Impact of Biochar Amendment, Hydraulic Retention Time, and Influent Concentration on N and P Removal in Horizontal Flow-Through Bioreactors

Brady Steward Leigh Coleman

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
In
Biological Systems Engineering

Zachary M. Easton, Chair
Stephen K. Stephenson
David J. Sample

November 10, 2017
Blacksburg, VA

Keywords: denitrifying bioreactor, DNBR, biochar, denitrification, nitrate, phosphate, Best Management Practice, BMP
Impact of Biochar Amendment, Hydraulic Retention Time, and Influent Concentration on N and P Removal in Horizontal Flow-Through Bioreactors

Brady Steward Leigh Coleman

Abstract

The advent of industrial, fertilizer-intensive agriculture during the 20th century has promoted export of anthropogenic nutrients, spurring degradation of ecosystem biodiversity and water quality. Exported nitrogen and phosphorus are recognized drivers of this deterioration, and require management. In the mid-1990s, denitrifying bioreactors (DNBRs), a subsurface, edge-of-field best management practice (BMP) that intercepts and treats agricultural drainage by supporting nitrate-attenuating denitrification with a saturated carbon substrate, were developed. Since then, their utility has expanded, and recent studies have unearthed biochar’s capability to stimulate simultaneous nitrate (NO$_3^-$-N) and phosphate (PO$_4^{3-}$-P) removal in DNBRs.

This study investigated biochar’s potential as an amendment to the traditional woodchip media during nine, five-day trials on twelve laboratory-scale, horizontal flow-through DNBR columns. Three media types were tested: woodchips (W), 90% woodchips and 10% biochar (B$_{10}$), and 70% woodchips and 30% biochar (B$_{30}$). Simulated agricultural drainage with four unique concentration combinations of 16.1 and 4.5 mg L$^{-1}$ NO$_3^-$-N and 1.9 and 0.6 mg L$^{-1}$ PO$_4^{3-}$-P was delivered at hydraulic retention times (HRTs) of 3, 6, and 12 h.

Mean NO$_3^-$-N removal efficiencies ranged from 16.9%-93.7%, and media type was insignificant at low influent NO$_3^-$-N concentrations, but B$_{30}$ was the most effective at high influent NO$_3^-$-N concentrations. Mean PO$_4^{3-}$-P removal efficiencies ranged from 122.0%-74.9%, with B$_{10}$ and B$_{30}$ significantly worse than W at removing PO$_4^{3-}$-P.

These findings corroborate previous work indicating boosted NO$_3^-$-N removal with biochar, but contradict studies upholding PO$_4^{3-}$-P-removing capabilities.
Impact of Biochar Amendment, Hydraulic Retention Time, and Influent Concentration on N and P Removal in Horizontal Flow-Through Bioreactors

Brady Steward Leigh Coleman

General Audience Abstract

Nitrogen and phosphorus-containing nutrients are applied to agricultural fields for supporting higher crop yields, and once these nutrients are exported they can negatively impact ecosystem biodiversity and water quality. These nutrients therefore require management. Denitrifying bioreactors (DNBRs) are subsurface engineered structures that intercept and treat agricultural drainage by supporting nitrate-removing denitrification with a carbon substrate. Recent studies have unearthed the potential of biochar, which is a type of charcoal typically used for soil amendment, as a substrate for promoting simultaneous removal of nitrogen and phosphorus.

This study investigated biochar’s potential as an amendment to the traditional DNBR woodchip media using laboratory-scale DNBRs that were subjected to different hydraulic retention times and influent nutrient concentrations.

Results revealed that the biochar did not significantly enhance nitrate removal under low influent nitrate concentrations, but did significantly improve nitrate removal at high influent nitrate concentrations. The biochar-amended treatments were significantly worse than the woodchip treatments at supporting phosphate removal.

These findings suggest that biochar may indeed boost nitrate removal, but may not improve phosphate removal.
I dedicate this work to my family, whose unrivaled compassion and vitality are a constant inspiration.
Acknowledgements

Thank you to my mother, Beverly Coleman, whose unrivaled compassion, tenacity, and brilliance never cease to amaze me. Thank you to my father, Dillard Coleman, for instilling my love of nature and the environment, and for the support you have provided over the years. My siblings, Ashley Lucckese, Raleigh Coleman, and Dabney Coleman, and siblings-in-laws, Dan Lucckese and Allison Coleman, exhibit superlative intelligence, kindness, and personality, and I am forever grateful that I have such strong role models as family members and as close friends. My nephew and nieces, Hurley, Paisley, Hattie, and Lucy, are beacons of light in my life; I am thankful for every encounter with them, and I look forward to watching their lives blossom. My grandparents, Steward Leigh Hottinger and Mary Alice Hottinger, and their exceptional moral character and family values, form the robust foundation that our family was built upon. I treasure their company and guidance. Thank you to Jeff Stockton for always being there for my mother, and for my entire family, and for your exemplary work ethic and generosity. Thank you to Eddie, Michelle, Howard, Lindsey, Amy, Dale, Julia, the Chiles family, the Bayless family, Connie, Steve, and all of the other family members and friends that I have not named here.

My advisor, Zachary Easton, inspired me to traverse into academia over four years ago, and the opportunities he has presented to me over the years are a testament to his outstanding character. I am grateful to have been witness to his peerless work ethic, intelligence, and patience. Kurt Stephenson and David Sample, thank you for your valued guidance as members of my committee. Emily Bock’s contributions to this project, whether it be in the form of countless hours of Lachat operation and troubleshooting, or considerate guidance and advice, were pivotal for progression, and I am grateful for her friendship. Thank you to Martin Davis for your contributions during the experimental design process and to Casey Schrading, Colby Dechiara, and Justin Haber for your assistance with the intense sampling required for this project. Dumitru Branisteanu’s input during preparation for the project was invaluable, and I am grateful that I had such an experienced, persistent, and personable companion to guide me through my arduous setup. Thank you to Laura Lehmann and Denton Yoder.
for your support, to **Durelle Scott** for allowing me to borrow lab equipment for the project, to **Mary Leigh Wolfe** for your contributions as the department head, and to the rest of the **faculty, staff, and students of the BSE department**. Thank you to **Vinit Seghal, Tyler Keys, Jay Dixit, Pritam Solanki, and members of the BSE graduate student body** for your companionship during hiking trips.

Thank you to **Chuck Bailey, Rowan Lockwood, Brent Owens, Linda Morse, and all the rest of the faculty and staff of the College & William & Mary’s Geology Department**, for providing me with an extraordinary undergraduate education, and encouraging me to pursue higher education.
Table of Contents

List of Figures .. xi

List of Tables ... xv

1 Introduction ... 1

2 Literature Review .. 3

2.1 The N Cycle: Its Modern Incarnation, Gradual Evolution, and Future State 3

2.1.1 The Modern Global N Cycle .. 3

2.1.1.1 Nitrogen Fixation ... 5

2.1.1.2 Assimilation .. 5

2.1.1.3 Ammonification ... 6

2.1.1.4 Ammonia Volatilization .. 6

2.1.1.5 Nitrification ... 6

2.1.1.6 DNRA ... 7

2.1.1.7 Denitrification ... 8

2.1.1.8 Anammox ... 9

2.1.2 The Ancient Global N Cycle ... 11

2.1.3 The Future of the Global N Cycle ... 14

2.2 The Reality of Increased Reactive Nitrogen Production .. 15

2.2.1 Agriculture’s Imperative Role in Feeding a Burgeoning Global Human Population ... 15

2.2.2 Anthropogenic Reactive Nitrogen Production .. 17

2.2.2.1 The Haber-Bosch Process: Its Inception, Intended Outcomes, and Unanticipated Consequences ... 19

2.2.2.2 The Widespread Cultivation of Crops Promoting Biological Nitrogen Fixation .. 21

2.2.2.3 Combustion of Fossil Fuels ... 22

2.2.3 The Nitrogen Cascade ... 22

2.3 Implications Consequences of Anthropogenic Reactive Nitrogen Export 24

2.3.1 Impacts on Aquatic Ecosystems .. 24
2.3.1.1 Eutrophication: Impacts on Ecosystem Biodiversity and Productivity .. 25
2.3.1.2 Global Acidification .. 26

2.3.2 Implications for Global Climate Change ... 27
2.3.2.1 Nitrous Oxide’s Potential as a Greenhouse Gas .. 27
2.3.2.2 Stratospheric Ozone Depletion ... 28

2.3.3 Human Health Repercussions ... 29
2.3.3.1 Respiratory Illnesses ... 29
2.3.3.2 Methemoglobinemia ... 30
2.3.3.3 Cancer .. 31

2.4 Denitrification Management ... 31
2.4.1 Riparian zones .. 34
2.4.2 Constructed Wetlands ... 35

2.5 Denitrifying Bioreactors .. 36
2.5.1 What are Denitrifying Bioreactors? ... 36
2.5.2 Installation and Cost ... 36
2.5.3 Types of Denitrifying Bioreactors ... 37
2.5.3.1 Denitrifying Layers ... 37
2.5.3.2 Denitrifying Walls ... 38
2.5.3.3 Denitrifying Beds .. 38
2.5.3.4 DNBR Columns .. 39
2.5.3.5 Comparison .. 40
2.5.4 The History of Denitrifying Bioreactors: A Synopsis of Case Studies .. 40
2.5.5 Factors Contributing to DNBR Performance ... 42
2.5.5.1 Carbon Media ... 43
2.5.5.2 Influent NO$_3^-$-N Concentration .. 47
2.5.5.3 Hydraulic Retention Time .. 47
2.5.5.4 Dissolved Oxygen .. 49
2.5.5.5 Temperature .. 49
2.5.5.6 Microbiology ... 50
2.5.5.7 Bioreactor Dimensions and Geometry .. 51

2.5.6 Pollution Swapping .. 51
2.5.6.1 Sulfate Reduction ... 52
2.5.6.2 Flushing of Dissolved Organic Carbon .. 53
5.2 Phosphate ...94
5.3 Media Recommendations ..96
5.4 Potential Biochar Adsorption Mechanisms ...97
5.5 Future Work ...100
6 Conclusions ...101
References ..103
Appendix A: R Code Used for Statistical Analyses ..148
List of Figures

Figure 1 Graphical representation of the modern global N cycle, with oxidation states for N compounds on the x-axis, and aerobic vs. anaerobic designation indicated on the y-axis. N compounds are in green, and purple arrows indicate the process by which N is transformed. The enzymes dictating processes are in red. Inspired by Canfield et al. (2010). .. 4

Figure 2 Timeline of known major events that shaped the global N cycle, with clockwise rotation representing the progression of time, from the formation of earth, approximately 4540 Ma, to the present, 0 Ma. The wedges represent the Cenozoic, Mesozoic, and Paleozoic Eras, and the Hadean, Archean, and Proterozoic Eons of the Precambrian Era.. 12

Figure 3 Continuation of the timeline presented in Figure 2, with an added section showing advancements in Nr creation during the 20th century, attributed to fertilizer production and application and the burning of fossil fuels, emphasizing how the modern stresses to the N cycle are occurring in a snapshot of geologic time. 16

Figure 4 Graph of global nitrogen fixation in Tg yr\(^{-1}\), highlighting the shift from pre-industrial Nr creation rates to post-industrialization, recent rates. Modified from Vitousek and Matson (1993). .. 18

Figure 5 Flow diagram of the nitrogen cascade, with the N-containing, natural systems on the right and the anthropogenic fluxes that affect those environments in yellow, as well as the resulting human health impacts in red. Arrows with N species represent fluxes to other systems. Inspired by Galloway et al. (2003). 23

Figure 6 Illustration of denitrification management options, including riparian zones, wetlands, and denitrifying bioreactors. Borrowed from WaiBER (2012). 33

Figure 7 Diagram of an effective denitrifying bed setup, with bypass flow control structures incorporated to adjust for high flow rates and approximate goal HRTs. Borrowed from Christianson and Helmers (2011). .. 39
Figure 8 Schematic showing each of the nine experimental trials, with each circle representing an independent column. All unique combinations of medium type, HRT, and influent \(\text{NO}_3^-\)-N and \(\text{PO}_4^{3-}\)-P concentration were tested with three independent replicates.

Figure 9 Diagram of the experimental setup, with flow from right to left. Using the two peristaltic pumps, simulated agricultural drainage was pumped from the mixing tanks into the individual designated DNBR columns at a flow rate corresponding to the desired HRT, and effluent is disposed. HH represents high \(\text{NO}_3^-\)-N (16.1 mg L\(^{-1}\)) and high \(\text{PO}_4^{3-}\)-P (1.9 mg L\(^{-1}\)), HL represents high \(\text{NO}_3^-\)-N (16.1 mg L\(^{-1}\)) and low \(\text{PO}_4^{3-}\)-P (1.9 mg L\(^{-1}\)), etc., and the numbered columns represent the replicates.

Figure 10 The original column design, which was modified for this experiment. Note that these columns were originally oriented vertically.

Figure 11 The modified DNBR setup used for this experiment. The wye fitting was added for the purpose of collecting gas emission measurements. The inflow adaptor was placed at the highest possible height of the horizontal column (9.75 cm). The picture in the bottom left corner is of one of the threaded plugs, which has an adaptor at a height of approximately 7.5 cm, controlling the desired height of the water table, and indicating the approximate height of the fill media.

Figure 12 Lengthwise cross-section visual of an individual DNBR column, with flow from right to left. The wire mesh was added as a means to prevent media, particularly biochar, from washing out of the columns.

Figure 13 Timeline of aqueous and gaseous sampling for each five-day trial, with color ramp resets indicating the passage of one full day.

Figure 14 Time series plot of DNBR effluent \(\text{NO}_3^-\)-N concentrations in mg L\(^{-1}\), with each panel representing a different treatment combination of HRT, influent \(\text{NO}_3^-\)-N concentration, and influent \(\text{PO}_4^{3-}\)-P concentration, and the different colors representing the different media types. The dotted lines on each panel represent influent \(\text{NO}_3^-\)-N concentrations, which are also shown on the right-hand y-axis.
loess smoothing method was used with a span of 0.35. Shading around each loess
time series represent the uncertainty associated with the estimated line..............77

Figure 15 Time series plot of DNBR NO$_3^-$-N % reductions, with each panel representing
a different treatment combination of HRT, influent NO$_3^-$-N concentration, and
influent PO$_4^{3-}$-P concentration, and the different colors representing the different
media types. A loess smoothing method was used with a span of 0.35. Shading
around each loess time series represent the uncertainty associated with the
estimated line..78

Figure 16 Interaction plot of NO$_3^-$-N experimental data, binned by HRT, media, and
influent NO$_3^-$-N concentration. Treatments within a concentration level with the
same letter are not significantly different as determined by a Tukey’s HSD test at α
≤ 0.05..81

Figure 17 Interaction plot of NO$_3^-$-N concentration, binned by HRT and influent NO$_3^-$-N
concentration. Treatments within a concentration level with the same letter are not
significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$.................82

Figure 18 Time series plot of DNBR effluent NO$_3^-$-N concentrations in mg L$^{-1}$, with each
panel representing a different treatment combination of HRT, influent NO$_3^-$-N
concentration, and influent PO$_4^{3-}$-P concentration, and the different colors
representing the different media types. The dotted lines on each panel represent
influent PO$_4^{3-}$-P concentrations, which are also shown on the right-hand y-axis. A
loess smoothing method was used with a span of 0.35. Shading around each loess
time series represent the uncertainty associated with the estimated line.............85

Figure 19 Time series plot of DNBR PO$_4^{3-}$-P % reductions, with each panel
representing a different treatment combination of HRT, influent NO$_3^-$-N
concentration, and influent PO$_4^{3-}$-P concentration, and the different colors
representing the different media types. A loess smoothing method was used with a
span of 0.35. Shading around each loess time series represent the uncertainty
associated with the estimated line..86
Figure 20 Interaction plot of PO$_4^{3-}$-P experimental data, binned by HRT, media, influent NO$_3^-$-N concentration, and influent PO$_4^{3-}$-P concentration. Treatments within a concentration level or HRT with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$. ...89

Figure 21 Interaction plot of PO$_4^{3-}$-P experimental data, binned by HRT and influent NO$_3^-$-N concentration effect, omitting media type. Treatments within a concentration level with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$. ..90
List of Tables

Table 1 The influent NO$_3^-$-N and PO$_4^{3-}$-P concentration combinations used for the experiment. ..63

Table 2 The porosities (p) and corresponding pore volumes (v_p) used to calculate pump flow rates (q) necessary for goal HRTs for each of the nine trials, as well as the actual, observed mean HRTs. ..69

Table 3 Output for the ANOVA assessing the effect of media type, influent NO$_3^-$-N concentration, and HRT, and their interactions, on effluent NO$_3^-$-N concentration. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions. ..79

Table 4 Output for the ANOVA assessing the effect of influent NO$_3^-$-N concentration, HRT, and their interaction, on effluent NO$_3^-$-N concentration, independent of media type. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions. ..79

Table 5 Summary statistics for NO$_3^-$-N experimental data, binned by HRT, media, and influent NO$_3^-$-N concentration effect. Influent PO$_4^{3-}$-P concentration was omitted because the NO$_3^-$-N ANOVA indicated that none of the interactions containing influent PO$_4^{3-}$-P concentration significantly affected outflow NO$_3^-$-N concentration. Q_{50} refers to the 50th percentile, or median effluent concentration.80

Table 6 Output for the ANOVA assessing the effect of media type, influent NO$_3^-$-N concentration, influent PO$_4^{3-}$-P concentration, and HRT, and their interactions, on effluent PO$_4^{3-}$-P concentration. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the
denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions.87

Table 7 Summary statistics for PO$_4^{3-}$-P experimental data, binned by HRT, media, influent NO$_3^-$-N concentration, and influent PO$_4^{3-}$-P concentration effect. Q$_{50}$ refers to the 50th percentile, or median effluent concentration. ...88
1 Introduction

Recent intensive agricultural practices, including excessive application of fertilizers for higher crop yields and the use of artificial subsurface drainage to improve cropland functionality, are threatening downgradient ecosystems, particularly those that are marine in nature. The inevitable transport of anthropogenic nutrients to receiving bodies of water has stirred eutrophication and the subsequent development of hypoxic and anoxic zones, in addition to a host of other adverse impacts, including, but not limited to, alteration of ecosystem biodiversity and productivity, the production of tropospheric ozone and aerosols, and methemoglobinemia, thyroid dysfunction, colon cancer, and ovarian cancer in humans (Sadeq et al., 2008; Powlson et al., 2008).

A 52-yr record of dissolved oxygen in the Chesapeake Bay from 1950 to 2001 revealed a drastic increase in the total volume of mild hypoxic, severe hypoxic, and anoxic water, a trend that was positively correlated with NO$_3^-$-N loading in the Susquehanna River during the same time period (Hagy et al., 2004). These problems are mirrored in the Midwest, where artificial agricultural drainage has been in place for over 100 years (Dinnes et al., 2002), and, depending on soil type and N fertilizer applications rates, NO$_3^-$-N loss from agricultural fields can range from 25-40 kg ha$^{-1}$, and NO$_3^-$-N concentrations in surrounding water bodies often exceed the EPA’s maximum contaminant level (MCL) of 10 mg N L$^{-1}$ (Jaynes et al., 2001). Mississippi River Basin nutrient loading has been causally linked and hypoxic zone formation in the Gulf of Mexico (Turner and Rabalais, 1994; Rabalais et al., 1996; Gulf Hypoxia Action Plan 2008), prompting the EPA’s 2001 goal to reduce nutrient loads by 30% by 2015 (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2001).

Indeed, these realities have sparked great concern, and the cutback of nutrient export was deemed a principal environmental and engineering challenge in the 21st century (Galloway et al., 2008; Seitzinger et al., 2006). Denitrification management, the encouragement of reactive nitrogen removal, has been increasingly recognized as a preventative measure to combat the problem of increased nutrient loading. Denitrifying
bioreactors (DNBRs), a type of Best Management Practice (BMP), have shown great promise as a means to intercept and treat agricultural drainage; the carbon medium housed within these subsurface chambers facilitates natural nutrient removing processes, such as NO$_3^-$-N removal through denitrification. Traditionally, woodchips have been used as a carbon substrate for supporting denitrifying microbes; their cheap cost, widespread availability, hydraulic properties, and extensive half-life make them an optimal choice for use in DNBRs. This is despite of a potentially significant drawback: failure to maintain an anaerobic environment within DNBRs can result in incomplete denitrification and the production of N$_2$O, a potent greenhouse gas. This has driven the search for alternative carbon sources, and recent studies have supported the potential of biochar, a substance formed through the pyrolysis of biomass, as a beneficial supplement to the well-established woodchip medium (Bock et al., 2015; Bock et al., 2016; Easton et al., 2015). Research on biochar, however, is still incipient in nature, especially in denitrifying bioreactors, and mechanisms behind its performance are still unclear.

This study assesses biochar’s promise as a means to attenuate NO$_3^-$-N and PO$_4^{3-}$-P, as there is still significant need to study biochar-amended media under a range of environments; the processes influencing NO$_3^-$-N and PO$_4^{3-}$-P removal are complex and misunderstood, and further examination of treatment is required to optimize DNBR management practices. The recent need to identify mechanisms for “pollution swapping,” the coinciding of contaminant production with DNBR nutrient removal, including greenhouse gas (GHG) emissions, organic C export, etc. has also surfaced (Fenton et al., 2014; Healy et al., 2012; Schipper et al., 2010b), warranting examinations of processes in controlled settings. The need for continued research on DNBR column studies has been stressed in the literature, especially those that investigate NO$_3^-$-N removal in concert with other relevant processes and phenomena, such a PO$_4^{3-}$-P removal and GHG emissions (Addy et al., 2016).
2 Literature Review

Of the elements essential for life (nitrogen (N), carbon (C), phosphorus (P), oxygen (O), and sulfur (S)), N is the most abundant on Earth, with an estimated global mass of ~4×10^{21} g, exceeding the combined masses of the other four crucial elements, and comprising approximately 78% of the atmosphere (Galloway et al., 2003). Nitrogen’s importance should not be understated; it plays a key role in the synthesis of the two most indispensable polymers for the existence of life: nucleic acids and proteins (Canfield et al., 2010). N also has remarkable versatility, spanning seven oxidation states. Despite its abundance, importance, and versatility, N is ironically the least biologically available of the elements essential for life (Galloway et al., 2003; Moir, 2011). A key reason for this is that the vast majority of this N is manifested in its molecular form, N_2, a compound that is inert, and cannot be used by most organisms. As such, N_2 is labeled as nonreactive nitrogen, whereas all biologically, photochemically, and radiatively active N compounds within Earth’s biosphere and atmosphere are classified as reactive nitrogen (N_r) (Galloway et al., 2003).

2.1 The N Cycle: Its Modern Incarnation, Gradual Evolution, and Future State

Whether N is reactive or nonreactive is dictated by the biogeochemical N cycle, a series of reduction-oxidation reactions that are crucial for all life, be it for energy production, waste excretion, or biosynthesis. These complex reactions, primarily controlled by microorganisms, currently play the largest role in the biogeochemistry of the N cycle, as well as interactions within the geosphere (Canfield et al., 2010).

2.1.1 The Modern Global N Cycle

The oxidation-reduction reactions of the modern global N cycle are represented in Figure 1, and will be referenced in the step-by-step walkthrough of the active processes. Equations for each step will be listed in respective sections.
Figure 1 Graphical representation of the modern global N cycle, with oxidation states for N compounds on the x-axis, and aerobic vs. anaerobic designation indicated on the y-axis. N compounds are in green, and purple arrows indicate the process by which N is transformed. The enzymes dictating processes are in red. Inspired by Canfield et al. (2010).
2.1.1.1 Nitrogen Fixation

Nitrogen fixation is the conversion of atmospheric, inert nitrogen, N$_2$, to reactive ammonia, NH$_3$.

\[
N_2 + 8H^+ + 8 \text{e}^- \rightarrow 2NH_3 + H_2
\]

The triple bond binding two N atoms together requires a significant amount of energy to break, requiring a catalyst to overcome the substantial energy barrier (Galloway et al., 2003; Canfield et al., 2010), and nitrogenase (nif), an iron-containing, heterodimeric enzyme complex, fills this role (Zumft, 1997; Canfield et al., 2010). Prokaryotes of the bacterial and archaeal domains, such as *Rhizobia* and *Bradyrhizobia* in root modules (Easton and Lassiter, 2013) and ubiquitous, free-living *Azotobacter*, commonly possess nitrogenase, and are able to perform N fixation. Some eukaryotes (termes, legumes, etc.) can also mediate this process through symbiotic relationships with nitrogen-fixing prokaryotes (Canfield et al., 2010). Certain abiotic processes can also fix nitrogen, including atmospheric fixation via lightning and industrial fixation via the Haber Bosch process, which employs high temperatures and pressures to convert nitrogen gas and either petroleum or natural gas into ammonia. This process is essential for all life, without which the biosynthesis of nucleotides for DNA and RNA and amino acids for proteins would not be possible.

2.1.1.2 Assimilation

Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that cannot fix nitrogen gas (N$_2$) depend on the ability to assimilate NO$_3^-$-N or ammonia for their needs. Other organisms, like animals, depend entirely on organic nitrogen from their food.
2.1.1.3 Ammonification

When organisms die or produce waste, the organic N in their biomass or expelled material is returned to the environment, and ammonifying bacteria, such as *Bacillus*, *Clostridium*, *Proteus*, *Pseudomonas*, and *Streptomyces*, attack internal proteins to produce polypeptides and amino acids. The amino acids are then stripped of their amino groups, bearing ammonia, NH$_3$, which eventually dissolves in contact with water to form ammonium ions, NH$_4^+$. Other inherent compounds, such as nucleic acids, urea, and uric acid, are subject to ammonification as well, and this process is of the utmost importance, as most autotrophs are incapable of assimilating these organic compounds for their own benefit.

2.1.1.4 Ammonia Volatilization

Ammonia volatilization is the conversion of ammonia gas, NH$_3$, to the dissolved ion ammonium, NH$_4^+$, which typically occurs in soils with pHs above 7.5, high soil moisture content, and high soil temperatures (Rochette et al., 2014; Jones et al., 2013).

\[\text{NH}_4^+ + \text{OH}^- \leftrightarrow \text{H}_2\text{O} + \text{NH}_3 \]

Ammonium is available for uptake by plants, but ammonia is not, making this pathway a major contributor to N losses from agricultural soils worldwide, especially in areas where ammonium-based fertilizer is in use.

2.1.1.5 Nitrification

Nitrification is the stepwise microbial oxidation of NH$_4^+$, ammonium, or NH$_3$, ammonia, to NO$_3^-$, typically in aerobic soils. Historically, nitrification has been divided into two steps, with two separate groups of bacteria mediating each (Winogradsky, 1892). The first step, the conversion of NH$_3$ or NH$_4^+$ to NO$_2^-$, is most commonly enacted by soil bacteria of genus *Nitrosomonas*, which derive energy from the conversion, using CO$_2$ as a carbon source. Genera *Nitrosococcus* and *Nitrosospira*, as well as subgenera *Nitrosolobus* and *Nitrosovibrio*, are also capable of autotrophically oxidizing ammonia to
nitrite (Watson et al., 1981). The second step, the conversion of NO$_2^-$ to NO$_3^-$, is promoted by the genus *Nitrobacter*, which acquire their energy from the previous nitrite oxidation process. While *Nitrobacter* is the main contributor for the second step, other genera, including *Nitrospina*, *Nitrococcus*, and *Nitrospira* can also convert nitrite to nitrate. A few kinds of heterotrophic bacteria and fungi are also capable of performing nitrification, albeit at a sluggish pace relative to the autotrophic organisms mentioned above (Watson et al., 1981; Verstraete and Alexander, 1973). Under anaerobic conditions, greenhouse gases N$_2$O and NO can be released as byproducts, contributing a significant source of atmospheric N$_2$O (Oertel et al., 2016).

Ammonium to Nitrate:

$$2\text{NH}_4^+ + 3\text{O}_2 \rightarrow 2\text{NO}_2^- + \text{H}_2\text{O} + 4\text{H}^+$$

$$2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^-$$

Ammonia to Nitrate:

$$\text{NH}_3 + \text{O}_2 \rightarrow \text{NO}_2^- + 3\text{H}$$

$$\text{NO}_2^- + \text{H}_2\text{O} \rightarrow \text{NO}_3^- + 2\text{H}^+$$

Recently, a single type of microorganism, referred to as complete ammonia oxidizers (comammox), was discovered that is capable of oxidizing ammonia all the way to nitrate. The existence of a comammox-performing microorganisms was predicted in 2006 (Costa et al., 2006), but the culprits, two species of *Nitrospira*, were not identified until over a decade later (van Kessel, 2015; Daims et al., 2015).

2.1.1.6 DNRA

DNRA is the first of three microbial processes in the N cycle that involve a fundamental competition for nitrate. Much like in denitrification, under anaerobic conditions, chemoorganoheterotrophic microbes can use NO$_3^-$-N as a respiratory electron acceptor, rather than oxygen, coupled with the anaerobic oxidation of an organic carbon source, reducing it to NO$_2^-$, and then NH$_4^+$, in a process known as dissimilatory nitrate reduction to ammonium (DNRA). Unlike the nonreactive N$_2$ gas
produced by denitrification, the nitrogen species produced by DNRA, NH$_4^+$, is still bioavailable. This process is most commonly initiated by prokaryotes, but certain eukaryotic microorganisms are capable of performing DNRA as well.

