to A[i]
19: return i
20: end function
Unfortunately, the quicksort proof in this thesis is restricted to a proof of the body of the partition function due to time constraints; the (anti)framing reasoning already existing in Isabelle/UTP was not enough and we did not develop good reasoning, nor further reasoning about lenses with framing, by the time of writing of this thesis. We also did not get far in handling recursion and the necessary invariants. Even so, the partitioning algorithm in its own right has a good amount of algorithmic complexity and the proof is thus detailed below.

4.2.1 Proof Setup

As with insertion sort, the quicksort partition requires usage of an auxiliary variable to represent the list before algorithm execution. On top of that, there are some additional expressions to work with: lo and hi. As these are never assigned to, they do not need to be lenses and can simply be UTP expressions, but they still need some simple preconditions to ensure correctness (lo is less than hi and hi is less than the length of the list to sort, plus the various assumptions for lenses). For the postconditions, the proof must show that, after partitioning:

- Everything below the pivot in the slice of the list operated on is less than or equal to the pivot.
- Everything above it in the slice of the list operated on is greater than or equal to the pivot.
- The contents of the slice are the same.
- The rest of the list is not modified by the partitioning.
lemma quicksort_partition:
 fixes pivot :: ‹_::linorder ⇒ _›
 assumes ‹lens_indep_all [i, j]›
 and ‹vwb_lens pivot›
 and ‹vwb_lens A›
 and ‹pivot ./ i›
 and ‹pivot ./ j›
 and ‹A ♯ oldA›
 and ‹A ♯ lo›
 and ‹A ♯ hi›
 and ‹i ./ A›
 and ‹i ♯ oldA›
 and ‹i ♯ lo›
 and ‹i ♯ hi›
 and ‹j ./ A›
 and ‹j ♯ oldA›
 and ‹j ♯ lo›
 and ‹j ♯ hi›
 and ‹pivot ./ A›
 and ‹pivot ♯ oldA›
 and ‹pivot ♯ lo›
 and ‹pivot ♯ hi›
 shows
 ‹{\{&A = u oldA ∧ lo < u hi ∧ hi < u (&A)}\}
 pivot := &A(hi);;
 i := lo;;
 j := lo;;
 (while &j < u hi invr qs_partition_invr u (&A) oldA lo hi (&i) (&j) (&pivot) do
 (if u &A(&j) a < u &pivot then
 A := swap u (&i) (&j) (&A);;
 i := (&i + 1)
 else II);;
 (qs_partition_invr u (&A) oldA lo hi (&i) (&j + 1) (&pivot))⊥;;
 j := (&j + 1)
 od);;
 A := swap u (&i) hi (&A)
 {mset u(slice u lo (hi + 1) (&A))} = u mset u(slice u lo (hi + 1) oldA)
 ∧ take u(lo, &A) = u take u(lo, oldA)
 ∧ drop u(hi + 1, &A) = u drop u(hi + 1, oldA)
 ∧ pivot_invr u (&i - lo) (slice u lo (hi + 1) (&A))\} u>
 by (insert assms) exp_vcg

Listing 4.11: Proof of Quicksort Partition Correctness
Chapter 4. Case Studies

4.2.2 Invariant

While the partition invariant in listing 4.12 is longer than either of the insertion sort invariants, most of the reasoning is either easy to intuit (maintaining orders between variables) or is just a repeat of postcondition requirements. The important bits in terms of the loop behavior are lines 9 and 10; with these lines, the invariant establishes that, during each iteration, everything less than \(i \) in the list slice is less than or equal to the pivot and everything from \(i \) to \(j-1 \) (the upper value of slice is exclusive) is greater than or equal to the pivot. The simplification lemmas in listings 4.13, 4.14, 4.16, and 4.18 were what was developed to resolve the generated verification conditions for the quicksort partition loop. Note in particular listings 4.14 and 4.16; two separate step lemmas were necessary for the two branches of the conditional (one when the next element is found to be less than the pivot, the other when it is not), and in fact the if-statement annotation mentioned in section 3.4.1 can be seen on line 22, explicitly stating that both branches must preserve the invariant.

Unlike for insertion sort, a set of helper lemmas were developed for the simplification of expressions involving \texttt{swap} and \texttt{slice}, which resulted in cleaner proofs for the invariant-related lemmas and can be found in appendix B; other subproofs were also extracted and proved separately (listings 4.15 and 4.17).
4.2. Quicksort

lemma qs_partition_invr_init[vcg_simps]:
 assumes ⟨A = oldA⟩
 and ⟨lo < hi⟩
 and ⟨hi < length A⟩
 shows ⟨qs_partition_invr A oldA lo hi lo lo (A!hi)⟩
 using assms unfolding qs_partition_invr_def pivot_invr_def slice_def
 by (smt drop_all empty_iff length_take less_imp_le less_trans list.set(1) min. absorb2 order_refl)

Listing 4.13: Quicksort Partition Invariant Initial Condition

lemma qs_partition_invr_step1[vcg_simps]:
 fixes A :: ‹_::order list›
 assumes ⟨qs_partition_invr A oldA lo hi i j pivot⟩
 and ⟨j < hi⟩
 and ⟨A!j < pivot⟩ -- ⟨version requiring swap and i increment⟩
 shows ⟨qs_partition_invr (swap i j A) oldA lo hi (Suc i) (Suc j) pivot⟩
 using assms unfolding qs_partition_invr_def swap_def
 apply auto
 subgoal
 using Multiset.mset_swap[of ⟨j - lo⟩ ‹slice lo (Suc hi) A› ⟨i - lo⟩]
 by (simp add: slice_update_extract)
 subgoal for x
 by (cases ‹i = j›) (auto simp: slice_suc2_eq)
 subgoal for x
 apply (cases ‹i = j›)
 apply (auto simp: slice_set_conv_nth nth_list_update)
 apply fastforce
 by (metis Suc_leD less_antisym less_trans)
 done

Listing 4.14: Quicksort Partition Invariant First Step Condition

lemma qs_partition_invr_step2_helper:
 fixes A :: ‹_::order list›
 assumes ⟨∀x ∈ set (slice i j A). p ≤ x⟩
 and ⟨p ≤ A!j⟩
 and ⟨j < length A⟩
 shows ⟨∀x ∈ set (slice i (Suc j) A). p ≤ x⟩
 using assms
 by (cases ‹i ≤ j›) (auto simp: slice_suc2_eq)

Listing 4.15: Quicksort Partition Invariant Step 2 Helper
48

Chapter 4. Case Studies

1 lemma qs_partition_invr_step2[vcg_simps]:
2 fixes A :: ‹_::linorder list› -- <Can't do everything with partial ordering.>
3 assumes ‹qs_partition_invr A oldA lo hi i j pivot›
4 and ‹j < hi›
5 and ‹¬ A!j < pivot› -- <so array doesn't change this step>
6 shows ‹qs_partition_invr A oldA lo hi i (Suc j) pivot›
7 using assms unfolding qs_partition_invr_def pivot_invr_def
8 using qs_partition_invr_step2_helper
9 by (auto simp: slice_suc2_eq)

Listing 4.16: Quicksort Partition Invariant Second Step Condition

1 lemma pivot_slice_swap:
2 fixes xs :: ‹_::order list›
3 assumes ‹lo ≤ i›
4 and ‹i ≤ hi›
5 and ‹hi < length xs›
6 and (\forall x \in \text{set (slice lo i xs)}. x ≤ xs!hi)
7 and (\forall x \in \text{set (slice i hi xs)}. xs!hi ≤ x)
8 shows ‹pivot_invr (i - lo) (slice lo (Suc hi) (swap i hi xs))›
9 using assms unfolding pivot_invr_def
10 by (auto simp: min.absorb1) (meson assms(4) order_trans
11 qs_partition_invr_step2_helper)

Listing 4.17: Pivot-Slice-Swap Helper

1 lemma qs_partition_invr_final[vcg_simps]:
2 fixes A :: ‹_::order list›
3 assumes ‹qs_partition_invr A oldA lo hi i j pivot›
4 and ‹¬ j < hi›
5 shows ‹mset (slice lo (Suc hi) (swap i hi A)) = mset (slice lo (Suc hi) oldA)›
6 and ‹pivot_invr (i - lo) (slice lo (Suc hi) (swap i hi A))›
7 and ‹drop (Suc hi) (swap i hi A) = drop (Suc hi) oldA›
8 and ‹take lo (swap i hi A) = take lo oldA›
9 using assms unfolding qs_partition_invr_def
10 by (auto simp: pivot_slice_swap)

Listing 4.18: Quicksort Partition Invariant Final Condition
Chapter 5

Conclusions

Despite USIMPL’s incomplete state, the case studies in chapter 4 show that it can already be used for verification of algorithms that do not include procedure calls or scoping and that the goal of developing a modular library of reusable VC proofs does appear to be achievable. Thus, the contributions described in this thesis serve as a worthwhile foundation for the theorem-based proving component of the Orca project. To reiterate, those contributions include extensions to the Isabelle/UTP implementation of Hoare and He’s UTP in the proof assistant Isabelle with features of the Simpl language presented by Schirmer as well as development of additional algebraic laws for Isabelle/UTP language constructs. It would also be inappropriate to leave out a mention of my main contribution to the development of USIMPL, the SP VCG.

5.1 Lessons Learned

There are a few things that can be observed from the work that was done from this thesis that can be used to direct future progress. For example, due to Isabelle’s reliance on strictly conservative proofs and a lack of methodology for easily generating helper simplification lemmas based on combinations of definitions, libraries for helper lemmas beyond the auxiliary lemmas needed to prove VCs ended up being a more significant component than expected when developing the case studies. This is most obvious when viewing some of the insertion sort auxiliary lemmas, which were developed without the intent of other helpers; once a helper-library approach was adopted for quicksort proving, the auxiliary lemmas became cleaner and easier to prove. Such an approach does require thinking about the proofs in terms of transformations between equivalent representations, which can be a pain, but that is an unavoidable aspect of using a simplification-based term-rewriting tool like Isabelle.

A less obvious but still important aspect is that, for loops and other control flow structures with complex behavior, development of invariants and assertions to continue the flow of
proving can be difficult and tedious. This is most obviously shown by the need to carry through trivial information about index variables and how their values relate to each other, but also by the requirement for carry-through of basic conditions such as sorting operations maintaining the contents of their list. Development of formalized pre- and postconditions can also be tricky, and the specific level of detail required depending on how users want to use the algorithms in relation to others can be hard to determine. This can be observed with insertion sort as well; as mentioned in section 4.1.1, insertion sort is stable, and so one could formalize that in an additional component of the postcondition if desired (which could be a complicated procedure). Unfortunately, doing so would increase the complexity of the proof beyond just the specification, as the intermediate components of the proof would then have to show that stability is maintained during the inner and outer loops. One possible methodology for that would be to extract the stability statement as a predicate and then build up another set of helper/auxiliary lemmas that show how stability is maintained given various list operations; as with the auxiliary lemmas for VCs, such an approach is quite open-ended and auxiliary development would be continuous as more algorithms that utilize reasoning about stable sorting are verified.

Now that some of the issues with our approach have been covered, the following sections go into a bit more detail on where to go with the knowledge gained from development of USIMPL and what may eventually be doable with it.

5.2 Connections to the Wider World

In all, USIMPL seems like a viable tool for software verification; with the development of more automated methods (further discussed in section 5.3), it would be a useful component for application to systems that require a high degree of reliability, ideally usable even by those without much experience in formal methods. The requirement for development of additional lemmas to discharge generated VCs, as well as the requirement for development of invariants for loops/recursion and the need to formalize preconditions and postconditions, does pose a significant problem for this, particularly due to some of the issues brought up in section 5.1, as many conventional programmers these days do not have experience writing functional code or formulating their algorithms in an explicitly mathematical representation; however, building libraries of common conditions for algorithms used in the wild (discussed previously) may help alleviate such issues to a degree, and future invariant work is again detailed in section 5.3.

As previously discussed in section 2.6.2, Dafny provides another method of doing this by directly integrating pre-/postconditions and invariants into the language with which programs are written; however, Dafny presents a higher-level language and as such lower-level elements of C (such as byte-level memory accesses and the like) would have to be modeled anyway. That fact, combined with the fact that Dafny is not itself verified, makes Dafny not as suitable for the kind of work we are trying to accomplish with USIMPL and ultimately Orca as, while
5.3. Future Work

As mentioned in sections 1.2, 3.3, and 4.2 and above, scoping support, recursive function calls, and a heap-style memory model all remain to be properly implemented in USIMPL. We also plan on proceeding with testing and, if necessary, improving handling of total correctness, abrupt termination, and side-affecting expressions (previously mentioned in chapter 3). The scoping support may be handled either by development of proper Hoare rules for framing or perhaps by implementation of separation logic (last mentioned in section 3.3). We also plan on fleshing out the SP proofs we currently have to further match the lemmas existing in Isabelle/UTP for WP reasoning and, when better-refined, to convert the current Eisbach VCG methods into SML code to improve performance. Additional algebraic laws are also in development, as mentioned in the corresponding extension section.

