
Fault Attacks on Embedded Software:

New Directions in Modeling, Design, and Mitigation

Bilgiday Yuce

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Patrick R. Schaumont, Chair

Michael S. Hsiao

Leyla Nazhandali

Cameron D. Patterson

Danfeng Yao

Dec 4, 2017

Blacksburg, Virginia

Keywords: Embedded Systems, Fault Attacks,Countermeasures, Fault Models,

Fault Simulation, Fault Mitigation

Copyright 2018, Bilgiday Yuce

Fault Attacks on Embedded Software:

New Directions in Modeling, Design, and Mitigation

Bilgiday Yuce

(ABSTRACT)

This research investigates an important class of hardware attacks against embedded

software, which uses fault injection as a hacking tool. Fault attacks use well-chosen,

targeted fault injection combined with clever system response analysis to break the

security of a system.

In case of a fault attack on embedded software, faults are injected into the underlying

processor hardware and their effects are observed in the executed software’s output.

This introduces an additional difficulty in mitigation of fault attack risk. Designing

efficient countermeasures requires first understanding software, instruction-set, and

hardware level components of fault attacks, and then, systematically addressing the

vulnerabilities at each level.

This research first proposes an instruction fault sensitivity model to capture effects

of fault injection on embedded software. Based on the instruction fault sensitivity

model, a novel fault attack method called MAFIA (Micro-architecture Aware Fault

Injection Attack) is also introduced. MAFIA exploits the vulnerabilities in multiple

abstraction layers. This enables an adversary to determine best points to attack dur-

ing the execution as well as pinpoint the desired fault effects. It has been shown that

MAFIA breaks the existing countermeasures with significantly fewer fault injections

than the traditional fault attacks.

Another contribution of the research is a fault attack simulator, MESS (Micro-

architectural Embedded System Simulator). MESS enables a user to model hard-

ware, instruction-set, and software level components of fault attacks in a simulation

environment. Thus, software designers can use MESS to evaluate their programs

against several real-world fault attack scenarios.

The final contribution of this research is the fault-attack-resistant FAME (Fault-

attack Aware Microprocessor Extensions) processor, which is suited for embedded,

constrained systems. FAME combines fault detection in hardware and fault response

in software. This allows low-cost, performance-efficient, flexible, and backward-

compatible integration of hardware and software techniques to mitigate fault attack

risk. FAME has been designed as an architectural concept as well as implemented

as a chip prototype. In addition to protection mechanisms, the chip prototype also

includes fault injection and analysis features to ease fault attack research.

The findings of this research indicate that considering multiple abstraction layers

together is essential for efficient fault attacks, countermeasures, and evaluation tech-

niques.

iii

bilgiday
Rectangle

Fault Attacks on Embedded Software:

New Directions in Modeling, Design, and Mitigation

Bilgiday Yuce

(GENERAL AUDIENCE ABSTRACT)

Today, we trust a range of embedded computers to process and protect our sensitive

data. For instance, credit cards process sensitive financial data during electronic

payment. Similarly, smartphones use and store private user data. This research

investigates fault attacks, a serious threat to the security of embedded computers.

In a fault attack, an adversary breaches the security by injecting intentional faults

in an embedded computer. To induce faults, the adversary deliberately manipulates

the operating conditions of the computer such as the supply voltage and ambient

temperature. These faults interfere with the correct operation of the computer and

cause temporary malfunctions in its hardware. The adversary then exploits the mal-

functions to break the security.

Although fault injection is a powerful hacking tool that may affect any security

mechanism, there is no generic technique to deal with the security threat of faults.

This research seeks a broader, deeper understanding of fault attacks and appropriate

countermeasures for them. Our contributions include a novel fault modeling method,

efficient fault attacks, a fault attack simulator, and a low-cost fault-attack-aware mi-

croprocessor. This research also provides a deeper understanding of causes and effects

of faults, which can be utilized in the design of fault attacks, countermeasures, and

metrics.

Acknowledgments

First, I would like to sincerely thank my advisor Prof. Patrick Schaumont for his

time, help, and support. His integrity and meticulousness have greatly influenced me

as a researcher and an individual. This work would not have been possible without

his continuous encouragement, guidance, and enthusiasm for my research.

I acknowledge my committee members Prof. Leyla Nazhandali, Prof. Michael Hsiao,

Prof. Cameron Patterson, and Prof. Danfeng Yao, for their valuable feedback on my

dissertation. In addition, I express special thanks to Dr. Nazhandali for her help,

support, and fruitful discussions; she has been like a co-advisor for me throughout

my PhD journey.

I also deeply appreciate the help from the members and alumni of Secure Embedded

System Group. Thank you Chinmay Deshpande, Dr. Nahid Farhady Ghalaty, Dr.

Aydin Aysu, Ege Gulcan, Marjan Ghodrati, Conor Patrick, Abhishek Ajey Bendre,

Yuan Yao, Archanaa Santhana Krishnan, Mostafa Taha, Krishna Pabbuleti, Deepak

Mane, and Harika Santapuri.

During my dissertation, I had an excellent internship experience at Riscure B.V.

I am indebted to Dennis Vermoen, Albert Spruyt, and Niek Timmers for this great

opportunity to work with them and learn immensely from them. I feel quite fortu-

nate for meeting and working many brilliant people at Riscure, including Roeland,

Nils, Parul, Baris, and Fatih.

v

I would like to thank the National Science Foundation and Semiconductor Research

Corporation for supporting this research through Grant 1441710. I would also like

to acknowledge the Bradley Department of Electrical and Computer Engineering,

Virginia Tech for supporting me during my research.

I would like to acknowledge Prof. Fatih Ugurdag for being an exemplary men-

tor and visionary role model to me. Hocam, thank you for your generous support.

Without your encouragement and help, I would not be able to start my PhD journey.

I am deeply grateful to Aylin, Harun, Zeliha Teyze, and my little sister Duru for

opening their house to me and being like a family to me in Blacksburg. Hoa, it

would take another dissertation to describe your positive effect on this research as

well as on my personal development. Thank you for enlightening my life and sup-

porting me through these years.

Finally, I owe my deepest gratitude to my beloved family for their unconditional

love and support.

vi

Contents

1 Introduction 1

1.1 Fault Attacks on Embedded Software: Threats and Countermeasures 4

1.2 Review of Existing Attacks and Countermeasures 7

1.2.1 Review of the Existing Fault Attacks 8

1.2.2 Review of the Existing Fault Countermeasures 10

1.3 Thesis Statement and Research Questions 11

1.4 Contributions . 13

1.4.1 Instruction Fault Sensitivity Model 13

1.4.2 Micro-architecture Aware Fault Injection Attack (MAFIA) . . 14

1.4.3 Micro-architectural Embedded System Simulator (MESS) . . . 16

1.4.4 Fault-attack Aware Microprocessor Extensions (FAME) 17

1.5 Organization of the Dissertation . 19

2 Background 20

2.1 Threat Model . 20

2.2 Using Faults as a Hacking Tool . 21

2.3 Fault Injection Techniques . 25

vii

2.3.1 Hardware-controlled Fault Injection Techniques 26

2.3.2 Software-controlled Fault Injection Techniques 31

2.4 Fault Manifestation in the Micro-architecture 34

2.5 Fault Propagation to the Software Layer 36

2.6 Fault Exploitation Techniques . 40

2.6.1 Fault Models . 41

2.6.2 Cryptanalysis using Fault Injection 42

2.6.3 Fault-Enabled Logical Attacks 44

2.6.4 Using Fault Injection to Assist Reverse Engineering 47

2.7 Comparison of Fault Attacks on Hardware and Software Secure Systems 47

2.8 Comparison of Fault-Tolerance and Fault-Attack-Resistance 49

3 Fault Injection and Analysis Setup 51

3.1 The LEON3 Processor . 53

3.2 Setup Time Violation . 54

3.3 Implementation of Clock Glitch Injector 56

3.4 Implementation of Data Acquisition 56

4 Instruction Fault Sensitivity Model 60

4.1 Fault Behavior in a RISC Pipeline . 61

viii

4.1.1 Fault Injection in the RISC Pipeline 62

4.1.2 Instruction Faults and Computation Faults 64

4.1.3 Fault Injection in the Memory 65

4.2 Timing Characterization of RISC Pipeline 65

5 Micro-architecture Aware Fault Injection Attack (MAFIA) 69

5.1 How MAFIA Works . 72

5.1.1 Algorithm-level Analysis . 72

5.1.2 Instruction-level Analysis . 72

5.1.3 Microarchitecture-level Analysis 73

5.2 Case Studies: Fault Attacks on Secure Embedded Software 75

5.2.1 Case Study I: DFIA on TBOX AES 75

5.2.2 Case Study II: Analysis of Instruction-level Countermeasures

on LEON3 Pipeline . 80

5.3 Experimental Evaluation of Case Study I 87

5.4 Experimental Evaluation of Case Study II 90

6 Micro-architectural Embedded System Simulator for Fault Injection

(MESS) 93

6.1 Overview of MESS . 94

6.2 Components of MESS . 96

ix

6.2.1 gem5 Simulator . 96

6.2.2 Trigger Generator of MESS 97

6.2.3 Fault Injector of MESS . 99

6.2.4 Run-time Status Monitor of MESS 102

6.2.5 Cycle-wise Operation of MESS 106

6.3 Designing and Running Experiments on MESS 107

6.4 Case Study: Fault Experiments on MESS 110

6.4.1 Target Hardware and Software 110

6.4.2 Attacking Individual Instruction Steps 112

6.4.3 Attacking a Single Clock Cycle 114

6.4.4 Attacking Multiple Clock Cycles 115

6.5 Comparing MESS with the Related Work 116

7 Fault-attack Aware Microprocessor Extensions (FAME) 119

7.1 Architectural Components of FAME 120

7.1.1 Fault Detection . 120

7.1.2 Critical State Checkpointing 122

7.1.3 Fault Response . 122

7.1.4 Added Instructions . 123

7.2 Advantages of FAME . 124

x

7.3 Contributors to the FAME Prototype 126

7.4 Chip Prototype of FAME . 127

7.4.1 Attacker Model . 128

7.4.2 Overall Design of FAME Prototype 129

7.4.3 Fault-attack-resistant FAME Core 132

7.4.4 Fault Analysis Features of FAME SoC 143

8 Experimental Evaluation of FAME 150

8.1 Experimental Setup . 150

8.2 Hardware Performance Results . 152

8.2.1 Performance Results for FAME SoC 152

8.2.2 Performance Results for FAME Core 153

8.3 Software Performance Results . 155

8.3.1 FAME-Protected Software Design 155

8.3.2 Software Overhead of FAME Extensions 162

8.4 Security Evaluation of FAME . 164

8.4.1 Fault Detection Sensitivity . 164

8.4.2 Clock Glitching on PIN Verification 166

9 Conclusions 169

xi

Bibliography 175

xii

Chapter 1

Introduction

Our daily lives and critical infrastructure are getting increasingly dependent on a

spectrum of interconnected embedded systems from low-end smartcards to high-

end network equipment. On one end of the spectrum, credit cards process users’

bank account information during electronic payments. Smart meters in the electrical

power grid provide national-level smart electricity distribution. Electronic passports

contain biometric information of millions of citizens. In the middle of the spectrum,

applications and services running on the mobile platforms manage sensitive user

and corporate data such as credentials for authentication, private information, and

identity. On the other end of the spectrum, cloud storage enables users to keep

their sensitive data, which may relate to personal or commercial secrets, in third-

party data centers. Moreover, modern embedded systems usually store a device-

specific firmware, which is a software intellectual property (IP) to configure and

control hardware and software components of the system. Considering the increasing

dependence on embedded systems to handle sensitive data, those systems must ensure

an acceptable level of security during storage, transfer, and use of the sensitive data.

Secure embedded systems employ various mechanisms to satisfy the security require-

ments (e.g, confidentiality, integrity, authentication) of sensitive data. Encryption

algorithms provide confidentiality for keeping information secret from all but autho-

1

2 Chapter 1. Introduction

rized parties. Cryptographic hash algorithms enable an entity to check the integrity

of data. Message authentication codes and digital signatures are used for verifying

integrity and authentication. For instance, the secure boot mechanism ensures secure

initialization and configuration of a system by using digital signatures to verify the

integrity of the firmware. In addition to these cryptographic mechanisms, the system

software of modern embedded devices generally implements access control policies,

privilege levels, and isolation mechanisms to manage access to hardware components,

files, and software processes.

The aforementioned security mechanisms are subject to attacks from malicious ad-

versaries because of the high value of the protected data. The traditional security

threats are logical and mathematical attacks, which are mounted at algorithm or

software level. For example, the linear cryptanalysis, differential cryptanalysis, and

brute force attacks target the mathematical principles and input/output of cryp-

tosystems. Despite the existence of such attacks, the mathematical principles of

the modern cryptographic mechanisms are usually strong enough to withstand those

traditional attacks.

Low-level logical attacks tamper with the machine-code level implementation of a

software program to subvert the execution of the program and gaining control over

the device running the program. In a typical setting (I/O attacker model), an adver-

sary controls the input of a victim program to trigger a memory-safety vulnerability,

which allows a program to access a memory location not allocated for that pro-

gram. For instance, in the infamous buffer overflow vulnerability, an adversary is

able to access the memory locations beyond the bounds of an input buffer (i.e, a

contiguous chunk of memory locations) due to lack of appropriate checking. As a

result, the adversary can gain control over the victim program’s execution by in-

Bilgiday Yuce Chapter 1. Introduction 3

jecting malicious code into the memory, corrupting code pointers in the memory, or

corrupting security-critical data residing in the memory [1]. Similarly, an adversary

can also achieve an out-of-bounds read access and leak confidential information from

the memory. In a more advanced setting (memory attacker model), the adversary

is also capable of tampering with the virtual memory space of a program to cause

confidentiality and integrity problems even if the victim program contains no mem-

ory safety vulnerability [2]. Despite their capabilities, the nature and mechanisms

of these attacks are well-understood and various effective countermeasures against

them have been demonstrated in both hardware and software layer [1, 2].

A relatively new and powerful threat to the security of embedded systems is the im-

plementation attacks. In an implementation attack, an adversary attacks the physical

implementation of a security mechanism rather than mathematical or logical vulner-

abilities. During the development of previously discussed security mechanisms, soft-

ware designers assume that the underlying microprocessor hardware always correctly

executes instructions of a program, and it is a perfect black box such that adversary

cannot observe or manipulate internals of the hardware. However, an embedded

system is not a perfect black box in the real world. A software program runs on the

physical resources of the microprocessor hardware and interacts with the physical

operating environment of the microprocessor through supply voltage fluctuations,

heat transfer, operating frequency, radiation emission and so forth. In addition, the

assumption of correct hardware operation holds as long as the hardware’s operat-

ing conditions are within certain margins determined by the implementation of the

hardware and the laws of physics. Thus, an adversary can physically observe and

alter the execution of a security mechanism through its physical interaction with the

operating environment.

4 Chapter 1. Introduction

The two main categories of implementation attacks are side-channel attacks [3], and

fault attacks [4, 5]. In a side-channel attack, the adversary passively observes physi-

cal variables (e.g, power consumption) of the security operations, and then correlates

these observations with a side-channel leakage model of the secure embedded system.

A high correlation reveals information on the sensitive data. In a fault attack, the

adversary violates the assumption of correct hardware operation by actively pushing

the operating conditions beyond the pre-determined margins. This causes hardware

faults. Then the adversary exploits the effects of faults on the execution of the secu-

rity mechanism and breaks its security. The implementation attacks can break the

security of an implementation even if it has no mathematical or logical vulnerability.

The pervasive and easy-to-obtain nature of the modern embedded systems makes

the impact of implementation attacks more severe.

1.1 Fault Attacks on Embedded Software: Threats

and Countermeasures

This research investigates fault attacks on embedded software, which is a powerful

hardware-oriented implementation attack against security mechanisms implemented

in software running on modern embedded devices. In a fault attack on embedded

software, the target of the fault injection is the hardware layer while the target of

the fault exploitation is the software layer. The adversary creates a controlled and

engineered fault in the processor hardware, and exploits the effects of the fault on the

software to cause sensitive information leakage or to obtain control over the embedded

processor. For instance, Figure 1.1 outlines the process of a typical fault attack on

unprotected embedded cryptographic software. In this example, the cryptographic

1.1. Fault Attacks on Embedded Software: Threats and Countermeasures 5

Crypto
Software

Secret Value

Micro
ProcessorMemory

Fault Injection

Fault

IO

Fault Effect

Software

Hardware

Figure 1.1: In a fault attack on embedded software, faults are injected in hardware,
but their effect is exploited in terms of the target software.

software makes use of a secret key, and the adversary aims to learn the value of this

key. This requires inducing a specific fault effect in an observable control or data

dependency of the software secret. The adversary starts with performing fault injec-

tion on the hardware, including the microprocessor pipeline, registers, and memory.

Fault injection can be achieved by various means such as reducing supply voltage,

increasing operating frequency, or increasing ambient temperature of the processor

beyond the allowed margins [6, 7, 8]. In addition, the processor can be exposed to

electromagnetic pulses [9] or laser shots [10]. The hardware and the software are

connected through the processor’s instruction-set architecture, so that a hardware

fault in the microprocessor hardware eventually appears in the software as a faulty

instruction or as a faulty data value. A faulty instruction changes the meaning of the

program, while a faulty data value changes the correctness of the computation. The

instruction-faults or data-faults that occur during execution of the cryptographic

software are the starting point of a fault exploitation, which eventually enables the

adversary to extract the cryptographic key.

6 Chapter 1. Introduction

Fault attacks initially emerged as theoretical cryptanalytic attacks on cryptographic

algorithms [5]. Over the last 20 years, several practical implementations of fault

attacks have been demonstrated on both educational evaluation boards [11, 12, 13,

14, 15, 16, 17, 18, 19, 20] and on-the-shelf commercial devices [21, 22, 23, 24, 25,

26, 27, 28] using various fault injection means such as clock glitching [14, 29], volt-

age starving [7, 30], voltage glitching [18], electromagnetic pulses [31, 32, 33], and

laser pulses [10, 34]. In addition to their extensive use in the literature as a crypt-

analysis tool on both symmetric and asymmetric cryptography [4], fault attacks

have also been shown an effective hacking tool against non-cryptographic, logi-

cal security mechanisms such as secure boot, privilege levels, and isolation mech-

anisms [18, 20, 22, 24, 35, 36]. Implementing a fault attack requires to deliberately

control the physical parameters of the operating environment of the target embed-

ded systems, which usually requires physical proximity to the target. However, it has

been also demonstrated that even remotely-implemented fault attacks are possible

because of the increased complexity of the modern systems [22, 23]. Furthermore, it is

also possible to use fault attacks in a combined settings with the logical [37, 38, 39, 40]

and side-channel analysis attacks [41, 42, 43, 44].

As fault attacks pose a serious threat to a variety of secure embedded software, there

is a rich body of techniques in the literature for fault detection and response. The

existing techniques rely on redundancy, which is implemented in either completely

in hardware layer or software layer. The first approach (Figure 1.2a) implements

both fault detection and response as redundant software design. This approach

employs algorithm-specific redundancy, temporal redundancy, or information redun-

dancy [45, 46, 47, 48, 49] at instruction level [49, 50, 51] or algorithm level [52, 53].

This approach verifies the consistency among redundant software executions at var-

1.2. Review of Existing Attacks and Countermeasures 7

ious moments during the operation of the security mechanism. Then it applies an

appropriate fault response based on the result of the verification. Based on the used

redundancy type, the response can be activating a reset procedure, killing the de-

vice, correcting the result, or randomizing the result. The second approach is to

implement detection and response at the hardware layer. In this case, one option is

the fault-tolerant hardware design, which uses expensive hardware redundancy [54].

A cheaper option is to utilize built-in sensors to monitor low-level operating param-

eters. This includes current sensors[55], voltage sensors[56], radiation sensors [57]

or timing sensors [58]. Fault detectors can also be integrated at the hardware level

in the processor such as when using canary registers [59] or ECC memory. When a

non-correctable fault is detected in hardware, an immediate hardware-level reaction

will be triggered, which may include halting the processor, resetting the processor,

or restarting the instruction [59]. The next section discusses the problems of the

existing fault attacks and countermeasures, which are still needed to be addressed

despite the research effort described above.

1.2 Review of Existing Attacks and Countermea-

sures

This section reviews the existing fault attacks and countermeasures in separate sub-

sections.

8 Chapter 1. Introduction

Crypto
Software

Micro
Processor IO

Crypto
Software

Micro
Processor IO

Software Redundancy

Hardware Detection
and Response

Secret

(a) (b)

Figure 1.2: Existing strategies for fault countermeasures: (a) Software Detection and
Response, (b) Hardware Detection and Response.

1.2.1 Review of the Existing Fault Attacks

In a fault attack, the adversary first designs a fault exploitation method based on

a specific fault model, a high-level assumption on the actual induced fault in the

software after physical fault injection. Then the adversary manipulates the operat-

ing conditions of the microprocessor hardware to induce the assumed fault effect.

Although powerful fault exploitation techniques have been developed, their practical

implementation is complicated because of the uncertainty that comes with the fault

injection process. First, the intended fault effect may not match the actual fault

1.2. Review of Existing Attacks and Countermeasures 9

effect obtained after fault injection. Second, the logic target of the fault attack, the

embedded software, is above the abstraction level of physical faults. The uncertainty

with respect to the fault effects in the software may degrade the efficiency of the

fault attack, resulting in many more trial fault injections than the amount predicted

by the theoretical fault attack.

In the literature, the most common strategy to select fault injection parameters is

by trial and error, although, in this approach, only a very little portion of the fault

injections induce the intended fault effects [18, 19]. This low success rate quickly

decreases the efficiency of fault exploitation. For example, Differential Fault Analysis

(DFA) technique can recover 128-bit AES key after a single fault perfectly matching

the fault model [60, 61]. However, even a mismatch of one in one hundred fault

injections can render this technique ineffective [62].

The main reason behind using such an inefficient search strategy is the lack of fault

models that accurately capture the fault effects experienced by the software and guide

the fault injection process to induce desired fault effects in software. The bulk of the

literature on fault attacks treat the modeling of fault behavior of a software program

only at the most basic level [4, 8, 63, 64, 65] with a hardware-oriented approach. In

this approach, a fault injection method is applied to the microprocessor hardware,

and the observed fault effects are captured into a fault model. Typical fault models

only capture basic parameters, such as the fault duration (transient or permanent),

the fault value (bit-flip, random, stuck-at), and the fault location (a variable, a

conditional flag, control flow) [65]. Although it is useful to evaluate the feasibility

of fault injection on a processor, such a generic fault model is not sufficient to guide

fault injection for inducing the desired fault effects in the target software.

In recent years, this model was further refined by acknowledging a link between fault

10 Chapter 1. Introduction

injection intensity and the severity of fault effects on the microprocessor [13, 14, 29].

Balasch et al. discuss the case of an AVR micro-controller [29], Moro et al. describe

Electromagnetic (EM) attacks on an ARM Cortex-M3 [13], and Korak et al. study

the ATxMega-256 as well as the ARM Cortex-M0 [14]. All of them use techniques

that trigger timing errors through clock glitches and/or (voltage or EM) pulses.

These papers reveal that a gradual increase in fault intensity causes a gradual increase

in the number of faults. For example, Balasch shows that opcodes can be gradually

changed into NOP (all-zero) from any given opcode, by gradually decreasing the

clock period during the instruction fetch. Although this modeling approach enables

an adversary to relate the fault intensity to the number of induced faults in the

hardware, it is still insufficient in many practical situations, including the case of

the embedded software fault attacks examined in this research. There is a need to

expand the fault modeling mechanism beyond the basic parameters of fault duration,

fault type and fault location. A fault model for embedded software should capture

the fault effects experienced by microprocessor instructions, in order to analyze the

effects of a fault injection on software and to guide the fault injection. Thus we need

to model fault effects in the instruction-set architecture, rather than faults purely at

the hardware level.

1.2.2 Review of the Existing Fault Countermeasures

There are several issues with the existing fault attack countermeasures. While redun-

dancy is a generic countermeasure that can capture a wide range of faults, it comes

with an inherent performance penalty over the non-redundant design [45, 46, 47].

For embedded implementations, this overhead can be significant. Simple instruction

duplication, for example, doubles the execution time regardless of the presence of

1.3. Thesis Statement and Research Questions 11

a fault [66]. Furthermore, redundancy is no guarantee against fault attacks by an

adaptive adversary who targets the consistency checks, or against an adversary with

multiple-fault injection capability [17, 19, 20, 67, 68].

From the fault response angle, it is not possible to customize the response to specific

requirements of an application when the response is fully implemented in hardware.

In this case, the reaction is limited to a generic response. While processor reset may

be a viable option in the specialized environment of a smart-card, it may be unac-

ceptable in a complex, multi-purpose environment such as in a system-on-chip. It

may also be necessary to differentiate intentional faults from random faults. While

the intentional faults affect the sensitive control and data dependencies of the ap-

plication, random faults affect random parts of an application at random intervals.

Therefore, a fixed and uniform fault response may not be desirable for intentional

faults [69].

Finally, defending software against fault attacks introduces the additional difficulty

that the faults do not originate in the software, but rather in the underlying processor

hardware. Therefore, modern embedded systems need low-cost and flexible mecha-

nisms over multiple abstraction layers for fault detection and response [70, 71, 72, 73].

1.3 Thesis Statement and Research Questions

Multiple abstraction layers (i.e, hardware, instruction-set architecture, software) take

part in a fault attack on embedded software. The previous research efforts focus on

only a single layer, and this isolated approach causes inefficiency in designing fault

attacks and countermeasures.

12 Chapter 1. Introduction

The aim of this research is to consider the impacts of hardware, instruction-set archi-

tecture (ISA), and software layers together to significantly improve the efficiency of

attack and protection techniques. This combined approach also yields a deeper, bet-

ter understanding of fault attack risk on the embedded software. The main research

question is as follows:

• How can the knowledge of hardware, ISA, and software layers be combined

together to design more efficient fault attacks and countermeasures?

This question is refined into the following sub-questions:

• How should the fault model of a microprocessor be constructed such that it ex-

plains the fault injection’s effects on the software and guides the fault injection

to obtain the desired fault effects?

• Using the fault model, can novel fault attacks on embedded software be de-

signed such that an adversary needs to put less fault injection effort to break

the security?

• How can an adversary’s view of software execution be reflected into a simu-

lation environment such that software designers can evaluate the fault-attack

resistance of their designs at design time?

• How should fault handling be distributed over multiple abstraction layers to

provide architectural support for fault-attack resistance satisfying performance

and security requirements of modern embedded systems?

1.4. Contributions 13

1.4 Contributions

This research has four main contributions that are summarized in this section.

1.4.1 Instruction Fault Sensitivity Model

The first contribution of this research is the instruction fault sensitivity model that

systematically captures fault behavior of a software program running on a micropro-

cessor datapath [11, 12]. An adversary can use the instruction fault sensitivity model

to obtain insight into most likely fault effects as well as to pinpoint most sensitive

points during the execution of the target software program.

In contrary to the previous fault models, instruction fault sensitivity model char-

acterizes the fault effects at instruction set architecture (ISA) level. This provides

several advantages.

• First, the instruction set architecture (ISA) provides an execution model, which

allows modeling the impact of faults on the execution of instructions. A typ-

ical instruction-execution cycle includes at least instruction-fetch, decode and

execute steps. The effect of a fault can change according to each phase of

the instruction-execution cycle. For example, a fault on the instruction-fetch

could affect the instruction opcode, while a fault on the execution phase could

change the instruction operands. Each of these faults has a different effect on

the software program.

• Second, the ISA makes a clear distinction between data processing (eg. arith-

metic instructions), control (eg. branch instructions), storage (eg. load/store of

14 Chapter 1. Introduction

data), and input/output operations [63]. Faults have a different effect on each

different instruction, and hence software fault models should be instruction-

dependent.

• Finally, the data dependencies, which are crucial to understanding the propa-

gation of faults in software, only become visible in the software. It is impossible

to analyze fault propagation through the microprocessor hardware alone.

.

To demonstrate the instruction fault sensitivity model, we characterize the fault be-

havior of a set of SPARC ISA instructions on a 32-bit, 7-stage-pipelined RISC pro-

cessor. We build the instruction fault sensitivity model against setup-time violation

attacks by using gate-level timing simulation. The resulting fault model contains the

fault sensitivity value of each (instruction, pipeline stage) pair. To our knowledge,

this is the first ISA-level fault model demonstrated in the literature.

1.4.2 Micro-architecture Aware Fault Injection Attack (MAFIA)

Relying on the instruction fault sensitivity model, we also propose a systematic

fault attack methodology, so-called Micro-architecture Aware Fault Injection Attack

(MAFIA) [11, 12]. MAFIA enables an adversary to launch an efficient fault attack

on an embedded software by exploiting different layers of abstraction. The adversary

starts with algorithm-level analysis to determine application-specific fault injection

and analysis objectives. Then the adversary studies the software implementation of

the algorithm in the instruction level and finds the candidate (instruction, pipeline

stage) pairs for fault injection. Finally, the adversary examines the execution of the

1.4. Contributions 15

instructions on the pipeline to determine clock cycles to inject faults as well as the

fault injection parameters to create the desired effects.

We demonstrate the efficiency of MAFIA with two case studies on a 32-bit RISC

processor. First, we develop a Differential Fault Intensity Analysis (DFIA) attack

on an unprotected AES software program, and show that the use of the proposed

methodology reduces the number of required fault injections an order of magnitude

in comparison to the traditional attack methodology. This is the first DFIA attack

on a software implementation.

Second, we show how the instruction fault sensitivity model helps to pinpoint the

weaknesses of a class of fault attack countermeasures in software, which rely on

instruction-level redundancy. We analyze the state-of-the-art instruction-level coun-

termeasures by considering the micro-architectural aspects and identify their vul-

nerabilities. The analyzed countermeasures include instruction duplication, instruc-

tion triplication, instruction-level parity checking, and fault-tolerant instruction se-

quences. This analysis shows that all of these countermeasures can be broken with a

single fault injection. To our knowledge, this is the first work that provides such an

analysis of the software countermeasures. We also experimentally demonstrate the

feasibility of the aforementioned findings by breaking all of the analyzed instruction-

level countermeasures with a single clock glitch injection. This is the first work to

demonstrate a practical single-fault attack on instruction-level countermeasures with

low-cost clock glitch injection. Further details of MAFIA is explained in Chapter 5.

16 Chapter 1. Introduction

1.4.3 Micro-architectural Embedded System Simulator (MESS)

Another contribution of this research is a fault attack simulator to analyze the effects

of fault injection on the secure embedded software applications, and to assess their

vulnerability against fault attacks. We name the proposed simulator as MESS (Mi-

croarchitectural Embedded System Simulator). MESS is a micro-architecture level

fault injection simulator that considers software-level, ISA-level, and hardware-level

components of fault attacks together. Therefore, MESS is capable of reflecting the

attackers’ view of execution into the simulation environment. This allows a user of

MESS to simulate various real-world fault attack scenarios.

MESS potentially enables software designers to evaluate the security of their designs

at the early phases of the development, which is crucial for efficient cost-performance-

security trade-offs. Another potential use of MESS is to security evaluators to dis-

cover novel threat models, to explore architecture-specific fault models, to carry out

a root-cause analysis, and to guide the actual fault injection.

We implement MESS by extending a widely used, cycle-accurate, micro-architecture

level, full-system simulator gem5 [74] with fault injection and analysis capabilities.

gem5 enables a user to define main micro-architectural components of a processor

such as pipelined datapath, caches, and memories. Then the user can run an ap-

plication on this model and analyze its execution. The current implementation of

MESS supports x86 and ARM instruction set architectures. Chapter 6 explains the

details of MESS.

1.4. Contributions 17

1.4.4 Fault-attack Aware Microprocessor Extensions (FAME)

To mitigate the fault attacks, we propose Fault-attack Aware Microprocessor Exten-

sions (FAME) that transform an unprotected baseline processor to a fault-attack-

resistant processor. The main objective of FAME is to provide low-cost architectural

support for fault mitigation in the processor hardware to enable software designers

to develop cheaper and more secure fault attack countermeasures. FAME achieves

its objective by distributing fault detection and response across multiple abstraction

layers.

FAME combines the strong points of the previous techniques. It consists of fault

detection in hardware, followed by hardware-level checkpointing, and a secure trap

in software (Figure 1.3). FAME instruments the microprocessor with sensors to pick

up fault injection attempts. The microprocessor maintains a hardware checkpoint of

low-level critical system state that is updated every clock cycle. When the sensors

detect a fault injection, the checkpoint is frozen and the fault detection hardware

initiates a secure trap handler in software. The secure trap handler recovers the

critical system state from the checkpoint and restores it. The secure trap handler

then executes a user-defined fault-response to implement application-specific coun-

termeasures. FAME does not suffer from the performance overhead of redundant

software execution, and it responds to a fault injection before its effect can spread.

Compared to software redundancy and software checkpointing, a hardware sensor

offers low response latency, and it may enable detection of a fault injection attempt

before an actual fault in the processor occurs. The use of a sensor brings a significant

advantage, as it also reduces the cost of the overhead. For embedded or performance-

sensitive implementations, minimal performance overhead is an important concern.

18 Chapter 1. Introduction

Crypto
Software

Micro
Processor IOHardware Detection

Software Response

Secret

Figure 1.3: Key principle of the proposed fault-attack-resistant FAME processor:
Hardware Fault Detection, Software Fault Response.

However, a sensor is subject to false-negative or false-positive alarms. That is, not

every fault injection may trigger the sensor, and not every detected fault is malicious.

We address this challenge by designing our chip with a specific attacker model in

mind. That is, we argue that a countermeasure has to be designed with the attack

mechanism in mind, in order to justify the cost and overhead relative to the gain in

security.

