
Software-Defined Radio Implementation of Two Physical
Layer Security Techniques

Kevin S. Ryland

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Thomas C. Clancy

Richard M. Buehrer

Carl B. Dietrich

December 19th, 2017

Arlington, Virginia

Keywords: Physical Layer Security, Software Defined Radio, Alamouti STBC, Artificial

Noise Generation, Over-the-Air

Copyright 2017, Kevin S. Ryland

Software-Defined Radio Implementation of Two Physical Layer Security
Techniques

Kevin S. Ryland

ABSTRACT

This thesis discusses the design of two Physical Layer Security (PLS) techniques on Soft-
ware Defined Radios (SDRs). PLS is a classification of security methods that take advan-
tage of physical properties in the waveform or channel to secure communication. These
schemes can be used to directly obfuscate the signal from eavesdroppers, or even gener-
ate secret keys for traditional encryption methods. Over the past decade, advancements
in Multiple-Input Multiple-Output systems have expanded the potential capabilities of
PLS while the development of technologies such as the Internet of Things has provided
new applications. As a result, this field has become heavily researched, but is still lacking
implementations. The design work in this thesis attempts to alleviate this problem by
establishing SDR designs geared towards Over-the-Air experimentation.

The first design involves a 2 × 1 Multiple-Input Single-Output system where the trans-
mitter uses Channel State Information from the intended receiver to inject Artificial Noise
(AN) into the receiver’s nullspace. The AN is consequently not seen by the intended re-
ceiver, however, it will interfere with eavesdroppers experiencing independent channel
fading. The second design involves a single-carrier Alamouti coding system with pseudo-
random phase shifts applied to each transmit antenna, referred to as Phase-Enciphered
Alamouti Coding (PEAC). The intended receiver has knowledge of the pseudo-random
sequence and can undo these phase shifts when performing the Alamouti equalization,
while an eavesdropper without knowledge of the sequence will be unable to decode the
signal.

Software-Defined Radio Implementation of Two Physical Layer Security
Techniques

Kevin S. Ryland

ABSTRACT FOR A GENERAL AUDIENCE

This thesis discusses the design of two Physical Layer Security (PLS) techniques. PLS is a
classification of wireless communication security methods that take advantage of physi-
cal properties in transmission or environment to secure communication. These schemes
can be used to directly obfuscate the signal from eavesdroppers, or even generate se-
cret keys for traditional encryption methods. Over the past decade, advancements in
Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS
while the development of technologies such as the Internet of Things has provided new
applications. As a result, this field has become heavily researched, but is still lacking
implementations. The design work in this thesis attempts to alleviate this problem by
establishing systems that can be used for laboratory experimentation.