Sections 4.1.2 and 4.2.2 also show how important invariants are even for seemingly simple algorithms; most tools still rely on manual/user-provided invariants and annotations, so development of tools for automatic generation of invariants when possible would greatly enhance usability. A very primitive example of such behavior is how LLVM’s scalar evolution analyses can determine loop trip counts when the bounds are loop invariant [70]; more complex analysis is provided by the CoRnucopia of ABrstractions (CRAB)\(^1\) library for abstract interpretation [19, 20] of computer programs, which is used by the SeaHorn\(^2\) static analysis tool [42, 43], but even that is quite limited in its ability to generate algebraic invariants.

The ability to generate at least some invariants would also be useful when working with legacy software, especially with the development of verified source-to-source compilers (transpilers, previously mentioned in section 3.4.1) to enable automation of the initial steps of verification (i.e. getting the code in a verifiable form). The current plan is for the transpiler(s) to be integrated with USIMPL, and as such they would most likely be written in SML, with the current target language being C as that is what the Linux kernel and many other large codebases for systems software are written in (and other higher-level languages may include features that are harder to represent in USIMPL).

\(^1\)https://github.com/seahorn/crab
\(^2\)https://seahorn.github.io/
Bibliography

Appendices
Appendix A

Main Extension Proofs

This chapter contains the theory data from the Orca Isabelle/UTP extension that I used for my case studies as well as the SP proofs; a full session (including the theories from Isabelle/UTP used) can be found on Google Drive for now, with the ROOT file containing the path to the examples for the case studies as well as some other examples.

A.1 Algebraic Laws of Programming

In this section we introduce the semantic rules (algebraic laws) related to the different statements of Simpl. Our ultimate plan is to use these rules in order to optimize a given program written in our variant of Simpl before any deductive proof verification activity or formal testing.

theory Algebraic-Laws
 imports ../../Isabelle–UTP/utp/utp-urel-laws
begin

named-theorems symbolic-exec and symbolic-exec-assign-uop and symbolic-exec-assign-bop and symbolic-exec-assign-trop and symbolic-exec-assign-qtop and symbolic-exec-ex

A.1.1 SKIP Laws

In this section we introduce the algebraic laws of programming related to the SKIP statement.

lemma pre-skip-post: \(\lceil b \rceil < \land \ II) = (II \land \lceil b \rceil)\)
 by rel-auto

lemma skip-var:
 fixes x :: (bool \Longrightarrow \alpha)
 shows \(\$x \land \ II) = (II \land \$x')\)
 by rel-auto

63
lemma assign-r-alt-def [symbolic-exec]:
 fixes x :: ('a ⇒ 'a)
 shows x ::= v = II[\[v\]</$x]]
 by rel-auto

lemma skip-r-alpha-eq:
II = (Σ' =u Σ)
by rel-auto

lemma skip-r-refine-orig:
(p ⇒ p) ▹ II
by pred-blast

lemma skip-r-eq[simp]: [\[II\]] e (a, b) ←→ a = b
by rel-auto

lemma skip-refine-join:
(p ⇒ q) ▹ II ←→ '((p ⊔ II) ⇒ q)'
by pred-auto

lemma skip-refine-rel:
'((II ⇒ (p ⇒ q))' ⇒ (p ⇒ q) ▹ II
by pred-auto

lemma skip-refine-pred:
'(p ⇒ q)’ ⇒ ([p]< ⇒ [q]>) ▹ II
by rel-auto

A.1.2 Assignment Laws

In this section we introduce the algebraic laws of programming related to the assignment statement.

lemma &v[expr/v] = [v ↦_s expr] † &v ..

lemma usubst-cancel[usubst,symbolic-exec]:
 assumes 1:weak-lens v
 shows (\&v)[\[expr/v\]] = expr
 using 1
 by transfer' rel-auto

lemma usubst-cancel-r[usubst,symbolic-exec]:
 assumes 1:weak-lens v
 shows ($v)[\[expr\]</$v]] = [expr]<
 using 1
A.1. Algebraic Laws of Programming

by rel-auto

lemma assign-test[symbolic-exec]:
 assumes 1:mwb-lens x
 shows (x ::= «u»;; x ::= «v») = (x ::= «v»)
 using 1
 by (simp add: assigns-comp subst-upd-comp subst-lit usubst-upd-idem)

lemma assign-r-comp[symbolic-exec]:
 (x ::= u;; P) = P[[u]/$x]]
 by (simp add: assigns-r-comp usubst)

lemma assign-twice[symbolic-exec]:
 assumes mwb-lens x and x ♯ f
 shows (x ::= e;; x ::= f) = (x ::= f)
 using assms
 by (simp add: assigns-comp usubst)

lemma assign-commute:
 assumes x ≻ x y ♯ f y ♯ e
 shows (x ::= e;; y ::= f) = (y ::= f;; x ::= e)
 using assms
 by (rel-auto, simp-all add: lens-indep-comm)

lemma assign-cond:
 fixes x :: ('a ⇒ 'α)
 assumes out α ♯ b
 shows (x ::= e ;; (P < b ⊲ Q)) =
 (x ::= e ;; P <b[[e]/$x]> (x ::= e ;; Q))
 by rel-auto

lemma assign-rcond[symbolic-exec]:
 fixes x :: ('a ⇒ 'α)
 shows (x ::= e ;; (P < b ⊳ Q)) = ((x ::= e ;; P) < (b[e/x]) ⊳ (x ::= e ;; Q))
 by rel-auto

lemma assign-uop1[symbolic-exec-assign-uop]:
 assumes 1: mwb-lens v
 shows (v ::= e1;; v ::= (uop F (&v))) = (v ::= (uop F e1))
 using 1
 by rel-auto

lemma assign-bop1[symbolic-exec-assign-bop]:
 assumes 1: mwb-lens v and 2:v ♯ e2
 shows (v ::= e1;; v ::= (bop bp (&v) e2)) = (v ::= (bop bp e1 e2))
using 1 2
by rel-auto

lemma assign-bop2[symbolic-exec-assign-bop]:
assumes 1: mwb-lens v and 2: v ≠ e2
shows (v := e1 ;; v := (bop bp e2 (&v))) = (v := (bop bp e2 e1))
using 1 2
by rel-auto

lemma assign-trop1[symbolic-exec-assign-trop]:
assumes 1: mwb-lens v and 2: v ≠ e2 and 3: v ≠ e3
shows (v := e1 ;; v := (trop tp (&v) e2 e3)) =
 (v := (trop tp e1 e2 e3))
using 1 2 3
by rel-auto

lemma assign-trop2[symbolic-exec-assign-trop]:
assumes 1: mwb-lens v and 2: v ≠ e2 and 3: v ≠ e3
shows (v := e1 ;; v := (trop tp e2 (&v) e3 e4)) =
 (v := (trop tp e2 e1 e3 e4))
using 1 2 3
by rel-auto

lemma assign-trop3[symbolic-exec-assign-trop]:
assumes 1: mwb-lens v and 2: v ≠ e2 and 3: v ≠ e3 and 4: v ≠ e4
shows (v := e1 ;; v := (trop tp (e2 e3 e4) (&v))) =
 (v := (qtop tp e1 e2 e3 e4))
using 1 2 3 4
by rel-auto

lemma assign-qtop1[symbolic-exec-assign-qtop]:
assumes 1: mwb-lens v and 2: v ≠ e2 and 3: v ≠ e3 and 4: v ≠ e4
shows (v := e1 ;; v := (qtop tp e2 (&v) e3 e4)) =
 (v := (qtop tp e1 e2 e3 e4))
using 1 2 3 4
by rel-auto

lemma assign-qtop2[symbolic-exec-assign-qtop]:
assumes 1: mwb-lens v and 2: v ≠ e2 and 3: v ≠ e3 and 4: v ≠ e4
shows (v := e1 ;; v := (qtop tp e2 (&v) e3 e4)) =
 (v := (qtop tp e1 e2 e3 e4))
using 1 2 3 4
by rel-auto

lemma assign-qtop3[symbolic-exec-assign-qtop]:
assumes 1: mwb-lens v and 2:v ⊳ e2 and 3:v ⊳ e3 and 4:v ⊳ e4
shows (v ::= e1 ;; v ::= (qtop tp e2 e3 (&v) e4)) =
(v ::= (qtop tp e2 e3 e1 e4))
using 1 2 3 4
by rel-auto

lemma assign-qtop4[symbolic-exec-assign-qtop]:
assumes 1: mwb-lens v and 2:v ⊳ e2 and 3:v ⊳ e3 and 4:v ⊳ e4
shows (v ::= e1 ;; v ::= (qtop tp e2 e3 e4 (&v))) =
(v ::= (qtop tp e2 e3 e4 e1))
using 1 2 3 4
by rel-auto

lemma assign-cond-seqr-dist:
(v ::= e ;; (P < b ▷ Q)) = ((v ::= e ;; P) < b[⌈e⌉< ~/v] ▷ (v ::= e ;; Q))
by rel-auto

In the sequel we find assignment laws proposed by Hoare

lemma assign-vwb-skip:
assumes 1: vwb-lens v
shows (v ::= &v) = II
by (simp add: assms skip-r-def usubst-upd-var-id)

lemma assign-simultaneous:
assumes 1: vwb-lens v2
and 2: v1 ▷ v2
shows (v1,v2 ::= e, (&v2)) = (v1 ::= e)
by (simp add: 1 2 usubst-upd-comm usubst-upd-var-id)

lemma assign-seq:
assumes 1: vwb-lens var2
shows(var1 ::= expr);; (var2 ::= &var2) = (var1 ::= expr)
using 1 by rel-auto

lemma assign-cond-uop[symbolic-exec-assign-uop]:
assumes 1: weak-lens v
shows v ::= expr ;; (C1 ≺uop F (&v)▷r C2) =
(v ::= expr ;; C1) ≺uop F expr▷r (v ::= expr ;; C2)
using 1
by rel-auto

lemma assign-cond-bop1[symbolic-exec-assign-bop]:
assumes 1: weak-lens v and 2: v ⊳ exp2
shows (v ::= expr ;; (C1 ≺(bop bp (&v) exp2)▷r C2)) =
((v ::= expr ;; C1) ≺(bop bp expr exp2)▷r (v ::= expr ;; C2))
using 1 2
by rel-auto

lemma assign-cond-bop2[symbolic-exec-assign-bop]:
assumes 1: weak-lens v and 2: v ≠ exp2
shows (v := exp1 ;; (C1 ≪(bop bp exp2 (v))r, C2)) =
((v := exp1 ;; C1) ≪(bop bp exp2 exp1)r, (v := exp1 ;; C2))
using 1 2
by rel-auto

lemma assign-cond-trop1[symbolic-exec-assign-trop]:
assumes 1: weak-lens v and 2: v ≠ exp2 and 3: v ≠ exp3
shows (v := expr ;; (C1 ≪(trop tp (v) exp2 exp3)r, C2)) =
((v := exp1 ;; C1) ≪(trop tp expr exp2 exp3)r, (v := exp1 ;; C2))
using 1 2 3
by rel-auto

lemma assign-cond-trop2[symbolic-exec-assign-trop]:
assumes 1: weak-lens v and 2: v ≠ exp2 and 3: v ≠ exp3
shows (v := exp1 ;; (C1 ≪(trop bp exp2 exp3) (v) r, C2)) =
((v := exp1 ;; C1) ≪(trop bp exp2 exp3 exp1)r, (v := exp1 ;; C2))
using 1 2 3
by rel-auto

lemma assign-cond-trop3[symbolic-exec-assign-trop]:
assumes 1: weak-lens v and 2: v ≠ exp2 and 3: v ≠ exp3 and 4: v ≠ exp4
shows (v := exp1 ;; (C1 ≪(qtop tp (v) exp2 exp3 exp4) r, C2)) =
((v := exp1 ;; C1) ≪(qtop tp exp1 exp2 exp3 exp4)r, (v := exp1 ;; C2))
using 1 2 3 4
by rel-auto

lemma assign-cond-qtop1[symbolic-exec-assign-qtop]:
assumes 1: weak-lens v and 2: v ≠ exp2 and 3: v ≠ exp3 and 4: v ≠ exp4
shows (v := exp1 ;; (C1 ≪(qtop tp exp2 (v) exp3 exp4)r, C2)) =
((v := exp1 ;; C1) ≪(qtop tp exp2 exp1 exp3 exp4)r, (v := exp1 ;; C2))
using 1 2 3 4
by rel-auto

lemma assign-cond-qtop2[symbolic-exec-assign-qtop]:
assumes 1: weak-lens v and 2: v ≠ exp2 and 3: v ≠ exp3 and 4: v ≠ exp4
shows (v := exp1 ;; (C1 ≪(qtop tp exp2 (v) exp3 exp4)r, C2)) =
((v := exp1 ;; C1) ≪(qtop tp exp2 exp1 exp3 exp4)r, (v := exp1 ;; C2))
using 1 2 3 4
by rel-auto
lemma assign-cond-qtop3[symbolic-exec-assign-qtop]:
assumes 1: weak-lens v and 2: v \not\in exp2 and 3: v \not\in exp3 and 4: v \not\in exp4
shows (v ::= exp1 ;; (C1 <(qtop bp exp2 exp3 (&v))\triangleright_r C2)) =
 ((v ::= exp1 ;; C1) <(qtop bp exp2 exp3 exp1 exp4)\triangleright_r (v ::= exp1 ;; C2))
using 1 2 3 4
by rel-auto

