Final Report
CS 5604: Information Storage and Retrieval
Solr Team
Abhinav Kumar, Anand Bangad, Jeff Robertson, Mohit Garg,
Shreyas Ramesh, Siyu Mi, Xinyue Wang, Yu Wang
January 16, 2018
Instructed by Professor Edward A. Fox
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
1
Abstract
The Digital Library Research Laboratory (DLRL) has collected over 1.5 billion tweets and
millions of webpages for the Integrated Digital Event Archiving and Library (IDEAL) and
Global Event Trend Archive Research (GETAR) projects [6]. We are using a 21 node Cloudera
Hadoop cluster to store and retrieve this information. One goal of this project is to expand
the data collection to include more web archives and geospatial data beyond what previously
had been collected. Another important part in this project is optimizing the current system to
analyze and allow access to the new data. To accomplish these goals, this project is separated
into 6 parts with corresponding teams: Classification (CLA), Collection Management Tweets
(CMT), Collection Management Webpages (CMW), Clustering and Topic Analysis (CTA),
Front-end (FE), and SOLR. This report describes the work completed by the SOLR team
which improves the current searching and storage system. We include the general architecture
and an overview of the current system. We present the part that Solr plays within the
whole system with more detail. We talk about our goals, procedures, and conclusions on
the improvements we made to the current Solr system. This report also describes how we
coordinate with other teams to accomplish the project at a higher level. Additionally, we
provide manuals for future readers who might need to replicate our experiments. The main
components within the Cloudera Hadoop cluster that the SOLR team interacts with include:
Solr searching engine, HBase database, Lily indexer, Hive database, HDFS file system, Solr
recommendation plugin, and Mahout. Our work focuses on HBase design, data quality control,
search recommendations, and result ranking.
Overall, through out the semester, we have processed 12,564 web pages and 5.9 million
tweets. In order to cooperate with Geo Blacklight, we make major changes on Solr schema.
We also play as a data quality control gateway for the Front End team and deliver the
finalized data for them. As to search recommendation, we provide search recommendation
such as MoreLikeThis plugin within Solr for recommending relative records from search results,
and a custom recommendation system based on user behavior to provide user based search
recommendations. After the fine tuning over final weeks of semester, we successfully allowed
effective connection of results from data relative teams and delivered them to the front end
through a Solr core.
2
Contents
Abstract 2
List of Tables 5
List of Figures 6
1 Overview 7
1.1 Management . 7
1.2 Challenges Faced . 7
1.3 Process . 7
1.4 Solutions Developed . 8
1.5 Future Work . 9
2 Literature Review 11
3 Requirements 12
4 Design 14
4.1 Previous System Design . 14
4.2 Current Design . 15
4.2.1 HBase Schema . 15
4.2.2 Quality Control . 15
4.2.3 Recommender Systems . 16
5 Implementation 19
5.1 Overview . 19
5.2 Timeline . 19
5.3 Milestones and Deliverables . 21
5.4 SNER GeoLocation . 22
5.5 Results . 22
6 User Manual 23
6.1 Install Solr system . 23
6.1.1 Available Solr packages . 23
6.1.2 Start Solr . 23
6.1.3 Check if Solr is running . 23
6.2 Solr Admin Interface . 23
6.3 Solr Query . 24
6.3.1 Query Parameters . 25
6.3.2 Query Syntax . 26
6.3.3 Function Query . 27
6.4 Spatial Search . 28
6.5 Document Recommendation . 29
6.5.1 MLT Syntax . 30
3
6.5.2 CTACFA Handler Syntax . 30
6.5.3 Solr Admin UI . 30
6.5.4 Relevancy Boosting . 32
7 Developer Manual 33
7.1 Solr . 33
7.1.1 Architecture . 33
7.1.2 Installation . 34
7.1.3 Tutorial . 35
7.2 HBase . 43
7.2.1 Architecture . 43
7.2.2 Tutorial . 44
7.3 Lily HBase Indexer . 46
7.3.1 Overview . 46
7.3.2 Live Mode Indexing . 46
7.3.3 Batch Mode Indexing . 48
7.3.4 Incremental Indexing Using NRT Indexer . 49
7.4 Recommender Systems . 50
7.4.1 Architecture . 50
7.4.2 Configuration for Handler . 51
7.4.3 Tutorial for Personalized Recommendation 51
8 Cluster Developer Manual 53
8.1 Access Cluster Solr Web UI . 53
8.1.1 Secure Pipes . 53
8.1.2 SSH Tunneling . 53
8.2 Command Examples on Cluster . 54
8.2.1 Solr Commands . 54
8.2.2 Lily Indexer Commands . 54
8.2.3 Morphline.conf Reference . 54
Bibliography 56
Appendix A: HBase Schema 57
4
List of Tables
1 Improvements Compared to Last Year’s Work . 13
2 Tasks and Timeline . 19
3 Milestones . 21
4 Deliverables . 21
5 Key results of Solr team . 22
6 Core Query Parameters . 25
7 Common Query Parameters . 25
8 Common MLT Parameters . 29
9 HBase Schema . 57
5
List of Figures
1 Process followed by Solr team . 8
2 Position of Solr in the data flow . 9
3 Architecture of the IDEAL Project [13] . 14
4 An overview of the schema in HBase for our project 15
5 MovieLens Sample . 16
6 Solr Admin Dashboard . 24
7 MoreLikeThis . 31
8 CFACTA Handler . 32
9 The Solr Architecture . 33
10 Get a list of all the documents where the screen name ends with ‘a’ 37
11 Get a list of all the documents where the screen name ends with ‘a’ and language
is English . 38
12 Get a list of all the documents whose language is English. The documents should
be sorted by created_time_dt. 39
13 Get 2 documents where the language is English . 40
14 Fetch documents where the language is English. Response should only contain
screen names . 41
15 Fetch all the documents where language is English. Use XML for the response type. 42
16 The Architecture of HBase . 43
17 Get the small Twitter collection for testing . 44
18 HDFS ls example . 44
19 Hadoop status check . 45
20 HBase create table example . 45
21 Recommendation System Architecture . 50
6
1 Overview
1.1 Management
There are 8 members in our team, so team management is crucial to accomplish the project goal.
In general, we think working in pairs is a great strategy for making progress. Therefore, we tend
to divide our tasks into four subtasks and assign a pair of teammates to each one. Including class
sessions, we met 3 times a week to communicate about our progress and plan ahead for future
work. Because SOLR acts as the interface between the data processing teams and the front end
developers, we also use class sessions to coordinate schema design with other teams.
We have adopted several tools within the group to achieve efficient collaboration. We use
Google Team Drive for documentation and file exchange, Slack for team communication, and
GitHub for code collaboration and project management.
1.2 Challenges Faced
The first major challenge that we faced was learning all of the technologies involved. Components
inside the Cloudera Hadoop ecosystem which are new to us and are relevant to this project include
Solr, Lily, HBase, and HDFS. For this reason, we needed an efficient plan to overcome the difficult
learning curve; we will discuss this in the next section.
Along with learning new technologies, reviewing the relevant literature has consumed a large
amount of our time. Because our main goal is to optimize the current system based on previous
development [13], we need to have a thorough understanding of the pros and cons of previous work.
Additionally, all relevant technologies are under active development at the quick pace of the tech
industry, so we need to keep up with new solutions that are potentially beneficial to our system
that might not have existed for previous work on this project.
Furthermore, the SOLR team plays a crucial role coordinating among all the teams. With
respect to data storage, we are responsible for communicating with the CLA, CMT, CMW, and
CTA teams to design the HBase schema to facilitate data exchange. We also need to work closely
with the FE team to optimize the quality and speed of searches to provide a good user experience.
We need to consistently talk to each team so that we can agree on the project plan at a high level.
One of the most important and unique challenges we faced this year was regarding the schema
development and indexing. These challenges owe to the fact that we had to ingest data from
two input sources, i.e., web pages and tweets, and support two clients, i.e., GeoBlacklight and
Visualization. To explain this problem let us take an example. GeoBlacklight requires a field
called “dc_title_s’ which holds the title of the returned document. For a web page this field is
mapped to the web page:title column, while for tweets it is mapped to tweet:user_screen_name.
To solve this we have to create separate morphline files for web pages and tweets, and index them
separately.
1.3 Process
In this section we will give a brief overview of the steps we followed to get our system up and
running. We started with creation of an HBase schema. The CMT, CMW, CLA ,and CTA teams
use this schema to provide the data required by front end systems. We then created a Solr schema
7
which strictly follows the requirements of both GeoBlacklight and Visualization team. Once the
schema file is created we index the data present in HBase into Solr. This is done using a Cloudera
CDH map reduce process. We use Morphline as our ETL (Extract Tranform Load) pipeline to
perform various kinds of cleaning and transform operations. Once all the data is indexed we present
the Solr core to the front end systems for review. The front end team evaluates the contents of
the core and provides feedback. Feedback can include request of new fields, changing field names,
or changing the format of field values. We then go through the entire cycle again to incorporate
the feedback.
Figure 1: Process followed by Solr team
1.4 Solutions Developed
To facilitate learning the new technologies, we divided our team into 4 pairs. Each of the four
pairs was responsible for one of the tools involved: HBase, Lily Indexer, Solr functionality, and Solr
queries. Each pair also created a user manual for their corresponding part. During our meetings,
we put our progress together and go through the whole process so that everyone achieves the same
understanding about the whole system. We have one powerful machine set up with Cloudera VM
and a team server with partial functionality including Hadoop, HBase, and Solr running. We ran
through all processes on our machines to test our work and to be prepared to operate on the real
cluster. At the same time, each pair also worked on the literature review for their part, to find
potential improvements.
In order to have successful team management, we also created a task table that tracks team
tasks. It is shown in detail in the implementation section.
8
Figure 2: Position of Solr in the data flow
To coordinate with the other teams, we actively talked with the data collection and analysis
teams to agree on the HBase schema design. We have also gotten feedback from the FE team
about how they would like to perform queries which could be built on in future work.
1.5 Future Work
One aspect of this project we hope to introduce which was not covered in previous work is handling
geospatial data. We will need to work closely with other teams on the processing pipeline to be
able to fully utilize this unique type of data. We will work on providing fast queries along with
corresponding geospatial coordinate data for the FE team.