Contents

1 Introduction 1

2 Background 5

2.1 Information-Theoretic Security . 5

2.1.1 Shannon Channel Capacity . 5

2.1.2 Wyner Wiretap Channel . 10

2.1.3 Example Wiretap Code . 15

2.2 Multiple-Input Multiple-Output Communications 18

2.3 Software-Defined Radio . 20

3 Physical Layer Security 22

3.1 Secure Multiantenna Techniques . 23

3.1.1 Generalized Singular Value Decomposition Beamforming 24

3.1.2 Zero Forcing . 25

3.1.3 CVX . 26

3.1.4 Artificial Noise Generation . 26

iv

3.2 Metrics for Comparing PLS Techniques . 27

3.2.1 Channel State Information . 27

3.2.2 Secrecy Measures . 29

4 Theory and Simulation Work 31

4.1 Artificial Noise Generation . 31

4.1.1 System Model . 31

4.1.2 AN Simulations . 34

4.2 Phase-Enciphered Alamouti Coding . 39

4.2.1 System Model . 39

4.2.2 PEAC Simulations . 43

5 Experimental Setup 45

5.1 GNU Radio Introduction . 45

5.1.1 Blocks . 46

5.1.2 Flowgraphs . 46

5.1.3 Customization . 48

5.2 QPSK Transmitter . 49

5.2.1 Data Management . 52

5.2.2 Digital Modulation . 57

5.2.3 Pulse Shaping and Resampling . 58

5.2.4 RF Front-End . 60

v

5.3 QPSK Receiver . 62

5.3.1 RF Front-End . 64

5.3.2 Automatic Gain Control . 65

5.3.3 Timing Recovery and Matched Filtering 69

5.3.4 Equalization . 71

5.3.5 Carrier Frequency Recovery . 72

5.3.6 Digital Demodulation . 73

5.3.7 Data Management . 74

5.3.8 GUI and Output Comparison . 75

5.4 Testbed Design . 76

6 PEAC Design 80

6.1 Transmitter . 80

6.1.1 Data Management and Digital Modulation 82

6.1.2 Space-Time Encoding . 84

6.1.3 Pulse Shaping and RF Front-End Interface 87

6.2 Receiver . 87

6.2.1 Gain Control and Recovery Loops . 89

6.2.2 Packet Synchronization . 90

6.2.3 Channel Estimation . 92

6.2.4 Space-Time Decoding . 94

6.3 Eve’s Receiver . 95

vi

7 Artificial Noise Design 96

7.1 Transmitter . 96

7.1.1 Transmit Beamforming . 98

7.1.2 Artificial Noise Generation . 98

7.2 Bob’s Receiver . 98

7.3 Eve’s Receiver . 100

8 Experimental Results 101

9 Conclusion 105

10 Appendix A: Matlab Code 107

10.1 AN Simulation . 107

10.2 PEAC Simulation . 113

Bibliography 122

vii

List of Figures

1.1 General Case of the Wyner Wiretap Channel [1]. 2

2.1 The Binary Symmetric Channel with flip probability f. 6

2.2 Error correction coding system [2]. 7

2.3 BER vs. Code Rate Graph of popular error-correction codes [2]. 8

2.4 Entropy Chain Rule, derived from [2]. 9

2.5 Special Case of the Wyner Wiretap Channel. 10

2.6 General Case of the Wyner Wiretap Channel [1]. 13

2.7 Region of achievable Wyner wiretap codes (A,B,C, and D) [1]. 14

2.8 Example wiretap code applied to a 16-QAM modulated signal. 15

2.9 Comparison of Bob’s and Eve’s EVMs. 16

2.10 Possible overlap scenarios between Bob and Eve’s EVMs. 16

2.11 Analysis of Eve’s confusion when decoding the LSB of a central symbol. . . 17

2.12 MIMO Channel Decomposition with SVD [3]. 20

3.1 Secure Multiantenna Techniques [4]. 23

3.2 MIMOME Channel with Alice-Bob Channel H and Alice-Eve Channel G. . 27

viii

3.3 Performance Metrics in Physical Layer Security[5]. 30

4.1 An example wiretap coding scheme applied to the Artificial Noise technique. 34

4.2 2× 1 Transmit Beamformer. 35

4.3 Simulated BER curves for Bob and Eve with TX Beamforming and no AN

added. 36

4.4 Simulated BER curves for Bob and Eve with TX Beamforming and AN

added with a power ratio of α = 0.25. 37

4.5 Simulated BER curves for Bob and Eve with TX Beamforming and AN

added with a power ratio of α = 0.50. 38

4.6 Simulated BER curves for Bob and Eve with TX Beamforming and AN

added with a power ratio of α = 0.75. 39

4.7 Phase-Enciphered Alamouti Coding Scheme. 41

4.8 Simulated BER curves for Bob and Eve with Alice applying PEAC. 44

5.1 GRC Flowgraph for a FM Receiver [6]. 48

5.2 Parameter Blocks for the QPSK OTA Flowgraph. 50

5.3 GRC Flowgraph for a Single-Carrier QPSK Transmitter. 51

5.4 Vector Source Block and its relevant parameters. 53

5.5 File Source Block and its relevant parameters. 54

5.6 Stream Mux Block and its relevant parameters. 55

5.7 Pack K Bits and Unpack K Bits Blocks and their relevant parameters. 55

5.8 Differential Encoder Block and its relevant parameters. 56

5.9 QPSK constellation plot with Gray coding. 57

ix

5.10 Chunks to Symbols Block and its relevant parameters. 58

5.11 Constellation Object Block and its relevant parameters. 59