lemma assign-cond-qtop4[symbolic-exec-assign-qtop]:
assumes 1: weak-lens v and 2: v \not\in exp2 and 3: v \not\in exp3 and 4: v \not\in exp4
shows (v ::= exp1 ;; (C1 <(qtop bp exp2 exp3 exp4 (&v))\triangleright_r C2)) =
 ((v ::= exp1 ;; C1) <(qtop bp exp2 exp3 exp4 exp1 exp4)\triangleright_r (v ::= exp1 ;; C2))
using 1 2 3 4
by rel-auto

lemma assign-cond-If [symbolic-exec]:
 ((v ::= exp1) < bexp \triangleright_r (v ::= exp2)) =
 (v ::= (trop If bexp exp1 exp2))
by rel-auto

lemma assign-cond-If-uop[symbolic-exec-assign-uop]:
assumes 1: mwb-lens v
shows (v ::= E;;
 ((v ::= uop F (&v)) <uop F (&v)\triangleright_r (v ::= uop G (&v)))) =
 (v ::= trop If (uop F E) (uop F E) (uop G E))
using 1
proof (rel-simp, transfer)
 fix a :: 'a and b :: 'a and va :: bool \implies 'a and Fa :: bool \implies bool and Ea :: 'a \implies bool and Ga :: bool \implies bool
 have Fa (EA a) \implies (Fa (EA a) \land b = put va a (Fa (EA a)) \lor \neg Fa (EA a) \land b = put va a (Ga (EA a))) \land b = put va a (Fa (EA a) \lor \neg Fa (EA a) \land Ga (EA a)) \lor \neg b = put va a (Fa (EA a) \lor \neg Fa (EA a)) \land (\neg Fa (EA a) \lor \neg b = put va a (Fa (EA a)))
 by presburger
 then have \neg ((\neg Fa (EA a) \lor \neg b = put va a (Fa (EA a))) \land (Fa (EA a) \lor \neg b = put va a (Ga (EA a)))) =
 (b = put va a (Fa (EA a) \lor \neg Fa (EA a) \land Ga (EA a))
 by fastforce
 then show (Fa (EA a) \land b = put va a (Fa (EA a)) \lor \neg Fa (EA a) \land b = put va a (Ga (EA a))) =
 (b = put va a (Fa (EA a) \lor \neg Fa (EA a) \land Ga (EA a))
 by meson
qed

lemma assign-cond-If-bop[symbolic-exec-assign-bop]:
assumes 1: mwb-lens v and 2: v \not\in expr
shows ((v ::= E);;
 (((v ::= (bop F expr (&v))) <bop F expr (&v)\triangleright_r (v ::= (bop G expr (&v)))))) =
 (v ::= (trop If (bop F expr E) (bop F expr E) (bop G expr E)))
Appendix A. Main Extension Proofs

using 1 2

proof (rel-simp, transfer)
 fix a :: 'a and b :: 'a and va :: bool ⇒ 'a and Fa :: bool ⇒ bool and Ea :: 'a ⇒ bool and Ga :: bool ⇒ bool
 have Fa (Ea a) →→ (Fa (Ea a) ∧ b = put va a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a))) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a) = (b = put va a (Fa (Ea a)))
 by presburger
 then have ¬ ((¬ Fa (Ea a) ∨ ¬ b = put va a (Fa (Ea a))) ∧ (Fa (Ea a) ∨ ¬ b = put va a (Ga (Ea a)))) = (b = put va a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)))
 by fastforce
 then show (Fa (Ea a) ∧ b = put va a (Fa (Ea a))) = (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a)) = (b = put va a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)))
 by meson
qed

lemma assign-cond-If-bop1 [symbolic-exec-assign-bop]:
 assumes 1: mw-b-lens v and 2: v ⩾ expr
 shows ((v := E));
 (v := (bop F (bop F expr) expr) = (v := (bop G (bop F expr) expr)))
 using 1 2
 proof (rel-simp, transfer)
 fix a :: 'a and b :: 'a and va :: bool ⇒ 'a and Fa :: bool ⇒ bool and Ea :: 'a ⇒ bool and Ga :: bool ⇒ bool
 have Fa (Ea a) →→ (Fa (Ea a) ∧ b = put va a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a))) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a) = (b = put va a (Fa (Ea a))
 by presburger
 then have ¬ ((¬ Fa (Ea a) ∨ ¬ b = put va a (Fa (Ea a))) = (Fa (Ea a) ∨ ¬ b = put va a (Ga (Ea a)))
 by fastforce
 then show (Fa (Ea a) ∧ b = put va a (Fa (Ea a))) = (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a)))
 by meson
 qed

lemma assign-cond-If-bop2 [symbolic-exec-assign-bop]:
 assumes 1: mw-b-lens v and 2: v ⩾ expr1 and 3: v ⩾ expr2
 shows ((v := E));
 (v := (bop F (bop F expr1) expr1 = (v := (bop G (bop F expr1) expr2)))
 using 1 2 3
 proof (rel-simp, transfer)
 fix a :: 'a and b :: 'a and va :: bool ⇒ 'a and Fa :: bool ⇒ bool and Ea :: 'a ⇒ bool and Ga :: bool ⇒ bool
 have Fa (Ea a) →→ (Fa (Ea a) ∧ b = put va a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a))) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a) = (b = put va a (Fa (Ea a))
 by presburger
 then have ¬ ((¬ Fa (Ea a) ∨ ¬ b = put va a (Fa (Ea a))) = (Fa (Ea a) ∨ ¬ b = put va a (Ga (Ea a)))
 by fastforce
 then show (Fa (Ea a) ∧ b = put va a (Fa (Ea a))) = (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ b = put va a (Ga (Ea a)))
 by meson
 qed
A.1. Algebraic Laws of Programming

:: bool ⇒ bool

have Fa (Ea a) ⇒ (Fa (Ea a) ∧ b = putva a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = putva a (Ga (Ea a))) ∧ b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa ((Ea a) ∧ Ga (Ea a)) ∧ ¬ b = putva a (Fa (Ea a))

by presburger

then have ¬ ((¬ Fa (Ea a) ∨ ¬ b = putva a (Fa (Ea a))) ∧ (Fa (Ea a) ∨ ¬ b = putva a (Ga (Ea a)))) = (b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a))

by fastforce

then show (Fa (Ea a) ∧ b = putva a (Fa (Ea a))) ∨ ¬ Fa (Ea a) ∧ b = putva a (Ga (Ea a))

by meson

qed

lemma assign-cond-If-bop4 [symbolic-exec-assign-bop]:

assumes 1: mwb-lens v and 2: v ≠ exp1 and 3: v ≠ exp2

shows ((v := E));

((v := (bop F (&v) exp1)) <bop F (&v) exp1> r (v := (bop G exp2 (&v)))) =

(v := (trop If (bop F E exp1) (bop F E exp1) (bop G E exp2))

using 1 2 3

proof (rel-simp, transfer)

fix a :: 'a and b :: 'a and va :: bool ⇒ 'a and Fa :: bool ⇒ bool and Ea :: 'a ⇒ bool and Ga :: bool ⇒ bool

have Fa (Ea a) ⇒ (Fa (Ea a) ∧ b = putva a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = putva a (Ga (Ea a))) ∧ b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ Fa ((Ea a) ∧ Ga (Ea a)) ∧ ¬ b = putva a (Fa (Ea a))

by presburger

then have ¬ ((¬ Fa (Ea a) ∨ ¬ b = putva a (Fa (Ea a))) ∧ (Fa (Ea a) ∨ ¬ b = putva a (Ga (Ea a)))) = (b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a))

by fastforce

then show (Fa (Ea a) ∧ b = putva a (Fa (Ea a))) ∨ ¬ Fa (Ea a) ∧ b = putva a (Ga (Ea a))

by meson

qed

lemma assign-cond-If-bop5 [symbolic-exec-assign-bop]:

assumes 1: mwb-lens v and 2: v ≠ exp1 and 3: v ≠ exp2

shows ((v := E));

((v := (bop F exp1 (&v))) <bop F exp1> rr (v := (bop G (&v) exp2))) =

(v := (trop If (bop F E exp1) (bop F E exp1) (bop G F exp2))

using 1 2 3

proof (rel-simp, transfer)

fix a :: 'a and b :: 'a and va :: bool ⇒ 'a and Fa :: bool ⇒ bool and Ea :: 'a ⇒ bool and Ga :: bool ⇒ bool

have Fa (Ea a) ⇒ (Fa (Ea a) ∧ b = putva a (Fa (Ea a)) ∨ ¬ Fa (Ea a) ∧ b = putva a (Ga (Ea a))) ∧ b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∨ ¬ b = putva a (Fa (Ea a) ∨ ¬ Fa (Ea a) ∧ Ga (Ea a)) ∧ ¬ b = putva a (Fa (Ea a))

by presburger
Appendix A. Main Extension Proofs

lemma assign-cond-If-trop[\text{symbolic-exec-assign-trop}]:
\text{assumes 1: mwb-lens} v \text{ and 2: } v \not\equiv \exp1 \text{ and 3: } v \not\equiv \exp2
\text{shows } ((v := E)\);
\quad ((v := (\text{trop } F \exp1 \exp2 (\&v))) \lnot\text{trop } F \exp1 \exp2 (\&v)ρ_r (v := (\text{trop } G \exp1 \exp2 (\&v)))) =
\quad (v := (\text{trop } F \exp1 \exp2 E) (\text{trop } F \exp1 \exp2 E) (\text{trop } G \exp1 \exp2 E))
\text{using 1 2 3}
\text{proof (rel-simp, transfer)}
\quad \text{fix } a :: 'a \text{ and } b :: 'a \text{ and } va :: \text{bool }\Rightarrow 'a \text{ and } Fa :: \text{bool }\Rightarrow \text{bool and } Ea :: 'a \Rightarrow \text{bool and } Ga :: \text{bool }\Rightarrow \text{bool}
\quad \text{have } Fa (Ea a) \rightarrow (Fa (Ea a) \land b = put_{va} a (Fa (Ea a)) \lor \lnot Fa (Ea a) \land b = put_{va} a (Ga (Ea a))) \land b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a)) \lor \lnot b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a))
\quad \text{by presburger}
\quad \text{then have } \lnot ((\lnot Fa (Ea a) \lor \lnot b = put_{va} a (Fa (Ea a))) \land (Fa (Ea a) \lor \lnot b = put_{va} a (Ga (Ea a))) = (b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a)))
\quad \text{by fastforce}
\quad \text{then show } (Fa (Ea a) \land b = put_{va} a (Fa (Ea a)) \lor \lnot Fa (Ea a) \land b = put_{va} a (Ga (Ea a))) =
\quad \text{by meson}
\quad \text{qed}

lemma assign-cond-If-bop6[\text{symbolic-exec-assign-bop}]:
\text{assumes 1: mwb-lens} v \text{ and 2: } v \not\equiv \exp1 \text{ and 3: } v \not\equiv \exp2
\text{shows } ((v := E)\);
\quad ((v := (\text{bop } F \exp1 (\&v))) \lnot\text{bop } F \exp1 (\&v)ρ_r (v := (\text{bop } G \exp2 (\&v)))) =
\quad (v := (\text{trop } F \exp1 E) (\text{trop } F \exp1 E) (\text{bop } G \exp2 E))
\text{using 1 2 3}
\text{proof (rel-simp, transfer)}
\quad \text{fix } a :: 'a \text{ and } b :: 'a \text{ and } va :: \text{bool }\Rightarrow 'a \text{ and } Fa :: \text{bool }\Rightarrow \text{bool and } Ea :: 'a \Rightarrow \text{bool and } Ga :: \text{bool }\Rightarrow \text{bool}
\quad \text{have } Fa (Ea a) \rightarrow (Fa (Ea a) \land b = put_{va} a (Fa (Ea a)) \lor \lnot Fa (Ea a) \land b = put_{va} a (Ga (Ea a))) \land b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a)) \lor \lnot b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a))
\quad \text{by presburger}
\quad \text{then have } \lnot ((\lnot Fa (Ea a) \lor \lnot b = put_{va} a (Fa (Ea a))) \land (Fa (Ea a) \lor \lnot b = put_{va} a (Ga (Ea a))) = (b = put_{va} a (Fa (Ea a) \lor \lnot Fa (Ea a) \land Ga (Ea a)))
\quad \text{by fastforce}
\quad \text{then show } (Fa (Ea a) \land b = put_{va} a (Fa (Ea a)) \lor \lnot Fa (Ea a) \land b = put_{va} a (Ga (Ea a))) =
\quad \text{by meson}
\quad \text{qed}
then have \((- (\neg \; F \; a (E \; a)) \lor \neg \; b = put_{va} \; a (Fa \; (Ea \; a))) \lor (Fa \; (Ea \; a)) \lor \neg \; b = put_{va} \; a (Ga \; (Ea \; a)))\)

by fastforce

then show \((Fa \; (Ea \; a)) \land b = put_{va} \; a (Fa \; (Ea \; a)) \lor \neg \; Fa \; (Ea \; a) \land b = put_{va} \; a (Ga \; (Ea \; a)))\)

(by meson)

qed

lemma assign-cond-If-trop1[symbolic-exec-assign-trop]:

assumes 1: mwb-lens \(v\) and 2: \(v \neq \exp1\) and 3: \(v \neq \exp2\)

shows \(((v := E))\);