Additionally, we focused on the recommender system, which is significantly based on previous
development. We worked on this in two components: Solr’s More-Like-This plugin and Association
rules. Solr’s More-Like-This can help us when users are visiting some documents. It can generate
some relevant documents based on text similarity because users may be interested in closely related
content. But only supporting More-Like-This is not enough. We apply association rules, which
can help us when two users have overlapping interests in topics, so we can recommend to users
9
other topics which they may have not been seen before.
We also considered linking Solr with the Hive data storage system. Hive is a powerful data
search engine based on SQL operation within the Cloudera Ecosystem. Hive performs better for
relational databases than HBase does due to its support of SQL MapReduce operations. Because
of this, Hive could potentially provide significant analytical capabilities that we could make use
of. However, no other teams expressed any interest in using Hive, so we did not pursue getting it
to work.
10
2 Literature Review
The textbook “Introduction to Information Retrieval” [14] provides a strong theoretical background
on many concepts that are important for us in understanding information retrieval. For example,
Chapter 4 explains how to construct indices. There are several ways to pre-process documents
so as to speed up their retrieval. All of these fall under the general term ‘indexing’: an index
is a structure that facilitates rapid location of items of interest, an electronic analog of a book’s
index. We learned about single-pass in-memory indexing, an algorithm that has beneficial scaling
properties because it only handles as much text as can fit in main memory at one time, allowing it
to be used on arbitrarily large corpora. We also learned about indexing in distributed systems and
dynamic indexing which can help us understand Solr and Lily. We hope that using these ideas will
allow us to better optimize Solr. In Chapter 5, we learned index compression which can help us
reduce disk space. It also has some more subtle benefits, such as increasing the use of caching and
facilitating transferring data from disk to memory. From Chapter 8, we learned how to evaluate
information retrieval systems which can help us get feedback every time we make some change in
Solr and show the experiment results to others.
From Apache Solr’s official website [2], we learned about many of the features Solr provides.
For example, Solr has advanced full-text search capabilities, powered by Lucene. Solr has powerful
matching capabilities including phrases, wildcards, joins, grouping, and much more across multiple
data types. Also, Solr has near real-time indexing. This takes advantage of Lucene’s Near Real-
Time Indexing capabilities to make sure you see content immediately after it has been processed.
On top of that, Solr provides an extensible plugin architecture which makes it easy to plug in both
index and query time plugins.
In the official reference guide [3], there are detailed instructions about how to use Solr, and
some basic data operations for Solr. For example, it shows how to use the Solr administration user
interface and how to perform index operations such as commit, optimize, and rollback.
From Wide & Deep Learning for Recommender Systems [11], we learned about jointly trained
wide linear models and deep neural networks, and how to combine the benefits of memorization
and generalization for recommender systems. We were inspired by this idea while implementing
the recommender system.
We also benefited greatly from the report from this same project from last year [13]. It covers
many of the same things that we present here. See Table 1 for a comparison between our work
and the work completed in 2016.
11
3 Requirements
This is a list of requirements that we hoped to satisfy through this project.
1. Build a Solr schema to index data from the HBase column families populated by the data
collection and analysis teams.
2. Configure the Lily indexer to add the support of Near Real Time (NRT) indexing for the
data received from the HBase column families. This requires updating Lily configuration
files without breaking the current batch indexing support.
3. Create a custom ranking function in the existing Solr query processor using the data from
the new HBase column families to improve the Solr search query results.
4. Create a Recommender System which makes use of content as well as user information. We
will use classification and clustering results for building this recommender system. Use the
MoreLikeThis tool and develop some supplementary recommendation algorithms to provide
recommendation system functionality.
5. Implement GeoSpatial Search – Using this we will be able to index points or other shapes
and sort or boost scoring by distance between points.
6. Create Solr logs which contain user access data. The info might include user names, their
login/logout information, search queries, and documents or tweets clicked on.
7. Optimize the Solr ranking function to give accurate results.
8. Link Solr with the Hive data storage system.
Hive can serve better for relational database operations than HBase because it allows for
querying data stored on HDFS for analysis via HQL, an SQL-like language that gets trans-
lated to MapReduce jobs. Hive could be used for analytical querying of data collected over a
period of time for tasks such as calculating trends or processing web page logs. These might
be done using off-line analytics instead of real time querying.
Here we raise one example that could possibly be implemented through Hive. Hive can store
user action logs from the FE team and be utilized by offline recommendation systems to do
some analysis job. Then, result data could be populated into HBase for Solr to access.
Currently we will list this as lower priority work since no team claimed such need for Hive
storage. As to the recommendation system, we made an agreement with the FE team on
using the MySQL database instead of Hive. If any team thinks of a good use for Hive and
intends to use it, please contact us.
Table 1 represents our requirements compared to last year [13]; fields with star symbols indicate
areas yet to be completed:
12
Table 1: Improvements Compared to Last Year’s Work
Fall 2016 Fall 2017
schema.xml Fine Grained Improved code conventionNo web page fields web page and Classification fields
morphlines.xml Support Type: String, Text, Date Support Type: String, Date, Text, FloatDuplicate index fields Duplicates removed
Collection Indexed
1.2 billion tweets collection 5.9 million tweets collection
12 thousand Web pages collection
Eclipse Tweet collection
Recommendation MLT Handler MLT HandlerCTACFA Handler
Facet Search Detailed facet search Detailed facet search
13
4 Design
4.1 Previous System Design
The previous system design of IDEAL and GETAR [6] is shown in Figure 3. The system enables
us to collect tweets and web pages for storage and analytics. The components shown with a solid
black arrow represent the data flows that have been already set up, while the dashed blue lines
represent the data flows to be completed. The crawled data is stored in HDFS in its original
format. The Collection Management (CMW and CMT) teams then normalize this data using
linguistic processing and tokenization. They also assign UUIDs based on the hash of the URL and
timestamp, then use built in tools of HDFS to insert these documents into HBase. While the rest
of the teams run their analysis on this data, the Solr team assists them by providing the means
to index the data. Our goal is to use the Lily indexer to further optimize queries and to improve
query results by improving the relevancy sorting and recommendation features.
Figure 3: Architecture of the IDEAL Project [13]
In summary, we studied the previous design [13] and found that we can build on top of this
architecture to provide additional functionality as well as performance improvements.
14
4.2 Current Design
4.2.1 HBase Schema
Figure 4: An overview of the schema in HBase for our project
Conceptually, we organized the schema for HBase into 3 main parts: Metadata, Source Data, and
Generated Data.
Under Metadata, we store doc-type and collection information. Under Source Data, we have
two sub-parts, one for tweets and one for web pages, because the data we collect for tweets and
web pages is sufficiently different that it warrants separate formats. In each sub-part we store raw
data and pre-processed or “clean” data. Under Generated Data, we store the data generated by
other teams such as topic data and cluster data from the CTA team, and Classification data from
the CLA team.
4.2.2 Quality Control
In previous work, many basic functionalities of the morphline process have been done. Beyond
these, we plan to take more advantages of morphline process in the pipe line relating to indexed
data processing.
As the Solr team delivers the finalized indexed data to the FE team, we play an important
part in data quality control process. Thus, we take the advantage of integrated Java support in
the morphline process to validate and fix our indexed data in various ways as follows:
• Convert and provide timestamps in the format as requested from the FE team
• Convert necessary data to different types (e.g., string to float)
• Provide hot fix on improper data format in HBase (e.g., remove unnecessary tags)
• Drop records in different scenarios (e.g., bad URL status code)
15
• Remove unnecessary fields
• Add/Remove values to certain fields
• Sanitize unknown Solr fields that could cause Solr errors
• Log record at debug level to SLF4J
(Code examples could be found in the morphlines.conf section within the Cluster Developer Menu.)
Beyond what we have done, there are more things that could potentially be implemented:
• Produce GeoIP information through indexing
(In this case CMW/CMT needs to provide IP addresses)
• Use Grok to extract structured data from unstructured data.
Note: The grok command uses regular expression pattern matching to extract structured
fields from unstructured log data. A good practice will be extracting information from
system logs, server logs, or database logs.
4.2.3 Recommender Systems
The Solr team will develop a new ranking function for the existing custom Solr query processor to
provide better search results using the additional data provided by the other teams. From the FE
team, we need to use user profile data. From the CTA and CLA teams we will use tweet and web
page topics, clusters, and classes. This will allow us to build the recommendation system based
on those results and user data.
For recommendation based on text similarity, we used the MoreLikeThis handler, so that we
can recommend those documents that are more similar, based on text similarity.
For recommendation based on clustering and classification results, we made a handler that,
given an ID of one document, recommends other documents that have the same clustering and
classification result. This is a more general recommendation method, and provides more diverse
choices for users.
For the user-user collaborative filtering algorithm, the main steps we need are:
1. Get the user rating data. Because we did not get any user action data from the FE team
into our system due to the cold start problem, we used sample data provide by MovieLens as an
example. This is shown in the Figure 5.
Figure 5: MovieLens Sample
16
2. Calculate users’ cosine similarity. Cosine similarity is defined as:
(1)
Here the numerator represents the sum of products of user u’s and user v ’s normalized (mean-
centering) ratings for all products, and the denominator represents the product of the normalized
values of user u’s ratings and user v’s ratings.
3. Based on similarity score, choose the top 30 nearest neighbors.
4. Use mean-centering to normalize ratings for scoring.
(2)
5. Sort all predicted ratings and recommend the top n to the user.
For recommendation based on associative rules we create a personal recommender system.
When users share common search interests they will be recommended documents that they haven’t
directly searched for, but were searched for by users with common search interests. Below are two
users A and B and their search history along with recommendation.
A : Hurricane, Houston, safety, shooting - Recommendation - vegas, hospitals
B: Houston, safety, vegas, hospitals - Recommendation - Hurricane, shooting
Such data is updated in the database, as provided by the FrontEnd team. The columns are
UserId, Keywords, and Recommendation, separated by |
For the last user there are no matchings, hence nothing has been recommended to the user.