The exact mechanisms dictating whether denitrification or DNRA occurs in natural and manufactured environments are still not entirely clear (Kraft et al., 2011), and are likely the outcome of many complicated environmental factors that are still under investigation, including pH, electron donor complexity and type, and sulfide concentrations (van den Berg et al., 2017). Two known significant factors in the microbial competition for nitrate are (1) the ratio of available electron donors and available electron acceptors (van den Berg et al., 2016) and (2) the COD:N ratio. Whatever the causal mechanisms actually are, DNRA’s contribution to nitrate removal should not be ignored; a recent study by Giblin et al. (2013) revealed that, at 26 sites of 55 coastal sites, more than 30% of the NO$_3^-$N reduced was attributed to DNRA, and that DNRA was the dominant mechanism at more than one third of the sites.

2.1.1.7 Denitrification

Denitrification is the microbially-induced stepwise reduction of NO$_3^-$-N to nitrogen gas, N$_2$, and requires (1) the presence of N oxides to serve as electron acceptors, (2) denitrifying bacteria, (3) a labile carbon source, and (4) sufficiently low dissolved oxygen concentrations (Korom, 1992).

\[
\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} + \text{N}_2\text{O} \rightarrow \text{N}_2(g)
\]

\[
5\text{C} + 4\text{NO}_3^- + 2\text{H}_2\text{O} \rightarrow 2\text{N}_2 + 4\text{HCO}_3^- + \text{CO}_2
\]

When oxygen, a generally more convenient electron acceptor, becomes depleted from environments, bacteria are forced to turn to alternatives for respiration; under anoxic conditions, facultative anaerobic bacteria use oxyanions (NO$_3^-$, NO$_2^-$) or oxides (NO, N$_2$O) as terminal, respiratory electron acceptors, coupled with the anaerobic oxidation of an organic carbon source, producing N$_2$ (Easton and Lassiter, 2013). N$_2$ is then free to diffuse out of soils and aquatic environments and into the atmosphere,
removing it from the reactive nitrogen pool. The extent to which DO levels can limit denitrifying varies amongst denitrifying organisms (Korom, 1992), but denitrification can be hindered at DO concentrations as low as 0.2 mg L$^{-1}$ (Metcalf and Eddy, 2003).

The effects of denitrification are ubiquitous, impacting biogeochemical cycles and ecosystems at local, regional, and global scales (Seitzinger, 1988; Codispoti and Richards, 1976; Nixon et al., 1996). N$_2$O is an intermediate during this process, and the escape of N$_2$O gas is inevitable, making denitrification a significant source of atmospheric N$_2$O. CO$_2$ and H$_2$O are also produced. Certain heterotrophic bacteria are the dominant denitrifiers, but a few autotrophic denitrifiers have been identified as well. In fact, denitrifiers have been identified in all of the main phylogenetic groups of bacteria (Zumft, 1997), and many species of bacteria contribute to full denitrification under multiple enzymatic pathways (Atlas and Barthes, 1992). Other than DNRA, denitrification is the is the only way to permanently remove reactive nitrogen from both soils and aquatic environments, and establishing the required conditions is relatively straightforward, making the process ripe for exploitation as a means to attenuate reactive N. It should be mentioned that in the event that NO$_3^-$ becomes depleted, obligate anaerobes can utilize sulfate (SO$_4^{2-}$), manganese (Mn (IV)), and iron (Fe(III)) as electron acceptors in place on NO$_3^-$ (Korom, 1992), and reaction priority is dictated the energy supplied by each reaction; denitrification releases the most energy, and is, of these reactions, therefore always the reaction of highest priority, given the presence of NO$_3^-$ (Metcalf and Eddy, 2003).

2.1.1.8 Anammox

N_t can also be converted back to N$_2$ through the process of anammox (anaerobic ammonium oxidation), which involves the coupling of NH$_4^+$ oxidation with NO$_2^-$ reduction, producing N$_2$ and H$_2$O.

$$\text{NH}_4^+ + \text{NO}_2^- \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$$
Anammox is mediated by bacteria known as planctomycetes (Canfield et al., 2010), and is common in marine environments, producing harmless N\textsubscript{2} while having the advantage of no N\textsubscript{2}O production. Like denitrification, anammox requires anoxic conditions, and is an effective method of attenuating N from soil and marine environments. Even though this process occurs in a variety of different environments, and is responsible for 30-50% of the N\textsubscript{2} produced in the oceans (Devol, 2003), it was not discovered until relatively recently.

For many decades in the mid-1900s, a multitude of studies suggested that a microbe remained unidentified that had the ability to anaerobically oxidize ammonium, and that the N cycle contained more reactions than was previously thought (Broda, 1977; Richards, 1965; Hamm and Thompson, 1941). Field studies on water bodies revealed that there was a disparity between the expected ammonium concentrations based on Redfield stoichiometry and thermodynamic calculations, and the actual, observed ammonium concentrations (Trimmer et al., 2013). In 1995, experimental indications of this arcane process were discovered in an anoxic fluidized-bed bioreactor at the Gist-Bro-cades yeast factory in the Netherlands (Mulder et al., 1995), and the mechanism for this phenomenon was unearthed when the bacteria responsible were finally identified (van de Graaf et al., 1995; Strous et al., 1999). These bacteria, forming a monophyletic group Brocadiales within the Planctomycete phylum (Jetten et al., 2010), opposed conventional microbiological concepts, sharing features of all three domains (Bacteria, Archea, and Eukarya) and raising intriguing questions about their evolutionary context (van Niftrik and Jetten, 2012). Since their discovery, their atypical metabolism has been exploited for wastewater applications, and their fascinating characteristics continue to elicit a hotbed of research in the field of microbial ecology.

Denitrification and anammox complete the N cycle by ending with replenishing N\textsubscript{2}. These reactions have not always been present, but instead developed through time, and understanding the N cycle’s past is key to understanding its future.
2.1.2 The Ancient Global N Cycle

The modern global N cycle is the result of billions of years of gradual evolution, and is likely much different from its ancient incarnation. Some of the ancient events shaping the evolution of the modern global N cycle are shown in Figure 2.

Atmospheric reactions and slow geologic processes played a large role in controlling the primordial N cycle, prior to the development of the biotic N cycle. During this time, before 2.7 billion years ago, the N cycle was governed by reduced forms of N supplied by planetary accretion (solid NH₃, amino acids, and other basic organics), their rates of accretion, and the continual development of a secondary atmosphere through the rampant, pervasive volcanism that plagued early Earth (Canfield et al., 2010). The immense heat resulting from this volcanism caused upper mantle transition elements, such as iron, to react with the accreted, reduced forms of N, forming outgassed atmospheric N₂ (Mikhail and Sverjensky, 2014). These abiotic processes are still at play in the modern N cycle, but they are much slower in comparison to biotic contributors, with abiotic processes having an approximate turnover rate of roughly one billion years (Berner, 2006).

The lightning (Walker et al., 1981; Chameides and Walker, 1981) and meteor impacts (Kasting, 1990) that frequented early Earth are also believed to have played a role in the early N cycle, producing NO, which would have been converted to NO₃⁻-N, NO₂⁻, and nitrite, NO₂⁻, through a series of photochemical and aqueous phase reactions (Mancinelli and McKay, 1988). These abiotic, heat shock processes also probably promoted nitrogen fixation, the conversion of N₂ to NH₃, albeit at rates about 50 to 5000 times slower compared to the rates of the modern oceans (Gruber and Galloway, 2008). At the time, the only believed mechanism for NH₄⁺ production was reduction via reactions with Fe²⁺, and this was likely a prevalent phenomenon because of the widespread abundance of Fe²⁺ in early Earth’s oceans (Holland, 1984). N₂ was the dominant form of nitrogen in the atmosphere, and ammonium, and possibly NO₃⁻-N, were ubiquitous in the ancient seas.
Figure 2 Timeline of known major events that shaped the global N cycle, with clockwise rotation representing the progression of time, from the formation of earth, approximately 4540 Ma, to the present, 0 Ma. The wedges represent the Cenozoic, Mesozoic, and Paleozoic Eras, and the Hadean, Archean, and Proterozoic Eons of the Precambrian Era.
Early life on Earth probably derived energy from chemically reduced compounds, likely H\textsubscript{2}, of the planet’s interior, and because H\textsubscript{2} was in short supply, primary productivity was severely limited in comparison to modern production (Canfield et al., 2006). Anoxygenic photosynthetic organisms evolved soon after biological evolution began, and this ultimately resulted in the limiting of inorganic N in the earliest pre-photosynthetic biosphere, forcing the evolution of biological N\textsubscript{2} fixation, probably amongst anaerobic photoautotrophs (Canfield et al., 2010). The advent of anoxygenic photosynthesis sparked widespread stratification of the early oceans, with the development of a photic zone with primary productivity comparable to that of today’s oceans and a continued pervasiveness of Fe2+. This widespread Fe2+ availability prior to ~2.5 Ga likely heavily influenced the ancient N cycle; some N fixers possess paralogous genes that can encode two alternative nitrogenases, with V or Fe replacing the more efficient Mo. While the Fe form is less efficient, it is probable that the low oxygen, Fe2+-dominated oceans during this time lacked soluble Mo, forcing the alternative form. The Mo form probably didn’t prosper until around 500 to 600 Ma, when widespread oxygenation of oceans would have increased dissolved Mo (Scott et al., 2008).

Recent isotopic fractionation analyses of N14 and N15 in Archean shales (Godfrey and Falkowski, 2009) suggest that denitrification or anammox was widespread in the upper oceans, but not anywhere else, at least 2.67 Ga (Falkowski and Godfrey, 2008). The origins of these processes are difficult to trace, and they may have evolved prior to the onset of photosynthesis and subsequent oxygen production by cyanobacteria (Canfield et al., 2010). One thing is for certain, though: if these processes did evolve before cyanobacteria, they were probably not pertinent, and only became relevant with the emergence of cyanobacteria (Canfield et al., 2010). This is almost certain because nitrification, the biological production of NO\textsubscript{3} and integral aerobic process of the N cycle, requires molecular oxygen, and once nitrification evolved, probably around 2.5 Ga, the modern N cycle began. The timing of cyanobacterial evolution is somewhat unclear; there were spurts of oxygenation approximately 2.7-2.6 Ga, and a significant period of oxygenation 2.45-2.3 Ga, coinciding with the mass extinction of many organisms ill-equipped to handle rising O\textsubscript{2}, and either of these could be the result of the
expansion of these cyanobacteria (Farquhar et al., 2000; Frei et al., 2009; Anbar et al., 2007). Whatever the case, oceanic cyanobacteria were certainly around before 2.3 Ga, and Earth’s oxygen levels gradually rose for hundreds of millions of years.

Around 600 million years ago, oxygenation finally reached deep ocean environments (Scott et al., 2008, Canfield et al., 1998; Canfield et al., 2008), resulting in a significant shift in ocean stratification, with a Fe$^{2+}$ and H$_2$S zone sandwiched between a surface water O$_2$ zone and the newly formed, deep water O$_2$ zone (Canfield et al., 2010). These conditions were probably much like the present-day Black Sea, and primary productivity skyrocketed during this time. Over the past 600 million years, oxygen levels have risen to their modern day levels, aided by the rise of terrestrial plants approximately 450 Ma (Berner, 2004). The oceans’ interiors finally became oxygenated, eventually bringing the N cycle to its pre-industrial state, with land primary production balanced with sea primary production (Field et al., 1998), and N cycles in the land and sea also roughly balanced (Gruber and Galloway, 2008).

2.1.3 The Future of the Global N Cycle

Understanding the evolution of the modern global N cycle is key to understanding its current state and future; evolution was not rapid, but was the gradual progression across billions of years, and the recent influence of human activities may be the most significant stressors the N cycle has encountered since its inception approximately 2.5 billion years ago (Canfield et al., 2010). Because the changes imposed by human behavior are so drastic and swift, occurring within a microscopic fraction of the geologic time scale, actions may have volatile, unpredictable consequences. Over many decades, microbes may be able to adapt to anthropogenic influences through natural feedback mechanisms. Perhaps a new steady state could be achieved, where microbes are able to remove the excessive input of nutrients at the same rates that they are applied, but this best-case scenario is a long shot.
2.2 The Reality of Increased Reactive Nitrogen Production

N_r creation has increased substantially over the course of human history, and this is directly attributed to anthropogenic activity. Figure 3 shows the major events impacting the global N cycle during the 20th century, and the primary stressors are discussed below.

2.2.1 Agriculture’s Imperative Role in Feeding a Burgeoning Global Human Population

Over 99.99% of the global human food supply sources from cropland (FAO, 2002), the surface area of which occupies 40-50% of the Earth’s land surface (IPCC, 2007). The agriculture performed on this land is directly responsible for roughly 24% of the world’s economic output (FAO, 2003), employing approximately one third of the global human population, and this fraction is comprised primarily of people from developing countries (UNEP, 2007; ILO, 2007). This extreme dependency on agriculture can be expected to increase; current projections show that there is an 80% probability that the global human population, currently at ~7.5 billion, will increase to between 9.6 and 12.3 billion by 2100 (Gerland et al., 2014). Even today, with these substantial rates of agricultural productivity, food production is insufficient in supplying the global human population; in 2006, approximately 3.7 billion people, or ~56% of the global population, suffered from malnourishment (Pimental and Pimental, 2006). These significant problems will need to be addressed in the future, and highlight agriculture’s importance by virtue of innovation.

This global dependency on agriculture was made possible by a multitude of key innovations, but the most relevant development is the application of reactive N fertilizers for improved crop yields. By supplying biologically available nitrogen to cropland, farmers can circumvent the potential shortcomings of natural nutrient supply, which are often insufficient for substantial yields. The need for the development of fertilizers for improved agriculture is a primary stressor facing the Global N Cycle.
Figure 3 Continuation of the timeline presented in Figure 2, with an added section showing advancements in N_2 creation during the 20th century, attributed to fertilizer production and application and the burning of fossil fuels, emphasizing how the modern stresses to the N cycle are occurring in a snapshot of geologic time.
2.2.2 Anthropogenic Reactive Nitrogen Production

Prior to the influence of humans on the N Cycle, lightning and biological nitrogen fixation (BNF) were the two primary mechanisms for converting \(\text{N}_2 \) to \(\text{N}_r \), and the total global mass of this naturally-produced nitrogen was approximately 100 Tg, a number that has remained relatively constant since industrialization began (Galloway et al., 1995) (Figure 4). Microbial N fixation and denitrification were balanced prior to anthropogenic influences, keeping nitrogen reservoirs at equilibrium (Ayres et al., 1994).

Since the emergence of anthropogenic means for creating reactive nitrogen, reactive nitrogen creation has grown from ~15 Tg \(\text{N} \) yr\(^{-1}\) in 1860 to 156 Tg \(\text{N} \) yr\(^{-1}\) in 1995 to 187 Tg \(\text{N} \) yr\(^{-1}\) in 2005, a reality resulting from: (1) the development of new methods of \(\text{N}_r \) creation, such as the Haber-Bosch process, (2) the significant increase in cultivation of legumes, rice, and other crops that promote BNF, and (3) the widespread burning of fossil fuels (Galloway et al., 2008; Galloway et al., 2003). Of the \(\text{N}_r \) created by human activity, 15% of it is produced through the burning of fossil fuels, 75% is applied to agroecosystems, and 10% is used in industrial processes (Galloway et al., 2003). Altogether, these anthropogenic sources provide roughly 45% of the annually produced fixed nitrogen on Earth (Canfield et al., 2010). \(\text{N}_r \) creation through the combustion of fossil fuels does not have any benefits, whereas \(\text{N}_r \) creation through the Haber-Bosch process and through BNF are largely beneficial due to their potential to feed massive numbers of humans. These means of production have had a drastic effect on the global N cycle (Vitousek et al., 1997), and the means for production are discussed next.
Figure 4 Graph of global nitrogen fixation in Tg yr$^{-1}$, highlighting the shift from pre-industrial N_r creation rates to post-industrialization, recent rates. Modified from Vitousek and Matson (1993).
The Haber-Bosch Process: Its Inception, Intended Outcomes, and Unanticipated Consequences

The Haber-Bosch process is an industrial procedure for converting atmospheric dinitrogen, N_2, to ammonia, NH_3, via a high temperature and pressure reaction with H_2 and a metal catalyst.

$$\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3$$

Throughout the 1800s, there was significant pressure placed on discovering methods for producing reactive nitrogen, especially for use as applied fertilizers and key components of explosives. The main naturally-occurring reservoirs of these materials, such as Chilean saltpeter, Peruvian guano, and sal ammonia derived from coal (Erisman et al., 2008), were being rapidly depleted, and could not keep pace with an exploding human population. Early methods for artificial nitrogen fixation, such as the Birkeland-Eyde process (Birkeland, 1906; Eyde, 1909) and the Frank-Caro process, were highly inefficient, making mass ammonia production difficult. Despite its chemically and biologically unusable form, the clear candidate for possible conversion was N_2; if a viable method for transformation presented itself, its widespread availability made it ripe for exploitative purposes. In 1909, German scientist Fritz Haber was the first to synthesize chemically reactive ammonia from hydrogen, using the presence of iron at high temperature and pressures at the laboratory scale (Erisman et al., 2008). However, the production rates of Haber’s setup were extraordinarily slow, yielding only about 125 mL NH$_3$ hr$^{-1}$. Carl Bosch, a scientist working under the German chemical company BASF remedied this shortcoming by scaling the process up to the industrial scale, which was achieved in 1913. The efforts of Haber and Bosch earned each of them Nobel Peace prizes in 1918 and 1931, respectively.

The Haber-Bosch process had a major influence on international conflicts; much of the reactive nitrogen developed through the Haber-Bosch process would be used to make explosives for both World Wars. Haber, a German patriot, believed that his key
role in the development of explosives and other chemical weapons was moral, as he speculated that they would shorten the war (Stoltzenberg, 2005). The Haber-Bosch process provided Germany with an indigenous supply of ammonia that was oxidized to nitric acid, via the Ostwald process (Wilhelm, 1902; Wilhelm, 1903) and then used to create nitroglycerine, ammonium NO₃ - N, TNT, and other reactive nitrogen-containing explosives, a source that would ironically prolong both World Wars and result in many more casualties (Erisman et al., 2008). Since those days, synthetic reactive nitrogen production for lethal purposes has not slackened, and the majority of the world’s ammunition sources from the Haber-Bosch process. Haber and Bosch’s discoveries are therefore unintentionally responsible for 100-150 million deaths resulting from armed conflicts during the 20th century (White, 2011). Thus, even discounting the momentous impacts that the Haber-Bosch process had on agriculture, the importance of this process cannot be understated, and these developments changed the course of history.

Haber’s primary intention for creating synthesized reactive nitrogen, though, was to satisfy the hunger of a skyrocketing global human population, an obstacle that he predicted would only burgeon with time (Haber, 1920). His goals quickly became realized; the discovery of the Haber-Bosch process introduced widespread synthetic fertilizer usage, ushering in a new age, one in which agricultural productivity dramatically increased in most regions of the world (Stewart et al., 2005). By the mid-1900s, the Haber-Bosch process was being used in full force, and Haber and Bosch’s contributions set the stage for the Green Revolution, a blossoming of agricultural technologies, such as utilizing fertilizers and agrochemicals in conjunction with newly developed, high-yielding crops, new cultivation methods, and new irrigation practices (Pingali, 2012).

Today, the worldwide use of reactive nitrogen fertilizer has surpassed 100 Tg N yr⁻¹, and estimates suggest that between 1908 and 2008, the number of humans supported per hectare of cropland has grown from 1.9 to 4.3 persons (Erisman et al., 2008). While many factors contributed to this, the Haber-Bosch process is the main source; by the end of the twentieth century, fertilizer inputs supported roughly 40% of the world’s population (Smil, 2002), and 30-50% of increased crop yields were attributed
to N$_r$ application via mineral fertilizers (Stewart et al., 2005). Currently, roughly 80% of the total N introduced by the Haber-Bosch process is being used to bolster higher crop yields via fertilizer application (Galloway et al., 2008). Indeed, Bosch’s initial reflections regarding the urgent need to seek out a means to improve food production were correct; since his discoveries, the human population has grown overly dependent on N$_r$ for fertilizer application and subsequent food production.

N fertilizer application increased by ~800% from 1960 to 2000 (Fixen and West, 2002). ~50% of this fertilizer is used on wheat, rice, and maize, and this is problematic because the nitrogen use efficiency for these crops is less than 40%, meaning that more than 60% of applied N is lost through runoff or to the atmosphere before it is used by crops (Canfield et al., 2010). The most common form of N fertilizer applied to crops is NH$_4$$^+$, which is readily converted by nitrifying bacteria to NO$_3^-$, which is highly mobile and will inevitably leach into water bodies. Often, the chemicals used for fertilizer application are NO$_3^-$-N-bearing, supplying more NO$_3^-$ than necessary for the promotion of efficient crop growth. Indeed, the intentional, excessive application of fertilizers and pesticides has resulted in the unavoidable export of constituent, surplus inorganic and organic chemicals.

2.2.2.2 The Widespread Cultivation of Crops Promoting Biological Nitrogen Fixation

The universal farming of legumes, rice, and other crops that promote the process of biological nitrogen fixation has become a significant source of N$_r$; nonnative leguminous crops have symbiotic relationships with N fixing *Rhizobium* bacteria, resulting in the production of far more N$_r$ than would be the case for native plant communities occupying the same space (Smil, 1999). Throughout history, mankind has exploited leguminous crops for improving soil fertility, but cultivation of these crops now results in N$_r$ creation that exceeds rates of N$_r$ consumption. Between 1860 and 2000, cultivation-induced N$_r$ production increased from 15 Tg N yr$^{-1}$ to 33 Tg N yr$^{-1}$ (Galloway et al., 2003).
2.2.2.3 Combustion of Fossil Fuels

The combustion of fossil fuels contributes a substantial amount of the N_r produced each year; atmospheric N and the N in fossils is burned, releasing N oxides into the atmosphere (Galloway, 2003). In the U.S., a substantial portion of emitted N oxides are directly sourced from the transportation and industry-associated burning of fossils fuels (EPA, 2017). Between 1860 and 2000, N_r production via fossil fuel combustion increased from less than 1 Tg N yr$^{-1}$ to 25 Tg N yr$^{-1}$ (Galloway et al., 2003).

2.2.3 The Nitrogen Cascade

The problems associated with these extreme N_r production rates are largely a result of the environment’s inability to handle the inordinate N_r supply; if the reactive nitrogen being produced was being sufficiently denitrified, as was the case prior to industrial methods, many of the nitrogen-related adverse consequences facing the world today would be nonexistent. Galloway et al. (2003) addressed this phenomenon, referring to it as the “nitrogen cascade,” describing the ecological and health effects of N_r as it transitions between different environmental systems, and the tendency for N_r to accumulate in the environment due to production rates that are greater than NO$_3^-$-N removal through denitrification. The accumulations at each transition, and their effects on the atmosphere, environment, and human health, are described in detail in Chapter 2.3 and are represented in Figure 5. Addressing the problem of human alteration to the N cycle is critical, and will require a multifaceted approach, drawing from many different disciplines and targeting the N cycle at links where the most N transformation and/or transportation is occurring (Galloway et al., 2008; Galloway et al., 2003), and potential solutions will be discussed in Chapter 2.4.
Figure 5 Flow diagram of the nitrogen cascade, with the N-containing, natural systems on the right and the anthropogenic fluxes that affect those environments in yellow, as well as the resulting human health impacts in red. Arrows with N species represent fluxes to other systems. Inspired by Galloway et al. (2003).
2.3 Implications Consequences of Anthropogenic Reactive Nitrogen Export

A large proportion of the excessive amounts of N\textsubscript{r} and P fertilizer that humans are producing and applying to agricultural fields is lost to the environment; Smil (1999) estimates that of the \textasciitilde 170 Tg N\textsubscript{r} added to agroecosystems in 1995, only \textasciitilde 12\% was directly fed to humans, and the rest was left to be distributed throughout the environment (Galloway et al., 2003). These nutrients are exported from applied areas at rates that far exceed their natural production (Galloway and Cowling, 2002; Foley et al., 2005), and this problem is magnified by the widespread presence of artificial, subsurface agricultural drainage. While these water management practices improve crop production efficiency (Fausey et al., 1995), making field operations more efficient and improving soil functionality by removing excess water from the soil profile in poorly drained field via perforated conduits (Skaggs and van Schilfgaarde, 1999; Skaggs et al., 2012; Hua et al., 2016), recent phenomena have revealed that these practices do not come without their significant drawbacks; artificial drainage effectively modifies the nitrogen and hydrologic cycles (Sims et al., 1998; Jaynes et al., 2001), rapidly exporting drainage water and reducing the amount of time for denitrification to take place (Kellman, 2005), as well as playing a role in phosphorus transport (Smith et al., 2015). Once these nutrients are released to surface water bodies and/or underlying aquifers, they have the potential to promote a host of adverse repercussions, including eutrophication, global acidification, stratospheric ozone depletion, and deleterious human health conditions (Howarth et al., 2000; Howarth, 2008; Erisman et al., 2013; Galloway et al., 2003).

2.3.1 Impacts on Aquatic Ecosystems

N\textsubscript{r} is a particularly pernicious nutrient in aquatic ecosystems, especially when it is introduced in excess, promoting processes such as eutrophication and global acidification, discussed in detail below.
2.3.1.1 Eutrophication: Impacts on Ecosystem Biodiversity and Productivity

Eutrophication, defined as an increase in the rate of supply of organic matter and subsequent increase in primary production (Nixon, 1995; Rabalais, et al., 2009), has been identified as a significant problem in many coastal ecosystems (Boesch et al., 2000; Duarte, 2009), and has many implications for ecosystem biodiversity and productivity. While the phenomenon of eutrophication is not inherently bad, as nutrients are essential for growth, it becomes problematic when receiving environments become supersaturated with respect to certain nutrients, resulting in inordinate primary production. Primary production is facilitated by nutrients N and P, and in soils and water bodies, there is usually a limiting nutrient, but the overabundance of nutrients due to recent anthropogenic practices has introduced far more N and P than is necessary for primary production, particularly in aquatic systems, resulting in a multitude of adverse consequences (Rabalais, et al., 2009). As nutrients are continually delivered to downstream aquatic environments, the phytoplankton capable of assimilating them are increasingly favored over other species that depend on a variety of other factors for survival (Erisman et al., 2013). This success of a narrow selection of organisms results in low-diversity algal or cyanobacterial blooms and depleted oxygen levels in surface waters. Higher trophic levels, such as fish and invertebrates, suffer as a result (Camargo and Alonso, 2006; Rabalais et al., 2002).

The problems associated with modern eutrophication are further complicated when we consider global climate change and its impact on eutrophication. Increasing temperatures will result in pycnoclines, stratigraphic patterns in water columns whereby water density variation occurs in response to temperature and salinity (Gnanadesikan, 1999). This is especially the case in coastal and estuarine waters, with abnormally low surface salinities resulting from high freshwater runoff inputs (Milliman and Meade, 1983). The development of pycnoclines will complicate oxygen diffusion, making lower portions of the water column less oxygenated; a problem that is already associated with eutrophication will be greatly exacerbated, and biological communities will suffer (Diaz and Rosenberg, 1995; Diaz and Rosenberg, 2008). Climate change will result in changing wind patterns, and this will likely have an impact on eutrophication, with the
potential to either enhance oxygenation problems (Grantham et al., 2004), or even solve them (Rabalais et al., 2009). The impact of changing hurricane and tropical storm frequency, intensity, and duration will also inevitably impact eutrophication, but these changes will be highly unpredictable, as there is still discord over whether climate change will increase frequency/intensity (Hoyos et al., 2006; Kerr, 2006) or decrease frequency/intensity (Knutson et al., 2007; Kerr, 2008). Projected sea level rise threatens coastal wetland areas, which play a key role in removing reactive nitrogen before it reaches water bodies (Galloway and Cowling, 2002). Perhaps the biggest eutrophication catalyst resulting from global climate change, however, will be the disruption of the hydrological cycle; due to expected increased precipitation in certain areas, more water, sediments, and nutrients will reach coastal waters (Cloern, 2001; Rabalais, 2004), or, conversely, reduced precipitation in other areas will deliver fewer nutrients, resulting in oligotrophication and reduced fisheries productivity (Nixon, 2003).

2.3.1.2 Global Acidification

Delivery of NO_3^- to water bodies is resulting in a net input of acidity in the form of nitric acid. Acidification of water bodies is increasing in certain parts of North America and Europe (Wright et al., 2001; Allott et al., 1995), decreasing acid neutralizing capacity (Erisman et al., 2013). This has a tremendous negative impact on aquatic ecosystem productivity and biodiversity, shifting species composition to more acid-tolerant organisms. Many organisms at the base of the food chain, including incipient stages of fish and aquatic invertebrates, and even some higher level predators, including benthic invertebrates, zooplankton, amphibians, and birds (Ormerod and Durance, 2009), will be phased out to make way for simpler organisms. These simpler organisms include certain types of macrophytes and phytoplankton. Additionally, atmospheric deposition of reactive N and S is disrupting aquatic ecosystems, particularly those that are freshwater in nature, which have especially low acid neutralizing capacities. And while sulfur emissions have declined significantly, beginning in the mid-1980s, reactive N has become a major component of acidic deposition,
particularly in North America, Europe, and some developing countries (Erisman et al., 2013).