\(((v := (trop \; F \; \exp1 \; \&v \; \exp2)) \langle trop \; F \; \exp1 \; \&v \; \exp2\rangle, (v := (trop \; G \; \exp1 \; \&v \; \exp2)))\) =

\((v := (trop \; If \; (trop \; F \; \exp1 \; \exp2) \; (trop \; F \; \exp1 \; \exp2) \; (trop \; G \; \exp1 \; \exp2)))\)

using 1 2 3

proof (rel-simp, transfer)

fix \(a :: 'a\) and \(b :: 'a\) and \(va :: bool \Rightarrow 'a\) and \(Fa :: bool \Rightarrow bool\) and \(Ea :: 'a \Rightarrow bool\) and \(Ga :: bool \Rightarrow bool\)

have \(Fa \; (Ea \; a) \rightarrow (Fa \; (Ea \; a) \land b = put_{va} \; a (Fa \; (Ea \; a)) \lor \neg \; Fa \; (Ea \; a) \land b = put_{va} \; a (Ga \; (Ea \; a)))\)

by presburger

then have \((- (\neg \; Fa \; (Ea \; a) \lor \neg \; b = put_{va} \; a (Fa \; (Ea \; a))) \lor (Fa \; (Ea \; a)) \lor \neg \; b = put_{va} \; a (Ga \; (Ea \; a)))\)

by fastforce

then show \((Fa \; (Ea \; a) \land b = put_{va} \; a (Fa \; (Ea \; a)) \lor \neg \; Fa \; (Ea \; a) \land b = put_{va} \; a (Ga \; (Ea \; a)))\)

(by meson)

qed

lemma assign-cond-If-trop2[symbolic-exec-assign-trop]:

assumes 1: mwb-lens \(v\) and 2: \(v \neq \exp1\) and 3: \(v \neq \exp2\)

shows \(((v := E))\);

\(((v := (trop \; F \; \exp1 \; \exp2)) \langle trop \; F \; \exp1 \; \exp2\rangle, (v := (trop \; G \; \exp1 \; \exp2)))\) =

\((v := (trop \; If \; (trop \; F \; \exp1 \; \exp2) \; (trop \; F \; \exp1 \; \exp2) \; (trop \; G \; \exp1 \; \exp2)))\)

using 1 2 3

proof (rel-simp, transfer)

fix \(a :: 'a\) and \(b :: 'a\) and \(va :: bool \Rightarrow 'a\) and \(Fa :: bool \Rightarrow bool\) and \(Ea :: 'a \Rightarrow bool\) and \(Ga :: bool \Rightarrow bool\)

have \(Fa \; (Ea \; a) \rightarrow (Fa \; (Ea \; a) \land b = put_{va} \; a (Fa \; (Ea \; a)) \lor \neg \; Fa \; (Ea \; a) \land b = put_{va} \; a (Ga \; (Ea \; a)))\)

by presburger

then have \((- (\neg \; Fa \; (Ea \; a) \lor \neg \; b = put_{va} \; a (Fa \; (Ea \; a))) \lor (Fa \; (Ea \; a)) \lor \neg \; b = put_{va} \; a (Ga \; (Ea \; a)))\)
\[(Ea)) = (b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea))) \]

\text{by fastforce}

\text{then show} \ (Fa (Ea) \land b = put_{va} (Fa (Ea)) \lor \neg Fa (Ea) \land b = put_{va} (Ga (Ea))) = (b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))

\text{by meson}

\text{qed}

\text{lemma} assign-cond-If-trop3[symbolic-exec-assign-trop]:
\text{assumes} 1: \text{mwb-lens v and} 2: v \not\in exp1 \text{ and} 3: v \not\in exp2 \text{ and} 4: v \not\in exp3 \text{ and} 5: v \not\in exp4
\text{shows} \ ((v := E);)
\text{((v := (trop F exp1 exp2 (&v))) \langle trop F exp1 exp2 (&v)r (v := (trop G exp3 exp4 (&v)))) = (v := (trop F exp1 exp2 E) \langle trop F exp1 exp2 E) \langle trop G exp3 exp4 E)))}
\text{using} 1 2 3 4 5
\text{proof} \ (\text{rel-simp, transfer})
\text{fix} \ a :: 'a and \ b :: 'a and \ va :: bool \Longrightarrow \ 'a and \ Fa :: bool \Rightarrow \ bool \text{ and} \ Ea :: \ 'a \Rightarrow \ bool \text{ and} \ Ga :: \ bool \Rightarrow \ bool
\text{have} \ (Fa (Ea) \longrightarrow (Fa (Ea) \land b = put_{va} (Fa (Ea)) \lor \neg Fa (Ea) \land b = put_{va} (Ga (Ea)))) \land b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea))) \land \neg b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))
\text{by presburger}
\text{then have} \ \neg ((\neg Fa (Ea) \lor \neg b = put_{va} (Fa (Ea))) \land (Fa (Ea) \lor \neg b = put_{va} (Ga (Ea)))) = (b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))
\text{by fastforce}
\text{then show} \ (Fa (Ea) \land b = put_{va} (Fa (Ea)) \lor \neg Fa (Ea) \land b = put_{va} (Ga (Ea))) = (b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))
\text{by meson}

\text{qed}

\text{lemma} assign-cond-If-trop4[symbolic-exec-assign-trop]:
\text{assumes} 1: \text{mwb-lens v and} 2: v \not\in exp1 \text{ and} 3: v \not\in exp2 \text{ and} 4: v \not\in exp3 \text{ and} 5: v \not\in exp4
\text{shows} \ ((v := E);)
\text{((v := (trop F exp1 (\&v) exp2)) \langle trop F exp1 (\&v) exp2r (v := (trop G exp3 (\&v) exp4))) = (v := (trop F exp1 E exp2) \langle trop F exp1 E exp2) \langle trop G exp3 E exp4)))}
\text{using} 1 2 3 4 5
\text{proof} \ (\text{rel-simp, transfer})
\text{fix} \ a :: 'a and \ b :: 'a and \ va :: bool \Longrightarrow \ 'a and \ Fa :: bool \Rightarrow \ bool \text{ and} \ Ea :: \ 'a \Rightarrow \ bool \text{ and} \ Ga :: \ bool \Rightarrow \ bool
\text{have} \ (Fa (Ea) \longrightarrow (Fa (Ea) \land b = put_{va} (Fa (Ea)) \lor \neg Fa (Ea) \land b = put_{va} (Ga (Ea)))) \land b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea))) \land \neg b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))
\text{by presburger}
\text{then have} \ \neg ((\neg Fa (Ea) \lor \neg b = put_{va} (Fa (Ea))) \land (Fa (Ea) \lor \neg b = put_{va} (Ga (Ea)))) = (b = put_{va} (Fa (Ea) \lor \neg Fa (Ea) \land Ga (Ea)))
by fastforce
then show \((Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Ga \ (Ea\ a)))\) = \((b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land Ga \ (Ea\ a)))\)
by meson
qed

Lemma assign-cond-If-trop5 [symbolic-exec-assign-trop]:
assumes 1: \(mwb\text{-lens} \ v \ \text{and} \ 2: \ v \nott \ \text{exp1} \ \text{and} \ 3: \ v \nott \ \text{exp2} \ \text{and} \ 4: \ v \nott \ \text{exp3} \ \text{and} \ 5: \ v \nott \ \text{exp4}\)
shows \(\((v := (\text{trop} \ F \ (&v) \ \text{exp1} \ \text{exp2}))) \ \text{trop} \ F \ E \ \text{exp1} \ \text{exp2} \ \text{v} \ := \ (\text{trop} \ G \ (&v) \ \text{exp3} \ \text{exp4})))\) = \(\((v := (\text{trop} \ If \ (\text{trop} \ F \ E \ \text{exp1} \ \text{exp2}) \ (\text{trop} \ F \ E \ \text{exp1} \ \text{exp2}) \ (\text{trop} \ G \ E \ \text{exp3} \ \text{exp4})))\)\)
using 1 2 3 4 5
proof (rel-simp, transfer)
 fix \ a :: 'a \ \text{and} \ b :: 'a \ \text{and} \ va :: \ \text{bool} \ \Longrightarrow \ 'a \ \text{and} \ Fa :: \ \text{bool} \ \Longrightarrow \ \text{bool} \ \text{and} \ Ea :: \ 'a \ \Rightarrow \ \text{bool} \ \text{and} \ Ga :: \ \text{bool} \ \Rightarrow \ \text{bool} \)
 have \(Fa \ (Ea\ a) \rightarrow (Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Ga \ (Ea\ a)))\) \land \(b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land Ga \ (Ea\ a))\) \land \(\neg \ Fa \ (Ea\ a) \lor \neg b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)))\)
 by presburger
 then have \(\neg (\neg Fa \ (Ea\ a) \lor \neg b = \text{put}_{va} \ a \ (Fa \ (Ea\ a))) \land (Fa \ (Ea\ a) \lor \neg b = \text{put}_{va} \ a \ (Ga \ (Ea\ a)))\) = \((b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land Ga \ (Ea\ a)))\)
 by fastforce
 then show \(Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land b = \text{put}_{va} \ a \ (Ga \ (Ea\ a))) = \((b = \text{put}_{va} \ a \ (Fa \ (Ea\ a)) \lor \neg Fa \ (Ea\ a) \land Ga \ (Ea\ a)))\)
 by meson
qed

A.1.3 Conditional Laws

In this section we introduce the algebraic laws of programming related to the conditional statement.

Named-theorems urel-cond

Lemma cond-assoc:
\((P \triangleleft b \triangleright (Q \triangleleft b \triangleright R)) = ((P \triangleleft b \triangleright Q) \triangleleft b \triangleright R)\)
by rel-auto

Lemma cond-distr[urel-cond]:
\(((P \triangleleft b' \triangleright R) \triangleleft b \triangleright (Q \triangleleft b' \triangleright R)) = ((P \triangleleft b \triangleright Q) \triangleleft b' \triangleright R)\)
by rel-auto

Lemma cond-ueq-distr[urel-cond]:
\(((P =_u Q) \triangleleft b \triangleright (R =_u S)) = \)
\[(P \triangleleft b \triangleright R) =_u (Q \triangleleft b \triangleright S)\]

by rel-auto

lemma cond-conj-distr \([urel-cond]\):

\[(P \land Q) \triangleleft b \triangleright (P \land S) = (P \land (Q \triangleleft b \triangleright S))\]

by rel-auto

lemma cond-disj-distr \([urel-cond]\):

\[(P \lor Q) \triangleleft b \triangleright (P \lor S) = (P \lor (Q \triangleleft b \triangleright S))\]

by rel-auto

theorem COND12 \([urel-cond]\):

\[((C1 \triangleleft \text{bexp}2 \triangleright \text{C3}) \triangleleft \text{bexp}1 \triangleright ((C2 \triangleleft \text{bexp}3 \triangleright \text{C3})) =
((C1 \triangleleft \text{bexp}1 \triangleright \text{C2}) \triangleleft (\text{bexp}2 \triangleleft \text{bexp}3 \triangleright \text{C3})).\]

by rel-auto

lemma comp-cond-left-distr:

\[((P \triangleleft b \triangleright R) ;; R) = ((P ;; R) \triangleleft b \triangleright (Q ;; R))\]

by rel-auto

lemma cond-var-subst-left \([urel-cond]\):

assumes vwb-lens x

shows \((P[\text{true}/x] \triangleleft \& x \triangleright Q) = (P \triangleleft \& x \triangleright Q)\)

using assms

apply rel-auto apply transfer

using vwb-lens.put-eq by fastforce

lemma cond-var-subst-right \([urel-cond]\):

assumes vwb-lens x

shows \((P \triangleleft \& x \triangleright Q[\text{false}/x]) = (P \triangleleft \& x \triangleright Q)\)

using assms

apply pred-auto apply transfer

by (metis (full-types) vwb-lens.put-eq)

lemma cond-var-split \([urel-cond]\):

vwb-lens x \[P[\text{true}/x] \triangleleft \& x \triangleright P[\text{false}/x]\] = P

by (rel-auto, (metis (full-types) vwb-lens.put-eq))

lemma cond-seq-left-distr \([urel-comp]\):

out \(\alpha \# b \implies ((P \triangleleft b \triangleright R) ;; R) = ((P ;; R) \triangleleft b \triangleright (Q ;; R))\)

by rel-auto

lemma cond-seq-right-distr \([urel-comp]\):

in \(\alpha \# b \implies (P ;; (Q \triangleleft b \triangleright R)) = ((P ;; Q) \triangleleft b \triangleright (P ;; R))\)
A.1.4 Sequential Laws

In this section we introduce the algebraic laws of programming related to the sequential composition of statements.