The algorithm is such that it goes over all user keywords and stores the unmatched keywords
corresponding to matched key patterns. Here 4 recommendations are stored, once this is achieved,
the next user is searched. This code changes the data base both dynamically and through a static
fashion.
A Solr query is created in which a user’s ID is entered which returns the recommended doc-
uments as response. The query is /recommendation?id=d98745 The query handler is unable to
work on the cluster due to request permissions, but works on a local machine.
We update the database provided by the Front End Team by adding values to a recommendation
column. We faced issues on running the handler request for the cluster.
17
18
5 Implementation
5.1 Overview
We have had discussion with the GTA and other teams to get a better understanding of our tasks.
Based on the current setup of the Hadoop Cluster and previous work [13], our team hoped to
improve the infrastructure and add more functionality for a better search job. Our approach was
as follows:
1. Become familiar with the technologies by following the tutorials and the instructions written
by the people who worked on this previously [13].
2. Understand the existing data infrastructure.
3. Coordinate with all teams to design the HBase schema. We are working with the other teams
to improve the current schema file and make it clear how the column families and columns
are stored in HBase.
4. Index all of the tweets and webpages provided by the other teams.
5. Ensure fast query handling for all content by way of distributed search using multiple Solr
nodes.
6. Develop good similarity computation methods that consider all available additions to the
raw content.
7. Improve recommendation capabilities (done by a sub-group of the Solr team).
8. Collaborate with the FE team to understand their requirements and design a system to
provide them an easy way for the user to access data indexed by SOLR.
9. Find geolocation for all documents with SNER locations.
5.2 Timeline
Table 2 shows our schedule. It contains the task description, timeline week, member responsible
for accomplishing the task, and the current status. This schedule has been added to and changed
over time.
Table 2: Tasks and Timeline
Task Timeline
(week)
Assignee Status
Set up Solr team 1 ALL DONE
Set up Solr on local machine and do tutorial 1 ALL DONE
Set up shared folder using Google Drive for sharing, Slack for
instant messaging, and Github for project management
1 ALL DONE
Divide our team into four subgroups Solr, Lily indexer, HBase,
and interaction with FE
2 ALL DONE
Review HBase and design schema 2 Jeff, Yu DONE
19
Review Lily Indexer 2 Xinyue,
Anand
DONE
Review Solr main mechanism 2 Abhinav,
Shreyas
DONE
Review Solr queries and usage and interaction with FE 2-3 Siyu DONE
Go through the basic process of importing data into HBase and
perform basic searching using Solr inside a VM:
1. Import the original small collection into HDFS and
HBase
2. Use Lily Indexer to map columns in HBase with fields in
Solr and perform a basic query test
3. Use Lily Indexer to map columns in HBase with fields in
Solr (Live Mode)
4. Use Lily Indexer to accomplish the offline indexing job
(Batch Mode)
5. Create a Solr instance for the original small collection
3 ALL DONE
Send out initial schema to all data processing teams and ex-
change opinions
3 Jeff DONE
Set up server given by Dr. Fox with HBase, Lily, Solr working 3 Jeff DONE
Prepare for team presentation 1 3-4 ALL DONE
Draft interim report 1 4 ALL DONE
Communicate with other teams and make agreement on how to
use geospatial data in the pipeline
4-5 ALL DONE
Learn about Solr’s Morelikethis component for further improv-
ing the recommendation system
5-8 Yu, Xinyue DONE
Learn about Mahout for further improving the recommendation
system
5-8 Yu DONE
Learn how to use Hive and how to connect it to Solr 5-8 Xinyue HOLD
Learn the knowledge of faceted search 5-8 Siyu DONE
Further design for HBase schema and communicate to other
teams
7 Jeff DONE
Create small test collection on cluster 7 Abhinav,
Shreyas,
Xinyue, Yu
DONE
Create Eclipse test collection on cluster 8 Abhinav,
Shreyas
DONE
Prepare for team presentation 2 8 ALL DONE
Draft interim report 2 8 ALL DONE
Relevancy boosting 8 Yu,Xinyue DONE
User-user collaborative filtering algorithm implementation 8-11 Yu DONE
Help FE team to solve query problem in Solr 8-11 Siyu,Abhinav DONE
Prepare for team presentation 3 10 ALL DONE
Draft interim report 3 11 ALL DONE
Morphline creation 10-11 Abhinav DONE
Index solar eclipse dataset 10-14 Abhinav DONE
Index Las Vegas shooting dataset 10-14 Abhinav DONE
Schema changes for GeoBlacklight team 10-14 Abhinav DONE
Schema changes for Visualization team 10-14 Abhinav DONE
20
Lily NRT indexing 13-14 Abhinav DONE
Index time document boosting 14 Abhinav DONE
Index Data Quality Control 10-14 Xinyue, Ab-
hinav
DONE
Recommendation, Personal Recommendations 12-14 Yu, Anand,
Mohit
DONE
Process geolocation data for FE visualization 12-14 Jeff DONE
Make CTACFA Handler for recommendation 12-14 Yu DONE
Prepare for final presentation 14-15 ALL DONE
Finish final report 14-15 ALL DONE
5.3 Milestones and Deliverables
Our milestones over time are shown below.
Table 3: Milestones
Task # Completion Date Milestone
1 09/05 Set up Solr team
2 09/06 Set up Solr on local machine
3 09/09 Set up a Cloudera VirtualBox VM
4 09/18 Go through all basic process from data importing to HBase to
basic searching in Solr through VM
5 09/21 Finish tentative HBase schema design
6 10/17 Finalize working Schema
7 11/07 Working geospatial search functionality
8 12/6 Provide recommendation handler
As the project progresses, we will provide deliverables for the other teams.
Table 4: Deliverables
Task # Completion Date Deliverables
1 09/18 Send out initial HBase schema
2 Determined Unneces-
sary
Share raw data indexes with FE team
3 10/17 Share tweet schema file with relevant teams
4 10/20 Enable MoreLikeThis query handler for FE
5 11/5 Parse indexed data for FE
6 11/5 Provide functioning query endpoint for FE team
7 11/20 Provide indexed data quality control
8 12/6 Add inferred geolocation data to all documents with SNER lo-
cations
9 12/6 Provide "ctacfa" handler which uses data from the CTA and
CLA teams to recommend documents
21
5.4 SNER GeoLocation
Many documents do not have location data, but do mention locations in their text. The collection
management teams ran named entity recognition tools on their documents and populated several
fields in HBase with people, organizations, and locations that were found in the documents. The
FE team wanted to be able to use this data to supplement the location data that documents are
tagged with for visualization and searching. The task of constructing bounding boxes from SNER
locations fell to the SOLR team. A standard solution to the problem of finding geolocations from
location names is to use an online service API which already has large amounts of geolocation data
such as the Google Maps API. Unfortunately, the Google Maps API has a rate limit which makes
it not conducive to processing large amounts of data like this. Instead, we downloaded geolocation
data from Mapzen [15], OpenStreetMap [17], and OpenAddresses.io [16] and processed it ourselves.
We first parsed all the raw data and generated a bounding box for each place name. We then created
a suffix array of all these place names to facilitate fuzzy matching with the SNER locations from
the original documents. Because of the large number of documents in HBase we tried to do all
of the processing in Map Reduce. Unfortunately, the large suffix array of all locations we were
working with required about 18 GB of memory, which exceeded the 16 GB available within each
node for Map Reduce. Instead, we used Map Reduce to export the SNER locations from HBase
and matched them to geolocations using parallel processing in a stand alone process which was
able to use a a larger amount of memory. Although it was written in Python, the fuzzy matching
using a suffix array only ended up taking at most 3 minutes to run, so we did not consider that it
was worth investing any more time into re-implementing it to run on the cluster. Lastly, we used
Map Reduce to import the geolocations (bounding boxes) back into HBase. Using this process of
exporting locations, matching them, and re-importing we populated the solr_geom field for 324714
tweets and 4442 webpages. This was out of 324714 tweets and 4451 webpages which had SNER
location data which was out of 5.9 million total tweets and 12,564 total web pages.
5.5 Results
Table 5 shows the key results of our project.
Table 5: Key results of Solr team
22
6 User Manual
In this section, we introduce how to set up the Solr system, the Solr admin interface, and how to
use Solr to query and search.
6.1 Install Solr system
In this section, we introduce how to set up the Solr system quickly.
6.1.1 Available Solr packages
The Solr system is available from the Solr website: http://www.apache.org/dyn/closer.lua/lucene/solr/7.1.0
There are three separate packages:
solr-7.0.0.tgz for Linux/Unix/OSX systems
solr-7.0.0.zip for Microsoft Windows systems
solr-7.0.0-src.tgz the package Solr source code. Once extracted, the computer is ready to run
Solr.
6.1.2 Start Solr
Solr includes a command line interface tool called bin/solr (Linux/MacOS) or bin\solr.cmd (Win-
dows). This tool allows you to start and stop Solr, create cores and collections, configure authen-
tication, and check the status of your system.
To use it to start Solr you can simply enter:
bin/solr start
If you are running Windows, you can start Solr by running bin solr.cmd instead.
bin\solr.cmd start
This will start Solr in the background, listening on port 8983.
When you start Solr in the background, the script will wait to make sure Solr starts correctly
before returning to the command line prompt[2].
6.1.3 Check if Solr is running
If you’re not sure if Solr is running locally, you can use the status command[2]:
bin/solr status
This will search for running Solr instances on your computer and then gather basic information
about them, such as the version and memory usage.
That’s it. Solr is running. If you need convincing, use a web browser to see the Admin Console.
http://localhost:8983/solr/
If Solr is running you will see a dashboard like in Figure 6.
If Solr is not running, your browser will complain that it cannot connect to the server.
6.2 Solr Admin Interface
Solr has a usable admin interface to make it easy for Solr administrators and programmers to view
Solr configuration details, run queries, and analyze document fields in order to fine-tune a Solr
23
configuration, and access online documentation and other help.
Accessing URL http://localhost:8983/solr/ will show the main dashboard, which is like Figure 6.
