
SOLR
Final Presentation

Team Members:
Abhinav, Anand, Jeff, Mohit, Shreyas, Siyu, Xinyue, Yu

CS 5604, Fall 2017
Advised by Dr. Fox

Virginia Tech, Blacksburg, VA 24061

Overview

1. Updates
2. In Theory
3. Process, Improvements & Results
4. Quality Control
5. Geolocation
6. Recommendation
7. Future Work

UPDATES

Changes made to HBase Schema from previous
presentation

Fields added:

● topic:topic-displaynames
● cluster:cluster-displaynames
● classification:classification-displaynames

Updates - SOLR Fall 2017
schema.xml No geospatial search

function
Copyfields
#fields = 30

Feature added
Copy and geoblacklight fields present
#fields = 50+
Using DocValues to speed up faceting
Index time field boosting

Morphline ETL Datetime, multi-valued
field parser, multiple field
types

Extraction, cleaning, sanity check of
data from HBase
Timestamp conversion
Records manipulation

Indexing 1.2 billion tweets 12,564 web pages and 5.9mil tweets

Incremental Indexing Tested on VC Tested on VC

Recommendation &
Ranking

Didn't use clustering and
classification for
recommendation

Recommendation handler based on
clustering and classification results;
personalized recommendation

Fall 2016 Fall 2017

In Theory

SOLR document scoring
1. tf : sqrt(freq)
2. idf : log(numDocs / (docFreq + 1)) + 1
3. fieldWeight
4. fieldNorm : 1 / sqrt(numTerms)

Search for all tweets containing terms “vegas”

"914864995565031425": 2.2832668 = (MATCH) weight(text:vegas in 171455),
result of: 2.2832668 = fieldWeight in 171455, product of: 1.4142135 = tf(freq=2.0),
with freq of: 2.0; 6.4580536 = idf(docFreq=25492, maxDocs=5981684); 0.25 =
fieldNorm(doc=171455)

Process, Improvements &
Results

Software Packages and Versions
Cloudera CDH (Cloudera's Distribution Including Apache Hadoop) version 5.12.0

Key packages included:

1. hadoop-hdfs (2.6.0)
2. hbase-solr (1.5)
3. hbase (1.2)
4. kite (1.0.0)
5. solr (4.10.3)
6. zookeeper (3.4.5)

For complete list visit:
https://archive.cloudera.com/cdh5/parcels/5.12.0/manifest.json

In Context
● Information

○ Tweets and Webpages

● Storage
○ Extract

■ From Hbase (using morphline)
○ Transform

■ Into Solr document (using morphline)
■ Cleaning (using morphline)
■ Deriving new field (using morphline and Hadoop)

○ Load
■ Indexing

● Retrieval
○ Queries from GeoBlackight and Visualization team
○ Recommendation

The Process

Solr Schema Challenges & Solutions
Challenges:

● All the data needs to be indexed in a single core
● Support 2 FE clients
● Multiple (2) input formats (webpage, tweet) and single output format

Solution:

● Separate morphline file for each input format
● Separate indexing operation for each input format
● Input format identified by ‘dc_format_s’ field

Better performance using DocValues
DocValues are a way of recording field values internally that is more efficient for some
purposes, such as sorting and faceting, than traditional indexing

Traditional Solr Indexing

Document Terms Documents

Indexing with DocValues

Documents Terms

Examples
<field name="cluster" type="string" indexed="true" multiValued="false" docValues="true"/>

<field name="category" type="string" indexed="true" stored="true" multiValued="true" docValues="true"/>

Index time document boosting
1. Using copyField

Solr provides a functionality to copy values from one field to another during indexing. We can use this
feature to copy the field which needs to be boosted in our default search field i.e. ‘text’.

<field name="keywords_boost" type="text_general" indexed="true" multiValued="true"/>
<copyField source="*_boost" dest="text"/>

This form of boosting works because after copying, the value of the boosted field is present twice as
many times as other values.