Lemma seqr-exists-left [symbolic-exec]:
\[(\exists$ x \cdot P) ;; Q) = (\exists x \cdot (P ;; Q))\]
by rel-auto

Lemma seqr-exists-right [symbolic-exec]:
\[(P ;; (\exists x' \cdot Q)) = (\exists x' \cdot (P ;; Q))\]
by rel-auto

Lemma seqr-left-zero [simp, symbolic-exec-ex]:
false ;; P = false
by pred-auto

Lemma seqr-right-zero [simp, symbolic-exec-ex]:
P ;; false = false
by pred-auto

Lemma seqr-or-distr [urel-comp]:
(P ;; (Q \lor R)) = ((P ;; Q) \lor (P ;; R))
by rel-auto

Lemma seqr-unfold:
\[(P ;; Q) = (\exists v \cdot P[«v»/Σ'] \land Q[«v»/Σ])\]
by rel-auto

Lemma seqr-middle:
assumes wub-lens x
shows \((P ;; Q) = (\exists v \cdot P[«v»/x'] ;; Q[«v»/$x])\)
using assms
apply (rel-auto robust)
apply (rename-tac xa P a b y)
apply (rule-tac x=\text{get}_xa y in \text{exI})
apply (rule-tac x=y in \text{exI})
apply (simp)
done

Lemma seqr-left-one-point [urel-comp]:
assumes wub-lens x
shows \((P \land $x' =_u «v») ;; Q) = (P[«v»/$x'] ;; Q[«v»/$x])\)
using assms
by (rel-auto, metis vwb-lens-wb wb-lens.get-put)

lemma seqr-right-one-point[urel-comp]:
assumes vwb-lens x
shows \((P ;; (\{x = \{v\} \land Q)) = (P[\{v\}/\{x\}] ;; Q[\{v\}/\{x\}]) \)
using assms
by (rel-auto, metis vwb-lens-wb wb-lens.get-put)

lemma seqr-insert-ident-left[urel-comp]:
assumes vwb-lens x $x \;\;\; \;\; P \;\;\;\; Q$
shows \(((x = \{x\} \land P) ;; Q) = (P ;; Q) \)
using assms
by (rel-auto, meson vwb-lens-wb wb-lens-weak weak-lens.put-get)

lemma seqr-insert-ident-right[urel-comp]:
assumes vwb-lens x $x \;\;\;\; P \;\;\;\; Q$
shows \((P ;; (x = \{x\} \land Q)) = (P ;; Q) \)
using assms
by (rel-auto, metis (no-types, hide-lams) vwb-lens-def wb-lens-def weak-lens.put-get)

lemma seq-var-ident-lift[urel-comp]:
assumes vwb-lens x $x \;\;\;\; P \;\;\;\; Q$
shows \(((x = \{x\} \land P) ;; (x = \{x\} \land Q)) = (x = \{x\} \land (P ;; Q)) \)
using assms
by (rel-auto, metis (no-types, lifting) vwb-lens-wb wb-lens-weak weak-lens.put-get)

A.1.5 While laws

In this section we introduce the algebraic laws of programming related to the while statement.

theorem while-unfold:
while b do P od = ((P ;; while b do P od) |< b \triangleright\triangleright II)

proof
have \(m:mono \; (\lambda X. \; (P ;; X) |< b \triangleright\triangleright II) \)
 by (auto intro: monoI seqr-mono cond-mono)
have \((while b do P od) = (\nu X \cdot (P ;; X) |< b \triangleright\triangleright II) \)
 by (simp add: while-def)
also have \(\ldots = ((P ;; (\nu X \cdot (P ;; X) |< b \triangleright\triangleright II)) |< b \triangleright\triangleright II) \)
 by (subst lfp-unfold, simp-all add: m)
also have \(\ldots = ((P ;; while b do P od) |< b \triangleright\triangleright II) \)
 by (simp add: while-def)
finally show \(\text{thesis} \).
qed
A.1. Algebraic Laws of Programming

lemma while-true:
shows (while true do P od) = false
apply (simp add: while-def alpha)
apply (rule antisym)
apply (simp-all)
apply (rule lfp-lowerbound)
apply (simp)
done

lemma while-false:
shows (while false do P od) = II
proof –
have (while false do P od) = (P ;; while false do P od) ∨ false ∨, II
using while-unfold[af - P] by simp
also have ... = II by (simp add: aext-false)
finally show ?thesis .
qed

lemma while-inv-unfold:
(while b invr p do P od) = ((P ;; while b invr p do P od) ∨ b ∨, II)
unfolding while-inv-def using while-unfold
by auto

theorem while-bot-unfold:
while⊥ b do P od = ((P ;; while⊥ b do P od) ∨ b ∨, II)
proof –
have m:mono (λX. (P ;; X) ∨ b ∨, II)
 by (auto intro: monoI seqr-mono cond-mono)
have (while⊥ b do P od) = (µ X · (P ;; X) ∨ b ∨, II)
 by (simp add: while-bot-def)
also have ... = ((P ;; (µ X · (P ;; X) ∨ b ∨, II)) ∨ b ∨, II)
 by (subst gfp-unfold, simp-all add: m)
also have ... = ((P ;; while⊥ b do P od) ∨ b ∨, II)
 by (simp add: while-bot-def)
finally show ?thesis .
qed

theorem while-bot-false: while⊥ false do P od = II
by (simp add: while-bot-def mu-const alpha)

theorem while-bot-true: while⊥ true do P od = (µ X · P ;; X)
by (simp add: while-bot-def alpha)

An infinite loop with a feasible body corresponds to a program error (non-termination).

theorem while-infinite: P ;; trueh = true ⇒ while⊥ true do P od = true
apply (simp add: while-bot-true)
apply (rule antisym)
apply (simp)
apply (rule gfp-upperbound)
apply (simp)
done

A.1.6 assume and assert laws

lemma assume-twice[urel-comp]: \((b \top ; c) = (b \land c)\)
 by rel-auto

lemma assert-twice[urel-comp]: \((b \bot ; c) = (b \land c)\)
 by rel-auto

A.1.7 Refinement rules

lemma pre-weak-rel:
 assumes \(\text{Pre} \Rightarrow I\)
 and \((I \Rightarrow \text{Post}) \sqsubseteq P\)
 shows \((\text{Pre} \Rightarrow \text{Post}) \sqsubseteq P\)
 using assms
 by (rel-auto)

lemma post-str-rel:
 \((p \Rightarrow q) \sqsubseteq P \implies q \Rightarrow r \implies (p \Rightarrow r) \sqsubseteq P\)
 by pred-blast

lemma cond-refine-rel:
 assumes \((b \land p \Rightarrow q) \sqsubseteq C_1\) and \((\neg b \land p \Rightarrow q) \sqsubseteq C_2\)
 shows \((p \Rightarrow q) \sqsubseteq (C_1 < b \triangleright C_2)\)
 using assms by rel-auto

lemma cond-refine-pred:
 assumes \([b \land p] < [q] \sqsubseteq C_1\) and \([\neg b \land p] < [q] \sqsubseteq C_2\)
 shows \([p] < \Rightarrow [q] \sqsubseteq (C_1 < b \triangleright C_2)\)
 using assms by rel-auto

lemma seq-refine-pred:
 assumes \([p] < \Rightarrow [s] \sqsubseteq f\) and \([s] < \Rightarrow [q] \sqsubseteq fa\)
 shows \([p] < \Rightarrow [q] \sqsubseteq (f ;; fa)\)
 using assms by rel-auto

lemma seq-refine-unrest:
 assumes outo $ p ino $ q
assumes \((p \Rightarrow \lceil s \rceil >) \sqsubseteq f\) and \((\lceil s \rceil < \Rightarrow q) \sqsubseteq fa\)
shows \((p \Rightarrow q) \sqsubseteq (f ;; fa)\)
using assms by rel-blast

lemmas skip-refine' = post-str-rel[OF skip-r-refine-orig]

end

A.2 Relational Hoare Calculus

theory utp-hoare
imports ../../AlgebraicLaws/Rel&Des/Algebraic-Laws
begin

definition hoare-r :: \('\alpha\) cond \Rightarrow \('\alpha\) hrel \Rightarrow \('\alpha\) cond \Rightarrow bool \((\llbracket p \rrbracket _< \Rightarrow \llbracket r \rrbracket >) \subseteq Q)\)
where
\(\llbracket p \rrbracket Q \llbracket r \rrbracket u = ((\llbracket p \rrbracket _< \Rightarrow \llbracket r \rrbracket >) \subseteq Q)\)

declare hoare-r-def [upred-defs]

lemma hoare-true [hoare]: \(\llbracket p \rrbracket C \llbracket true \rrbracket u\)
by rel-auto

lemma hoare-false [hoare]: \(\llbracket false \rrbracket C \llbracket q \rrbracket u\)
by rel-auto

A.2.1 Hoare triple definition

A Hoare triple is represented by a precondition \(P\), a postcondition \(Q\), and a program \(C\). It says that, whenever \(P\) holds on the initial state, \(Q\) must hold on the final state after execution of \(C\).

definition hoare-r :: \('\alpha\) cond \Rightarrow \('\alpha\) hrel \Rightarrow \('\alpha\) cond \Rightarrow bool \((\llbracket p \rrbracket _< \Rightarrow \llbracket r \rrbracket >) \subseteq Q)\)
where
\(\llbracket p \rrbracket Q \llbracket r \rrbracket u = ((\llbracket p \rrbracket _< \Rightarrow \llbracket r \rrbracket >) \subseteq Q)\)

declare hoare-r-def [upred-defs]

lemma hoare-true [hoare]: \(\llbracket p \rrbracket C \llbracket true \rrbracket u\)
by rel-auto

lemma hoare-false [hoare]: \(\llbracket false \rrbracket C \llbracket q \rrbracket u\)
by rel-auto

A.2.2 Hoare for Consequence

lemma hoare-r-conseq [hoare]:
assumes \(p_1 \Rightarrow p_2\) and \(\llbracket p_2 \rrbracket C \llbracket q_2 \rrbracket u\) and \(q_2 \Rightarrow q_1\)
A.2.3 Precondition strengthening

lemma hoare-pre-str[hoare]:
assumes 'p₁ ⇒ p₂' and \{p₂\} C \{q\}_u
shows \{p₁\} C \{q\}_u
by (insert assms) rel-auto

A.2.4 Post-condition weakening

lemma hoare-post-weak[hoare]:
assumes \{p\} C \{q₂\}_u and 'q₂ ⇒ q₁'
shows \{p\} C \{q₁\}_u
by (insert assms) rel-auto

A.2.5 Hoare and assertion logic

lemma hoare-r-conj[hoare]:
assumes \{p\} C \{r\}_u and \{p\} C \{s\}_u
shows \{p\} C \{r ∧ s\}_u
by (insert assms) rel-auto

A.2.6 Hoare SKIP

lemma skip-hoare-r[hoare-safe]: \{p\} II \{p\}_u
by rel-auto

A.2.7 Hoare for assignment

lemma assigns-hoare-r[hoare-safe]:
assumes 'p ⇒ σ ↑ q'
shows \{p\} ⟨σ⟩ₐ \{q\}_u
by (insert assms) rel-auto

lemma assigns-hoare-r'[hoare]: \{σ ↑ p\} ⟨σ⟩ₐ \{p\}_u
by rel-auto

lemma assigns-naive-rule:
assumes xₜ e and weak-lens x
shows \{p\} x := e \{&x = u e\}_u
using assms
by pred-simp
lemma assigns-floyd-r [hoare]:
assumes ⟨wlb-lens x⟩
shows ⟨vwb-lens x : e[«v»/x] ∧ &x = e[«v»/x]⟩
apply (insert assms)
apply pred-simp
apply transfer
apply (rule-tac x = ⟨get x a⟩ in exI)
apply auto
done

A.2.8 Hoare for Sequential Composition

lemma seq-hoare-r:
assumes ⟨p⟩ C₁{⟨s⟩}_u and ⟨s⟩ C₂{⟨r⟩}_u
shows ⟨p⟩ C₁ ;; C₂{⟨r⟩}_u
by (insert assms) rel-auto

lemma seq-hoare-invariant [hoare-safe]:
assumes ⟨p⟩ Q₁{⟨p⟩}_u and ⟨p⟩ Q₂{⟨p⟩}_u
shows ⟨p⟩ Q₁ ;; Q₂{⟨p⟩}_u
using assms
by (auto simp: seq-hoare-r)

lemma seq-hoare-stronger-pre-1 [hoare-safe]:
assumes ⟨p ∧ q⟩ Q₁{⟨p ∧ q⟩}_u and ⟨p ∧ q⟩ Q₂{⟨q⟩}_u
shows ⟨p ∧ q⟩ Q₁ ;; Q₂{⟨q⟩}_u
using assms
by (auto simp: seq-hoare-r)

lemma seq-hoare-stronger-pre-2 [hoare-safe]:
assumes ⟨p ∧ q⟩ Q₁{⟨p ∧ q⟩}_u and ⟨p ∧ q⟩ Q₂{⟨p⟩}_u
shows ⟨p ∧ q⟩ Q₁ ;; Q₂{⟨p⟩}_u
using assms
by (auto simp: seq-hoare-r)

lemma seq-hoare-inv-r-2 [hoare]:
assumes ⟨p⟩ Q₁{⟨q⟩}_u and ⟨q⟩ Q₂{⟨q⟩}_u
shows ⟨p⟩ Q₁ ;; Q₂{⟨q⟩}_u
using assms
by (auto simp: seq-hoare-r)

lemma seq-hoare-inv-r-3 [hoare]:
assumes ⟨p⟩ Q₁{⟨p⟩}_u and ⟨p⟩ Q₂{⟨q⟩}_u
shows ⟨p⟩ Q₁ ;; Q₂{⟨q⟩}_u
using assms
by (auto simp: seq-hoare-r)