Figure 6: Solr Admin Dashboard
The left-side is a menu under the Solr logo providing the navigation through the screens of the
UI. The first set of links is for system-level information and configuration, and provides access to
Logging, Collection/Core Administration, and Java Properties, among other things. At the end
is a pulldown, listing Solr cores configured for this instance. Click on a core selector to perform
queries on indexed data.
6.3 Solr Query
Using Solr for indexing and querying is an important function provided by the Solr admin UI.
To efficiently utilize the Solr admin interface, we need to understand the meaning of each query
parameter, query syntax, and function query.
24
6.3.1 Query Parameters
Table 6: Core Query Parameters
Query Parameters Description
q The query event.
q.op Overriding the default operator specified in SchemaXml. Possible values
are "AND" or "OR".
df This parameter overrides the default field defined in SchemaXml, if pro-
vided.
qt Query type. Determine which Query Handler should be used to process
the request. The default is "standard".
wt Write type. Determine which QueryResponseWriter should be used to
process the request. The default value is "standard" (XML).
echoHandler If the echoHandler parameter is true, Solr places the name of the handle
used in the response to the client for debugging purposes.
echoParams The response header can include the parameters sent in the query request.
This parameter controls what is contained in that section of the response
header. Valid values are none, all, and explicit. The default value is
explicit.
Table 7: Common Query Parameters
Query Parameters Description
sort Sort. Format: sort=<field name>+<desc|asc>[,<field name >+ <desc|
asc>]. Example: (inStock desc, price asc), meaning sort by "inStock"
descending, then "price" ascending.
start Used to paginate results from a query. Default value is “0”.
rows Used to paginate results from a query. It specifies the maximum number
of documents from the complete result set to return to the client for every
request. The default value is "10".
fq Filter query. It can be very useful for speeding up complex queries since
the queries specified with fq are cached independently from the main
query. For example: q=mm&fq=date_time:[20161001 TO 20170914],
searches for the keyword “mm” and filters the date_time to be between
20161001 and 20170914.
fl Field list. The set of fields to be returned is specified as a space (or
comma) separated list of field names.
debugQuery If this parameter is present (regardless of its value) then additional de-
bugging information will be included in the response.
explainOther Allows clients to specify a Lucene query to identify a set of documents.
defType Selects the query parser to be used to process the query. defType=lucene,
defType=dismax, defType=edismax
25
timeAllowed Defines the time allowed for the query to be processed. If the time elapses
before the query response is complete, partial information may be re-
turned.
omitHeader If set to true, excludes the header from the returned results. The header
contains information about the request, such as the time the request took
to complete. The default is “false”.
bf Boost function. bf can be included in the query to influence the score.
qf Query fields. Introduces a list of fields, each of which is assigned a
boost factor to increase or decrease that particular field’s importance in
the query. For example, in the query qf="fieldOneˆ0.4 fieldTwoˆ.2
fieldThreeˆ0.4" fieldOne and fieldThree are weighted twice as much as
fieldTwo.
mm Minimal should match. Recognizes three types of clauses: "mandatory",
"prohibited", and "optional" (also known as "should" clauses). By de-
fault, all words or phrases specified in the q parameter are treated as
"optional" clauses unless they are preceded by a "+" or a "-".
6.3.2 Query Syntax
Solr supports multiple query syntaxes through its query parser plugin framework.[2] We will use
the standard parser for our examples.
Keyword matching
Search for word "foo" in the title field.
title:foo
Search for phrase "foo bar" in the title field.
title:"foo bar"
Search for phrase "foo bar" in the title field AND the phrase "quick fox" in the body field.
title:"foo bar" AND body:"quick fox"
Search for either the phrase "foo bar" in the title field AND the phrase "quick fox" in the body
field, or the word "fox" in the title field.
(title:"foo bar" AND body:"quick fox") OR title:fox
Search for word "foo" and not "bar" in the title field.
title:foo -title:bar
Wildcard matching
Search for any word that starts with "foo" in the title field.
title:foo*
Search for any word that starts with "foo" and ends with bar in the title field.
title:foo*bar
(Note that Lucene doesn’t support using a * symbol as the first character of a search.)
Proximity matching
Lucene supports finding words that are within a specific distance of each other.
26
Search for the words "foo" and "bar" within 4 words of each other.
"foo bar" 4
Note that for proximity searches, exact matches are proximity zero, and word transpositions (bar
foo) are proximity 1.
A query such as "foo bar" 10000000 is an interesting alternative to foo AND bar.
While the queries are effectively equivalent with respect to the documents that are returned, the
proximity query assigns a higher score to documents for which the terms foo and bar are closer
together.
The trade-off is that the proximity query is slower to perform and requires more CPU.
The Solr DisMax and eDisMax query parsers can support queries for phrase proximity matches.
Range searches
Range Queries allow one to match documents whose field(s) values are between the lower and
upper bound specified by the Range Query. Range Queries can be inclusive or exclusive of the
upper and lower bounds. Sorting is done lexicographically. mod_date:[20020101 TO 20030101]
Solr’s built-in field types are very convenient for performing range queries on numbers without
requiring padding.
Solr-specific query syntax
There are several differences between the Solr Query Parser and the standard Lucene query syntax
(from the Solr wiki):
A * may be used for either or both endpoints to specify an open-ended range query.
field:[* TO 100] finds all field values less than or equal to 100
field:[100 TO *] finds all field values greater than or equal to 100
field:[* TO *] matches all documents with the field
Pure negative queries (all clauses prohibited) are allowed.
-inStock:false finds all field values where inStock is not false
-field:[* TO *] finds all documents without a value for field
A hook into the FunctionQuery syntax. Quotes will be necessary to encapsulate the function when
it includes parentheses.
Example: _val_:myfield
Example: _val_:"recip(rord(myfield),1,2,3)"
Nested query support for any type of query parser (via QParserPlugin). Quotes will often be
necessary to encapsulate the nested query if it contains reserved characters.
Example: _query_:"{!dismax qf=myfield}how now brown cow"
6.3.3 Function Query
There are a few ways to use a FunctionQuery from Solr’s HTTP interface[19]:
1. Invoke the FunctionQParserPlugin via LocalParams syntax, e.g., q=!funclog(foo)
Alternatively: Set func as the default query type, e.g., defType=func&q=log(foo)
2. Invoke the FunctionRangeQParserPlugin via LocalParams syntax in a filter query
e.g., fq={!frange l=0}sub(field1,field2)
27
3. Use a parameter that has an explicit type of FunctionQuery, such as DisMaxQParserPlugin’s
bf (boost function) parameter, or extended dismax boost parameter (multiplicative boost).
NOTE: The bf parameter actually takes a list of function queries separated by whitespace
and each with an optional boost. Make sure to eliminate any internal whitespace in single
function queries when using bf.
Example: q=foo&bf="ord(popularity)0.5 recip(rord(price),1,1000,1000)0.3"
4. Embed a FunctionQuery in a regular query expressed in SolrQuerySyntax via the _val_ hook
6.4 Spatial Search
Solr supports location data which can be used for geospatial search. Using this feature we can
perform the following operations:
• Index point data
• Filter search results using a bounding box, a circle or any rectangular region
Once the data is indexed as LatLonType (Solr’s field type to support spatial search) you can use
the following types of filter queries (fq):
• Using Solr query parsers for geospatial search. There are 2 such query parsers:
1. geofilt- This query parser takes the following parameters:
– pt: location of the center in lat,lon format
– sfield: name of the field which is indexed as LatLonType
– d: radius of the circle in terms of kilometers
Here is an example of a filter query using the geofilt query parser: fq={!geofilt sfield=coordinates
pt=45.15,-93.85 d=5}
2. bbox- This query parser takes the same parameters as a geofilt query parser. Here is
an example of a filter query using the bbox query parser: fq={!bbox sfield=coordinates
pt=45.15,-93.85 d=5}
Both query parsers take the same parameters as input but the results are different. The
following two figures will illustrate the difference between them:
– geofilt
28
– bbox
• Range query on location fields. Using a range query Solr lets you define a rectangular region
to filter the search results. It takes coordinates of lower left and top right corner as the input.
Here is an example of a range filter query on LatLonType data: fq=[54.15,-93.85 TO 56.]
6.5 Document Recommendation
Sometimes users themselves may not know what they really want. At that time, if recommendation
can be provided, user experience may be better. Our first step in Recommendation is based
on document textual similarity, by using MoreLikeThis (MLT). MLT enables users to query for
documents similar to a document in their result list. It does this by using terms from an original
document to find similar documents in the index. To make full use of this, here are some common
MoreLikeThis parameters supported by Lucene/Solr.
Table 8: Common MLT Parameters
Parameters Description
mlt.fl Specifies the Minimum Term Frequency, the frequency below which terms
will be ignored in the source document.
mlt.mintf Used to paginate results from a query. Default value is “0”.
mlt.mindf Specifies the Minimum Document Frequency, the frequency at which
words will be ignored which do not occur in at least this many documents.
mlt.maxdf Specifies the Maximum Document Frequency, the frequency at which
words will be ignored which occur in more than this many documents.
mlt.minwl Sets the minimum word length below which words will be ignored.
mlt.maxwl Sets the maximum word length above which words will be ignored.
mlt.maxqt Sets the maximum number of query terms that will be included in any
generated query.
mlt.maxntp Sets the maximum number of tokens to parse in each example document
field that is not stored with TermVector support.
mlt.boost Specifies if the query will be boosted by the interesting term relevance. It
can be either "true" or "false".
mlt.qf Query fields and their boosts using the same format as that used by the
DisMax Query Parser. These fields must also be specified in mlt.fl.
29
Our second step is based on clustering and classification results, we made a handler for users
which can recommend documents that belongs to same clustering and classification result. We
named that handler "ctacfa".
6.5.1 MLT Syntax
MLT provides similar syntax to Query; it uses the mlt request handler, with several parameters.
Here are some examples:
1. Search similar text related to "shoot" based on "full_text" field
2. Request interesting terms to be returned along with documents
3. Search similar text related to document where the ID is 889161247551352832
6.5.2 CTACFA Handler Syntax
The CTACFA handler provides similar syntax to Query. Here are some examples:
1. Search similar documents related to document which id is 889161247551352832 based
on cluster and category results
6.5.3 Solr Admin UI
Figures 7 and 8 give a simple example of using the document recommendation systems from the
Admin UI.