We designed a prototype of FAME and implemented it both on an FPGA [75] and as

a chip. The prototype contains a RISC processor with fully integrated fault-attack-

resistant extensions and the capability to execute a secure trap. It also contains a de-

tailed fault-injection and debugging infrastructure to assist the development and test-

ing of fault attacks on the chip. The results of the prototype demonstrate that FAME

is a generic, low-cost, performance-efficient, flexible, and backward-compatible coun-

termeasure of fault attacks. This is the first work that investigates architectural

1.5. Organization of the Dissertation 19

Chapter 2: Background

Chapter 3: Fault Injection and Analysis Setup

Chapter 4: Instruction Fault Sensitivity Model

Chapter 5: MAFIA

Chapter 6: MESS

Chapter 7, Chapter 8: FAME

Chapter 9: Conclusions

Introducing Fault Attacks

Experimenting Fault Attacks

Modeling Fault Attacks

Designing Fault Attacks

Simulating Fault Attacks

Mitigating Fault Attacks

Figure 1.4: Roadmap for the dissertation.

support to assist software developers in developing better countermeasures. Chapter

7 and Chapter 8 give the details of FAME.

1.5 Organization of the Dissertation

The remaining part of the dissertation is organized as follows (Figure 1.4): Chapter

2 explains the basics of fault attacks and the steps that an adversary has to go

through to build a fault attack. Chapter 3 explains the details of the fault injection

analysis environment used to experimentally verify the results. Chapter 4 presents

the instruction fault sensitivity model. Chapter 5 explains the steps of MAFIA

and demonstrates its efficiency with two case studies. Chapter 6 provides details

of MESS, and case studies to demonstrate its use. Chapter 7 details FAME and

its chip prototype. Chapter 8 presents experimental evaluation results of FAME.

Finally, Chapter 9 concludes the dissertation.

Chapter 2

Background

This chapter provides background information about fault attacks on embedded soft-

ware.

2.1 Threat Model

The aim of a fault attack is breaching the security of a software program by forcing

a security-sensitive asset into unintended behavior. For this purpose, the adversary

injects well-crafted, targeted hardware faults by deliberately altering the operating

conditions of the microprocessor that runs the target software. Then the adversary

exploits the effects of the faults on the target software’s execution and breaks the

security. Consequently, the target of exploitation is the software layer while the

origin of vulnerability (i.e, faults) is the hardware layer.

In a typical fault attack, the adversary is not capable of directly modifying or moni-

toring the internals of a chip, or changing the binary of a program. The adversary is

able to alter the execution of a target program by controlling the physical operating

conditions (e.g, timing, supply voltage, temperature) of the processor hardware ex-

ecuting the program. The adversary can also provide input to the target program,

and observe the effects of abnormal operating conditions on the software execution

20

2.2. Using Faults as a Hacking Tool 21

Physical
Level

Timing Power EM Heating Light

Circuit
Level

Logic Gates Memory Cells Flip Flops

1- Fault Injection

μ-Architecture
Level Instruction

Memory

Data Mem

Register File

Boot ROM

Status Regs

DatapathControl

2- Fault Manifestation

3- Fault Propagation

I-
Fe

tc
h

Decode

D
-F

et
ch

Execute

St
or

e

int verify(S,P){
 int r;
 if (S = P)
 r = 1;
 else
 r = 0;
 return r
}

1

2
3

4
5

1

2

3 4

5

S,P

r r

SP
Faulty
Control Flow
and/or
Data Flow

Application, OS, Firmware

Hardware
Layer

Software
Layer

4- Fault
Observation

Instruction Set Architecture (ISA) Layer

5- Fault
Exploitation

 - Fault Model
 - Fault Exploitation Method
 - Fault Injection Method

Faulty Bits

Electrical
Transients

Faulty
Instructions

 Fault Attack Implementation Fault AttackDesign

Figure 2.1: Anatomy of a typical fault attack on embedded software: The target of
fault injection is the hardware while the target of exploitation is the software.

through system output or a related side-channel such as power consumption, cache-

activity-related timing, and performance counters.

2.2 Using Faults as a Hacking Tool

Figure 2.1 illustrates the steps and mechanisms involved in a typical fault attack on

embedded software. A fault attack consists of two main phases, fault attack design

22 Chapter 2. Background

and fault attack implementation (Steps 1-5 in Fig. 2.1). In the design step, the

adversary analyzes the target to determine fault model (i.e, an assumption on the

faults to be injected), fault exploitation method, and fault injection technique. For

instance, an adversary may intend to inject faults into several assets such as an en-

cryption program, a security-related verification code, a memory transfer function,

the processor state register, a system call, the firmware, or configuration informa-

tion of the target device. The adversary may then exploit the fault effects on the

target asset for various attack objectives such as weakening the security, bypassing

security checks, intellectual property theft, extracting the confidential data, privilege

escalation, activating debug modes, and disabling secure boot of the device.

The implementation phase is a combination of five steps:

1. Fault Injection: In this step, the adversary applies a physical stress on the

microprocessor to alter its physical operating conditions and to induce hard-

ware faults. The applied physical stress can be in various forms such as clock

glitches, supply voltage glitches, electromagnetic (EM) pulses, and laser shots.

To induce the desired faults, the adversary varies fault intensity, which is the

degree of the physical stress by which the microprocessor hardware is pushed

beyond its nominal operating conditions. The adversary controls the fault

intensity via fault injection parameters. For clock glitching, shortening the

length of the glitch increases the fault intensity. It is controlled by glitch/pulse

voltage and length for voltage glitching, electromagnetic pulse injection, and

laser pulse injection. The laser and electromagnetic pulse injections also enable

the adversary to localize the fault intensity by controlling the shape, size, and

position of the injection probe.

2.2. Using Faults as a Hacking Tool 23

2. Fault Manifestation: The circuit-level effect of fault injection is creating

electrical transients on the nets, combinational gates, flip-flops, or memory

cells. A fault manifests at the micro-architecture level when the electrical

transients are captured into a memory cell or flip-flop, and change its value.

The number of manifested faulty bits in the micro-architecture level is cor-

related to the applied fault intensity: A gradual change in the fault inten-

sity causes a gradual change in the manifested faults. We call this relation

biased fault behavior. This behavior is valid independent of the used fault

injection method, and it enables the adversary to control the induced fault ef-

fects [12, 13, 14, 76]. Because of the biased fault behavior, the adversary is able

to find a critical fault intensity value, at which the electrical transients become

strong enough to cause fault manifestation. That critical fault intensity value

is called fault sensitivity of the target hardware [77].

3. Fault Propagation: In this step, the effects of the manifested faults are

propagated to the software layer through execution of faulty instructions. The

next two paragraphs briefly explain the mechanism behind fault propagation.

Software security mechanisms are implemented as a sequence of instructions

executed by the microprocessor hardware. In addition, each instruction goes

through the instruction-execution cycle that consists of multiple steps carried

out by a certain subset of available micro-architecture-level hardware blocks.

The processor loads each instruction from program memory (instruction-fetch),

then determines the meaning of the current instruction through its opcode

(instruction-decode), then executes the current instruction (instruction-execution),

and then updates the state of the processor based on the instruction’s result

(instruction-store). The number of steps in the instruction-execution cycle is

24 Chapter 2. Background

architecture dependent, and it can vary considerably from one microprocessor

to the next.

The manifested faults may cause faulty bits in any micro-architectural hard-

ware block such as instruction memory, controller, datapath and register file.

The effects of the manifested faults are propagated to the software layer when

an instruction uses the affected micro-architectural block. As each instruction

uses a specific subset of the micro-architectural blocks, the precise effect of a

hardware fault depends on the type of the instruction. For instance, a bit-flip

fault injected during the execution step of an addition instruction may yield a

single-bit fault in the result of this instruction. However, the same bit-flip fault

injected during a memory-load instruction would cause a single-bit fault in the

effective address calculation, and thus, data is loaded from a wrong memory

location. In the former case, only a single bit of the destination register is

faulty; while in the latter case the destination register has a random number

of faulty bits.

4. Fault Observation: An adversary needs to observe the effects faulty instruc-

tions in order to exploit them. An observable fault effect can be a faulty

system output such as a faulty ciphertext, a side-channel information such as

a sudden change in the power consumption, a single-bit information showing if

fault injection was successful, or micro-architectural affects observed through

performance counters [78, 79]. These effects become observable to the adver-

sary when they are subsequent instructions that have data-dependencies or

control-dependencies on the faulty instruction are executed.

5. Fault Exploitation: In the final step, the adversary exploits the observable

fault effects and breaks the security. For example, the adversary can analyze

2.3. Fault Injection Techniques 25

the differential of the correct and faulty ciphertexts from a cipher to retrieve the

secret key used for the encryption. For the same purpose, an adversary may

also use a single-bit side-channel information of whether fault injection was

successful. Similarly, the adversary may use the faults to trigger traditional

logical attacks such as buffer overflows and privilege escalation.

2.3 Fault Injection Techniques

In a fault attack, it is essential to induce well-controlled faults during execution of

the target software. An adversary achieves fault injection by deliberately applying

physical stress to push the operating conditions of the underlying microprocessor

hardware beyond their allowed margins. The adversary controls the induced faults

through timing, location, and intensity of fault injection. The timing of fault injection

is defined as the moment at which physical stress is applied to the processor. The

location of the fault injection is the spatial portion of the processor that is exposed

to physical stress. The intensity of the fault injection is the amount of physical stress

applied to the processor.

This section discusses common techniques used for fault injection. We briefly describe

main characteristics of each fault injection technique. We partition the fault injection

techniques into two main categories (Figure 2.2): Hardware-controlled fault injection

and software-controlled fault injection.

Hardware-controlled fault injection techniques employ a separate external fault in-

jection hardware to apply physical stress to the target hardware and induce faults

in the victim software. Typically, the fault injection process is controlled by an-

26 Chapter 2. Background

Victim Software

Victim
Hardware

Fault Injection &
Control Software

Physical
Stress

(a)

Victim
Software

Victim
Hardware

Fault Control
Software

Fault Injection
Hardware

Physical
Stress

(b)

Figure 2.2: Fault Injection Categories: (a) Hardware-Controlled Fault Injection (b)
Software-Controlled Fault Injection

other software program (i.e, fault control software) running on the fault injection

hardware. In software controlled fault injection techniques, fault injection is con-

trolled with a malicious software (i.e, fault injection and control software), which

runs on the same hardware platform as the target software does. This malicious

software alters the physical operating conditions of the target hardware to induce

faults. While hardware-controlled techniques require physical proximity to the target

system, software-controlled fault injection techniques enable remote fault attacks.

2.3.1 Hardware-controlled Fault Injection Techniques

Several hardware-controlled fault injection techniques have been successfully demon-

strated in the literature [8, 30, 78]. The following sections provide an example list of

commonly used techniques.

2.3. Fault Injection Techniques 27

Tampering with Clock Pin

An adversary may inject faults by tampering with the external clock signal of the

target device.

One way of exploiting the clock signal for fault injection is overclocking [80], in which

the adversary persistently applies a higher-frequency clock signal than the nominal

clock frequency of the device. This violates setup-time constraints of the device

and causes premature latching of the faulty values in flip-flops of the device [81].

The spatial precision of this method is low because the modifications in the external

clock signal are distributed across the whole chip surface through a clock network.

Similarly, the temporal precision of overclocking is also low because all of the clock

cycles are affected by fault injection; the adversary cannot select the clock cycles

to be affected by the fault injection. On the other hand, the adversary has a fine

control on the fault intensity through clock frequency.

Another way of tampering with the clock signal is clock glitching [14], in which the

adversary temporarily shortens the length of a single clock cycle. This causes setup-

time violations during the affected clock cycle. In comparison to overclocking, the

adversary has a precise control on the temporal location (i.e, timing) of the fault

injection. The intensity of the fault injection is controlled through the length of

the glitched clock cycle. Similar to the overclocking, the spatial precision of clock

glitching is low.

For the clock glitching and overclocking techniques, the state-of-the-art fault injection

setups [16, 82] provide nanosecond-level temporal precision. The disadvantage of

tampering with the clock signal is that this method requires physical access to an

external clock pin. If a device uses an internally-generated clock signal, using this

28 Chapter 2. Background

method is infeasible.

Tampering with Supply Voltage Pin

An adversary can also inject faults by altering the external supply voltage of the

target device. The adversary may use underfeeding [7], in which a lower voltage

than the nominal voltage is supplied to the device. Lower supply voltage increases

the delay of combinational paths. This causes setup-time violation when the voltage

drop is large enough to make a path delay larger than the applied clock period.

This method has low spatial precision as the supply voltage is distributed all over

the chip through a power network. Similarly, the temporal precision of the fault

injection is low because all of the clock cycles are exposed to the lower supply voltage.

The adversary controls the fault intensity through the value of the external supply

voltage.

The adversary can also use voltage glitching [18], which injects temporary voltage

drops and provides the capability to control the temporal location of the fault in-

jection. In this case, the adversary controls the intensity with the glitch offset from

the sampling edge of the clock signal, glitch voltage, and glitch width similar to the

clock glitching.

These methods require physical access to the supply voltage pin. Removing the

external coupling capacitance on the supply voltage line improves the efficiency [18].

The drawback of tampering with external voltage pin is that the adversary does not

have precise control on the timing and location of the fault injection.

2.3. Fault Injection Techniques 29

Tampering with Operating Temperature

An adversary may also use overheating to trigger setup-time violations [81, 83] for

fault injection. In this method, the adversary does not have precise control on the

spatial and temporal location of the fault injection. The intensity of fault injection

is controlled via operating temperature of the target device.

In addition to the setup-time violation on the datapath, overheating also causes

modification in memory cells in EEPROM [84], Flash [84], and DRAM [85] memories.

While Govindavajhala et al. [85] use a low-spatial-precision light bulb as the heating

source, Skorobogatov [84] employs a 650nm-wavelength laser to increase the spatial

precision of heating.

Combination of Voltage, Frequency, and Temperature Fault Injection

Zussa et al. [81] demonstrated that overclocking, clock glitching, voltage glitching,

underfeeding, and overheating exploit the same fault injection mechanism, which is

the violation of a device’s setup-time constraints. In addition, Korak et al. [14, 86]

showed overheating and voltage glitching improves the efficiency of clock glitching.

Optical Fault Injection

In the optical fault injection, the adversary decapsulates the target integrated circuit

(IC) and exposes the silicon die to a light pulse. The applied light pulse induces a

photo-electric current in the exposed area of the IC, which then cause faulty com-

putations [87]. The spatial location is controlled by the position and the size of the

light source, and the temporal location is controlled by the offset of the pulse from

30 Chapter 2. Background

a trigger signal. The intensity of the fault injection is determined by the energy and

duration of the light pulse. It has been demonstrated that optical fault injection can

be achieved with a low-cost camera flash light [34, 87]. The state-of-the-art optical

fault injection setups [10] use laser beams for fault injection to achieve micrometer-

level spatial and nanosecond-level temporal precision. They also provide precise

control on the fault intensity. This enables an adversary to target a single transistor.

A disadvantage of the optical fault injection is that it requires decapsulation of the

target IC. In addition, it can permanently damage the target IC.

Electromagnetic Fault Injection

In electromagnetic fault injection (EMFI), the adversary applies transient or har-

monic EM pulses on the target integrated circuit (IC) through a fault injection probe,

which is designed as an electromagnetic coil. The adversary places the probe above

the target IC and applies a voltage pulse to the coil, which induces eddy currents

inside the target IC. Then the effects of the induced eddy currents are captured as

faults. The adversary controls the temporal location of fault injection through offset

of the EM pulse from a trigger signal. The spatial location of the fault injection is

controlled via position and size of the injection probe. The fault intensity is deter-

mined by the voltage and duration of the applied EM pulse. The feasibility of EMFI

on off-the-shelf microprocessor ICs has been demonstrated using both low-cost and

high-cost injection setups. For instance, Schmidt et al. [34] use a simple gas lighter

to induce EM pulses onto an 8-bit microcontroller with low spatial and temporal

precision. The state-of-the-art EMFI setups [31, 88, 89] provide millimeter-level pre-

cision in spatial location and nanosecond-level precision in the temporal location of

the EM pulse. Furthermore, these setups also provide precise control on the voltage

2.3. Fault Injection Techniques 31

and duration of the applied EM pulse. The advantages of EMFI is that it does not

require decapsulation of the target IC and it can inject local faults. However, its

spatial precision is lower than the spatial precision of the laser fault injection.

2.3.2 Software-controlled Fault Injection Techniques

Software-controlled fault injection is a recently discovered research area. The follow-

ing two sections briefly explain the existing two software-controlled fault injection

technique.

Tampering with DVFS Interface

In the modern embedded systems, Dynamic Voltage Frequency Scaling is a com-

monly used energy management technique, which regulates the operating voltage

and frequency of a microprocessor based on its dynamic workload. In a typical

DVFS scheme, kernel-level drivers control the frequency and voltage of a processor

through on-chip regulators. Tang et al. [22] demonstrated that an adversary can

induce faults by exploiting the interface between the software drivers and hardware

regulators. In this technique, the adversary uses a malicious kernel-level driver to

push the operating voltage and/or frequency of the processor beyond the allowed

margins. This violates the setup time constraints and causes faults. This method

allows an adversary to overclock and/or to underfeed the target device for a specific

period of time. The adversary controls the temporal location with the endpoints of

the overclocking or underfeeding period. As both the clock and voltage signals are

chip-level global signals, the adversary does not have a direct control on the spatial

location. The intensity of fault is determined by the overclocking frequency and the

32 Chapter 2. Background

underfeeding voltage value. This method requires neither additional fault injection

hardware nor physical access to the target device.

Triggering Memory Disturbance Errors

In this fault injection method, the adversary injects faults into memory cells by

exploiting the reliability issues of modern memory hardware such as DRAM and

Flash memory chips. The continuous scaling down in the process technology has

enabled memory manufacturers to significantly reduce cost-per-bit by placing smaller

memory cells closer to each other. However, this also increases electrical interference

between memory cells: Accessing a memory cell electrically disturbs nearby memory

cells. A disturbed memory cell loses its value and experiences a memory disturbance

error when the amount of electrical disturbance is beyond noise margins of that

disturbed cell [90, 91].

An adversary may trigger memory disturbance errors through a non-privileged fault

injection program. This program repeatedly accesses a set of memory cells (i.e, ag-

gressor memory cells) to induce disturbance errors in a set of victim memory cells

storing security-sensitive data. This method allows an adversary to corrupt memory

space of a security-sensitive program from memory space of the adversary-controlled

fault injector program. Memory disturbance errors have been demonstrated on com-

modity DRAM and NAND Flash memory chips [90].

In DRAM memories, the memory disturbance errors are induced through Rowham-

mer mechanism [91]. Thus, it is called Rowhammering. A DRAM memory is inter-

nally organized as a two-dimensional array of DRAM cells, where each cell consists

of an access transistor and a capacitor storing charge to represent a binary value.

2.3. Fault Injection Techniques 33

As capacitors lose their charges because of the leakage current, the DRAM cells are

periodically refreshed to restore their charges. Each row of the array has a separate

wordline, which is a wire connecting all memory cells on the corresponding row. To

access a DRAM cell within the two-dimensional array, the corresponding row of the

array is activated by raising the voltage of its wordline. Persistent access to the same

row causes repeated voltage fluctuations on its wordline, which electrically disturbs

nearby rows. This disturbance increases the charge leakage rate in the nearby DRAM

rows [91]. As a result, a memory cell within a nearby row experiences a memory dis-

turbance error (a bit-flip error) if it loses a significant amount of charge before it is

refreshed. An adversary may take advantage of that physical phenomenon to inject

faults. For this purpose, the adversary runs a malicious fault injection program on

the target processor, which aims at altering a security-sensitive state of a victim

program running on the same processor. The fault injection program continuously

accesses an aggressor DRAM row in its own memory space and induces faults into a

victim DRAM row within the victim program’s memory space [23, 25, 92].

Similar disturbance mechanisms have been also demonstrated on multi-level cell

(MLC) NAND Flash memories. Similar to DRAM memory, a Flash memory is also

internally organized as an array of Flash memory cells, each of which is a floating-

gate transistor. The amount of charge stored in the floating gate determines the

threshold voltage of the transistor, which is used to represent the stored data, In

MLC Flash memories, each cell stores two bits of data. Unlike DRAM memories,

Flash memories do not require periodic refreshing. Cai et al. [90] demonstrated that

the capacitive coupling between neighboring Flash cells enables two memory dis-

turbance error mechanisms. The first mechanism, Cell-to-Cell Program Interference

(CCI), introduces faults into a Flash cell when a nearby cell is programmed (i.e,

34 Chapter 2. Background

written). The amount of interference is high when a specific data pattern for pro-

gramming is used. Cai et al. [90] and Kurmus et al. [93] showed how a malicious

fault injection program may trigger CCI mechanism to cause a security breach. The

second mechanism is Read-Disturb, in which the content of a Flash cell is disturbed

when a nearby cell is read. Cai et al. [90] demonstrated the use of read-disturb to

cause security problems.

The advantage of fault injection by triggering memory disturbance errors is that it

can induce single-bit to multi-bit faults into a certain memory location [92]. This

enables an adversary to break several security mechanisms.

2.4 Fault Manifestation in the Micro-architecture

This section explains the effects of physical fault injection on the micro-architecture

of the target processor. First, we will distinguish micro-architecture (i.e, internal

architecture) of a processor from its architecture (i.e, external architecture). Then we

will briefly explain main characteristics of the induced faults into micro-architecture.

Any processor can be described from two distinct architectural perspectives. The

architecture of the processor describes it as seen by programmers in terms of its in-

struction set and facilities. The architecture defines semantics and syntax of available

instructions, program-visible processor registers, memory model, and how interrupts

are handled. It is the boundary between hardware and software as well as a contract

between programmers and hardware designers. The micro-architecture describes the

physical organization and implementation of the architecture. This includes the

memory hierarchy, pipeline structure, available functional units, employed mech-

2.4. Fault Manifestation in the Micro-architecture 35

anisms (e.g, out-of-order execution) for instruction-level parallelism, and so forth.

The micro-architecture is optimized to satisfy cost and performance requirements.

Faults manifest as incorrect bits in the flip-flops or memory cells employed in the

micro-architecture if the applied physical stress is beyond noise margins of target

processor hardware. The parameters and type of physical fault injection technique

determine characteristics of the manifested faults. In this work, we use four param-

eters to describe any manifested fault in micro-architecture level:

• Location of the Manifested Fault: This parameter specifies the micro-

architectural blocks that contain faulty bits because of physical fault injection.

Faults may manifest in any micro-architectural block in the control or datap-

ath part of the processor such as instruction memory, instruction fetch block,

instruction decode block, operand fetch block, execution block, data memory,

register file, processor status register, and conditional flags. An adversary’s

control on the location of the manifested faults depends on the spatial pre-

cision of the used fault injection method, which is characterized as precise

control, loose control, and no control [63].

• Size of the Manifested Fault: This parameter specifies the number of faulty

micro-architecture bits induced by physical fault injection. An adversary can

control the size of the manifested faults by adjusting the fault intensity. In

the literature, manifested faults are commonly classified as single-bit faults,

byte-size faults, word-size faults, and arbitrary-size faults [65].

• Effect of the Manifested Fault: This parameter specifies the logical effect

of the manifested fault on the fault location. Common fault effects are stuck-at

fault, bit-flip fault, bit-set fault, bit-reset fault, and random fault [65].

36 Chapter 2. Background

• Duration of the Manifested Fault: Fault attacks exploit provisional faults,

of which effect last as long as the physical stress is applied. The faults are

recovered when a new value is written into the faulty flip-flop or the memory

cell.

The next section explains how the manifested faults propagate to the software layer.

2.5 Fault Propagation to the Software Layer

The manifested faults propagate to the software layer as faulty instructions when

the micro-architectural blocks containing the faulty bits are used by the instructions

of the target program. Propagated fault effects are determined by the type of af-

fected instruction, type of faulty micro-architectural block, and the characteristics

(size, effect) of the manifested faults. As each processor implementation has its own

micro-architecture, it is not possible to list all of the potential fault effects propa-

gated to software. Instead, we provide an example to demonstrate a list of potential

fault effects for a subset of SPARC instructions running on a hypothetical generic

micro-architecture. Using the same approach, similar lists can be built for specific

instruction sets and processor implementations.

We chose four SPARCv8 instructions: a memory-load (ld), a logic (xor), a compari-

son (cmp), and a conditional branch (be) instruction. Table 2.1 lists the instructions

and their definitions.

The assumed generic micro-architecture contains the following blocks to carry out

instruction-execution cycle for each instruction:

2.5. Fault Propagation to the Software Layer 37

Table 2.1: An Example Set of SPARCv8 Instructions

Instruction Definition

ld [r1+r2], r3 Loads a 32-bit word into register r3
from data memory (D-Mem) address r1+r2.

xor r1, r2, r3 Bit-wise XOR operation on r1 and r2

Result is written to register r3.
cmp r1, r2 Compares registers r1 and r2 and

updates conditional flags accordingly.
be offset PC-relative conditional jump:

If zero-flag is set, PC will be PC + offset.
Otherwise, PC will be PC + 4.

• I-Mem Block is the instruction memory that stores the instructions.

• I-Fetch Block prepares the address for the instruction memory, program

counter (PC). Then, using the prepared PC, it fetches an instruction into the

instruction register (IR).

• I-Decode Block takes the fetched instruction from IR and decodes it to de-

termine the location of the source operands, the location of the destination

operands, and the operation to be applied. The source operands are fetched

from the register file. The destination may be the register file, data memory

(D-Mem), or conditional flags.

• O-Fetch Block uses the decoded information to fetch the input operands from

the register file and to feed them to the execution block. The be instruction

does not use this block because it does not fetch any operand from the register

file.

• Execute Block applies the required operation on the fetched source operands

and generates a result. For ld, it calculates the D-Mem address from r1 and

38 Chapter 2. Background

Table 2.2: Propagated effects to software layer for each faulty micro-architectural
block (with 1-bit fault) and instruction

Faulty Block Propagated Fault Effects
(1-bit Fault) ld [r1+r2], r3 xor r1, r2, r3 cmp r1, r2 be dest

I-Mem Execution of a wrong instruction due to opcode-field corruption
I-Fetch (PC, IR) Fetching operands from wrong location due to source-operand-location corruption
I-Decode Updating a wrong destination due to destination-operand-location corruption

Fetching next instruction from a wrong address due to PC corruption
O-Fetch Arbitrary # of faults in r3 1-bit fault in r3 Faulty update No
(1-bit fault in r1 or r2) (Faulty D-Memory address) (Faulty XOR input(s)) of conditional flags effect
Execute Arbitrary # of faults in r3 1-bit fault in r3 Faulty update 1-bit fault in jump address

(Faulty D-Memory address) (Faulty XOR operation) of conditional flags or Inversion of branch
Store 1-bit fault in r3 1-bit fault in r3 Faulty update 1-bit fault in jump address

(Faulty update of [r1+r2]) (Faulty update of r3) of conditional flags
D-Mem No effect
Register File Fetching wrong source operands from register file No effect
Conditional Flags No effect No jump to dest

r2. For xor, it applies bitwise XOR operation on r1 and r2. For cmp, it

subtracts r2 from r1. For be, it calculates the destination address from the

current PC and offset. It also checks the conditional flags to determine if the

branch will be taken.

• Store Block updates the destination location (D-Mem, register file, or flags)

with the result computed by the execution block. For the ld and xor, it is

the register r3. For the cmp instruction, the destination is conditional flags.

For the be instruction, the destination is the PC value if the branch is taken.

Otherwise, it will not affect any destination.

Table 2.2 provides an example list of propagated fault effects for each (instruction,

micro-architecture block) pair. In this example, we assume a single bit-flip fault in any

micro-architectural block. A fault induced in I-Memory, I-Fetch, or I-Decode block

would affect syntax (i.e, opcode and operands) and/or semantics (i.e, the operation

to be applied) of an instruction independent from the type of the instruction. Thus,

Table 2.2 shows the propagated fault effects for these blocks in a single cell. Faults

2.5. Fault Propagation to the Software Layer 39

induced in the other blocks would cause errors in the instruction-specific computation

of a correctly fetched and decoded instruction:

• I-Mem, I-Fetch, I-Decode: If the fault manifests in the opcode part of the

faulty instruction, another instruction will be executed. If the fault affects the

addresses of source operands, they will be fetched from an incorrect location.

Similarly, the result of an instruction will be written into a wrong location

if the fault hits the destination address. Finally, the next instruction will be

fetched from an incorrect location if the PC calculation gets faulty.

• O-Fetch: For the ld instruction, a single-bit fault in this block affects the

value of register r1 or r2 fetched from register file. The fault then causes D-

Mem address to be faulty. As a result, a single-bit fault in either r1 or r2 may

induce an arbitrary number of faults in the destination register r3 because the

result will be fetched from an incorrect D-Mem location.

For the xor instruction, the fault will affect a single bit of r1 or r2, which will

be propagated to r3 as a single-bit fault.

For the cmp instruction, the single-bit fault may affect the result of the compar-

ison, which will alter the conditional flags based on the modified comparison

result.

For the be instruction, the fault will not have any effect because this instruction

does not fetch anything from the register file.

• Execute: For the ld, xor, and cmp instructions, the effects of the fault will

be same as the effects described in the O-Fetch case.

For the be instruction, the fault will change the single-bit of the computed

40 Chapter 2. Background

branch address. If the branch is taken, the destination address will be wrong.

Otherwise, the faulty branch address will not affect the program. The fault

may also change the direction of the branch instruction from taken branch to

non-taken branch, or vice versa.

• Store: For the ld instruction, the fault will cause a single-bit error in the cor-

rectly computed D-Mem address [r1+r2]. For, the xor, and cmp instructions,

the effects of the fault will be same as the effects described in the O-Fetch case.

For the be instruction the fault will change the value of the PC if it is a taken

branch.

• D-Mem: As none of the instructions use a value from the data memory, the

fault in D-Mem will not affect any of the considered instructions.

• Register File: For the ld, xor, and cmp instructions, the effects of the fault

will be same as the effects described in the O-Fetch case. As the be instruction

does not use this block, the fault will not have any effect on this instruction.

• Conditional Flags: The fault in conditional flags will affect only the be

instruction as the other instructions do not use the conditional flags.

2.6 Fault Exploitation Techniques

This section presents main fault exploitation techniques, which have been proposed to

break the security of both cryptographic and non-cryptographic security mechanisms

protecting embedded software. Each exploitation technique relies on a fault model,

which is a high-level assumption for the effects of physical fault injection on the

2.6. Fault Exploitation Techniques 41

execution of the target software. Thus, we start with commonly used fault models

in practice. Then we will briefly explain fault exploitation techniques.

2.6.1 Fault Models

In the design phase of a fault attack, an adversary makes a fault model assumption

and develops an exploitation strategy based on the fault model. This assumption

generally includes the location of the fault in the data or control flow of the target

program, the timing of the fault with respect to the duration of the target program,

size of the fault, and effect of the fault. The fault models can be described in

algorithm level, source code level, or instruction level. The following paragraphs

provide an example list of commonly used fault models.

The most of fault-based cryptanalysis techniques on symmetric and asymmetric cryp-

tography assume faults on data flow of a target program that corrupt a single bit,

single byte, multiple bytes, or a single word of a security-critical variable in various

ways (e.g, flip, set, reset, random) [64, 65, 78].

On the control flow, the most popular fault models are to skip the execution of

a specific instruction (i.e, instruction skip) [38, 94], multiple instruction skips [33,

95], replacing an instruction with another one (i.e, instruction modification) [18,

29], changing the result of a conditional branch [40, 96], and tampering with loop

counters [97, 98].

In the implementation of a fault attack, the adversary aims at inducing the fault

effects assumed in the fault model via fault injection, fault manifestation, and fault

propagation processes. Therefore, a fault model can be realized through different

combinations of fault injection, fault manifestation, and fault propagation. The

42 Chapter 2. Background

following sections provide a list of commonly used fault exploitation techniques to

breach the security of embedded software.

2.6.2 Cryptanalysis using Fault Injection

Using fault injection for cryptanalysis has been extensively studied on the implemen-

tations of symmetric-key, public-key, and post-quantum cryptography algorithms [8,

63, 64, 65, 78].

Differential Fault Analysis (DFA) is the most widely used fault-based crypt-

analysis technique. The main principle of DFA is to exploit the differential between

the faulty and fault-free outputs of a cryptosystem. In a typical DFA attack, an

adversary collects two outputs (e.g, ciphertexts) from a cryptosystem (e.g, encryp-

tion) that are generated for the same input (e.g, plaintext) and secret variable (e.g,

encryption key). One of the outputs is collected without fault injection. During

the generation of the second output, the adversary injects a certain fault into the

execution of the cryptosystem. Then the adversary analyzes the propagation of this

fault differential to the output and reveals the secret variable. DFA attacks assume

specific fault during differential analysis of the faulty and fault-free outputs. Various

DFA techniques have been successfully demonstrated on block ciphers [99], stream

ciphers [100], public-key algorithms [78, 101], and post-quantum cryptography [102].

Safe Error Analysis (SEA) attacks exploit the dependence between the use of

a faulty data and the value of a secret variable. An adversary first identifies a target

intermediate variable, of which use depends on the value of a secret variable. Then

2.6. Fault Exploitation Techniques 43

the adversary injects a specific fault into the target variable and observes whether

the output is faulty or not. If the output is faulty, it means that the faulty target

variable is used and the secret variable has a specific value. The advantage of the

SEA is that it requires only a single-bit information from fault observation: If the

faulty value has been used or not. Fault injection may be used to check if a specific

computation is executed (C-safe errors [103]) or if a specific memory location is

accessed (M-safe errors [15]). SEA attacks have been successfully demonstrated on

symmetric-key [78, 104] and public-key [78, 103] algorithms.

Algorithm-specific Fault Analysis uses fault injection to exploit algorithm-

specific properties. For instance, the public-key cryptography algorithms such as

RSA and ECC rely on a hard-to-solve mathematical problem. An adversary may

use fault injection to alter the mathematical foundations of the problem and convert

the problem into an easy-to-solve one. Algorithm-specific analysis attacks have been

mounted on several public-key systems including RSA and ECC [5, 78, 105, 106].

Biased Fault Analysis attacks [107, 108, 109, 110, 111] exploit biased fault be-

havior: Because of the correlation between the fault behavior of a target program and

the applied physical fault intensity, the distribution of fault models is non-uniform.

They allow an adversary to treat fault behavior as a side-channel signal, which relaxes

the strict fault model requirements of the previous attacks.