5.12 Polyphase Arbitrary Resampler block and its relevant parameters. . 60

5.13 Polyphase Arbitrary Resampler block and its relevant parameters. . 61

5.14 UHD: USRP Sink Block and its relevant parameters. 62

5.15 GRC Flowgraph for a Single-Carrier QPSK Receiver. 63

5.16 UHD: USRP Source Block and its relevant parameters. 65

5.17 AGC2 Block with Parameters Specified for OTA QPSK flowgraph. 66

5.18 Control Loop with input φI and output φO [7]. 67

5.19 Control loop gains vs. loop bandwidth in a critically damped system. 69

5.20 Polyphase Clock Sync Block with Parameters Specified for OTA QPSK

flowgraph. 70

5.21 CMA Equalizer Block with Parameters Specified for OTA QPSK flowgraph. 72

5.22 Costas Loop Block with Parameters Specified for OTA QPSK flowgraph. . . 73

5.23 Constellation Decoder Block with Parameters Specified for OTA QPSK

flowgraph. 74

5.24 Differential Decoder Block with Parameters Specified for OTA QPSK

flowgraph. 74

5.25 File Sink Block with Parameters Specified for OTA QPSK flowgraph. . . 75

5.26 GUI blocks used in GNU Radio. 76

5.27 Network Layout with maximum throughput. 78

6.1 PEAC Transmitter. 81

x

6.2 Data Management in the PEAC Transmitter. 82

6.3 Header Design for the PEAC System. 83

6.4 Vector Insert Block and its relevant parameters. 83

6.5 PEAC Space-Time Encoder. 85

6.6 GLFSR Source Block and its relevant parameters. 86

6.7 Bob’s PEAC Receiver. 88

6.8 Received Constellation for Alamouti Coding with QPSK. 89

6.9 FIR Filter Correlator hierarchical block. 91

6.10 An example of the magnitude-squared correlation filter outputs for each

unique word and threshold level. 91

6.11 An example of the complex correlation filter output for one of the unique

words with Rayleigh fading channel gain h = 0.2− 0.3j. 93

6.12 The Channel Estimator block with its properties. 93

6.13 The PEA Decoder block with its properties along with the preprocessing

blocks used to convert the stream to a packet vector. 94

7.1 AN Transmitter. 97

7.2 Bob’s AN Receiver. 99

8.1 Experimental BER curves for Bob (blue) and Eve (red) with no Artificial

Noise added. 103

8.2 Experimental BER curves for Bob (blue) and Eve (red) with Artificial Noise

added with a power ratio of α = 0.5. 103

xi

List of Tables

5.1 Common port types in GNU Radio [8]. 46

5.2 Block types in GNU Radio [8]. 47

5.3 Customization options in GNU Radio. 48

5.4 Sample rates for various host interfaces [9]. 78

8.1 Parameters used during experiment. 101

xii

Chapter 1

Introduction

Confidentiality in modern communication systems is constantly challenged by the broad-

cast nature of the wireless medium. This problem is traditionally solved by encrypting

the message at upper layers of the network stack. As new technology appears, new ap-

plications emerge that present fundamental problems for traditional encryption. One

example is that with the increasing number of power-constrained and computationally-

limited devices being incorporated into Internet-of-Things (IoT) networks, lightweight

security methods have become essential [10].

Physical Layer Security (PLS) is a classification of security methods that take advantage

of physical properties in the waveform or channel to secure communication. PLS, as it

applied to confidentiality, is broken up into two main branches. The first branch deals

with directly obfuscating the transmission from an eavesdropper. These techniques at-

tempt to degrade the reception for eavesdroppers while simultaneously ensuring that the

message is successfully communicated to the intended recipient. This is accomplished by

exploiting the unique properties of the channel shared by the transmitter and intended

receiver. The second branch of PLS focuses on using the unique characteristics of the

channel between the transmitter and intended receiver to generate a private key that can

be used to encrypt communication.

1

Kevin S. Ryland Chapter 1. Introduction 2

Wyner laid the foundation for PLS in 1975 by introducing the concept of information-

theoretic security in the context of a discrete memoryless wiretap channel modeling the

communication of two legitimate parties in the presence of an eavesdropper [1]. Figure

1.1 shows the general case of the Wyner wiretap channel where legitimate users commu-

nicate over a main channel and are observed by an eavesdropper through an additional

wiretap channel.