2.3.2 Implications for Global Climate Change

Nitrogen application has significant implications for climate change; the overall enhanced agricultural productivity associated with synthetic fertilizer application spurs elevated denitrification, nitrification, and DNRA rates, resulting in the inherent, subsequent release of nitrous oxide. In fact, roughly 40% of total N$_2$O emissions are a direct result of anthropogenic activities, including agriculture, industrial activities, and transportation (EPA, 2017). A significant portion of this 40% is attributed to application of synthetic fertilizers to agricultural soils, contributing ~75% of the total United States N$_2$O emissions in 2015 (USEPA, 2017). On top of this, tropospheric concentrations are increasing at a rate of ~0.25% per year (Galloway et al., 2003). These emissions have significant implications for global climate change.

2.3.2.1 Nitrous Oxide’s Potential as a Greenhouse Gas

Nitrous oxide is a potent greenhouse gas with roughly 298 times the 100-yr global warming potential of carbon dioxide, and a residence time in the atmosphere of approximately 114 years (EPA, 2017). While nitrous oxide still contributes less to the greenhouse gas effect than do carbon dioxide, water vapor, and methane, due to the presence of those gases at higher concentrations in the atmosphere, current trends and future projections for N$_2$O-attributed global warming warrant great concern. Early models projected global emissions of 25.7 Tg N yr$^{-1}$ by 2100, up from 12.7 Tg N yr$^{-1}$ in 1990, and emissions would need to be cut by 80% to meet environmentally desirable climate goals (Kroeze, 1994). Unfortunately, nitrous oxide’s ability to impact global warming doesn’t end there; recent developments have unveiled nitrous oxide’s complicated consequences for the ozone layer.
2.3.2.2 Stratospheric Ozone Depletion

The destruction of the stratospheric ozone layer has been labelled as one of the major environmental issues of the 20th century, with higher production rates of ozone-depleting substances (ODSs) being the catalyst for recent elevated depletion rates (Portmann et al., 2012). Historically, stratospheric chlorine and bromine loading associates with anthropogenic chlorofluorocarbons (CFCs) has been deemed the primary ODS (Molina & Rowland, 1974; Stolarski and Cicerone, 1974), but recently, a new culprit’s potency has been revealed; N$_2$O currently contributes more to ozone destruction than any other gas emitted as a result of human activities (Ravishankara et al., 2009). N$_2$O shares many qualities with CFCs, being highly nonreactive in the troposphere, but volatile once it reaches the stratosphere, where it is broken down via photolysis, releasing nitrogen oxides, NO$_x$:

$$\text{N}_2\text{O} + \nu \rightarrow \text{N}_2 + \text{O}(^1\text{D})$$
$$\text{N}_2\text{O} + \text{O}(^1\text{D}) \rightarrow \text{N}_2 + \text{O}_2$$
$$\text{N}_2\text{O} + \text{O}(^1\text{D}) \rightarrow 2\text{NO}$$

Ultimately, approximately 10% of N$_2$O reacts to form these N oxides (NO$_x$ = NO + NO$_2$), which are known to catalyze reactions that result in the destruction of ozone via the following reactions (Crutzen, 1970; Johnston, 1971):

$$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$$
$$\text{O} + \text{NO}_2 \rightarrow \text{NO} + \text{O}_2$$
$$\text{Net: O} + \text{O}_3 \rightarrow 2\text{O}_2$$

Unlike with CFCs, N$_2$O has natural sources, the primary contributors being nitrification and denitrification in soils, but, as discussed in previous sections, anthropogenic, intensive agriculture is causing N$_2$O to be emitted at excessive, unnatural rates. The literature overwhelmingly suggests that these agricultural practices
will continue to be a primary culprit for ozone depletion in the recent future (Ravishankara et al., 2009; Portmann et al., 2012; Revell et al., 2012a; Revell et al., 2012b). However, some sources suggest that the negative effects of these N₂O emissions may ironically be offset by projected increased CO₂ emissions and associated radiative cooling (Rosenfield et al., 2015; Stolarski et al., 2015). Moving forward, controlling and monitoring stratospheric ozone levels will require significant consideration of N₇ application and related N₂O emissions, as well as CO₂ emissions (Stolarski et al., 2015).

2.3.3 Human Health Repercussions

N₇ production and application also present serious ramifications for human health, be it through interaction with aqueous or gaseous varieties. The known human health repercussions, including respiratory illnesses, methemoglobinemia, and cancer, are discussed in detail below.

2.3.3.1 Respiratory Illnesses

The NOₓ compounds produced in the stratosphere, depleting the ozone layer, are having dire consequences for human health. If inhaled, NO₂ can cause severe damage to the lungs, and high indoor concentrations can induce a variety of respiratory illnesses, as well as coughing and a burning sensation inside the lungs (WHO, 2003). Children subjected to continuous exposure are more likely to develop reduced breathing efficiency and certain respiratory diseases (WHO, 2003). High NO₂ concentrations are also indicative of the potential presence of other toxic pollutants produced by the same source, and it is easily measureable, making it useful as a surrogate for the entire pollutant mixture (WHO, 2006).

Apart from the dangers inherent to NOₓ production, its subsequent impacts, when released into the lower atmosphere and allowed to react, can increase tropospheric ozone (O₃), smog, particulate matter, and aerosol formation. Tropospheric O₃ is pernicious in that inhalation can cause coughing, asthma, a temporary decline in lung function, and chronic respiratory disease (von Mutius, 2000). A recent study by the
World Health Organization revealed that increasing levels of O₃ in the environment caused a clear rise in mortality and respiratory morbidity (WHO, 2008). The formation of particulate matter is especially concerning, affecting people worldwide; a recent study by the European Environment Agency reveal that there fine particles are responsible for over 455,000 premature deaths in the EU27 states every year (de Leeuw and Horálek, 2009).

2.3.3.2 Methemoglobinemia

The environmental problems inherent to excessive eutrophication are complicated by significant implications for human health; ingesting too much NO₃ can cause a serious condition known as Methemoglobinemia (MetHb). Methemoglobinemia is a blood disorder involving the abnormally high production of methemoglobin, a type of hemoglobin that contains ferric iron (Fe³⁺). Hemoglobin is the protein responsible for transporting and distributing oxygen to body tissues via red blood cells, an essential, niche bodily function. Methemoglobin in humans without MetHb is typically below levels of 1%, but individuals with MetHb can, in worst case scenarios, exhibit levels over 70%. Symptoms of mild methemoglobinemia, characterized by methemoglobin levels above 1%, can include headaches, dizziness, shortness of breath, and cyanosis, a condition involving the bluish discoloration of skin membranes (Mansouri and Lurie, 1993). Individuals with severe methemoglobinemia can be prone to seizures (levels greater than 50%), comas, and death (>70%).

At the fundamental level, MetHb takes root when defensive mechanisms in the blood for responding to imbalances in reactive oxygen are rendered less effective, and the ferrous iron (Fe²⁺) of the heme group in the hemoglobin molecule becomes oxidized to its ferric state, essentially converting hemoglobin to methemoglobin. The unusual abundance of ferric iron results in a relative disproportion in oxygen affinity amongst heme sites in the blood; humans with MetHb have hemoglobin that can transport oxygen, but not in a way that is effective for releasing oxygen, to be uptaken by body tissues, often resulting in tissue hypoxia. MetHb can be inherited from parents carrying the recessive gene for the disorder, and it can also be acquired via exposure to a few
drugs, including certain antibiotics, aniline dyes, bromates, chlorates, etc. But the catalyst of particular concern is exposure to NO₃⁻-N-containing compounds. The recent problem of exported NO₃⁻-N from excess agricultural fertilizers is of particular concern because infants under the age of six months are especially at risk of MetHb because their red blood cells have lower levels of a crucial methemoglobin reduction enzyme. For this reason, the EPA set a MCL of 10 ppm NO₃⁻-N for drinking water.

2.3.3.3 Cancer

The NO₃⁻-N inherent to nitrogen pollution has been implicated as a precursor and indirect source of nitrosamines, a commonly carcinogenic chemical compound. Nitrate, if ingested, can be resorbed in the gastrointestinal tract and secreted in saliva, where oral bacteria convert approximately 20% of this NO₃⁻-N to nitrite (Spiegelhalder et al., 1976; Stephany and Schuller, 1980). Substances included in consumed foods and drugs can then react with this nitrite to form nitrosamines, which are carcinogenic (Magee et al., 1976); in 1984, more than 90% of the 300 different N-nitroso compounds caused carcinogenic activity (Pruessmann, 1984). N-nitroso compounds have been linked to cancer in about 40 animal species, proving to be carcinogenic for many different organs in animals (Bogovski and Bogovski, 1981). Indeed, high exposure to nitrates can increase risk for cancer, especially including esophageal, colon, nasopharyngeal, and gatstal cancers (Correa et al., 1975; Hagmar et al., 1991; Tricker and Preussmann, 1991; Mirvish, 1995; Loh et al., 2011), highlighting the need to stifle the delivery of agricultural effluent to nearby water bodies.

2.4 Denitrification Management

As the excessive application of reactive nitrogen (Nₓ) continues to grow, so does the need to develop strategies for managing its application and eventual, inevitable transportation (Galloway et al., 2008). Many such strategies exist for reducing nitrate leaching from agricultural croplands, including the simple adaptation of nutrient management plans (NMPs), but even with these measures in place, N, P, and other
nutrients are inevitably transported when the water table intersects the root zone (Lassiter and Easton, 2013). And while nitrate leaching from land treatment systems can be inhibited by several other mechanisms, including plant harvesting (Cameron et al., 1997) and N immobilization into the organic matter pool (Degens et al., 2000), the only permanent removal of nitrate is denitrification (Averill and Tiedje, 1982). For this reason, denitrification has been targeted and exploited for its ability to permanently remove nitrate, by designing systems for use in the environment that encourage denitrification, termed “denitrification management.” Two traditional systems for denitrification management are represented in Figure 6 and are discussed below: riparian zones and constructed wetlands.
Figure 6 Illustration of denitrification management options, including riparian zones, wetlands, and denitrifying bioreactors. Borrowed from WaiBER (2012).
2.4.1 Riparian zones

Riparian zones are uncultivated, narrow strips of land sandwiched between rivers or streams and adjacent lands, and they are typically covered in dense vegetation, including trees, shrubs, and grasses. Because of their position at the interface of terrestrial and aquatic ecosystems, and the biotic, hydrologic, and geomorphic processes that occur there, these zones have been lauded for their facilitation of pollutant removal, acting as a last-ditch effort to mitigate nutrient pollution in groundwater discharge, before it feeds into downgradient streams (Peterjohn and Correll, 1984; Haycock and Pinay, 1993; Cey et al., 1999). While nitrogen attenuation in riparian zones is still not well understood (Ranalli and Macalady, 2014), there are several known mechanisms that contribute to riparian zones’ ability to function as filters, including uptake of nutrients by vegetation (Lowrance, 1992), denitrification (Tiedje, 1988; Jacobs and Gilliam, 1985; Hill, 1996; Cooper, 1990; Hill et al., 2014), and dilution (Altman and Parizek, 1995). Pollutants in sediments can also potentially be removed in ponds, which are commonly formed at upslope edges of riparian buffer zones, allowing these contaminants to settle out of the water column (Muscutt et al., 1993), but the processes following the infiltration of overland flow are the primary pollutant removal mechanisms (Gharabaghi et al., 2002). The thick vegetation that typically surrounds water bodies increases surface roughness and slows overland flow, allowing for drainage to infiltrate into the buffers, and inherent processes filtrate drainage. Because of these slower flow rates, riparian buffers also allow nearby rivers and streams to more adequately handle significant floods and higher flow events.

Riparian zones are currently facing a significant number of anthropogenic stressors, including land use changes, climate change, atmospheric N deposition, and wildfire, and there is therefore added need to fully understand the mechanisms contributing to N attenuation in these zones (Ranalli and Macalady, 2014). Currently, soils are being altered by the stressors, resulting in groundwater passage through mineral soils that are not as favorable for promoting denitrification (Cooper, 1990), thereby making these zones less effective for enhancing N attenuation through the
promotion of “riparian bypass,” Flewelling et al., 2011). Furthermore, returning these organic soils to their denitrification-inducing state can take decades (Downes et al., 1997), highlighting the need to develop alternatives for removing nitrate from groundwater.

2.4.2 Constructed Wetlands

Constructed wetlands are engineered systems that simulate natural wetlands, strategically installed for land reclamation following ecological disturbances, and for biofiltering targeted pollutants that are inherent to industrial wastewater, urban stormwater, etc. (Kadlec and Wallace, 2009). The vegetation, soil, and organisms in these wetlands act in concert to support physical, chemical, and biological processes, removing sediment and/or pollutants, all while contributing to a functional, productive wildlife habitat (Mitsch et al., 2015). Constructed wetlands have shown promise as an effective means for removing a significant number of pollutants, including N (Ilyas and Masih, 2017a), P, and heavy metals (Khan et al., 2009), from incoming drainage, with dissolved oxygen, organic loading rate, and specific surface area deemed as the most important determinants for pollutant removal (Ilyas and Masih, 2017a), but nitrate is the pollutant of most relevance. In fact, in ordinary, natural wetlands, which are typically dominated by carbon rich and anaerobic environments, it is not uncommon for there to be complete NO$_3^-$-N removal, suggesting that denitrification rates are primarily limited by influent NO$_3^-$-N concentrations (Reddy and Patrick, 1984).

A significant downside to installing constructed wetlands for denitrification management is the fact that they require a significant amount of land for occupation (Ilyas and Masih, 2017b); more often than not, farmers are not keen on using valuable land on remediation, rather than more the more lucrative, fruitful purpose of agricultural production. There have been attempts to develop modified constructed wetlands, such as stack designs or aeration methods (Ilyas and Masih, 2017b), but there is still a need to search for alternative means of denitrification management. One such alternative is the denitrifying bioreactor.
2.5 Denitrifying Bioreactors

Denitrifying bioreactors have emerged as an effective edge-of-field BMP for intercepting agricultural wastewater, and removing excess \(\text{NO}_3^- \)-N from agricultural drainage before releasing it to nearby water bodies and/or underlying aquifers (Blowes et al., 1994; Greenan et al., 2006; van Driel et al., 2006; Jaynes et al., 2008; Schipper et al., 2010; Christianson et al., 2011a).

2.5.1 What are Denitrifying Bioreactors?

Denitrifying bioreactors are subsurface BMPs typically used as an edge-of-field practice for removing nitrate from agricultural drainage, housing organic matter and maintaining an anaerobic environment. The carbon substrate within these bioreactors supports the process of chemoheterotrophic denitrification, the most cost effective and environmentally sound method for removing nitrate from drinking water (Volokita et al., 1996; Lu et al., 2014). The lack of a sufficient carbon energy source can often limit nitrate removal via denitrification, particularly in groundwater, and the carbon media in DNBRs overcomes this lack of an energy source (Starr and Gillham, 1993). The cheap costs and low risk remediation of DNBRs make them implementable at large scales, and applicable to a wide variety of environmental problems, particularly in areas downgradient from significant \(\text{NO}_3^- \) contributors (Schipper and Vojvodić-Vuković, 1998). Since their inception, DNBRs have been adapted to treat a variety of pollution problems including septic systems (Robertson et al., 2000), aquaculture wastewater, etc.

2.5.2 Installation and Cost

DNBR bed installation typically begins with the excavation of a pit where the bioreactor will be positioned, followed by the placement of drainage control structures where inflow is directed into the bioreactor, and where outflow will escape from the bioreactor (Woli et al., 2010). This can involve the placement of bypass flow structures (discussed later in this chapter), which may be worthwhile if overwhelming flows are expected at the site. The pit should then be lined with a geosynthetic fabric, which will
prevent drainage from escaping from anywhere but the outflow structure. The bioreactor can then be filled with the chosen media, and, while filling the pit, it may be convenient to add piezometers for sampling convenience and water level monitoring. Finally, once the bioreactor is filled with media, the top should be lined with more geosynthetic fabric and/or a soil cover, which may potentially reduce nitrous oxide emissions (Woli et al., 2010). DNBR installations reported in the literature have cost $4400 to $11800, treating a wide variety of drainage areas (12 ha to over 40 ha) (Christianson et al., 2012b). Most cost between $7000 and $9000, with the fill media and contractor fees typically comprising the majority of the costs (Christianson et al., 2012a). The most traditional DNBR substrate of woodchips costs ~$25 m⁻³, and it is important to remember that costs are also not linear with respect to size (DeBoe et al., 2017).

2.5.3 Types of Denitrifying Bioreactors

Traditionally, in-field DNBRs have been divided into three categories, denitrifying layers, denitrifying walls, and denitrifying beds (Addy et al., 2016). These classifications are largely based on bioreactor geometry, as well as the nature of the pollution that that geometry is meant to enhance pollution interaction. This section delves into the different types of bioreactors, discussing their attributes, frequencies of usage, and performance, ending with a brief summary of Addy et al. (2016), a meta-analysis of DNBRs that compares types.

2.5.3.1 Denitrifying Layers

Denitrifying layers are horizontal, carbon-filled DNBR layers underlying pollution sources. Schipper and McGill (2008), one of the few studies reporting on the performance of field scale DNBR layers, evaluated a New Zealand layer treating dairy factory influent. Results revealed that the layer was unable to achieve insignificant nitrate removal from the wastewater, a finding that the authors attributed to the insufficient 100 mm thickness of the layer; the resultant shorter retention times were incapable to reducing nitrate concentrations to acceptable levels. They concluded that the thicker layers (300-500 mm) used in previous studies by Robertson et al. (2000) and
Bedessem et al. (2005) were more lucrative. Keeping the organic carbon saturated also proved to be difficult, as the potential presence of oxygen in pore spaces limited denitrification. Bypass flow was also identified as a potential limiting factor for nitrate removal rates in this bioreactor, raising concern regarding management practices.

2.5.3.2 Denitrifying Walls

Denitrifying walls are carbon medium-filled trenches that dip beneath the water table by 1 to 2 m, oriented in a direction perpendicular to groundwater flow paths, allowing groundwater to pass through the “subsurface walls” (Addy et al., 2016; Schipper and Vojvodić-Vuković, 2001). Darcian flow principles govern flow in denitrification walls, thereby typically resulting in longer HRTs and a lower nitrate flux per media volume in comparison to denitrifying beds (Schipper et al. 2010a). Denitrifying walls are relatively uncommon, with only a few known examples reported in the literature (Moorman et al., 2010; Schipper and Vojvodić-Vuković, 2000; Schmidt and Clark, 2012). During N-limiting conditions, walls may be more applicable for DNBR treatment, and Robertson and Cherry (1995) suggested using other technologies in concert with denitrifying walls, including the “funnel and gates” concept presented in Starr and Cherry (1994), which involves the use of a plume to funnel concentrated drainage to a single point of treatment, or gate, where the reactive media is contained. Schipper et al. (2010b), a review of monitored denitrifying walls reported nitrate removal rates of 0.01–3.6 g N m⁻³ d⁻¹, significantly lower than rates typically reported in beds.

2.5.3.3 Denitrifying Beds

Denitrifying beds differ from walls in that they are designed to treat concentrated drainage, typically delivered by tile drainage, ditches, or wastewaters (Addy et al., 2016), and have been adapted for treatment in stream beds (Robertson and Merkley, 2009). Beds are often acknowledged as the most effective type of DNBR (Addy et al., 2016), typically supporting nitrate removal rates of 2–22 g N m⁻³ d⁻¹ (Schipper et al., 2010b). One potential limitation of denitrifying beds is that substantial bypass flow can occur during significant storm events that generate high flows (Christianson et al.,
2013a; Rosen and Christianson, 2017), and this should be taken into consideration when design and implementing these structures. Hydraulic control components can be installed to adjust for bypass flow potential, and can extend or shorten HRTs if there is need to do so (Figure 7).

![Diagram of an effective denitrifying bed setup, with bypass flow control structures incorporated to adjust for high flow rates and approximate goal HRTs. Borrowed from Christianson and Helmers (2011).](image)

Figure 7 Diagram of an effective denitrifying bed setup, with bypass flow control structures incorporated to adjust for high flow rates and approximate goal HRTs. Borrowed from Christianson and Helmers (2011).

2.5.3.4 DNBR Columns

Unlike the previous three designs mentioned, DNBR columns are not built for in-field treatment, but are rather constructed to replicate the flow dynamics of denitrifying beds at the laboratory scale, meaning they are much smaller than typical, in-field DNBRs (Greenan et al., 2006; Healy et al., 2006). DNBR column experiments are highly
useful because, unlike in the field, the processes that DNBRs are subjected to can be controlled by the observer, and performance can be easily monitored.

2.5.3.5 Comparison

The meta-analysis techniques employed in Addy et al. (2016) to assess 57 separate DNBRs from 26 studies, revealed that while nitrate removal rates reported in bed and column studies did not differ significantly from each other, they were significantly higher than removal rates reported in wall studies. Even with these findings, there is no “one-size-fits-all” DNBR design, and the most ideal setup will vary significantly based on site-specific factors.

2.5.4 The History of Denitrifying Bioreactors: A Synopsis of Case Studies

The use of organic carbon for removing agriculturally-derived N has long been studied, and was implemented decades before the advent of DNBRs, with the first reported case in 1971 (Williford et al., 1971). In the early years, this mechanism was typically applied for treatment of agricultural and municipal wastewater through a variety of approaches (Loehr, 1984; Perry et al., 1984), including sludge sewage treatment processes (Grady and Lim, 1980), trickling-filter or fixed-film reactors (Rock et al., 1990), and methanol dosing (Sikora and Keeney, 1976). However, most of these methods were not practical because of their cost and maintenance requirements, and none of them were appropriate for convenient treatment of farm field runoff. Boussaid et al. (1988) identified the potential of solid organic carbon as a means for remediating NO$_3^-$-contaminated drinking water through passive denitrification, confirming the findings of a septic-system effluent denitrification experiment by Stewart et al. (1979) and an experiment by Williford et al. (1971) that tested the ability of barley straw-filled trench to remove nitrate. Robertson et al. (1991) and Robertson and Cherry (1992) also measured rapid attenuation of septic system NO$_3^-$ in two aquifer zones where solid organic carbon was in abundant supply.

These antecedent studies ushered in the early work on DNBRs, which did not begin until the mid-1990s. A laboratory experiment by Vogan (1993) recorded the ability
of sawdust, alfalfa, wheat straw, and cellulose-filled columns to support denitrification, and found that while sawdust provided the lowest nitrate removal rates, it provided the most potential for long-term removal. A landmark study by Blowes et al. (1994) documented the economical, maintenance free N removal provided by three fixed-bed bioreactors containing coarse sand, tree bark, wood chips and leaf compost. This was the first study on in-field DNBRs, marking the advent of a new, convenient BMP technology for intercepting and treating agricultural effluent.

Many studies would follow in the coming years, and at a variety of scales and locations, including another early study that examined the performance of three denitrifying layers and one denitrifying wall to treat septic system effluent at three different locations at the University of Waterloo in Ontario, Canada (Robertson and Cherry, 1995). The successful nitrate removal, ranging from 60-100%, provided by these bioreactors, containing 20% sawdust and 80% sand media, prompted extended examination, and the Waterloo bioreactors were studied for many years to come. A six-year follow-up study revealed that these bioreactors were still serving their intended purpose, yielding average removal rates of 80%, 70%, 91%, and 57% at HRTs ranging from three hours to forty days, and the authors speculated that the carbon media consumption resulted in a mass reduction of only <10-20% over that lengthy period of time (Robertson et al., 2000). Schipper and Vojvodić-Vuković (1998) expanded on the ideas presented in these in situ sawdust DNBR studies, and the “funnel and gate system” concept presented in Starr and Cherry (1994), reporting on denitrification in a sawdust DNBR wall downgradient of Bardowie Farm, North Island, New Zealand. This DNBR wall would be the site of continued study for years to come, providing a window into the long term performance of DNBRs.

In the years since, DNBRs have been installed in monitored in a vast variety of climate zones. Cooke et al. (2001) examined DNBR applications for tile drainage in Illinois, which initiated a series of subsequent tile drainage studies in Illinois that shed light on DNBR gravel amendments for lessening degree of compaction (Wildman, 2001) and the responses of different media to HRTs and temperatures (Doheny, 2002). In Iowa, a series of studies explored the impacts of carbon media, HRTs, and design
geometry on DNBR performance. A handful of field studies in Iowa and Minnesota have recorded carbon media longevity, N₂O emissions, and removal of non-nitrate compounds (Jaynes et al., 2008; Moorman et al., 2010, Christianson et al., 2012b). A growing number of in situ bioreactors have been implemented in the Chesapeake Bay Watershed (Bock, 2014; Bock et al., 2015; Bock et al., 2016; Rosen and Christianson, 2017).

DNBRs have been adopted as a final step for wastewater treatment (Oakley et al., 2010; Schipper et al., 2010), with van Driel et al. (2006) being one of the first reported cases of DNBRs directly treating drainage water effluent. Bioreactors have been implemented to target wastewater from aquaculture facilities, where controlled flow rates are more realistic than in non-point source N pollution streams (Lepine et al., 2016; von Ahnen et al., 2016), and they have been used in conjunction with other BMPs, such as constructed wetlands (Tanner et al., 2012).

DNBR application has even been expanded to treat P in addition to N. Robertson and Cherry (1995) highlighted Fe as a beneficial additive to DNBRs for limiting PO₃⁻⁻⁻; iron and PO₃⁻ can react to precipitate vivianite (Fe(PO₄)₂ · 8H₂O), thereby reducing PO₃⁻ levels via formation of lake bottom sediments (Nriagu and Dell, 1974). Woodchip and biochar bioreactors the Delmarva Peninsula and Tidewater region of Virginia, both in situ and in laboratory column studies, have successfully supported NO₃⁻⁻⁻⁻⁻ and PO₄³⁻⁻⁻⁻⁻ removal from tile drainage and simulated agricultural drainage, respectively (Bock, 2014; Bock et al., 2015; Bock et al., 2016). Goodwin et al. (2015), Hua et al. (2016), and Abusallout and Hua (2017) recorded the successful simultaneous removal of nitrate and phosphate from drainage water using woodchips and steel byproduct filters.

2.5.5 Factors Contributing to DNBR Performance

The many factors that influence DNBR performance are still under investigation, and much progress has been made in recent years, as DNBRs have continued to garner recognition as a means to cost-effectively attenuate nitrogen from agricultural effluent.
2.5.5.1 Carbon Media

Selecting the proper carbon source prior to DNBR installation is of utmost importance, and should involve the consideration of the many site-specific factors that will impact the ability of chosen media to perform. The most important factors to take into consideration include cost, porosity, C:N ratio, and longevity (Robertson et al., 2000; Robertson et al., 2005a; Christianson et al., 2012). Based on these considerations, and on the desired treatment goals, the most appropriate, applicable media type can change from location to location. A wide variety of carbonaceous materials have been tested for their ability to support denitrification, including woodchips (Blowes et al., 1994; Elgood et al., 2010; Long et al., 2011; Moorman et al., 2010; Robertson and Cherry, 1995; Schipper and Vojvodić-Vuković, 2001; Addy et al., 2016), biochar (Bock et al., 2015; Easton et al., 2015; Bock et al., 2016), cellulose (Boussaid et al., 1988; Vogan, 1993), raw cotton (Volokita et al., 1996a), newspaper (Volokita et al., 1996b), sawdust (Vogan, 1993; Robertson and Cherry, 1995; Schipper and Vojvodić-Vuković, 1998; Robertson and Anderson, 1999; Schipper and Vojvodić-Vuković, 2001), bark (Blowes et al., 1994), compost (Blowes et al., 1994), jute pellets (Wakatsuki et al., 1993), wheat straw (Vogan, 1993), vegetable oil (Hunter et al., 1997; Hunter, 2001), alfalfa (Vogan, 1993), and maize cobs (Cameron and Schipper, 2010).

Initial studies identified simple carbon compounds, such as ethanol, methanol, and acetate, as successful at enhancing denitrification rates. The need to find cheaper, more widely available carbon sources soon brought cellulose, a constituent of all plant materials and the most most abundant renewable resource in the world (Couglan, 1985), to the forefront of DNBR media research. Sawdust was revealed as an ideal carbon media source for its high degree of reactivity (Carmichael, 1994), ideal C:N ratio (Vogan, 1993), high permeability, and high availability. It was also common practice to use sand or excavated soil amended with woody material (typically less than 25% by volume) as a carbon source for denitrification in DNBRs (Robertson et al., 2000). These practices were voided after evaluations of long-term performance in these bioreactors and comparisons of the media, showing that the sole use of woody material sustained higher N removal rates for substantial periods of time (Robertson et al., 2000).
Traditionally, woodchips have been supported as the most common medium used in DNBRs (Blowes et al., 1994; Elgood et al., 2010; Long et al., 2011; Moorman et al., 2010; Robertson and Cherry, 1995; Schipper and Vojvodić-Vuković, 2001; Addy et al., 2016); their cheap cost, longevity, C:N ratio, and conductivity make them an ideal choice in denitrifying bioreactors. In fact, in many cases, substantial nitrate removal has been supported for over 10 years, with little to no maintenance required for operation (Blowes et al., 1994; Robertson, 2010; Christianson et al., 2011a; Cooke and Bell, 2014), and a few studies report woodchip bioreactors approaching 15 years of age still managing to remove NO$_3^-$-N effectively (Robertson et al., 2008; Schipper et al., 2010). Moorman et al. (2010) compared woodchip matrix to a soil control, and found that denitrification potential activity was, at minimum, 31 times greater for woodchips than for the soil control, and, at maximum, 4000 times greater.