44 Chapter 2. Background

2.6.3 Fault-Enabled Logical Attacks

In addition to their use in cryptanalysis, fault attacks can also be used to trigger

logical attacks (e.g, control flow hijacking, privilege execution, subverting memory

isolation, etc.) on smartcards and general-purpose processors. A typical logical

attack (e.g, buffer overflow) tampers with the inputs of a program to exploit a security

bug (e.g, memory safety bug) in the implementation of the program. In the absence

of such an exploitable software bug, it is not possible for an adversary to mount a

logical attack by just modifying inputs. In such a case, an adversary can inject faults

to dynamically create required conditions to mount a logical attack. The following

paragraphs briefly explain fault-enabled logical attack examples from the literature.

Barbu et al. [38] demonstrated two fault-enabled logical attacks on a Java card. In

the demonstrated attacks, the adversary uses a laser-induced instruction-skip model

to create type confusion. Then the adversary exploits the induced type confusion

to load an unverified adversary-controlled code on the Java Card. Type confusion

also enables an adversary to access other applications’ memory space. Vetillard et

al. [40] and Bouffard et al. [37] also demonstrates similar attacks on Java Card, in

which they employed fault injection to bypass run-time security checks and execute

malicious code on the platform.

The first fault-enabled fault attack on a general-purpose processor has been demon-

strated by Govindavajhala et al. [85]. In the demonstrated attack, the adversary

designs and runs a software program on a Java Virtual Machine (JVM) on a desktop

computer. The malicious program is designed such that a bit error in the data space

of the program allows the adversary take full control over JVM. To induce those

exploitable faults, the authors overheat the memory chips.

2.6. Fault Exploitation Techniques 45

Nashimoto et al. [95] proposed a fault-enabled buffer overflow (BOF) attack on a

buffer overflow countermeasure, which limits input size. The authors demonstrated

the proposed attack on an 8-bit AVR ATmega163 and a 32-bit ARM Cortex-M0+

microcontroller. Their fault models were single and multiple instruction-skip, which

are induced by clock glitching.

Timmers et al. [18] demonstrated two ARM-specific, fault-enabled logical attacks

which are based on setting the program counter (PC) of a microprocessor to an

adversary-controlled value. The authors alter the execution of a memory-load in-

struction (i.e, instruction replacement) via voltage glitching to set PC to an adversary-

controlled value. The authors provide two case studies to demonstrate the use of such

an attack. In the first case, the authors bypass a secure-boot mechanism and run

their own unverified program on the processor. In the second case, the authors sub-

vert the hardware-enforced isolation mechanism of a Trusted Execution Environment

(TEE) and run their code program with the highest privileges on the processor.

Vasselle et al. [112] demonstrated a fault-enabled logical attack on a Quad-core ARM

Cortex-A9 processor, which bypasses secure boot mechanism and allows an adversary

to get highest privileges on the processor. The authors achieved privilege escalation

by resetting the privilege-level-specifying bit of the Secure Configuration Register of

the processor via laser fault injection.

Timmers et al. [17] proposed three fault-attack enabled logical attacks on a Linux

Kernel to gain kernel-level execution privileges. The authors demonstrated their

attacks on an ARM Cortex-A9 processor through voltage glitching. In the demon-

strated attacks, the authors request system calls from the user space, and then, inject

faults during the execution of system calls for privilege escalation. The gained priv-

ileges may allow an adversary to run an arbitrary code on the device and access the

46 Chapter 2. Background

memory space of other applications.

The software-controlled fault injection methods such as triggering memory distur-

bance errors broaden the scope of fault attacks as they allow remote fault attacks.

For example, in Rowhammer attacks [91], an adversary-controlled program (running

in a user space) injects bit-flip faults into security-sensitive DRAM memory cells by

repeatedly accessing nearby cells. In 2015, Seaborn [113] demonstrated two practical

Rowhammer attacks. The first attack induces bit-flips to escape from Google Na-

tive Client (NaCl) sandbox. The second attack use bit-flips in DRAM for privilege

escalation. Gruss et al. [23] successfully mounted a Rowhammer attack from web

browsers on four off-the-shelf laptops. Similarly, van der Veen et al [25] achieved

privilege escalation on Android-running mobile platforms. Razavi [92] demonstrated

a Rowhammer attack in a cloud setting, in which a malicious virtual machine in-

duce memory disturbance errors to gain unauthorized access to memory space of a

co-hosted virtual machine. Kurmus et al. [93] and Cai et al. [90] demonstrated that

software-controlled memory disturbance errors can be triggered on Multi-cell (MLC)

NAND Flash memories to mount fault-enabled logical attacks.

Finally, Tang et al. [22] exploited security-oblivious dynamic voltage and frequency

scaling (DVFS) interface to induce faults in a smartphone. They demonstrated

two software-controlled fault attacks. The first attack allows a malicious user-space

program to inject faults into the operation of an encryption program running in

Trustzone environment and to reveal the value of secret key stored in Trustzone en-

vironment. In the second attack, an adversary bypasses an authentication mechanism

running in Trustzone to load an unauthorized program into Trustzone environment.

These two attacks show that fault injection may enable an adversary to subvert

hardware-enforced isolation mechanisms such as ARM Trustzone.

2.7. Comparison of Fault Attacks on Hardware and Software Secure
Systems 47

2.6.4 Using Fault Injection to Assist Reverse Engineering

Another potential use of fault injection is to assist reverse engineering. San Pedro

et al. [114] and Le Bouder et al. [115] employed fault injection to reverse engineer

modified implementations of Sbox blocks of Data Encryption Standard (DES) algo-

rithm. Similarly, Clavier et al. [116] use fault injection to reveal the specifications

of an AES-like block cipher. Jacob et al. [117] induce faults into the execution of

an obfuscated cipher and retrieve the secret key. Courbon et al. [118] demonstrated

a method to reverse-engineer gate-level structure of a hardware implementation of

Advanced Encryption Standard (AES) algorithm, in which laser fault injection and

image processing are combined.

2.7 Comparison of Fault Attacks on Hardware and

Software Secure Systems

Fault attacks on both hardware and on software systems require the knowledge of

the target system’s implementation. Having more knowledge of the target system

increases the adversary’s control on the induced fault effects, and thus, yields more

efficient fault attacks. In practice, the fault manifestation and the propagation mech-

anisms in hardware and software systems are different. Therefore, mounting an effi-

cient fault attack on a software system requires the knowledge of different abstraction

layers than attacking a hardware system does.

In a hardware secure system, a security algorithm is mapped into a netlist of logic

gates and registers. The execution of the mapped algorithm is embodied as a se-

48 Chapter 2. Background

quence of register-transfer operations scheduled over multiple clock cycles. Every

bit-level operation of the algorithm thus maps into a particular clock cycle and regis-

ter transfer. During a fault attack on the hardware system, an adversary will target

a sensitive bit-level operation by selecting specific clock cycles and register-transfers,

and by applying a suitable fault injection method. Next, the effects of the fault injec-

tion will be propagated into a faulty system output through register transfers with a

dependency on the faulty register transfer. In order to mount a fault attack on such

a hardware model, it is sufficient for the adversary to understand the hardware-level

operation, and to apply generic, gate-level fault models.

In a software secure system, a security algorithm is implemented as a sequence

of instructions executed by a microprocessor. Each instruction goes through the

instruction-execution cycle, consisting of several steps. The number of steps in the

instruction-execution cycle is architecture dependent, and it can vary considerably

from one microprocessor to the next. However, we observe that the smallest execu-

tion step in software, the instruction, still corresponds to multiple register-transfers

at the hardware level.

A fault injection in a microprocessor will affect the correctness of instruction ex-

ecution. The effect of the fault will be propagated into a faulty system output

by instructions that have data-dependencies or control-dependencies on the faulty

instruction. Hence, knowledge of the microprocessor architecture is insufficient to

mount a successful fault attack; the adversary also needs to understand the de-

pendencies defined by the software. Furthermore, the precise effect of a fault on a

microprocessor instruction depends on the type of the instruction.

We conclude that a fault model for a secure software system must capture both the

hardware and software aspects of the fault behavior. For a given processor architec-

2.8. Comparison of Fault-Tolerance and Fault-Attack-Resistance 49

ture, it should show the potential fault effects for each instruction during each step

of the instruction cycle. The fault effects may depend on the type of the instruction

as well as on the step of the instruction cycle affected by the fault. Furthermore,

in complex processor architectures, the execution of multiple instructions is over-

lapping. A single fault injection during a single clock cycle may affect sequential

instructions. To analyze these complex effects, the adversary needs to understand

the fault sensitivity of instructions with overlapping execution. In the microprocessor

fault model proposed in this research, we provide support for overlapping instruction

execution. We also introduce a micro-architecture aware fault attack methodology

based on the proposed fault model.

2.8 Comparison of Fault-Tolerance and Fault-Attack-

Resistance

Considering the requirements of modern embedded systems and issues of fault-

tolerant-based countermeasures, a crucial step for effective countermeasures is dif-

ferentiating fault attack resistance from fault tolerance:

The Goals: Fault tolerance aims at guaranteeing a certain level of correctness under

the assumption of a general, often random fault model.

The aim of fault-attack resistance is supporting a given security policy against an

adversary who applies focused, intelligent faults to break security mechanisms. In

case of a malicious fault, one must take care of not disclosing any information about

the secret data. Therefore, the fault must be detected soon enough.

The Faults: In fault tolerance research, considered faults are almost always non-

50 Chapter 2. Background

malicious, simple, sporadic, and transient that are caused by radioactivity or cosmic

rays: single bit-flip errors in storage elements, referred as the SEU (Single Event

Upset) model. This is a suitable model because flipping a single bit is indeed the

most probable logical effect of a physical interaction between the hardware and low-

energy ions [119]. Another cause of non-malicious run-time errors is DVFS (Dynamic

Voltage and Frequency Scaling) techniques that are used to increase energy-efficiency

of a microprocessor [59]. These errors are also generally single bit-flip errors because

the microprocessor runs in the vicinity of its nominal operating conditions.

In fault attacks, the operating conditions of a microprocessor are controlled by an

intelligent adversary. The injected faults are intentional rather than natural. The

adversary controls the size and location of the injected faults. In addition, the adver-

sary can inject the same faults repetitively and adapt the fault injection parameters

to break the security. Therefore, fault-tolerant techniques are not sufficient to with-

stand such an adversary [11, 120].

The Countermeasures: The non-malicious, natural faults occur randomly. There-

fore, the whole system must be protected with redundancy to achieve fault-tolerance.

In fault attacks, fault injections are not randomly distributed but are focused on the

security-critical parts of the system. Therefore, the redundancy can be applied to

only security-critical parts of the system. This significantly reduces the overhead.

Chapter 3

Fault Injection and Analysis Setup

In this section, we describe the measurement setup that enabled us to experimentally

verify our techniques. Figure 3.1 shows the high-level diagram of our experimental

setup. The setup consists of a PC, a Device Under Test (DUT), and a fault injection

module. The PC manages the fault injection process by controlling and configuring

both the fault injection module and DUT. The DUT (a LEON3 processor in this

research) executes a cryptographic algorithm and sends a trigger signal to the fault

injection module. Trigger signal synchronizes the fault injection module and the

DUT. It enables us to have a cycle-accurate control over the glitch timing. The fault

injection module consists of two blocks. The clock glitch controller keeps the glitch

parameters and controls the clock glitch injector. A predefined number of clock

cycles after the trigger signal, the clock glitch injector injects the glitch specified by

the glitch controller.

A typical fault injection experiment consists of the following steps:

1. The controlling PC configures the fault injection module. It writes the number

of wait cycles after the trigger event, the glitch width, and glitch offset into the

clock glitch controller registers.

2. The controlling PC configures and initializes the DUT.

51

52 Chapter 3. Fault Injection and Analysis Setup

Figure 3.1: High-level block diagram of fault injection and analysis setup.

3. The controlling PC arms the clock glitch injector.

4. The controlling PC starts the execution of the DUT.

5. The DUT sets the trigger signal when it reaches the predefined point in its

execution flow.

6. The clock glitch injector injects the glitch with the parameters specified in the

Step 1.

7. The controlling PC read out the state and results of the DUT to analyze the

effects of the injected glitch.

3.1. The LEON3 Processor 53

Figure 3.2: The LEON3 processor configuration used in this work.

3.1 The LEON3 Processor

The experiments in this paper are done on a 7-stage LEON3 RISC pipeline [121].

We will first review the main characteristics of LEON3.

LEON3 is a 32-bit SPARCv8-compliant RISC processor with (a modified) Harvard

architecture, extensible through an AMBA 2.0 bus system. The core is distributed as

a synthesizable VHDL model by Aeroflex Gaisler, together with a large library of pe-

ripherals and debug support modules. The core is highly configurable in capabilities

and performance.

Figure 3.2 shows the block diagram of the LEON3 configuration used in our research.

We use a configuration with a 7-stage integer pipeline and 64 KB of on-chip RAM

memory. To evaluate cache effects, we also configured 4KB direct-mapped caches

for Instructions and Data, each with a line size of 32-byte. We note that, although

the LEON3 follows a Harvard architecture, both caches map into the same 64-KB

on-chip memory.

For this paper, the seven stages of the LEON3 integer pipeline are of particular

54 Chapter 3. Fault Injection and Analysis Setup

interest. The purpose of each stage is as follows.

1. Fetch (F): An instruction is fetched from the memory or instruction cache,

and copied into the instruction register (IR).

2. Decode (D): The instruction from the IR is decoded. For branch and CALL

instructions, the target next-address is computed.

3. Register Access (A): The instruction operands are read from the register

file or from internal forwarding paths.

4. Executed (E): ALU, logical, and shift operations are performed. For memory-

load and store, the target data address is computed.

5. Memory (M): The memory-access part of an instruction is completed (data

read or data write into memory).

6. Exception (X): This stage resolves traps and interrupts.

7. Write-back (W): The results of the instruction execution are written into

the register file.

3.2 Setup Time Violation

In this research, we inject faults into the operation of a circuit by violating its

setup time constraints. Setup time violation is a widely-used low-cost fault injection

mechanism [122]. In the following paragraphs, we explain setup time constraints of

a circuit and their use as the fault injection means.

3.2. Setup Time Violation 55

Figure 3.3: The effect of the glitch injection on the clock signal

In synchronous circuits the data is processed by combinational blocks, which are

surrounded by input/output registers. The data is captured when the sampling edge

of the clock signal arrives at the registers. Each combinational block requires a certain

propagation delay (Tpd) to compute its output value. For the correct operation of

the circuit, combinational block outputs must settle to their final values and remain

stable at least some setup time (tsu) before the sampling clock edge. Therefore,

the clock period (Tclk) must satisfy the following equation for all paths from input

registers to output registers:

Tclk ≥ Tpd + Tsu (3.1)

This equation specifies the setup time constraints of a circuit. The setup time con-

straint of the longest (i.e, critical) path determines the minimum clock period for

the circuit. Applying a shorter clock period than this value will fail the setup time

constraints.

We inject faults into the microprocessor by clock glitches. Figure 3.3 shows the effect

56 Chapter 3. Fault Injection and Analysis Setup

of a glitch on the clock signal. A clock glitch will temporarily shorten the clock cycle

period from Tclk to Tglitch, thereby causing timing violation of the digital logic. When

the glitch period (Tglitch) violates timing constraint of a path, the output value of

this path is captured before its computation is completed. Therefore, the captured

value is very likely to be faulty.

3.3 Implementation of Clock Glitch Injector

We implemented the fault injection module on the controller FPGA (Xilinx Spartan-

6 XC6SLX9) of the SAKURA-G board [123]. To inject glitches into the nominal

clock, we first generate two phase-shifted clocks from the nominal clock, and then, we

combine these three clock phases (Figure 3.4 and 3.5) by applying logical operations

[124], [16]. We use the Digital Clock Manager (DCM) blocks of the FPGA to generate

the shifted clock phases. In this work, we use a 24-MHz nominal clock generated

by an external pulse generator (Agilent 81110A). Using the dynamic phase-shifting

feature of Xilinx DCM blocks and partial reconfiguration approach introduced by

O’Flynn et al. [16], we can generate Tglitch values between 3ns and 20ns with 100ps

step-size. We also have a control on the time between the trigger event and the glitch

injection, which allows us to target a specific pipeline stage of a given instruction.

We can dynamically set all of the glitch parameters via commands from the PC.

3.4 Implementation of Data Acquisition

Figure 3.6 shows the block diagram for the data acquisition part of our setup. Our

DUT is a LEON3 processor, which is implemented on the main FPGA (Xilinx

3.4. Implementation of Data Acquisition 57

Figure 3.4: The block diagram of clock glitch generator circuit.

Spartan-6 XC6SLX75) of the SAKURA-G board. For data acquisition, we utilize

three hardware blocks: Debug Support Unit (DSU) of LEON3, Instruction Trace

Buffer (ITB) of LEON3, and an on-chip logic analyzer core (LOGAN) provided as a

part of GRLIB IP library [125].

DSU is a non-intrusive on-chip debug core which controls the operation of the pro-

cessor in the debug mode. In the debug mode, the processor pipeline is idle and

the software-visible processor state can be accessed by DSU. DSU can read/write

the architectural registers and memory locations, can load the program executable,

can start the execution of a program, and can halt/continue the the operation of the

processor. It can also set/use breakpoints and watchpoints.

ITB is a circular buffer that stores the executed instructions. It is located in LEON3

processor and read out via DSU core. It traces the instruction address, instruction

result, load/store data and address, and timing information for the instruction. We

use an 64-entry ITB for our experimental setup.

LOGAN implements an on-chip logic analyzer core and enables us to trace arbitrary

signals inside LEON3 processor. It consists of a circular buffer to store the traced

sampled signals, and a trigger block to detect a user-defined pattern on the sampled

58 Chapter 3. Fault Injection and Analysis Setup

Figure 3.5: Clock glitch generation using phase-shifted signals.

signals. When it is armed, it continuously samples a set of signals until it detects

a user-defined trigger condition. The trigger condition makes LOGAN stop tracing.

Then the traced data can be read out. LOGAN core can store 4096 samples of 256

signals.

The controlling PC uses GRMON Debug Monitor [126] program to manage/configure

the hardware data acquisition cores, to load the executable of the cryptographic

software, to start the execution of the program, and read out the processor state.

GRMON connects to the on-chip components via a JTAG Debug Link.

The DSU and ITB cores can only access the software-visible architectural regis-

ters and memory locations. Therefore, they can only show the fault effects on the

3.4. Implementation of Data Acquisition 59

Figure 3.6: The block diagram of data acquisition part of the experimental setup.

software-visible architecture of the LEON3 processor. On the other hand, the LO-

GAN core can access any on-chip signal, and thus, it can provide information about

the fault effects on the micro-architecture of the LEON3 processor. For instance, we

can directly observe the fault effects on the pipeline registers through the LOGAN

core.

In conclusion, we developed an experimental setup that enables high-precision fault

injection and detailed analysis of the fault effects on the RISC pipeline.

Chapter 4

Instruction Fault Sensitivity Model

In this work, we introduce a instruction fault sensitivity model for a RISC pipeline.

Figure 4.1 illustrates the relation of the proposed fault model to fault attacks. With-

out the model, traditional fault attacks such as DFA, C-safe/Errors or Flow Errors

are still possible. With the fault sensitivity model, however, a new class of attacks

based on fault bias becomes possible. These attacks include Fault Sensitivity Anal-

ysis (FSA) [77, 127], Non-Uniform Fault Analysis [110, 128], and Differential Fault

Intensity Analysis (DFIA) [107].

We create the fault sensitivity model through timing simulation of a gate-level model

of the RISC processor. When a cryptographic application executes on the RISC

pipeline, the fault sensitivity model will show what instructions and what clock

cycles are most suitable (or most sensitive) to fault injection, in order to mount a

fault attack.

In the next sections, we present how to build an instruction sensitivity model for the

LEON3 processor. We start with analyzing the fault behavior in a RISC pipeline.

60

4.1. Fault Behavior in a RISC Pipeline 61

Cryptographic
Software

Instruction Fault
Sensitivity Model

Generic Fault
Attack

Processor Aware
Fault Attack

 FSA
 DFIA
 NUFA

Classic Proposed

 Program Flow Error
 Safe Error
 DFA

based on
Fault Bias

Timing = f(cycle, instruction)

Figure 4.1: The proposed fault attack methodology uses a model of a RISC pipeline
to enable more advanced fault attacks on software such as DFIA and FSA.

4.1 Fault Behavior in a RISC Pipeline

The RISC architecture is the dominant processor architecture in modern embedded

systems, and therefore the analysis of this architecture is a meaningful starting point

to develop a systematic fault model for software. In the following subsections, we

provide a brief review of a typical RISC pipeline. Next, we define the generic fault

injection mechanism that we will assume for the rest of the paper. We then describe

the expected fault effects in a standard RISC-based stored-program architecture

consisting of a pipeline and a memory. This leads to the classification of fault types

utilized in our work.

62 Chapter 4. Instruction Fault Sensitivity Model

Figure 4.2: Fault propagation in a seven-stage RISC pipeline. A glitch can affect
as many instructions as there are RISC pipeline stages. Careful control of the fault
intensity limits the fault to the slowest pipeline stage. Furthermore, pipeline stalls
will temporarily blind stalled pipeline stages from glitches.

4.1.1 Fault Injection in the RISC Pipeline

Figure 4.2 demonstrates the effect of a cycle-accurate fault injection on the execution

of the 7-stage LEON3 pipeline. In any given clock cycle, multiple instructions execute

simultaneously, each of them at a different step of the instruction cycle. Therefore, a

fault injection can potentially affect as many instructions as the number of pipelines

stages. However, the actual number of affected pipeline stages is determined by fault

injection intensity, and by pipelining effects.

Pipelining effects such as data dependencies between the concurrently executed in-

structions, cache misses, and branch interlocks cause stalls in the pipeline. The

stalled pipeline stages are not affected by the fault injection. For example, the fault

4.1. Fault Behavior in a RISC Pipeline 63

injection in cycle 4 in Figure 4.2 does not affect the Memory Stage.

Under a constant fault injection intensity, the fault effect will be different for differ-

ent stages of the pipeline. This is because of variations in the detailed architecture

of pipeline. Therefore, it is also possible that a fault injection at a specific fault

intensity can affect some pipeline stages while leaving others untouched. A pipeline

stage is affected by the fault injection only if the applied fault intensity is greater

than the fault sensitivity for that pipeline stage. For example, consider again cycle 4

of the pipeline in Figure 4.2. By reducing the fault intensity, the adversary will even-

tually end up with a single faulty pipeline stage, namely the most sensitive pipeline

stage. Assume for example that the execution stage would have the longest critical

delay. Then, a fault injection with low intensity will affect only E3, the execution

of instruction 3 in cycle 4. After such an isolated fault is injected, it will further

propagate through the pipeline stages and affect instructions with dependencies on

the faulty instruction 3.

Thus, we observe two important effects in a running RISC pipeline that provide an

adversary with additional opportunities for controlled fault injection. The first effect

is the pipeline hazard, which may depend on software as well as on the processor

architecture. The second effect is the variation of fault sensitivity with RISC pipeline

stage, which may provide the ability to target a single pipeline stage through a

carefully chosen fault injection intensity. In our proposed attack methodology in

Chapter 5, we utilize both of these effects to our advantage.

64 Chapter 4. Instruction Fault Sensitivity Model

4.1.2 Instruction Faults and Computation Faults

As every instruction moves through the instruction-execution cycle, its fault behavior

changes as a function of the step within the instruction-execution cycle. We partition

the fault effects into two main categories.

1. Instruction Faults (IF) are faults that affect the control flow or instruction

sequence of a program. Instruction Faults are created by fault injection in the

fetch or decode pipeline stages (see Figure 4.2). For example, a fault could skip

an instruction. An adversary can leverage this to break software fault coun-

termeasures, by bypassing instructions that check integrity or branch when an

error is detected. A fault could also change the meaning of an instruction by

modifying the opcode. Balasch describes the effect of faults on the instruction

fetch of an AVR microcontroller [29]. By gradually increasing the fault inten-

sity, the opcodes of instructions are modified (as a result of timing violations),

until they eventually turn into a nop instruction.

2. Computational Faults (CF) are faults that cause errors in the data used by

a program. They are created by any error in the stages A, E, M, and W as

indicated in Figure 4.2. An error in any of these stages can contribute a faulty

value to the register file or memory. Faults in these stages will eventually

propagate to the output, and they are suitable for traditional fault analysis

mechanisms such as DFA or DFIA.

4.2. Timing Characterization of RISC Pipeline 65

Figure 4.3: (a) The observed signals in the gate-level simulation. (b) A generic
pseudocode for creating an instruction fault sensitvity model.

4.1.3 Fault Injection in the Memory

An alternate target for fault injection is the instruction-memory or data-memory used

by a RISC processor. We can distinguish two types of memory faults: those that

happen as a result of the direct execution of a RISC instruction, and those that hap-

pen independently of software execution. Our instruction fault model concentrates

on the first case, and it can capture faults that occur as a result of instruction-fetch,

operand-fetch, and result-writeback. On the other hand, in this research, we will not

further develop fault attacks based on independent memory faults. We observe that

error-check mechanisms are quite common in contemporary memory architectures -

and this provides additional justification for our focus on processor faults.

4.2 Timing Characterization of RISC Pipeline

In this section, we provide an example instruction fault sensitivity model for a subset

of SPARC instructions. We characterized the fault sensitivity of instructions on a

LEON3 processor for setup-time violation based faults. We implemented LEON3

processor on a Spartan 6 FPGA(45nm technology), and we characterized the fault

66 Chapter 4. Instruction Fault Sensitivity Model

sensitivity by applying gate-level simulation on the post place-and-route model of

the implementation.

For a given target instruction, we characterize the timing of each pipeline stage by

extracting its critical path delay via gate-level simulation. First, we simulate the

microprocessor while it is running a test program. The program includes the target

instruction surrounded by nop instructions. Then, we analyze the signal activity

within the fan-in cone of pipeline registers (see Fig 4.3a) to determine critical path

values. Repeating this analysis for each target instruction, we obtain the micropro-

cessor fault sensitivity model. The model consists of the critical path information of

each pipeline stage for each target instruction. Figure 4.3b illustrates the procedure

to generate instruction fault sensitivity model.

We used combinational path delays as the fault sensitivity metric because it has

been shown that there is a significant correlation between the path delays of an

implementation and its sensitivity to setup-time violation attacks [81, 129]. Gate-

level simulation has been employed earlier to create a better fault sensitivity models

of AES ASIC implementations [130, 131]. However, we used the gate-level simulation

for characterization of individual processor instructions.

Fault sensitivity of an instruction is not constant. Rather, it varies as a function

of the pipeline stage. We verified this by extracting the combinational delay of

individual pipeline stages for each instruction. For each target instruction, we wrote

a test program and applied a fault sensitivity characterization algorithm as shown

in Figure 5.1. The test program includes the target instruction surrounded by two

sequences of nop instructions. For a test program, we characterized the sensitivity of

a pipeline stage by injecting faults with varying fault intensities during the execution

of this specific stage: Starting from a safe fault intensity value, we gradually increased

4.2. Timing Characterization of RISC Pipeline 67

Table 4.1: LEON3 Instruction Fault Sensitivity Model (Critical Delay in ns)

Instruction F D A E M X W Meaning
xor reg, reg, reg 5.54 3.72 6.52 5.12 0 3.26 4.92 Bitwise xor
ld mem, reg 5.72 3.36 5.4 5.2 7.58 2.82 5.6 Load from memory
ldi mem, reg 3.53 3.26 5.62 5.2 7.58 3.17 4.45 Load Indexed
st reg, mem 5.91 3.5 5.78 5.37 5.35 3.77 0 Store Word
sll reg, imm, reg 5.53 3.26 5.2 5.09 0 2.16 5.6 Shift Left Logical
srl reg, imm, reg 5.91 2.83 4.7 5.67 0 3.25 5.61 Shift Right Logical
cmp reg, reg 6.86 5.53 4.98 5.23 0 4.78 5.6 Compare
bne add 6.40 5.00 5.85 3.92 2.020 0 5.6 Branch on Not Equal

Fault Type Instr Fault Computation Fault

the fault intensity until we observe a faulty output. Repeating this analysis for each

target instruction, we obtained the instruction fault sensitivity model.

In our simulations, we simulated each instruction one time with arbitrarily selected

operands to accelerate the characterization process. We assumed that the impact of

the operand values on the variation of instruction timing is smaller than the impact

of the instruction type and the pipeline stage. We made this assumption based

on the previous work [14, 29]. For example, Korak et al. analyzed two different

microcontrollers (an ATMega256 and an ARM Cortex-M0) against voltage and clock

glitching. They observed different fault intensity intervals for different instructions

and pipeline stages. They showed that the decode stage of their target was always

fault-free while they were able to create faults in fetch and execute stages. Their

results also demonstrated that execution stages of different instructions have different

timing values. One can also run each instruction with multiple data sets and apply

statistical processing of the results to create the instruction fault sensitivity model.

Such an approach would capture the variation effects in a more accurate way while

increasing the characterization time.

Table 4.1 illustrates the obtained instruction fault sensitivity model. The figures in

68 Chapter 4. Instruction Fault Sensitivity Model

the table cells indicate the critical delay (in ns) of the instruction as it flows through

each pipeline stage. One can clearly distinguish a variation in timing horizontally,

across a single instruction. This confirms that the critical delay varies as a function

of the pipeline stage. In addition, one can see a timing variation vertically, across a

column for a particular pipeline stage. This means that different instructions have

a different timing requirements. Now, imagine a running software program; the

pipeline is filled with instructions as illustrated in Figure 4.2. Using the instruction

fault sensitivity model, it is clear that we can predict which pipeline stages will be

faulty when we inject a fault with a given fault intensity. This will be the basis of

the fault attack methodology, explained in the next subsection.

The obtained model captures several fault injection methods because setup-time vio-

lation faults can be achieved by various techniques including clock glitching, voltage

glitching, voltage underfeeding, overheating, and electromagnetic pulses [81, 132].

For other fault injection methods such as laser pulses, the same approach can be

used to obtain a similar instruction sensitivity model. In addition, the same algo-

rithm can also be used to build instruction fault sensitivity model with physical fault

injection. If an adversary has a COTS implementation of the target and a fault in-

jection setup, the adversary can use the same test program and algorithm to create

an instruction fault sensitivity model.

Chapter 5

Micro-architecture Aware Fault

Injection Attack (MAFIA)

In the previous section, we create an instruction fault sensitivity model to capture

fault effects on the software. This section proposes an instruction fault sensitivity

model and a fault attack strategy Microarchitecture Aware Fault Injection Attack

(MAFIA) based on the instruction fault sensitivity model. As it is shown in Fig-

ure 5.1, the proposed methodology consists of two phases: (i) Characterization Phase

and (ii) Attack Phase.

The purpose of the characterization phase is to create an instruction fault sensitivity

model for the target processor. The instruction fault sensitivity model shows the

fault sensitivity for the steps of each instruction. A processor potentially carries out

each step of an instruction is on a different microarchitectural block. Therefore, one

can also think of the instruction fault sensitivity model as the characterization of

main microarchitectural blocks for each instruction. The key point is that the fault

sensitivity is instruction-dependent because each instruction uses a specific subset of

the available microarchitectural blocks. The instruction fault sensitivity model can

be generated once for a specific fault injection method and a target processor, and

it can be used multiple times for different attacks on the target processor.

69

70 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Figure 5.1: Overview of Microarchitecture Aware Fault Injection Attack (MAFIA):
1- An instruction fault sensitivity model is built for the target processor. 2- The
created model is combined with the analysis of the software program to determine
the best fault injection parameters.

The purpose of the attack phase is to design and implement a fault attack on a

target program running on the characterized processor. The adversary analyzes

the target program at different abstraction levels, and then, combines this analysis

with the instruction fault sensitivity model to determine the best clock cycle(s) and

processor part(s) to attack. The attack phase consists of three steps. An adversary

first analyzes the target program at the algorithm-level to determine the application-

specific attack objectives. Then the adversary applies an instruction-level analysis

to determine potential instructions to attack in the program flow. In the last step,

the adversary analyzes the execution of the software program on the target micro-

architecture to identify potential clock cycles to attack. Finally, the adversary uses

instruction fault sensitivity model to determine fault injection parameters for each

potential clock cycles to attack. As the result, the adversary has a set of (clock

cycles, fault parameters) pairs to attack. Using this information, the adversary can

carry out the actual fault injection experiments.

The proposed method requires ISA-level, microarchitecture-level, and hardware-level

Bilgiday Yuce Chapter 5. MAFIA 71

knowledge of the target system. The ISA-level knowledge is required to understand

specifications and semantics of the instructions. The adversary can use open-source

architecture manuals to acquire this knowledge. The microarchitectural-level knowl-

edge enables the adversary to understand how a given instruction is executed on

the target platform. The adversary may have an instruction-accurate model(e.g,

a software-level emulator such as QEMU [133]), a cycle-accurate model (e.g, a

micro-architecture simulator such as gem5 [74]), a register-transfer level model, or

a commercial-of-the-shelf (COTS) implementation of the processor. The hardware-

level knowledge is necessary to determine the sensitivity of the processor hardware

to the physical fault injection. The adversary can gather hardware-level informa-

tion from the gate-level netlist, transistor-level netlist, layout, register-transfer level

definition, or a COTS implementation of the processor hardware. As a result, an

adversary’s knowledge level may vary from zero-knowledge to full-knowledge in prac-

tice. The key point is that a fault attack would be more efficient if an adversary has

more knowledge of the implementation. The proposed method provides a methodol-

ogy to systematically combine the knowledge of different abstraction layers.

Next, we explain the details of the proposed methodology by means of an example.

This illustrates how the proposed instruction fault model is used in practice. We

follow the assumption of a conventional, pipelined RISC microprocessor. Instructions

flow through seven stages of a pipeline and can be stalled because of hazards. In

addition, the effects of hazards can be minimized through conventional techniques

such as forwarding, or careful instruction scheduling.

72 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

5.1 How MAFIA Works

This section demonstrates how the instruction fault-sensitivity model can be used to

design an attack on a software secure system. We will describe a generic methodology,

which will be applied on specific cases in later sections. The methodology has three

phases, and we will briefly describe each of them through an example.