30
Figure 7: MoreLikeThis
First, set Request-Handler to "/mlt". In the "q" field, fill in a collection ID and execute the
query. The response will contain documents that have high similarity based on text.
31
Figure 8: CFACTA Handler
First, set Request-Handler to "/ctacfa". In the "q" field, fill in a collection ID and execute the
query. The response will contain documents that have the same cluster and category as the current
collection. More functionality can be implemented by changing parameters in the "solrconfig.xml"
file.
6.5.4 Relevancy Boosting
Solr provides many ways to modify the relevancy calculation, allowing users to modify the weight
applied to fields and terms:
Query Time Field Boosting
Boost field at query time. Here is an example, when title is more important than description
http://localhost:8983/solr/CORE/select?q=title:shoot∧10 OR description=shoot
Query Time Per-term Boosting
Boost terms at query time. Here is an example, when users are querying solar eclipse, and eclipse
is more important than solar
http://localhost:8983/solr/CORE/select?q=title:solar∧2 eclipse∧8 OR description=solar∧2 eclipse∧8
32
7 Developer Manual
7.1 Solr
7.1.1 Architecture
Apache Solr is a scalable, ready-to-deploy enterprise search engine that’s optimized to search large
volumes of text-centric data and return results sorted by relevance. The search engine is built over
the Apache Lucene Java library, which is optimized for searching.
Figure 9 shows the major building blocks of Apache Solr:
Figure 9: The Solr Architecture
1. Request Handlers - The request handlers receive and process requests from the unified request
dispatcher. The requests can be query requests or index update requests.
2. Search Components - A search component can be registered as a Search Handler within Solr.
Solr makes use of these components to provide intelligent suggestions and responses to its
clients.
3. Distributed Search - Solr provides distributed search through the process of sharding. Shard-
ing partitions the index and associates each partition with a shard. Query requests made
are distributed to all Solr cores holding shards, effectively parallelizing the search over the
index. Results from the shards are then aggregated together and returned to the client.
4. The formula for determining theoretical query speed after adding an additional partition,
given the same number of documents, is:
(Query Speed on N+1 indexes) = Aggregation Overhead+(Query Speed on N indexes)/(N+1)
33
5. Query Parser - The Apache Solr query parser parses the queries that are passed to Solr and
verifies the queries for syntactic errors. The parser then translates queries to a format which
Lucene understands.
6. Response Writers - The response writer is a component within Apache Solr which generates
formatted output. The formats generated include, but are not limited to, JSON, XML, and
CSV. Every format has its associated response writer defined within Solr.
7. Analysis/Tokenizer - Apache Solr analyzes the query text content and generates a token
stream. The tokenizer then breaks the token stream generated by the analyzer into tokens
for Lucene to process.
8. Update Request Processor - When an update request is sent to Apache Solr, the request is
run through a set of plugins (signature, logging, indexing), collectively known as the update
request processor. This processor is responsible for modifications such as dropping or adding
fields.
Solr enables interaction with client applications and client management systems through the fol-
lowing steps:
1. Define the schema for each self-contained document unit. The schema file (schema.xml)
formally defines the structure of all fields within the documents which will be indexed.
2. Define the solrconfig.xml and solr.xml files. These two files determine the Solr runtime
configuration for every collection. The solrconfig.xml file is additionally used by the Lily
Indexer for distributed search and replication.
3. Deploy Solr based on the three XML files defined in Steps 1 and 2.
4. Add documents to be searched.
5. Expose search functionality to a user application.
7.1.2 Installation
For this project we are using CDH [4] as our distribution platform including Hadoop. According
to Cloudera’s website [4], CDH is Cloudera’s 100% open source platform distribution, including
Apache Hadoop and built specifically to meet enterprise demands. CDH delivers everything you
need for enterprise use right out of the box. One such service is Cloudera Search. Cloudera
Search is powered by Apache Solr. To enable Cloudera Search, it should be added as a service in
automated installation by the Cloudera Manager as shown in the screenshot.
34
In the Cloudera VM, Solr features only one node where each collection typically consists of one
shard (one core) as shown in the screenshot.
7.1.3 Tutorial
To manage Solr we use ‘solrctl’. It is a utility to manage Solr Cloud deployments. It helps in
managing SolrCloud collections, collection directories, and individual cores.
• Starting the Solr service
$ s e r v i c e so l r−s e r v e r s t a r t
On running the above command a user should see the line as shown in the screenshot below,
indicating that the Solr server has started successfully as a daemon.
• Stopping the Solr service
$ s e r v i c e so l r−s e r v e r stop
On running the above command, a user should see a line as shown in the screenshot below,
indicating that the Solr server has stopped successfully.
• Creating Solr collection
Creating a Solr collection from scratch is a three step process as described below:
$ s o l r c t l i n s t an c ed i r −−generate \$HOME/getar−cs5604f17−e c l i p s e−c o l l e c t i o n
35
This command tells Solr to generate a template of the instance directory. It is stored in the
designated path in the local file system and contains a configuration inside the ./conf folder.
One important file present in the ./conf folder is the schema.xml which defines the schema
of the Solr document.
$ s o l r c t l i n s t an c ed i r −−c r ea t e da ta t e s t \ _co l l e c t i on $HOME/getar−cs5604f17−e c l i p s e−c o l l e c t i o n
This command pushes a copy of the instance directory from the local file system to SolrCloud.
$ s o l r c t l c o l l e c t i o n −−c r ea t e getar−cs5604f17−e c l i p s e−c o l l e c t i o n
This command creates a new collection.
• Indexing data for Solr
Indexing data for Solr is done using the Lily indexer. It supports both batch and near real
time indexing. For more information on Lily please refer to Section 7.3.1.
• Querying Solr
In this section we learn about queries in Solr and discuss various ways in which a user can
execute their queries. Solr provides an excellent API which can be used to perform CRUD
(create, read, update, delete) on documents. There are various tools which can use these
APIs to provide an interface for search. In this section we will discuss two of them. The
first one is the web interface built into the ‘Search Service’ of Cloudera CDH [4]. This is
a great interface which hides all the complex parts from the user like building the query
and parsing the results. It provides all the options available in the Solr query in the form
of text boxes, dropdowns, and checkboxes, which makes it more usable. The second tool
which we will be discussing is called ‘cURL’. cURL [18] is a command line tool which is
used for getting and sending files using the URL format. Unlike the web interface provided
by Cloudera’s CDH, cURL is for people who prefer shell commands over GUI. cURL is a
good tool for working with documents with a small number of fields. When the number
of fields increases, a command line tool to send XML can be quite cumbersome. Now we
will jump into the practical aspects of querying Solr and run some queries using both of
the tools. For the purpose of this tutorial we will be referring to the Solr setup described
in the example found at https://github.com/cs5604solr/dataset_for_test. Our Solr
document schema contains the following fields:
<f i e l d name="id " type="s t r i n g " indexed="true " s to red="true " r equ i r ed="true " multiValued=" f a l s e " />
<f i e l d name="text " type="text_genera l " indexed="true " s to red="true " multiValued="true"/>
<f i e l d name="source_s" type="s t r i n g " indexed="true " s to red="true"/>
<f i e l d name="user_screen_name_s" type="s t r i n g " indexed="true " s to red="true"/>
<f i e l d name="created_time_dt" type="date " indexed="true " s to red="true"/>
<f i e l d name="lang " type="s t r i n g " indexed="true " s to red="true"/>
<f i e l d name="_version_" type="long " indexed="true " s to red="true"/>
We will cover the following types of queries:
1. Raw query, i.e., querying using the ‘q’ parameter only
2. Using the filter query (fq) parameter
3. Using the ‘sort’ parameter
4. Fetching a range of documents. This is useful for pagination.
5. Fetching only required fields from the document.
6. Specifying the type (JSON, XML, etc.) of response
36
We have indexed over 6 million tweets in our cluster under the collection name getar-cs5604f17-
solar-eclipse_shard1_replica1. Now we will provide examples for types of queries described
above using both the tools along with the snapshot.
Figure 10: Get a list of all the documents where the screen name ends with ‘a’
37
Figure 11: Get a list of all the documents where the screen name ends with ‘a’ and language is
English
38
Figure 12: Get a list of all the documents whose language is English. The documents should be
sorted by created_time_dt.
39
Figure 13: Get 2 documents where the language is English
40
Figure 14: Fetch documents where the language is English. Response should only contain screen
names
41
Figure 15: Fetch all the documents where language is English. Use XML for the response type.
42
7.2 HBase
7.2.1 Architecture
HBase [1] is a non-relational database maintained by the Apache Software Foundation. It is
modeled after Google’s BigTable [10] database and is intended for use cases where the data being
stored is at such a scale that it would require or benefit from being stored in a distributed manner.
HBase differs from BigTable in that it uses the Hadoop File System to store its files. Because
it is a NoSQL database, Apache HBase uses different schema design strategies than traditional
relational databases. Like Google’s BigTable database, a table in HBase can be thought of as a
multidimensional map.
The first key within a table is the row identifier. Each row has multiple columns, each with
a unique column identifier for a key. These column identifiers can be defined on the fly as data
is being put into the table and rows do not have to have the same columns. One restriction that
is placed on column identifiers is that each column has to be part of a column family that was
defined at table creation. This column family is expressed as a prefix to the column identifier.
For example, the columns tweets:author and tweets:body are both part of the column family
tweets. HBase stores a timestamp/version with each cell, allowing applications to retrieve any
version of the data value for a cell. Physically, HBase guarantees that each row is stored in a single
HDFS file, allowing for atomic operations within a row. The files themselves can be distributed
among nodes in a cluster which are called region servers. These region servers are managed by
Apache ZooKeeper, a tool for managing distributed applications.
HBase can run in standalone mode or distributed mode. In standalone mode, all region servers
daemons are running in the Java Virtual Machine running on a single server. In distributed mode,
the region servers daemons are running on separate physical servers.
Figure 16: The Architecture of HBase
43
7.2.2 Tutorial
Figure 17: Get the small Twitter collection for testing
Upload the CSV file into HDFS
Use command “hadoop fs -put”. On success, you should be able to find the file you uploaded to
HDFS using "hadoop fs -ls". We use the same command for web page data.