Figure 1.1: General Case of the Wyner Wiretap Channel [1].

Wyner’s work proved that when the intended receiver operates in a more favorable chan-

nel than the eavesdropper, there is a quantifiable amount of information that can be com-

municated in perfect secrecy. This is the fundamental concept behind the obfuscation

branch of PLS techniques.

The key-generation branch relies on the transmitter and intended receiver mutually mea-

suring a unique property of their shared channel. Common properties include the Re-

ceived Signal Strength Indicator (RSSI), complex channel coefficients, and channel phase

[11]. A practical consideration when measuring these properties on both ends of the chan-

nel is the accuracy of the measurement and the potential correlation of the measurement

with the eavesdropper. In the case of measuring RSSI, the system will round the result to

ensure both the transmitter and receiver are measuring the same value. Additionally, the

designer may want to remove one or more of the most significant figures of the measure-

ment if the eavesdropper is likely to measure the same value.

Kevin S. Ryland Chapter 1. Introduction 3

The adoption of Multiple-Input Multiple-Output (MIMO) communication in 802.11n and

LTE created a resurgence in PLS research over the past decade. MIMO provides more

opportunities for enhancing security at the physical layer such as adaptively steering a

null towards an eavesdropper or simply beamforming in the direction of the intended

receiver. The drawback is that eavesdroppers can now take advantage of multiple anten-

nas in a MIMO Multiple Eavesdropper (MIMOME) channel to reduce the effectiveness of

these techniques [12].

Information-theoretic security is claimed to be a stricter level of security than traditional

encryption methods [11]. The rationale behind this assertion is that cryptographic en-

cryption is built on the assumption that it will be computationally infeasible for an eaves-

dropper to decrypt the ciphertext without the secret key. This assumption is not mathe-

matically rigorous and there are examples of ciphers being broken due to a combination

of flaws in implementation and technological advancements. A recent example is the

generation of a collision for the SHA-1 hashing function [13]. Information theoretic secu-

rity can provide provably perfect security at data rates under the secrecy rate of a wiretap

channel. The catch is that to reliably measure the secrecy rate, the channel to all eaves-

droppers must be known. In the case of a passive eavesdropper, only probabilistic secrecy

measures can be obtained.

Hidden issues with the implementation of cryptographic algorithms can also undermine

security against unsophisticated attacks. A great example of this occurred in Debian’s

OpenSSL in September of 2006 when a software patch restricted the psuedo-random

number generator to being seeded only by the process ID, creating keys with only 32,767

unique values on an individual architecture [14]. Across the 3 possible architectures (i386,

amd64, and ia64), this resulted in only (215 − 1) ∗ 3 = 98301 unique keys. Debian was us-

ing a 1024-bit DSA key at the time, which was believed to take on 21024 values! What’s

even more disturbing is that this vulnerability was not found or reported until May 2008,

almost 2 years later [15]. With the integrity of a cryptographic algorithm buried deep in

the source code of the implementation, new security vulnerabilities are being found every

Kevin S. Ryland Chapter 1. Introduction 4

day. Therefore, it is imperative that more robust security methods are developed just as

quickly.

Cryptographic techniques operate independently from the physical layer, making PLS

an easy option to augment existing security systems. PLS techniques can be practically

applied in conjunction with traditional encryption or to provide lightweight security so-

lutions for massive networks.

This thesis discusses the design of two PLS techniques in GNU Radio to facilitate Over-

the-Air (OTA) experimentation. The first design involves a 2 × 1 Multiple-Input Single-

Output (MISO) system where the transmitter uses Channel State Information (CSI) from

the intended receiver to inject Artificial Noise (AN) into the receiver’s nullspace. The AN

is consequently not seen by the intended receiver, however, it will interfere with eaves-

droppers in an independent channel realization. The second design involves a single-

carrier Alamouti coding system with pseudo-random phase shifts applied to each trans-

mit antenna, referred to as Phase-Enciphered Alamouti Coding (PEAC). The intended

receiver has knowledge of the pseudo-random sequence and can undo these phase shifts

when performing the Alamouti equalization, while an eavesdropper without knowledge

of the sequence will be unable to decode the signal.