5.1.1 Algorithm-level Analysis

Initially, the adversary investigates the software implementation at the highest level

of abstraction available. This could be C source code, or a binary of the software

secure system. During algorithm analysis, the adversary defines the application-

dependent attack objectives. For example, the differential fault analysis attack of

Piret [134] requires a fault differential on the ciphertext, obtained after injecting a

fault into the last-round state of block cipher. In the following example, we assume

a last-round computation of the form below. The fault attack target, in this case, is

the state, and the objective is to capture a faulty ciphertext.

c i ph e r t ex t = key xor sbox [s t a t e]

5.1.2 Instruction-level Analysis

Next, the adversary studies the software implementation at instruction-level, in order

to identify the candidate instructions for the fault attack. Consider the following

example, which is a simplified implementation of the last-round of a block cipher,

implementing using LEON3 instructions.

5.1. How MAFIA Works 73

LD [%fp − 12] , %g1 ;LD1 (s t a t e)

LD [% fp − 16] , %g2 ;LD2 (key)

LD [0x100 + %g1] ,%g3 ;LD3 (lookup [s t a t e])

XOR %g3 , %g2 , %g4 ;XOR1 (key , s t a t e)

STD %g4 , [% fp − 20] ;STD1 (output)

This program snippet loads a state variable and a key from data memory, substitutes

the state variable using a lookup table, and XORs the result with the secret key.

The output is then transferred to a memory location. Based on the DFA technique

of Piret, the candidate instruction for fault injection is the first load instruction,

which transfers the last-round state from data memory into processor register %g1.

Additional study of the control-flow and data-flow of the instructions may be required

in order to identify dependent instructions which are also suitable for the fault attack.

In this case, only the first load LD1 is a suitable fault-injection candidate. The second

load, LD2 does not contribute to the desired fault analysis, and faults in the third

load LD3 would cause faults at the output of the lookup table rather than at the

input.

5.1.3 Microarchitecture-level Analysis

The third step is to examine the software behavior closely, in order to select the

exact clock cycle that would lead to the desired error. One would need to do this

analysis at the cycle-accurate level, in order to account for pipeline effects. Figure

5.2a illustrates the result of this analysis. The instruction sequence requires 12

clock cycles to complete and experiences one data hazard, to accommodate the table

lookup. According to the pipeline analysis, LD1 occupies seven clock cycles and a

74 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Figure 5.2: (a) Pipeline analysis and fault propagation path for the lookup table
target. (b) Pipeline sensitivity analysis for the lookup table target.

fault in any of these seven cycles can potentially create a fault of the desired kind.

However, not all seven cycles can lead to useful LD1 errors. Some of the fault injec-

tions may also affect other instructions. We can use the instruction fault-sensitivity

model to identify the cycle most suited for fault injection. Figure 5.2b shows an

overlay of the instruction fault sensitivity data (Table 4.1) on the instructions in the

pipeline. Looking across rows, one can now identify the most sensitive pipeline stage

in every clock cycle. For the LD1 instruction, the instruction-fetch and memory-

access step are most sensitive, which implies that clock cycle 0 and clock cycle 4 are

suitable candidates for fault injection. The fault intensity would have to be chosen

such that a fault is induced in LD1 but not in other instructions. Assuming that we

would select cycle 4 for fault injection, Figure 5.2a shows the fault propagation to

the memory stage of the final instruction STD. As we will demonstrate in the next

5.2. Case Studies: Fault Attacks on Secure Embedded Software 75

sections, the analysis of the fault propagation path may sometimes lead to additional

candidates for fault injection.

5.2 Case Studies: Fault Attacks on Secure Em-

bedded Software

In this Section, we will apply the principles of the proposed fault attack methodology

on two case studies - one involving a DFIA analysis on AES, and the other involving

an attack on software-implemented fault countermeasures.

5.2.1 Case Study I: DFIA on TBOX AES

This section builds a Differential Fault Intensity Attack (DFIA) on the software im-

plementation of the AES algorithm on LEON3. We implemented the AES algorithm

as a TBOX design. TBOX design is a word-oriented implementation suited for 32-bit

microprocessors. The details of the DFIA attack on the AES algorithm can be found

in [107].

Algorithm-level Analysis

The objective of the DFIA attack on AES algorithm is to mount a biased fault

injection attack on the output of AES round-9. For the attack on the TBOX design,

we consider the expression that generates (one quarter of) the round-9 output state.

It includes four TBOX-table lookups, which are all added together with a roundkey

to produce the round-9 output t0.

76 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

//Target f o r b iased f a u l t i n j e c t i o n : Output o f Round 9

t0 = Te0 [s0 >> 24] ˆ

Te1 [(s1 >> 16) & 0x f f] ˆ

Te2 [(s2 >> 8) & 0x f f] ˆ

Te3 [s3 & 0x f f] ˆ

rk [36] ;

Instruction-level Analysis

Now, we must define the set of instructions that would lead to the required fault

model. The code below shows some instructions in the AddRoundKey function of the

TBOX AES in round-9. The instructions in range of [48, 5c] are the instructions

that are doing shift and XOR operations on the state word (%g1). Instruction LDI7

loads the key word, and instruction XOR8 applies a bitwise XOR operation on the

key and the state words.

48 : LD [% l3 + %o3] , %o2 ;LD1

4C : SLL %o4 , 2 , %o4 ; SLL2

50 : LD [%o7 + %o4] , %o5 ;LD3

54 : XOR %g1 , %o2 , %g1 ;XOR4

58 : LD [% fp + 0x4c] , %l 2 ;LD5

5C : XOR %g1 , %o5 , %g1 ;XOR6

60 : LD [% l2 + 0x98] , %o4 ;LD7

64 : XOR %g1 , %o4 , %l6 ;XOR8

68 : SRL %i5 , 0xe , %o5 ; SRL9

6C : SRL %i4 , 0x18 , %g1 ; SRL10

5.2. Case Studies: Fault Attacks on Secure Embedded Software 77

Figure 5.3: Pipeline Behavior for AddRoundKey of Tbox AES

Microarchitecture-level Analysis

To apply DFIA to a RISC pipeline, we need to induce biased data errors into selected

instructions. Biased data errors mean that the effects of the injected fault must be

revealed on the data computation rather than the control flow of the program or the

instruction opcodes. Therefore, we will consider a (pipeline stage, instruction) pair

as a valid fault injection target if attacking that pair yields a biased fault.

Figure 5.3 shows the behavior of the previously analyzed instructions in the pipeline.

78 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

There are some data dependencies between the instructions for TBOX as well which

are shown by blue circles in the graph. All the data dependencies can be solved by

forwarding technique, except the dependency from LDI7 to XOR8. Therefore, the

pipeline will have a stall in cycle 26. Due to the cache miss processing for LDI5,

the pipeline will be held still until the data is ready. The HOLD cycles extend the

time of the instruction causing the miss by the corresponding number of cycles. The

potential points of observing biased fault is shown by red circled instructions in the

pipeline in the Figure 5.3.

In order to perform an efficient attack and obtain useful faulty values, the adversary

must only affect the circled pipeline stages only and avoid affecting other pipeline

stages in a cycle. In order to find the fault injection location and the valid fault

intensity range, we need to look into the timing characterization of each of the

potential targets.

There are 32 opportunities to inject fault into AddRoundKey of TBOX since we can

inject fault in any cycles of this function. In Figures 5.4a- 5.4d, we show four of these

targets. Based on analyzing the instructions that might be affected by each of these

targets, we will choose the specific target and fault intensity to inject the fault.

1. Fault Injection in Cycle 6 (Figure 5.4a): The only blue operations in cycle 6

are the XOR4(E) and LD3(M). Figure 5.4a shows the length of critical path

for each operation in cycle 6. The largest critical path is for LD3(M), which

is equal to 7.58ns. By gradually increasing the fault intensity, we will affect

the LDI5(A) which is 5.45ns. Since LDI5(A) is invalid fault injection target,

Figure 5.3, the maximum fault intensity can be 5.45ns.

2. Fault Injection in Cycle 25 (Figure 5.4b): By injecting fault in this cycle, we

5.2. Case Studies: Fault Attacks on Secure Embedded Software 79

(a) Fault Injection in Cycle 6 (b) Fault Injection in Cycle 25

(c) Fault Injection in Cycle 27 (d) Fault Injection in Cycle 28

Figure 5.4: Fault Sensitivity Analysis for Different Target Cycles of the TBOX AES

are allowed to affect XOR6(E), XOR4(X) and LD3(W). The largest critical

path belongs to LDI5(M). Since LDI5(M) is not blue, we cannot inject fault

into this cycle.

3. Fault Injection in Cycle 27 (Figure 5.4c): In this figure, we are allowed to affect

XOR8(A) and LDI7(M). We can only affect LDI7(M) with the fault intensity

of 7.58ns. The maximum fault intensity will be 5.91ns since we do not wish to

affect the SRL10(F).

4. Fault Injection in Cycle 28 (Figure 5.4d): In this figure, we are allowed to

effect XOR8(E), XOR6(W). We can affect the XOR8(E) and the maximum

intensity that we can apply is the delay of SRL9(A) (4.7ns), since SRL9(A) is

80 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

invalid target of fault injection in Figure 5.3.

Using this analysis, we launched the DFIA attack on the TBOX implementation of

the AES algorithm. The number of required fault injections and the results of this

attack will be discussed in Section 5.3.

5.2.2 Case Study II: Analysis of Instruction-level Counter-

measures on LEON3 Pipeline

The redundancy-based, instruction-level countermeasures against fault attacks have

been trusted for years. Traditionally, it is assumed that breaking these countermea-

sures requires multiple identical faults, which can be achieved by expensive fault

injection setups with back-to-back injection capabilities [46, 66]. In this section, to

break common instruction-level countermeasures, we describe different attack scenar-

ios that can be potentially achieved by single glitches without requiring back-to-back

injections. We will use microarchitecture-level analysis to identify the attack scenar-

ios. In Section 5.4, we experimentally verify the defined scenarios with single clock

glitch injections.

Instruction Duplication Countermeasure

In the Instruction Duplication countermeasure [66], sensitive instructions are dupli-

cated selectively and their computation results are stored in different destinations.

Then, these results are compared to detect faults.

Figure 5.5 illustrates the Instruction Duplication countermeasure on a Memory Load

(LD1) instruction and its behavior on the pipeline. This code protects the LD1 in-

5.2. Case Studies: Fault Attacks on Secure Embedded Software 81

Figure 5.5: Pipeline Behavior for Instruction Duplication Countermeasure for LD
Instruction

struction by storing the load value in both %g2 and %g3 registers. The values of

these two registers are compared by CMP instruction and an error policy is called if a

mismatch is detected.

The gray instructions show stalls in the pipeline. Stall 1 in Figure 5.5 is due to the

data dependency between the LD2 and CMP instructions. As shown, the results of

LD2 will be ready in the Stage E at Cycle 4. The CMP instruction in Stage A waits

for the result of LD2 until Cycle 5 and then continues its execution. Stall 2 on the

BNE instruction is due to the branch interlock. The branch interlock happens in the

case of a conditional branch. When a conditional branch is performed in 1-2 cycles

after an instruction which modifies the condition codes, 2 cycles of delay is added to

allow the condition to be computed.

The target of fault injection to thwart this countermeasure can have two forms. First,

injecting two identical faults in each of the LD instructions to bypass the equality

82 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

check. Second, a single fault injection into the LD1 instruction and skipping the CMP or

BNE. In this section, we use the pipeline analysis of the Instruction Duplication code to

find vulnerable points of fault injection to create different scenarios explained above.

The first step is to define the valid targets of fault injection in each cycle. Based on

the previous analysis, the valid stages to inject faults are defined as follows. The red

circled instructions show the valid instructions to target computation faults. These

instructions can be targeted to generate different faulty values in registers. Affecting

the black squared pairs of (instruction, pipeline stages) will cause instruction faults.

For example, targeting the LD instructions in Stage M or W stage will generate

different faulty values and targeting the CMP or BNE instruction in Stage F and Stage

D will cause instruction faults. Then, an adversary can define different scenarios for

fault injection in each cycle.

Table 5.1 summarizes the two potential scenarios. In this table, columns 2 and 3

show the potential targets of fault injection in the pipeline for achieving each scenario.

The last column shows the type of fault that is injected into each instruction of the

pipeline. The two scenarios are explained in detail as follows.

1. Scenario A.1. Double Computation Fault: The purpose of this fault

injection is to inject exactly the same faults into the original and redundant

copies of the LD1 instruction. These fault injections must not affect the CMP or

BNE instructions. This scenario can be achieved by injecting a fault into Cycle

3 of the pipeline. Injecting a fault into this cycle does not have any effect on

the CMP or BNE instructions, due to Stall 1 in the pipeline.

2. Scenario A.2. Single Computation Fault-Single Instruction Fault:

Another way to bypass this countermeasure is to create faulty values in register

5.2. Case Studies: Fault Attacks on Secure Embedded Software 83

Table 5.1: Fault Attack Scenarios to Thwart Instruction Duplication Countermeasure

Scenarios
of Glitch
Injections

Targeted
Cycles

Instruction, Fault Type
LD1 LD2 CMP BNE

A.1. 1 3 CF CF - -

A.2. 1
2 CF - IF -

4
CF - IF -
CF - - IF

%g2 by a computational fault in LD1 and skip the CMP or BNE instructions. To

achieve this type of fault, we can trigger the fault injection in different cycles.

The single glitch injection must accurately target the cycle that is performing

both computational operations on LD1 and instructional operations on CMP or

BNE. As shown in the pipeline, these cycles can be Cycle 2 that affects CMP(F)

or Cycle 4 that can affect CMP(D) or BNE(F).

Instruction Parity Countermeasure

This software countermeasure is proposed by Barenghi et. al in [66]. In this tech-

nique, we first save the precomputed value for the parity bit in a register. Then, the

parity is computed on the fly for the protected register’s value. The computed parity

value is compared to the precomputed value and an alarm is raised if a mismatch

happens.

Figure 5.6 shows an example of the parity countermeasure. In this example, the

protected instruction is a Memory Load instruction that loads a value from [%fp-12]

into register %g3. The precomputed parity value is stored in %g2. The computed

parity value is obtained using some Shift-Right (SRL) and XOR instructions and

84 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Figure 5.6: Pipeline Behavior for Instruction Parity Countermeasure for LD Instruc-
tion

stored in %g4. The value of the precomputed parity bit will be compared to the

value of %g4 and the countermeasure will raise an alarm in case of mismatch.

As shown in Figure 5.6, there are several opportunities to inject useful faults into

this countermeasure. The parity countermeasure is vulnerable to many types of fault

injection scenarios as it contains many instructions for computing the parity. Some

of these opportunities are explained below, that is summarized in Table 5.2.

1. Scenario C.1. Single Computation Fault: The purpose of this fault injec-

tion is to inject computational faults into the original LD instruction, so that

the effects of fault can change an even number of bits in register %g3. There-

fore, the computed value for parity bit will still be the same as the correct

execution. These fault injections must not affect the CMP or BNE instructions.

5.2. Case Studies: Fault Attacks on Secure Embedded Software 85

Table 5.2: Fault Attack Scenarios to Thwart Instruction Parity Countermeasure

Scenarios
of Glitch
Injections

Targeted
Cycles

Instruction, Fault Type
LD1 SRL1-AND LD2 CMP BNE

C.1. 1 2,3,4,13 CF - - - -
C.2. 1 3,4,13 CF IF - - -

C.3. 1 2,20
CF - - - IF
CF - - IF -

This scenario can be achieved by injecting a fault into the Cycle 2, 3, 4 or 13.

2. Scenario C.2. Single Computation Fault-Multiple Instruction Fault:

The purpose of this fault injection is to inject computation fault into the LD

instruction and inject instruction faults in the computation of the parity bit.

This scenario can be obtained by a single glitch injection. The single glitch in-

jection must accurately target the cycle that is performing both computational

operations on LD3 and instructional operations on SRL1(F-D-E), MOV(D-M),

XOR1(F-A), XOR2(F), SRL2(D), XOR1(F).

3. Scenario C.3. Single Computation Fault-Single Instruction Fault:

Another way to bypass this countermeasure is to create faulty values in register

%g3 by a computational fault in LD1 and skip the CMP or BNE instructions. To

achieve this type of fault, we should trigger the computation fault in Cycle 2

and the instruction fault in Cycle 20 to target the BNE(F).

Instruction Skip Countermeasure

This countermeasure is proposed by [46]. This redundancy technique is used to

avoid the instruction skip faults. Instruction skip fault is defined as a fault that can

change an instruction to an effective NOP instruction. Therefore, the fault model is

86 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Figure 5.7: Pipeline Behavior for Instruction Skip Countermeasure for LD Instruction

Table 5.3: Fault Attack Scenarios to Thwart Instruction Skip Countermeasure

Scenarios
of Glitch
Injections

Targeted
Cycles

Instruction, Fault Type
LD1 LD2

D.1. 1 1 IF IF

not defined as computational fault model, but it can only change the opcode of the

protected instruction. Following shows the assembly code for the instruction skip

countermeasure on LD instruction.

The pipeline behavior for the instruction skip countermeasure is shown in Figure 5.7.

As shown, since the adversary does not target for computational faults, he can only

target the first three cycles. Therefore, there is only one scenario that can achieve

such a fault.

1. Scenario D.1. Double Instruction Fault: There are two ways to achieve

instruction faults in both LD instructions.

• Single Fault Injection: By injecting a fault into Cycle 1, the adversary

can change the opcode of the instruction in the LD2(F) and LD1(D) (as

shown in Table 5.3).

5.3. Experimental Evaluation of Case Study I 87

5.3 Experimental Evaluation of Case Study I

In this section, we provide experimental results to demonstrate the impact of the

proposed method on the efficiency of fault injection and fault analysis parts of the

DFIA attack. In the injection part, an adversary applies the physical stress (e.g,

clock glitches) and collects faulty outputs. In the analysis part, the collected faults

are analyzed to retrieve the secret key. We attacked the TBOX AES program running

on FPGA implementation of LEON3 for two cases:

1. Grey-box approach: In this case, the adversary uses the information pro-

vided by the instruction fault sensitivity model. The adversary also has the

knowledge of the software behavior in the pipeline. Therefore, the adversary

can identify the most suitable clock cycles and fault intensity range for fault

injection, aiming at creating biased data faults.

2. Black-box approach In this case, the adversary does not use have the in-

struction fault sensitivity model. In addition, the adversary’s knowledge about

the pipeline behavior of the software is limited. The adversary can still do a

limited timing characterization for the processor using the existing black-box

approaches [14], [29], [13]. However, the pipeline state is unknown to the ad-

versary. Therefore, the adversary cannot combine this timing characterization

with the software behavior in the pipeline.

In both cases, our purpose was retrieving the AES secret key with the DFIA attack.

We used one plaintext value and one key value for our experiments. We collected

faulty ciphertexts for different fault intensity values. We controlled the fault intensity

88 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Table 5.4: Comparison of Fault Injection Cost for Black-box and Grey-box Attack
Strategies on TBOX AES

Number of Attacked Cycles Tglitch Range
Number of Fault Injections

(Step size = 162ps)
Black-box
Approach

16 [3.0, 15.8] 1280

Grey-box
Approach

9 [5.43, 6.59] 81

by increasing/decreasing the glitch width Tglitch. Here, we present our results for

retrieving one byte of the AES key.

The adversary starts with the fault injection part to collect biased data faults, which

are required for the fault analysis part of the DFIA attack. In the grey-box strategy,

the adversary uses MAFIA (Section 3) to find the most suitable points and injection

parameters for biased data fault injection. Then, he injects faults into these points

in the execution of AES software and collects faulty ciphertexts.

In the black-box case, the adversary has a limited knowledge of the target system.

Therefore, to collect biased data faults, he has to exhaustively inject faults into all

points in the execution of software and hope they will lead to biased data faults.

However, in this approach, a large number of fault injection attempts will cause

random effects in the fault injection point. For example, a fault injection attempt

might affect the address calculation of a memory-load instruction and causes fetching

an irrelevant data from the memory. This will create a random effect, rather than

a biased effect, in the fault injection point. Although this fault injection creates a

faulty ciphertext, it will not be useful for DFIA. Next, we investigate the required

effort for biased fault injection for both cases.

Table 5.4 demonstrates the effect of proposed method on the efficiency of fault injec-

5.3. Experimental Evaluation of Case Study I 89

tion part of the attack. The table shows Tglitch range and the number of clock cycles

that an adversary can exploit to create biased data faults. The first column of the

table lists the number of clock cycles during which a fault injection attempt might

yield a biased data fault. The total number of these cycles for the TBOX AES is

16 (5.3). For the black-box case, the adversary attempts to inject faults into all of

these cycles as he is not aware of the pipeline behavior of the AES software. For the

grey-box case, this number reduces to 9 with micro-architecture aware fault attack

strategy.

The second column of Table 5.4 shows the Tglitch range in which the adversary at-

tempts to inject biased data faults. The overall range for our LEON3 implementation

and experimental setup is [3.0, 15.8]ns, as the critical path of the processor is 15.8ns

and the minimum glitch period of our setup is 3.0ns. For the black-box strategy, the

adversary tries all possible glitch width (i.e, fault intensity) values. For the grey-box

case, this range will be reduced due to the proposed methodology. For every target

cycle, we will have a different valid Tglitch range as it is previously shown. In our

case, there are 9 valid Tglitch ranges. In Table 5.4, we list the average lower and upper

bound values for the grey-box approach rather than showing bounds of each Tglitch

range.

The third column of Table 5.4 is the total number of fault injection attempts for

162 ps step-size. These numbers show the required fault injection attempts to explore

all possible Tglitch values that might yield biased data faults. We obtained these

numbers by multiplying the number of attacked clock cycles and the number of

Tglitch levels within the corresponding Tglitch range. As it can be seen, the number of

total fault injections for the black-box case (1280) is greater than the grey-box case

(81). As a result, the proposed methodology significantly increases the efficiency of

90 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

the fault injection part by reducing the effort for biased fault injection.

In the fault analysis part, the adversary uses the collected faults to retrieve the secret

key byte. In this experiment, the DFIA attack was able to retrieve the key byte with

31 faults in the black-box case, and with 17 fault injections in the grey-box case. In

other words, the faults in the grey-box case provide more information on the secret

key then the faults in the black-box case do. This is expected as the proposed method

increases the control of the adversary on the induced fault effects.

In conclusion, these experimental results demonstrate that DFIA attacks are feasible

on pipelined RISC processors for the black-box and grey-box approaches. They

also show that the grey-box strategy significantly reduces the fault injection effort

required to create biased data faults, and it enables more efficient DFIA attacks.

5.4 Experimental Evaluation of Case Study II

For each attack scenario and countermeasure investigated in Section 5, we launched

a clock glitch injection campaign using our experimental setup. In the following

paragraphs, we will list the observed faulty behavior for each countermeasure.

Table 5.5 shows the results of our experiments on the Instruction Duplication

countermeasure. The first column of this table, shows the fault injection scenario.

Column 2 and 3 show the clock cycle for the fault injection and the glitch width,

respectively. The last two columns list the faulty instructions and the observed fault

effect.

In our experiments, we were not able to achieve the Scenario A.1., which requires

injecting the same fault into both copies of the instruction with a single glitch in-

5.4. Experimental Evaluation of Case Study II 91

Table 5.5: Fault Injection Results on Instruction Duplication Countermeasure

Glitching Scenario
Target of

Fault Injection
Glitch Width

(ns)
Impacted

Instruction(s)
Observed

Fault Effect
A.1. Single Glitch - - - -

A.2. Single Glitch Cycle 2 9.0 - 12.6
LD1, A
CMP, F

Fault in %g2

CMP to SRL

A.2. Single Glitch Cycle 4 12.0 - 14.6
LD1, M
BNE, F

Fault in %g2

BNE to NOP

jection. We observed that the effect of fault on the two LD instructions is different

because they are in different stages of the pipeline. The table shows that we have

successfully injected faults that result in other scenarios. We successfully created

Scenario A.2. by injecting a single glitch fault into Cycle 2 or Cycle 4. By injecting

glitches in Cycle 2, we were able to affect the operands fetched in the Stage A of LD1

instruction, and change the value stored in %g2. This fault injection also affected

the Stage F of CMP, and changed this CMP instruction into a shift-right instruction

(SRL). By injecting a fault in Cycle 4, we affected the Stage M of LD1 and Stage F.

This fault injection caused a faulty value in the result of LD1 (%g2), and replaced the

branch-on-not-equal (BNE) instruction into a NOP instruction. Therefore, the code did

not jump to the error handling procedure although there was a mismatch between

the results of LD1 and LD2.

Table 5.6 shows the result of fault injection into the Instruction Parity coun-

termeasure. As shown, since the parity countermeasure has many instructions for

computation of the parity bit, there are several points in the program that are vul-

nerable to the fault injection. In this table, we show that the adversary can exploit

single glitch injection to either corrupt multiple bits in the protected register’s value

or the computation of the parity bit. For example, by injecting the glitch in Cycle

13, the condition codes and the XOR instruction changes to a NOP instruction.

92 Chapter 5. Micro-architecture Aware Fault Injection Attack (MAFIA)

Table 5.6: Fault Injection Results on Instruction Parity Countermeasure

Glitching Scenario
Target of

Fault Injection
Glitch Width

(ns)
Impacted

Instruction(s)
Observed

Fault Effect
C.1. Single Glitch Cycle 4 13.2 LD1, M Fault in %g3

C.2. Single Glitch Cycle 13 12.1- 13.3
LD1,W
XOR2, E

Fault in %g3

XOR to NOP

Table 5.7: Fault Injection Results on Instruction Skip Countermeasure

Glitch Scenario
Target of

Fault Injection
Glitch Width

(ns)
Impacted

Instruction(s)
Observed

Fault Effect

D.1. Single Glitch Cycle 1 9.0 - 9.2
LD1, D
LD2, F

LD1 to SETHI

LD2 to NOP

Table 5.7 shows the result for the Instruction Skip countermeasure. As shown,

with single, we are able to change the opcode of the LD instructions to other opcodes

and skip two consecutive instructions. For example, by injecting fault in the Cycle

1, we converted LD1 instruction into a SETHI instruction and LD2 instruction into

a TADCC instruction. The SETHI instruction uses the least significant 22 bits of the

instruction value, and writes this value into the destination register (%g2 in this

case). TADCC is a special addition instruction and it does not update any register; it

is effectively a NOP. As a result, we update the destination register with a random

value. Other scenarios of fault injection are explained in [11].

Chapter 6

Micro-architectural Embedded

System Simulator for Fault

Injection (MESS)

Disclaimer: This chapter is an excerpt from a research internship project that

was done by the author of this dissertation at Riscure. The views expressed in this

chapter are those of the author and do not reflect the official policy or position of

Riscure.

The previous chapters demonstrates that considering multiple layers together makes

fault attacks better understood, and thus, it increases the efficiency of fault mod-

els and fault attacks. This chapter demonstrates a fault attack simulator, Micro-

architectural Embedded System Simulator (MESS), which enables software develop-

ers to represent this better understanding of fault attacks in the simulation environ-

ment and assess vulnerability of the software programs against fault attacks.

The next section provides an overview of MESS. Section 6.2 gives implementation

details of MESS. Section 6.3 presents the operation flow of MESS. Section 6.4 demon-

strates different fault injection experiments using FAME. Finally, Section 6.5 dis-

cusses the related work.

93

94
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Target
Software

Target µProcessor

Fault Attack
Definition Input

Trigger Generator

MESS:
Microarchitecture-level Embedded System Simulator

Execution Logs.
Results, etc

Fault Injector

Run-time Status Monitor

gem5

MESS Extensions

- Trigger Conditions
- Fault List
- Attack Objectives

Figure 6.1: Block Diagram of the proposed fault attack simulator MESS: Inputs are
target binary program, micro-architectural model of the processor, and definitions
of the fault attack experiment. Output is a list of fault injection results.

6.1 Overview of MESS

MESS is based on an open-source, cycle-accurate, micro-architecture level, full-

system simulator gem5 [74]. As it is shown in Figure 6.1, additional fault injection

and analysis capabilities are integrated into gem5 to extend it to MESS. The ex-

tensions consist of three main components: Trigger Generator, Fault Injector, and

Run-time Status Monitor. The Trigger Generator enables a user to define trigger

conditions to enable/disable the fault injection. The Fault Injector enables a user to

define timing, location, and type of the faults to be injected. It also performs the

fault injection based on the defined fault parameters and trigger conditions. The

Run-time Status Monitor allows a user to define run-time events to be monitored

during the simulation. These events may be used to check if an attack is success-

ful (e.g, bypassing a security check), or to get diagnostic information about fault

behavior of the target program.

The inputs of MESS are an executable binary file for the target software, a micro-

6.1. Overview of MESS 95

architectural model of the target processor hardware, and the definition of the fault

attack (trigger conditions, fault list, and run-time events). MESS will carry out the

defined fault attack experiment, collect the results, and classify the collected results.

If it is required, the user can also carry out further analysis on the interesting results

by using debugging options of gem5.

The original gem5 simulator allows a user to define cycle-accurate models for main

micro-architectural components and instruction execution. This enables MESS to

close the abstraction gap between the view of a software designer and view of an

attacker. A software designer develops the source code of a software program in a

high-level language or in the assembly-level while a fault attack adversary injects

the faults at the lowest level, during the execution of the program on the processor

hardware:

• From the designer’s perspective, a software program is a sequence of instruc-

tions that will be executed on the processor hardware.

• At the instruction-set architecture (ISA) level, each instruction is composed of

several instruction-steps.

• On the processor, each instruction goes through the instruction-cycle (Fetch-

Decode-Execute Cycle): The processor loads each instruction from program

memory (instruction-fetch, F), then determines the meaning of the instruc-

tion through its opcode (instruction-decode, D), then executes the instruction

(instruction-execution, E). The execution step can also be divided into sub

steps such as accessing register file to read operands (register access, A), car-

rying out the required computation on a functional unit (computation, C),

accessing the data memory if it is required (memory access, M), and updating

96
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

the register with the result of the instruction (write-back, W).

• The actual scheduling of the instruction-steps into clock cycles depends on

the organization of the microprocessor hardware, availability of the required

micro-architectural components, and dependencies between the instructions.

Therefore, the attacker sees a program as a sequence of clock cycles, during

which instruction-steps are running on the available hardware blocks.

• In a fault attack, fault injection is active during specific clock cycle(s), and it

potentially affects the instruction-steps running during this active time period.

As a result, software designers are able to evaluate their programs against various

realistic fault attack scenarios using cycle-accurate modeling capability of MESS.

The next section details the components of MESS.

6.2 Components of MESS

This section explains the details of the main components of MESS that are gem5

simulator, Trigger Generator, Fault Injector, and Run-time Status Monitor.

6.2.1 gem5 Simulator

gem5 is a popular open-source system simulator [74]. It provides a modular plat-

form for computer system-level architecture. In gem5, a user can define the main

micro-architectural components (CPUs, caches, interconnects, memories, etc.) of a

computer system in a cycle-accurate way. Then the user can run an application on

this model and analyze its execution.

6.2. Components of MESS 97

Supported ISAs: gem5 supports a number of ISAs, including Alpha, MIPS,

ARM, Power, SPARC and x86. The simulators modularity allows these different

ISAs to be easily implemented on top of the generic CPU models and the memory

system. MESS supports ARM and x86 instruction sets.

Operation Modes: gem5 can operate in two modes: System Call Emulation (SE)

and Full System (FS). In SE mode applications execute on simulated bare metal.

In the FS mode, the user is able to run an operating system (OS) on top of the

simulator. In this mode, applications are executed under the control of the OS.

MESS supports both of the modes.

Debug Features: gem5 also provides several debugging options to examine the

execution of the programs. It provides debugging flags to monitor the activity of the

different parts of the system. It is also possible to connect the modeled system with

gdb debugger.

6.2.2 Trigger Generator of MESS

In a fault attack, the fault injection needs to be active only for a specific time pe-

riod during the execution the target program. MESS uses a simulator-level, global

variable isFaultEnabled to indicate whether fault injection is active or not. Fault

injection is enabled as long as the value of isFaultEnabled is 1. MESS controls the

value of isFaultEnabled with a program counter (PC) based triggering mechanism,

which enables or disables fault injection based on a list of user-defined trigger condi-

tions. Using this mechanism, a user can enable and disable the fault injection during

98
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Listing 1 Operation of The Trigger Generator

1: Input: User-defined list of trigger conditions chronological trigger list

. At the beginning of the simulation, MESS parses the input file and creates the
queue of trigger conditions

2: triggerQueue← Parse(trigger list)

. At each clock cycle, MESS checks and updates the trigger conditions
3: function update trigger conditions
4: tCond← triggerQueue.head . The first trigger condition in the queue
5: if PC == tCond.trigPC then . If the target PC address is encountered
6: if tCond.trigCnt == 0 then . If the condition is met
7: isFaultEnabled← tCond.trigIsSet . Enable/Disable fault injection
8: remove head element(triggerQueue) . Remove the head element
9: else

10: tCond.trigCnt−−
11: end if
12: end if
13: end function

different parts of the target programs execution.

The user can specify a trigger condition using with 3 parameters, trigPC, trigCnt,

and trigIsSet:

• trigPC is the program counter (PC) value associated with the trigger condition.

During the simulation, the trigger generator continuously compares the PC of

the simulated processor with the value of trigPC.

• trigCnt is the match counter associated with the trigger condition. The trigger

condition is satisfied, when the processor’s PC and trigPC match trigCnt

times.

• trigIsSet is a boolean flag that determines if the fault injection will be enabled

6.2. Components of MESS 99

or disabled after the trigger condition is satisfied. If the value of trigIsSet is

1, fault injection is enabled after the trigger condition is satisfied. Otherwise,

the fault injection will be disabled.

The user feeds the trigger conditions to MESS in the form of a text file (trigger list).

Each line of the file corresponds to an individual trigger condition written in the fol-

lowing format:

<trigPC> <trigCnt> <trigID> <trigIsSet>

At the beginning of the simulation, MESS parses input file and puts the trigger

conditions into a queue of trigger conditions, triggerQueue. Then MESS consumes

each element of the triggerQueue one by one as it is shown in the Listing 1. At

each clock cycle, MESS calls the function update trigger conditions() to check

whether the first (i.e, head) trigger condition of the queue is satisfied. If it is satisfied,

MESS enables/disables the fault injection based on the value of the corresponding

trigIsSet, and it removes the trigger condition from the queue. MESS repeats these

steps until there remains no trigger condition in the triggerQueue.

6.2.3 Fault Injector of MESS

The Fault Injector provides a mechanism to define and inject faults. gem5 provides

a micro-architecture level, cycle-accurate model of the target programs execution.