»hadoop fs -put /home/cloudera/cs_5604/Dataset_for_Test-master/dataset_test.csv #(put the ‘data_test.csv’ to HDFS)
»hadoop fs -ls #(list all we have in HDFS)
Figure 18: HDFS ls example
Check service status
»service –status-all
Make sure all necessary components are running, otherwise, use the command:
»sudo service SERVICE-NAME start to start any “not running” service
44
Figure 19: Hadoop status check
Create HBase table for testing Twitter file.
»hbase shell
»create ‘test’,’raw’
Figure 20: HBase create table example
Put data into HBase
» hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.separator=’,’
-Dimporttsv.columns="HBASE_ROW_KEY,raw:c1,raw:c2,raw:c3,raw:c4,raw:c5,raw:c6,
raw:c7,raw:c8,raw:c9,raw:c10,raw:c11,raw:c12" test dataset_test.csv
45
7.3 Lily HBase Indexer
7.3.1 Overview
What it is?
The HBase Lily Indexer [5] provides indexing (via Solr) for content stored in HBase. It provides
a flexible and extensible way of defining indexing rules, and is designed to scale for large datasets.
Indexing is performed asynchronously, so it does not impact write throughput on HBase. SolrCloud
is used for storing the actual index to ensure scalability of the indexing.
How it Works
The HBase Indexer works by acting as an HBase replication sink. As updates are written to HBase
region servers, they are “replicated” asynchronously to the HBase Indexer processes. The indexer
analyzes incoming HBase mutation events, and where applicable it creates Solr documents and
pushes them to SolrCloud servers.
The indexed documents in Solr contain enough information to uniquely identify the HBase row that
they are based on, allowing you to use Solr to search for content that is stored in HBase. HBase
replication is based on reading the HBase log files, which are the precise source of truth for what
is stored in HBase: there are no missing or extra events. In various cases, the log also contains all
the information needed to index, so that no expensive random-read on HBase is necessary (see the
read-row attribute in the Indexer Configuration https://github.com/NGDATA/hbase-indexer/
wiki/Indexer-configuration).
HBase replication delivers (small) batches of events. HBase-indexer exploits this by avoiding
double-indexing of the same row if it would have been updated twice in a short time frame, and
will batch/buffer the updates towards Solr, which gives important performance gains. The updates
are applied to Solr before confirming the processing of the events to HBase, so that no event loss
is possible.
Horizontal scalability
All information about indexers is stored in ZooKeeper. New indexer hosts can always be added
to a cluster, in the same way that HBase regionservers can be added to to an HBase cluster. All
indexing work for a single configured indexer is shared over all machines in the cluster. In this
way, adding additional indexer nodes allows horizontal scaling.
Automatic failure handling
The HBase replication system upon which the HBase Indexer is based is designed to handle
hardware failures. Because the HBase Indexer is based on this system, it also benefits from the
same ability to handle failures.
In general, indexing nodes going down or Solr nodes going down will not result in any lost data in
the HBase Indexer.
7.3.2 Live Mode Indexing
Create Lily Indexer Configuration File
The configuration file for the Lily Indexer is “Morphline-hbase-mapper.xml”. The configuration
file controls the mapping between HBase columns and Solr indexes. Typically, there is one Lily
HBase Indexer configuration for each HBase table, but there can be as many Lily HBase Indexer
46
configurations as there are tables, column families, and corresponding collections in Search. Each
Lily HBase Indexer configuration is defined in an XML file, such as morphline-hbase-mapper.xml.
Here is a sample Morphline-hbase-mapper.xml [12]:
<?xml version=" 1.0 " ?>
<indexer tab l e=" r e c o r d "
mapper=" com . n g d a t a . h b a s e i n d e x e r . m o r p h l i n e . M o r p h l i n e R e s u l t T o S o l r M a p p e r ">
<! - - The r e l a t i v e or a b s o l u t e p a t h on the l o c a l f i l e s y s t e m to the
m o r p h l i n e c o n f i g u r a t i o n f i l e . - ->
<! - - Use r e l a t i v e p a t h " m o r p h l i n e s . c o n f " for m o r p h l i n e s m a n a g e d by
C l o u d e r a M a n a g e r - ->
<param name=" m o r p h l i n e F i l e " value=" / etc / hbase - s o l r / c o n f / m o r p h l i n e s . c o n f "/>
<! - - The o p t i o n a l m o r p h l i n e I d i d e n t i f i e s a m o r p h l i n e if t h e r e are m u l t i p l e
m o r p h l i n e s in m o r p h l i n e s . c o n f - ->
<! - - <param name=" m o r p h l i n e I d " value=" m o r p h l i n e 1 "/> - ->
</ indexer>
In our VM, we create the configuration file under our home directory:
/home/cloudera/morphline-hbase-mapper.xml
We keep the content of morphline-hbase-mapper.xml as it is in the sample.
Then, we need to create morphlines.conf file as mentioned in the morphline-hbase-mapper.xml.
By default, the morphlines.conf should be created in the path:
/etc/hbase-solr/conf/morphlines.conf
Here is a sample morphlines.conf:
morphl ines : [
{
id : morphline1
importCommands : [" org . k i t e sdk . morphline .∗∗" , "com . ngdata .∗∗"]
commands : [
{
extractHBaseCe l l s {
mappings : [
{
inputColumn : "data :∗"
outputFie ld : "data"
type : s t r i n g
source : va lue
}
{ logTrace { format : " output record : {}" , args : ["@{}"] } }
]
}
]
For our future test, we need to modify morphlines.conf to fit our input data format.
Here is the version we used:
morphl ines : [
{
id : morphline1
importCommands : [" org . k i t e sdk . morphline .∗∗" , "com . ngdata .∗∗"]
commands : [
{
extractHBaseCe l l s {
mappings : [
{
inputColumn : "raw : c1"
outputFie ld : " text "
type : s t r i n g
source : va lue
}
{
inputColumn : "raw : c3"
outputFie ld : "screen_name_s"
type : s t r i n g
source : va lue
}
]
}
}
{ logTrace { format : " output record : {}" , args : ["@{}"] } }
]
}
]
47
See [7, 12] for reference details.
Running HBaseMapReduceIndexer Tool
Here we are going to index our HBase table using MapReduce in live mode.
First, we create the log4j.properties file to set the Java logging properties:
/home/cloudera/cs_5604/lily_index/logs/log4j.properties
Here is a sample log4j.properties file:
Root l ogge r opt ion
l o g 4 j . rootLogger=INFO, stdout
Direc t log messages to stdout
l o g 4 j . appender . stdout=org . apache . l o g 4 j . ConsoleAppender
l o g 4 j . appender . stdout . Target=System . out
l o g 4 j . appender . stdout . layout=org . apache . l o g 4 j . PatternLayout
l o g 4 j . appender . stdout . layout . Convers ionPattern=%d{yyyy−MM−dd HH:mm: s s } %−5p %c{1}:%L − %m%n
Then we use the following command to generate indexes for our table:
hadoop −−c on f i g / e tc /hadoop/ conf j a r
/ usr / l i b /hbase−s o l r / t o o l s /hbase−indexer−mr−∗−job . j a r
−−conf / e tc /hbase/ conf /hbase−s i t e . xml −D ’mapred . ch i l d . java . opts=−Xmx500m’
−−hbase−indexer− f i l e /home/ c loudera /morphline−hbase−mapper . xml −−zk−host
1 2 7 . 0 . 0 . 1 / s o l r −−c o l l e c t i o n hbase−c o l l e c t i o n −−go−l i v e
−−l o g 4 j /home/ c loudera / cs _5604/ l i l y _index/ l o g s / l o g 4 j . p r op e r t i e s
When the job finishes, the generated index should be automatically imported to Solr. (In Batch
mode we need to import index files manually.)
Note: If a Java heap exception is thrown in the process, you need to adjust mapred-site.xml to
increase the Java heap for doing MapReduce. The file is located at
/etc/hadoop/conf/mapred-site.xml.
In this file, change values for the following two properties mapreduce.map.java.opts and
mapreduce.reduce.java.opts. We also increased our heap size to Xmx1024M.
7.3.3 Batch Mode Indexing
Create Lily Indexer Configuration File
Configuration files for batch mode are the same as Live Mode. Refer to Section 7.3.2 Live Mode
Indexing to create relative files: morphline-hbase-mapper.xml and morphlines.conf [12]
Run HBaseMapReduceIndexer Tool
Here, we are going to index our HBase table using MapReduce in batch mode. We can use the
same log4j.properties file as the one in the Live Mode Indexing part. Refer to the previous section
to create one if you do not have it created.
We use the following command to generate indexes and output to Solr in batch mode:
hadoop −−c on f i g / e tc /hadoop/ conf j a r
/ usr / l i b /hbase−s o l r / t o o l s /hbase−indexer−mr−∗−job . j a r
−−conf / e tc /hbase/ conf /hbase−s i t e . xml −D ’mapred . ch i l d . java . opts=−Xmx500m’
−−hbase−indexer− f i l e /home/ c loudera /morphline−hbase−mapper . xml −−zk−host
1 2 7 . 0 . 0 . 1 / s o l r −−l o g 4 j /home/ c loudera / cs _5604/ l i l y _index/ l o g s / l o g 4 j . p r op e r t i e s
−−c o l l e c t i o n hbase−c o l l e c t i o n −−verbose
−−output−d i r hdfs : // qu i c k s t a r t . c loudera / user / c loudera / cs5604f17−t e s t−index
−−overwr i te−output−d i r −−shard 1
When the job finishes, index files should be generated in HDFS. You can use the following com-
mand to check it: hadoop fs -ls /solr/hbase-collection.core_node1/data/index
Note: If a Java heap exception is thrown in the process, you need to adjust mapred-site.xml to
increase the Java heap for doing MapReduce. The file is located at
/etc/hadoop/conf/mapred-site.xml. In this file, change values for the following two properties
48
mapreduce.map.java.opts and
mapreduce.reduce.java.opts. We increased our heap size to Xmx1024M.