Chapter 2

Background

PLS is a diverse research area drawing from concepts in Information Theory and MIMO

communications systems. Furthermore, an understanding of Digital Signal Processing

(DSP) and Software-Defined Radio (SDR) is necessary for implementing PLS techniques.

This section aims to cover the necessary background knowledge in each of these area in

order to successfully understand and design a PLS system.

2.1 Information-Theoretic Security

2.1.1 Shannon Channel Capacity

Channel Capacity in Terms of Error Correction Coding

Communication channels can be characterized by a set of transition probabilities. As an

example, consider the Binary Symmetric Channel (BSC) in Figure 2.1. For an input of 0,

the probability of a bit flip is f and the probability of a successful transmission is 1 − f .

The same transition probabilities hold true for an input of 1, this is why it is called a

symmetric channel. Over a large number of bits, the Bit Error Rate (BER) of a BSC is

5

Kevin S. Ryland Chapter 2. Background 6

approximately f .

Figure 2.1: The Binary Symmetric Channel with flip probability f.

The flip probability of the BSC is tied to some physical aspect of the channel which often

cannot be modified enough to reduce the BER to an acceptable level. For example, if a

hard disk drive is modeled as a BSC, then the flip probability is a function of the physical

components such as the connectors, platter, and reader. It is not realistic to rely solely

on improving these components in order to reach a target BER. Therefore, the system

must be designed to accept errors by detecting and correcting them. This is accomplished

through error correction coding.

Consider the coding system below in Figure 2.2.

Kevin S. Ryland Chapter 2. Background 7

Figure 2.2: Error correction coding system [2].

First, the source bits are run through an encoder at the transmitter. The encoder attempts

to protect against potential errors by adding redundancy to the source bits. Next, the

encoded bits are sent through a noisy channel and experience some errors before being

received. The receiver then decodes the bits, removing the redundancy added at the

encoder while correcting for errors. The output of the decoder is an estimate of the source

bits.

The amount of redundancy added by a particular coding scheme is characterized by the

coding rate, R = K/N , where K is the number of source bits in the code and N is the total

code length. The coding rate is a measure of the spectral efficiency of a code, indicating

the amount of redundancy the code adds to the transmitted information.

Each coding scheme can be characterized by its coding rate and the BER that the scheme

achieves in a particular channel. For a BSC with a flip probability of f = 0.1, the rate-BER

pairs for several coding schemes are shown in Figure 2.3 [2].

Kevin S. Ryland Chapter 2. Background 8

Figure 2.3: BER vs. Code Rate Graph of popular error-correction codes [2].

As illustrated in Figure 2.3, the general trend observed for error correction codes is that

as the BER achieved by a code decreases, the coding rate approaches 0. This is why it was

traditionally thought that to achieve an infinity small BER, the coding rate must be 0.

Shannon demonstrated that there can be a non-zero upper-limit to the rate of the channel,

under which an arbitrarily small BER can be achieved. This upper-bound is termed the

channel capacity or Shannon capacity of a channel. The channel capacity is illustrated

in Figure 2.3 as a point on the x-axis which defines a boundary between the achievable

and non-achievable regions in the BER-Code Rate space. The idea that an infinitely small

BER can be achieved for some non-zero (and in this example, significantly large) coding

rate is non-intuitive from the results. The trade-off here is that while the code rate can be

kept at some non-zero value below or equal to the channel capacity, the code length must

increase to achieve lower BERs for a given code. This results in codes that are impractical

Kevin S. Ryland Chapter 2. Background 9

because of large block size and the resulting latency that is introduced.

Channel Capacity in Terms of Information Measures

The Shannon information content of an outcome, x, with probability, p, is

h(p) = log2

(
1

p

)
.

An ensemble, X is defined as X ∈ {x,AX , PX} where x is a set of outcomes, AX is the

set of possible values the outcomes can take on, and PX is a set of the corresponding

probabilities of each value in AX .

The Entropy of the ensemble, X , is

H(X) =
∑
x∈AX

P (x)h(x).