Therefore, MESS can inject cycle-accurate faults into main micro-architectural com-

ponents of the system. These components include different pipeline stages, caches,

memories, register file, branch predictor, and so forth. Moreover, MESS allows the

implementation of both high-level (e.g, instruction-skip) and low-level (bit-flip) fault

100
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

models. For this work, we implemented a subset of the various potential fault models.

Other fault models can be easily implemented using a similar approach.

The user describes the faults to be injected by feeding a list of faults into MESS in

the form of a text file. Each line of the input text file describes a specific fault with

4 attributes: Fault Location, Fault Timing, Fault Type, and Fault Duration. The

following paragraphs explain the fault injection capabilities of MESS for each of the

attributes.

Fault Location: The fault location specifies the target micro-architectural com-

ponent for fault injection. The current version of MESS supports fault injection

into instruction fetcher, instruction decoder, read/write access to register file, ALU

operations, read/write access to data memory, and condition flags.

Fault Timing: Fault timing attribute specifies the timing of the fault injection

relative to the beginning of the simulation inside a fault injection window. It specifies

the offset of the fault injection from the start of the simulation. A user can specify

this offset in terms of executed clock cycles or executed instructions. Thus, MESS is

able to inject faults into a specific instruction or a specific clock cycle.

MESS employs simulator-level, global fault-related performance counters to keep

track of the timing information for the simulation. In the current version, there

are five performance counters that count the number of fetched instructions, the

number of decoded instructions, the number of executed instructions, the number of

memory transfer instructions, and the number of clock cycles. At the beginning of

the simulation, these counters are initialized to zero. Then, at each clock cycle of

the simulation, they are updated based on the execution of the target program.

6.2. Components of MESS 101

Fault Type: Fault type attribute specifies the fault behavior at the target location.

The current version of MESS is able to flip a single bit of the target, XOR the target

with a user specified mask (i.e, multiple bit flips), set/reset all bits of the target,

assign target to a user-specified value, and invert the condition flags of the processor.

Using these fault types, other fault types can also be emulated. For instance, MESS

has two high-level fault types in addition to the bit-level faults. The instruction-skip

type replaces the opcode of an instruction with the opcode of a NOP instruction

during the instruction fetch. The conditional test inversion fault invert the result of

a conditional test.

Fault Duration: Fault duration attribute specifies how long a fault will be active.

Depending on the Fault Timing attribute, it can be specified in terms of number of

clock cycles or number of instructions. For instance, we can flip a specific bit of the

fetched instruction code for 3 consecutive cycles. It is useful to simulate transient,

intermittent, and permanent faults.

At the beginning of the simulation, MESS parses the input file provided by the user,

and creates fault queues. For each fault location listed in Table 6.1, a separate queue

is created. MESS puts each fault described into an appropriate fault queue, in which

faults are sorted based on their Fault Timing attribute. If fault injection is enabled

during a clock cycle, MESS scans all of the fault queues to check if there is any fault

scheduled for that clock cycle. If MESS finds a fault, it injects the fault and removes

it from the queue.

102
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Table 6.1: Fault Injection Capabilities of MESS. Each fault is defined by four at-
tributes: Fault Location, Timing, Type, and Duration.

Fault Fault Fault Fault
Location Timing Type Duration

Instruction Fetch At a specific Multi/Single Bit-flips Number of
Instruction Decode instruction step Set All Bits Clock Cycles
Register File Access Clear All Bits
Memory Access At a specific Assign Arbitrary Value Number of
Address Calculation clock cycle Instruction Skip Instructions
ALU Computations Conditional Test Inversion
Conditional Flags

6.2.4 Run-time Status Monitor of MESS

The run-time status monitor of MESS continuously observes the execution of the

target program for catching run-time events that are important for the fault attack

experiment. For instance, a run-time event can be to reach a specific iteration of a

loop, to access a specific instruction, or to write a specific value into a register. A

user may want to observe run-time events for various purposes:

• To check if the attack’s objective has been achieved after fault injection,

• To check if the attack’s objective has been failed after fault injection,

• To check if the simulation should be terminated,

• To collect diagnostic information about the fault behavior of the target pro-

gram,

The run-time status monitor enables the user to define an action to be taken whenever

a run-time event occurs. For instance, this action may be terminating the simulation

and printing an exit message.

6.2. Components of MESS 103

The user specifies 3 parameters (runID, runFlag, and runCnt) to define a run-time

event to be observed:

• runID is the unique identification number of the run-time event.

• runCnt determines how many times the observed event needs to happen before

setting runFlag.

• runFlag is a boolean value associated with the run-time event. Its initial value

is zero, and it is set to 1 if the run-time event occurs runCnt times.

For flexible handling of the run-time events to be observed, MESS allows the user

to modify a small part of its source code via a set of Application Programming

Interface (API) functions. The API functions are written in C++, and they are

explained below:

• run declare(): In this function, the user declares each run-time event as an

instance of the class RunTimeEvent. During the declaration, the user needs to

specify the values of runFlag and runCnt. The following code listing shows an

example template for run declare() function. In this example, three run-time

events are declared.

void runDeclare () {

//new RunTimeEvent(<runID>, <runCnt>) ;

new RunTimeEvent (1 , 1) ; // Success

new RunTimeEvent (2 , 6) ; // Exit

new RunTimeEvent (3 , 3) ; // Observation

}

104
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

• run update(RunTimeEvent rEvent): This function checks if a given run-time

event rEvent has occurred. Based on the result of the test, it updates the

status flag rEvent.runFlag and the counter rEvent.runFlag.

The following code listing demonstrates a template. The body of the given

template is organized as a switch statement that switches on rEvent.runID.

This switch statement includes a separate case declaration for each of the

observed events. The template shows an example user code for the first event,

which occurs whenever program counter is 0x8A5C. The code first checks if the

event has been reached, and then, it updates the runCnt value accordingly.

The run-time status of information of the system is accessed using gem5 in-

frastructure such as the function gem5.getReg(). Finally, the if statement at

the end of the function raises the status flag runFlag. This structure provides

flexibility for the user.

void runUpdate (RunTimeEvent∗ rEvent) {

// Update runCnt value

switch (rEvent . runID) {

case 1 : i f ((gem5 . getReg (PC) == 0x8A5C)) // Check

Event

i f (rEvent . runCnt > 0) // Update counter

rEvent . runCnt −− ; break ;

case 2 : . . . ; break

case 3 : . . . ; break ;

}

// Update runFlag Value

i f (rEvent . runCnt == 0x0)

6.2. Components of MESS 105

rEvent . runFlag = 1 ;

}

• run flag handler(bool* flags): The input of this function is the array of

status flags of the declared events in run declare(). The user describes the

actions to be taken based on the values of individual flags or combination of

flags.

In the given example below, the function is used for terminating the simulation

and printing an exit message that contains the values of all flags and whether

the attack was successful.

void runFlagHandler (bool ∗ f l a g s) {

// Success Message

s p r i n t f (message1 , "SUCCESS, flags=%d%d%d" ,

f l a g s [1] , f l a g s [2] , f l a g s [3]) ;

// Fa i l Message

s p r i n t f (message2 , "FAIL, flags=%d%d%d" ,

f l a g s [1] , f l a g s [2] , f l a g s [3]) ;

// Combining Flags

i f (f l a g s [1] && f l a g [2])

ex itS im (message1) ;

e l s e i f (f l a g [2])

ex itS im (message2) ;

}

106
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Listing 2 Operation of The Run-time Status Monitor

. At each clock cycle, MESS checks and updates the run-time events
1: function update runtime events
2: for each run-time event rEvent do
3: run update (rEvent) . Update runCnt and runF lag
4: statusF lagArray[rEvent.runID]← rEvent.runF lag . Array of flags
5: end for
6: rCond← triggerQueue.head . The first trigger condition in the queue
7: run flag handler(statusF lagArray) . Handle status flags
8: end function

After completing the code for declaring and handling the run-time events, the user

needs to recompile MESS. During the run-time, MESS uses the API functions to

check and update the status of the run-time events as it is shown in Listing 2.

6.2.5 Cycle-wise Operation of MESS

This section briefly describes the operation of MESS for each cycle (Listing 3). For

each cycle, MESS first checks the run-time events and trigger conditions. If any event

has occurred or any trigger condition has been satisfied, MESS takes the correspond-

ing action. This action can be enabling/disabling the fault injection, terminating

simulation, or setting a status flag depending on the type of the checked condition.

Then, if the fault injection is enabled, MESS scans the fault location queues to check

if there is any fault scheduled for this specific clock cycle. If a scheduled fault is

found, the fault location is modified in accordance with the type of the fault.

6.3. Designing and Running Experiments on MESS 107

Listing 3 Cycle-wise Operation of MESS

1: for each clock cycle clk do
2: update runtime events() . Listing 2
3: update trigger conditions() . Listing 1
4: if isFaultEnabled then
5: scheduledFaults← scan fault queues(clk)
6: for each scheduledFault f do
7: inject fault(f)
8: end for
9: end if
10: end for

6.3 Designing and Running Experiments on MESS

Figure 6.2 shows the main steps to design and run a single fault injection experiment

on MESS. The design of a fault attack experiment starts with preparing an executable

file for the target software and a gem5 model for the target hardware. Second, the

user analyzes the target program to determine attack objectives, trigger conditions to

enable/disable fault injection, and run-time conditions to be monitored. Third, the

user modifies the source code of MESS to integrate the run-time events, and compiles

the source code. In the final step of the design phase, the user prepares text files

that contain trigger conditions and faults to be injected. To run the fault attack

experiment, the user executes the compiled MESS executable file with the prepared

input files. Finally, the user collects and analyzes the results of the experiment.

Preparing Target Software and Hardware (Step 1): MESS uses gem5 in-

frastructure to define the target hardware to be simulated. The components of the

hardware and their interconnections are defined in the gem5 configuration script,

which is written in Python. MESS needs an executable file as the target software.

108
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

MESS

1- Prepare Target Hardware & Software

- Trigger Conditions
- Run-time Conditions
 - Attack Objectives
 - Exit Conditions
 - Observation points

3- Integrate Run-time Conditions
 into MESS Source Code

Faults:

<location><timing><type><dur>

5- Run the experiments
 & Collect the results

MESS

4- Examine the Results

- A short list of results
- A detailed report for
 each experiment

Defining the Fault Attack Campaign Running the Fault Attack Campaign

2- Analyze the Target Software Program

4- Create the Fault List Target

Figure 6.2: A typical flow for running a fault attack experiment on MESS

Therefore, the source code of the target software needs to be compiled and linked.

If MESS works in the bare-metal (SE) mode, the target program must be statically

linked. In full system (FS) mode, the simulated operating system takes care of any

dynamic linking.

Analyzing the Target Software (Step 2): The user needs to analyze the com-

piled and linked executable of the target software to determine the objectives of

the attack and run-time events to be observed during the simulation. These gen-

erally include checking if a specific program counter value is reached, if a specific

register/memory location is corrupted, if control flow of the program is modified, or

combination of them. The user also determines the parts of the code to be attacked.

This is generally one-time analysis for a given software program. The user can use

the results of this analysis for different fault attack experiments. For instance, the

user may test an attack objective under several fault injection scenarios.

Integrating Run-time Conditions and Compiling MESS (Step 3): In this

step, the user modifies the API functions of MESS to integrate the run-time events.

6.3. Designing and Running Experiments on MESS 109

Then MESS is compiled using the infrastructure provided by gem5. This step is also

one-time for a given target binary program and a given set of run-time conditions.

The resulting binary file for the simulator can be used to test various fault injection

cases.

Preparing the Text Files for Trigger Conditions and Faults (Step 4): In

this step, the user prepares the list of trigger conditions and faults to be injected in

the format of text files. Each line of the trigger condition file (trigger list.txt) is in

the following format:

<trigPC> <trigCnt> <trigID> <trigIsSet>

Each line of the fault list file (fault list.txt) is in the following format:

<Fault Location> <Fault Timing> <Fault Type> <Fault Duration>

The user needs to be sure that fault injection hits the right point of the execution.

MESS provides a command line option to assist the user in finding the appropriate

Fault Timing values. When MESS is run with this command-line option, it prints

the fault timing information for each instruction executed. The user can run MESS

with this option before creating the fault list file.

Running the Experiment and Collecting the Results (Step 5): In this

step, MESS is run using the the fault list (fault list.txt) and trigger conditions list

(chronological trigger list.txt) created in the previous step. MESS creates two output

files in the text format. One of the files just contains the exit message defined in

Run-time Status Monitor. The other file contains all of the simulation log printed

110
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

by gem5 infrastructure. More content can be included in the latter file by enabling

debug flags of the baseline gem5 simulator [74].

Analyzing the Results (Step 6): In this step, the user analyzes the output files

to check if the attack is successful as well as to get diagnostic information about

faulty behavior of the target software.

6.4 Case Study: Fault Experiments on MESS

This section demonstrates the features of MESS by running different fault attack ex-

periments on an example target program. The fault injection scenarios were selected

such that they will represent practical fault injection experiments.

In these experiments, MESS is run on a VirtualBox VM with Ubuntu 14.4 operating

system. The Virtual Machine is hosted by an Intel i7 41710HQ processor, which is a

quad-core processor operating at 2.5 GHz frequency. During all of the experiments,

MESS is run in its bare-metal (SysCall Emulation) mode. To automatically create

and run multiple fault attack experiments, Bash scripts are used.

6.4.1 Target Hardware and Software

Figure 6.3a shows the source code of the target program. Using memcmp() function,

the code compares two 20-byte buffers and returns 0x5A5A or 0x00 based on the

result of the comparison.

In our example, the buffers contain different data, and thus, the code returns 0x5A5A

6.4. Case Study: Fault Experiments on MESS 111

blx <memcmp>

mov r3, r0; mov1

cmp r3, #0; cmp1

beq <equal>; beq1

fail:

mov r3,#0x5a5a; mov2

b <end>; b1

equal:

...

end:

int main() {

char buffer1[21] = "ooMRosmhf5qnEGixwVCm\0";

char buffer2[21] = "GixwVCmozMTormuf5qnE\0";

if (memcmp(buffer1, buffer2, 20) != 0) {

return 0x5A5A;

}

return 0x0;

}

Attack Target

(a) (b)

Figure 6.3: (a) Source code of the target program for the case study. The attack
objective is bypassing the if statement and returning 0x00 as the result of themain().
(b) Disassembled target program for ARM32 (v7-A) architecture.

if there is no fault injection. The attack objective is altering the execution of the

target program with fault injection such that the code returns 0x00 although the

buffers contain different data. In Figure 6.3, we show the fault injection window

with a yellow box.

Figure 6.3b shows the disassembled version of the target program for ARM32 (v7-A)

architecture. The first three instructions inside the yellow box, compares the return

value of the memcmp() with zero, which would be the return value if the buffers

contained the same data. The code follows the fail branch if the memcmp() returns

0x00; the equal branch is followed otherwise. In our example, the program will

follow the fail branch because the memcmp() returns a value that is not equal to

0x00. To make program to follow the equal branch, we will inject faults into the

yellow box shown in Figure 6.3b. This part of the code will be called fault injection

112
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

mov r3, r0; mov1

cmp r0, #0; cmp1

beq <equal>; beq1

fail:

mov r3,#0x5a5a; mov2

b <end>; b1

Fetch Decode Execute

A C M W

mov1

cmp1 mov1

beq1 cmp1 mov1

mov2 beq1 cmp1

b1 mov2 beq1

b1 mov2

b1

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

A: Register File Access

C: ALU/Address Computation

M: Memory Access

W: Write-back

Pipeline Stages

Clock

Cycles

Figure 6.4: Execution of the fault injection window on the target harwdare model,
an in-order processor with 3 pipeline stages.

window in the remaining part of this chapter.

For the experiments, we use an in-order, single-instruction-per-cycle processor model

provided by gem5. The processor has three pipeline stages (Fetch, Decode, Execute).

The processor completes multiple instruction-steps in the Execute stage in a single

clock cycle: Accessing the Register File (A, ALU/Address Computation (C) Fig-

ure 6.4 shows the execution of the fault injection window on the target processor. As

it is seen in Figure 6.4, this processor completes the execution of the fault injection

window in 7 clock cycles. The next sections conduct different fault injection scenarios

on the target software.

6.4.2 Attacking Individual Instruction Steps

Using MESS, a user can inject faults into individual instruction steps. This may

represent precise laser shot injection, in which faults can be injected into a specific

6.4. Case Study: Fault Experiments on MESS 113

Figure 6.5: Results of attacking the fetch step of the cmp instruction.

part of the processor such as fetch unit.

In this case, we injected faults into fetch of the cmp instruction within the fault

injection window (yellow box in Figure 6.4). During the fetch of the instruction

from the instruction memory, we flipped up to three bits of the instruction. We

exhaustively injected all of the 5889 possible faults.

Figure 6.5 shows the results of the experiment. As it is seen from the figure 350

of the 5889 fault injections successfully bypassed the security check. The graph in

Figure 6.5 shows the distribution of those 350 instructions. As it is seen, the fault

injection converted the cmp instruction into a tst instruction in most of the successful

experiments. One reason of this behavior can be the value of the return value, which

is 0x00. A tst instruction applies an AND operation on its operands and update

the condition flags of the processor in accordance with the result of the comparison.

In our case, one of the operands is 0. Therefore, the tst instruction sets the zero flag

independent of the other operand. Another common pattern is converting the cmp

instruction into a predicated instruction, which is conditionally executed depending

114
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Pipeline Stages
Clock

Cycles

Figure 6.6: Results of attacking Individual Cycles (Cycle 2, 3, 4, 5, 6).

on the values of the condition flags. In our case, this effectively converts the cmp

instruction into a NOP instruction.

6.4.3 Attacking a Single Clock Cycle

Using MESS, a user can also inject faults into individual clock cycle. This may cor-

respond to clock glitch injection, in which a single clock cycle can be targeted. Other

relevant real-world scenarios are voltage glitching, electromagnetic fault injection, or

laser fault injection on a relatively slow target.

In this case, we injected faults into Cycles 2 to 6 of the fault injection window

(Figure 6.6). For each cycle, we injected 8000 faults. We randomly selected the

affected instruction steps among fetch, decode, and execution steps. For the fetch

and execution stages, we flipped up to three bits of the fetched instruction and the

computation result, respectively. For the decode stage, we replaced the index of

6.4. Case Study: Fault Experiments on MESS 115

source or destination register of the target instruction with a random register index.

Figure 6.6 shows that the attack was successful for each clock cycle except Cycle

6. A possible reason of this behavior is the following. The branch instruction b1

does not read any value from the register file. Therefore, our fault model does not

have any impact on this instruction during the decode stage. In the execute stage,

mov2 instruction set the value of the register r3 to 0x5A5A. At the end of the main()

function, the value of the r3 is returned. As our fault model allows flipping up to

3 bits of the execution stages result, we cannot change 0x5a5a into 0x00 with this

fault model.

6.4.4 Attacking Multiple Clock Cycles

In the case of voltage, electromagnetic, or laser fault injection, especially for relatively

fast targets, it is not always possible to affect only a single cycle of the execution.

Rather, the fault injection might affect multiple consecutive cycles. MESS enables a

user to simulate these cases as well.

In this case, we injected faults into 3 consecutive cycles within the fault injection

window. We attacked the clock cycles 2-to-4, 3-to-5, 4-to-6, and 5-to-7. We injected

8000 faults for each group of the cycles. We used the same fault models as the

fault models of 6.4.3. We selected the affected instruction steps and clock cycles

randomly. Figure 6.7 shows the fault model and the obtained results. As it is seen,

we successfully bypassed the security check for each case. The next section provides

a brief comparison between MESS and the related work.

116
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

Clock Cycles # Success

Cycles 2-to-4 194

Cycles 3-to-5 193

Cycles 4-to-6 199

Cycles 5-to-7 105

8000 fault injections
for each row of the table

Fetch Decode Execute

A C M W

mov1

cmp1 mov1

beq1 cmp1 mov1

mov2 beq1 cmp1

b1 mov2 beq1

b1 mov2

b1

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Pipeline Stages
Clock

Cycles

Figure 6.7: Results of attacking multiple clock cycles.

6.5 Comparing MESS with the Related Work

As the effects of faults on the electronic systems have been studied for more than

40 years for the reliability purposes, there is a good number of work on the fault

injection simulators for both hardware and software implementations to assess their

reliability [135, 136, 137, 138, 139, 140, 141]. However, the following points underline

the differences between the faults in the reliability area and security area:

• In the reliability area, the source of the faults is random, natural events. In

the security area, engineered, well targeted faults are injected by an adversary

with malicious intentions.

• In the reliability area, most of the time, it is enough to model faults as single bit

flips in the storage elements. It is also assumed that faults happen only once in a

while. However, in the security area, an adversary can aim at affecting different

6.5. Comparing MESS with the Related Work 117

parts of the target system to achieve his/her malicious intent. The adversary is

also capable of repeating the same faults and/or injecting a sequence of different

faults. Therefore, it is not enough for security area to model the faults as single

bit flips that occurs in once in a while.

As a result, a fault injection simulator targeting the security area has different,

possibly more complex, requirements than a fault injection simulator targeting the

reliability area. There are also research efforts from the security area to design a fault

injection simulator [96, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]. They

provide source-code-level, assembly-level, and binary-level solutions. There are also

emulation-based injection methods. However, these works have common limitations:

• Most of the proposed simulators focus on a separate level of abstraction. In

contrast to MESS, they do not combine the effects of different abstraction levels

on the fault behavior.

• Their fault injection is instruction-accurate and they completely abstract the

hardware of the processor. However, processor hardware determines how a

software program will be executed. In addition, in the actual fault injection,

an adversary has a cycle-accurate view of the software execution. Therefore, a

cycle-accurate simulator like MESS is a better solution for reflecting the actual

fault occurrence.

– With a cycle-accurate view, a user can see all of the instructions being

executed on the processor for a given cycle. This gives an insight into

which instructions will potentially be affected.

– A cycle-accurate view can also provide a user to see the micro-architectural

118
Chapter 6. Micro-architectural Embedded System Simulator for Fault

Injection (MESS)

effects such as data hazards, branch interlocks, and cache misses on the

fault behavior.

• As they completely abstract the hardware structure, they have limited support

for a user to specify which part of the processor will be affected by a fault

injection. This can be a problem while modeling the effects of local fault

injection methods such as laser and electromagnetic fault injection.

• Each of the previous work focuses on a very specific fault model. MESS provides

a generic infrastructure to implement arbitrary fault models.

As it is previously discussed, the success of a fault attack on a software program

depends on software program, instruction-set architecture, and the underlying pro-

cessor. MESS simulates all of these abstraction layers together, and thus, enables a

user to reflect attackers capabilities in the simulation.

Chapter 7

Fault-attack Aware Microprocessor

Extensions (FAME)

This chapter presents the architectural details and the prototype design of the pro-

posed technique, Fault-attack Aware Microprocessor Extensions (FAME), to detect

and react to fault attacks on embedded software. FAME is a generic countermea-

sure, which combines a micro-architecture extension in hardware with a secure trap

in software. The combined extension leads to fault-attack-resistant FAME processor

with a secure exception mode to handle fault attacks. The microprocessor employs a

low-level hardware checkpointing mechanism to recover from fault injection. A high-

level secure trap in software then enables an application-specific response. The trap is

user-defined and can be co-developed with the application. The combination of hard-

ware fault detection and recovery, with a high-level fault response policy in software

leads to significantly lower overhead when compared to traditional redundancy-based

techniques in hardware or software.

The chapter is organized as follows. The next section describes the architectural

and micro-architectural components of the fault-attack-resistant FAME processor.

Section 7.2 summarizes the advantages of FAME. Section 7.3 lists the members of

the implementation team of FAME prototype and their contributions to the imple-

119

120 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

mentation of the prototype. Section 7.4 presents the details of the chip prototype of

FAME. Chapter 8 provides evaluation results for FAME.

7.1 Architectural Components of FAME

In this section, we describe the architectural design concepts in FAME. The main

objective of FAME is providing minimum architectural support in hardware-level

for enabling software programmers to minimize security risk resulting from fault

injection. These extensions are generic, low-cost, and applicable to a broad class of

embedded processor.

Figure 7.1 shows the overall architecture and operation of FAME. A fault injection

attempt is detected in hardware by Fault Detection Unit (FDU). Fault response is

achieved by a secure trap mechanism. Fault Control Unit (FCU) and Fault Response

Registers (FRR) provide hardware support for this mechanism. Upon detection of a

fault, FCU initiates the transition to a secure trap handler. The FRR contains the

checkpoint information which enables recovery of the processor from fault injection.

The secure trap handler applies a user-defined, application-specific security policy in

a safe mode. Next, we will explain the details of FAME’s components and operation.

7.1.1 Fault Detection

FAME relies on a hardware fault detection unit (FDU), which is a set of detectors

monitoring processor’s operation to detect anomalies. During the normal operation,

an application runs in the nominal mode and no overhead is accrued. Upon detection

of a fault, FDU asserts an alarm signal to notify the processor of a potential fault

7.1. Architectural Components of FAME 121

Fault Detection
Unit (FDU)

Fault Control
Unit (FCU)

Baseline Processor

Fault Response
Registers (FRR)

Secure Trap HandlerApplication Software

2. alarm

FAME Processor

Protected Software

3. transfer the control
 to the trap handler

Extensions for Fault-Attack Resistance

3. checkpoint
 to recover
 critical state

4. Restore checkpoint &
 apply fault response

Vdd

Clk

1. fault injection

Figure 7.1: FAME combines hardware fault detection, hardware checkpointing, and
software fault response.

attack.

The detector configuration and sensitivity level of FDU depend on the application

domain and the attacker model. Based on the requirements, FDU is able to derive

the fault status of the overall processor by combining different types and number of

fault detectors. These include clock/voltage glitch detectors [153], electromagnetic

pulse detectors [154], concurrent error detection methods [155], shadow latches [156],

and error detection codes [157]. The requirement of the detectors employed in FDU

is that they must detect fault injection before a faulty value is used by a subsequent

instruction. In this work, we detect faults that originate from timing violations and

localized electromagnetic pulses. Given the error detection mechanisms enumerated

above, however, it is clear that FDU mechanism is generic and that it can handle a

multitude of fault detection mechanisms.

122 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

7.1.2 Critical State Checkpointing

For fault-attack-resistant execution of the secure trap mechanism, FAME provides

a hardware-level checkpointing support, the fault response registers (FRR). FRR

maintain the critical system state needed to recover from the fault injection. They

include the status register of the processor, the return address to the interrupted

program, and the register file inputs of the writeback stage. FRR utilize double-

buffer redundancy to ensure fault-free recovery data. Using the contents of FRR,

the secure trap handler is able to restore the processor state back to the fault-free

state just before the fault injection.

7.1.3 Fault Response

To handle the fault injection, FAME first applies hardware-level precautions to pre-

vent fault effects from spreading further. Then, FAME initiates a software trap

handler to apply a user-defined and application-specific fault response.

The hardware-level Fault Control Unit (FCU) manages the invocation and execu-

tion of the secure trap mechanism. It acknowledges the alarm signal of the FDU

and takes immediate actions in the hardware level. FCU locks the fault recovery

information into FRR, annuls the instructions being executed in the pipeline, and

disables write operations into the register file as well as memory. This enables two

essential capabilities.

1. The faulty parts of the software-visible state, which are contaminated before

the alarm is raised, can be recovered by the trap handler.

2. No more faulty results will be committed to the architectural state of the

7.1. Architectural Components of FAME 123

processor after the alarm is raised.

Meanwhile, FCU stops the execution of the user application, invokes a non-maskable

Secure Trap Handler, and switches the processor from nominal mode to safe mode.

This switching is done immediately at the next clock cycle. In safe mode, the pro-

cessor is aware of the fault injection, and it can handle the faults through the secure

trap handler. The Secure Trap Handler retrieves the fault-free processor state from

FRR and then applies a user-defined fault response. The processor then returns to

the instruction that was affected by the fault injection, and resumes execution from

there. A side effect from this operation is that the processor eliminates fault-triggered

instruction-skip.

It is mandatory that FCU responds to further fault injections and prevents fault

attacks on the trap handling mechanism. In this work, FCU restarts the software

trap handler if a fault injection is detected during safe mode. This guarantees that

FAME cannot exit from safe mode without completing the trap handler.

7.1.4 Added Instructions

FAME adds two instructions to the baseline architecture to access FRR and to

recover the fault-free state of the processor. The Read FRR instruction RDFRR Rd,Rs

reads the content of the fault response register Rs into the architectural register Rd.

Using this instruction, one can access the FRR content for the secure trap handler’s

return address and processor status register. The Write FRR instruction WRFRR

restores the fault-free register file state from the corresponding FRR content.

The specific implementation of RDFRR and WRFRR instructions depends on the baseline

124 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

instruction set architecture. In this work, we use two existing instructions of the

SPARC architecture as it is explained in Chapter 7.

In summary, FAME uses fault detectors that are combined into a processor-level

alarm signal. The alarm signal initiates a software trap to decide on the further course

of action. FAME provides hardware-level support to maintain the fault recovery

information. It is up to the trap handler to decide if it is safe to continue execution

or not. FAME ensures that the trap handling mechanism itself is protected from

faults.

7.2 Advantages of FAME

The proposed extensions provide a low-cost, performance-efficient, adaptive, and

backward-compatible mitigation of fault attack risk. Cost-efficiency is achieved by

limiting hardware redundancy to a small subset of the processor state (fault control

unit, fault recovery registers), and by limiting the software overhead to a small

portion of the embedded software (secure trap handler). From a performance point-

of-view, these extensions cause negligible timing overhead on the processor hardware

because they work in parallel with the processor’s original datapath. On the software

side, the extensions affect the performance only if a fault is detected. The actual

software overhead depends on the complexity of the trap handler, but will be smaller

than the inherently-redundant software-only techniques. The secure trap mechanism

supports a flexible fault response, and this provides several advantages.

• The secure trap is a uniform, generic mechanism to attach fault countermea-

sures. We will demonstrate this with several examples including AES encryp-

7.2. Advantages of FAME 125

tion as well as to secure PIN code testing.

• The secure trap is flexible and allows an adaptive response to fault attacks. For

obvious security concerns, we do not allow changing the trap handler at run-

time. However, since the trap handler is aware about the interrupted program

counter, it’s possible to adjust the fault response depending on the application

context (AES encryption versus PIN verification, for example).

• When working with multiple redundant fault sensors, the secure trap handler

allows to combine the input of multiple sensors. This helps to distinguish a

spurious fault activity from a genuine fault attack.

• From the developer’s point of view, the secure trap handler implies that fault

countermeasures can be designed separately from the secure application. This

improves clarity and ease of use, when compared to traditional redundancy-

based software application development.

By keeping fault response separate from application code, we also obtain backward-

compatibility with existing cryptographic libraries and binary code. Furthermore,

the proposed fault response strategy will also preserve the side-channel resistant

properties of existing cryptographic applications. Indeed, composable countermea-

sures integrated in the application remain a challenging problem. For example,

the cryptography library NaCl provides constant-time software implementation, but

no fault-injection resistance [158]. Fault resistance can be achieved by adding re-

dundancy in the NaCl source code, but this carries the risk that one destroys the

constant-time properties.

126 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

7.3 Contributors to the FAME Prototype

Table 7.1: Contributors to the FAME Prototype

Team Member Contribution

Bilgiday Yuce I Architectural Design of FAME Processor and SoC
I RTL Coding of fault-attack-resistant features of FAME
I RTL Coding of fault-attack-analysis features of FAME
I RTL Coding and Testing of timing sensor (1st tape-out)
I RTL Integration of Peripherals and Coprocessors to SoC
I RTL Simulation of Processor and Peripherals
I Gate-level Simulation of Processor and Peripherals
I RTL and Gate-level Fault Simulation of FAME processor
I Development of FAME-protected Software Programs
I Evaluation of of FAME-protected Software Programs
I Preparation of RAM macros for memories in the design

Chinmay Deshpande I RTL Coding and Testing of timing and EM sensors
I RTL Coding and Testing of the Sensor coprocessor
I RTL Coding and Testing of the AES+ Coprocessor
I RTL Simulation of Processor and Peripherals
I Preparation of Standard-cell and I/O Pad Libraries
I Development of RTL to Gate-Level Synthesis Scripts
I Development of Scripts for Physical Implementation

(Placement, Power Grid & Clock Tree Synthesis, Routing)
I Insertion of Scan-chain
I Development of a Test Board (FInalyzer)

Marjan Ghodrati I Development of Scripts for Physical Implementation
(Placement, Power Grid & Clock Tree Synthesis, Routing)

I DRC and LVS Check
I Utility Scripts for Dummy Poly, Metal and Via Insertion
I Final Signoff and GDSII Generation

Abhishek Bendre I RTL Coding and Testing of AES Coprocessor
I Development of a Test Board (FInalyzer)

Mostafa Taha I RTL Coding of Keymill-LR Coprocessor
Nahid F. Ghalaty I Architectural Design of FRR
Conor Patrick I Developing Code Templates for FAME Trap Handler

7.4. Chip Prototype of FAME 127

Previously described Fault-attack Aware Fault Extensions (FAME) transforms a

baseline microprocessor into a fault-attack-resistant processor. To evaluate the per-

formance and security of the proposed FAME extensions, we implemented and manu-

factured a chip prototype of the previously described FAME architecture in 6-metal-

layer TSMC 180nm technology. The prototype is a System on Chip (SoC) containing

the fault-attack-resistant FAME processor, several peripherals, and coprocessors. We

have completed two chip tape-outs for the designed prototype. The first tape-out

was completed on 10/31/2016, and the chips were returned from the fabrication

and packaging on 01/13/2017. The second tape-out completed on 09/06/2017, and

the chips were returned from the fabrication on 10/23/2017, and they were sent for

packaging.

The FAME prototype design is the result of a collective effort of a design and im-

plementation team, sponsored by the National Science Foundation Grant 1441710,

and in part through the Semiconductor Research Corporation (SRC). The team is

led by Dr. Patrick Schaumont and Dr. Leyla Nazhandali. Table 7.1 lists the stu-

dent members of the team and their contributions to the development of the FAME

prototype.

7.4 Chip Prototype of FAME

We designed the prototype as a System-on-Chip (SoC) architecture centered around

a RISC processor with fully integrated fault-attack-resistant extensions, and the

capability to execute a secure trap.