Move Index Files to OS from HDFS
Move the index files from HDFS to the local filesystem to transfer index files to any other machine
for reuse.
Here, we use the following command to get index files from HDFS:
hadoop fs -get /solr/hbase-collection.core_node1/data/index index-export
Remove previous index files from Solr
We use the following commands to remove all our collection index files under Solr:
sudo -u hdfs hadoop fs -rm -r -skipTrash /solr/hbase-collection.core_node1/data/index
sudo -u hdfs hadoop fs -rm -r -skipTrash /solr/hbase-collection.core_node1/data/tlog
Import offline index files to Solr
We use the following commands to import our offline index files to Solr:
sudo -u solr hadoop fs -put index /solr/hbase-collection/core_node1/data/
sudo service solr-server restart
Note: Remember to restart the Solr service to make the changes effective.
Note: If a Java heap size error is thrown in the process, you need to modify the solrconfig.xml file
and set the solr.hdfs.blockcache.enabled property to false. Then restart the Solr service.
7.3.4 Incremental Indexing Using NRT Indexer
Enable HBase Column Family Replication
To enable HBase column family replication, you need to define the replication property in all tables
and set it for all column families that need to be indexed. This operation can be done in the HBase
shell.
To set the property for our current test table, we use the following commands in the HBase shell:
disable ’test’
Alter ’test’,{NAME=> ’raw’, REPLICATION_SCOPE => 1}
enable ’test’
Register Lily HBase Indexer
First, make sure the morphline-hbase-mapper.xml is ready (refer to the Live Mode Index section
if it is not).
Then, we use following command to register the Lily HBase indexer:
hbase−indexer add−indexer \
−−name Indexer _NRTIndexer \
−−indexer−conf /home/ c loudera /morphline−hbase−mapper . xml \
−−connect ion−param s o l r . zk=l o c a l h o s t :2181/ s o l r \
−−connect ion−param s o l r . c o l l e c t i o n=hbase\ _co l l e c t i on \
−−zookeeper l o c a l h o s t :2181
To verify that the indexer is successfully created:
hbase-indexer list-indexers
49
Point Lily HBase NRT Indexer Service
First, we need to configure the Lily HBase NRT Indexer Service with the ZooKeeper ensemble for
the HBase cluster. Add the following property to /etc/hbase-solr/conf/hbase-indexer-site.xml.
Here is the sample hbase-indexer-site.xml file:
<?xml ve r s i on="1.0"?>
<con f i gu ra t i on>
<property>
<name>hbase . zookeeper . quorum</name>
<value>lo ca lho s t </value>
</property>
<property>
<name>hbase indexer . zookeeper . connect s t r ing </name>
<value>l o c a l h o s t :2181</ value>
</property>
</con f i gu ra t i on>
Start Lily HBase NRT Indexer Service
First, we restart hbase-solr-indexer to make previous changes effective:
sudo service hbase-solr-indexer restart
Note: If a Java heap error is thrown, go to the configuration page for the Lily HBase indexer
(Key-value-store indexer). Change the Java heap size to at least 512MB. Then stop the hbase-
solr-indexer service and restart the Key-Value store indexer in the Cloudera Manager page.
See [8] and [9] for more information.
7.4 Recommender Systems
7.4.1 Architecture
An overview of a recommender system is shown in figure 21. A query, which can include various
user and contextual features, is generated when a user visits the website.
The recommender system returns a list of items (also referred to as impressions) on which users
can perform certain actions such as clicks or rates.
These user actions, along with the queries and impressions, are recorded in the logs as the
training data for the learner.
Figure 21: Recommendation System Architecture
50
7.4.2 Configuration for Handler
Based on text similarity, we configured the MoreLikeThis handler
Based on clustering and classification results, we configured the CTACFA handler
After changing solrconfig.xml, we need to update the instanceDir and reload the collection.
7.4.3 Tutorial for Personalized Recommendation
Based on those steps from the design part, we implemented the program for a user-user collabo-
rative filtering algorithm; here is the core part of this program:
51
Here is an example: when we run this code, and want to know which top 10 items we should
recommend to the user whose ID is 320, based on score from high to low, here are the top 10 result:
For this a Recommendation.jar file is included. Simply run
$-java Recommendation.jar userlog.Recommendation. This command will generate recommen-
dations in the sqlite server provided by the front end. The Solr queries for these have been
implemented, but are not working due to permission issues.
52
8 Cluster Developer Manual
8.1 Access Cluster Solr Web UI
In order to access the Solr web interface on the cluster, we need to set up port forwarding to forward
Solr packets to our local machine. There are a variety of ways to do this. Here we recommend the
following options: Secure Pipes for Mac user or Terminal access through SSH tunneling.
8.1.1 Secure Pipes
For Mac users, first download the Secure Pipes installation package from the link below:
https://www.opoet.com/pyro/
After installation, in preference add and select New Local Forward
In the configuration panel, set all properties as shown in the screen shot except your own SSH
user name and password (same as the one to SSH into the cluster):
8.1.2 SSH Tunneling
All platform users can use SSH tunneling to port forward packets to your own local machine
through the ’-L’ option:
ssh −L 9983: s o l r 2 . d l r l :8983 user_name@hadoop . d l i b . vt . edu −N
53
8.2 Command Examples on Cluster
Notice that many commands share the same format as ones in the VM section, but there are
differences due to the different architecture of the cluster. Here we provide example commands for
easy access and to clear up any ambiguities.
8.2.1 Solr Commands
Create Solr instance directory
s o l r c t l i n s t an c ed i r −−generate /your/path/your−c o l l e c t i o n−name
Create a Solr collection
s o l r c t l c o l l e c t i o n −−c r ea t e your−c o l l e c t i o n−name
Upload/Update Solr configuration files to a collection
s o l r c t l i n s t an c ed i r −−c r ea t e your−c o l l e c t i o n−name /your/path/ to / c o l l e c t i o n−conf
s o l r c t l i n s t an c ed i r −−update your−c o l l e c t i o n−name /your/path/ to / c o l l e c t i o n−conf
Delete a Solr collection
s o l r c t l c o l l e c t i o n −−de l e t e your−c o l l e c t i o n−name
Reload a Solr collection
s o l r c t l c o l l e c t i o n −−r e l oad your−c o l l e c t i o n−name
Remove all Solr collection files on HDFS
hdfs d f s −rm −r / s o l r /your−c o l l e c t i o n−name/core_node∗
8.2.2 Lily Indexer Commands
Batch-mode Indexing
hadoop −−c on f i g / e tc /hadoop/ conf j a r /opt/ c loudera / pa r c e l s /CDH/ l i b /hbase−s o l r / t o o l s /hbase−indexer−mr−1.5−cdh5
.12.0− job . j a r −−conf / e tc /hbase/ conf /hbase−s i t e . xml −D ’mapred . ch i l d . java . opts=−Xmx3000m’ −−hbase−indexer−
f i l e . / your/path/ to /morphline−hbase−mapper . xml −−zk−host node00 . d l r l : 2181 , node01 . d l r l : 2181 , node02 . d l r l : 2181 ,
node03 . d l r l , s o l r 2 . d l r l :2181/ s o l r −−l o g 4 j . / your/path/ to / l o g 4 j . p r op e r t i e s −−c o l l e c t i o n your−s o l r−c o l l e c t i o n −−
verbose −−go−l i v e −−output−d i r hdfs : // your/ c o l l e c t i o n /path −−overwr i te−output−d i r −−shards 1
8.2.3 Morphline.conf Reference
Link for Morphlines Reference Guide:
http://kitesdk.org/docs/1.1.0/morphlines/morphlines-reference-guide.html
A sample of basic morphlines.conf:
SOLR_LOCATOR : {
c o l l e c t i o n : getar−cs5604f17−so l a r−e c l i p s e
zkHost : " s o l r 2 . d l r l : 2181 , node2 . d l r l : 2181 , node3 . d l r l : 2181 , node1 . d l r l : 2181 , node4 . d l r l :2181/ s o l r "
}
morphl ines : [
{
id : getar−cs5607f17−e c l i p s e
importCommands : [" org . k i t e sdk . morphline .∗∗" , "com . ngdata .∗∗"]
commands : [
{
extractHBaseCe l l s {
mappings : [
a l l input /output mapping goes here
{
inputColumn : " tweet : in_reply_to_status_id"
outputFie ld : " in_reply_to_status_id"
type : s t r i n g
source : va lue
}
]
}
54
}
#San i t i z e unknown So l r f i e l d s
{
san i t i zeUnknownSol rF ie lds {
Locat ion from which to f e t ch So l r schema
so l rLoca to r : ${SOLR_LOCATOR}
}
}
#Timestamp conver s ion
{
convertTimestamp {
f i e l d : created_at
inputFormats : [" unixTimeInSeconds "]
inputTimezone : UTC
outputFormat : "yyyy−MM−dd ’T’HH:mm: s s . SSS ’ Z ’ "
outputTimezone : EST
}
}
#Timestamp conver s ion
{
logTrace {
format : " output record : {}" , args : ["@{}"]
}
}
#custom java codes
{
java {
imports : " import java . u t i l . ∗ ; "
code : """
Your custom ava codes go here
"""
}
}
#i f e l s e cond i t i on
{
i f {
cond i t i on s : []
then : []
{some other commands}
}
}
]
}
]
Custom Java sample for fixing data:
Remove tags around improper data in HBase
Sample input :
#"<a hre f=\"https :// about . tw i t t e r . com/products / tweetdeck \" r e l =\"no fo l l ow\">TweetDeck"
Sample output :
#"TweetDeck"
{
java {
imports : " import java . u t i l . ∗ ; "
code : """
// reco rds could be parsed in to Java List<Str ing>
List<Str ing> dc_source = record . get (" dc_source_sm ") ;
// Use l i s t i t e r a t o r to get content
L i s t I t e r a t o r <Str ing> i t e r a t o r = dc_source . l i s t I t e r a t o r () ;
whi le (i t e r a t o r . hasNext ()) {
St r ing next = i t e r a t o r . next () ;
S t r ing new_str = new Str ing () ;
i f (next . matches("<a hr e f =.∗>.∗")){
// modify s t r i n g by regex
new_str = next . r e p l a c eA l l ("<a hr e f =.∗\">" ,"");
new_str = new_str . r e p l a c eA l l (" <.∗>" ,"");
// s e t new value to record
i t e r a t o r . s e t (new_str) ;
}
}
// return the custom proce s s
re turn ch i l d . p roce s s (record) ;
"""
}
}
If Condition sample for dropping bad web page records:
drop web−page r eco rds the conta ins bad s ta tu s codes
{
i f {
cond i t i on s : [
{ conta ins { status_code : [2001 ,0204 ,0404 ,0403 ,0400] } }
]
then : [
{ logTrace { format : " Ignor ing record because i t bad web−page s ta tu s code " , args : ["@{}"] } }
{ dropRecord {} }
]
}
}
55
References
[1] Apache HBase. https://hbase.apache.org/ accessed December 2017.