Out of the various woodchip varieties, hardwood species are typically preferred over softwood species (Addy et al., 2016). This is largely due to the fact that hardwood species are generally more reliable C sources than softwood species; the lignin in softwoods makes C-limited scenarios more likely in DNBRs (Cornwell et al., 2009). Additionally, the lower density wood in softwoods allows for more exposure to oxygen, resulting in faster decomposition, further contributing to a C-limited scenario (Cornwall et al., 2009). Indeed, softwood species often have lower C:N ratios, resulting in flushing losses and mass degradation (Gibert et al., 2008). Carmichael (1994) suggested that, in woody, carbonaceous material, denitrification occurs at the penetrable rims of particles, where NO$_3^-$-N-rich influent can be easily diffused, thereby opposing the notion that denitrification is restricted to grain surfaces. These assertions were affirmed in long-term DNBR studies that larger wood particles featured thick, dark-colored rims, with lighter centers, whereas smaller particles appeared to be completely darkened (Robertson et al., 2000). Robertson et al. (2005b) concluded that this suggests that the water infused into the wood may also be denitrified, and Appleford et al. (2008) later confirmed this theory.

The porosity, particle size, and hydraulic conductivity of woodchips is highly variable, and will influence bioreactor hydraulic properties (Christianson et al., 2012a).
Commonly, woodchip porosities range from 0.6-0.86 (Chun et al., 2009, Robertson, 2010; Ima and Mann, 2007; Christianson et al., 2010a) and from 0.65 to 0.79 in situ (Chun et al., 2009; Woli et al., 2010; van Driel et al., 2006). Woodchip porosity decreases as moisture content (Ima and Mann, 2007) and packing density (Christianson et al., 2010) increase. While several studies have investigated chip shapes and sizes, no significant differences in nitrate removal have been reported between coarse and fine chips (Greenan et al., 2006; van Driel et al., 2006), course chips are considered preferable because of their high hydraulic conductivity (van Driel et al., 2006).

Carbon media type directly influences, bioreactor longevity, which is of obvious importance, and depends on a variety of complex factors, including the type and volume of carbon source, flow characteristics, the degree of bioreactor saturation, and certain physical changes in the media through time (Schipper et al., 2010b). The presence of oxygen plays a significant role in organic matter degradation; oxygen, like nitrate, acts as an electron acceptor, but, unlike nitrate, acts as a reactant, attacking complex organic matter and thereby causing degradation (Schink, 1999). The anaerobic decomposition of organic carbon is generally slower than the aerobic decomposition of organic carbon (Bridgham et al., 1998), so DNBRs should be designed to keep carbon media as saturated as possible, maximizing anaerobic conditions. Other consumption reactions include dissolved organic carbon (DOC) leaching and sulfate reduction (Robertson et al., 2000), and these reactions need to be considered for their promotion of pollution swapping.

The lifetime of a carbon supply supporting denitrification is difficult to estimate; denitrifiers do not directly use media as a C source, but rather the more labile organic compounds released by other anaerobic microbes (Tiedje, 1988; Beauchamp et al., 1989). The longevity of carbon in DNBRs can be predicted using stoichiometric equations of the decomposition of organic matter using nitrate as an electron acceptor, but these methods are limited in that they ignore the possibility of the anaerobic degradation of organic matter when an external electron acceptor is unavailable (Schipper and Vojvodić-Vuković, 2001). In other words, these equations assume that
denitrification is the only process responsible for the decay of organic matter, potentially resulting in inflated DNBR lifetime estimates via these methods.

Results from stoichiometric estimates of longevity are highly variable, depending on any number of site-specific factors. The first DNBR study, Blowes et al. (1994), speculated that their DNBRs would perform for over 70 years. Another early DNBR study proposed that carbon sources may potentially last over 15 years, based on estimates of the stoichiometric consumption of carbon by nitrate (Robertson and Cherry, 1995). That same bioreactor was still operating proficiently 15 years later (Robertson et al., 2008). The bioreactor discussed in Moorman et al. (2010) was fully functional after 9 years, and estimates of the saturated wood half-life yielded an expected lifetime of ~37 years. Empirical observations of the 11-year-old wall investigated in Long et al. (2011) produced a lifetime estimate of 66 years.

A handful of evaluations of the long-term performance of DNBRs suggest that these BMPs have the ability to support substantial denitrification rates for “at least a decade or longer” with no need for carbon replenishment (Robertson and Cherry, 1995; Robertson et al., 2000). An assessment of four denitrifying bioreactors in Robertson et al. (2000) found that DNBR performance did not deteriorate at a University of Waterloo bioreactor during 6 years of operation, and reported the highest removal rates of 32 mg N L\(^{-1}\) during the fourth year of operation. While the indirect measurement of hydraulic rates at the other three DNBRs made the calculation of reaction rates more difficult, and therefore it was difficult to evaluate long-term performance, these bioreactors removed significant amounts of nitrate over the 6 year period. Robertson et al. (2000) claimed that after 6-7 years of operation, carbon media in four DNBRs at the University of Waterloo had only degraded by 2-3% in each via denitrification, and <10-20% total, including other consumption reactions.

Addy et al. (2016) found media age to have a significant impact on nitrate removal; beds younger than 13 months generally supported significantly high nitrate removal rates than beds that were 13 to 24 months old and >25 months old. For these reasons, Schipper et al. (2010) and Robertson (2010) suggested that nitrate removal rates in the first year should not be expected in the long-term. There is therefore great
need for more work on long-term DNBR maintenance to provide information on performance of these bioreactors as their carbon sources continually deplete.

2.5.5.2 Influent NO$_3^-$-N Concentration

Influent NO$_3^-$-N concentration can have a profound impact on NO$_3^-$-N removal rates (Barton et al., 1999), and many examples of N-limited conditions have been reported in the literature (Rosen and Christianson, 2017; Addy et al., 2016). Addy et al. (2016) compiled data from a vast variety of DNBR studies, and determined that influent NO$_3^-$-N concentrations play a major role in nitrate removal rate; higher nitrate removal rates were observed in beds that received influent with N concentrations at >30 mg N L$^{-1}$ than in beds that received low (<10 mg N L$^{-1}$) or intermediate (10-30 mg N L$^{-1}$) concentrations. To determine whether or not denitrification is limited by energy source or NO$_3^-$-N concentrations, half-saturation constants (K_{in}) can be calculated (Myrold and Tiedje, 1985). Consistent, prolonged denitrification requires influent with a sufficient NO$_3^-$ concentrations coupled with a steady C supply (Starr and Gillham, 1993). However, in NO$_3^-$-N limited environment environments, denitrifier populations are resilient and can survive for months using slow fermentation for cell maintenance (Jørgensen and Tiedje, 1993). Therefore, DNBRs employed at locations where seasonal NO$_3^-$-N concentration trends and fluctuations are expected may not have their denitrification performance jeopardized.

When implementing DNBRs, the potential for NO$_3^-$-N limitation is also important to consider because the absence of an electron acceptor in a low oxygen setting can promote formation of harmful compounds, such as methyl mercury, hydrogen sulfide, and methane (Fenton et al., 2014; Schipper et al., 2010b).

2.5.5.3 Hydraulic Retention Time

Hydraulic retention times (HRTs) play a major role in bioreactor maintenance, and are governed by bioreactor flow rates, volume, and carbon media porosity. HRTs are calculated as:
Where \(V \) represents the total volume of the bioreactor, \(\rho \) is the porosity of the carbon medium, and \(Q \) is the flow rate passing through the bioreactor.

HRT is typically correlated with \(\text{NO}_3^- \cdot \text{N} \) removal rates (Christianson et al., 2012b; Woli et al., 2010); the longer the HRT, the more time a given parcel of water is subjected to processes like denitrification, removing nitrate. Therefore, brief retention times can be expected to result in minimal nitrate removal, mainly due to the aforementioned higher flow rates, but also because dissolved oxygen higher levels are usually higher, crippling the ability of denitrifying organisms to perform denitrification. On the opposite end of the spectrum, excessively long retention times can result in complete \(\text{NO}_3^- \cdot \text{N} \) removal from agricultural drainage. Chun et al. (2009) examined \(\text{NO}_3^- \cdot \text{N} \) reductions of 10 to 40% at HRTs of 5 h, and 100% removal at HRTs of 15.6 and 19.2 h. Greenan et al. (2009), presented removal efficiencies of 30 to 100% at HRTs ranging from 2.1 to 9.8 days. Addy et al. (2016) revealed that cumulative nitrate removal in beds with HRT from 6 to 20 h and >20 h was significantly greater than in beds with HRT < 6 h.

Optimal DNBR maintenance should involve control structures to establish HRTs sufficient enough to lower drainage nitrate concentrations to acceptable levels (Christianson et al., 2012). Significant bypass flow, occurring during high flows that overwhelm DNBRs, can substantially reduce DNBR effectiveness (Christianson et al., 2013; Rosen and Christianson, 2017), and has been reported as a phenomenon common to DNBR layers (Schipper and McGill, 2008). In denitrifying beds, flow control structures, strategically placed at the upstream and downstream ends of DNBRs, can easily be managed to manipulate flow rates for desired HRTs. During periods of low precipitation, stop logs within these structures can be removed to maintain appropriate retention times, and the opposite is true for periods of higher precipitation, when stop logs can be added to maintain retention times (Chun et al., 2010). As such, implementing these structures and actively managing them can vastly improve denitrifying bed performance.

2.5.5.4 Dissolved Oxygen

Because denitrification requires sufficiently low dissolved oxygen concentrations (Korom, 1992), high levels of dissolved oxygen can cripple the ability of denitrifying organisms to perform denitrification within DNBRs. When oxygen is present in high concentrations, denitrifying bacteria will generally choose oxygen over NO₃⁻-N as an electron acceptor, as it is generally more convenient. The extent to which DO levels can limit denitrifying varies amongst denitrifying organisms (Korom, 1992), but denitrification can be hindered at DO concentrations as low as 0.2 mg L⁻¹ (Metcalf and Eddy, 2003). Therefore, maintaining a significant degree of saturation within bioreactors is ideal, keeping dissolved oxygen as low as possible.

2.5.5.5 Temperature

Denitrification is a biologically-mediated process, and high temperatures therefore generally increase denitrification rates. Many examples of improved DNBR performance in response to higher temperatures have been reported in the literature (Volokita et al., 1996; Diaz et al., 2003; Cameron and Schipper, 2010; Hoover, 2012; Bock et al., 2016). For example, Volokita et al. (1996) found that cellulose-dependent denitrification was highly impacted by temperature, with denitrification rates at 14°C being roughly one third of the rates at between 25 and 32°C. Schipper and Vojvodić-Vuković (1998) revealed a similar relationship, with NO₃⁻-N removal at 28°C averaging 6.5 g N m⁻³ d⁻¹ and 3.6 g N m⁻³ d⁻¹ at 19°C. The Q₁₀ factor is an important measure for determining NO₃⁻-N removal rate in response to increasing temperature, and is the factor by which the reaction rate rises for every 10°C increase in temperature (Christianson et al., 2012a). In the literature, reported Q₁₀s have ranged from 1 to just under 3, and most values are constrained within 2 ± 0.5 (van Driel et al., 2006a; Robertson and Merkley, 2009; Cameron and Schipper, 2010; Warneke et al., 2011a; Hoover, 2012). The meta-analysis fitted linear model of Addy et al. (2016) yielded a Q₁₀ of 2.15. Addy et al. (2016) also revealed that denitrifying beds operated at temperatures less than 6°C supported lower NO₃⁻-N removals than did beds at intermediate temperatures (6 to 16.9°C) and high temperatures (greater than 16.9°C).
Prior to any DNBR installation, site-specific temperatures, and seasonality influences should be given significant consideration; based on expected temperatures, DNBRs can be sized for appropriate HRTs and expected influent NO$_3^-$-N concentrations. Furthermore, it is also vital to consider how temperature will affect these inflow fluxes and NO$_3^-$-N concentrations; during frigid seasons, when the presence of snow is more likely, periodic pulses of snow-melt can result in abnormal DNBR HRTs, drastically fluctuating in response to the pulsing flow. Warmer seasons, when flows are likely more stable, have to be accounted for as well. This is further complicated by the fact that the highest drainage NO$_3^-$-N loads, which typically occur in the spring, are often out of sync with maximum temperatures, in the summer, and HRTs may need to be adjusted because of temperature and influent concentrations.

Further testing needs to be done regarding temperature’s influence of DNBR performance, especially on the lower end of the spectrum, as most tested temperatures have only gone down to 10°C (Greenan et al., 2006; Healy et al., 2006), with one outlier study that observed NO$_3^-$ removal at temperatures as low as 2°C to 4°C (Robertson and Merkley, 2009). Artificial increasing of DNBR temperatures is a topic of interest, even though a recent attempt using passive solar heating yielded only a 3.4°C mean bioreactor temperature increase and no significant increase in NO$_3^-$-N removal rate (Cameron and Schipper, 2011). If temperatures can be successfully artificially increased in DNBRs, the lower reduction rates associated with colder environments may be circumvented altogether.

2.5.5.6 Microbiology

Denitrifiers are usually ubiquitous in natural environments, impacting biogeochemical cycles and ecosystems at local, regional, and global scales (Seitzinger, 1988; Codispoti and Richards, 1976; Nixon et al., 1996). Denitrifying enzyme activity (DEA), the measure of functional denitrifying enzymes in soil, indicates how suitable an environment is for supporting denitrification (Tiedje et al., 1989), and therefore is an effective means of assessing microbiology within bioreactors. Despite denitrifier ubiquity, DEA can be highly variable, and the microbial communities within bioreactors
vary with depth, flow direction, season (Schipper and Vojvodić-Vuković, 2001).

Inoculation has typically not been required in the maintenance of DNBRs (Schipper et al., 2010a; Christianson et al., 2012), although small volumes of soil have been supplemented in a few cases (Blowes et al., 1994; Christianson et al., 2011c). Sometimes, microbial communities grow slowly after start-up (Wildman, 2001; Bock et al., 2016), and these are situations where inoculation may be warranted. The inoculation of optimal denitrifiers species to support maximum denitrification rates is worth exploring in future research (Andrus, 2011).

Non-denitrifying bacteria present within DNBRs have the potential to promote clogging if biofilm forms (Chun et al., 2009). Occasional flushing by removing stop logs may solve this issue (Wildman, 2001; van Driel et al., 2006), although high flows could potentially wash out denitrifiers (Volokita et al., 1996).

2.5.5.7 Bioreactor Dimensions and Geometry

Despite guidelines provided in NCRS (2009) and spreadsheets that calculate sufficient dimensions for bioreactors (Iowa Natural Resource Conservation Service, 2016), there is still no consensus on the optimal designs for DNBRs (Christianson et al., 2012a), mainly because these designs will be highly site specific, and will change based on many factors. Little work has been done to assess the impact of DNBR geometry on function, except for a lone study by Christianson et al. (2010), which evaluated the impact of different cross-section shapes in pilot-scale DNBRs, and found no significant differences. There is the potential for bioreactors to be undersized (Rosen and Christianson, 2013), which can result in insufficient treatment and bypass flow, and there is therefore significant need to consider dimensions.

2.5.6 Pollution Swapping

“Pollution swapping” refers to the unintended creation of soluble or gaseous contaminants, including GHGs, organic C, or metals, by DNBRs (Fenton et al., 2014; Warneke et al., 2011c; Schipper et al., 2010b). Obviously, this is an undesirable outcome to system installed with the best of intentions, and, as such, preventing these
consequences is ideal. Some of the potential routes of pollution swapping are discussed below, and include sulfate reduction, the flushing of dissolved organic carbon, and nitrous oxide emission.

2.5.6.1 Sulfate Reduction

Sulfate reduction is the conversion of sulfate (SO_4^{2-}) to hydrogen sulfide (H_2S) by sulfate reducing bacteria or archaea via anaerobic respiration. This process is problematic because it can result in (1) C depletion, (2) hydrogen sulfide production through anaerobic digestion, and (3) methylation of mercury. Carbon media depletion is obviously undesirable because denitrifiers will have less of an energy source. Hydrogen sulfide, H_2S, is a corrosive, poisonous, and flammable gas that is colorless and has a rotten egg odor. Methyl-mercury is a bioaccumulative environmental toxicant that is highly toxic to humans and aquatic systems (Compeau and Bartha, 1985). Bioaccumulation can result in developmental issues in children, including decreased memory function, loss of IQ points, and adverse impacts on language skills (Rice et al., 2003), and elevated risk of cardiovascular disease and heart attacks in adults (Choi et al., 2009).

While high denitrifying bioreactor HRTs and/or low influent nitrate concentrations can result in complete $\text{NO}_3^-\text{-N}$ removal, they can also support sulfate reduction. This is especially likely at high temperatures, which make sulfate reduction a more probable outcome (Blowes et al., 1994; Robertson and Cherry, 1995; van Driel et al., 2006; Robertson and Merkley, 2009; Shih et al., 2011). In conditions where N is limited and reduced conditions exceeding -300 mV ORPs, DNBRs can support sulfate reduction, and these conditions are typically most common in bioreactors that are set for longer HRT treatments with close to 100% nitrate removal efficiencies (Lepine et al., 2016).

In order to minimize sulfate reduction, bioreactors should be designed and managed to maintain low nitrate effluent concentrations of no less than \sim0.5 mg $\text{NO}_3^-\text{-N}$ L$^{-1}$ (Robertson and Merkley, 2009; Shih et al., 2011), and if the presence of hydrogen sulfide is detected, stop logs should be removed in flow control structures to decrease
the HRT, and therefore lessen the likelihood of complete nitrate removal and subsequent sulfate reduction (Christianson and Helmers, 2011).

2.5.6.2 Flushing of Dissolved Organic Carbon

The flushing of dissolved organic carbon (DOC) from DNBRs has long been a concern in DNBR maintenance (Schipper et al., 2010b; Healy et al., 2012; Fenton et al., 2014; Bell et al., 2015; Abusallout and Hua, 2017). DOC exported from DNBRs can potentially encourage downstream microbial activity, resulting in oxygen depletion; installing these bioreactors can, in some cases, ironically support the development of hypoxic zones (Schmidt and Clark, 2012). The DOC leached during the bioreactor start-up period is the result of mass transfer across the liquid film encapsulating wood particles, whereas long-term leach rates, which are lower and more consistent, are a response to sustained microbial and chemical degradation rates of the medium and intra-particle diffusion (McLaughlan and Al-Mashaqbeh, 2009). Woodchip leachate is commonly brown in color, due to the presence of tannins, lignins, and other phenolic substances, and this can reduce sunlight penetration through the water column, potentially reducing primary productivity downstream (Svensson et al., 2014; Svensson, 2014). This leachate can also contain organic matter that is highly reactive with chlorine, possibly resulting in the formation of haloacetic acids (HAAs), trihalomethanes (THMs), and total organic halogen (TOX) (Golea et al., 2017). There is also the potential for humic substances to promote the formation of disinfection byproducts (DBPs) during the process of drinking water disinfection (Hua et al., 2014). Oxidized steel byproduct filters have been proven as a valuable addition to DNBRs for their ability to attenuate DOC from woodchip leachate, with the two-phase bioreactor in Abusallout and Hua (2017) reducing DOC export by 44%. Recent evidence also suggests that weather carbon mediums are preferable to fresh carbon mediums for their lower rates of C export (Hoover et al., 2016).
2.5.6.3 Nitrous Oxide Emission

N_2O is a GHG, and its increased emission due to widespread agricultural practices is of great concern; N_2O has 300 times the radiative forcing of carbon dioxide (CO_2), and it also reacts with and depletes essential stratospheric ozone (O_3). Current estimates suggest that human activities are responsible for about 30% of the atmosphere’s N_2O (Mosier et al., 1998), and there is therefore serious need to stifle nitrous oxide emissions from agricultural systems. Unfortunately, nitrous oxide has been observed from denitrifying bioreactors (Warneke et al., 2011b; Moorman et al., 2010; Elgood et al., 2010; Easton et al., 2015; Bock et al., 2015; David, 2014; Eldyasti et al., 2014a; Eldyasti et al., 2014b), which typically occurs when incomplete denitrification is supported.

2.5.7 Phosphorus Removal Potential

Historically, denitrification has been the primary process promoted in denitrifying bioreactors (Greenan et al., 2009), and as a result, there is a tendency to direct all focus towards N treatment. However, in recent years, growing attention has been directed towards these reactors as potential systems for removing phosphorus (P), a nutrient that is typically naturally limited in natural ecosystems, but, with the onset of modern agricultural practices, is being exported at much higher rates than is natural, upsetting freshwater ecosystems. P is often coupled with N in pollution directly resulting from agriculture (Groffman et al., 2006), and the discovery and application of systems that remove both N and P in conjunction is therefore highly desirable, despite the fact that the processes that promote effective N removal are fundamentally different in nature from the processes that promote P removal. Several media types have successfully promoted N and P removal in DNBRs, and these include steel byproducts (Goodwin et al., 2015; Hua et al., 2016; Christianson et al., 2017) and biochar (Bock et al., 2015; Bock, 2014), biochar being the main media of focus in this work.
2.6 The Properties of Biochar

Recently, biochar has been labeled as a promising, fruitful additive to DNBR column media (Bock, 2014; Bock et al., 2015; Easton et al., 2015; Bock et al., 2016). This section begins by discussing biochar’s properties and its use as a soil amendment, and ends by discussing its place in DNBR research as a means to enhance nutrient removal from agricultural drainage and stifle nitrous oxide emissions.

2.6.1 What is Biochar?

Biochar is a carbon-rich material formed through pyrolysis, the thermal decomposition of biomass in low oxygen environments at temperatures less than 700°C (Lehmann and Joseph, 2009), hydrothermal carbonisation, the carbonisation of saturated organic matter under high pressures and temperatures between 180°C and 250°C (Libra et al., 2011), or gasification. This conversion effectively results in approximately a twofold increase in carbon content (Lehmann, 2007). Biochar production is not too unlike charcoal production, but biochar’s intended use in soil improvement, waste management, climate mitigation, and energy production, warrants its unique name (Rodríguez, 2010; Lehmann and Joseph, 2009). Conversely, the term “charcoal” refers to charred biomass used for fuel, filtering, iron-making, or art.

2.6.2 A Brief History of Biochar Application

While the term “biochar” was coined relatively recently, and the use of this carbon-rich material as a soil amendment for ecological engineering is a modern advancement at the global scale, it is not foreign to particular regions, and has left its mark on recorded history. Trimble (1851) reported the success of charcoal in accelerating the growth of vegetation, Santiago and Santiago (1989) and Morley (1927) confirmed charcoal’s advantageous sponge-like properties and encouraged applications in horticulture, and Young (1804) accounted the process of “paring and burning,” which involved the dumping of soil onto burning organic matter for increased farming profit. Usage even precedes these early accounts in the 19th and 20th centuries; in the
Amazon Basin, patches of black soil, rich in biochar, suggest that natives of the region, present before the arrival of the Europeans, intentionally applied the material for increased soil productivity (Lehmann et al., 2006; Sombroek et al., 2003). Even today, hundreds of years later, the total C storage in these biochar-amended soils is more than double that of adjacent Amazonian soils without biochar (Glaser et al., 2002). This Amazonian biochar is, in part, responsible for sparking the recent widespread fascination with the material; the sustained fertility of the region is believed to have been instigated by biochar application, and may have promoted the success of complex civilizations there (Petersen et al., 2001).

2.6.3 Biochar in the Modern World

As this evidence of ancient usage suggests, biochar is an excellent soil amendment; it is much more efficient at enhancing soil productivity than materials like composts and manures, largely due to its physical and chemical properties. These properties include: (1) its high charge density and sorption affinity (Liang et al., 2006), making it superb for carrying and retaining nutrients (Lehmann et al., 2003; Glaser et al., 2015), attenuating certain contaminants, organic compounds, and heavy metals (Cao et al., 2009; Zheng et al., 2010; Cabera et al., 2011), and expediting soil water percolation (Rodríguez, 2010), (2) its particulate nature (Skjemstad et al., 1996; Lehmann et al., 2005), (3) its high C content, and (4) its chemical structure (Baldock and Smernik, 2002), which make it less susceptible to microbial decay in comparison to other types of organic matter (Shindo, 1991; Cheng et al, 2008). Together, these benefits make biochar highly conducive for agronomic and/or environmental management, increasing soil fertility and structure, and improving fertilizer efficiency and decreasing the likelihood of excess nutrient transport (Liang et al., 2006).

In addition to the enhanced agricultural productivity inherent to amended soils, biochar’s high C content and slow decay rate make application an effective means of C sequestration, thereby combating climate change. Plant biomass typically degrades rather rapidly, but converting biomass to biochar lengthens its biological cycle (Lehmann et al., 2006; Lehmann, 2007); while biochar’s storage time is still under
question, and is likely impacted by many factors, evidence suggests a lifetime on the order of centennial to millennial time scales, orders of magnitude longer than ordinary plant biomass (Lehmann et al., 2006). Additionally, biochar sequestration is far lower risk than many other sequestration options; once biochar is added to soil, it is highly unlikely that it will promote adverse reactions (Lehmann, 2007). Even under high application rates of up to 140 tons C ha$^{-1}$, no negative impacts have been observed, all while improving crop yields (Lehmann et al., 2006).

Of course, potential cost constraints need to be taken into consideration. Fortunately, biochar wins out here as well, being cheaper in application than many other soil amendments and C sequestration methods. A multitude of thermochemical routes can be employed to produce biochar, and any substance of biological origin can be exploited as feedstock, resulting in myriad biochar varieties that are available wherever biomass is bountiful (McLaughlin et al., 2009). Given a steady, cheap supply of biomass, the heat and pressure generated by the machinery used to execute pyrolysis costs only ~US$4 GJ$^{-1}$ (Lehmann, 2007). This cheap cost is bolstered by the fact that biochar production makes efficient use of existing resources; even farmers in ill-equipped ecosystems can create biochar from already-existing organic residues and biomass fuels without squandering yields and returning profits (Lehmann and Joseph, 2009).

2.6.4 Nutrient Cycling Dynamics

Indeed, biochar is a cost-effective, efficient, environment-friendly soil additive that has become a hot research topic in recent years, and its utility has expanded to include enhancement of agricultural and wastewater treatment processes (Liang et al., 2014). This is largely because biochar has the potential to enhance soil-plant system N and P cycling (Gul and Whalen, 2016). Pyrolysis is generally seen as the traditional, preferred method for biochar creation, and the pH, surface area, and nutrient content are believed to dictate the cycling properties of these biochars (Brewer, 2012). Depending on the production temperatures and feedstocks that are used to create pyrolyzed biochar, pH, surface area, and nutrient content can vary significantly (Lehmann et al., 2006; Downie
et al., 2009; Brewer and Brown, 2012; Zhao et al., 2013), and this is an important, emerging component of biochar research.

The baseline nutrient content of biochars will obviously impact cycling, and therefore intended use. Organic and inorganic forms of N and P contained in biochar include NO$_3^-$, NH$_4^+$, ortho-P, and amide groups (Kookana et al., 2011; Jindo et al., 2014). Generally speaking, feedstocks like manure and crop residues will be converted to biochars with higher nutrient contents, pHs, and surface areas, and biochars produced from ligno-cellulosic feedstocks, such as wood, will typically have lower nutrient contents, pHs, and surface areas (Gul et al., 2015). The amount of biologically-available N changes based on production temperature; NH$_3$ volatilization at higher temperatures results in a net loss (Gul and Whalen, 2016). The dominant N species is controlled by heating temperatures; biochars produced at higher temperatures will typically contain more NO$_3^-$, while biochars formed at lower temperatures are characterized by a more pronounced presence of NH$_4^+$ (DeLuca et al., 2009). Increased production temperature also dictates biochar ortho-P concentration, with several studies revealing that higher temperatures produced biochar with lower ortho-P concentrations (Mukherjee and Zimmerman, 2013; Azuara et al., 2013), a result attributed to ortho-P crystallization with insoluble magnesic, ferric and calcic phosphates (Zornoza et al., 2016).

The following section discusses currently known mechanisms for N and P cycling alteration by biochar, largely based on the work of a review by Gul and Whalen (2016).