Joint, conditional, and marginal entropies can be related through the entropy chain rule

which is depicted in Figure 2.4.

Figure 2.4: Entropy Chain Rule, derived from [2].

The entropy chain rule relations introduce a new information measure, the mutual infor-

mation I(X;Y) = I(Y ;X), defined as

I(X;Y) = H(X)−H(X|Y)

Kevin S. Ryland Chapter 2. Background 10

I(Y ;X) = H(Y)−H(Y |X).

The mutual information is a measure of the information Y conveys about X or vice versa,

although the former definition will be used more often in a communications context.

The channel capacity is defined as the maximum mutual information obtained by opti-

mizing the input distribution to the channel

C = Imax(Px)(X;Y).

2.1.2 Wyner Wiretap Channel

Special Case

In 1975, Aaron Wyner introduced the wiretap channel which models the communication

of two legitimate communicants in the presence of an eavesdropper. Figure 2.5 shows

a special case of this wiretap channel where the legitimate parties communicate over

a noiseless channel and are observed by an eavesdropper through a Binary Symmetric

Channel [1]. The encoder operates on blocks of K source bits SK = (S1, S2, ..., SK) and

produces an encoded sequence XN = (X1, X2, ..., XN) of length N.

Figure 2.5: Special Case of the Wyner Wiretap Channel.

There are three design metrics in Wyner’s wiretap channel - transmission rate, error prob-

Kevin S. Ryland Chapter 2. Background 11

ability, and equivocation rate. The transmission rate of the channel is defined by the ratio

of the information bits sent to the total code length

R = K/N.

The error probability is defined as

Pe =
1

K

K∑
k=1

[Sk 6= Ŝk].

The eavesdropper observes the encoded sequence XN through a discrete memoryless

BSC termed the wiretap channel which has a flip probability f as depicted in Figure 2.1.

The output of the wiretap channel ZN = (Z1, Z2, ..., ZN) is observed by the eavesdropper.

The equivocation rate

∆ =
1

K
H(SK |ZN)

is a measure of the confusion experienced by the eavesdropper.

As indicated by Figure 2.5, this channel is designed to have a high transmission rate, a

high equivocation rate, and a low error probability.

Wyner illustrates the relationship between transmission rate and equivocation by exam-

ining two examples of the special case wiretap channel.

(Example 1) Let K = N = 1 and X1 ≡ S1

This results in Pe = 0, R = K/N = 1, and ∆ = h2(f) where

h2(λ) = λ log2(
1

λ
) + (1− λ) log2(

1

1− λ
)

is the binary entropy function.

Kevin S. Ryland Chapter 2. Background 12

(Example 2) Let K = 1, N is arbitrary,

Ci =

{0, 1}Nwith even parity if i = 0

{0, 1}Nwith odd parity if i = 1

and XN chooses a random sequence from Ci for S1 = i.

For z ∈ {0, 1}N with even parity,

P (S1 = 0|ZN = z) = P (even number of errors in BSC)

P (S1 = 0|ZN = z) =
N∑

j=0,even

f j(1− f)N−j =
1

2
+

1

2
(1− 2f)N

For z ∈ {0, 1}N with odd parity,

P (S1 = 0|ZN = z) = P (odd number of errors in BSC)

P (S1 = 0|ZN = z) =
N∑

j=0,odd

f j(1− f)N−j =
1

2
− 1

2
(1− 2f)N

For all z ∈ {0, 1}N ,

H(S1|ZN = z) = ∆ = h2(
1

2
− 1

2
(1− 2f)N)

Notice that as N → ∞, ∆ → 1 = H(S1). Therefore, as N → ∞, the communication is

accomplished in perfect secrecy, but the transmission rate R = 1
N
→ 0.

General Case

In the general case of the Wyner wiretap channel shown in Figure 2.6, the main and wire-

tap channels are discrete, memoryless, and characterized by their transition probabilities,

QM and QW , respectively. The probability of bit error and equivocation measures for the

general wiretap channel remain unchanged from the special case. The source, SK , is now

Kevin S. Ryland Chapter 2. Background 13

defined as a sequence of independent and identically distributed (IID) random variables

that can take on values from an arbitrary alphabet, S. As a results, the transmission rate

now incorporates the source entropy, HS ,

R =
KHs

N
.