Index time document boosting
2. Using payloads (available from Solr 6.x)

Our use cases:
a. Boosting NER terms
b. Multivalue boosting of topics, clusters

and keyword terms

Example: Below we have 2 documents where content of the field ‘vals_dpf’ is boosted variably based
on the words. In document id ‘1’, word ‘one’ has a boosting of 1.0, word ‘two’ has a boosting of 2.0,
and so on.

Key Stats & Figures
Collection Type Document Count Time Memory

(Heap Usage)

Webpage 12,564 Map: 88 sec

Reduce: 531 sec

789 MB

Tweets 5,969,120 Map: 780 sec

Reduce: 5300 sec

3 GB

Quality Control

Index Quality Control
Validation and conversion of indexed data through morphline process in lily
indexer.

● Fix records that are not formatted well in HBase
● Timestamp conversion: According to Solr datetime format
● Geo-data conversion: from string to double
● URL status code check: depends on given status code, decide whether to drop

records
● Sanitize unknown Solr fields: remove fields that could not be recognized by

Solr to avoid Solr errors
● Drop invalid and unnecessary records
● Log record at debug level to SLF4J: Log record content to log file or screen for

debug and test

Examples
● Remove unrelated categories

● Use regex to validate geo coordinates format

Example for fixing data format:
Input from HBase:

“<a
href=\"https://about.twitter.com/pro
ducts/tweetdeck\"
rel=\"nofollow\">TweetDeck”

Output for Solr records:

TweetDeck

This practice could be extended to
many kinds of data format issues in
HBase.

Example for dropping specific records
Drop webpage records that contain bad status code: 0404, 0400 etc.

This is a good practice showing that any data related teams could use customized
indicators in HBase and then Solr team could recognize it to ensure the indexed
data quality.

Other things could be done

● Remove fields
● Add/Remove values to/from fields
● Index certain amount of records
● Find and replace fields

More complex:

● Use Grok to extract information through regex (E.g., log data)
● Produce GeoIP from IP Addresses
● Etc.

Geolocation

Document Geolocation

Determine bounding box for place names from SNER-location
Primarily for FE/visualization, additionally for indexing/searching

Data from Mapzen, OpenStreetMap, OpenAddresses.io
Countries, States, Counties, Cities, Parks, Bodies of Water, etc...
>4,500,000 place names

Using map-reduce and suffix arrays, each NER location name was matched to a
location name from the bounding box data. The corresponding bounding box was then
added to each document.

Populated solr_geom field for 324714 tweets and 4442 webpages

Considered using Google maps API but would have been slow due to rate-limiting

Geospatial Search

● Indexed geolocation as SpatialRecursivePrefixTreeFieldTypelocation_rpt
instead of string

● This gives us ability to search in following ways
○ Geofilt

■ Input [centre lat,lon and radius of circle]

○ Bbox
■ Input [centre lat,lon and radius of circle]

○ Range query on a rectangular box
■ Input [lower left lat,lon TO top right lat,lon]

Recommendation

Recommendation System

1.MoreLikeThis Handler(MLT)

Based on text similarity, we made MoreLikeThis Handler recommend more similar documents to
users when they are viewing one document. ----------(Specific recommendation)

2.Cluster_Classification Recommend Handler

Based on Clustering and Classification results, we made a Handler which can recommend
documents belong to same cluster and class. ---------- (More general recommendation)

In order to avoid large cluster or large class problems, we first will recommend documents
belonging to the same cluster and class. This can make the recommendation more accurate.

Recommendation System

3. Personal Recommendation System

When users share common search interests they will be recommended documents
they haven’t searched but were searched by user with common search interest.

E.g. A : Hurricane,Houston,safety,shooting - Recommendation - vegas,hospitals
 B : Houston,safety,vegas,hospitals, - Recommendation - Hurricane,shooting

Image below shows a SQLite table (columns separated by |) , The first column is user id,
second is keywords and third column are recommended items for the user.

Future Work

1. Collect more user data, implement more complex
recommendation handler.

2. Configure Live Indexing mode on Hadoop cluster.
3. Load testing

ACKNOWLEDGMENTS

This material is based upon work in the Global Event and Trend
Archive Research (GETAR) project, supported by the National Science

Foundation under Grant No. IIS-1619028