2.6.4.1 Mechanisms for Attenuating Reactive Nitrogen

Biochar is known to disrupt the N cycle, and its influence on denitrification is of particular interest. In soils sans biochar, denitrification is responsible for a significant portion of nitrous oxide emissions; incomplete denitrification results in the escape of intermediate N$_2$O, a potent greenhouse gas. Biochar has the ability to alter this process; depending on the additive influence of many arcane, misunderstood environmental conditions, biochar amendment can provoke atypical decreases (Alho et al., 2012; Saarnio et al., 2013; Cayuela et al., 2013; Bock et al., 2015; Easton et al., 2015; Dicke et al., 2015; Hüppi et al., 2015; Harter et al., 2017) or increases (Clough et al., 2010;
Yoo and Kang, 2012; Alho et al., 2012; Anderson et al., 2014; Sánchez-García et al., 2014; Davis, 2015; Obia et al., 2015; Petter et al., 2016) in expected \(\mathrm{N}_2\mathrm{O} \) emissions. The mechanisms responsible for these discrepancies are still under investigation, and highlight the need for continued research on biochar’s impact on the N cycle. A recent review by Cayuela et al. (2014) declared that biochar impacts on \(\mathrm{N}_2\mathrm{O} \) emissions depend on C:N ratio, pyrolysis temperature, feedstock, and interactions with soil and N fertilizer. Together, these factors can diminish nitrous oxide emission by: (1) increasing soil pH (Gul et al., 2015), (2) promoting nosZ gene expression (Anderson et al., 2011; Harter et al., 2014), thereby increasing the likelihood that \(\mathrm{N}_2\mathrm{O} \) will be reduced to \(\mathrm{N}_2 \), (3) enhancing aeration (Gul et al., 2015), and (4) promoting \(\mathrm{NO}_3^- \) immobilization and subsequent uptake by plants (Deenik et al., 2011; Zheng et al., 2012; Maestrini et al., 2014).

2.6.4.2 Mechanisms for Attenuating Reactive Phosphorus

Biochar application also has promise for removing reactive phosphorus through sorption, a process that is highly dependent on the type of biochar feedstock (Chintala et al., 2014), and, like with N attenuation, the mechanisms behind P removal via biochar application are still not well understood. For example, Chintala et al. (2014) and Nelson et al. (2011) both reported low phosphate sorption in acidic soils, while Xu et al., (2014) observed high sorption in acidic soils. In fact, several studies have implicated that biochar has no use for attenuating P (Madiba et al., 2016; Uzoma et al., 2011). More recently, a biochar production experiment suggested that higher pyrolysis temperatures produce biochars that have decreased P availability and increased P sorption, but results were highly feedstock specific (Ngatia et al., 2017). These findings indicate that biochar application should involve careful consideration of the factors involved in biochar production. Frequently, biochar used for agricultural purposes is produced at temperatures that range from 300-500°C (Hale et al., 2013; Xu et al., 2014; Zhai et al., 2015), which, according to the conclusions drawn from Ngatia et al. (2017), may be out of range for optimizing P sorption. This trend of higher P sorption with higher production temperature biochars is believed to result from the conversion of highly labile O-alkyl C...
(Spielvogel et al., 2008) to the more inert, stable aromatic C (Haumaier and Zech, 1995), thereby squandering the volatility of wood components and increasing the number of sorption sites, fixed C, and surface area (Keiluweit et al., 2009). With continued research, the factors contributing to optimal P sorption with biochar will hopefully continue to surface.

While these studies are a testament to how far our understanding of biochar has come in recent years, due to the heterogeneous nature of these findings, there is still much to uncover, and many years of further testing will be needed before biochar is sold to the masses.
3 Methods

3.1 Motivation

The primary objective of this experiment was to determine the effect of biochar media, HRT, influent NO$_3^-$ concentration, and influent PO$_4^{3-}$ concentration on NO$_3^-$-N removal and PO$_4^{3-}$-P removal in flow through, laboratory-scale denitrifying bioreactor columns.

3.2 Experimental Design

The impact of media type, HRT, influent NO$_3^-$-N concentration, and influent PO$_4^{3-}$-P concentration on NO$_3^-$-N and PO$_4^{3-}$-P removal in woodchip-based and biochar-amended DNBRs was assessed using laboratory-scale columns. Nutrient removal was quantified for three media types, woodchips (W), 90% woodchips and 10% biochar (B$_{10}$), and 70% woodchips and 30% biochar (B$_{30}$). Each percentage of media type was added by volume. Each media type was subjected to four formulations of simulated agricultural drainage: all combinations of high and low influent NO$_3^-$-N concentrations (16 and 4.5 mg L$^{-1}$) and high and low PO$_4^{3-}$ concentrations (1.9 and 0.6 mg L$^{-1}$), which were deemed environmentally relevant based on assessments of nutrient concentrations in tile drainage and drainage ditches (Schmidt et al., 2007; Baker et al., 1975; Vadas et al., 2007). Three HRTs were selected (3, 6, and 12 h) based on several studies identifying HRT targets of 4-6 h (Hoover et al., 2016; Lepine et al., 2016; Greenan et al., 2009; Damaraju et al., 2015), 8+ h (Christianson et al., 2013b), and 12 h (Moorman et al., 2015). Each unique combination of media type, influent formulation, and HRT was tested in triplicate using independent columns (Figure 8). For each of the nine trials, twelve DNBR columns (6560 mL ± 30 mL) were filled with 5000 mL of a single medium, which was primed for one week with the formulation of nutrient solution that it was to be subjected to during the experiment. When each trial began, the four formulations of simulated agricultural drainage (Table 1) were each pumped through the four sets of three columns at a constant rate corresponding to one of the three tested
HRTs (Figure 9). Influent and effluent water samples were collected to quantify N and P removal over the course of each five-day trial.

Figure 8 Schematic showing each of the nine experimental trials, with each circle representing an independent column. All unique combinations of medium type, HRT, and influent NO$_3^-$-N and PO$_4^{3-}$-P concentration were tested with three independent replicates.
Table 1 The influent NO_3^--N and PO_4^{3-}-P concentration combinations used for the experiment.

<table>
<thead>
<tr>
<th>Combination Term</th>
<th>NO_3^--N Conc. (mg L$^{-1}$)</th>
<th>PO_4^{3-}-P Conc. (mg L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>16.1</td>
<td>1.9</td>
</tr>
<tr>
<td>HL</td>
<td>16.1</td>
<td>0.6</td>
</tr>
<tr>
<td>LH</td>
<td>4.5</td>
<td>1.9</td>
</tr>
<tr>
<td>LL</td>
<td>4.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 9 Diagram of the experimental setup, with flow from right to left. Using the two peristaltic pumps, simulated agricultural drainage was pumped from the mixing tanks into the individual designated DNBR columns at a flow rate corresponding to the desired HRT, and effluent is disposed. HH represents high NO_3^--N (16.1 mg L$^{-1}$) and high PO_4^{3-}-P (1.9 mg L$^{-1}$), HL represents high NO_3^--N (16.1 mg L$^{-1}$) and low PO_4^{3-}-P (1.9 mg L$^{-1}$), etc., and the numbered columns represent the replicates.
3.3 DNBR Column Design

Twelve bioreactor columns, constructed from PVC pipes (61 cm L x 10 cm i.d.) fitted on opposite ends with end caps and threaded plugs with adaptors and couplings, were used in prior, relevant laboratory-scale DNBR batch experiments (Figure 10) (Bock et al., 2015; Easton et al., 2015; Davis, 2015), during which the columns were oriented vertically. For the purposes of this study, these columns were modified for a horizontal flow-through setup to adequately simulate field-scale DNBR conditions. Prior to modification, each of the columns was thoroughly cleaned using Decon™ Contrex™ AP Powdered Labware Detergent and triple rinsed with deionized (DI) water. Each of the columns was then sawed into two pieces at approximately 20 cm from the outflow end of the columns, and PVC wye fittings were used to bridge the separated pieces of each column, increasing the original total inner volume of each column from 5660 ± 30 mL to 6560 L ± 30 mL (Figure 11; Figure 12). PVC primer and cement was used to join the pieces. Originally, there were butyl rubber septa attached to the top of the threaded plugs, allowing for gas headspace sampling via syringe extraction, but the addition of the wye fittings to the columns allowed for a new, convenient means of gas sampling, involving the attachment of a cap connected to a Picarro G2508 Analyzer for N₂O, NH₃, H₂O, CH₄, and CO₂, purchased from Picarro, Inc. (Santa Clara, CA).
Figure 10 The original column design, which was modified for this experiment. Note that these columns were originally oriented vertically.

Figure 11 The modified DNBR setup used for this experiment. The wye fitting was added for the purpose of collecting gas emission measurements. The inflow adaptor was placed at the highest possible height of the horizontal column (9.75 cm). The picture in the bottom left corner is of one of the threaded plugs, which has an adaptor at a height of approximately 7.5 cm, controlling the desired height of the water table, and indicating the approximate height of the fill media.
Figure 12 Lengthwise cross-section visual of an individual DNBR column, with flow from right to left. The wire mesh was added as a means to prevent media, particularly biochar, from washing out of the columns.

The end caps were attached by using PVC-primer and cement and holes for nylon tube fitting adaptors (Thogus), ¼” NPT Male x ⅛” Barbed, were drilled in the end caps, approximately 9.75 cm from the bottom of the inner column, the highest position the hole could be placed. The adaptors were attached at this position on each column and using thread seal (teflon) tape, and served as the locations where ⅛” tubing delivered influent from a peristaltic pump. On the opposite ends of the columns, holes for nylon tube fitting adaptors (Thogus), ¼” NPT Male x ½” Barbed, were drilled in each threaded plug, 7.5 cm from the bottom of the inner diameter of each column, the approximate height of the medium within each column, and therefore the desired extent of saturation. These adaptors were also attached with thread seal, and sections of ½” tubing were attached to them, serving as the points of collection for aqueous samples. The threaded plugs were attached to the columns using thread pipe thread sealant (RectorSeal), maintaining a watertight seal. Between each trial, the authenticity of this seal was verified, since swapping the aged media for fresh media required breaking the
seal. For the duration of this study, the columns were stored in slotted wooden racks, in a room where greater than 95% of periodically collected temperatures fluctuated between 19.5°C and 22°C.

3.4 Organic Carbon Media

Woodchips purchased from Blackberry Mulch (Christiansburg, VA) were used as the control media for the experiments, and sourced from mixed hardwood species. Hardwood species were chosen for their more labile C supply than typical for softwood species (Cornwell et al., 2009), although rarely do either provide for C-limited conditions (Cameron and Schipper, 2010). The biochar was purchased from Biochar Now (Carbondale, CO), and was produced from a pine feedstock via a two-stage pyrolysis process, during which the feedstock is briefly held for <1 min at 500-700°C under low oxygen conditions, and then the temperature is reduced to 300 to 550°C and held for up to 14 min. Two size fractions are produced by passing the biochar through an auger, yielding a biochar consisting of about 80% pieces approximately 1.5 cm long by 1 cm wide by 0.5 cm and 20% as a fine dust fraction on the order of 10-100 µm. This particular biochar was chosen for its prior success in removing NO\textsubscript{3}-N and PO\textsubscript{4}3--P while maintaining minimal N\textsubscript{2}O emissions in a previous study involving batch experiments with biochar and woodchips (Bock et al., 2015).

Prior to each trial, 5000 mL of media were added to each of the columns, representing approximately 76% of the total volume of each column. This volume was chosen to leave gas headspace in the DNBR columns for gas sampling with a Picarro GHG Analyzer, which will be discussed in future works. Three media types were chosen for these experiments, and each percentage was added by volume: 100% woodchips (5000 mL), 90% woodchips (5000 mL) and 10% biochar (500 mL), and 70% woodchips (5000 mL) and 30% biochar (1500 mL). Because the biochar filled the interstitial spaces between the woodchips, the total media volume was not increased despite keeping the 5000 mL of woodchips consistent across all media types. A near uniform distribution of
the biochar-amended media was achieved by thorough mixing prior to filling the columns in between trials.

The porosity of the woodchips was determined via volumetric displacement to be 0.66 cm3 cm$^{-3}$, which falls within the range of 0.60-0.86 cm3 cm$^{-3}$ reported in the literature (Chun et al., 2009; Robertson, 2010; Ima and Mann, 2007; Christianson et al., 2010a; Woli et al., 2010; van Driel et al., 2006). The porosity for 90% biochar and 10% woodchips was determined to be 0.61 cm3 cm$^{-3}$ and the porosity for 70% woodchips and 30% biochar was approximately 0.52 cm3 cm$^{-3}$. These porosities were determined by adding the known biochar volume to the product of the woodchip porosity and woodchip volume, and dividing that number by the total media volume.

3.5 Column Dosing

Two peristaltic pumps were used to deliver simulated agricultural drainage from four separate mixing tanks, each of which contained a unique solution, to the columns. The 4-channel pump (Catalyst by Masterflex 77724-04) was used to supply the top rack of columns, and the 8-channel pump (Masterflex L/S 7535-08) was used to supply the bottom two racks. Tygon E-Food tubing links (1.57 mm i.d., Catalog No. 97100-63) were used for the 4-channel pump, and Masterflex Tygon E-LFL tubing links (1.57 mm i.d., Model No. 06447-14) were used for the 8-channel pump. Tygon ND-100-65 PVC Medical/Surgical Tubing (1/8" i.d., 1/4" o.d., Part No. S50HLTGT18-116-50) was used to connect the pumps and attached links to the mixing tanks and the DNBR columns. The links were checked often for leaks, and were switched out when air bubbles were noticeably propagating towards the columns or when solution began to drip from the pump rollers. Between trials, all tubing was thoroughly rinsed with DI water to prevent the buildup of precipitated material.

Influent was delivered to the columns with goal retention times of 3, 6, and 12 h, chosen based on a variety of studies attempting to evaluate the impact of hydraulic retention time on bioreactor performance (Hua et al, 2016; Hoover et al., 2016; Hoover, 2012; Lepine et al., 2016; Addy et al., 2016). The flow rates necessary for these
Theoretical, desired HRTs were determined using estimates of media porosity, calculated using results from preliminary volumetric displacement tests on woodchip media and measured biochar media volumes (Table 2). HRTs were measured at the beginning of each trial by recording the differences between the pump starting time and times of outflow in each of the twelve columns. These early, measured HRTs were assumed to remain constant throughout each trial, since tubing link leaks were so uncommon, and so easily diagnosable.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Med</th>
<th>p</th>
<th>(v_p) (mL)</th>
<th>q (mL min(^{-1}))</th>
<th>Goal HRT (h)</th>
<th>Actual Mean HRT (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>0.66</td>
<td>3300</td>
<td>4.6</td>
<td>12</td>
<td>11.77</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>0.66</td>
<td>3300</td>
<td>9.2</td>
<td>6</td>
<td>5.97</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>0.66</td>
<td>3300</td>
<td>18.3</td>
<td>3</td>
<td>3.28</td>
</tr>
<tr>
<td>4</td>
<td>(B_{10})</td>
<td>0.61</td>
<td>3050</td>
<td>4.2</td>
<td>12</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>(B_{10})</td>
<td>0.61</td>
<td>3050</td>
<td>8.5</td>
<td>6</td>
<td>5.78</td>
</tr>
<tr>
<td>6</td>
<td>(B_{10})</td>
<td>0.61</td>
<td>3050</td>
<td>16.9</td>
<td>3</td>
<td>3.05</td>
</tr>
<tr>
<td>7</td>
<td>(B_{30})</td>
<td>0.52</td>
<td>2600</td>
<td>3.6</td>
<td>12</td>
<td>13.05</td>
</tr>
<tr>
<td>8</td>
<td>(B_{30})</td>
<td>0.52</td>
<td>2600</td>
<td>7.2</td>
<td>6</td>
<td>6.62</td>
</tr>
<tr>
<td>9</td>
<td>(B_{30})</td>
<td>0.52</td>
<td>2600</td>
<td>14.4</td>
<td>3</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Table 2 The porosities (p) and corresponding pore volumes \((v_p)\) used to calculate pump flow rates (q) necessary for goal HRTs for each of the nine trials, as well as the actual, observed mean HRTs.

3.6 Simulated Agricultural Drainage: Constituents and Carbon Medium Priming Procedure

The four test solutions for each trial were prepared in four separate, graded 30 gal plastic bins. Tap water was used as the solvent for the solution, chosen over DI water for its cost, convenience of usage, and more accurate simulation of real-world conditions. Prior to the experiments, testing of the tap water revealed low N and P concentrations that did not result in significant variation after adding solute. Granular
calcium nitrate (Ca(NO$_3$)$_2$) was used as a source of NO$_3^-$ and granular potassium phosphate monobasic (KH$_2$PO$_4$) was used as a source of PO$_4^{3-}$, and solute masses were carefully added to produce the necessary concentration combinations.

In order to promote conditions suitable for denitrification, prior to each experimental trial, fresh media was primed for one week with the test solution that it was to be subjected to during the experiment (e.g. column HH1 was primed with HH solution, column LH1 was primed with LH solution, etc.), taken directly from the mixing tanks. During the priming process, the discolored, used solution was drained from the columns three times, usually every two days, and replaced with fresh solution to reduce the impacts of DOC export from the matrix leachate during DNBR start-up (Abusallout and Hua, 2017), and to eliminate the possibility of interference during analysis of aqueous samples. After the week of priming, in an attempt to minimize the effects of the first flush of dissolved organic carbon, each of the columns was drained and washed three times with DI water. This process was repeated and used media was replaced with fresh media between each trial.

3.7 Sampling Schedule

Aqueous effluent samples and greenhouse gas (GHG) emission measurements were collected at 0, 2, 4, 6, 9, and 12 h, every 6 h for the remainder of the first two days, every 12 h on the third day, and every 24 h for the remainder of each 5-day trial (Figure 13). Sampling frequencies were selected based on preliminary testing, and on sampling frequencies used in previous column experiments of similar nature (Bock et al., 2015; Easton et al., 2015; Davis, 2015).

Figure 13 Timeline of aqueous and gaseous sampling for each five-day trial, with color ramp resets indicating the passage of one full day.
3.8 Aqueous Sample Collection and Analysis

Aqueous samples were collected in 50 mL acid-washed Falcon™ 50mL Conical Centrifuge Tubes by placing them in styrofoam trays and directing the proper tubing to the labeled centrifuge tubes, taking extra care to not cross-contaminate. Samples were immediately filtered through 0.45-µm nylon filters (Restek Corporation, Bellefonte, PA), and stored in a freezer until analysis was performed. Usually within three days, and always within a week, aqueous samples were analyzed using a flow injection analysis system (QuikChem® 8500, Lachat Instruments, Loveland, CO), with the cadmium reduction method for NO₃⁻ (Lachat method 10-107-04-1-A) and the ascorbic acid method for PO₄³⁻ (Lachat method 10-115-01-1-A) (Lachat Instruments, 2012). The method detection limit ranges were 0.2-20 mg L⁻¹ N and 0.02-2 mg L⁻¹ P.

3.9 Statistical Analyses

Times series plots of effluent NO₃⁻-N and PO₄³⁻-P concentration, and their respective removal efficiencies, were created with the ggplot2 and gridExtra packages in R (Wickham, 2009; Baptiste, 2015). Using the ggplot function, a non-parametric loess smoothing method (span = 0.35) was applied to the time series data to allow for better visualization of trends. Initially, the effects of media type, HRT, influent NO₃⁻-N concentration, influent PO₄³⁻-P concentration, elapsed time, and their interactions on effluent NO₃⁻-N and PO₄³⁻-P concentration were assessed through linear mixed effects (LME) modeling and breakpoint analyses. Results from these analyses indicated that time was not a significant factor in NO₃⁻-N or PO₄³⁻-P removal (e.g., the columns were at steady state), and therefore the factor time was dropped during subsequent analyses. After removing three time points from the data set (72, 96, and 120 h) to avoid making the data unbalanced, four Analyses of Variance (ANOVAs) were generated using the ezANOVA function from the ‘ez’ package (Lawrence, 2016) in the R statistical programming environment (R Core Team, 2016). Prior to running the ANOVAs, normality was verified by graphically inspecting quantile-quantile (Q-Q) plots of the NO₃⁻ -N and PO₄³⁻-P experimental data sets. Homoscedasticity of variances was also verified
via Levene’s Test for Homogeneity of Variance (p-value = 0.30 for the NO$\textsubscript{3}^-$-N data set and p-value = 0.45 for the PO$\textsubscript{4}^{3-}$-P data set). Multicollinearity was not present because the independent variables of HRT, media type, influent NO$\textsubscript{3}^-$-N concentration, and influent PO$\textsubscript{4}^{3-}$-P concentration are not intercorrelated and are independent from each other. The first two ANOVAs were used to examine NO$\textsubscript{3}^-$-N removal, and the second two ANOVAs were used to examine PO$\textsubscript{4}^{3-}$-P removal.

3.9.1 ANOVAs: Nitrate

The first NO$\textsubscript{3}^-$-N ANOVA was used to determine if media type, HRT, influent NO$\textsubscript{3}^-$-N concentration, influent PO$\textsubscript{4}^{3-}$-P concentration, and any of their interactions, had significant effects on effluent NO$\textsubscript{3}^-$-N concentration. Effluent NO$\textsubscript{3}^-$-N concentration was designated as the dependent variable, and media type, HRT, influent NO$\textsubscript{3}^-$-N concentration and influent PO$\textsubscript{4}^{3-}$-P concentration were identified as between group independent variables. Output from this ANOVA revealed that none of the effects containing influent PO$\textsubscript{4}^{3-}$-P concentration significantly affected effluent NO$\textsubscript{3}^-$-N concentration, so influent PO$\textsubscript{4}^{3-}$-P concentration was dropped as a predictor. The second NO$\textsubscript{3}^-$-N ANOVA was the same as the first ANOVA, except media type was dropped from the predictors. This second ANOVA was generated to develop a clearer picture of the impact of HRT on effluent NO$\textsubscript{3}^-$-N concentration, and therefore on NO$\textsubscript{3}^-$-N removal, regardless of which media types were used.

3.9.2 ANOVAs: Phosphate

The first PO$\textsubscript{4}^{3-}$-P ANOVA was used to determine if media type, HRT, influent NO$\textsubscript{3}^-$-N concentration and influent PO$\textsubscript{4}^{3-}$-P concentration had significant effects on effluent PO$\textsubscript{4}^{3-}$-P concentration. Effluent PO$\textsubscript{4}^{3-}$-P concentration was designated as the dependent variable, and media type, HRT, influent NO$\textsubscript{3}^-$-N concentration and influent PO$\textsubscript{4}^{3-}$-P concentration were identified as between group independent variables. None of the predictors were dropped from the ANOVA, since every predictor was present in a significant interaction term. The second PO$\textsubscript{4}^{3-}$-P ANOVA was the same as the first ANOVA, except media type was dropped as a predictor. Like with the second NO$\textsubscript{3}^-$-N
ANOVA, the second PO$_4^{3-}$-P ANOVA was created to identify differences between PO$_4^{3-}$-P concentrations based on HRTs, regardless of which media types were used.

3.9.3 Tukey’s HSD Tests

Tukey’s Honest Significant Difference (HSD) tests were run on both sets of ANOVAs using the TukeyHSD function in the multcomp R package (Hothorn et al., 2008) to assess the significance of differences between the means of each unique treatment. Significant differences between treatment groups were displayed on interaction plots of the experimental data set, binned based on the significant ANOVA predictors.
4 Results

The results for NO$_3^-$-N and PO$_4^{3-}$-P are reported separately below, with the plots of the raw time series data, output from the ANOVAs, summary statistics, and interaction plots for both data sets.

4.1 Nitrate

Times series of DNBR effluent NO$_3^-$-N concentrations (Figure 14) and corresponding removal efficiencies (Figure 15) reveal that every possible combination of media type, HRT, and nutrient solution was successful at removing nitrate from the simulated agricultural drainage, albeit to varying degrees. Several individual treatments were even able to achieve removal efficiencies approaching 100% at steady state (Figure 14g, j, k); most of these cases involved the longest HRT of 12 h and lower influent NO$_3^-$-N concentration of 4.5 mg L$^{-1}$ (Figure 14g, j).

The NO$_3^-$-N ANOVA containing all possible explanatory variables revealed that none of the interactions terms that included influent PO$_4^{3-}$-P concentration were significant predictors of effluent NO$_3^-$-N concentration, suggesting that influent PO$_4^{3-}$-P concentration did not play a role in NO$_3^-$-N removal in these systems. Influent PO$_4^{3-}$-P concentration was therefore dropped from the first ANOVA (as stated in section 3.9.1), and the resulting ANOVA output is displayed in Table 3. The highest order interaction of media type, influent NO$_3^-$-N concentration, and HRT was significant, making interpretations of any of the lower order interactions invalid following the principle of marginality, which asserts that only the highest order significant interactions of model summaries are meaningful and worth further explanation (Nelder, 1977; Nelder, 1994). In the NO$_3^-$-N ANOVA assessing NO$_3^-$-N effluent concentration regardless of media type, the highest order interaction was significant as well, and output is shown in Table 4.

Based on the significant highest order interactions reported in the full NO$_3^-$-N ANOVA, Table 5 shows the summary statistics for the significant ANOVA effects. At the low influent NO$_3^-$-N concentration of 4.5 mg L$^{-1}$, treatment mean removal efficiencies
and rates ranged from 40.7-93.7% and from 4.38-11.02 g N m$^{-3}$ d$^{-1}$, respectively, and from 16.9% to 58.8%, or 8.62 to 18.52 g N m$^{-3}$ d$^{-1}$, at the high influent NO$_3$-N concentration of 16.1 mg L$^{-1}$. Note that while the removal efficiencies as a percent reduction in influent concentration are generally higher for lower influent NO$_3$-N concentrations than for the higher influent NO$_3$-N concentrations, removal rates (g N m$^{-3}$ d$^{-1}$) are greater for higher influent concentrations.

The interaction plots with assignment of significant differences from Tukey’s HSD test results (Figure 16) for effluent NO$_3$-N concentration and media type suggest that the impact of biochar amendment on NO$_3$-N removal at each HRT in these systems was dependent on influent NO$_3$-N concentration. At the low influent NO$_3$-N concentration of 4.5 mg L$^{-1}$, the W, B$_{10}$, and B$_{30}$ treatments were not significantly different from one another in their ability to remove NO$_3$-N at each HRT (Figure 16d, e, f). However, differences arose at the high influent nitrate concentration of 16.1 mg L$^{-1}$. For the 12 hour HRT, the W treatment was not significantly different from B$_{30}$, but the B$_{10}$ treatment supported less NO$_3$-N removal than both W and B$_{10}$ (Figure 16a). At the 6 hour HRT, B$_{30}$ had a clear advantage over B$_{10}$, but the W treatment was not significantly different from either of the biochar amendments (Figure 16b). Finally, at the 3 hour HRT, B$_{30}$ removed more NO$_3$-N than both W and B$_{10}$, which were not significantly different from one another (Figure 16c). Under the high influent NO$_3$-N concentration of 16.1 mg L$^{-1}$, the B$_{30}$ treatment was significantly better than B$_{10}$ at removing NO$_3$-N at every HRT (Figure 16a, b, c), but, interestingly enough, B$_{30}$ only clearly outperformed W at the 3 hour HRT (Figure 16c). It should be noted that while B$_{30}$ wasn’t indicated by the Tukey’s HSD tests as being significantly better at removing NO$_3$-N than W at the 12 hour and 6 hour HRTs (Figure 16a, b), but mean outflow concentrations for each B$_{30}$ column were lower than the mean outflow concentrations for W (Table 5).

Regardless of media type, the HRTs at each NO$_3$-N inflow concentration resulted in NO$_3$-N outflow concentrations that were significantly different from one another (Figure 17). At the high influent NO$_3$-N concentration of 16.1 mg L$^{-1}$, the 12 hour HRT resulted in a significantly greater mean NO$_3$-N removal efficiency (51.9%) than did the 6 h HRT (28.9%) and the 3 h HRT (21.1%), and the 6 h HRT efficiency was
significantly greater than the 3 hour HRT efficiency. The same pattern in efficiencies
was present at the low influent NO$_3^-$-N concentration of 4.5 mg L$^{-1}$ (89.9% for the 12 h
HRT, 70.2% for the 6 h HRT, and 42.8% for the 3 h HRT). However, the reverse of this
pattern was noted in removal rates for the high influent NO$_3^-$-N concentration of 16.1 mg
L$^{-1}$ (11.02, 11.36, and 14.14 g N m$^{-3}$ d$^{-1}$ for the 12, 6, and 3 h HRTs, respectively) and
the low influent NO$_3^-$-N concentration of 4.5 mg L$^{-1}$ (5.34, 7.71, and 8.02 g N m$^{-3}$ d$^{-1}$ for
the 12, 6, and 3 h HRTs, respectively).
Figure 14 Time series plot of DNBR effluent NO$_3^-$-N concentrations in mg L$^{-1}$, with each panel representing a different treatment combination of HRT, influent NO$_3^-$-N concentration, and influent PO$_4^{3-}$-P concentration, and the different colors representing the different media types. The dotted lines on each panel represent influent NO$_3^-$-N concentrations, which are also shown on the right-hand y-axis. A loess smoothing method was used with a span of 0.35. Shading around each loess time series represent the uncertainty associated with the estimated line.
Figure 15 Time series plot of DNBR NO$_3$-N % reductions, with each panel representing a different treatment combination of HRT, influent NO$_3$-N concentration, and influent PO$_4^{3-}$-P concentration, and the different colors representing the different media types. A loess smoothing method was used with a span of 0.35. Shading around each loess time series represent the uncertainty associated with the estimated line.
<table>
<thead>
<tr>
<th>Effect</th>
<th>DFn</th>
<th>DFd</th>
<th>SSn</th>
<th>SSd</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>med</td>
<td>2</td>
<td>90</td>
<td>15.689</td>
<td>40.0</td>
<td>17.6</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in</td>
<td>1</td>
<td>90</td>
<td>2272.531</td>
<td>40.0</td>
<td>5108.5</td>
<td>0.000</td>
</tr>
<tr>
<td>HRT</td>
<td>2</td>
<td>90</td>
<td>231.530</td>
<td>40.0</td>
<td>260.2</td>
<td>0.000</td>
</tr>
<tr>
<td>med:N.in</td>
<td>2</td>
<td>90</td>
<td>18.522</td>
<td>40.0</td>
<td>20.8</td>
<td>0.000</td>
</tr>
<tr>
<td>med:HRT</td>
<td>4</td>
<td>90</td>
<td>2.298</td>
<td>40.0</td>
<td>1.3</td>
<td>0.279</td>
</tr>
<tr>
<td>N.in:HRT</td>
<td>2</td>
<td>90</td>
<td>47.758</td>
<td>40.0</td>
<td>53.7</td>
<td>0.000</td>
</tr>
<tr>
<td>med:N.in:HRT</td>
<td>4</td>
<td>90</td>
<td>5.922</td>
<td>40.0</td>
<td>3.3</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 3 Output for the ANOVA assessing the effect of media type, influent NO$_3^-$-N concentration, and HRT, and their interactions, on effluent NO$_3^-$-N concentration. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions.