The error probability and equivocation are measured identically to the special case.

Figure 2.6: General Case of the Wyner Wiretap Channel [1].

Secrecy Capacity Region

Consider the transmission-equivocation rate pair, (R, d). For the first coding example

pertaining to the special case wiretap channel, the pair (1, h2(f)) is achieved. In the second

example coding scheme, the pair (0, HS) is achieved. This is analogous to the coding rate

- BER pairs that make up Shannon’s Channel Capacity region in Figure 2.3. Each coding

scheme achieves a particular pair in a given channel which can be compared in terms

of error performance vs. spectral efficiency. Wyner now compares the pairs in terms of

achieved secrecy vs. spectral efficiency.

Wyner characterizes a region of achievable rate-equivocation pairs R shown in Figure 2.7.

Kevin S. Ryland Chapter 2. Background 14

Figure 2.7: Region of achievable Wyner wiretap codes (A,B,C, and D) [1].

The region of achievable pairs, R̄, shown in Figure 2.7 is defined by

R̄ = {(R, d) : 0 ≤ R ≤ CM , 0 ≤ a ≤ HS, Rd ≤ HSΓ(R)}

The function Γ(R) is used to rigorously define the maximum difference in mutual infor-

mation that is possible by optimizing the input distribution

Γ(R) = sup
p∈P

(I(X;Y)− I(X;Z)).

Kevin S. Ryland Chapter 2. Background 15

In security, it is common nomenclature to refer to the transmitter as Alice, the intended

receiver as Bob, and the eavesdropper as Eve. For the remainder of the thesis, this is how

each of these participants will be named.

2.1.3 Example Wiretap Code

In this section, an example wiretap code is explored to give the reader a better under-

standing of information-theoretic security concepts.

Consider the scenario where Bob has a SNR high enough to successfully demodulate 16-

QAM while Eve’s SNR is limited (through mechanisms discussed later on) such that she

can only demodulate QPSK. Bob’s received constellation, depicting a potential wiretap

coding scheme for this scenario, is shown in Figure 2.8.

Figure 2.8: Example wiretap code applied to a 16-QAM modulated signal.

The bit mapping for each symbol contains red "protected bits" and black "unprotected

bits." The assertion is that due to the capacity difference present in this scenario, Bob can

Kevin S. Ryland Chapter 2. Background 16

obscure the protected bits from Eve using this wiretap code. Next, consider Eve’s Error

Vector Magnitude (EVM) in comparison to Bob’s in Figures 2.9 and 2.10.

Figure 2.9: Comparison of Bob’s and Eve’s EVMs.

Figure 2.10: Possible overlap scenarios between Bob and Eve’s EVMs.

Eve’s EVM is chosen to be as large as possible while still being able to demodulate QPSK

with no errors. Figure 2.9 shows that Eve’s EVM fits exactly in a single quadrant to sat-

Kevin S. Ryland Chapter 2. Background 17

isfy this requirement. Figure 2.10 compares Bob’s and Eve’s EVMs in three unique cases

where both EVMs are centered on different received symbols: a corner symbol (blue),

a central symbol (purple), and an edge symbol (green). Figure 2.11 examines the case

involving the central symbol.

Figure 2.11: Analysis of Eve’s confusion when decoding the LSB of a central symbol.

A bit is considered completely obscured if the areas that it can be present as either a 0 or

1 within Eve’s EVM are equal. In other words, Eve should have a perfectly ambiguous

choice between a 0 or 1 for the bit. An assumption that must be made for this analysis

is that Eve’s EVM is the entire quadrant, rather than a circle that spans the quadrant as

Kevin S. Ryland Chapter 2. Background 18

pictured in Figure 2.9.

Figure 2.11 shows that the areas where the protected bits are decoded as a 0 and 1 are

both equal within Eve’s square EVM. This can be similarly demonstrated for the second

to least significant bit. Additionally, this property will also hold for the remaining two

cases.

This example emphasizes the utility of wiretap coding. Wiretap codes allows the system

to focus the secrecy provided by a capacity gap into protection of particular data. It is

important to distinguish that wiretap codes discipline the secrecy provided by physics,

they do not produce security on their own.