A.2.9 Hoare for Conditional

lemma cond-hoare-r [hoare-safe]:
 assumes \(\{ b \land p \} C_1 \{ q \} u \) and \(\{ \neg b \land p \} C_2 \{ q \} u \)
 shows \(\{ p \} C_1 \land b \triangleright_r C_2 \{ q \} u \)
by (insert assms) rel-auto

A.2.10 Hoare for Assert

lemma assert-hoare-r [hoare-safe]:
 assumes \(\{ c \land p \} \Pi \{ q \} u \) and \(\{ \neg c \land p \} \text{true} \{ q \} u \)
 shows \(\{ p \} c \bot \{ q \} u \)
unfolding rassert-def using assms cond-hoare-r [of c p - q]
by auto

A.2.11 Hoare for Assume

lemma assume-hoare-r [hoare-safe]:
 assumes \(\{ c \land p \} \Pi \{ q \} u \) and \(\{ \neg c \land p \} \text{false} \{ q \} u \)
 shows \(\{ p \} c \top \{ q \} u \)
unfolding rassume-def using assms cond-hoare-r [of c p - q]
by auto

A.2.12 Hoare for While-loop

lemma while-hoare-r [hoare-safe]:
 assumes \(\{ p \land b \} C \{ p \} u \)
 shows \(\{ p \} \text{while } b \text{ do } C \text{ od}\{ \neg b \land p \} u \)
using assms
apply (simp add: while-def hoare-r-def)
apply (rule-tac lfp-lowerbound)
apply(rel-auto)
done

lemma while-hoare-r' [hoare-safe]:
 assumes \(\{ p \land b \} C \{ p \} u \) and \('p \land \neg b \Rightarrow q' \)
 shows \(\{ p \} \text{while } b \text{ do } C \text{ od}\{ q \} u \)
using assms
by (metis conj-comm hoare-r-conseq p-imp-p taut-true while-hoare-r)

lemma while-invr-hoare-r [hoare-safe]:
 assumes \(\{ p \land b \} C \{ p \} u \) and \('pre \Rightarrow p' \) and \('(-b \land p) \Rightarrow post' \)
A.3 Strongest Postcondition

theory utp-sp
imports ../../Isabelle-UTP/utp/utp-wp

begin

named-theorems sp

method sp-tac = (simp add: sp)

consts
 usp :: 'a ⇒ 'b ⇒ 'c (infix sp 60)

definition sp-upred :: 'a cond ⇒ ('a, 'b) rel ⇒ 'b cond where
 sp-upred p Q = ⌊(⌈p⌉>;; Q) :: ('a, 'b) rel⌋

adhoc-overloading
 usp sp-upred

declare sp-upred-def [upred-defs]

lemma sp-false [sp]: p sp false = false
 by (rel-simp)

lemma sp-true [sp]: q ≠ false ⇒ q sp true = true
 by (rel-auto)

lemma sp-assigns-r [sp]:
 vwb-lens x ⇒ (p sp x ::= c) = (∃ v · p[v/v]/x] ∧ &x = _e[v/v]/x])
 apply (rel-simp)
 apply transfer
 apply auto
 apply (rule-tac x = ⟨get x y in exI⟩)
 apply simp
 apply (metis vwb-lens.put-eq)
 done

lemma it-is-post-condition: ⌈p⌉ C ⌈p sp C⌉ u
by rel-blast

lemma it-is-the-strongest-post: ‘p sp C ⇒ Q’ = \{p\}C{Q}_u
by rel-blast

lemma so: ‘p sp C ⇒ Q’ = \{p\}C{Q}_u
by rel-blast

theorem sp-hoare-link: \{p\}Q{r}_u \iff (r \subseteq p sp Q)
by rel-auto

theorem sp-eq-intro: \[\forall r. r sp P = r sp Q\] \implies P = Q
by (rel-auto robust, fastforce+)

lemma wp-sp-sym: ‘prog wp (true sp prog)’;
by rel-auto

lemma it-is-pre-condition: \{C wp Q\}C{Q}_u
by rel-blast

lemma it-is-the-weakest-pre: ‘P ⇒ C wp Q’ = \{P\}C{Q}_u
by rel-blast

end

A.4 SP VCG

theory VCG-rel-Floyd
 imports ../Midend-IVL/Isabelle-UTP-Extended/hoare/HoareLogic/PartialCorrectness/utp-hoare
begin

The below definition helps in asserting independence for a group of lenses, as otherwise the number of assumptions required increases greatly. Unfortunately, it is not usable with lenses of different types as Isabelle does not allow heterogenous lists; element types must be unifiable.

definition \langle lens-indep-all lenses \iff (\forall l \in \text{set lenses. vwb-lens l} \land \text{eff-lens l}) \land
\left(\forall i j. i < \text{length lenses} \land j < \text{length lenses} \land i \neq j \rightarrow \text{lenses!i} \bowtie \text{lenses!j}\right)\rangle

lemma lens-indep-all-alt:
\langle lens-indep-all lenses \iff (\forall l \in \text{set lenses. vwb-lens l} \land \text{eff-lens l}) \land
\text{distinct lenses} \land
(\forall a \in \text{set lenses.} \forall b \in \text{set lenses.} a \neq b \rightarrow a \bowtie b)\rangle

unfolding lens-indep-all-def distinct-conv-nth
apply (safe; simp?)
apply (metis lens-indep-quasi-irrefl nth-mem vwb-lens-wb)
apply (metis in-set-conv-nth)
done

named-theorems hoare-rules

lemma assert-hoare-r'[hoare-rules]:
 assumes ('p ⇒ c')
 shows (⌜p⌝ c⊥ ⌜p ∧ c⌝u)
 using assms
 by (metis assert-hoare-r conj-comm hoare-false refBy-order skip-hoare-r
 utp-pred-laws.inf orderE utp-pred-laws.inf-compl-bot-left1)

lemma assume-hoare-r'[hoare-rules]:
 shows (⌜p⌝ c⊤ ⌜p ∧ c⌝u)
 by rel-simp

lemma cond-hoare-r':
 assumes (⌜b ∧ p⌝ C1 ⌜q⌝u) and (⌜¬b ∧ p⌝ C2 ⌜s⌝u)
 shows (⌜p⌝ if_u b then C1 else C2 ⌜q ∨ s⌝u)
 by (insert assms, rel-auto)

lemma cond-assert-hoare-r'[hoare-rules]:
 assumes (⌜b ∧ p⌝ C1 ⌜q⌝u)
 and (⌜¬b ∧ p⌝ C2 ⌜s⌝u)
 and ('q ⇒ A'');
 and ('s ⇒ A');
 and (⌜A⌝ P⌜A'⌝u)
 shows (⌜p⌝ (if_u b then C1 else C2);; A⊥;; P⌜A'⌝u)
 apply (insert assms)
 apply (rule hoare-post-weak)
 apply (rule cond-hoare-r' seq-hoare-r|assumption)+
 apply (rule assert-hoare-r')
 using impl-disjI apply blast
 apply (rule hoare-pre-str[where p2 = A])
 apply (simp add: disj-comm impl-alt-def)
 apply assumption
 apply pred-auto
 done

lemma cond-assert-last-hoare-r'[hoare-rules]:
 assumes (⌜b ∧ p⌝ C1 ⌜q⌝u)
 and (⌜¬b ∧ p⌝ C2 ⌜s⌝u)
 and ('q ⇒ A');
and (s ⇒ A)
s shows (p)(if u b then C1 else C2); A⊥p
apply (insert asms)
apply (rule hoare-post-weak)
apply (rule cond-hoare-r' seq-hoare-r[assumption]+)
apply (rule assert-hoare-r')
using impl-disjI apply blast
using refBy-order by fastforce

lemma while-invr-hoare-r[hoare-rules]:
assumes (pre ⇒ p') and (p ∧ b) C p' u
shows (pre while b invr p do C od p' u)
by (metis while-inv-def asms hoare-post-weak hoare-pre-str while-hoare-r)

lemma nu-refine-intro[hoare-rules]:
assumes (C ⇒ S) ⊑ F(C ⇒ S)
shows (C ⇒ S) ⊑ ν F
using asms unfolding hoare-r-def
by (rule nu-refine-intro) auto

definition annot-rec ::
('a upred ⇒ ((bool, 'a) hexpr ⇒ (bool, 'a) hexpr ⇒ (bool, 'a) hexpr)
where
(annot-rec P F ≡ ν F)

syntax
-nu-annot :: (pttrn ⇒ logic ⇒ logic ⇒ logic) (ν - [] · - [0, 10] 10)

translations
ν X [P] · p ≡ CONST annot-rec P (λX. p)

lemma nu-hoare-r:
assumes PRE: (p' ⇒ p)
assumes IH: (p p Q) ⇒ (p F p Q)
shows (p F Q)
apply (rule hoare-pre-str[OF PRE])
using IH
unfolding hoare-r-def
by (rule nu-refine-intro) (rule order-refl)
lemma \textit{nu-hoare-annot-r[hoare-rules]}:
\begin{itemize}
 \item assumes \textit{PRE:} \(\langle P' \Rightarrow P \rangle\)
 \item assumes \textit{IH:} \(\langle \forall p. \{P\} p\{Q\}_u \Rightarrow \{P\} F p\{Q\}_u \rangle\)
 \item shows \(\langle \{P'\} \text{annot-rec } P F \{Q\}_u \rangle\)
\end{itemize}
using \textit{nu-hoare-r assms unfolding annot-rec-def}.

lemmas \textit{[hoare-rules]} =
\begin{itemize}
 \item \textit{cond-hoare-r’} — Needs to come after annotated cond check
 \item \textit{assigns-floyd-r}
 \item \textit{skip-hoare-r}
 \item \textit{seq-hoare-r}
\end{itemize}

named-theorems \textit{vcg-simps}
lemmas \textit{[vcg-simps]} =
\begin{itemize}
 \item \textit{lens-indep.lens-put-irr1}
 \item \textit{lens-indep.lens-put-irr2}
 \item \textit{lens-indep-all-alt}
\end{itemize}

named-theorems \textit{hoare-rules-extra} and \textit{vcg-dests}

method \textit{exp-vcg-pre} = \textit{(simp only: seqr-assoc[symmetric])}, rule \textit{hoare-post-weak}
method \textit{solve-dests} = \textit{safe?; simp?; drule vcg-dests; assumption?; (simp add: vcg-simps)?}
method \textit{solve-vcg} = \textit{assumption|pred-simp?; (simp add: vcg-simps)?;(solve-dests; fail)?}
method \textit{vcg-hoare-rule} = \textit{rule hoare-rules-extra|rule hoare-rules}
method \textit{exp-vcg-step} = \textit{vcg-hoare-rule|solve-vcg; fail}
method \textit{exp-vcg} = \textit{exp-vcg-pre, exp-vcg-step+}

end
Appendix B

Proof Helpers

This chapter contains helper theories and some addons to Isabelle/UTP to lift more HOL functions to the UTP level.

B.1 Binary Operations

definition bv-msb :: ⟨bit list ⇒ bit⟩ where
⟨bv-msb w = (if w = [] then 0 else hd w)⟩

definition bv-extend :: ⟨[nat, bit, bit list] ⇒ bit list⟩ where
\[(bv\text{-}extend \ i \ b \ w = (replicate \ (i - \text{length} \ w) \ b) \ @ \ w)\]

fun \(\text{rem-initial} :: (\text{bit} \Rightarrow \text{bit list} \Rightarrow \text{bit list}) \text{ where}
\)
\[
\begin{align*}
\text{rem-initial} \ [\ & = [] \\
| \text{rem-initial} \ (x \ # \ xs) = (\text{if} \ b = x \ \text{then} \ \text{rem-initial} \ b \ xs \ \text{else} \ x \ # \ xs)
\end{align*}
\]

abbreviation \(\text{norm-unsigned} \equiv \text{rem-initial} \ 0\)

primrec \(\text{norm-signed} :: (\text{bit list} \Rightarrow \text{bit list}) \text{ where}
\)
\[
\begin{align*}
\text{norm-signed-Nil:} & \ (\text{norm-signed} \ []) = [] \\
| \text{norm-signed-Cons:} & \ (\text{norm-signed} \ (b \ # \ bs) = \\
\quad & \ (\text{case} \ b \ of \ 1 \Rightarrow \ b \ # \ \text{rem-initial} \ b \ bs \\
\quad & \quad \text{if} \ \text{norm-unsigned} \ bs = [] \ \text{then} \ [] \ \text{else} \ b \ # \ \text{norm-unsigned} \ bs))
\end{align*}
\]

fun \(\text{nat-to-bv-helper} :: (\text{nat} \Rightarrow \text{bit list} \Rightarrow \text{bit list}) \text{ where}
\)
\[
\begin{align*}
\text{Zeroo:} & \ (\text{nat-to-bv-helper} \ 0 \ bs = bs) \\
| \text{Succ:} & \ (\text{nat-to-bv-helper} \ (\text{Suc} \ n) \ bs = \\
\quad & \ (\text{nat-to-bv-helper} \ (\text{Suc} \ n \ \text{div} \ 2) \ ((\text{if} \ \text{Suc} \ n \ \text{mod} \ 2 = 0 \\
\quad & \quad \text{then} \ (0::\text{bit}) \\
\quad & \quad \text{else} \ (1::\text{bit})) \ # \ bs))
\end{align*}
\]

definition \(\text{nat-to-bv} :: (\text{nat} \Rightarrow \text{bit list}) \text{ where}
\)
\[
\begin{align*}
\text{nat-to-bv} \ n = \text{nat-to-bv-helper} \ n \ []
\end{align*}
\]

abbreviation \(\text{bv-not} \equiv \text{map} \ (\lambda x::\text{bit}. \ NOT \ x)\)

definition \(\text{int-to-bv} :: (\text{int} \Rightarrow \text{bit list}) \text{ where}
\)
\[
\begin{align*}
\text{int-to-bv} \ n = (\text{if} \ 0 \leq n \\
\quad \text{then} \ \text{norm-signed} \ (0 \ # \ \text{nat-to-bv} \ (\text{nat} \ n)) \\
\quad \text{else} \ \text{norm-signed} \ (\text{bv-not} \ (0 \ # \ \text{nat-to-bv} \ (\text{nat} \ (-n - 1)))))))
\end{align*}
\]

primrec \(\text{bitval} :: (\text{bit} \Rightarrow \text{nat}) \text{ where}
\)
\[
\begin{align*}
\text{bitval} \ 0 = 0 \\
| \text{bitval} \ 1 = 1
\end{align*}
\]

definition \(\text{bv-to-nat} :: (\text{bit list} \Rightarrow \text{nat}) \text{ where}
\)
\[
\begin{align*}
\text{bv-to-nat} = \text{foldl} \ (% b n . 2 * b n + \text{bitval} \ b) \ 0
\end{align*}
\]

definition \(\text{bv-to-int} :: (\text{bit list} \Rightarrow \text{int}) \text{ where}
\)
\[
\begin{align*}
\text{bv-to-int} \ w = \\
\quad (\text{case} \ \text{bv-msb} \ w \ \text{of} \ 0 \Rightarrow \ \text{int} \ (\text{bv-to-nat} \ w) \\
\quad \text{|} \ 1 \Rightarrow - \ \text{int} \ (\text{bv-to-nat} \ (\text{bv-not} \ w + 1))
\end{align*}
\]