The prototype also contain a detailed fault-injection and debugging infrastructure

128 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

to assist the development and testing of fault attacks on the chip. Hence, the FAME

prototype serves a dual purpose. First, it serves as a prototype for countermeasure

design, and it supports the development and testing of secure trap handlers. Second,

it serves as a platform to develop fault attacks and to study the fault response of the

processor against fault injection. The detailed post-injection analysis features in the

chip allow us to understand the precise impact of a fault injection.

This chapter provides implementation details of the FAME prototype, which was

designed with a specific attack model in mind. Next, we specify the considered

attacker model.

7.4.1 Attacker Model

In the design of FAME prototype, we assume the following attacker model. First,

the attacker can observe and tamper chip input/output pins, clock pins and pow-

er/ground pins. For example, the attacker can mount clock-glitching and power-

glitching attacks [14]. These attacks affect the entire chip network, and they can

be caught with a single sensor. The attacker model also includes localized fault

injection using electromagnetic pulses (EMFI) [13, 33]. However, we assume that

the attacker cannot use high-cost laser fault injection that requires decapsulation

of the chip package [10]. Third, similar to the attacker model of Lemke-Rust and

Paar [159], we exclude invasive adversaries from our threat model. The attacker is

not capable of directly modifying or monitoring the internals of chip. In addition,

the attacker cannot modify software and firmware by any other mechanism except

by injecting faults. The attacker thus cannot tamper with the secure trap handler,

and she cannot overwrite on-chip memories. This means that we assume a protected

7.4. Chip Prototype of FAME 129

AHB Bus
Controller

(ahb0)

Datapath &
Control

Debug Support
Unit (dsu0)

Debug UARTs
(dcom0 &

dcom1)

AHB/APB
Bridge

(apbctrl0)

RAM
(ahbram0)

I$ D$

Reg. File

AMBA AHB Bus

LEON3 Core
32-bit RISC

User UART
(uart1)

)Interrupt
Controller
(irqctrl0)

ROM
(ahbrom0)

AMBA APB Bus

AES
Coprocessor

(cp2)

Sensor
Coprocessor

(cp1)

AES+
Coprocessor

(cp4)

Keymill
Coprocessor

(cp3)

SPI Memory
Controller
(spimctrl0)

GPIO
(grgpio0)

Timers
(gptimer0

FAME SoC Prototype

Fault Detection Unit**

Fault Response Registers**

Fault Observation Support*

Fault Injection Support*

Fault Control Unit**

Fault-Attack Resistant FAME Core (u0)

*: Extension for Fault Anaysis
**: Extensions for Fault Mitigtation

Figure 7.2: Block Diagram of the FAME SoC prototype. The FAME extensions are
integrated into a LEON3 core. The chip includes on-chip memory and a collection
of coprocessors used for fault sensing and cryptographic acceleration.

embedded-software execution environment, one which would be able to handle both

the I/O attacker model and the memory attacker model as defined by Piessens [2].

7.4.2 Overall Design of FAME Prototype

Figure 7.2 shows a top-level block diagram for SoC architectures of the FAME chip.

The components of the SoC are centered around the fault-attack-resistant FAME

processor core, which is built by integrating FAME extensions into a 32-bit LEON3

130 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

core [121]. The FAME processor includes the previously described fault-attack-

resistant extensions (i,e, FDU, FCU, and FRR) to detect and respond fault injection

as well as chip debugging features (i.e, Fault injection and observation support) to

aid the evaluation of fault effects on the chip. The fault-attack resistant extensions

follow the attacker model described in Section 7.4.1. The chip debugging features on

the other hand go beyond the permitted operations in the attacker model.

In addition to the fault-attack-resistant FAME core, FAME chip has several pe-

ripheral blocks that are interconnected through AMBA AHB and APB buses [160].

FAME chip includes the following peripherals, which are implemented as a part of an

open-source SoC library GRLIB [125]. The details for their functional specification

and implementation can be found in the user manual of GRLIB library [161]:

• A 64Kbyte on-chip RAM (ahbram0) to store the instructions and data of a

program.

• A 1Kbyte on-chip ROM (ahbrom0) that sores a simple boot program.

• Two debug UARTs (dcom0 and dcom1) to control the on-chip Debug Support

Unit (dsu0).

• A user UART (uart1) for terminal I/O.

• A 4-bit GPIO (grgpio0), which can be used for integration of measurement

equipment control with application software running on LEON3.

• An interrupt controller (irqctrl0) to manage the interrupt requests of the

peripherals.

7.4. Chip Prototype of FAME 131

• A timer peripheral with five timer modules, which can be used for integration of

measurement equipment control with application software running on LEON3.

For example, the timers can be used for precise fault injection.

• A serial SPI interface access (spimctrl0) to an off-chip flash memory.

Moreover, the FAME prototype contains 33 timing sensors [75] and 160 EM sen-

sors [162] distributed over the layout area, and 768 in-situ EM sensors integrated in

the architecture state. The timing sensors are based on an internal, programmable

delay line [75], while the EM sensors are based on a dual flip-flop configuration [162].

The FAME chip also contains the following custom-designed coprocessors:

• FAME has a sensor coprocessor (cp1) including 32 timing sensors and 160

EM sensors. The sensor coprocessor provides a logical view on the sensor

configuration and supports a uniform software interface. In the chip back-end

flow, a custom sensor-placement methodology was used to ensure the regular

distribution of sensors over the chip surface.

• FAME also contains several hardware coprocessors, with and without in-situ

fault detection. These coprocessors were added for experiments with fault

injection in dedicated hardware structures. The coprocessors cover two cryp-

tographic algorithms, AES and LR-Keymill [163]:

– FAME has an AES coprocessor (cp2) with encryption/decryption func-

tionality and support for Electronic Code Book (ECB) and Cipher Block

Chaining (CBC) modes of operation. This coprocessor is an unprotected,

1 round-per-cycle design that serves as a reference hardware module for

experiments with side-channel analysis and fault injection.

132 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

– FAME contains a protected AES coprocessor (cp4), derived from the other

AES design, with in-situ sensor support. The internal registers used for

encryption, decryption, and for the AES key-schedule are implemented

using EM fault sensors, resulting in 768 in-situ EM sensors. In contrast

to the generic sensors in the sensor coprocessor, the in-situ sensors do not

require special placement, since they are intrinsically part of the protected

design.

– FAME also includes a Keymill-LR coprocessor (cp3), a reference imple-

mentation of a leakage resilient keystream generator presented at the

Hardware Oriented Security and Trust Symposium in May 2017 [163].

Next section presents the implementation details for fault-attack-resistant features

of the FAME processor core.

7.4.3 Fault-attack-resistant FAME Core

FAME processor core consists of secure fault-attack resistant extensions integrated

with an in-order RISC processor implementing the SPARC-V8 instruction set. The

processor core is based on the open-source, synthesizable 32-bit LEON3 design[121].

The prototype chip includes a fault-attack resistant core with 2KB data cache, 1KB

instruction cache and a register file.

Fig. 7.3 shows the 7-stage pipeline of LEON3 with FAME extensions. The pipeline

consists of fetch (F), decode (D), register access (A), execute (E), memory (M),

exception (X), and write-back (W) stages. FDU consists of sensors and generates

and alarm signal. We integrated the FCU into the X stage. FRR provide fault

7.4. Chip Prototype of FAME 133

Figure 7.3: 7-stage LEON3 pipeline with FAME extensions

recovery information for some parts of the X and W stages because of two reasons.

First, the Register File (RF) and Processor Status Register (PSR) are updated in

the W stage. Second, the return address for the trap handler is computed in the

X stage. The following subsections will discuss the features and design of various

sub-blocks unique to the fault-countermeasure features.

Fault Injection to the Processor

To understand the operation of FAME, we need to carefully define the sequence

of events leading to a fault. In a fault attack, an adversary waits until a program

reaches a specific point in its execution. Then, he injects the fault into the program

at this point. Finally, the adversary observes the fault effects after this point. In

this work, we use fault cycle (Cf) to denote the clock cycle in which the fault occurs.

We use before-fault cycle (Cb) and after-fault cycle (Ca) for the clock cycles before

and after the fault, respectively. The program’s execution is fault-free before Cf ,

and faulty from Cf . The embodiment of Cb, Cf , Ca depends on the fault injection

method. Fig. 7.4 describes a generic situation as an example.

134 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

clkclk

Cb Cf
Ca

Fault-free
Processor State

Physical Fault
Injection

Corrupted
Processor State

alarm signal
from FAME sensors

Figure 7.4: Fault Injection to the Processor: Adversary starts altering the physical
operating conditions in cycle Cf . Before Cf , processor state is fault-free. The fault
effects are captured into processor state during cycle Cf . FAME detectors generate
an alarm signal just after Cf .

SET

CLR Q

QDTdelay
SET

CLR Q

QD

SET

CLR Q

QD SET

CLR Q

QD

SET

CLR Q

QD SET

CLR Q

QD

Toggle
FF

Capture
FF

Dummy
FF

alarm1
D

SET

CLR Q

QD SET

CLR Q

QD

SET

CLR Q

QD SET

CLR Q

QD

Capture
FF

Dummy
FF

alarm2

(a) (b)

input

Figure 7.5: Block diagram of the sensors employed in FAME core: (a) Configurable
delay-chain based timing attack sensor. (b) Dual complementary flip-flop based
electromagnetic fault injection (EMFI) sensor.

FAME detectors are able to generate an alarm signal just after the fault effects are

captured in the processor state. Next, we describe the structure and operation of

sensors used in FAME prototype.

Fault Detection Unit (FDU)

In our prototype, Fault Detection Unit (FDU) employs two types of sensors to detect

setup time violations and localized electromagnetic (EM) pulses.

7.4. Chip Prototype of FAME 135

Fault Detection Unit (FDU) detects setup time violation attacks with delay-based

timing sensors similar to the implementations reported by [153, 154, 156]. Each

of these sensors is made up of a delay chain of cascaded inverters (or fixed-delay

digital circuit) designed such that its propagation delay is slightly greater than the

critical path of the protected design. This ensures that the sensor is more sensitive

than the slowest logic block. The reference delay value is fixed in the hardware logic

and is calculated using static timing analysis. To overcome the process variation in

the circuit and the sensor, we make the delay chain configurable. In addition to the

delay-based sensor, FDU also employs another type of sensor, dual-complementary

flip-flop based EM sensor [162], to detect localized electromagnetic (EM) pulses in

addition to setup time violations.

Fig. 7.5a shows the implemented timing sensor, which consists of three FFs, a delay

chain, an inverter, and an XOR gate. Toggle FF toggles its value every cycle which

then arrives at Capture FF immediately and at Dummy FF after Tdelay. In normal

operation (Tclk), the inputs of both Capture and Dummy FFs toggle to the new value

before the next clock edge. In case of a setup-time violation, Capture FF latches the

new value whereas the Dummy FF latches the old value as the length of the clock

period is not enough for delay chain to make transition to new value. Therefore, the

XOR gate generates the alarm signal at the next upgoing clock edge.

Figure 7.5b demonstrates the gate-level structure of the dual-complementary flip-

flop based EM sensor, which was proposed and demonstrated by Deshpande [162].

It employs two FFS, an inverter and an XNOR gate. The design of the sensor relies on

the following observations from electromagnetic fault injection (EMFI) experiments

on silicon [9], [164]:

136 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

• EMFI induces bit-set/bit-reset faults into a device through Eddy currents.

The exact effect is determined by the polarity of EM pulse, which affects the

direction of induced current flow.

• EMFI alters the value of a flip-flop by disrupting its switching process during

the flip-flop is capturing a new value. This makes the flip-flop to capture a

faulty value.

• For a given EM polarity, a fault injection can cause the value of a flip-flop to

change either from logic-1 to logic-0 or from logic-1 to logic-0.

• The sequential elements on an integrated circuit is more vulnerable to EMFI

than the combinational elements.

During the fault-free operation, the capture and dummy FFs of the sensor captures

complementary values at each clock cycle. In case of EMFI, either the Dummy FF

or Capture FF gets affected based on the polarity of the injected EM pulse. As a

result of EMFI, the values of the Capture and Dummy FFs will be the same and the

XNOR gate will raise an alarm signal. This sensor can be used either as a stand-

alone sensor by feeding a constant input to it, or as an in-situ sensor by replacing

original flip-flops of a circuit with the sensor.

FAME prototype employs 833 sensors in total to detect both setup-time violation

attacks and localized EMFI. As it is shown in Figure 7.6, we logically organized

the sensors and FDU of FAME into three blocks of the FAME SoC. The sensor

coprocessor contains 32 timing sensors and 160 EM sensors. We integrated 768 in-situ

EM sensors into the state of the AES+ coprocessor by replacing its original flip-flops

with the EM sensors as explained in the Master Thesis of Chinmay Deshpande [162].

7.4. Chip Prototype of FAME 137

AHB/APB
Bridge

(apbctrl0)
AMBA AHB Bus

Datapath&Control

AMBA APB Bus

FAME SoC FDU of FAME

Fault-Attack Resistant FAME Core (u0)

Fault
Control

Unit
(FCU)

1 Delay-based Sensor

Tree of
OR Gates

decrypt_cp_alarm sensor_cp_alarmencrypt_cp_alarm

core_alarm

alarm

Sensor Coprocessor
(32 delay-based sensors)

(160 stand-alone EM sensors)

AES+ Coprocessor
(768 in-situ EM sensors)

Figure 7.6: Logical Organization of the Fault Detection Unit

The datapath of the FAME core has a single timing sensor to detect global setup-time

violation attacks.

The alarm outputs of sensors are combined via logical OR gates. The sensor co-

processor combines the output of individual timing sensors and EM sensors into

a coprocessor-level sensor_cp_alarm signal. The AES+ coprocessor combines the

output of its sensors into decrypt_cp_alarm and decrypt_cp_alarm signals, which

138 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

respectively corresponds to the sensors in the encryption state and the sensors in the

decryption state. Finally, in the FAME core, FDU generates the processor-core-level

alarm signal to trigger the Fault Control Unit (FCU) by combining sensor_cp_alarm,

decrypt_cp_alarm, decrypt_cp_alarm, and the single delay-based sensor’s output

core_alarm.

From the physical point of view, the individual sensors are distributed over the

chip. In the chip back-end flow of the sensor coprocessor, a custom sensor-placement

methodology is used to ensure the regular distribution of sensors over the chip surface.

This methodology was developed and implemented by Marjan Ghodrati, a student

member of the FAME development team. In contrast to the generic sensors in the

sensor coprocessor, the in-site sensors do not require special placement, since they

are intrinsically part of the protected design. For fault analysis purposes, we also

implemented a detailed configuration and status observation interface for the sensors.

The current prototype of FDU detects faults affecting the active instructions, in-

cluding the opcodes and data. An adversary could also tamper with instructions

and data at rest in the program memory or data memory. However, such tamper-

ing would not affect the software until these instructions are executed. Therefore,

we can verify the application software against such faults using software-based error

detection and correction codes [165], or by using checkpointing [52]. The integrity

verification routines themselves are protected using the proposed fault mitigation

methods in our prototype, or by software redundancy. Next, we will explain the

implementation of FCU.

7.4. Chip Prototype of FAME 139

Figure 7.7: State diagram of the Fault Control Unit

Fault Control Unit (FCU)

FCU uses the state machine shown in Fig. 7.7 to manage the secure trap mechanism.

If FCU detects an alarm signal while the processor is in the nominal mode, it switches

the processor to safe mode. During this transition, the FCU annuls all instructions

in the pipeline, disables all memory and register file transfers of the user application,

locks the fault recovery information into FRR, and resumes execution with the first

instruction of the trap handler. If the trap handler completes its execution without

another fault attack detection, the FCU switches the processor back to the nominal

mode. If the FDU detects a fault while the processor is in safe mode, the FCU restarts

the trap handler and stays in safe mode. This guarantees that FAME cannot exit

from safe mode without completing the user-defined security policy.

To initiate the fault processing after an alarm is raised, we extend the X stage

of LEON3. The X stage supports precise trap handling, and transitions between

processor modes. These extensions enable two crucial elements of our fault handling

method. First, secure traps of FAME are immediately handled when the alarm is

140 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

Figure 7.8: Ping-Pong buffering for FRRs: Only one shadow register is updated at
a time. Content of FRR is frozen in case of an alarm.

asserted. Second, FAME saves the fault recovery information into FRR and provides

this information to the software trap handler for correct execution. Next, we explain

our selection and security strategies for the content of FRR.

Fault Response Registers (FRR)

FRR keep the part of the processor state that is updated in Cb, just before the fault

injection in Cf . The software trap handler can restore this processor state back and

resume the execution of the application.

Fig. 7.8 shows the principle of our FRR implementation. FRR keep the previous

value of the original pipeline register in one of its shadow registers; while keeping

the new value in the other shadow register. Every clock cycle, only one of the

shadow registers is updated. The shadow register to be updated is selected by a 1-

bit signal bufsel. If Shadow Register 0 is updated during the before-fault cycle Cb,

Shadow Register 1 is updated during Cf . Therefore, it is guaranteed that the fault

occurring in Cf cannot contaminate the correct value within both shadow registers.

When the alarm is asserted (in Ca), the update of the shadow registers are frozen

7.4. Chip Prototype of FAME 141

Figure 7.9: Fault effect on the pipeline. Fault is injected during Cf . The alarm is
raised during Ca. The first trap handler instruction is fetched after Ca.

until the trap handler is successfully completed. This prevents the correct FRR

content from being overwritten after Cf .

We determine the content of FRR by analyzing the effect of the fault injection on

the execution of the pipeline. Fig. 7.9 shows the effect of a fault on the LEON3

pipeline. In Fig. 7.9, clock cycles run from the top, and pipeline stages run from left

to right. In Cf , up to seven instructions, I2 – I7, will potentially be faulty. During

Cf , two instructions could commit their results to the software-visible state of the

processor. First, instruction I4 could write a faulty value to the data cache. Second,

instruction I2 could update the Processor Status Register (PSR) and the register file

with a faulty value. Both of these updates need to be intercepted and corrected by

the software trap handler. Then the execution can be resumed from the next valid

instruction (I3 in Fig. 7.9). Therefore, FRR keep (a) the register-file write address,

write data, and write enable fields of the write-back stage registers; (b) the flags field

of PSR; and (c) the address of the instruction being executed in the X stage in Cf .

142 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

After control is passed to the software trap handler, it reads the frozen content (a)–

(c) of FRR. At the minimum, the trap handler will restore the correct processor

state (using (a) and (b)), and resume execution (using (c)).

SPARC instruction set architecture allows up to 32 implementation-dependent reg-

isters, called Ancillary State Registers (ASR). Therefore, we integrate FRR into the

baseline LEON3 core as ASRs. During the transition from nominal mode to safe

mode, the processor hardware writes the program counter to the ancillary state reg-

isters %asr28-29. We pack the remaining bits of FRRs into two pairs of ancillary

state registers %asr20-21 and %asr22-23. The frozen value of bufsel is also written

into %asr20-21. Then the trap handler can know which shadow register contains

the correct value.

In SPARC architecture, Read Ancillary State Registers (RDASR) is used to access

the ASRs. Thus, we use RDASR instruction of SPARC as Read FRR instruction of

FAME. Similarly, we use Write Ancillary State Registers (WRASR) instruction of

SPARC as Write FRR of FAME.

Software Trap Handler

The trap handler is given control of the processor once a fault alert triggers. The

secure trap handler can provide different options for handling the fault. One option

can be to use the contents of FRR and resume the program under attack from the

point of fault injection. In this scenario, we follow the flowchart in Fig. 7.10. First,

the trap handler reads %asr20-21 using RDASR. Then it checks the bufsel bit in

%asr20-21 to know which shadow registers of FRRs contains the correct value. If

bufsel is a one, then the content of Shadow Register 0 is valid. If bufsel is not set,

7.4. Chip Prototype of FAME 143

RDASR %asr20, %l3
RDASR %asr21, %l4

bufsel

RETT %l1

1 0
Use Shadow Register 0

WRASR %l3, %asr22
RDASR %l1, %asr28

Use Shadow Register 1

WRASR %l4, %asr23
RDASR %l1, %asr29

Figure 7.10: Trap Handler Flowchart for Invoking Resume Security Policy

then Shadow Register 1 must be used. Next, the valid FRR is bit-masked to get the

register index from it. This register index is the last register that was written to the

register file and could have been affected by the fault in Cf . This is written back to

the register file through a WRASR instruction of LEON3. Our control hardware will use

this register index to restore the respective register to its last correct value. Finally,

the trap handler restores the PC and returns to the nominal mode for resuming the

program.

7.4.4 Fault Analysis Features of FAME SoC

The fault-attack analysis features of the chip allow controlling the fault injection and

an in-depth analysis of its effects.

144 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

Coprocessors

Several coprocessors are integrated into the FAME SoC to investigate different as-

pects of fault attacks in the SoC context. One aspect is a detailed cost and security

analysis of different sensor types. This would enable secure microprocessor designers

to determine best sensor configuration for a given attack vector. For this purpose,

we designed a sensor coprocessor consisting of 32 timing sensors and 160 EM sensors

distributed over the entire chip. The previous section already explains the security-

related part of this coprocessor. The coprocessor has a user interface to configure the

sensitivity of the sensors, to enable/disable the sensors, and to observe the status of

sensors. One can use this interface for experimenting various sensor configurations

under different fault injection experiments.

Another aspect is analyzing the fault effects on the dedicated cryptographic accel-

erators and their interaction with the FAME core. For this purpose, FAME con-

tains two coprocessors implementing Advanced Encryption Standard (AES-128) al-

gorithm. One implementation, the AES coprocessor, is protected by the distributed

sensors of the sensor coprocessor. on the other hand, AES+ coprocessor employs

in-situ EM detectors. This setting enables one to investigate the efficiency of differ-

ent detection strategies. In addition to the AES and AES+ coprocessors, we also

integrated an LR-Keymill coprocessor, which is a side-channel-resilient keystream

generator. This coprocessor can be used to examine fault effects on a side-channel-

protected design and to investigate potential combinational attacks.

The hardware/software interface of the coprocessors is implemented using memory-

mapped registers on the APB peripheral bus. We allocate a 4Kbyte address space for

each coprocessor, which can be organized as 1024 32-bit memory-mapped registers.

7.4. Chip Prototype of FAME 145

The coprocessor can use the allocated registers for input data, output data, status

data, and commands to control the coprocessor’s operation. The following sections

describe the programming model for these coprocessors.

Debug Support Interface

Our prototype employs an on-chip debug support unit to put the processor into a

debug mode and control it in this mode. It also contains a 1-Kbyte instruction trace

buffer that stores the executed instructions. The debugging interface connects the

microprocessor to a computer for real-time, in-system programming and debugging

through Universal Asynchronous Receiver/Transmitter (UART). The debugging con-

troller interfaces with a host computer, which runs a debug monitor used to debug

LEON3 based SOC designs [126]. The debug software along with the debug interface

is used to load the compiled-C code and program data into the program memory.

The debug support interface provides access to all software-visible states of the pro-

cessor including instruction trace buffer, the register file, cache memories, and the

main memory.

Configurable Trigger Unit

In a typical fault attack experiment, fault injection device waits for a trigger signal

from the target device (FAME in our case) to start fault injection. This allows con-

trol over the timing of injected faults. We extend the baseline LEON3 architecture

with Configurable Trigger Unit to generate non-invasive, cycle-accurate trigger sig-

nals for fault injection. The trigger unit has 4 independent trigger output that are

generated based on the FAME’s program counter value fetchPC as it is shown in Fig-

146 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

SET

CLR Q

QD SET

CLR Q

QD

SE T

CLR Q

QD SET

CLR Q

QD
targetPC[i]

fetchedPC

=?

Register Addres32

32

Register Content

0x90400080 targetPC[0]

0x90400084 targetPC[1]

0x90400088 targetPC[2]

0x9040008C targetPC[2]

0x90400090 {hitCnt[3],
hitCnt[2],
hitCnt[1],
hitCnt[0]}{}: Concatenation

SE T

CLR Q

QD SET

CLR Q

QD
hitCnt[i]

=?

8

1
8

trigger[i]
AND

Figure 7.11: Configurable Trigger Unit

ure 7.11. Each trigger output trigger[i] is associated with a target program counter

(targetPC[i]) and a hit counter (hitCnt[i]). At each clock cycle, targetPC[i] is

compared with the fetchPC. The hitCnt[i] is an 8-bit counter that is used to spec-

ify how many times an instruction from the targetPC[i] should be fetched before

raising the trigger output trigger[i]. We implement each targetPC[i] value as a

separate 32-bit memory-mapped register and pack all hitCnt[i] value into a single

32-bit memory-mapped register (Figure 7.11). All of the memory-mapped registers

can be programmed at run-time through the debug interface. We highlight that this

method does not require any modification of the software-under-test.

7.4. Chip Prototype of FAME 147

Clock

Capture

Pipeline
Register i

PTR i

faulty

faulty

(b)

Pipeline
Register

i

Pipeline Stage
i

Pipeline Stage
i+1

PTR
i

Clock

Capture

en

@address_ptr_i

(a)

Figure 7.12: Pipeline Trace Registers (PTRs): (a) Block diagram. (b) Timing dia-
gram.

Pipeline Trace Registers (PTRs)

For detailed analysis of the fault injection on a microprocessor, we extend the

software-visible state of baseline LEON3 core with Pipeline Trace Registers (PTRs),

memory-mapped and read-only registers. They are able to store the values of

originally-software-invisible signals in FAME’s 7-stage pipeline. As our FAME proto-

type is a 32-bit processor, we combined individual pipeline signals into 32-bit groups

and mapped each group to a unique memory address within the address space of

debug support unit. As a result, we implement PTRs as 26 32-bit registers mapped

into the address range of 0x90400098 - 0x904000FC. Those registers can be ac-

cessed from the user’s C code as well as Tcl scripts executed in the debug monitor

software.

148 Chapter 7. Fault-attack Aware Microprocessor Extensions (FAME)

Figure 7.12a shows a block diagram, in which a pipeline register i and its correspond-

ing PTR i are demonstrated. The memory address for PTR i is @address ptr i. Fig-

ure 7.12b shows a timing diagram for the operation of the PTR. To save the faulty

pipeline signals into PTR, an externally generated capture signal is used. When the

capture signal is asserted, the contents of pipeline registers are copied into the PTRs.

When the capture goes low, it will freeze content of the PTR register and stored data

can be read out by the user software or the debug interface. Using PTRs, we are

able to observe all pipeline signals at a time. To integrate PTRs into the FAME pro-

totype, we used the same structure as the base LEON3 uses for its special-purpose

registers. Therefore, the area overhead of the PTRs is minimal.

A user can control the capture signal in two ways. In the first option, a user drives

the allocated external pin of the chip. For this purpose, the user can use an external

signal source or GPIO pins of the chip. As a second option, we allocated one of

the configurable triggers to generate an on-chip capture signal. This option allows a

cycle-accurate control of the capture signal from the debug monitor software.

External Alarm Pin

FAME chip has an external alarm pin to trigger the secure trap mechanism without

physical fault injection. This pin can be used for on-chip fault injection simulation

similar to the approach used by Berthier et al. [142]. A user can trigger the secure

trap mechanism using the external alarm pin, inject a fault into the processor’s state

inside secure trap handler, and then continue the execution to observe the effects of

the injected fault. This allows evaluating the security of a fault handling strategy

under different fault models without using a physical fault injection equipment.

7.4. Chip Prototype of FAME 149

The next chapter provides implementation results for the developed FAME proto-

type.

Chapter 8

Experimental Evaluation of FAME

This chapter presents the experimental evaluation results for the developed FAME

prototype described in Chapter 7. The next section presents the designed fault

injection and analysis environment. Section 8.2 shows hardware cost of FAME SoC

prototype and FAME core. Section 8.3 provides driver applications to demonstrate

how a software designer can use FAME to design fault attack countermeasures and

their overheads. Finally, Section 8.4 demonstrates security evaluation results.

8.1 Experimental Setup

The experimental setup consists of a SAKURA-G board and a FInalyzer board, a

custom-made evaluation board for fault injection and analysis on the FAME pro-

totype. The FInalyzer board is designed and implemented by Abhishek Bendre, a

student member of the FAME development team. It is developed as an extension

to the cryptographic standard SAKURA-G Board[123] and attaches to it using the

standard expansion headers (Figure 8.1a). This makes FInalyzer fully-compatible

with our fault injector, which is described in Chapter 3.

The complete fault injection and observation environment is illustrated in Figure 8.1b.

It includes a control PC, fault-attack resistant chip, fault-injector module and an

150

8.1. Experimental Setup 151

FAME SoC Chip

Debug
Support Unit

(DSU)

USB

GRMON
Debug Monitor

Python Scripts
Capture

Control PC

Spartan-6 XC6SLX9

Fa
u

lt
C

o
n

tr
o

lle
r

Fa
u

lt

In
je

ct
o

rUSB/
Serial

i/f
(FTDI)

Contr
ol

UART

Trigger

G
lit

ch
y

cl
o

ck
/

vo
lt

ag
e

FAME Core

O
sc

ill
o

sc
o

p
e

(a) (b)

D
eb

u
g

U
A

R
T

FInalyzer

SAKURA-G

Figure 8.1: (a) Fault-resistant processor die package on FInalyzer board(blue), It
is connected to SAKURA-G board(green) (b) Block diagram of fault-injection and
analysis setup.

oscilloscope. The fault-injector module is implemented in Spartan-6 FPGA which

resides on the SAKURA-G Board. The Fault-Injector FPGA controls the clock

and voltage to the fault-resistant processor and can precisely inject faults using the

trigger-based glitch mechanism. The fault-resistant chip mounts on a 108-pin Pin

Grid Array (PGA) package, which is socketed on a custom testing board as shown

in Fig 8.1a.

The PC governs the fault-injection process by configuring the fault-injector module

over USB link. Fault-attack injection parameters are dynamically controlled using

Python scripts through partial reconfiguration of the injection module. The PC also

connects to the fault-resistant processor using the debugging interface loading the

compiled software. The processor can generate a trigger signal to inject controlled

faults, and it allows the fault-injector module to inject a fault with specified intensity

parameters.

152 Chapter 8. Experimental Evaluation of FAME

Table 8.1: Area and Power Consumption Results for FAMEv2

Component Cell Area Cell Area Power
(sq. µ) (GE NAND2X1) (mW)

FAMEv2 SoC 12,332,181 1,235,789 190.899
SRAM macro’s 9,677,474 969,764 34.917
Sensor Coprocessor (CP1) 199,514 19,993 11.056
AES Coprocessor (CP2) 627,196 62,850 45.627
AES with in-situ sensors (CP4) 739,958 74,150 57.659
LR-Keymill Coprocessor (CP3) 121,893 12,215 3.904
FAMEv2 Core 1,864,244 186,813 52.463
AHB Bus Controller 13,841 1,387 0.541
APB Bus Controller 12,368 1,239 0.433
User UART 20,397 2,044 1.011
Debug UARTs 20,743 2,079 1.734
Debug Support Unit 8,971 899 0.741
Timer 54,709 5,482 2.302
SPI Interface 17,091 1,713 0.887

8.2 Hardware Performance Results

This section presents the hardware performance results of the FAME prototype in-

cluding cell-area, power consumption, and operating frequency.

8.2.1 Performance Results for FAME SoC

FAME SoC chip was fabricated in a TSMC 180nm process on a 5 mm by 5 mm

die. The chip was constrained for 80MHz operating frequency during synthesis and

back-end design. Table 8.1 lists the active area and power consumption results for

the major components of the FAME SoC, which is a 1.2M GE design. The results

are collected from the post-synthesis design using Synopsys DC.

8.2. Hardware Performance Results 153

Table 8.1 also allow us to evaluate the overhead of the in-situ EM sensors in the

AES+ coprocessor (cp4) by comparing the results for cp2 and cp4. Although cp4

replaces all the critical state elements of cp4 with in-situ EM detectors, the sensors

have less than 20% and 30% overhead in area and power consumption, respectively.

This overhead includes both the fault-attack-related and fault-analysis-related cost

of the in-situ detectors. Next section examines the hardware overhead of FAME

extensions on the processor core.

8.2.2 Performance Results for FAME Core

The secure extensions added to the processor core have associated costs. The Fault

Detection Unit (FDU), Fault Response Registers (FRR), Fault Control Unit (FCU),

FAME instructions for FRR access are the only logic added to the processor core to

make it fault-attack resistant. However, the ASIC prototype also contains injection

and analysis capabilities to enhance the fault-attack environment. Therefore, we

compare the cost of chip with and without the additional units with respect to the

base processor. We obtain area and timing overhead for (a) LEON3 implementation

without extensions (b) LEON3 implementation with fault-attack resistant security

extensions, and (c) LEON3 implementation with fault-attack resistant and analysis

extensions. The cost is derived by applying the same design process on different

design configurations. Thus, we do ASIC synthesis, verification and then place-and-

route the design using Synopsys Suite (Design Compiler, ICC Compiler) at 180 nm

TSMC logic process to get the required design metrics.

Table 8.2 presents the resulting area and power consumption performance. Fault

analysis extensions incurs a constant area and power consumption overhead of 0.124

154 Chapter 8. Experimental Evaluation of FAME

Table 8.2: Hardware Overhead of FAME Extensions

Component Cell Area Cell Area Power
(sq. mm) (GE NAND2X1) (mW)

LEON3 Core (Baseline) 1.709 171,257 43.149

LEON3 + Fault Analysis 1.833 183,682 49.351
∆ = 0.124 ∆ = 12,425 (%6.7) ∆ = 6.202 (%14.4)

LEON3 + Fault Resistance 1.740 174,363 46.261
(FAMEv2) ∆ = 0.031 ∆ = 3,106 (%1.8) ∆ = 3.112 (%7.2)

mm2 (i.e, 12.4K GE) and 6.202 mW , respectively. Thus, the area and power con-

sumption overhead of the fault analysis features on the baseline LEON3 implemen-

tation is 6.7% and 14.4%, respectively. For the security extensions, the respective

are and power consumption overhead on the baseline LEON3 are 1.8% and 7.2%.

Moreover, the total area cost of security and analysis extensions is less than 10%

and their power consumption overhead is less than 20%. The maximum operating

frequency is same, 80 MHz, in all of the investigated cases.