[2] Apache Solr. http://lucene.apache.org/solr/ accessed December 2017.
[3] Apache Solr reference guide. http://lucene.apache.org/solr/guide/ accessed December 2017.
[4] Cloudera CDH. https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html accessed Decem-
ber 2017.
[5] NGDATA Lily HBase Indexer. https://ngdata.github.io/hbase-indexer/ accessed December 2017.
[6] M. Bock. A Framework for Hadoop Based Digital Libraries of Tweets. Master’s thesis, Virginia Tech, http://hdl.handle.net/
10919/78351, 2017.
[7] Cloudera. https://www.cloudera.com/documentation/enterprise/5-6-x/topics/search_hbase_batch_indexer.html accessed
December 2017.
[8] Cloudera. https://www.cloudera.com/documentation/enterprise/latest/topics/search_config_hbase_indexer_for_search.
html accessed December 2017.
[9] Cloudera. https://www.cloudera.com/documentation/enterprise/latest/topics/search_use_hbase_indexer_service.html ac-
cessed December 2017.
[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: A distributed storage system for structured data. 2006. https://cloud.google.com/bigtable/
accessed December 2017.
[11] J. H. Heng-Tze Cheng, Levent Koc. Wide & deep learning for recommender systems. 2016.
[12] K. S. D. Kit. Morphlines reference guide. http://kitesdk.org/docs/1.1.0/morphlines/morphlines-reference-guide.html ac-
cessed December 2017.
[13] Y. W. K. T. Liuqing Li, Anusha Pillai. Cs5604 fall 2016 solr team project report. Technical report, Virginia Tech, 2016.
[14] Manning, Christopher D, et al. An Introduction to Information Retrieval. Cambridge University Press, 2009.
[15] Mapzen. https://mapzen.com/ accessed December 2017.
[16] OpenAddresses. https://openaddresses.io/ accessed December 2017.
[17] OpenStreetMap. https://www.openstreetmap.org accessed December 2017.
[18] D. Stenberg. CURL. https://en.wikipedia.org/w/index.php?title=CURL, 2017.
[19] S. Wiki. Solr Wiki. https://wiki.apache.org/solr/FunctionQuery accessed December 2017.
56
Appendix A
Table 9: HBase Schema
Column
Family
Column Name Description Example
Column Fam-
ily
Column-name Description Example
metadata doc-type type of the document tweet/webpage
metadata collection-id number of the collection 651
metadata collection-name name of the collection electricity
metadata dummy-data designates that this is
dummy data
true/false
tweet tweet-id tweet’s unique identifier 299755872668758016
tweet archive-source twitter API’s type twitter-search, twitter-stream
tweet source platform’s type Android, iPhone
tweet text tweet’s original text "I can’t believe it was a Virginia Tech
student that posted that yik yak today.
Just so disappointing !"
tweet screen-name tweeter’s username FiremanDave32
tweet user-id user’s unique identifier 385665827
tweet tweet-deleted flag indicating that this
tweet has been deleted
true/false
tweet user-deleted flag indicating that this user
has been deleted
true/false
tweet contributor-
enabled
flag indicating that this user
has contributer enabled
true/false
tweet created-timestamp created-time (UNIX time) 1428951621
tweet created-time created-time (readable) Mon Apr 13 19:00:21 +0000 2015
tweet language tweet’s main language en
tweet geo-type point / polygon point
tweet geo-0 latitude 43.02099179
tweet geo-1 longitude -80.44612986
tweet url original URL in tweet
The Visitor Widget
tweet to-user-id unique identifier of the reply-
to user
0
tweet profile-img-url image URL from the user
profile
http://a0.twimg.com/profile_images/
3149217853/0026816c03013356b569a877
5af351fb_normal.jpeg
57
clean-tweet clean-text-solr
1. no porngraphic URLs,
hashtags.
2. inappropriate plaintext,
e.g. fuck, redacted as
f***
[clean text for Solr and FE]
clean-tweet clean-text-cla
1. no porngraphic hashtags
2. regular hashtags
3. inappropriate plaintext,
e.g. fuck, redacted as
f***
4. all URLs removed
5. stop words removed
6. text lemmatized
7. remove # or @ symbol
from mentions or hash-
tags"
[clean text for CLA]
clean-tweet clean-text-cta
1. no porngraphic hashtags
2. regular hashtags
3. inappropriate plaintext,
e.g. fuck, redacted as
f***
4. all URLs removed
5. stop words removed
6. text lemmatized
7. remove @ symbol only
from mentions, but keep
#"
[clean text for CTA]
clean-tweet NER Name entity recognition.
Tag format is desired.
I miss <em class="LOCATION">
California at <em
class="TIME"> mid-night !
58
clean-tweet POS Part of speech. Tag format is
desired. No need to tag stop
words.
I <em class="V"> found
a <em class="NN"> gun
in <em class="NN"> California
 at <em class="NN">mid-
night!
clean-tweet rt tag for the retweets 0/1
clean-tweet geo-location readable location from
Google API
Blacksburg, Virginia
clean-tweet spatial-coord Point coordinates (34.3, -118.27)
clean-tweet spatial-bounding Spatial bounding box for
S,W,N,E (if not a point)
(34.0, -118.2, 36.5, -117.4)
clean-tweet solr_geom Derived from spatial-
bounding. This field is
indexed as a Solr spatial
(RPT) field.
ENVELOPE(34.0, -118.2, 36.5, -117.4)
clean-tweet geom-type Point /polygon point
clean-tweet hashtags tweet’s hashtags #hurricane
clean-tweet mentions tweet’s mentions @VT
clean-tweet long-url extended URL http://www.roanoke.com/news/arrest-
made-in-threatening-virginia-tech-
yik-yak-post/article_4743fe59-023c-
5b26-bebd-662594f7d6ca.html (from
http://t.co/KEe6gpOMoT)
clean-tweet dates timestamps of dates in text Mon Apr 13 19:00:21 +0000 2015,Mon
Apr 14 14:00:53 +0000 2015
clean-tweet sner-people extract names from each
tweet
Obama; Jimmy
clean-tweet sner-organizations extract organizations from
each tweet
Virginia Tech
clean-tweet sner-locations extract locations from each
tweet
New York; London
clean-tweet tweet-importance The importance value for
each tweet
0-1
webpage html raw HTML of webpage [raw HTML text]
webpage language webpage’s main language [language:confidence,language:confidence]
webpage url full url of the webpage http://www.roanoke.com/news
webpage mime-type mime type of document
fetched
text/plain
webpage status-code status of the document (suc-
cess, failure, ...)
examples and further documentation
forthcoming from CMW team
webpage title extract title from the web-
page
Student arrested after threatening Vir-
ginia Tech Yik Yak post
webpage author/publisher extract author from the web-
page
Tom LoBianco and Pamela Brown,
CNN
webpage created-time extract created-time from
the webpage
Mon Apr 13 19:00:21 +0000 2015
59
webpage sub-urls sub urls in the webpage
webpage domain-name extract the domain name
from the webpage
http://www.fs.fed.us/
webpage domain-location extract the country name
from the webpage
us
webpage organization-name extract the organization
name from the webpage
with the help of c©
Cable News Network
webpage fetched-timestamp fetched time (readable) Mon Apr 13 19:00:21 +0000 2015
clean-webpage clean-text all HTML tags removed [clean HTML text]
clean-webpage clean-text-
profanity
clean text with no profanity [clean HTML text]
clean-webpage clean-text-
tokenized
tokenized clean text [clean HTML text]
clean-webpage clean-text-
stemmed
stemmed clean text [clean HTML text]
clean-webpage clean-text-
lematized
lematized clean text [clean HTML text]
clean-webpage NER Name entity recognition.
Tag format is desired.
I miss <em
class="LOCATION">California
at <em class="TIME">mid-
night!
clean-webpage POS Part of speech. Tag format is
desired. No need to tag stop
words.
I <em class="V">found a
<em class="NN">gun in <em
class="NN">California at
<em class="NN">mid-night!
clean-webpage Year Webpage year 2017
clean-webpage solr_geom Derived from spatial-
bounding. This field is
indexed as a Solr spatial
(RPT) field.
ENVELOPE(34.0, -118.2, 36.5, -117.4)
clean-webpage keywords keywords from tags in the
webpage
Shooting, california, elementary, gun
clean-webpage real-world-events list of the real world events
from collection team
Hurricane Sandy; Hurricane Arthur
clean-webpage sner-people extract names from each
webpage
Obama; Jimmy
clean-webpage sner-organizations extract organizations from
each webpage
Virginia Tech
clean-webpage sner-locations extract locations from each
webpage
New York; London
60
topic topic-list
1. labels generated by LDA
model
2. extract the top two labels
from each topic
Signed,students;
event,excited;today,register;
april,thanks;community,little
topic probability-list each value presents the prob-
ability of the tweet belongs
to a certain topic
0.29112; 0.01820; 0.12435;
0.02572;0.54058
topic topic-
displaynames
user friendly topic names
cluster cluster-list label of the tweet’s cluster NAACP stories
cluster probability-list the probability of the doc in
the cluster
0.55167194
cluster cluster-
displaynames
user friendly clusters
classification classification-list list of labels of each docu-
ment
hurricane
classification probability-list the probability of each label 0.29112; 0.01820; 0.12435;
0.02572;0.54058
classification classification-
displaynames
user friendly classification la-
bels
61