<table>
<thead>
<tr>
<th>Effect</th>
<th>DFn</th>
<th>DFd</th>
<th>SSn</th>
<th>SSd</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.in</td>
<td>1</td>
<td>102</td>
<td>2272.531</td>
<td>82.5</td>
<td>2810.8</td>
<td>0.000</td>
</tr>
<tr>
<td>HRT</td>
<td>2</td>
<td>102</td>
<td>231.530</td>
<td>82.5</td>
<td>143.2</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in:HRT</td>
<td>2</td>
<td>102</td>
<td>47.758</td>
<td>82.5</td>
<td>29.5</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 4 Output for the ANOVA assessing the effect of influent NO$_3^-$-N concentration, HRT, and their interaction, on effluent NO$_3^-$-N concentration, independent of media type. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions.
Table 5 Summary statistics for NO$_3$-N experimental data, binned by HRT, media, and influent NO$_3$-N concentration effect. Influent PO$_4$-P concentration was omitted because the NO$_3$-N ANOVA indicated that none of the interactions containing influent PO$_4$-P concentration significantly affected outflow NO$_3$-N concentration. Q_{50} refers to the 50th percentile, or median effluent concentration.
Figure 16 Interaction plot of NO$_3^-$-N experimental data, binned by HRT, media, and influent NO$_3^-$-N concentration. Treatments within a concentration level with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$.
Figure 17 Interaction plot of NO$_3^-$-N concentration, binned by HRT and influent NO$_3^-$-N concentration. Treatments within a concentration level with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$.
4.2 Phosphate

Times series of DNBR effluent PO_4^{3-}-P concentrations (Figure 18) and corresponding removal efficiencies (Figure 19) reveal that the treatments were generally less successful in their ability to support PO_4^{3-}-P removal than they were at supporting NO_3^--N removal, with the majority of the treatments exporting PO_4^{3-}-P. The first, larger PO_4^{3-}-P ANOVA containing all possible explanatory predictors (Table 6) revealed the following interactions to be significant predictors of effluent PO_4^{3-}-P concentration: (1) influent NO_3^--N concentration x influent PO_4^{3-}-P concentration x HRT, (2) media type x influent PO_4^{3-}-P concentration x HRT, and (3) media type x influent NO_3^--N concentration.

Based on the output of the first PO_4^{3-}-P ANOVA, a summary statistics table was created for the PO_4^{3-}-P experimental data set, with every combination of HRT, media type, influent PO_4^{3-}-P concentration and influent NO_3^--N concentration represented (Table 7). At the low influent PO_4^{3-}-P concentration of 0.6 mg L$^{-1}$, regardless of media type, HRT, or influent NO_3^--N concentration, mean PO_4^{3-}-P removal efficiencies and rates ranged from -122.0-74.9% and -1.16-1.67 g P m$^{-3}$ d$^{-1}$, respectively. At the high influent PO_4^{3-}-P concentration of 1.9 mg L$^{-1}$, mean PO_4^{3-}-P removal efficiencies and rates ranged from -29.9%-27.5% and from -1.20-0.78 g P m$^{-3}$ d$^{-1}$. It is also interesting to note that while there is considerable variation in media performance, the W treatment never exported PO_4^{3-}-P, while both the B_{10} and B_{30} treatments did.

The interaction plots with Tukey’s HSD test results (Figure 20) for effluent PO_4^{3-}-P concentrations reveal that under the combination of the high influent PO_4^{3-}-P concentrations, high influent NO_3^--N concentration, and the 12 hour HRT (Figure 20a), the media types were significantly different from one another in their ability to remove PO_4^{3-}-P, but these differences disappeared at the lower HRTs (Figure 20b, c). At the high PO_4^{3-}-P concentration, low influent NO_3^--N concentration and the 12 hour HRT (Figure 20d), W was significantly better than B_{10} and B_{30} at removing PO_4^{3-}-P, which were not significantly different from one another, and the same pattern was present at the 3 hour HRT (Figure 20f). At the 6 hour HRT, however, the media types were not significantly different from one another in their ability to remove PO_4^{3-}-P. The patterns
under low influent PO$_4^{3-}$-P concentrations were the same across HRTs, regardless of influent NO$_3^{-}$-N concentration. At the 12 hour HRT, the media types were all different from one another in their ability to remove PO$_4^{3-}$-P (Figure 20g, j), and, at the 6 hour HRT, W was not significantly different from B$_{10}$, and both removed significantly more PO$_4^{3-}$ than did B$_{30}$ (Figure 20h, k). At the 3 hour HRT, W outperformed B$_{10}$ and B$_{30}$, which were statistically not different from one another (Figure 20i, l).

Woodchips removed significantly more PO$_4^{3-}$-P than either B$_{10}$ and B$_{30}$ for 7 of the 12 treatment combinations (Figure 20a, d, g, j, f, i, l). In fact, for many HRTs and influent concentrations, the biochar amendments resulted in PO$_4^{3-}$-P export (Figure 20a, b, c, d, e, f, j for B$_{30}$ and Figure 20a, c, d, e, f, h, h, l, j, k, l for B$_{10}$) with median outflow concentrations that were above inflow concentrations of 1.9 or 0.6 mg L$^{-1}$. Unlike with the NO$_3^{-}$-N results, regardless of media type, the HRTs at each influent PO$_4^{3-}$-P concentration and influent NO$_3^{-}$-N concentration supported effluent PO$_4^{3-}$-P concentrations that were not significantly different from one another (Figure 21).
Figure 18 Time series plot of DNBR effluent NO$_3$-N concentrations in mg L$^{-1}$, with each panel representing a different treatment combination of HRT, influent NO$_3$-N concentration, and influent PO$_4^{3-}$-P concentration, and the different colors representing the different media types. The dotted lines on each panel represent influent PO$_4^{3-}$-P concentrations, which are also shown on the right-hand y-axis. A loess smoothing method was used with a span of 0.35. Shading around each loess time series represent the uncertainty associated with the estimated line.
Figure 19 Time series plot of DNBR PO_4^{3-}-P % reductions, with each panel representing a different treatment combination of HRT, influent NO$_3^-$-N concentration, and influent PO_4^{3-}-P concentration, and the different colors representing the different media types. A loess smoothing method was used with a span of 0.35. Shading around each loess time series represent the uncertainty associated with the estimated line.
<table>
<thead>
<tr>
<th>Effect</th>
<th>DFn</th>
<th>DFd</th>
<th>SSn</th>
<th>SSd</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>med</td>
<td>2</td>
<td>72</td>
<td>5.405</td>
<td>0.4</td>
<td>487.3</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in</td>
<td>1</td>
<td>72</td>
<td>0.439</td>
<td>0.4</td>
<td>79.1</td>
<td>0.000</td>
</tr>
<tr>
<td>P.in</td>
<td>1</td>
<td>72</td>
<td>47.122</td>
<td>0.4</td>
<td>8497.0</td>
<td>0.000</td>
</tr>
<tr>
<td>HRT</td>
<td>2</td>
<td>72</td>
<td>0.171</td>
<td>0.4</td>
<td>15.5</td>
<td>0.000</td>
</tr>
<tr>
<td>med:N.in</td>
<td>2</td>
<td>72</td>
<td>0.146</td>
<td>0.4</td>
<td>13.2</td>
<td>0.000</td>
</tr>
<tr>
<td>med:P.in</td>
<td>2</td>
<td>72</td>
<td>1.254</td>
<td>0.4</td>
<td>113.0</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in:P.in</td>
<td>1</td>
<td>72</td>
<td>0.062</td>
<td>0.4</td>
<td>11.2</td>
<td>0.001</td>
</tr>
<tr>
<td>med:HRT</td>
<td>4</td>
<td>72</td>
<td>1.689</td>
<td>0.4</td>
<td>76.1</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in:HRT</td>
<td>2</td>
<td>72</td>
<td>0.132</td>
<td>0.4</td>
<td>11.9</td>
<td>0.000</td>
</tr>
<tr>
<td>P.in:HRT</td>
<td>2</td>
<td>72</td>
<td>0.120</td>
<td>0.4</td>
<td>10.8</td>
<td>0.000</td>
</tr>
<tr>
<td>med:N.in:P.in</td>
<td>2</td>
<td>72</td>
<td>0.004</td>
<td>0.4</td>
<td>0.4</td>
<td>0.702</td>
</tr>
<tr>
<td>med:N.in:HRT</td>
<td>4</td>
<td>72</td>
<td>0.042</td>
<td>0.4</td>
<td>1.9</td>
<td>0.120</td>
</tr>
<tr>
<td>med:P.in:HRT</td>
<td>4</td>
<td>72</td>
<td>0.409</td>
<td>0.4</td>
<td>18.5</td>
<td>0.000</td>
</tr>
<tr>
<td>N.in:P.in:HRT</td>
<td>2</td>
<td>72</td>
<td>0.052</td>
<td>0.4</td>
<td>4.7</td>
<td>0.012</td>
</tr>
<tr>
<td>med:N.in:P.in:HRT</td>
<td>4</td>
<td>72</td>
<td>0.037</td>
<td>0.4</td>
<td>1.6</td>
<td>0.172</td>
</tr>
</tbody>
</table>

Table 6 Output for the ANOVA assessing the effect of media type, influent NO$_3^-$-N concentration, influent PO$_4^{3-}$-P concentration, and HRT, and their interactions, on effluent PO$_4^{3-}$-P concentration. DFn represents degrees of freedom for the numerator of the F ratio and DFd represents degrees of freedom for the denominator of the F ratio. P-values in red indicate significance (p-value < 0.05) and bolded rows indicate the highest order significant interactions.
<table>
<thead>
<tr>
<th>HRT (h)</th>
<th>Media</th>
<th>Influent NO₃⁻-N Conc. (mg L⁻¹)</th>
<th>Influent PO₄³⁻-P Conc. (mg L⁻¹)</th>
<th>Effluent PO₄³⁻-P Conc. (mg L⁻¹)</th>
<th>PO₄³⁻-P Removed (%)</th>
<th>PO₄³⁻-P Removed (g P m⁻³ d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>0.6</td>
<td>0.32 (0.08) 0.33 (0.04)</td>
<td>46.3 (1.47)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₁₀</td>
<td>4.5</td>
<td>0.6</td>
<td>0.64 (0.18) 0.56 (0.15)</td>
<td>-7.2 (-0.21)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₃₀</td>
<td>4.5</td>
<td>0.6</td>
<td>0.83 (0.20) 0.76 (0.19)</td>
<td>-38.6 (-0.96)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>4.5</td>
<td>0.6</td>
<td>0.32 (0.07) 0.34 (0.05)</td>
<td>46.6 (0.74)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₁₀</td>
<td>4.5</td>
<td>0.6</td>
<td>0.47 (0.05) 0.46 (0.04)</td>
<td>22.3 (0.33)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₃₀</td>
<td>4.5</td>
<td>0.6</td>
<td>1.16 (0.38) 1.04 (0.30)</td>
<td>-93.1 (-1.16)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>4.5</td>
<td>0.6</td>
<td>0.21 (0.08) 0.19 (0.05)</td>
<td>65.5 (0.52)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₁₀</td>
<td>4.5</td>
<td>0.6</td>
<td>0.84 (0.16) 0.80 (0.15)</td>
<td>-40.6 (-0.30)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₃₀</td>
<td>4.5</td>
<td>0.6</td>
<td>1.33 (0.53) 1.13 (0.50)</td>
<td>-122.0 (-0.76)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>16.1</td>
<td>0.6</td>
<td>0.28 (0.08) 0.29 (0.07)</td>
<td>52.7 (1.67)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₁₀</td>
<td>16.1</td>
<td>0.6</td>
<td>0.57 (0.16) 0.51 (0.14)</td>
<td>4.7 (0.14)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₃₀</td>
<td>16.1</td>
<td>0.6</td>
<td>0.71 (0.13) 0.71 (0.07)</td>
<td>-18.8 (-0.47)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>16.1</td>
<td>0.6</td>
<td>0.38 (0.04) 0.38 (0.03)</td>
<td>36.7 (0.58)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₁₀</td>
<td>16.1</td>
<td>0.6</td>
<td>0.39 (0.05) 0.38 (0.05)</td>
<td>35.0 (0.51)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₃₀</td>
<td>16.1</td>
<td>0.6</td>
<td>1.05 (0.33) 0.89 (0.32)</td>
<td>-75.0 (-0.94)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>16.1</td>
<td>0.6</td>
<td>0.15 (0.07) 0.17 (0.06)</td>
<td>74.9 (0.59)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₁₀</td>
<td>16.1</td>
<td>0.6</td>
<td>0.80 (0.27) 0.77 (0.25)</td>
<td>-33.9 (-0.25)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₃₀</td>
<td>16.1</td>
<td>0.6</td>
<td>1.07 (0.39) 0.96 (0.34)</td>
<td>-77.7 (-0.48)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>1.9</td>
<td>1.71 (0.25) 1.80 (1.20)</td>
<td>9.8 (0.78)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₁₀</td>
<td>4.5</td>
<td>1.9</td>
<td>2.11 (0.11) 2.08 (1.10)</td>
<td>-11.2 (-0.89)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₃₀</td>
<td>4.5</td>
<td>1.9</td>
<td>2.19 (0.20) 2.17 (1.20)</td>
<td>-15.2 (-1.20)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>4.5</td>
<td>1.9</td>
<td>1.99 (0.04) 2.00 (1.00)</td>
<td>-5.0 (-0.20)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₁₀</td>
<td>4.5</td>
<td>1.9</td>
<td>2.04 (0.13) 2.04 (1.00)</td>
<td>-7.4 (-0.29)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₃₀</td>
<td>4.5</td>
<td>1.9</td>
<td>1.96 (0.07) 1.97 (1.00)</td>
<td>-3.2 (-0.12)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>4.5</td>
<td>1.9</td>
<td>1.57 (0.15) 1.58 (1.30)</td>
<td>17.5 (0.35)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₁₀</td>
<td>4.5</td>
<td>1.9</td>
<td>2.47 (0.15) 2.46 (1.30)</td>
<td>-29.9 (-0.59)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₃₀</td>
<td>4.5</td>
<td>1.9</td>
<td>2.40 (0.22) 2.39 (1.30)</td>
<td>-26.3 (-0.52)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>16.1</td>
<td>1.9</td>
<td>1.80 (0.18) 1.86 (1.30)</td>
<td>5.3 (0.42)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₁₀</td>
<td>16.1</td>
<td>1.9</td>
<td>2.04 (0.14) 2.00 (1.00)</td>
<td>-7.3 (-0.58)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B₃₀</td>
<td>16.1</td>
<td>1.9</td>
<td>1.96 (0.19) 1.96 (1.20)</td>
<td>-3.0 (-0.24)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>16.1</td>
<td>1.9</td>
<td>1.88 (0.11) 1.89 (1.00)</td>
<td>1.1 (0.04)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₁₀</td>
<td>16.1</td>
<td>1.9</td>
<td>1.90 (0.14) 1.93 (1.00)</td>
<td>0.2 (0.01)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>B₃₀</td>
<td>16.1</td>
<td>1.9</td>
<td>1.86 (0.07) 1.85 (1.00)</td>
<td>2.3 (0.09)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>16.1</td>
<td>1.9</td>
<td>1.38 (0.20) 1.38 (1.30)</td>
<td>27.5 (0.54)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₁₀</td>
<td>16.1</td>
<td>1.9</td>
<td>2.17 (0.27) 2.26 (1.30)</td>
<td>-14.0 (-0.28)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B₃₀</td>
<td>16.1</td>
<td>1.9</td>
<td>1.90 (0.18) 1.91 (1.20)</td>
<td>0.2 (0.00)</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Summary statistics for PO₄³⁻-P experimental data, binned by HRT, media, influent NO₃⁻-N concentration, and influent PO₄³⁻-P concentration effect. Q₅₀ refers to the 50th percentile, or median effluent concentration.
Figure 20 Interaction plot of PO_4^{3-}-P experimental data, binned by HRT, media, influent NO_3^--N concentration, and influent PO_4^{3-}-P concentration. Treatments within a concentration level or HRT with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$.
Figure 21 Interaction plot of PO_4^{3-}-P experimental data, binned by HRT and influent NO_3^--N concentration effect, omitting media type. Treatments within a concentration level with the same letter are not significantly different as determined by a Tukey’s HSD test at $\alpha \leq 0.05$.
5 Discussion

The results for NO$_3^-$-N and PO$_4^{3-}$-P are discussed separately below, followed by recommendations regarding media, a discussion of the potential mechanisms contributing to NO$_3^-$-N and PO$_4^{3-}$-P removal, and suggestions for future work.

5.1 Nitrate

The NO$_3^-$-N removal rates of 4.38-18.52 g N m$^{-3}$ d$^{-1}$ and removal efficiencies of 16.9 - 93.7% reported here are similar to those detailed in other DNBR studies, including the rates of 8.0-18.0 g N m$^{-3}$ d$^{-1}$ and efficiencies of 18-95% at HRTs of 7.2, 18, and 51 h in Christianson et al. (2017), rates of 3.8-15.1 g N m$^{-3}$ d$^{-1}$ with a biochar-amended bioreactor in Hassanpour et al. (2017), and efficiencies ranging from 8% to 55% in bioreactors subjected to HRTs ranging from 1.7 to 21.2 h (Hoover et al., 2016). Our removal rates were also within the range of 2-22 g N m$^{-3}$ d$^{-1}$ reported in the review of Schipper et al. (2010b), well above the mean values for denitrifying beds and laboratory DNBRs reported in the meta-analyses of Addy et al. (2016) (4.7 g N m$^{-3}$ d$^{-1}$ and 3.5 g N m$^{-3}$ d$^{-1}$, respectively), and close to the mean removal rate of 9.1 g N m$^{-3}$ d$^{-1}$ for beds aged less than 13 months in Addy et al. (2016).

While the Tukey’s HSD tests may not have always captured significant differences between the effluent NO$_3^-$-N concentrations for the media types at different HRTs and influent concentrations (Figure 16), it does appear that B$_{30}$ was the best media type for removing NO$_3^-$-N at high influent NO$_3^-$-N concentrations, and this effect appears to be more pronounced at lower HRTs. From these results, it is apparent that biochar amendment in DNBRs may not improve NO$_3^-$-N removal if low influent NO$_3^-$-N concentrations are expected, and careful consideration of expected, site-specific NO$_3^-$-N loads is therefore of utmost importance when installing field-scale DNBRs amended with biochar.

Influent NO$_3^-$-N concentration significantly influenced NO$_3^-$-N removal, and this aligns with the findings of Addy et al. (2016), who found that beds subjected to influent with intermediate NO$_3^-$-N concentrations (10-30 mg L$^{-1}$) supported significantly higher
The low influent NO$_3$-N concentration of 4.5 mg L$^{-1}$ was reduced to mean effluent NO$_3$-N concentrations ranging from 0.29 to 2.67 mg L$^{-1}$ (Table 5). The corresponding mean removal efficiencies ranging from 40.7 to 93.7 align with efficiencies reported in similar studies, treating similar influent concentrations, including a 58% removal efficiency for an influent NO$_3$-N concentration of 4.8 mg L$^{-1}$ in Robertson and Merkle (2009). Two of the treatments (B$_{10}$, 12 h HRT and B$_{30}$, 12 h HRT) supported effluent NO$_3$-N concentrations below 0.5 mg L$^{-1}$, suggesting that these treatments were N-limited (Addy et al., 2016) and therefore there was potential for pollution swapping (Robertson and Merkley, 2009; Shih et al., 2011), which is a phenomenon where a mitigation technology intended to remove one pollutant unintentionally produces another. Furthermore, Easton et al. (2015) showed that while biochar promotes enhanced denitrification, it also encourages SO$_4^{2-}$ reduction, which is a precursor to methyl mercury production, a highly toxic compound to both humans and ecosystems. There are many problems associated with overly long HRTs, such as sulfate reduction, chemical oxygen demand production, and methane production (Fenton et al., 2014) and short HRTs, which can result in nitrite production through incomplete denitrification (Christianson et al., 2017). Although we did not directly measure proxies for pollution swapping in this study, there is a need for more thorough investigation of potential solutions to pollution swapping in DNBRs, as it is concerning and closely linked to HRT, influent NO$_3$-N concentration, and biochar amendment.

At both influent NO$_3$-N concentrations, the 12 h HRT resulted in significantly greater mean NO$_3$-N removal efficiencies, defined as percent reduction in concentration, than did the 6 and 3 h HRTs (Figure 17), and the 6 h HRT mean removal efficiency was significantly greater than the 3 h HRT mean removal efficiency, corroborating laboratory and pilot-scale studies assessing the impact of HRTs on removal in DNBRs (Greenan et al., 2009; Pluer et al., 2016; Hoover et al., 2017). These findings also confirm the meta-analyses of Addy et al. (2016), which revealed that beds subjected to longer HRTs supported significantly higher NO$_3$-N removal efficiencies than did beds with shorter HRTs. The opposite trend was true, however, for the mean
NO$_3^-$-N removal rates (Table 5), with the 3 h HRT supporting consistently higher mean NO$_3^-$-N removal rates than did both the 6 and 12 h HRTs, and the 6 h HRT supporting higher mean NO$_3^-$-N removal rates than did the 12 h HRT. This is a common phenomenon in DNBRs (Jaynes et al., 2016; Lepine et al., 2016), and presents a tradeoff in DNBR operation and performance; while the longer HRTs clearly removed more NO$_3^-$-N by percentage, shorter HRTs are technically more efficient, removing more NO$_3^-$-N on a daily basis, since they can treat more bed volumes per day. In the real world, the decision between shorter and longer HRTs should depend on expected flow rates and influent NO$_3^-$-N concentrations. These findings stress the importance of HRT in DNBRs, with there being a clear need to strike a balance between load removal rate and removal efficiency.

At the high influent NO$_3^-$-N concentration of 16.1 mg L$^{-1}$ and HRTs of 3 and 6 h, none of the treatments were able to reduce NO$_3^-$-N concentrations to below the EPA’s drinking water standard for NO$_3^-$-N of 10 mg L$^{-1}$, but all three media types were successful in reducing NO$_3^-$-N concentrations to below 10 mg L$^{-1}$ at the 12 h HRT, suggesting that the 12 h HRT, or HRTs longer than 6 h, may be necessary for sufficient NO$_3^-$-N removal at higher influent concentrations. This supports the findings of Christianson et al. (2013b), which recommended HRTs greater than 8 h for sufficient NO$_3^-$-N removal. While these findings are applicable to DNBRs in environments treating medium to low influent NO$_3^-$-N concentrations, more thorough investigations of NO$_3^-$-N removal at high influent concentrations will need to be conducted to maximize DNBR performance. This is especially important because the kinetics of NO$_3^-$-N removal may change at higher concentrations, and the removal rates recorded here may not be relevant at higher influent concentrations.

Denitrification rates are tightly controlled by Michaelis-Menten kinetics, which describes NO$_3^-$-N removal as being dictated by zero-order kinetics when the influent NO$_3^-$-N concentration is higher than the half-saturation constant (K_m) and first-order kinetics when the influent NO$_3^-$-N concentration is lower than K_m (Ghane et al., 2015). However, the vast majority of DNBRs are subjected to influent with nitrate concentrations that exceed the K_m of denitrifying bacteria (Barton et al., 1999), meaning
a parameter other than influent NO$_3^-$-N concentration is governing the reaction rate (Schipper et al., 2010b), making zero-order kinetics more applicable. Many studies have reported zero-order kinetics (Robertson et al., 2000; Schipper et al., 2005; Robertson, 2010; Warneke et al., 2011b; Schmidt and Clark, 2013), but also first-order kinetics (Elgood et al., 2010; Christianson et al., 2012a), as controlling NO$_3^-$-N removal in DNBRs. More recently, Ghane et al. (2015) successfully modeled woodchip denitrifying bed outflow NO$_3^-$-N concentration with Michaelis-Menten kinetics and Hoover et al. (2016) recorded a decline in the increase of removal rates at higher influent NO$_3^-$-N concentrations (30-50 mg L$^{-1}$), also supporting Michaelis-Menten kinetics. Hua et al. (2016) reached a similar conclusion, noting a transition from a zero-order reaction to a first-order reaction when the influent NO$_3^-$-N concentration dropped below 3 mg L$^{-1}$.

Jaynes et al. (2016), however, found that simulations of zero-order and first-order removal kinetics for NO$_3^-$-N removal fit their data equally well, using a dual-porosity model. Given these developments, more data is needed to fully explore NO$_3^-$-N removal kinetics in DNBRs, especially since the potential for N limitation needs to be given significant consideration during bioreactor design (Addy et al., 2016). It is worth noting that biochar amendment may have an impact on kinetics, since its ability to promote higher NO$_3^-$-N removal relative to other mediums may lower interior DNBR NO$_3^-$-N concentrations to below the Michaelis-Menten kinetics threshold concentration, thereby shifting from zero-order kinetics to first-order kinetics in N-limited conditions.

5.2 Phosphate

The PO$_4^{3-}$-P removal rates of 1.20 to 1.67 g P m$^{-3}$ d$^{-1}$ and efficiencies of 122.0% to 74.9% are generally lower than many of the rates reported on DNBRs. For comparison, Goodwin et al. (2015) produced a mean PO$_4^{3-}$-P reduction from 4.36 mg L$^{-1}$ to 0.16 mg L$^{-1}$, or a mean removal efficiency of 95.6%, using steel turnings and woodchips in laboratory-scale, column reactors. Christianson et al. (2017) achieved PO$_4^{3-}$-P removal rates of 25-133 g P m$^{-3}$ d$^{-1}$ and 8.8-48 g P m$^{-3}$ d$^{-1}$ with mine drainage residuals and steel slag P-filters used in conjunction with laboratory-scale woodchip
DNBRs. While these two-stage filters are different systems from DNBRs, and are not
directly comparable to the PO$_4^{3-}$-P removal rates achieved in our DNBRs, they do
establish context for what can be achieved by a practice. Gottschall et al. (2016)
observed mean PO$_3^{3-}$-P removal rates of 0.3 g P m$^{-3}$ d$^{-1}$ in woodchip bioreactors and
0.1 g P m$^{-3}$ d$^{-1}$ in woodchips bioreactors amended with alum-based drinking water
treatment plant residuals, and these lower rates are closer to what was observed with
our experiment.

The insignificant effect of HRT on PO$_4^{3-}$-P effluent concentration suggests that
the primary mechanism for removing PO$_4^{3-}$-P is a rapid process, such as chemisorption
or precipitation. In fact, this evidence suggests that lower HRTs may even be more
beneficial for efficient PO$_4^{3-}$-P removal, since higher volumes of drainage can be treated
during a given time frame. The evident PO$_4^{3-}$P export with most of the B$_{10}$ and B$_{30}$
treatments is concerning, and casts doubt on the utility of biochar for improved PO$_4^{3-}$-P
removal in DNBRs. These results contradict a previous study on PO$_4^{3-}$-P removal with
biochar-amended, laboratory-scale DNBRs (Bock et al., 2015), which involved batch
experiments, rather than the flow through setup used in these experiments and used a
different formulation of biochar. In that study, woodchips amended with biochar
supported significantly higher NO$_3^{-}$-N and PO$_4^{3-}$-P removal in DNBRs than was
observed with the woodchips control, but batch reactor performance likely poorly
approximates field conditions. These findings corroborate previous work showing no
significant effect of biochar amendment on PO$_4^{3-}$-P removal in DNBRs (Powers, 2012;
Pluer et al., 2016). However, little quantification of PO$_4^{3-}$-P removal in DNBRs exists in
the literature, and even less exists on PO$_4^{3-}$-P removal with biochar-amended DNBRs.
Further work is needed to explore biochar’s potential in these systems to invoke
simultaneous NO$_3^{-}$-N and PO$_4^{3-}$-P removal, especially given the variability of biochar’s
properties as a function of feedstock, production temperature, particle size, etc. (Lou et
al., 2016).
5.3 Media Recommendations

Given the results for NO$_3^-$-N removal in DNBRs, biochar amendment is recommended for promoting higher NO$_3^-$-N removal rates over the traditional woodchip medium, especially in cases when higher influent NO$_3^-$-N concentrations are expected and/or lower HRTs are desired. Given the fact that these results indicate that biochar amendment in DNBR systems may not support higher rates of PO$_4^{3-}$-P removal, woodchips may be preferred over biochar-amended woodchips if PO$_4^{3-}$-P removal is a primary goal. In any case, the higher cost of biochar will need to be taken into account, as DNBRs are typically designed to be as inexpensive and cost-effective as possible for practical edge-of-field application.