As the FAME chip was designed both fault-attack-resistance and fault-attack-evaluation

in mind, it contains redundant control and observation logic for the sensors in addi-

tion to security-related logic of the sensors. Table 8.3 provides cell area and power

consumption results of the security-related parts of the timing end EM sensors for a

rough estimation of each sensor’s cost. As it is seen, the area and power consumption

of each sensor is less than 0.2 that of FAME core. The cost of the stand-alone EM

sensors of the cp1 is more than the cost of the in-situ EM sensors of the cp4. The

reason behind this difference is that the input of the two flip-flops of the in-situ EM

sensors are directly connected to the output of the combinational logic of the AES

design. However, in the case of cp1, an additional inverter and a flip-flop (i.e, toggle

8.3. Software Performance Results 155

Table 8.3: Hardware Overhead of FAME Sensors

Component Cell Area Cell Area Power
(sq. µm) (GE NAND2X1) (µW)

Timing Sensor (CP1, Core) 2,810.808 282 129.530
Stand-alone EM Sensor (CP1) 182.952 19 22.406
In-situ EM Sensor (CP4) 113.098 12 21.900

flip-flop) are connected to the input of the stand-alone EM sensor to toggle its input

at every clock cycle.

8.3 Software Performance Results

This section first demonstrates a methodology to develop FAME-protected software

programs on three example applications. Then, it presents the software overhead of

the FAME protection.

8.3.1 FAME-Protected Software Design

In this section, we describe a few secure trap handlers and compare these with

traditional redundancy-based software countermeasures. We consider a fault coun-

termeasure scenario for three different applications: PIN Verification, the Advanced

Encryption Standard (AES), and a Pseudo-Random Number Generator (PRNG).

For each of these, we will create an application-specific secure trap handler.

Redundancy-based fault countermeasures are based on customization of the appli-

cation code. In our case, however, the secure trap handler is created separately from

the application, and it follows a standard development methodology based on the

156 Chapter 8. Experimental Evaluation of FAME

following steps.

1. Identify the Undesirable Outcome: We consider potential security-failure sce-

narios for the given fault-injection attack vector.

2. Analyze the Code Sensitivity: We analyze the application code to identify how

the undesirable outcome can be achieved through fault injection. This identifies

sensitive points in the code such as security-critical decisions and operations

that process and transfer the sensitive data.

3. Design the Countermeasure: We write a fault handler to mitigate the unde-

sirable outcome. The fault handler must be effective regardless of the current

state of the protected algorithm, because the secure trap can be invoked at any

moment.

Case Study I: PIN Verification

A Personal Identification Number (PIN) is an alphanumeric passcode used for au-

thenticated access. Figure 8.2a shows an unprotected PIN verification function.

VerifyPin() function compares a user PIN userPIN to a secret value devicePIN.

The verification allows up to three mismatches, and this is recorded in the vari-

able counter. When userPIN and devicePIN match, the user accepted, otherwise

the counter is decremented. We apply the methodology to develop a secure trap

handler.

1. Undesirable Outcome: There are two undesirable results. First, an adversary

can successfully complete VerifyPin() with an invalid PIN. Second, an adver-

sary can attempt a PIN check without losing a trial from counter.

8.3. Software Performance Results 157

int counter = 3;

void VerifyPin() {

 if (counter > 0)

 if (Cmp(userPIN,devicePIN))

 Accept();

 else

 counter--;

}

(a)

(c)

int counter = 3;

void SecureVerifyPin() {

 if (counter > 0)

 if (Cmp(userPIN,devicePIN))

 Accept();

 else

 counter--;

}

SecureTrapHandler() {

 if (counter > 0)

 counter--;

 userPIN = INVALID;

}

int counter = 3;

void SecureVerifyPin() {

 hard_if (counter > 0)

 hard_if (HardCmp(userPIN,devicePIN))

 Accept();

 else

 counter--;

}

(b)

X
X

X

Figure 8.2: PIN Verification (a) Unprotected version. The lines marked with X are
sensitive points. (b) Fault protection with software redundancy. (c) Fault protection
with proposed secure trap technique.

2. Code Sensitivity: There are multiple methods to achieve the undesirable out-

come. The adversary can target the data-flow or control-flow of the if state-

ments or the Cmp() function invocation, skip the decrement of the counter

value, or invert the result of the Cmp() function. All of these can be achieved

using glitch injection under the assumed fault model. The sensitive lines of

code are marked in Figure 8.2a with a cross (X).

3. Countermeasure Design: Figure 8.2b shows a protected VerifyPin() that uses

traditional software redundancy. The if statements can be hardened (hard if)

by using double checks [166]. The execution of Cmp() function can be hardened

(HardCmp()) by duplicating its instructions, and subsequently checking if the

results match [66]. However, these methods bring significant overhead as we

158 Chapter 8. Experimental Evaluation of FAME

int[] SecureAES() {

 r = HardRNG();

 c1 = AES();

 c2 = AES();

 f = c1 ^ c2;

 q = ~f & c1 | f & r;

 return q;

}

int v = 1;

int[] SecureAES() {

 v = 0;

 r = HardRNG();

 c = AES();

 q = (~v & c) | (v & r);

 return q;

}

SecureTrapHandler(){

 v = 1;

}

(b) (c)

q = AES();

(a)

X

Figure 8.3: (a) Unprotected AES. The lines marked with X are sensitive points. (b)
Fault-protected AES using software redundancy. (c) Fault-protected AES using the
proposed secure trap technique.

show in Section 5.

On the other hand, the proposed secure trap handler technique leads to Fig-

ure 8.2c. Whenever a fault injection is detected, the secure trap handler decre-

ments the counter and sets the userPIN to an invalid value. We do not need

hardened if statements in VerifyPin() because the fault-resistant processor

provides inherent immunity against instruction-skip attacks through the FRR

mechanism (Section 2).

Case Study II: Advanced Encryption Standard

The second case study considers protection of AES against fault attacks.

8.3. Software Performance Results 159

1. Undesirable Outcome: The secret key of AES can be extracted using various

fault analysis techniques. Standard DFA techniques rely on observation of

faulty ciphertext, and therefore the disclosure of faulty ciphertext is an un-

desirable outcome. However, the detection that any fault occurred is already

sufficient for Fault Sensitivity Analysis[77]. Although FSA on software may

require a fine-grained instruction-level fault analysis[12], we do not discount

this risk.

2. Code Sensitivity: Fault injection in AES has been extensively studied, and

successful attacks have been shown based on injecting faults into round com-

putations of AES [167], key scheduling of AES [167], or increasing/decreasing

the number of iterative rounds [168]. Therefore, the entire AES procedure is

sensitive against fault attacks.

3. Countermeasure Design: Classic fault countermeasures for AES rely on time-

based, information-based, or hybrid redundancy [169]. Figure 8.3b shows a

time-based redundancy design. If two redundantly computed ciphertext C1

and C2 are different, the SecureAES() returns a random value. Otherwise it

returns the actual ciphertext. However, this countermeasure is still ineffective

against FSA.

Figure 8.3c shows a solution using the proposed secure trap technique. In

case a fault is detected, a flag v is set which will cause randomization of the

ciphertext. This will also catch FSA-style attacks, because the sensor has a

higher fault-sensitivity than the processor hardware. The proposed approach

is also more performance-efficient, since we do not need a redundant execution

of AES.

160 Chapter 8. Experimental Evaluation of FAME

int SecureRNG() {

 do {

 r = Hash(s);

 s = Hash(s);

 hard_if (r != s)

 s = SecureSeed();

 } hard_while (r != s);

 return r;

}

SecureTrapHandler() {

 v = 1;

}

(b) (c)

int v = 0;

int SecureRNG() {

 do {

 v = 0;

 s = Hash(s);

 if (v)

 s = SecureSeed();

 } while (v);

 return s;

}

s = Hash(s);

(a)

X

Figure 8.4: PRNG with backtracking resistance: (a) Unprotected case. The lines
marked with X are sensitive points. (b) Fault-protected version using software re-
dundancy. (c) Fault-protected version using the proposed secure trap technique.

Case Study III: Pseudo Random Number Generator

Pseudo Random Number Generators (PRNGs) are an essential component in many

crypto-systems, for example to ensure freshness in crypto-protocols or to ensure

randomness in mask generation for secret sharing. We apply the methodology to

develop a secure trap handler for PRNGs. In this example we study a PRNG with

backtracking resistance but no prediction resistance [170]. This type of PRNG is

used in applications that do not disclose the random output.

1. Undesirable Outcome: A fault-attack on a backtracking-resistant PRNG will

aim at introducing bias or at controlling the secure state.

8.3. Software Performance Results 161

2. Code Sensitivity: An adversary can inject stuck-at faults to control the internal

state of the PRNG. She can also prevent update of the PRNG.

3. Countermeasure Design: A general strategy against securing a PRNG is to

re-seed it when a fault is detected. The new seed comes from a source of secure

entropy (SecureSeed()), for example created using a true random number

generator and tested for randomness. The design of the source of secure entropy

is out of the scope of this paper, and we concentrate on protecting the PRNG.

In Figure 8.4b, we demonstrate a time-redundancy based countermeasure. In

this countermeasure, the PRNG code is executed twice, and the results are

compared. If a difference is found, the PRNG is reseeded and the loop is

repeated. Similar to the case of PIN Verification, this code requires hardened if

and while statements [166], and the time redundancy will reduce performance.

Figure 8.4c shows a solution using the proposed secure trap technique. We run

the PRNG once while capturing faults in a flag v. When a fault is injected, we

re-seed the PRNG and force the PRNG output to be recomputed.

The described case studies clearly highlight the differences between the redundancy-

based and FAME-based approaches for countermeasure design. In the redundancy-

based countermeasures, the software designer employs generic redundancy directly in

the application code for fault detection and fault response. In addition, the software

designer does not distinguish an application-specific undesired outcome. In contrast,

in the FAME-based approach, the software designer partition the fault detection

and response into hardware and software. The fault countermeasure is developed

separately in the trap handler.The designer utilizes the generic architectural support

of FAME to fine-tune the fault countermeasure for the specific security requirements

162 Chapter 8. Experimental Evaluation of FAME

of the protected application. For instance, the designer uses the software trap handler

to enforce the decrement of counter in the PIN Verification case, to randomize the

cipher output in the AES case, and to reseed the random number generator in the

PRNG case. Next, we examine the cost of FAME on the software layer.

8.3.2 Software Overhead of FAME Extensions

This section demonstrates the software overhead of the proposed method for the

described case studies. We implemented the pseudo-codes shown in Figures 8.2-8.4,

and examined their code size and the execution time.

In the Case Study I (i.e, PIN Verification), we hardened the if statements with

double checks [166], and we used instruction duplication countermeasure [66] to

protect the data and control flow of the pin comparison function Cmp(). For the

Case Study II, we implemented the AES() function with the well-known TBOX

method, which combines multiple steps of an AES round (comprising SBOX-lookup,

Shiftrows and Mixcolumns) into a single lookup. We used SHA-1 hash algorithm to

estimate the software overhead for the Case Study III (i.e, PRNG).

The code of secure trap handler consists of three parts. In the prelude part, the trap

handler restores the critical fault-free state back by using the FRR. It also gets the

return address from FRR. Then, in the body part, the trap handler applies the user-

defined fault response. In the postlude part, the trap handler jumps to the return

address and continues the execution from there. As the prelude and postlude parts

are the same for all case studies, their code-size overhead is constant: The code

size of prelude and postlude is 132 bytes (i.e, 32 instructions). The code size of the

trap handler body and its performance overhead depend on the actual fault response

8.3. Software Performance Results 163

Table 8.4: Software Code-Size Overhead of FAME (Byte)

Case Unprotected Protected Protected
Study w/ Redundancy w/ FAME

Pin Verification 300 + 702 (234%) + 152 (52%)
AES 5,344 + 344 (5.9%) + 148 (2.7%)
PRNG 1,064 + 560 (52.6%) + 292 (27.4%)

Table 8.5: Software Execution-Time Overhead of FAME (Cycle Count)

Case Unprotected Protected Protected
Study w/ Redundancy w/ FAME

Pin Verification 1,013 + 1,628 (160%) + 0
AES 7,130 + 6,080 (85%) + 728 (3.2%)
PRNG 1,7213 + 18,226 (106%) + 925 (5.4%)

policy.

Table 8.4 shows the overhead of traditional software redundancy and the proposed

method on the code size of the protected applications. For the case studies, the

proposed method has 2 to 4.5 times less code-size overhead in comparison to the

traditional method. In addition, the code-size overhead of the secure trap handler

is independent of the protected application’s code size. However, the code size of

the traditional approaches proportionally increases with the size of the application

because they apply redundancy to the application’s code itself. In Table 8.4, this is

more prominent for the PIN Verification case because it duplicates all instructions

of the comparison function Cmp(). However, in the other case studies, the selected

traditional approaches only duplicates the control statements such as branches and

loops, and executes the application twice.

Table 8.5 lists the performance overhead of the examined countermeasures on the

execution time of the unprotected application. In all of the case studies, the per-

164 Chapter 8. Experimental Evaluation of FAME

formance overhead of the traditional countermeasures (85%–160%) is significantly

higher than the performance overhead of our method (0%–5.4%). The main reason

behind this observation is that a software designer has to write the fault detection

and response in the application code for the traditional approach. However, in our

method, the software designer takes advantage of the hardware fault detection and

writes the fault response in the secure trap handler. This significantly lowers the per-

formance overhead. Our method does not require to modify the application code (i.e,

VerifyPin(), AES(), and Hash()). On the other hand, there is a minor overhead

because of the introduction of a wrapper around the basic protected function.

8.4 Security Evaluation of FAME

In this section, security-related experimental results are presented. First, the fault

detection sensitivity of the timing sensor is characterized under different operating

conditions. Then a fault attack is applied on both FAME-protected and redundancy-

protected PIN Verification applications.

8.4.1 Fault Detection Sensitivity

This section provides characterization results for the timing sensor of the FAME

prototype. The characterization results for the EM sensor can be found in Master

Thesis of Chinmay Deshpande [162], a member of FAME development team.

The sensitivity of the Fault Detection Unit is evaluated by injecting faults with dif-

ferent parameters into the fault-resistant ASIC and by checking its response. Specif-

ically, we inject a clock-glitch to violate setup-time and then examine the response

8.4. Security Evaluation of FAME 165

5

10

15

20

25

30

1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V

D
e

la
y

 (
n

s)

Voltage (V)

Fault Detection Sensitivity

C6

C5

C4

C3

C2

C1

Sensor
Configuration

tcritical

Processor Critical Path
using Static Timing Analysis

C1

C2

C3

C4

C5

C6

(a) (b)

Increasing
sensitivity

Delay

Figure 8.5: (a) Fault Detection Sensitivity of the sensor for different configurations
(C1 − C6) (b) Static Timing Analysis results of the processor core and sensor for
different configurations

of the detection unit. The clock glitch width is then gradually changed and the re-

sponse is then recorded for different sensor configuration settings. This procedure is

carried out at different power levels by changing supply voltage from 1.2V (the low-

est correct operating voltage) to 1.98V (maximum operating voltage) in increments

of 0.1V . The recommended normal operating voltage for this specific standard cell

library is 1.8V .

Fig 8.5a shows the fault detection sensitivity of a timing sensor measured over a

single chip. The sensor has about sixty different sensitivity settings (six of them

are shown), and they help to minimize effects of intra-die delay variation between

the CPU core and the timing sensor. Fig 8.5b shows the design-time static timing

delay for the CPU and the sensor settings. The sensor setting should to be chosen

such that it has a higher sensitivity than the critical delay of the CPU core. But

166 Chapter 8. Experimental Evaluation of FAME

in order to minimize the number of false positives (ie. triggering the sensor without

an actual fault in the CPU), the sensor sensitivity should also match the critical

delay of the CPU core as closely as possible. The setting of the sensor sensitivity is a

security setting that should be treated with the same care as an embedded secret key.

While the current prototype supports sensor setting through the debug interface, we

envisage that a production version of this chip would use secure fuses.

8.4.2 Clock Glitching on PIN Verification

To demonstrate the efficiency of our approach, we have conducted a clock glitching

experiment for the pin verification case described in Section 4. VerifyPin() function

compares a user PIN userPIN to a secret value devicePIN. The verification allows

up to three mismatches, and this is recorded in the variable ptc. For this example,

devicePIN is 12824. When userPIN and devicePIN match, the user is accepted (i.e,

result = 1), otherwise the counter is decremented.

Figure 8.6a–c shows three versions of the VerifyPin() and corresponding clock

glitching experiments: (a) No fault protection, (b) Fault protection with software

redundancy, and (c) Fault protection with FAME. In this experiments, the attack ob-

jective is to successfully complete the VerifyPin() function with an invalid userPIN.

We have used our experimental setup to inject faults in to the attack windows shown

with red rectangles in Figure 8.6.

We start with the unprotected VerifyPin(). Figure 8.6a shows the clock glitch that

enables us to break the VerifyPin() with 100% success rate. As it is seen from

the example software output for two different userPIN values, ptc has not been

decremented and result is 1 although the values are wrong.

8.4. Security Evaluation of FAME 167

(c)

(a)

10.2ns Single glitch

(b)

int counter = 3;

void SecureVerifyPin() {

 if (counter > 0)

 if (Cmp(userPIN,devicePIN))

 result = 1;

 else

 result = 0;

 counter--;

}

SecureTrapHandler() {

 if (counter > 0)

 counter--;

 result = 0;

}

Clock

alarm

Back to back glitch

Clock

alarm

int counter = 3;

void VerifyPin() {

 if (counter > 0)

 if (Cmp(userPIN,devicePIN))

 result = 1;

 else

 result = 0;

 counter--;

}

10.2nsClock
signal

int counter = 3;

void SecureVerifyPin() {

 counter--;

 hard_if (counter > 0)

 hard_if (HardCmp(userPIN,devicePIN))

 result = 1;

 counter++;

 else

 result = 0;

}
10.2nsClock

signal 10.2nsClock
signal

Figure 8.6: Clock glitching on VerifyPin(): (a) Unprotected, (b) Protected with
software redundancy, (c) Protected with FAME. devicePIN is 12824. Protections
in (a) and (b) fail: ptc has not been decremented and result is 1 although the
userPIN values are wrong. FAME is secure against single and multiple glitches.

Figure 8.6b shows a VerifyPin() function protected with software redundancy: This

implementation runs the comparison function and check its result twice. It also

decrements the ptc by default and increments it if userPIN and devicePIN match.

We have successfully bypassed this protection by repeating the previous glitch after

each execution of the comparison function. Figure 8.6b shows the results for two

successful cases.

Finally, we have attacked the FAME-protected version of VerifyPin() (Figure 8.6c).

168 Chapter 8. Experimental Evaluation of FAME

Whenever a fault injection is detected, the secure trap handler decrements the ptc

and sets the result to 0. We do not need hardened if statements in VerifyPin()

because the FAME processor provides inherent immunity against instruction-skip

attacks through its hardware mechanisms explained in Section 3. When we apply

the same single glitch, FAME protection makes result 0 and ptc 2 as shown in

Figure 8.6c. We have also applied two back to back glitches to FAME to demonstrate

that it works under multiple glitch injections. In this case, FAME protection makes

result 0 and ptc 1 as shown in Figure 8.6c.

Chapter 9

Conclusions

This research has investigated fault attacks on embedded software, a serious hardware-

oriented threat to the security of embedded systems, from several aspects:

• Understanding Fault Attacks on Embedded Software: Chapters 2 and

4 explain the steps and requirements of fault attacks on embedded software. By

analyzing a 7-stage RISC pipeline, we have shown that the fault manifestation

and propagation in software security systems are quite different than hardware

secure systems. In modern software secure systems, faults manifest in the

hardware layers but their effects are observed in the software layer. Modern

microprocessors execute each instruction as a sequence of instruction steps (i.e,

fetch-decode-execute cycle), and generally, multiple instructions are executed

in parallel (e.g, pipelining). During our analysis we have made the following

observations:

1. A fault injection attempt may potentially affect multiple instructions that

are being executed during the fault injection.

2. The effects of fault injection depend on the affected instruction(s) as well

as affected instruction step(s). For instance, a fault injection into execu-

tion step of a memory-load instruction would alter the memory address,

while a fault injection into execution step of an addition instruction would

169

170 Chapter 9. Conclusions

affect the computed result. Similarly, affecting instruction-fetch step of

a memory-load instruction may turn this instruction into another one,

while affecting the execute step of the same instruction alters the address

calculation.

3. Microarchitectural and pipelining events (e.g, cache misses, stalls because

of data-dependency, branch interlock, etc.) affect the fault sensitivity.

After its manifestation, the effect of a fault is propagated to the output through

subsequent instructions that use this fault. Therefore, mounting efficient fault

attacks on software systems and mitigating them require the knowledge of

different abstraction layers.

• Experimenting Fault Attacks on Embedded Software: As the fault

manifestation and propagation are complex, we need an advanced fault injec-

tion and analysis setup for the experimental part of the research. Chapter 3

describes our custom-made fault injection and analysis setup, which enables us

to inject setup-time violation faults through precise clock glitch injections. Our

setup has also extensive fault observation capabilities that allow us to observe

architectural (software-visible) and micro-architectural (software-invisible) ef-

fects of the fault injection. Using this setup, we are able to carry on fault attack

experiments on both hardware and secure software systems implemented either

on an FPGA or an ASIC chip.

We have also integrated the fault injection and observation capabilities into the

chip prototype of our fault-attack-resistant processor FAME. This integration

turns our chip prototype into a complete on-chip fault attack laboratory, which

is quite useful for the long-term fault attack research.

Bilgiday Yuce Chapter 9. Conclusions 171

• Modeling Fault Attacks on Embedded Software: As the existing fault

models do not use the knowledge of multiple abstraction layers, they are insuffi-

cient to capture fault effects on software and to guide the fault injection process

to obtain desired fault effects. In Chapter 4, we have introduced instruction

fault sensitivity model for a microprocessor to overcome the limitations of ex-

isting fault models.

The proposed fault model can explain the fault effects experienced by a soft-

ware program at the instruction-set-architecture level, and can guide the fault

injection process to induce the desired fault effects in the program. This model

allows us to identify the potential fault effects on every (instruction, pipeline

stage) pair. It also enables us to tune the fault injection parameters to induce

the desired effects in each (instruction, pipeline stage) pair.

We have experimentally demonstrated the model on an FPGA implementation

of the LEON3 processor. We have shown that the instruction fault sensitivity

model reduces the number of required fault injections and enables new fault

attacks on the software.

• Designing Novel Fault Attacks on Embedded Software: Relying on

the instruction fault sensitivity model, we have also built a systematic fault

attack methodology, so-called Microarchitecture Aware Fault Injection Attack

(MAFIA). MAFIA enables an adversary to launch an efficient fault attack on

an embedded software by exploiting different layers of abstraction. The adver-

sary starts with algorithm-level analysis to determine application-specific fault

injection and analysis objectives. Then the adversary studies the software im-

plementation of the algorithm in the instruction level, and finds the candidate

(instruction, pipeline stage) pairs for fault injection. Finally, the adversary

172 Chapter 9. Conclusions

examines the execution of the instructions on the pipeline to determine clock

cycles to inject faults as well as the fault injection parameters to create the

desired effects.

We showed the efficiency of MAFIA with two case studies. First, we developed

a DFIA attack on an unprotected AES software program, and showed that

the use of the proposed methodology reduced the number of fault injections

an order of magnitude in comparison to the traditional attack methodology.

Second, we studied instruction-level software countermeasures. We identified

their vulnerabilities using our method, and demonstrated that all of the stud-

ied countermeasures can be broken with single fault injections with low-cost

injection setups such as clock glitching. We also experimentally demonstrated

the attacks on an FPGA implementation of LEON3 processor. Finally, we

conclude that efficient countermeasures to protect embedded software must

consider multiple abstraction layers.

• Simulating Fault Attacks on Embedded Software: To enable software

designers to evaluate their designs against fault attacks, we propose a fault at-

tack simulator MESS (Microarchitectural Embedded System Simulator). MESS

is a cycle-accurate simulator that enables a user to model main microarchitec-

tural components of a processor, to model instruction set architecture of the

processor, and to run the target software on the modeled processor. A user

can also describe a complete fault attack experiments including fault timing,

fault location, fault type, attack objectives, and observation points. Currently,

it supports ARM and x86 instruction set architectures.

We have demonstrated the features of MESS on a C library function memcmp()

that can be employed for security verification. As MESS enables us to reflect

Bilgiday Yuce Chapter 9. Conclusions 173

attacker’s view of execution, it has allowed us to try different real-world fault

attack scenarios.

• Mitigating Fault Attacks on Embedded Software: To mitigate fault at-

tacks, we have designed a fault-attack-resistant microprocessor called FAME

(Fault-attack Aware Microprocessor Extensions). FAME combines fault de-

tection in hardware and fault response in software. This allows low-cost,

performance-efficient, and flexible integration of hardware and software tech-

niques to mitigate fault attack risk. FAME is a generic solution, applicable to

existing embedded processors.

FAME is low-cost as it uses redundancy to protect only a small subset of the

processor state (i.e, FRR) and a small portion of the embedded software (i.e,

trap handler). FAME extensions do not bring any timing overhead on the

processor hardware. On the software side, FAME affects the performance only

if a fault injection is detected. FAME enables a flexible and application-specific

trap handler, which can be adjusted for the security needs of the application.

We have created a chip prototype of FAME to explore this concept and to

verify our claims. The prototype demonstrates that FAME enables application-

specific fault countermeasures with a much lower performance overhead, and

with a very low additional hardware cost. As a byproduct of this research, we

have created a RISC environment that enables the detailed study of the fault

effects occurring in an embedded processor. This may lead to better insight

into fault modeling for embedded processors.

In conclusion, our research findings indicate that efficient modeling, design, miti-

gation, and simulation of fault attacks on embedded software require considering

174 Chapter 9. Conclusions

multiple abstraction layers together. The outcome of this dissertation has been pub-

lished as 2 journal papers [171, 172], 8 peer-reviewed conference papers [11, 12, 75,

107, 129, 173, 174, 175], and a book chapter [176]. We have also filed a patent

application [177] part of this research has been recognized as the best paper in ses-

sion by the SRC TECHCON community in 2015. Two publications of this research

have been awarded the best poster in CESCA Day 2016 and 2017. The author of

this dissertation has been recognized as the outstanding student in CESCA Day

2017. The chip demonstrator of FAME has been awarded Best Hardware Demo by

IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

in 2017. This research has also been presented in PhD Forum at Design Automation

Conference (DAC) 2017.

Bibliography

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,”

in Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp.

48–62.

[2] F. Piessens and I. Verbauwhede, “Software security: Vulnerabilities and coun-

termeasures for two attacker models,” in Design, Automation & Test in Europe

Conference & Exhibition, (DATE 2016), 2016, pp. 990–999.

[3] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - revealing the

secrets of smart cards. Springer, 2007.

[4] M. Joye and M. Tunstall, Fault Analysis in Cryptography. Springer, 2012.

[5] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking

cryptographic protocols for faults,” in International Conference on the Theory

and Applications of Cryptographic Techniques. Springer, 1997, pp. 37–51.

[6] R. Piscitelli, S. Bhasin, and F. Regazzoni, “Fault attacks, injection techniques

and tools for simulation,” in Proc. of DTIS’15, 2015, pp. 1–6.

[7] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low Voltage Fault

Attacks on the RSA Cryptosystem,” in 2009 Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC),. IEEE, 2009, pp. 23–31.

[8] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The sor-

cerer’s apprentice guide to fault attacks,” Proceedings of the IEEE, vol. 94,

no. 2, pp. 370–382, 2006.

175

176 BIBLIOGRAPHY

[9] S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine, “Ev-

idence of a larger em-induced fault model,” in International Conference on

Smart Card Research and Advanced Applications. Springer, 2014, pp. 245–

259.

[10] J. G. Van Woudenberg, M. F. Witteman, and F. Menarini, “Practical optical

fault injection on secure microcontrollers,” in Proc. of FDTC’11. IEEE, 2011,

pp. 91–99.

[11] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and P. Schau-

mont, “Software fault resistance is futile: Effective single-glitch attacks,” in

Proc. of FDTC’16, 2016, pp. 47–58.

[12] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Improving fault attacks on em-

bedded software using risc pipeline characterization,” in Proc. of FDTC’15,

2015, pp. 97–108.

[13] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz, “Elec-

tromagnetic fault injection: towards a fault model on a 32-bit microcontroller,”

in Proc. of FDTC’13, 2013, pp. 77–88.

[14] T. Korak and M. Hoefler, “On the Effects of Clock and Power Supply Tam-

pering on Two Microcontroller Platforms,” in Proc. of FDTC’14, 2014, pp.

8–17.

[15] D. Karaklajic, J. Fan, and I. Verbauwhede, “A Systematic M Safe-error Detec-

tion in Hardware Implementations of Cryptographic Algorithms,” in Hardware-

Oriented Security and Trust (HOST), 2012 IEEE International Symposium on,

June 2012, pp. 96–101.

BIBLIOGRAPHY 177

[16] C. OFlynn and Z. D. Chen, “ChipWhisperer: An Open-source Platform for

Hardware Embedded Security Research,” in Constructive Side-Channel Anal-

ysis and Secure Design. Springer, 2014, pp. 243–260.

[17] N. Timmers and C. Mune, “Escalating privileges in linux using voltage

fault injection,” in Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC 2017), 2017, pp. 25–35. [Online]. Available: http:

//dx.doi.org/10.1109/FDTC.2016.18

[18] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM

using fault injection,” in Workshop on Fault Diagnosis and Tolerance

in Cryptography (FDTC 2016), 2016, pp. 25–35. [Online]. Available:

http://dx.doi.org/10.1109/FDTC.2016.18

[19] R. Pareja, N. Wiersma, and M. Witteman, “Safety not security. on the resilence

of asil-d certified microcontrollers against fault injection attacks,” in Workshop

on Fault Diagnosis and Tolerance in Cryptography (FDTC 2017), 2017, pp.

25–35. [Online]. Available: http://dx.doi.org/10.1109/FDTC.2016.18

[20] L. Cojocar, K. Papagiannopoulos, and N. Timmers3, “Instruction Duplica-

tion: Leaky and Not Too Fault-Tolerant!” Cryptology ePrint Archive, Report

2017/1082, 2017, http://eprint.iacr.org/.

[21] C. OFlynn, “A framework for embedded hardware security analysis,” Ph.D.

dissertation, Dalhousie University, 2017.

[22] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the

perils of security-oblivious energy management,” in 26th USENIX Security

Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,

http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://dx.doi.org/10.1109/FDTC.2016.18
http://eprint.iacr.org/

178 BIBLIOGRAPHY

2017, pp. 1057–1074. [Online]. Available: https://www.usenix.org/conference/

usenixsecurity17/technical-sessions/presentation/tang

[23] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote software-

induced fault attack in javascript,” in Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2016, pp. 300–321.

[24] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,

W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer defenses,”

arXiv preprint arXiv:1710.00551, 2017.

[25] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vi-

gna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic rowham-

mer attacks on mobile platforms,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 2016, pp.

1675–1689.

[26] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one cloud

flops: Cross-vm row hammer attacks and privilege escalation.” in USENIX

Security Symposium, 2016, pp. 19–35.

[27] B. Giller, “Implementing Practical Electrical Glitching At-

tacks,” https://www.blackhat.com/docs/eu-15/materials/

eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf, [Online; ac-

cessed 14-Nov-2017].

[28] M. E. Scott, “Glitchy Descriptor Firmware Grab,” https://www.youtube.com/

watch?v=TeCQatNcF20, [Online; accessed 14-Nov-2017].

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.youtube.com/watch?v=TeCQatNcF20
https://www.youtube.com/watch?v=TeCQatNcF20

BIBLIOGRAPHY 179

[29] J. Balasch, B. Gierlichs, and I. Verbauwhede, “An in-depth and black-box

characterization of the effects of clock glitches on 8-bit MCUs,” in Workshop

on Fault Diagnosis and Tolerance in Cryptography (FDTC 2011), 2011, pp.

105–114. [Online]. Available: http://dx.doi.org/10.1109/FDTC.2011.9

[30] A. Barenghi, G. M. Bertoni, L. Breveglieri, M. Pelliccioli, and G. Pelosi, “In-

jection Technologies for Fault Attacks on Microprocessors,” in Fault Analysis

in Cryptography, ser. Information Security and Cryptography, M. Joye and

M. Tunstall, Eds. Springer Berlin Heidelberg, 2012, pp. 275–293.

[31] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,

“Electromagnetic fault injection: towards a fault model on a 32-bit

microcontroller,” CoRR, vol. abs/1402.6421, 2014. [Online]. Available:

http://arxiv.org/abs/1402.6421

[32] J. Quisquater and D. Samyde, “Eddy Current for Magnetic Analysis with

Active Sensor,” in Esmart, 2002.

[33] L. Riviere, Z. Najm, P. Rauzy, J.-L. Danger, J. Bringer, and L. Sauvage, “High

precision fault injections on the instruction cache of armv7-m architectures,”

in Hardware Oriented Security and Trust (HOST), 2015 IEEE International

Symposium on. IEEE, 2015, pp. 62–67.

[34] J.-M. Schmidt and M. Hutter, Optical and em fault-attacks on crt-based rsa:

Concrete results. na, 2007.

[35] A. Cui and R. Housley, “Badfet: Defeating modern secure boot using second-

order pulsed electromagnetic fault injection,” in 11th USENIX Workshop on

Offensive Technologies (WOOT 17). USENIX Association, 2017.

http://dx.doi.org/10.1109/FDTC.2011.9
http://arxiv.org/abs/1402.6421

180 BIBLIOGRAPHY

[36] J. Obermaier and S. Tatschner, “Shedding too much light on a microcontrollers

firmware protection,” in 11th USENIX Workshop on Offensive Technologies

(WOOT 17). USENIX Association, 2017.

[37] G. Bouffard, J. Iguchi-Cartigny, and J.-L. Lanet, “Combined software and

hardware attacks on the java card control flow.” in CARDIS, vol. 7079.

Springer, 2011, pp. 283–296.

[38] G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on java card 3.0 combining

fault and logical attacks,” Smart Card Research and Advanced Application, pp.

148–163, 2010.

[39] J. Lancia, “Java card combined attacks with localization-agnostic fault in-

jection,” in International Conference on Smart Card Research and Advanced

Applications. Springer, 2012, pp. 31–45.