— convert int to bv of a desired length

definition \(\text{int2bvn} :: (\text{nat} \Rightarrow \text{int} \Rightarrow \text{bit list}) \text{ where}
\)
Appendix B. Proof Helpers

\[\text{int2bvn } n \ a = (\text{let } v = \text{int-to-bv } a \ \text{in } \text{drop} (\text{length } v - n) (\text{bv-extend } n (\text{bv-msb } v) v)) \]

— convert nat to bv of a desired length

definition \(\text{nat2bvn} :: (\text{nat} \Rightarrow \text{nat} \Rightarrow \text{bit list}) \) where

\[\text{nat2bvn } n \ a = (\text{let } v = \text{nat-to-bv } a \ \text{in } \text{drop} (\text{length } v - n) (\text{bv-extend } n (0::\text{bit}) v)) \]

B.1.2 Base definitions for AND/OR/XOR

definition \(\text{s-bitop} :: ((\text{bit} \Rightarrow \text{bit} \Rightarrow \text{bit}) \Rightarrow \text{int} \Rightarrow \text{int} \Rightarrow \text{int}) \) where

\[\text{s-bitop } f \ x \ y \equiv \text{let } v = \text{int-to-bv } x; w = \text{int-to-bv } y \ \text{in} \]

\[\text{bv-to-int} \ (\text{map} (\lambda (a, b). f \ a \ b) \ (\text{zip} (\text{bv-extend} (\text{length } w) (\text{bv-msb } v) v) \ (\text{bv-extend} (\text{length } v) (\text{bv-msb } w) w)))) \]

definition \(\text{u-bitop} :: ((\text{bit} \Rightarrow \text{bit} \Rightarrow \text{bit}) \Rightarrow \text{nat} \Rightarrow \text{nat} \Rightarrow \text{nat}) \) where

\[\text{u-bitop } f \ x \ y \equiv \text{let } v = \text{nat-to-bv } x; w = \text{nat-to-bv } y \ \text{in} \]

\[\text{bv-to-nat} \ (\text{map} (\lambda (a, b). f \ a \ b) \ (\text{zip} (\text{bv-extend} (\text{length } w) (0::\text{bit}) v) \ (\text{bv-extend} (\text{length } v) (0::\text{bit}) w)))) \]

B.1.3 Bit shifting

definition \(\text{s-lsh } x \ w \ a \equiv \text{bv-to-int} \ ((\text{drop } a (\text{int2bvn } w x)) \ @ \ \text{replicate } a \ 0) \)

definition \(\text{u-lsh } x \ w \ a \equiv \text{bv-to-nat} \ ((\text{drop } a (\text{nat2bvn } w x)) \ @ \ \text{replicate } a \ 0) \)

definition \(\text{s-rsh } x \ w \ a \equiv \text{if } a > 0 \text{ then } \text{int} \ (\text{bv-to-nat} \ (\text{take} (w - a) (\text{int2bvn } w x))) \text{ else } x \)

definition \(\text{u-rsh } x \ w \ a \equiv \text{bv-to-nat} \ (\text{take} (\text{length} (\text{nat-to-bv } x) - a) (\text{nat-to-bv } x)) \)

B.1.4 Negation

This subsection covers both plain bitwise NOT and two’s-complement negation (only needed for unsigned/nat values?)

definition \(\text{s-not } w \ x \equiv \text{bv-to-int} \ (\text{bv-not} (\text{int2bvn } w x)) \)

definition \(\text{u-not } w \ x \equiv \text{bv-to-nat} \ (\text{bv-not} (\text{nat2bvn } w x)) \)

definition \(\text{u-neg } w \ x \equiv 1 + \text{u-not } w x \)

end

B.2 Syntax extensions for UTP

theory \(\text{utp-extensions} \)

imports

\(\text{BitOps} \)
We need multisets for concise list invariants for sorting. Also, int/nat conversion is sometimes needed as some loop methods mix array indices and loop variables (which sometimes rely on going below 0 for termination). Bitwise operations and record access/update are included for completeness.

A helper function for record updating.

lift-definition
`rec-update-wrapper :: (\'(a, \'(\alpha)) uexpr) \Rightarrow (\'(a \Rightarrow \'(a, \'(\alpha)) uexpr)`
is
`\langle v s . v s \rangle`.

syntax

-umset :: (\'(a list, \'(\alpha)) uexpr) \Rightarrow (\'(a multiset, \'(\alpha)) uexpr) (mset_u\'(\cdot))
-umat :: (\'(nat, \'(\alpha)) uexpr) \Rightarrow (\'(int, \'(\alpha)) uexpr) (int_u\'(\cdot))
-unit :: (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(nat, \'(\alpha)) uexpr) (nat_u\'(\cdot))

-apply-rec :: (\'(a, \'(\alpha)) uexpr) \Rightarrow utuple-args \Rightarrow (\'(b, \'(\alpha)) uexpr) ([\cdot], [999,0] 999)

-upd-rec :: (\'(a, \'(\alpha)) uexpr) \Rightarrow ((\'(b \Rightarrow \'(b) \Rightarrow \'(a \Rightarrow \'(b, \'(\alpha)) uexpr) \Rightarrow (\'(a, \'(\alpha)) uexpr) (-'/'[\cdot] \rightarrow /\rightarrow /\rightarrow)\rangle [900,0,0] 900)

-ubs-and :: (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(int, \'(\alpha)) uexpr) (infixl \wedge_{bs} 85)

-ubs-or :: (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(int, \'(\alpha)) uexpr) (infixl \vee_{bs} 85)

-ubs-rsh :: (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(nat, \'(\alpha)) uexpr) \Rightarrow (\'(nat, \'(\alpha)) uexpr) (infixl \gg_{bu} 100)

-ubs-lsh :: (\'(int, \'(\alpha)) uexpr) \Rightarrow (\'(nat, \'(\alpha)) uexpr) \Rightarrow (\'(nat, \'(\alpha)) uexpr) (infixl \ll_{bu} 100)

translations

-umset \Rightarrow \text{CONST uop CONST mset}
-unat \Rightarrow \text{CONST uop CONST int}
-unat \Rightarrow \text{CONST uop CONST nat}

`f[bf]f_r` \Rightarrow \text{CONST uop kf f}`
The below lemmas do not seem useful in general but are included for completeness.

Appendix B. Proof Helpers

lift-definition

qiop ::

\[
\begin{align*}
\langle 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e \Rightarrow 'f \rangle \Rightarrow \\
\langle 'a, 'a \rangle \text{ uexpr} \Rightarrow \langle 'b, 'a \rangle \text{ uexpr} \Rightarrow \langle 'c, 'a \rangle \text{ uexpr} \Rightarrow \langle 'd, 'a \rangle \text{ uexpr} \Rightarrow \langle 'e, 'a \rangle \text{ uexpr} \Rightarrow \\
\langle 'f, 'a \rangle \text{ uexpr}
\end{align*}
\]

is \(\lambda f \ u \ v \ w \ x \ y \ z . \ f \ (u \ b) \ (v \ b) \ (w \ b) \ (x \ b) \ (y \ b) \).

lift-definition

sxop ::

\[
\begin{align*}
\langle 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e \Rightarrow 'f \Rightarrow 'g \rangle \Rightarrow \\
\langle 'a, 'a \rangle \text{ uexpr} \Rightarrow \langle 'b, 'a \rangle \text{ uexpr} \Rightarrow \langle 'c, 'a \rangle \text{ uexpr} \Rightarrow \langle 'd, 'a \rangle \text{ uexpr} \Rightarrow \langle 'e, 'a \rangle \text{ uexpr} \Rightarrow \\
\langle 'f, 'a \rangle \text{ uexpr} \Rightarrow \langle 'g, 'a \rangle \text{ uexpr}
\end{align*}
\]

is \(\lambda f \ u \ v \ w \ x \ y \ z \ a \ b . \ f \ (u \ b) \ (v \ b) \ (w \ b) \ (x \ b) \ (y \ b) \ (z \ b) \).

lift-definition

sepop ::

\[
\begin{align*}
\langle 'a \Rightarrow 'b \Rightarrow 'c \Rightarrow 'd \Rightarrow 'e \Rightarrow 'f \Rightarrow 'g \Rightarrow 'h \rangle \Rightarrow \\
\langle 'a, 'a \rangle \text{ uexpr} \Rightarrow \langle 'b, 'a \rangle \text{ uexpr} \Rightarrow \langle 'c, 'a \rangle \text{ uexpr} \Rightarrow \langle 'd, 'a \rangle \text{ uexpr} \Rightarrow \langle 'e, 'a \rangle \text{ uexpr} \Rightarrow \\
\langle 'f, 'a \rangle \text{ uexpr} \Rightarrow \langle 'g, 'a \rangle \text{ uexpr} \Rightarrow \langle 'h, 'a \rangle \text{ uexpr}
\end{align*}
\]

is \(\lambda f \ u \ v \ w \ x \ y \ z \ a \ b . \ f \ (u \ b) \ (v \ b) \ (w \ b) \ (x \ b) \ (y \ b) \ (z \ b) \ (a \ b) \).

update-uexpr-rep-eq-thms

— Necessary to get the above utilized by \{pred,rel\}_{auto,simp}.

The below lemmas do not seem useful in general but are included for completeness.

lemma qiop-ueval [ueval]: \(\langle [\text{qiop} f \ v \ x \ y \ z \ w] \rangle_e \ b = f \ (\llbracket v \rrbracket_e \ b) \ (\llbracket x \rrbracket_e \ b) \ (\llbracket y \rrbracket_e \ b) \ (\llbracket z \rrbracket_e \ b) \ (\llbracket w \rrbracket_e \ b) \);

by transfer simp

lemma subst-qiop [usubst]: \(\sigma \uparrow \text{qiop} f \ t \ u \ v \ w \ x = \text{qiop} f \ (\sigma \uparrow t) \ (\sigma \uparrow u) \ (\sigma \uparrow v) \ (\sigma \uparrow w) \ (\sigma \uparrow x) \);

by transfer simp

lemma unrest-qiop [unrest]: \(\llbracket x \uparrow t \; ; \; x \uparrow u \; ; \; x \uparrow v \; ; \; x \uparrow w \; ; \; x \uparrow y \rrbracket \implies x \uparrow \text{qiop} f \ t \ u \ v \ w \ y \);

by transfer simp

lemma aext-qiop [alpha]:

\(\langle \text{qiop} f \ t \ u \ v \ w \ x \oplus_p a = \text{qiop} f \ (t \oplus_p a) \ (u \oplus_p a) \ (v \oplus_p a) \ (w \oplus_p a) \ (x \oplus_p a) \);

by pred-auto
B.3. VCG Helpers

lemma lit-qiop-simp [lit-simps]:
\langle "i x y z u t" = qiop \ "i x y z u t" \rangle
by transfer simp

lemma szop-ueval [ueval]: ⟨\[szop f v x y z w t]_e b = f ([v]_e b) ([x]_e b) ([y]_e b) ([z]_e b) ([w]_e b) ([t]_e b)\]⟩
by transfer simp

lemma subst-sxop [usubst]:
\langle \sigma \uplus sxop f t u v w x y = sxop f (\sigma \uplus t) (\sigma \uplus u) (\sigma \uplus v) (\sigma \uplus w) (\sigma \uplus x) (\sigma \uplus y) \rangle
by transfer simp

lemma unrest-sxop [unrest]: ⟨\[x \# t; x \# u; x \# v; x \# w; x \# y; x \# z] \mapsto x \# sxop f t u v w y z⟩
by transfer simp

lemma aext-sxop [alpha]:
\langle sxop f t u v w x y \uplus_p a = sxop f (t \uplus_p a) (u \uplus_p a) (v \uplus_p a) (w \uplus_p a) (x \uplus_p a) (y \uplus_p a) \rangle
by pred-auto

lemma lit-sxop-simp [lit-simps]:
\langle "i x y z u t v" = sxop \ "i x y z u t v" \rangle
by transfer simp

end

B.3 VCG Helpers

theory vcg-helpers
 imports utp-extensions
begin

lemma disjE1:
assumes ⟨P \lor Q⟩
and ⟨P \Rightarrow R⟩
and ⟨\lnot P \Rightarrow Q \Rightarrow R⟩
shows ⟨R⟩
using assms by blast

lemma insert-with-sorted:
assumes ⟨\text{sorted} (xs_1 \@ xs_2)⟩
and ⟨\forall y \in \text{set} xs_2, x < y⟩
and ⟨x \geq \text{last} xs_1⟩
and ⟨xs_1 \neq []⟩
shows ⟨\text{sorted} (xs_1 \@ x \# xs_2)⟩
using assms
by (auto simp: sorted-append sorted-Cons) (smt One_nat_def Suc-pred diff-Suc-less
dual-order.trans in-set-conv-nth last-conv-nth leD length_greater_0_conv not_less_eq_eq
sorted-nth_mono)

B.3.1 Swap

The below definition provides an easy-to-understand swap-elements-at-i-and-(i-1) function.

definition ⟨swap-at i xs = xs[i := xs!(i-1), i-1 := xs!i]⟩
abbreviation ⟨swap-at_u ≡ bop swap-at⟩

The below definition provides a more general swap function.

definition ⟨swap i j xs = xs[i := xs!j, j := xs!i]⟩
abbreviation ⟨swap_u ≡ trop swap⟩

lemma mset-swap[simp]:
assumes ⟨i < length xs⟩
and ⟨j < length xs⟩
shows ⟨mset (swap i j xs) = mset xs⟩
using assms unfolding swap-def
by (simp add: mset-swap)

lemma set-swap[simp]:
assumes ⟨i < length xs⟩
and ⟨j < length xs⟩
shows ⟨set (swap i j xs) = set xs⟩
using assms unfolding swap-def
by simp

lemma swap-commute:
⟨swap i j xs = swap j i xs⟩
unfolding swap-def
by (cases i = j) (auto simp: list-update-swap)

lemma swap-id[simp]:
assumes ⟨i < length xs⟩
shows ⟨swap i i xs = xs⟩
using assms unfolding swap-def
by simp

lemma drop-swap[simp]:
assumes ⟨i < n⟩
and ⟨j < n⟩
shows ⟨drop n (swap i j xs) = drop n xs⟩
B.3. VCG Helpers

Using `assms unfolding swap-def` by `simp`.

Lemma `take-swap[simp]`:
- **Assumes**: `<n ≤ i>` and `<n ≤ j>`
- **Shows**: `(take n (swap i j xs) = take n xs)`
 Using `assms unfolding swap-def` by `simp`.

Lemma `swap-length-id[simp]`:
- **Assumes**: `<i < length xs>` and `<j < length xs>`
- **Shows**: `(length (swap i j xs) = length xs)`
 Using `assms unfolding swap-def` by `simp`.

Lemma `swap-nth1[simp]`:
- **Assumes**: `<i < length xs>` and `<j < length xs>`
- **Shows**: `(swap i j xs ! i = xs ! j)`
 Using `assms unfolding swap-def` by `(simp add: nth-list-update)`.

Lemma `swap-nth2[simp]`:
- **Assumes**: `<i < length xs>` and `<j < length xs>`
- **Shows**: `(swap i j xs ! j = xs ! i)`
 Using `assms unfolding swap-def` by `(simp add: nth-list-update)`.

B.3.2 Slice

Definition `(slice l u A ≡ drop l (take u A))`

Abbreviation `(slice_u ≡ trop slice)`

Lemma `slice-empty[simp]`:
- **Assumes**: `<i ≥ j>`
- **Shows**: `(slice i j xs = [])`
 Using `assms unfolding slice-def` by `simp`.

Lemma `slice-nonempty[simp]`:
- **Assumes**: `<i < j>` and `<i < length xs>`
shows $\langle \text{slice } i \ j \ xs \neq [] \rangle$
using assms unfolding slice-def
by simp

lemma slice-suc2-eq:
assumes $\langle j < \text{length } xs \rangle$
and $\langle i \leq j \rangle$
shows $\langle \text{slice } i \ (\text{Suc } j) \ xs = \text{slice } i \ j \ xs \ @ [xs!j] \rangle$
using assms unfolding slice-def
by (metis diff-is-0-eq drop-0 drop-append length-take less-imp-le min.absorb2
take-Suc-conv-app-nth)

lemma slice-update-outofbounds-upper[simp]:
assumes $\langle j \leq k \rangle$
shows $\langle \text{slice } i \ j \ (xs[k := l]) = \text{slice } i \ j \ xs \rangle$
using assms unfolding slice-def
by simp

lemma slice-update2-outofbounds-lower[simp]:
assumes $\langle k < i \rangle$
shows $\langle \text{slice } i \ j \ (xs[k := l]) = \text{slice } i \ j \ xs \rangle$
using assms unfolding slice-def
by (simp add: drop-take)

lemma drop-set-conv-nth:
$\langle \text{set} \ (\text{drop } i \ xs) = \{xs!k \mid k. \ i \leq k \land k < \text{length } xs\} \rangle$
apply (induction xs rule: rev-induct)
apply (auto simp: nth-append)
by (metis (no-types, lifting) Suc-pred cancel-comm-monoid-add-class.diff-cancel diff-is-0-eq
drop-Cons' drop-Nil in-set-conv-nth length-drop length-pos-if-in-set lessI less-Suc0
less-not-refl)

lemma take-set-conv-nth:
$\langle \text{set} \ (\text{take } i \ xs) = \{xs!k \mid k. \ k < \text{min } i \ (\text{length } xs)\} \rangle$
apply (induction i)
apply auto
apply (smt in-set-conv-nth le-eq-less-or-eq length-take less-Suc-eq less-le-trans min.absorb2
not-less-eq-eq nth-take take-all)
using in-set-conv-nth by fastforce

lemma slice-set-conv-nth:
$\langle \text{set} \ (\text{slice } i \ j \ xs) = \{xs!k \mid k. \ i \leq k \land k < j \land k < \text{length } xs\} \rangle$
unfolding slice-def
by (auto simp: drop-set-conv-nth take-set-conv-nth) force
lemma slice-update-extract:
 assumes \(\langle lo \leq i \rangle \) and \(\langle i < hi \rangle \)
 shows \(\langle \text{slice} \ lo \ hi \ (A[i := x]) = (\text{slice} \ lo \ hi \ A)[i-lo := x] \rangle \)
 using assms unfolding slice-def
 by (simp add: drop-update-swap take-update-swap)

lemma slice-length[simp]:
 assumes \(\langle lo \leq hi \rangle \)
 and \(\langle hi \leq \text{length} \ xs \rangle \)
 shows \(\langle \text{length} \ (\text{slice} \ lo \ hi \ xs) = hi - lo \rangle \)
 using assms unfolding slice-def
 by simp

lemma nth-slice-offset[simp]:
 assumes \(\langle i < hi - lo \rangle \)
 and \(\langle lo \leq hi \rangle \)
 and \(\langle hi \leq \text{length} \ xs \rangle \)
 shows \(\langle (\text{slice} \ lo \ hi \ xs)!i = xs!(i + lo) \rangle \)
 using assms unfolding slice-def
 by (simp add: add.commute min.absorb2)

lemma slice-merge[simp]:
 assumes \(\langle lo \leq i \rangle \)
 and \(\langle i \leq hi \rangle \)
 and \(\langle hi < \text{length} \ xs \rangle \)
 shows \(\langle \text{slice} \ lo \ i \ xs @ \text{slice} \ i \ hi \ xs = \text{slice} \ lo \ hi \ xs \rangle \)
 using assms unfolding slice-def
 by (smt append-take-drop-id diff-is-0-eq drop-0 drop-append length-take less-or-eq-imp-le min.absorb2 take-take)

lemma element-in-set-of-slice: — May not be useful
 assumes \(\langle lo \leq i \rangle \)
 and \(\langle i < hi \rangle \)
 and \(\langle i < \text{length} \ xs \rangle \)
 shows \(\langle xs!i \in \text{set} \ (\text{slice} \ lo \ hi \ xs) \rangle \)
 using assms
 by (auto simp: slice-set-conv-nth)

lemma take-slice[simp]: \(\langle \text{take} \ n \ (\text{slice} \ lo \ hi \ xs) = \text{slice} \ lo \ (\text{min} \ (n + lo) \ hi) \ xs \rangle \)
unfolding slice-def by (simp add: take-drop)

lemma drop-slice[simp]:
 \(\langle \text{drop} \ n \ (\text{slice} \ lo \ hi \ xs) = \text{slice} \ (n + lo) \ hi \ xs \rangle \)
unfolding slice-def by simp
B.3.3 Swap and Slice together

lemma slice-swap-extract:
assumes \(\langle lo \leq i \rangle \)
and \(\langle lo \leq j \rangle \)
and \(\langle i < hi \rangle \)
and \(\langle j < hi \rangle \)
and \(\langle i < \text{length } xs \lor j < \text{length } xs \rangle \) — Not sure why it doesn’t need both at once.
shows \(\langle \text{slice } lo \ hi \ (\text{swap } i \ j \ xs) = \text{swap } (i - lo) \ (j - lo) \ (\text{slice } lo \ hi \ xs) \rangle \)
using assms unfolding slice-def swap-def
by (smt append-take-drop-id drop-update-swap le-cases length-take min.absorb2 not-less nth-append order-trans take-all take-update-swap)

lemma mset-slice-swap[simp]:
assumes \(\langle lo \leq i \rangle \)
and \(\langle lo \leq j \rangle \)
and \(\langle i < hi \rangle \)
and \(\langle j < hi \rangle \)
and \(\langle i < \text{length } xs \rangle \)
and \(\langle j < \text{length } xs \rangle \)
shows \(\langle \text{mset } (\text{slice } lo \ hi \ (\text{swap } i \ j \ xs)) = \text{mset } (\text{slice } lo \ hi \ xs) \rangle \)
using assms
apply (simp add: slice-swap-extract)
unfolding slice-def
by simp

lemma set-slice-swap[simp]:
assumes \(\langle lo \leq i \rangle \)
and \(\langle lo \leq j \rangle \)
and \(\langle i < hi \rangle \)
and \(\langle j < hi \rangle \)
and \(\langle i < \text{length } xs \rangle \)
and \(\langle j < \text{length } xs \rangle \)
shows \(\langle \text{set } (\text{slice } lo \ hi \ (\text{swap } i \ j \ xs)) = \text{set } (\text{slice } lo \ hi \ xs) \rangle \)
using assms
apply (simp add: slice-swap-extract)
unfolding slice-def
by simp

lemma set-slice-swap-greaterthan: — Not all that useful. Could be more general.
fixes xs :: (\:::linorder list)
assumes \(\forall x \in \text{set } (\text{slice } i \ hi \ xs). \ x \geq xs!hi \)
and \(\langle i \leq hi \rangle \)
and \(\langle hi < \text{length } xs \rangle \)
B.3. VCG Helpers

shows $\forall x \in \text{set} \ (\text{slice } i \ (\text{Suc } hi) \ (\text{swap } i \ hi \ xs)), \ x \geq xs!hi$
using assms
apply auto — First application cannot use $[?j < #u(?xs); \ ?i \leq \ ?j] \implies \text{slice } ?i \ (\text{Suc } ?j) \ ?xs = \text{slice } ?i \ ?j \ ?xs \mathbin{\@} [?xs(?j)\mathbin{a}]$ or we get an extra goal.
by (auto simp: slice-suc2-eq)

lemma slice-swap1[simp]:
assumes $(i < lo)$
and $(j < lo)$
shows $(\text{slice } lo \ hi \ (\text{swap } i \ j \ xs) = \text{slice } lo \ hi \ xs)$
using assms unfolding slice-def swap-def
by (simp add: drop-take)

lemma slice-swap2[simp]:
assumes $(hi \leq i)$
and $(hi \leq j)$
shows $(\text{slice } lo \ hi \ (\text{swap } i \ j \ xs) = \text{slice } lo \ hi \ xs)$
using assms unfolding slice-def swap-def
by simp

B.3.4 Sorting pivots

definition $(\text{pivot-invr } i \ A \equiv \forall x \in \text{set} \ (\text{take } i \ A). \ \forall y \in \text{set} \ (\text{drop } i \ A). \ x \leq y)$
abbreviation $(\text{pivot-invr}_u \equiv \text{bop pivot-invr})$

B.3.5 Miscellaneous

lemma upred-taut-refl: $(\forall A \Rightarrow A)$
by pred-simp
Minor helper for blocks in partial correctness (currently unused.)
abbreviation $(\text{stet } v \ s \equiv \sqsubset[v]e \ s\rangle)$

end