It should be noted that, aside from the week-long priming periods, the media used in these experiments was fresh, and thus the NO$_3^-$-N removal efficiencies reported here are probably optimal, since there is a tendency for efficiencies to decline with elapsed time, as the carbon media ages, decays, and is consumed during denitrification (Addy et al., 2016; Schipper et al., 2010b; Robertson, 2010). The NO$_3^-$-N removal rates for fresh media are not representative of what can be expected for long-term performance, and mean laboratory NO$_3^-$-N removal rates are, on average, significantly higher than mean NO$_3^-$-N removal rates observed in the field (Addy et al., 2016). Predicting the effect of bed age on PO$_4^{3-}$-P removal efficiency is much more difficult, and doing so is pure speculation. Given time, perhaps the biochar-amended woodchips would have eventually promoted PO$_4^{3-}$-P sorption even though, on average, those columns exported PO$_4^{3-}$-P; the effluent PO$_4^{3-}$-P concentrations for B$_{10}$ and B$_{30}$ were generally higher than the influent PO$_4^{3-}$-P concentrations at the beginning of each trial, but sharply decreased during the first few days, reaching steady state by the end of each trial, which did show some removal (Figure 18). This could be due to a first flush type phenomena, whereby the initial, high PO$_4^{3-}$-P concentrations continue to decline with age, ultimately supporting removal. Indeed, this has been observed in new woodchip bioreactors (Sharrer et al., 2016) and new woodchip bioreactors amended with biochar (Bock et al., 2016; Pluer et al., 2016). More work on the extended
performance of biochar-amended DNBRs is needed, with only a few examples of long-term NO$_3^-$-N removal reported in the literature (Hassanpour et al., 2017), and no known examples for long-term PO$_4^{3-}$-P removal with biochar-amended DNBRs.

5.4 Potential Biochar Adsorption Mechanisms

Adsorption of pollutants with biochar is the outcome of several processes acting in unison, including complexation reactions, precipitation reactions, and electrostatic attraction, and biochar NO$_3^-$-N and PO$_4^{3-}$-P sorption and release is still not well understood (Hale et al., 2013). This apparent lack of a consensus is primarily due to the high variance in sorption and desorption properties depending on the feedstock and preparation parameters contributing to biochar production (Morales et al., 2013), such as carbonisation temperatures and reactor residence times (Trazzi et al., 2016). This variability is especially true for NO$_3^-$-N and PO$_4^{3-}$-P removal (Deng et al., 2017), with some studies showing that certain kinds of biochar have little or no ability to remove NO$_3^-$-N and PO$_4^{3-}$-P (Yao et al., 2011; Yao et al., 2012; Chen et al., 2010), and others reporting substantial removal of NO$_3^-$-N and PO$_4^{3-}$-P with various kinds of biochar (Yao et al., 2011; Yao et al., 2013; Bock et al., 2015; Bock et al., 2016; Zhang et al., 2012).

Nitrate adsorption with biochar is believed to be primarily a result of ion exchange mechanisms and electrostatic interactions at the biochar surface via an outer-sphere complexation mechanism, and selecting biochars with higher levels of volatile organic compounds, points of zero charge, and base cation concentrations may facilitate higher sorption rates (Chintala et al., 2013). Biochar amendment is also believed to alter physicochemical soil environments, therefore changing the structure and activity of microbial communities, and affecting N and P cycling as a result (Coumaravel et al., 2011; Anderson et al., 2011). Biochar increases soil surface area and increases the soil water holding capacity, providing greater area for denitrifying bacteria colonization, and more favorable conditions (Coumaravel et al., 2011), a possible mechanism supporting higher NO$_3^-$-N removal under field conditions.
Adsorption of PO_4^{3-} ions with biochar is dictated by physical and chemical interactions, including complexation, precipitation, dispersive forces, and electrostatic attraction, and biochars with high surface areas typically are more suitable for promoting adsorption (Ahmad et al., 2014). It may be that the particular variety of biochar used in these experiments, which was sourced from a hardwood feedstock, is not especially advantageous for PO_4^{3-} adsorption. Biochar's ability to adsorb anions and cations is highly dependent on the mineral compositions of utilized feedstock (Lou et al., 2016). The vast majority of materials used for P adsorption contain divalent and trivalent metal ions, including magnesium, calcium, aluminum and iron, which are capable of precipitating and complexing with P, removing P in the process (Westholm, 2006). Biochars that do not have an abundance of these metal ions may not provide the ability for P removal, especially when repulsive electrostatic forces exist (Lou et al., 2016). There is evidence to suggest that low calcium content in biochars can promote P release from biochar (Yao et al., 2012; Jung et al., 2015), and since many of the biochar treatments in these experiments supported PO_4^{3-}-P export, perhaps the calcium content of this biochar is simply too low, though calcium content was not directly quantified here. A recent study by Lou et al. (2016) revealed that four different biochars produced from Korean pine (Pinus koraiensis) tree sawdust feedstock, subjected to various pyrolysis temperatures and various degrees of steam activation, removed <4% of PO_4^{3-}-P from aqueous solution, and they sited repulsion forces between biochar surfaces and PO_4^{3-}-P ions as the likely culprit contributing to low P adsorption rates; the negatively charged surfaces of this biochar had little ability to adsorb the negatively charged PO_4^{3-}-P ions from solution. Perhaps the pine biochar used here does not have sufficient positively charged surfaces to adsorb negatively charged PO_4^{3-}-P ions.

pH could also be contributing to the lack of PO_4^{3-}-P sorption with this particular kind of biochar. Biochar derived from anaerobically digested sugar beet tailings tested in Yao et al. (2011) achieved its greatest sorption capacity at an approximate pH of 4. Kumar et al. (2010) found similar results, with the greatest sorption capacity for phosphate occurring when aqueous solution pH was below the pH_{pzc} (the pH at the point of zero charge) of the adsorbent. This phenomenon has also been observed in
adsorption experiments with activated carbon, with reported declines in negatively charged dye adsorption in solution where pH > pH_{pzc} (Jayson et al., 1982) and contrasting adsorption of positively charged dyes where pH > pH_{pzc} (Iqbal and Ashiq, 2007). While we did not report pHs here for these experiments, they were collected daily, and were typically close to neutral. The pH_{pzc}s of the biochar used for these experiments were not calculated, but the biochar used in Lou et al. (2016) was similarly derived from pine feedstock at temperatures of 300 and 550 °C, yielding pHs of ~4.87 and ~7.81 and lower pH_{pzc}s of and ~3.91 ~3.49, respectively. The pine biochar in that study removed only ~4% of PO_4^{3-}-P from solution, and, if similar mechanisms are in action with our study, that could explain the low PO_4^{3-}-P removal with biochar.

There is a possibility that the sorption of PO_4^{3-}-P by biochar is being impaired by the presence of other anions that are overwhelming PO_4^{3-}-P anions in competition for binding sites, but little evidence of these phenomena exist in the literature. It is unlikely that NO_3^{-}-N would be contributing to this phenomenon, since there is evidence to suggest that NO_3^{-}-N sorption would likely be limited in the presence of PO_4^{3-}-P and sulfate (Chintala et al., 2013), which is probably not occurring here, since the biochar amended mediums generally improved NO_3^{-}-N removal.

In recent years, several biochar varieties have been proven capable of PO_4^{3-}-P removal. Biochar derived from anaerobically digested sugar beet tailings supported substantial removal rates of 133 mg P g^{-1} of biochar (Yao et al., 2011) and magnesium-modified biochar provided an adsorption capacity over 100 mg P g^{-1} (Yao et al., 2013). Mg-biochar nanocomposites with surface-attached nanosized magnesium oxides (MgO), have been proven to support high P sorption ability (Zhang et al., 2012). Several new methods of production have arisen as well, including steam activation, which increases microporosity by enlarging internal biochar pores (Rajapaksha et al., 2014; Ahmad et al., 2014), and acid activation with hydrochloric acid, which significantly increases the cation-exchange capacity and surface areas of biochars (Chintala et al., 2013).

While this progress of late is substantial, more investigation of NO_3^{-}-N and PO_4^{3-}-P removal with biochar is warranted given wide variation in biochar properties and
performance. Future experiments delineating the advantageous and disadvantageous biochar characteristics for promoting NO$_3^-$-N and PO$_4^{3-}$-P removal in solution are required, and this is especially important in regards to feedstock and pH. Feedstock with cationic metals and high mineral contents should be targeted. Ideally, optimal biochars will be identified for use in DNBRs.

5.5 Future Work

There are other, emerging approaches that show great promise for simultaneous removal of NO$_3^-$-N and PO$_4^{3-}$-P from agricultural drainage using DNBRs, and these include other DNBR media amendments, such as alum-based drinking water treatment plant residuals (Gottschall et al., 2016), steel byproducts (Goodwin et al., 2015; Hua et al., 2016; Christianson et al., 2017), and rice straw (Liang et al., 2015), and two-stage filters, such as the one reported in Christianson et al. (2017), which utilized steel slag and acid mine drainage treatment residual filters to sorb PO$_4^{3-}$-P in conjunction with woodchip bioreactors. There has even been a recent push to utilize alternative DNBR amendments for circumventing the potential shortfalls of pollution swapping, such as the successful use of amorphous iron oxides for avoiding sulfate reduction (Easton et al., 2015). Future work should draw from these inventive approaches to broaden and advance DNBR research to include a wider variety of more effective means for mitigating pollution.
6 Conclusions

Woodchips and both biochar treatments were successful at removing NO$_3^-$-N from the simulated agricultural drainage, with mean NO$_3^-$-N removal efficiencies that ranged from 16.9%-93.7% and removal rates that ranged from 4.38-18.52 g N m$^{-3}$ d$^{-1}$. Media type did not have a significant effect at low influent NO$_3^-$-N concentrations, but B$_{30}$ was more effective than W and B$_{10}$ at high influent NO$_3^-$-N concentrations. Mean PO$_4^{3-}$-P removal efficiencies ranged from -122.0% to 74.9% and removal rates ranged from -1.20 to 1.67 g P m$^{-3}$ d$^{-1}$, with B$_{10}$ and B$_{30}$ both significantly worse than W at removing PO$_4^{3-}$-P at both influent PO$_4^{3-}$-P concentrations. HRT significantly influenced NO$_3^-$-N removal efficiencies and rates; removal efficiencies increased as HRTs increased, and removal rates decreased as HRTs increased. HRT had no effect on PO$_4^{3-}$-P removal.

These findings support DNBRs’ utility as mitigation tools for removing NO$_3^-$-N from nutrient-enriched waters at the crossroads of agriculture and the environment, and shed light on key performance factors contributing to DNBR function. Based on this work, appropriate HRTs can be determined for use at the field scale, depending on expected influent concentrations, but site-specific factors will need to be given significant consideration given the expected higher variability of conditions. Future work should examine DNBR NO$_3^-$-N and PO$_4^{3-}$-P removal at higher influent concentrations, to better determine the limits of DNBR performance, and lower influent concentrations, to examine the unintentional, concerning potential for pollution swapping. Additionally, further work is needed to examine the impact of media aging on long-term phosphate and NO$_3^-$-N removal with both woodchips and biochar at laboratory, pilot, and field scales.

Biochar generally enhanced NO$_3^-$-N removal in these DNBRs, but did not significantly improve PO$_4^{3-}$P removal, contradicting earlier, similar batch experiments and highlighting the need for further assessment of biochar’s ability to potentially reduce NO$_3^-$-N and PO$_4^{3-}$-P export from agricultural systems. Moving forward, more thorough investigation of the underlying mechanisms contributing to NO$_3^-$-N and PO$_4^{3-}$-P removal
with biochar, and how those processes change with different feedstock and production parameters, is warranted. These assessments will need to be performed both on biochar exclusively and on biochar used in DNBRs. Continued research will hopefully determine the optimal biochar characteristics for enhancing DNBR performance, and perhaps more avenues for pollutant removal with biochar will come to the surface. Alternatives for promoting PO_4^{3-}-P removal in conjunction with NO_3^--N removal, such as other amendments and two-stage filters, may also be worth exploring for DNBR optimization.
References

affect soil N-transformations or microbial community structure under ruminant urine patches but does alter relative proportions of nitrogen cycling bacteria. *Agric., Ecosystems Environ.*, 191, 63-72.
https://doi.org/10.1016/j.agee.2014.02.021

https://doi.org/10.1016/S0169-7722(98)00162-4

http://dx.doi.org/10.1007/BF00931483

https://doi.org/10.1016/j.biortech.2010.08.067

https://doi.org/10.1029/2007JG000642

http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1083&context=extension_ag_pubs

https://doi.org/10.1016/j.biosystemseng.2009.06.021

https://doi.org/10.1016/j.biosystemseng.2009.09.018

https://doi.org/10.3354/meps210223

https://doi.org/10.2136/sssaj2009.0185

http://dx.doi.org/10.4319/lo.1976.21.3.0379

http://dx.doi.org/10.13031/aea.30.9900

http://dx.doi.org/10.1007/BF00027089

David, C. M. (2014). Evaluating a proposed farm best management practice: Nitrous oxide emissions, in-bed nitrate and carbon monitoring, and hydraulic retention times of denitrifying woodchip bioreactors in Monterey County, California. MS thesis. Seaside, CA: California State University Monterey Bay, Division of

https://doi.org/10.1126/science.1156401

https://doi.org/10.1089/109287503770736195

https://doi.org/10.1016/j.scitotenv.2015.04.005

http://doi.org/10.2134/agronj2002.0153

http://doi.org/10.1007/s10750-009-9795-8

Organization.

Snyder, P. K. Review: Global consequences of land use. *Science, 309*(5734), 570-574. http://dx.doi.org/10.1126/science.1111772

https://doi.org/10.1016/j.ecoleng.2015.09.051

https://doi.org/10.1016/j.ecoleng.2016.06.011

http://doi.org/10.1038/nature02605

https://doi.org/10.1016/j.soilbio.2016.08.001

https://doi.org/10.1016/j.agee.2015.03.015

Hua, G., Kim, J., & Reckhow, D. A. (2014). Disinfection byproduct formation from lignin

https://doi.org/10.1016/j.watres.2014.06.029

http://dx.doi.org/10.1016/j.watres.2016.06.022

http://dx.doi.org/10.2134/jeq2015.03.0161

http://dx.doi.org/10.1016/j.hal.2008.08.015

https://doi.org/10.1016/j.jhazmat.2006.06.007

http://dx.doi.org/10.2134/jeq1985.00472425001400040004x

https://doi.org/10.5194/bg-11-6613-2014

https://doi.org/10.1126/science.173.3996.517

Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizão, F., Kinyangi, J., … Jacobsen,

denitrification wall. *Ag., Ecosystems Env.*, 140(3–4), 514-520.
http://dx.doi.org/10.1016/j.agee.2011.02.005

https://doi.org/10.1080/09542299.2016.1165080

http://dx.doi.org/10.2134/jeq1992.00472425002100030017x

https://doi.org/10.1016/j.watres.2014.06.042

https://doi.org/10.1016/j.soilbio.2013.11.013

http://dx.doi.org/10.1007/BF00346064

https://doi.org/10.1038/249810a0

Muscutt, A. D., Harris, G. L., Bailey, S. W., & Davies, D. B. (1993). Buffer zones to
improve water quality: a review of their potential use in UK agriculture. *Agric. Ecosyst. Environ.*, 45(1), 59-77. https://doi.org/10.1016/0167-8809(93)90059-X

sedi

https://doi.org/10.1016/j.ecolecon.2005.11.034

https://doi.org/10.1073/pnas.0912953109

New York: Springer-Verlag New York, Inc. Retrieved from:

https://CRAN.R-project.org/package=nlme

https://doi.org/10.1098/rstb.2011.0377

http://dx.doi.org/10.2134/jeq2007.0177

http://www.jayhanson.org/page50.htm

https://www.R-project.org/

https://doi.org/10.1093/icesjms/fsp047

https://doi.org/10.1016/j.biortech.2014.05.029

https://doi.org/10.1016/j.jhydrol.2010.05.045

https://doi.org/10.5194/acp-12-11309-2012

Rice, D. C., Schoeny, R., & Mahaffey, K. (2003). Methods and rationale for derivation of
http://dx.doi.org/10.1111/1539-6924.00294

http://dx.doi.org/10.1016/S0038-0717(98)00174-6

http://dx.doi.org/10.1016/j.ecoleng.2010.01.008

http://dx.doi.org/10.1111/j.1745-6592.1999.tb00242.x

http://doi.org/10.1007/PL00010960

http://doi.org/10.2134/jeq2008.0100

removal in septic systems. *Tran. ASAE, 48*(1), 121-128.
http://doi.org/10.13031/2013.17954

Saarnio, S., Heimonen, K., & Kettunen, R. (2013). Biochar addition indirectly affects

http://dx.doi.org/10.1016/j.ecoleng.2010.04.008

mitigation of denitrification “woodchip” bioreactor phosphorus releases during
https://doi.org/10.1016/j.ecoleng.2016.05.019

methyl mercury production in a streambed bioreactor. *J. Environ. Qual.*, 40,
1586-1592. http://dx.doi.org/10.2134/jeq2011.0072

https://doi.org/10.1080/00380768.1991.10416933

Water Pollution Control Fed.*, 48, 2018-2025.

drainage: Historical perspective and current research. *J. Environ. Qual.*, 27(2),

Soil Water Conserv.*, 67(6), 167A-172A. https://doi.org/10.2489/jswc.67.6.167A

https://doi.org/10.1071/sr9960251

Smith, D. R., King, K. W., Johnson, L., Francesconi, W., Richards, P., Baker, D., &
https://doi.org/10.2134/jeq2014.04.0176

nitrous oxide and carbon dioxide emissions on the stratospheric ozone layer.

https://doi.org/10.1016/j.jece.2015.11.005

UNEP. (2007b). Reactive nitrogen in the environment: Too much or too little of a good thing.

van den Berg, E. M., Boleij, M., Gijs Kuenen, J., Kleerebezem, R., & van Loosdrecht, M.
https://dx.doi.org/10.3389%2Ffmicb.2016.01842

https://dx.doi.org/10.1186/s13568-017-0398-x

https://doi.org/10.2134/jeq2005.0027

https://dx.doi.org/10.1038/nature16459

http://dx.doi.org/10.1021/es60073a007

http://dx.doi.org/10.1126/science.277.5325.494

https://doi.org/10.1016/0273-1223(96)00527-6

https://doi.org/10.1016/0043-1354(95)00242-1

Wang, W., Tian, W., Dhomse, S., Xie, F., Shu, J., & Austin, J. (2014). Stratospheric ozone depletion from future nitrous oxide increases. *Atmos. Chem. Phys.*, 14(23), 12967-12982. https://doi.org/10.5194/acp-14-12967-2014

https://doi.org/10.1016/j.watres.2011.05.027

amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. *Chemosphere, 89*(11), 1467-1471.

https://doi.org/10.1016/j.chemosphere.2012.06.002

Appendix A: R Code Used for Statistical Analyses

rm(list=ls())

install.packages("car")
install.packages("readxl")
install.packages("ez")
install.packages("lmtest")
install.packages("nlme")
install.packages("ggplot2")
install.packages("RColorBrewer")
install.packages("broom")
install.packages("xlsx")
install.packages("formattable")
install.packages("sjPlot")
install.packages("tidyr")
install.packages("broom")
install.packages("effects")
install.packages("pander")
install.packages("lattice")
install.packages("dplyr")
install.packages("plyr")
install.packages("multcompView")
install.packages("grid")
install.packages("gridExtra")
install.packages("gridGraphics")

library(car)
library(readxl)
library(ez)
library(lmtest)
library(nlme)
library(ggplot2)
library(RColorBrewer)
library(broom)
library(xlsx)
library(formattable)
library(sjPlot)
library(tidyr)
library(broom)
library(effects)
library(pander)
library(lattice)
library(dplyr)
library(plyr)
library(multcompView)
library(grid)
library(gridExtra)
library(gridGraphics)

load data and remove rows with missing data points

column.data <- read_excel("column.data.xls")
column.data <- na.omit(column.data)

set desired levels for plots

column.data$HRT = factor(column.data$HRT, levels = c('12', '6', '3'))
column.data$med = factor(column.data$med, levels = c('w', 'b10', 'b30'))
column.data$P.in = factor(column.data$P.in, levels = c('1.9', '0.6'))
column.data$N.in = factor(column.data$N.in, levels = c('16.1', '4.5'))

set colors for time series and interaction plots

combocol <- c("tomato", "tan1", "darkolivegreen3", "steelblue")
medcol <- c("burlywood3", "thistle", "gray45")

set labels for facet grids

label_names_ts <- c(
 '1' = "12",
 '2' = "6",
 '3' = "3",
 '4' = "W",
 '5' = bquote(B[10]),
 '6' = bquote(B[30]))
label_names_ts2 <- c(
 '1' = "12",
 '2' = "6",
 '3' = "3",
 'HH' = "HH",
 'HL' = "HL",
 'LH' = "LH",
 'LL' = "LL"
)

label_names_ef <- c(
 '1' = "12",
 '2' = "6 h HRT",
 '3' = "3 h HRT",
 '4' = "W",
 '5' = bquote(B[10]),
 '6' = bquote(B[30])
)

label_names_ef2 <- c(
 '1' = "12",
 '2' = "6",
 '3' = "3",
 '16.1:1.9' = "HH",
 '16.1:0.6' = "HL",
 '4.5:1.9' = "LH",
 '4.5:0.6' = "LL"
)

plot_labeller_ts <- function(variable,value){
 return(label_names_ts[value])
}
plot_labeller_ts2 <- function(variable,value){
 return(label_names_ts2[value])
}
plot_labeller_ef <- function(variable,value){
 return(label_names_ef[value])
}
plot_labeller_ef2 <- function(variable,value){
 return(label_names_ef2[value])
}

set custom themes for plots

custom_theme_ts <- theme_linedraw() +
 theme_light() +
 theme_bw() +
 theme(plot.background = element_rect(size = 2, color = "grey30", fill = "seashell"),
 plot.margin = unit(c(.5, 2.5, .5, .5), "lines"),
 panel.border = element_rect(colour = "black", fill = NA, size = 0.75),
 plot.title = element_text(size = 30, hjust = 0.5),
 axis.title.x = element_text(size = 30),
 axis.title.y = element_text(size = 30),
 axis.text.x = element_text(color = "black", size = 20),
 axis.text.y = element_text(color = "black", size = 20),
 strip.text.x = element_text(size = 20),
 strip.text.y = element_text(size = 20, angle = 0),
 strip.background = element_blank(),
 legend.position = "bottom",
 legend.text = element_text(size = 24),
 legend.title = element_text(size = 24),
 legend.box.background = element_rect(size = 0.75)
)

custom_theme_ts2 <- custom_theme_ts +
 theme(strip.text.x = element_text(angle = 0, size = 30),
 strip.text.y = element_text(angle = 270, size = 30),
 plot.margin = unit(c(1,4,.5,1), "lines"),
 strip.background = element_rect(fill = "seashell2", color = "seashell3"))
custom_theme_int <- custom_theme_ts +
theme(legend.position = "right",
 plot.margin = unit(c(.5,.5,.5,.5), "lines"),
 legend.background = element_rect(fill = "white"),
 legend.box.background = element_rect(size=0.75),
 legend.key = element_rect(fill = "white")
)

custom_theme_tukey <- custom_theme_ts +
theme(plot.margin = unit(c(.5,3,.5,.5), "lines"),
 strip.text.y = element_text(angle = 270),
 legend.title = element_blank(),
 legend.position="none"
)

set line segments for addition to plots

N.H.seg.ts <- data.frame(x = 0, y = 16.1, xend = 120, yend = 16.1, N.in = 16.1)
N.L.seg.ts <- data.frame(x = 0, y = 4.5, xend = 120, yend = 4.5, N.in = 4.5)
P.H.seg.ts <- data.frame(x = 0, y = 1.9, xend = 120, yend = 1.9, P.in = 1.9)
P.L.seg.ts <- data.frame(x = 0, y = 0.6, xend = 120, yend = 0.6, P.in = 0.6)

set line segments for addition to plots

plot.N.out.ts2 <- ggplot(data = column.data, aes(x = time, y = N.out, color = med)) +
 facet_grid(N.in * P.in ~ HRT, scales = "free") +
 geom_point() +
 geom_smooth(span = 0.35, aes(fill = med)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(Effluent~NO[3]^{'-'}-N~Conc.~(mg~L^{-1}))) +
 scale_x_continuous(breaks = 0:120*24) +
 scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]),
 bquote(B[30]))) +
 scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]),
 bquote(B[30]))) +
geom_segment(data=N.H.seg.ts,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) + geom_segment(data=N.L.seg.ts,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) + custom_theme_ts2
plot.N.out.ts2

plot.N.red.ts2 <- ggplot(data = column.data, aes(x = time, y = Nr*100, color = med)) + facet_grid(N.in + P.in ~ HRT, scales = "fixed") + geom_point() + geom_smooth(span=0.35, aes(fill = med)) + ggtitle("HRT (h)") + xlab("Time Elapsed (h)") + ylab(expression(~%~NO[3]^{\text{-}}-N~Removed)) + scale_x_continuous(breaks = 0:120*24) + scale_y_continuous(breaks = 0:100*25) + scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) + scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) + custom_theme_ts2
plot.N.red.ts2

plot.P.out.ts2 <- ggplot(data = column.data, aes(x = time, y = P.out, color = med)) + facet_grid(P.in + N.in ~ HRT, scales = "fixed") + geom_point() + geom_smooth(span=0.35, aes(fill = med)) + ggtitle("HRT (h)") + xlab("Time Elapsed (h)") + ylab(expression(Effluent~PO[4]^{\text{-}}-P~Conc.~(mg~L^{\text{-1}})))) + scale_x_continuous(breaks = 0:120*24) + scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) + scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
geom_segment(data = P.H.seg.ts, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +

geom_segment(data = P.L.seg.ts, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +
custom_theme_ts2
plot.P.out.ts2

plot.P.red.ts2 <- ggplot(data = column.data, aes(x = time, y = Pr*100, color = med)) +
facet_grid(P.in + N.in ~ HRT, scales = "fixed") +
geom_point() +
geom_smooth(span = 0.35, aes(fill = med)) +
ggtitle("HRT (h)") +
xlab("Time Elapsed (h)") +
ylab(expression(~\%~PO[4]^{'3-'}-P~Removed)) +
scale_x_continuous(breaks = 0:120*24) +
scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30])))) +
scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
custom_theme_ts2
plot.P.red.ts2

save plots as 15 x 15 pdf files with y2 axes added as grid.text

pdf(file = "plot.N.out.ts2.pdf", width = 15, height = 15)
plot.N.out.ts2
grid.text(unit(0.97, "npc"), 0.5, label = expression(Influent~Conc.~(mg~L^{'-1'})), rot = 270, gp = gpar(fontsize = 30))
grid.text(unit(0.955, "npc"), 0.05, label = expression(NO[3]^{'-'}-N), rot = 300, gp = gpar(fontsize = 24))
grid.text(unit(0.92, "npc"), 0.05, label = expression(PO[4]^{'3-'}-P), rot = 300, gp = gpar(fontsize = 24))
dev.off()

pdf(file = "plot.N.red.ts2.pdf", width = 15, height = 15)
plot.N.red.ts2
grid.text(unit(0.97,"npc"),0.5,label = expression(Influent-Conc.\textasciitilde(mg\textasciitilde L^{-1})), rot = 270, gp=gpar(fontsize=30))
grid.text(unit(0.955,"npc"),0.05,label = expression(NO[^-\cdot-]N), rot = 300, gp=gpar(fontsize=24))
grid.text(unit(0.92,"npc"),0.05,label = expression(PO[^-\cdot-]P), rot = 300, gp=gpar(fontsize=24))
dev.off()

pdf(file="plot.P.out.ts2.pdf", width=15, height=15)
plot.P.out.ts2
grid.text(unit(0.97,"npc"),0.5,label = expression(Influent-Conc.\textasciitilde(mg\textasciitilde L^{-1})), rot = 270, gp=gpar(fontsize=30))
grid.text(unit(0.955,"npc"),0.05,label = expression(PO[^-\cdot-]P), rot = 300, gp=gpar(fontsize=24))
grid.text(unit(0.92,"npc"),0.05,label = expression(NO[^-\cdot-]N), rot = 300, gp=gpar(fontsize=24))
dev.off()

pdf(file="plot.P.red.ts2.pdf", width=15, height=15)
plot.P.red.ts2
grid.text(unit(0.97,"npc"),0.5,label = expression(Influent-Conc.\textasciitilde(mg\textasciitilde L^{-1})), rot = 270, gp=gpar(fontsize=30))
grid.text(unit(0.955,"npc"),0.05,label = expression(PO[^-\cdot-]P), rot = 300, gp=gpar(fontsize=24))
grid.text(unit(0.92,"npc"),0.05,label = expression(NO[^-\cdot-]N), rot = 300, gp=gpar(fontsize=24))
dev.off()

different versions of plots, facet gridded by media type and HRT

N.out.ts.plot <- ggplot(subset(column.data, id %in% c(1:108)), aes(x = time, y = N.out, color=combo)) +
 facet_grid(med.cont ~ HRT.cont, labeller = plot_labeller_ts) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill=combo)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(NO[^-\cdot-]N~\textasciitilde(mg\textasciitilde L^{-1})))) +
 scale_x_continuous(breaks=0:120*24) +
N.out.ts.plot
grid.text(unit(0.98,"npc"),0.5,label = "Media Type", rot = 270,gp=gpar(fontsize=30))