[40] E. Vétillard and A. Ferrari, “Combined attacks and countermeasures,” in In-

ternational Conference on Smart Card Research and Advanced Applications.

Springer, 2010, pp. 133–147.

[41] F. Amiel, K. Villegas, B. Feix, and L. Marcel, “Passive and active combined

attacks: Combining fault attacks and side channel analysis,” in Fault Diagnosis

and Tolerance in Cryptography, 2007. FDTC 2007. Workshop on. IEEE, 2007,

pp. 92–102.

[42] C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet, “Passive and active com-

bined attacks on aes combining fault attacks and side channel analysis,” in

Fault Diagnosis and Tolerance in Cryptography (FDTC), 2010 Workshop on.

IEEE, 2010, pp. 10–19.

BIBLIOGRAPHY 181

[43] A. Moradi, O. Mischke, C. Paar, Y. Li, K. Ohta, and K. Sakiyama, “On

the power of fault sensitivity analysis and collision side-channel attacks in a

combined setting.” in CHES, vol. 6917. Springer, 2011, pp. 292–311.

[44] T. Roche, V. Lomné, and K. Khalfallah, “Combined fault and side-channel at-

tack on protected implementations of aes,” Smart Card Research and Advanced

Applications, pp. 65–83, 2011.

[45] M. Joye, “A method for preventing ”skipping” attacks,” in 2012

IEEE Symposium on Security and Privacy Workshops, San Francisco,

CA, USA, May 24-25, 2012, 2012, pp. 12–15. [Online]. Available:

http://dx.doi.org/10.1109/SPW.2012.14

[46] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of

a software countermeasure against instruction skip attacks,” Cryptology ePrint

Archive, Report 2013/679, 2013, http://eprint.iacr.org/.

[47] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante, Software-

Implemented Hardware Fault Tolerance. Springer, 2006.

[48] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Comprehensive anal-

ysis of software countermeasures against fault attacks,” in Proc. of DATE’13,

2013, pp. 404–409.

[49] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni, “Counter-

measures against fault attacks on software implemented AES: effectiveness and

cost,” in Proc of WESS’10, 2010, pp. 1–10.

[50] J.-F. Lalande, K. Heydemann, and P. Berthomé, “Software countermeasures

http://dx.doi.org/10.1109/SPW.2012.14
http://eprint.iacr.org/

182 BIBLIOGRAPHY

for control flow integrity of smart card c codes,” in European Symposium on

Research in Computer Security. Springer, 2014, pp. 200–218.

[51] S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault tolerant infec-

tive countermeasure for aes,” Journal of Hardware and Systems Security, vol. 1,

no. 1, pp. 3–17, 2017.

[52] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan Kaufmann, 2010.

[53] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation and

dummy rounds: Fault protection for block ciphers without check-before-

output.”

[54] D. P. Siewiorek, “Architecture of fault-tolerant computers: an historical per-

spective,” Proceedings of the IEEE, vol. 79, no. 12, pp. 1710–1734, Dec 1991.

[55] R. P. Bastos, F. S. Torres, J. M. Dutertre, M. L. Flottes, G. D. Natale, and

B. Rouzeyre, “A bulk built-in sensor for detection of fault attacks,” in IEEE

International Symposium on Hardware-Oriented Security and Trust (HOST

2013), 2013, pp. 51–54.

[56] A. G. Yanci, S. Pickles, and T. Arslan, “Detecting voltage glitch attacks on

secure devices,” in ECSIS Symposium on Bio-inspired Learning and Intelligent

Systems for Security (BLISS 2008). IEEE, 2008, pp. 75–80.

[57] E. Garcia-Moreno, R. Picos, E. Isern, M. Roca, J. Font, and K. Suenaga, “Cmos

current source based radiation sensors,” in IEEE International Conference on

Solid-State and Integrated Circuit Technology (ICSICT 2010), 2010, pp. 1380–

1383.

BIBLIOGRAPHY 183

[58] P. Luo, C. Luo, and Y. Fei, “System clock and power supply cross-checking

for glitch detection,” IACR Cryptology ePrint Archive, vol. 2016, p. 968, 2016.

[Online]. Available: http://eprint.iacr.org/2016/968

[59] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and

T. Mudge, “A self-tuning dvs processor using delay-error detection and correc-

tion,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 792–804, April

2006.

[60] D. Mukhopadhyay, “An improved fault based attack of the advanced

encryption standard,” in International Conference on Cryptology in

Africa (AFRICACRYPT), 2009, pp. 421–434. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-02384-2 26

[61] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis

of the advanced encryption standard using a single fault,” in IFIP WG

11.2 International Workshop Information Security Theory and Practice.

Security and Privacy of Mobile Devices in Wireless Communication (WISTP

2011), 2011, pp. 224–233. [Online]. Available: http://dx.doi.org/10.1007/

978-3-642-21040-2 15

[62] C. Ferretti, S. Mella, and F. Melzani, “The role of the fault model in DFA

against AES,” in Proc. of HASP’14, 2014, pp. 4:1–4:8.

[63] D. Karaklajic, J. Schmidt, and I. Verbauwhede, “Hardware Designer’s Guide

to Fault Attacks,” IEEE Trans. VLSI Syst., vol. 21, no. 12, pp. 2295–2306,

2013.

[64] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks

http://eprint.iacr.org/2016/968
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15

184 BIBLIOGRAPHY

on cryptographic devices: Theory, practice, and countermeasures,” Proceedings

of the IEEE, vol. 100, no. 11, pp. 3056–3076, Nov 2012.

[65] M. Otto, “Fault attacks and countermeasures,” Ph.D. dissertation, University

of Paderborn, 2005.

[66] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni, “Counter-

measures Against Fault Attacks on Software Implemented AES: Effectiveness

and Cost,” in Proc. of WESS’10, 2010, pp. 7:1–7:10.

[67] B. Selmke, J. Heyszl, and G. Sigl, “Attack on a DFA protected AES by

simultaneous laser fault injections,” in Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC 2016), 2016, pp. 36–46. [Online]. Available:

http://dx.doi.org/10.1109/FDTC.2016.16

[68] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. P. Chakrabarti,

“Fault space transformation: A generic approach to counter differential fault

analysis and differential fault intensity analysis on aes-like block ciphers,”

IEEE Trans. Information Forensics and Security, vol. 12, no. 5, pp. 1092–1102,

2017. [Online]. Available: http://dx.doi.org/10.1109/TIFS.2016.2646638

[69] E. Ozer, Y. Sazeides, D. Kershaw, and S. Biles, “Data processing apparatus

and method for analysing transient faults withing storage elements of the data

processing apparatus,” Apr. 25 2013, US Patent 2013/0103972 A1.

[70] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Moderator-Ravi,

“Security as a New Dimension in Embedded System Design,” in Proc. of the

DAC’04, 2004, pp. 753–760.

http://dx.doi.org/10.1109/FDTC.2016.16
http://dx.doi.org/10.1109/TIFS.2016.2646638

BIBLIOGRAPHY 185

[71] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in em-

bedded systems: Design challenges,” ACM TECS, vol. 3, no. 3, pp. 461–491,

2004.

[72] B. Robisson, M. Agoyan, P. Soquet, S. Le Henaff, F. Wajsbürt, P. Bazargan-

Sabet, and G. Phan, “Smart security management in secure devices,” Cryp-

tology ePrint Archive, Report 2015/670, 2015. http://eprint. iacr. org, Tech.

Rep., 2015.

[73] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin,

“Reconfigurable hardware for high-security/high-performance embedded sys-

tems: the safes perspective,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 16, no. 2, pp. 144–155, 2008.

[74] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM

SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[75] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick, L. Nazhandali, and P. Schau-

mont, “FAME: Fault-attack aware microprocessor extensions for hardware

fault detection and software fault response,” in Proc. of HASP’16, 2016, p. 8.

[76] F. Courbon, P. Loubet-Moundi, J. J. Fournier, and A. Tria, “Adjusting laser

injections for fully controlled faults,” in Proc. of COSADE’14, 2014, pp. 229–

242.

[77] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K. Ohta,

“Fault Sensitivity Analysis,” in Proc. of CHES’10, 2010, pp. 320–334.

186 BIBLIOGRAPHY

[78] M. Joye and M. Tunstall, Eds., Fault Analysis in Cryptography, ser. Informa-

tion Security and Cryptography. Springer, 2012.

[79] S. Bhattacharya and D. Mukhopadhyay, “Formal fault analysis of branch pre-

dictors: attacking countermeasures of asymmetric key ciphers,” Journal of

Cryptographic Engineering, vol. 7, no. 4, pp. 299–310, 2017.

[80] S. Guilley, L. Sauvage, J.-L. Danger, N. Selmane, and R. Pacalet, “Silicon-

level solutions to counteract passive and active attacks,” in Fault Diagnosis

and Tolerance in Cryptography, 2008. FDTC’08. 5th Workshop on. IEEE,

2008, pp. 3–17.

[81] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, A. Tria et al., “Investigation

of timing constraints violation as a fault injection means,” in Proc. of DCIS’12,

2012.

[82] “Riscure Inspector FI,” https://www.riscure.com/security-tools/inspector-fi/,

[Online; accessed 18-May-2017].

[83] M. Hutter and J.-M. Schmidt, “The temperature side channel and heating fault

attacks,” in International Conference on Smart Card Research and Advanced

Applications. Springer, 2013, pp. 219–235.

[84] S. Skorobogatov, “Local heating attacks on flash memory devices,” in

Hardware-Oriented Security and Trust, 2009. HOST’09. IEEE International

Workshop on. IEEE, 2009, pp. 1–6.

[85] S. Govindavajhala and A. W. Appel, “Using memory errors to attack a virtual

machine,” in Security and Privacy, 2003. Proceedings. 2003 Symposium on.

IEEE, 2003, pp. 154–165.

https://www.riscure.com/security-tools/inspector-fi/

BIBLIOGRAPHY 187

[86] T. Korak, M. Hutter, B. Ege, and L. Batina, “Clock glitch attacks in the pres-

ence of heating,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),

2014 Workshop on. IEEE, 2014, pp. 104–114.

[87] S. P. Skorobogatov, R. J. Anderson et al., “Optical fault induction attacks,”

in CHES, vol. 2523. Springer, 2002, pp. 2–12.

[88] P. Maistri, R. Leveugle, L. Bossuet, A. Aubert, V. Fischer, B. Robisson,

N. Moro, P. Maurine, J.-M. Dutertre, and M. Lisart, “Electromagnetic anal-

ysis and fault injection onto secure circuits,” in Very Large Scale Integration

(VLSI-SoC), 2014 22nd International Conference on. IEEE, 2014, pp. 1–6.

[89] R. V. S. R. Velegalati and J. van Woudenberg, “Electro magnetic fault injection

in practice,” in International Cryptographic Module Conference (ICMC), 2013.

[90] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch, “Vulner-

abilities in mlc nand flash memory programming: experimental analysis, ex-

ploits, and mitigation techniques,” in High Performance Computer Architecture

(HPCA), 2017 IEEE International Symposium on. IEEE, 2017, pp. 49–60.

[91] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu, “Flipping bits in memory without accessing them: An experimental

study of dram disturbance errors,” in ACM SIGARCH Computer Architecture

News, vol. 42, no. 3. IEEE Press, 2014, pp. 361–372.

[92] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip

feng shui: Hammering a needle in the software stack.” in USENIX Security

Symposium, 2016, pp. 1–18.

188 BIBLIOGRAPHY

[93] A. Kurmus, N. Ioannou, N. Papandreou, and T. Parnell, “From random block

corruption to privilege escalation: A filesystem attack vector for rowhammer-

like attacks,” in 11th USENIX Workshop on Offensive Technologies (WOOT

17). Vancouver, BC: USENIX Association, 2017. [Online]. Available: https://

www.usenix.org/conference/woot17/workshop-program/presentation/kurmus

[94] A. Dehbaoui, A.-P. Mirbaha, N. Moro, J.-M. Dutertre, and A. Tria, “Elec-

tromagnetic glitch on the aes round counter,” in International Workshop on

Constructive Side-Channel Analysis and Secure Design. Springer, 2013, pp.

17–31.

[95] S. Nashimoto, N. Homma, Y.-i. Hayashi, J. Takahashi, H. Fuji, and T. Aoki,

“Buffer overflow attack with multiple fault injection and a proven countermea-

sure,” Journal of Cryptographic Engineering, vol. 7, no. 1, pp. 35–46, 2017.

[96] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A symbolic ap-

proach for evaluation the robustness of secured codes against control flow in-

jections,” in Software Testing, Verification and Validation (ICST), 2014 IEEE

Seventh International Conference on. IEEE, 2014, pp. 213–222.

[97] H. Choukri and M. Tunstall, “Round reduction using faults,” FDTC, vol. 5,

pp. 13–24, 2005.

[98] J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria, and

T. Vaschalde, “Fault round modification analysis of the advanced encryption

standard,” in Hardware-Oriented Security and Trust (HOST), 2012 IEEE In-

ternational Symposium on. IEEE, 2012, pp. 140–145.

https://www.usenix.org/conference/woot17/workshop-program/presentation/kurmus
https://www.usenix.org/conference/woot17/workshop-program/presentation/kurmus

BIBLIOGRAPHY 189

[99] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosys-

tems,” in Advances in CryptologyCRYPTO’97. Springer, 1997, pp. 513–525.

[100] J. J. Hoch and A. Shamir, “Fault analysis of stream ciphers,” in International

Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2004,

pp. 240–253.

[101] I. Biehl, B. Meyer, and V. Müller, “Differential fault attacks on elliptic curve

cryptosystems,” in Annual International Cryptology Conference. Springer,

2000, pp. 131–146.

[102] M. Taha and T. Eisenbarth, “Implementation attacks on post-quantum cryp-

tographic schemes,” Cryptology ePrint Archive, Report 2015/1083, 2015,

http://eprint.iacr.org/.

[103] S.-M. Yen and M. Joye, “Checking before output may not be enough against

fault-based cryptanalysis,” IEEE Transactions on computers, vol. 49, no. 9,

pp. 967–970, 2000.

[104] J. Blömer and J.-P. Seifert, “Fault based cryptanalysis of the advanced en-

cryption standard (aes),” in Computer Aided Verification. Springer, 2003, pp.

162–181.

[105] M. Ciet and M. Joye, “Elliptic curve cryptosystems in the presence of perma-

nent and transient faults,” Designs, codes and cryptography, vol. 36, no. 1, pp.

33–43, 2005.

[106] P.-A. Fouque, R. Lercier, D. Réal, and F. Valette, “Fault attack on elliptic

curve montgomery ladder implementation,” in Fault Diagnosis and Tolerance

in Cryptography, 2008. FDTC’08. 5th Workshop on. IEEE, 2008, pp. 92–98.

http://eprint.iacr.org/

190 BIBLIOGRAPHY

[107] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault in-

tensity analysis,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),

2014 Workshop on. IEEE, 2014, pp. 49–58.

[108] Y. Li, K. Ohta, and K. Sakiyama, “New fault-based side-channel attack using

fault sensitivity,” IEEE Transactions on Information Forensics and Security,

vol. 7, no. 1, pp. 88–97, 2012.

[109] Y. Liu, J. Zhang, L. Wei, F. Yuan, and Q. Xu, “Dera: Yet another differ-

ential fault attack on cryptographic devices based on error rate analysis,” in

Proceedings of the 52nd Annual Design Automation Conference. ACM, 2015,

p. 31.

[110] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on aes with

faulty ciphertexts only,” in Fault Diagnosis and Tolerance in Cryptography

(FDTC), 2013 Workshop on. IEEE, 2013, pp. 108–118.

[111] K. Järvinen, C. Blondeau, D. Page, and M. Tunstall, “Harnessing biased faults

in attacks on ecc-based signature schemes,” in Fault Diagnosis and Tolerance

in Cryptography (FDTC), 2012 Workshop on. IEEE, 2012, pp. 72–82.

[112] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and S. Ermeneux,

“Laser-induced fault injection on smartphone bypassing the secure boot,” in

2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).

IEEE, 2017, pp. 41–48.

[113] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to gain

kernel privileges,” Black Hat, 2015.

BIBLIOGRAPHY 191

[114] M. San Pedro, M. Soos, and S. Guilley, “Fire: Fault injection for reverse

engineering.” in WISTP. Springer, 2011, pp. 280–293.

[115] H. Le Bouder, S. Guilley, B. Robisson, and A. Tria, “Fault injection to re-

verse engineer des-like cryptosystems,” in Foundations and Practice of Secu-

rity. Springer, 2014, pp. 105–121.

[116] C. Clavier and A. Wurcker, “Reverse engineering of a secret aes-like cipher by

ineffective fault analysis,” in Fault Diagnosis and Tolerance in Cryptography

(FDTC), 2013 Workshop on. IEEE, 2013, pp. 119–128.

[117] M. Jacob, D. Boneh, and E. Felten, “Attacking an obfuscated cipher by in-

jecting faults,” in Digital Rights Management Workshop, vol. 2696. Springer,

2002, pp. 16–31.

[118] F. Courbon, J. J. Fournier, P. Loubet-Moundi, and A. Tria, “Combining im-

age processing and laser fault injections for characterizing a hardware aes,”

IEEE transactions on computer-aided design of integrated circuits and systems,

vol. 34, no. 6, pp. 928–936, 2015.

[119] P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-

event upset in digital microelectronics,” IEEE Transactions on Nuclear Sci-

ence, vol. 50, no. 3, pp. 583–602, June 2003.

[120] E. Sho, N. Homma, Y.-i. Hayashi, J. Takahashi, and F. Hitoshi, “An adaptive

multiple-fault injection attack on microcontrollers and a countermeasure,” IE-

ICE Transactions on Fundamentals of Electronics, Communications and Com-

puter Sciences, vol. 98, no. 1, pp. 171–181, 2015.

192 BIBLIOGRAPHY

[121] “LEON3 processor,” http://www.gaisler.com/index.php/products/

processors/leon3, [Online; accessed 18-May-2017].

[122] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria, “When

Clocks Fail: On Critical Paths and Clock Faults,” in Smart Card Research and

Advanced Application. Springer, 2010, pp. 182–193.

[123] “SAKURA-G Board,” http://satoh.cs.uec.ac.jp/SAKURA/hardware/

SAKURA, [Online; accessed 18-May-2015].

[124] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “An On-chip

Glitchy-clock Generator for Testing Fault Injection Attacks,” Journal of Cryp-

tographic Engineering, vol. 1, no. 4, pp. 265–270, 2011.

[125] “GRLIB IP library,” http://www.gaisler.com/index.php/products/ipcores/

soclibrary, [Online; accessed 18-May-2015].

[126] “GRMON2 Debug Monitor,” http://www.gaisler.com/index.php/products/

debug-tools/grmon2, [Online; accessed 18-May-2015].

[127] Y. Li, K. Ohta, and K. Sakiyama, “Revisit Fault Sensitivity Analysis on

WDDL-AES ,” in 2011 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST),. IEEE, 2011, pp. 148–153.

[128] R. Lashermes, G. Reymond, J. Dutertre, J. Fournier, B. Robisson, and A. Tria,

“A DFA on AES Based on the Entropy of Error Distributions,” in 2012 Work-

shop on Fault Diagnosis and Tolerance in Cryptography (FDTC),. IEEE,

2012, pp. 34–43.

[129] B. Yuce, N. F. Ghalaty, and P. Schaumont, “Tvvf: Estimating the vulnerabil-

ity of hardware cryptosystems against timing violation attacks,” in Hardware

http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA
http://www.gaisler.com/index.php/products/ipcores/soclibrary
http://www.gaisler.com/index.php/products/ipcores/soclibrary
http://www.gaisler.com/index.php/products/debug-tools/grmon2
http://www.gaisler.com/index.php/products/debug-tools/grmon2

BIBLIOGRAPHY 193

Oriented Security and Trust (HOST), 2015 IEEE International Symposium on.

IEEE, 2015, pp. 72–77.

[130] T. Sugawara, D. Suzuki, and T. Katashita, “Circuit Simulation for Fault

Sensitivity Analysis and its Application to Cryptographic LSI,” in Proc. of

FDTC’12, 2012, pp. 16–23.

[131] A. Barenghi, L. Breveglieri, A. Palomba, and G. Pelosi, “Fault Sensitivity Anal-

ysis at Design Time,” in Trusted Computing for Embedded Systems. Springer,

2015, pp. 175–186.

[132] Y.-i. Hayashi, N. Homma, T. Mizuki, T. Aoki, and H. Sone, “Fundamental

study on fault occurrence mechanisms by intentional electromagnetic interfer-

ence using impulses,” in Proc. of APEMC’15, 2015, pp. 585–588.

[133] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[134] G. Piret and J. Quisquater, “A differential fault attack technique against SPN

structures, with application to the AES and KHAZAD,” in Proc. of CHES’03,

2003, pp. 77–88.

[135] D. Ferraretto and G. Pravadelli, “Simulation-based fault injection with qemu

for speeding-up dependability analysis of embedded software,” Journal of Elec-

tronic Testing, vol. 32, no. 1, pp. 43–57, 2016.

[136] A. Höller, G. Schönfelder, N. Kajtazovic, T. Rauter, and C. Kreiner, “Fies: a

fault injection framework for the evaluation of self-tests for cots-based safety-

critical systems,” in Microprocessor Test and Verification Workshop (MTV),

2014 15th International. IEEE, 2014, pp. 105–110.

194 BIBLIOGRAPHY

[137] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D. Gizopou-

los, “Differential fault injection on microarchitectural simulators,” in Workload

Characterization (IISWC), 2015 IEEE International Symposium on. IEEE,

2015, pp. 172–182.

[138] M. Kooli and G. Di Natale, “A survey on simulation-based fault injection

tools for complex systems,” in Design & Technology of Integrated Systems In

Nanoscale Era (DTIS), 2014 9th IEEE International Conference On. IEEE,

2014, pp. 1–6.

[139] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “Gemfi:

A fault injection tool for studying the behavior of applications on unreliable

substrates,” in Dependable Systems and Networks (DSN), 2014 44th Annual

IEEE/IFIP International Conference on. IEEE, 2014, pp. 622–629.

[140] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-

injection based comparison of program susceptibility to soft errors,” in De-

pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP Inter-

national Conference on. IEEE, 2015, pp. 319–330.

[141] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and

O. Spinczyk, “Fail*: An open and versatile fault-injection framework for the

assessment of software-implemented hardware fault tolerance,” in Dependable

Computing Conference (EDCC), 2015 Eleventh European. IEEE, 2015, pp.

245–255.

[142] M. Berthier, J. Bringer, H. Chabanne, T.-H. Le, L. Rivière, and V. Servant,

“Idea: embedded fault injection simulator on smartcard,” in International

BIBLIOGRAPHY 195

Symposium on Engineering Secure Software and Systems. Springer, 2014,

pp. 222–229.

[143] P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, and J.-F. Lalande,

“High level model of control flow attacks for smart card functional security,”

in Availability, Reliability and Security (ARES), 2012 Seventh International

Conference on. IEEE, 2012, pp. 224–229.

[144] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens,

“FISSC: A fault injection and simulation secure collection,” in International

Conference on Computer Safety, Reliability, and Security. Springer, 2016, pp.

3–11.

[145] L. Dureuil, M.-L. Potet, P. de Choudens, C. Dumas, and J. Clédière, “From

code review to fault injection attacks: filling the gap using fault model in-

ference,” in International Conference on Smart Card Research and Advanced

Applications. Springer, 2015, pp. 107–124.

[146] L. Rivière, M.-L. Potet, T.-H. Le, J. Bringer, H. Chabanne, and M. Puys,

“Combining high-level and low-level approaches to evaluate software imple-

mentations robustness against multiple fault injection attacks,” in Interna-

tional Symposium on Foundations and Practice of Security. Springer, 2014,

pp. 92–111.

[147] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “Qemu-based fault

injection for a system-level analysis of software countermeasures against fault

attacks,” in Digital System Design (DSD), 2015 Euromicro Conference on.

IEEE, 2015, pp. 530–533.

196 BIBLIOGRAPHY

[148] M. Lackner, R. Berlach, M. Hraschan, R. Weiss, and C. Steger, “A fault at-

tack emulation environment to evaluate java card virtual-machine security,” in

Digital System Design (DSD), 2014 17th Euromicro Conference on. IEEE,

2014, pp. 480–487.

[149] J.-B. Machemie, C. Mazin, J.-L. Lanet, and J. Cartigny, “Smartcm a smart

card fault injection simulator,” in Information Forensics and Security (WIFS),

2011 IEEE International Workshop on. IEEE, 2011, pp. 1–6.

[150] M. Puys, L. Rivière, J. Bringer, and T.-h. Le, “High-level simulation for mul-

tiple fault injection evaluation,” in Data Privacy Management, Autonomous

Spontaneous Security, and Security Assurance. Springer, 2015, pp. 293–308.

[151] L. Rivière, J. Bringer, T.-H. Le, and H. Chabanne, “A novel simulation ap-

proach for fault injection resistance evaluation on smart cards,” in Software

Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth

International Conference on. IEEE, 2015, pp. 1–8.

[152] J. Breier, “On Analyzing Program Behavior Under Fault Injection Attacks,”

Cryptology ePrint Archive, Report 2016/1060, 2016, http://eprint.iacr.org/.

[153] N. Selmane, S. Bhasin, S. Guilley, T. Graba, and J.-L. Danger, “WDDL is

protected against setup time violation attacks,” in Proc. of FDTC’09, 2009,

pp. 73–83.

[154] L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine, L. Guillaume-

Sage, J. Clediere, and A. Tria, “Efficiency of a glitch detector against electro-

magnetic fault injection,” in Proc. of DATE’14, 2014, pp. 1–6.

http://eprint.iacr.org/

BIBLIOGRAPHY 197

[155] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of con-

current error detection against differential fault analysis,” Journal of Crypto-

graphic Engineering, pp. 1–17, 2014.

[156] T. Sato and Y. Kunitake, “A simple flip-flop circuit for typical-case designs for

DFM,” in Proc. of ISQED’07, 2007, pp. 539–544.

[157] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli, “On-chip error correct-

ing techniques for new-generation flash memories,” Proceedings of the IEEE,

vol. 91, no. 4, pp. 602–616, 2003.

[158] M. Hutter and P. Schwabe, “Nacl on 8-bit AVR microcontrollers,”

in International Conference on Cryptology in Africa (AFRICACRYPT

2013), 2013, pp. 156–172. [Online]. Available: http://dx.doi.org/10.1007/

978-3-642-38553-7 9

[159] K. Lemke-Rust and C. Paar, “An adversarial model for fault analysis against

low-cost cryptographic devices.” in FDTC. Springer, 2006, pp. 131–143.

[160] “AMBA Bus Specifications,” https://www.arm.com/products/system-ip/

amba-specifications, [Online; accessed 18-May-2017].

[161] “GRLIB IP Core User’s Manual,” http://www.gaisler.com/products/grlib/

grip.pdf, [Online; accessed 18-May-2015].

[162] C. Deshpande, “Hardware fault attack detection methods for secure embedded

systems,” Master’s thesis, Virginia Polytechnic Institute and State University,

Blacksburg, VA, 9 2017.

http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1007/978-3-642-38553-7_9
https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
http://www.gaisler.com/products/grlib/grip.pdf
http://www.gaisler.com/products/grlib/grip.pdf

198 BIBLIOGRAPHY

[163] M. Taha, A. Reyhani-Masoleh, and P. Schaumont, “Stateless leakage resiliency

from nlfsrs,” in Hardware Oriented Security and Trust (HOST), 2017 IEEE

International Symposium on. IEEE, 2017, pp. 56–61.

[164] S. Ordas, L. Guillaume-Sage, and P. Maurine, “Em injection: Fault model and

locality,” in Fault Diagnosis and Tolerance in Cryptography (FDTC), 2015

Workshop on. IEEE, 2015, pp. 3–13.

[165] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-implemented

EDAC protection against SEUs,” IEEE Trans. Reliability, vol. 49, no. 3, pp.

273–284, 2000.

[166] M. Witteman and M. Oostdijk, “Secure application programming in the pres-

ence of side channel attacks,” in RSA conference, vol. 2008, 2008.

[167] S. S. Ali, D. Mukhopadhyay, and M. Tunstall, “Differential fault

analysis of AES: towards reaching its limits,” Journal of Cryptographic

Engineering, vol. 3, no. 2, pp. 73–97, 2013. [Online]. Available:

http://dx.doi.org/10.1007/s13389-012-0046-y

[168] A.-P. Mirbaha, J.-M. Dutertre, and A. Tria, “Differential analysis of round-

reduced AES faulty ciphertexts,” in IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT 2013). IEEE,

2013, pp. 204–211.

[169] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of con-

current error detection against differential fault analysis,” Journal of Crypto-

graphic Engineering, vol. 5, no. 3, pp. 153–169, 2015.

http://dx.doi.org/10.1007/s13389-012-0046-y

BIBLIOGRAPHY 199

[170] E. Barker and J. Kelsey, “Recommendation for random number generation

using deterministic random bit generators,” NIST Special Publication 800-90A

rev 1, June 2015.

[171] B. Yuce, N. F. Ghalaty, C. Deshpande, H. Santapuri, C. Patrick, L. Nazhandali,

and P. Schaumont, “Analyzing the fault injection sensitivity of secure embed-

ded software,” ACM Transactions on Embedded Computing Systems (TECS),

vol. 16, no. 4, p. 95, 2017.

[172] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Analyzing the efficiency of biased-

fault based attacks,” IEEE Embedded Systems Letters, vol. 8, no. 2, pp. 33–36,

2016.

[173] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Differential fault intensity anal-

ysis on PRESENT and LED block ciphers,” in International Workshop on

Constructive Side-Channel Analysis and Secure Design. Springer, 2015, pp.

174–188.

[174] C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont, “Lightweight fault

attack resistance in software using intra-instruction redundancy,” in Selected

Areas in Cryptography - SAC 2016 - 23rd International Conference, St. John’s,

NL, Canada, August 10-12, 2016, Revised Selected Papers, 2016, pp. 231–244.

[Online]. Available: https://doi.org/10.1007/978-3-319-69453-5 13

[175] C. Deshpande, B. Yuce, N. F. Ghalaty, D. Ganta, P. Schaumont, and

L. Nazhandali, “A configurable and lightweight timing monitor for fault attack

detection,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual Sympo-

sium on. IEEE, 2016, pp. 461–466.

https://doi.org/10.1007/978-3-319-69453-5_13

200 BIBLIOGRAPHY

[176] N. F. Galathy, B. Yuce, and P. Schaumont, “A systematic approach to fault

attack resistant design,” in Fundamentals of IP and SoC Security. Springer,

2017, pp. 223–245.

[177] B. Yuce and S. P. R. Ghalaty, Nahid Farhady and, “Microprocessor fault

detection and response system,” Nov. 17 2017, US Patent 20,170,344,438.

[Online]. Available: http://www.freepatentsonline.com/y2017/0344438.html

http://www.freepatentsonline.com/y2017/0344438.html

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	Introduction
	Fault Attacks on Embedded Software: Threats and Countermeasures
	Review of Existing Attacks and Countermeasures
	Review of the Existing Fault Attacks
	Review of the Existing Fault Countermeasures

	Thesis Statement and Research Questions
	Contributions
	Instruction Fault Sensitivity Model
	Micro-architecture Aware Fault Injection Attack (MAFIA)
	Micro-architectural Embedded System Simulator (MESS)
	Fault-attack Aware Microprocessor Extensions (FAME)

	Organization of the Dissertation

	Background
	Threat Model
	Using Faults as a Hacking Tool
	Fault Injection Techniques
	Hardware-controlled Fault Injection Techniques
	Software-controlled Fault Injection Techniques

	Fault Manifestation in the Micro-architecture
	Fault Propagation to the Software Layer
	Fault Exploitation Techniques
	Fault Models
	Cryptanalysis using Fault Injection
	Fault-Enabled Logical Attacks
	Using Fault Injection to Assist Reverse Engineering

	Comparison of Fault Attacks on Hardware and Software Secure Systems
	Comparison of Fault-Tolerance and Fault-Attack-Resistance

	Fault Injection and Analysis Setup
	The LEON3 Processor
	Setup Time Violation
	Implementation of Clock Glitch Injector
	Implementation of Data Acquisition

	Instruction Fault Sensitivity Model
	Fault Behavior in a RISC Pipeline
	Fault Injection in the RISC Pipeline
	Instruction Faults and Computation Faults
	Fault Injection in the Memory

	Timing Characterization of RISC Pipeline

	Micro-architecture Aware Fault Injection Attack (MAFIA)
	How MAFIA Works
	Algorithm-level Analysis
	Instruction-level Analysis
	Microarchitecture-level Analysis

	Case Studies: Fault Attacks on Secure Embedded Software
	Case Study I: DFIA on TBOX AES
	Case Study II: Analysis of Instruction-level Countermeasures on LEON3 Pipeline

	Experimental Evaluation of Case Study I
	Experimental Evaluation of Case Study II

	Micro-architectural Embedded System Simulator for Fault Injection (MESS)
	Overview of MESS
	Components of MESS
	gem5 Simulator
	Trigger Generator of MESS
	Fault Injector of MESS
	Run-time Status Monitor of MESS
	Cycle-wise Operation of MESS

	Designing and Running Experiments on MESS
	Case Study: Fault Experiments on MESS
	Target Hardware and Software
	Attacking Individual Instruction Steps
	Attacking a Single Clock Cycle
	Attacking Multiple Clock Cycles

	Comparing MESS with the Related Work

	Fault-attack Aware Microprocessor Extensions (FAME)
	Architectural Components of FAME
	Fault Detection
	Critical State Checkpointing
	Fault Response
	Added Instructions

	Advantages of FAME
	Contributors to the FAME Prototype
	Chip Prototype of FAME
	Attacker Model
	Overall Design of FAME Prototype
	Fault-attack-resistant FAME Core
	Fault Analysis Features of FAME SoC

	Experimental Evaluation of FAME
	Experimental Setup
	Hardware Performance Results
	Performance Results for FAME SoC
	Performance Results for FAME Core

	Software Performance Results
	FAME-Protected Software Design
	Software Overhead of FAME Extensions

	Security Evaluation of FAME
	Fault Detection Sensitivity
	Clock Glitching on PIN Verification

	Conclusions
	Bibliography