P.out.ts.plot <- ggplot(subset(column.data, id %in% c(1:108)), aes(x = time, y = P.out, color=combo)) +
 facet_grid(med.cont ~ HRT.cont, labeller = plot_labeller_ts) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill=combo)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(PO[^3]-P~(mg~L^{-1})))) +
 scale_x_continuous(breaks=0:120*24) +
 scale_color_manual("Influent N/P Conc.",values = combocol) +
 scale_fill_manual("Influent N/P Conc.",values = combocol) +
custom_theme_ts
P.out.ts.plot
grid.text(unit(0.98,"npc"),0.5,label = "Media Type", rot = 270,gp=gpar(fontsize=30))

N.red.ts.plot <- ggplot(subset(column.data, id %in% c(1:108)), aes(x = time, y = 100*Nr, color=combo)) +
 facet_grid(med.cont ~ HRT.cont, labeller = plot_labeller_ts) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill=combo)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression('%~NO[^3]-N~Reduced)) +
 scale_x_continuous(breaks=0:120*24) +
 scale_y_continuous(breaks = 0:100*25) +
 scale_color_manual("Influent N/P Conc.",values = combocol) +
 scale_fill_manual("Influent N/P Conc.",values = combocol) +
custom_theme_ts
N.red.ts.plot
grid.text(unit(0.98,"npc"),0.5,label = "Media Type", rot = 270,gp=gpar(fontsize=30))

P.red.ts.plot <- ggplot(subset(column.data, id %in% c(1:108)), aes(x = time, y = 100*Pr, color=combo)) +
facets_grid(med.cont ~ HRT.cont, labeller = plot_labeller_ts) +
geom_point() +
geom_smooth(span=0.35, aes(fill=combo)) +
ggtitle("HRT (h)") +
xlab("Time Elapsed (h)") +
ylab(expression(% ~ PO[4]^{3-} - P_{Reduced})) +
scale_x_continuous(breaks=0:120*24) +
scale_color_manual("Influent N/P Conc.", values = combocol) +
scale_fill_manual("Influent N/P Conc.", values = combocol) +
custom_theme_ts

P.red.ts.plot
grid.text(unit(0.98, "npc"), 0.5, label = "Media Type", rot = 270, gp=gpar(fontsize=30))

second versions are facet gridded by conc. combination and HRT

N.out.ts2.plot <- ggplot(data = column.data, aes(x = time, y = N.out, color = med)) +
 facets_grid(combo ~ HRT, scales = "free_y", labeller = plot_labeller_ts2) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill = med)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(NO[3]^{\cdot\cdot\cdot} - N_{\cdot\cdot\cdot\cdot\cdot})) +
 scale_x_continuous(breaks = 0:120*24) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = medcol) +
custom_theme_ts

N.out.ts2.plot
grid.text(unit(0.98, "npc"), 0.5, label = "Influent N/P Conc.", rot = 270, gp=gpar(fontsize=30))

P.out.ts2.plot <- ggplot(data = column.data, aes(x = time, y = P.out, color = med)) +
 facets_grid(combo ~ HRT, scales = "fixed", labeller = plot_labeller_ts2) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill = med)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(PO[4]^{3-} - P_{\cdot\·
P.out.ts2.plot
grid.text(unit(0.98,"npc"),0.5,label = "Influent N/P Conc.", rot = 270,gp=gpar(fontsize=30))

N.red.ts2.plot <- ggplot(data = column.data, aes(x = time, y = Nr*100, color = med)) +
 facet_grid(combo ~ HRT, scales = "fixed", labeller = plot_labeller_ts2) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill = med)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(~'%'~NO[3]\^{'-'}-N~Removed)) +
 scale_x_continuous(breaks = 0:120*24) +
 scale_y_continuous(breaks = 0:100*25) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = medcol) +
 custom_theme_ts

P.red.ts2.plot <- ggplot(data = column.data, aes(x = time, y = Pr*100, color = med)) +
 facet_grid(combo ~ HRT, scales = "fixed", labeller = plot_labeller_ts2) +
 geom_point() +
 geom_smooth(span=0.35, aes(fill = med)) +
 ggtitle("HRT (h)") +
 xlab("Time Elapsed (h)") +
 ylab(expression(~'%'~PO[4]\^{'3-'}-P~Removed)) +
 scale_x_continuous(breaks = 0:120*24) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = medcol) +
 custom_theme_ts

P.red.ts2.plot
grid.text(unit(0.98,"npc"),0.5,label = "Influent N/P Conc.", rot = 270,gp=gpar(fontsize=30))

###################################
old N, P, Nred, Pred interaction plots
###################################
N.out.int.plot <- ggplot(data = column.data, aes(x = interaction(HRT, med.cont, combo), y = N.out, fill = med)) +
 facet_grid(.~combo, shrink=T, scales = "free_x") +
 geom_boxplot() +
 ggttitle("Influent N/P Conc.") +
 xlab("HRT (h)") +
 ylab(expression(NO[3]^{'-'}-N~(mg~L^{'-1'}))) +
 scale_x_discrete(labels=c(rep(c("3", "6", "12"),3))) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = c(medcol)) +
 custom_theme_int

N.out.int.plot

P.out.int.plot <- ggplot(data = column.data, aes(x = interaction(HRT, med.cont, combo), y = P.out, fill = med)) +
 facet_grid(.~combo, shrink=T, scales = "free_x") +
 geom_boxplot() +
 ggttitle("Influent N/P Conc.") +
 xlab("HRT (h)") +
 ylab(expression(PO[4]^{'-'}-P~mg~L^{'-1'}))) +
 scale_x_discrete(labels=c(rep(c("3", "6", "12"),3))) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = c(medcol)) +
 custom_theme_int

P.out.int.plot

N.red.int.plot <- ggplot(data = column.data, aes(x = interaction(HRT, med.cont, combo), y = Nr*100, fill = med)) +
 facet_grid(.~combo, shrink=T, scales = "free_x") +
 geom_boxplot() +
 ggttitle("Influent N/P Conc.") +
 xlab("HRT (h)") +
 ylab(expression(~'%'~NO[3]^{'-'}-N~Removed)) +
 scale_x_discrete(labels=c(rep(c("3", "6", "12"),3))) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = c(medcol)) +
 custom_theme_int

N.red.int.plot
P.red.int.plot <- ggplot(data = column.data, aes(x = interaction(HRT, med.cont, combo), y = Pr*100, fill = med)) +
 facet_grid(.~combo, shrink=T, scales = "free_x") +
 geom_boxplot() +
 ggtitle("Influent N/P Conc.") +
 xlab("HRT (h)") +
 ylab(expression(~\%~PO_{4}^{3-}-P~Removed)) +
 scale_x_discrete(labels=c(rep(c("3", "6", "12"),3))) +
 scale_color_manual("Media Type", values = medcol) +
 scale_fill_manual("Media Type", values = c(medcol)) +
 custom_theme_int

P.red.int.plot

###
LME Model Comparisons
###

transform variables to factors
do not want them to be interpreted by the models as continuous

column.data <- read_excel("column.data.xls")
column.data <- na.omit(column.data)

column.data <- within(column.data, {
 trial<-factor(trial)
 column<-factor(column)
 id<-factor(id)
 med<-factor(med)
 combo<-factor(combo)
 HRT <- factor(HRT)
 N.in <- factor(N.in)
 P.in <- factor(P.in)
})

full lme model for N and subsequent trimmed models

lme.N.full <- lme(N.out~time*med*HRT*N.in*P.in, data=column.data,
 control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.N.drop.time <- lme(N.out~med*HRT*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.N.drop.med <- lme(N.out~time*HRT*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.N.drop.HRT <- lme(N.out~time*med*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.N.drop.N.in <- lme(N.out~time*med*HRT*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.N.drop.P.in <- lme(N.out~time*med*HRT*N.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

model comparisons

anova(lme.N.full, lme.N.drop.time)
anova(lme.N.full, lme.N.drop.med)
anova(lme.N.full, lme.N.drop.HRT)
anova(lme.N.full, lme.N.drop.N.in)
anova(lme.N.full, lme.N.drop.P.in)

full lme model for P and subsequent trimmed models

lme.P.full <- lme(P.out~time*med*HRT*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.P.drop.time <- lme(P.out~med*HRT*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.P.drop.med <- lme(P.out~time*HRT*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")

lme.P.drop.HRT <- lme(P.out~time*med*N.in*P.in, data=column.data,
control=ctrl,random=~timelid,correlation = corCAR1(form = ~timelid),
method = "ML")
lme.P.drop.N.in <- lme(P.out~time*med*HRT*P.in, data=column.data,
 control=ctrl, random=~timelid, correlation = corCAR1(form = ~timelid),
 method = "ML")
lme.P.drop.P.in <- lme(P.out~time*med*HRT*N.in, data=column.data,
 control=ctrl, random=~timelid, correlation = corCAR1(form = ~timelid),
 method = "ML")

anova(lme.P.full, lme.P.drop.time)
anova(lme.P.full, lme.P.drop.med)
anova(lme.P.full, lme.P.drop.HRT)
anova(lme.P.full, lme.P.drop.N.in)
anova(lme.P.full, lme.P.drop.P.in)

Final models

lme.N <- lme(N.out~time*med*HRT*N.in*P.in, data=column.data,
 control=ctrl, random=~timelid, correlation = corCAR1(form = ~timelid))
lme.P <- lme(P.out~time*med*HRT*P.in, data=column.data,
 control=ctrl, random=~timelid, correlation = corCAR1(form = ~timelid))

P models

lme.P.2way <- lme(P.out~(time+med+HRT+N.in+P.in)^2, data=column.data,
 control = ctrl, random=~timelid, correlation = corCAR1(form = ~timelid))
lme.P.2way.time <- lme(P.out~(time+med+HRT+N.in+P.in)^2 +
 time:med:HRT+
 time:med:N.in+
 time:med:P.in+
 time:HRT:N.in+
 time:HRT:P.in+
 time:N.in:P.in,
 data=column.data,
 control = ctrl, random=~timelid, correlation = corCAR1(form = ~timelid))
lme.P.3way <- lme(P.out~(time+med+HRT+N.in+P.in)^3, data=column.data,
 control = ctrl, random=~timelid, correlation = corCAR1(form = ~timelid))
anovas

anova.lme.N.2way <- round(anova(lme.N.2way, type="marginal"),3)
anova.lme.N.2way.time <- round(anova(lme.N.2way.time, type="marginal"),3)
anova.lme.N.3way <- round(anova(lme.N.3way, type="marginal"),3)

anova.lme.P.2way <- round(anova(lme.P.2way, type="marginal"),3)
anova.lme.P.2way.time <- round(anova(lme.P.2way.time, type="marginal"),3)
anova.lme.P.3way <- round(anova(lme.P.3way, type="marginal"),3)

summaries

summary.lme.N.2way <- round(summary(lme.N.2way)$tTable,3)
summary.lme.N.2way.time <- round(summary(lme.N.2way.time)$tTable,3)
summary.lme.N.3way <- round(summary(lme.N.3way)$tTable,3)

summary.lme.P.2way <- round(summary(lme.P.2way)$tTable,3)
summary.lme.P.2way.time <- round(summary(lme.P.2way.time)$tTable,3)
summary.lme.P.3way <- round(summary(lme.P.3way)$tTable,3)

try plotting an effects plots of P.out concentration through time as a function of N.in and time

create excel workbook of model outputs

wb = createWorkbook()
sheet = createSheet(wb, "2way")

addDataFrame(anova.lme.N.2way, sheet=sheet, startColumn=1, startRow=1,
row.names=TRUE, col.names=T)
addDataFrame(anova.lme.P.2way, sheet=sheet, startColumn=6, startRow=1,
row.names=TRUE, col.names=T)

sheet = createSheet(wb, "2way.time")

addDataFrame(anova.lme.N.2way.time, sheet=sheet, startColumn=1, startRow=1,
row.names=TRUE)
addDataFrame(anova.lme.P.2way.time, sheet=sheet, startColumn=6, startRow=1, row.names=TRUE)

sheet = createSheet(wb, "3way")

addDataFrame(anova.lme.N.3way, sheet=sheet, startColumn=1, startRow=1, row.names=TRUE)
addDataFrame(anova.lme.P.3way, sheet=sheet, startColumn=6, startRow=1, row.names=TRUE)

saveWorkbook(wb, "column.data.lme.output.xlsx")

check assumptions
plot(fitted(lme.N.2way), resid(lme.N.2way, type = "normalized"))
plot(fitted(lme.N.2way.time), resid(lme.N.2way.time, type = "normalized"))
plot(fitted(lme.N.3way), resid(lme.N.3way, type = "normalized"))

plot(fitted(lme.P.2way), resid(lme.P.2way, type = "normalized"))
plot(fitted(lme.P.2way.time), resid(lme.P.2way.time, type = "normalized"))
plot(fitted(lme.P.3way), resid(lme.P.3way, type = "normalized"))

effects plots
plot(allEffects(lme.N.2way))
plot(allEffects(lme.N.2way.time))
plot(allEffects(lme.N.3way))

lme.N.2way.effects <- as.data.frame(allEffects(lme.N.2way), lme.N.2way, confidence.level = 0.95)
lme.P.effects <- as.data.frame(effect("time*med*HRT*N.in*P.in", lme.P, confidence.level = 0.95))

lme.N.effects$HRT = factor(lme.N.effects$HRT, levels=c(12,6,3))
lme.N.effects$P.in = factor(lme.N.effects$P.in, levels=c(1.9,0.6))
lme.P.effects$HRT = factor(lme.P.effects$HRT, levels=c(12,6,3))
lme.P.effects$P.in = factor(lme.P.effects$P.in, levels=c(1.9,0.6))
lme.N.effects.plot <- ggplot(lme.N.effects, aes(time, fit, color=med)) + geom_point(size=0) +
 xlab("Time Elapsed (h)") + ylab(expression(NO[^3]-N\sim mg\sim L^{-1}))) +
 facet_grid(N.in:P.in~HRT)+custom_theme_int+
 scale_fill_manual(values = c(medcol)) + scale_color_manual(values = medcol) +
 geom_line(aes(linetype = med),size=.75) +
 geom_ribbon(aes(ymin=lower, ymax=upper,x=time, fill=med, linetype=med),
 alpha=0.3, colour =NA)
lme.N.effects.plot

lme.P.effects.plot <- ggplot(lme.P.effects, aes(time, fit, color=med)) + geom_point(size=0) +
 xlab("Time Elapsed (h)") + ylab(expression(PO[^3]-P\sim mg\sim L^{-1}))) +
 facet_grid(N.in:P.in~HRT)+custom_theme_int+
 scale_fill_manual(values = c(medcol)) + scale_color_manual(values = medcol) +
 geom_line(aes(linetype = med),size=.75) +
 geom_ribbon(aes(ymin=lower, ymax=upper,x=time, fill=med, linetype=med),
 alpha=0.3, colour =NA)
lme.P.effects.plot

ggsave('lme.N.effects.plot.pdf', plot=lme.N.effects.plot,width=15.1, height=8.5, unit='in',
 path="/Users/bscoleman/Downloads/column.data.plots")
ggsave('lme.P.effects.plot.pdf', plot=lme.P.effects.plot,width=15.1, height=8.5, unit='in',
 path="/Users/bscoleman/Downloads/column.data.plots")

effects package for interactions

lme.N.effects <- as.data.frame(effect("time*med*HRT*combo", lme.N, confidence.level = 0.95))
lme.P.effects <- as.data.frame(effect("time*med*HRT*combo", lme.P, confidence.level = 0.95))

ggplot(lme.N.effects, aes(time, fit, color=med)) + geom_point(size=0) +
 facet_grid(HRT~combo)+custom_theme_int+
 scale_fill_manual(values = c(medcol)) + scale_color_manual(values = medcol) +
 geom_line(aes(linetype = med),size=.75) +
 geom_ribbon(aes(ymin=lower, ymax=upper,x=time, fill=med, linetype=med),
 alpha=0.3, colour =NA)
geom_ribbon(aes(ymin=lower, ymax=upper,x=time, fill=med, linetype=med), alpha=0.1, colour=NA)

ggplot(lme.P.effects, aes(time, fit, color=med)) + geom_point(size=0) + facet_grid(HRT~combo)+custom_theme_int+
scale_fill_manual(values = c(medcol)x)+ scale_color_manual(values = medcol) + geom_line(aes(linetype = med),size=.75) + geom_ribbon(aes(ymin=lower, ymax=upper,x=time, fill=med, linetype=med), alpha=0.1, colour=NA)

###
ezANOVAs
###

read in excel data again, dropping last three time point because of unbalanced data

column.data <- read_excel("column.data.xls")
column.data <- na.omit(column.data)

column.data = column.data[column.data$time!=72 & column.data$time!=96 & column.data$time!=120]

column.data <- within(column.data, {
 trial<-factor(trial)
 column<-factor(column)
 id<-factor(id)
 med<-factor(med)
 HRT<-factor(HRT)
 combo<-factor(combo)
 time<-factor(time)
 P.in<-factor(P.in)
 N.in<-factor(N.in)
})

column.data$HRT = factor(column.data$HRT, levels=c('12','6','3'))
column.data$med = factor(column.data$med, levels=c('w','b10','b30'))

N ezANOVA
ezANOVA.N <- ezANOVA(data = column.data,
 dv = N.out,
 wid = id,
 between = .(med,N.in,P.in,HRT),
 detailed = T)
ezANOVA.N # interactions containing P.in not significant, drop P.in from anova

ezANOVA.N <- ezANOVA(data = column.data,
 dv = N.out,
 wid = id,
 between = .(med,N.in,HRT),
 detailed = T,
 return_aov = T)

P ezANOVA

ezANOVA.P <- ezANOVA(data = column.data,
 dv = P.out,
 wid = id,
 between = .(med,N.in,P.in,HRT),
 detailed = T,
 return_aov = T)
ezANOVA.P

ezANOVAs for HRT plots regardless of med

ezANOVA.N.drop.med <- ezANOVA(data = column.data,
 dv = N.out,
 wid = id,
 between = .(N.in,HRT),
 detailed = T,
 return_aov = T)
ezANOVA.N.drop.med

ezANOVA.P.drop.med <- ezANOVA(data = column.data,
 dv = P.out,
 wid = id,
 between = .(N.in,P.in,HRT),
 detailed = T,
return_aov = T

ezANOVA.P.drop.med

wb = createWorkbook()
sheet = createSheet(wb, "ezANOVA.N")
addDataFrame(ezANOVA.N$ANOVA, sheet=sheet, startColumn=1, startRow=1,
row.names=TRUE)
sheet = createSheet(wb, "ezANOVA.P")
addDataFrame(ezANOVA.P$ANOVA, sheet=sheet, startColumn=1, startRow=1,
row.names=TRUE)
sheet = createSheet(wb, "ezANOVA.N.drop.med")
addDataFrame(ezANOVA.N.drop.med$ANOVA, sheet=sheet, startColumn=1,
startRow=1, row.names=TRUE)
sheet = createSheet(wb, "ezANOVA.P.drop.med")
addDataFrame(ezANOVA.P.drop.med$ANOVA, sheet=sheet, startColumn=1,
startRow=1, row.names=TRUE)
saveWorkbook(wb, "column.data.ezanovas.xlsx")

#################
TukeyHSDs
#################

TukeyHSDs for optimal anovas

tukey.N <- TukeyHSD(ezANOVA.N$aov)
tukey.N

tukey.P <- TukeyHSD(ezANOVA.P$aov)
tukey.P

TukeyHSDs for optimal anovas, dropped med

tukey.N.drop.med <- TukeyHSD(ezANOVA.N.drop.med$aov)
tukey.N.drop.med

tukey.P.drop.med <- TukeyHSD(ezANOVA.P.drop.med$aov)
tukey.P.drop.med

wb = createWorkbook()
sheet = createSheet(wb, "tukey.N")
addDataFrame(tukey.N$`med:N.in:HRT`, sheet=sheet, startColumn=1, startRow=1, row.names=TRUE)
sheet = createSheet(wb, "tukey.P")
addDataFrame(tukey.P$`med:N.in:P.in:HRT`, sheet=sheet, startColumn=1, startRow=1, row.names=TRUE)
sheet = createSheet(wb, "tukey.N.drop.med")
addDataFrame(tukey.N.drop.med$`N.in:HRT`, sheet=sheet, startColumn=1, startRow=1, row.names=TRUE)
sheet = createSheet(wb, "tukey.P.drop.med")
addDataFrame(tukey.P.drop.med$`N.in:P.in:HRT`, sheet=sheet, startColumn=1, startRow=1, row.names=TRUE)
saveWorkbook(wb, "column.data.tukey.results.xlsx")

###
interaction plots with significant differences from TukeyHSD plotted
###

N
N.L.seg <- data.frame(x = 1, y = 4.5, xend = 3, yend = 4.5, N.in = "4.5")
N.H.seg <- data.frame(x = 1, y = 16.1, xend = 3, yend = 16.1, N.in = "16.1")
column.data$N.in = factor(column.data$N.in, levels = c("16.1","4.5"))

plot.N.out.tukey.full <- ggplot(data = column.data, aes(x = interaction(med, HRT), y = N.out, fill = med)) +
 facet_grid(N.in ~ HRT, shrink = T, scales = "free") +
geom_boxplot() +
scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
xlab("Media Type") +
ylab(expression(Effluent~NO^3\n-\nN~Conc.~(mg~L^-1)))) +
ggtitle("HRT (h)") +
scale_x_discrete(labels = c(rep(c("W", bquote(B[10]), bquote(B[30])), 3)) +

169
geom_segment(data=N.L.seg,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) +

geom_segment(data=N.H.seg,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) +
custom_theme_ts2
plot.N.out.tukey.full

column.data$N.in = factor(column.data$N.in, levels = c('4.5','16.1'))

plot.N.out.tukey.HRT <- ggplot(data = column.data, aes(x = interaction(N.in, HRT), y = N.out)) +
facet_grid(.~N.in, shrink = T, scales = "free") +
geom_boxplot(fill = c("grey75")) +
xlab("HRT (h)") +
ylab(expression(Effluent~NO_3^- - N~Conc.~(mg~L^-1))) +
ggtitle(expression(Influent~NO_3^- - N~Conc.~(mg~L^-1))) +
scale_x_discrete(labels=c(rep(c("12", "6", "3"),4))) +

geom_segment(data=N.L.seg,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) +

geom_segment(data=N.H.seg,aes(x=x,y=y,yend=yend,xend=xend),inherit.aes=FALSE,linetype=2) +
custom_theme_ts2
plot.N.out.tukey.HRT

P

P.L.seg <- data.frame(x=1,y=0.6,xend=3,yend=0.6, P.in = 0.6)
P.H.seg <- data.frame(x=1,y=1.9,xend=3,yend=1.9, P.in = 1.9)

column.data$P.in= factor(column.data$P.in, levels=c('1.9','0.6'))
column.data$N.in= factor(column.data$N.in, levels=c('16.1','4.5'))

plot.P.out.tukey.full <- ggplot(data = column.data, aes(x = interaction(med, HRT), y = P.out, fill=med)) +
facet_grid(P.in+N.in~HRT, shrink=T, scales = "free_x") +
```r
geom_boxplot() +
  xlab("Media Type") +
  ylab(expression(Effluent ~ P_4^{3-} - P_{Conc.} \sim (mg/L^{-1}))) +
  ggtitle("HRT (h)") +
  scale_x_discrete(labels = c("W", bquote(B[10]), bquote(B[30]), "3")) +
  scale_color_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
  scale_fill_manual("Media Type", values = medcol, labels = c("W", bquote(B[10]), bquote(B[30]))) +
  geom_segment(data = P.H.seg, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +
  geom_segment(data = P.L.seg, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +
  custom_theme_ts2
plot.P.out.tukey.full

column.data$P.in = factor(column.data$P.in, levels = c('0.6', '1.9'))
column.data$N.in = factor(column.data$N.in, levels = c('4.5', '16.1'))
column.data$HRT = factor(column.data$HRT, levels = c('12', '6', '3'))

plot.P.out.tukey.HRT <- ggplot(data = column.data, aes(x = interaction(P.in, N.in, HRT), y = P.out)) +
  facet_grid(. ~ P.in + N.in, shrink = T, scales = "free_x") +
  geom_boxplot(fill = c("grey75")) +
  xlab("HRT (h)") +
  ylab(expression(Effluent ~ P_4^{3-} - P_{Conc.} \sim (mg/L^{-1}))) +
  scale_x_discrete(labels = c(rep("12", "6", "3"), 4)) +
  ggtitle(expression(Influent Conc. \sim (mg/L^{-1}))) +
  geom_segment(data = P.H.seg, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +
  geom_segment(data = P.L.seg, aes(x = x, y = y, yend = yend, xend = xend), inherit.aes = FALSE, linetype = 2) +
  custom_theme_ts2 +
  theme(plot.margin = unit(c(.5, 5.7, .5, .5), "lines"))
plot.P.out.tukey.HRT
```
save plots

df(file="plot.N.out.tukey.full.pdf", width=15, height=15)
plot.N.out.tukey.full
gtext(unit(0.97,"npc"),0.5,label = expression(Influent~NO[3]^(-)-N~Conc.~(mg~L^{-1}))), rot = 270, gp=gpar(fontsize=30))
dev.off()

df(file="plot.N.out.tukey.HRT.pdf", width=10, height=10)
plot.N.out.tukey.HRT
dev.off()

df(file="plot.P.out.tukey.full.pdf", width=15, height=15)
plot.P.out.tukey.full
gtext(unit(0.97,"npc"),0.5,label = expression(Influent~Conc.~(mg~L^{-1}))), rot = 270, gp=gpar(fontsize=30))
gtext(unit(0.955,"npc"),0.05,label = expression(PO[4]^{3-}-P), rot = 300, gp=gpar(fontsize=24))
gtext(unit(0.92,"npc"),0.05,label = expression(NO[3]^(-)-N), rot = 300, gp=gpar(fontsize=24))
dev.off()

df(file="plot.P.out.tukey.HRT.pdf", width=15, height=8)
plot.P.out.tukey.HRT
gtext(unit(0.95,"npc"),0.88,label = expression(PO[4]^{3-}-P), rot = 0, gp=gpar(fontsize=24))
gtext(unit(0.95,"npc"),0.81,label = expression(NO[3]^(-)-N), rot = 0, gp=gpar(fontsize=24))
dev.off()

###############################
Stats table of column.data
###############################

means.N.out <- aggregate(N.out ~ HRT:med:N.in, column.data, mean)
means.N.out$N.out <- round(means.N.out$N.out, 3)
means.P.out <- aggregate(P.out ~ HRT:med:N.in:P.in, column.data, mean)
means.P.out$P.out <- round(means.P.out$P.out, 3)
means.Nr <- aggregate(Nr ~ HRT:med:N.in, column.data, mean)
means.Nr$Nr <- round(means.Nr$Nr, 3)
means.Nr$Nr <- means.Nr$Nr * 100
means.Pr <- aggregate(Pr ~ HRT:med:N.in:P.in, column.data, mean)
means.Pr$Pr <- round(means.Pr$Pr, 3)

medians.N.out <- aggregate(N.out ~ HRT:med:N.in, column.data, median)
medians.N.out$N.out <- round(medians.N.out$N.out, 3)
medians.P.out <- aggregate(P.out ~ HRT:med:N.in:P.in, column.data, median)
medians.P.out$P.out <- round(medians.P.out$P.out, 3)

stdev.N.out <- aggregate(N.out ~ HRT:med:N.in, column.data, sd)
stdev.N.out$N.out <- round(stdev.N.out$N.out, 2)
stdev.P.out <- aggregate(P.out ~ HRT:med:N.in:P.in, column.data, sd)
stdev.P.out$P.out <- round(stdev.P.out$P.out, 2)

stat.table <- cbind(means.N.out, means.Nr$Nr, medians.N.out$N.out,
 stdev.N.out$N.out,
 means.P.out, means.Pr$Pr, medians.P.out$P.out, stdev.P.out$P.out)

wb = createWorkbook()

sheet = createSheet(wb, "stat.table")

addDataFrame(stat.table, sheet=sheet, startColumn=1, startRow=1,
 row.names=TRUE)

saveWorkbook(wb, "column.data.stat.table.xlsx")