2.2 Multiple-Input Multiple-Output Communications

Multiple-Input Multiple Output (MIMO) communications has become an extremely pop-

ular and well-researched field in the past 20 years. This is a result of the performance

benefits provided by MIMO systems which can be categorized as array gain, diversity

gain, multiplexing gain, and interference reduction [16]. Array gain is produced by co-

herently combining signals with channel knowledge. Diversity gain characterizes the

increased resilience to fading due to having multiple receive elements with independent

channel realizations. Multiplexing gain is the increase in capacity that comes from simul-

taneously transmitting multiple data streams and separating them based on the spatial

characteristics of the communicating array elements. Interference reduction describes the

ability of MIMO systems to minimize interference from co-channel users in communica-

tion infrastructures that rely on frequency reuse such as cellular systems. While not all of

these benefits may be exploited simultaneously, they are individually valuable enough to

inspire adoption in many modern wireless standards.

The focus of this thesis is not on any of the traditional capacity benefits that MIMO pro-

vides, but rather on how MIMO systems impact security. Since the secrecy capacity is

Kevin S. Ryland Chapter 2. Background 19

directly proportional to the difference in capacities of the main and wiretap channels, the

security benefits are still fundamentally tied to capacity benefits.

The channel model of a received signal in a single-user, flat-faded, MIMO channel model

is

y = Hx + n

where y is the MR × 1 received signal vector, x is the MT × 1 transmitted signal vector, n

is the MR × 1 noise vector, and H is the MR ×MT channel matrix. A channel is said to be

flat-faded when the fading effects of the channel on the transmitted signal are indepen-

dent of frequency. This assumption is valid only when the transmitted signal is within the

coherence bandwidth of the channel. The coherence bandwidth is an intrinsic property

of the channel, determined by how it delays reflected components of the transmitted sig-

nal. In contrast, if the fading effects of the channel were frequency-dependent, then each

element of H would be equivalent to a Finite-Impulse Response (FIR) filter. Flat-fading is

an important simplifying assumption which will be used throughout this thesis.

The received signal model can be further simplified using the Singular Value Decom-

position (SVD) to decompose the channel matrix H into parallel, non-interfering, SISO

channels. The SVD of H is written as

H = UΣVH

where U is aMR×MR unitary matrix, V is aMT ×MT unitary matrix, and Σ is aMR×MT

diagonal matrix. The RH = min(MT ,MR) diagonal entries of Σ are called the singular

Kevin S. Ryland Chapter 2. Background 20

values of H and are assumed to be in descending order such that σ1 ≥ σ2 ≥ . . . σRH
.

Σ =

σ1 0 0 0 0

0 σ2 0 0 0

0 0
. . . 0 0

0 0 0 σRH
0

MIMO Systems separate the channels by precoding the input signal x = Vs and post-

multiplying the output y = UHr as illustrated in Figure 2.12.

Figure 2.12: MIMO Channel Decomposition with SVD [3].

The decomposition can be further illustrated through the simplification of the output

signal vector y as follows.

y = UHr = UH(Hx + n)

= UH(H(Vs) + n) = UH(UΣVH(Vs) + n)

= Σs + UHn = Σs + ñ

2.3 Software-Defined Radio

The ideal Software Radio (SR) is described in [17] as a communication system that im-

plements all communication functions from antenna to speaker in software with Digital

Kevin S. Ryland Chapter 2. Background 21

Signal Processing (DSP). In this ideal system, parameters such as bandwidth, modulation,

and frequency can be reconfigured by loading new software.

There are certain aspects of the transceiver which cannot be practically implemented in

software such as analog filters for anti-aliasing, power amplifiers, Analog to Digital con-

verters and Digital to Analog converters. These hardware components impose limitations

on the bandwidth and frequency range achievable by the radio. Radios that use software

to define a portion of the waveform are termed Software-Defined Radios (SDRs) [18].

SDRs possess much more flexibility than traditional radios which can be leveraged for a

variety of applications.

Cognitive Radio (CR) is a one example of leveraging the flexibility of SDRs. CRs use in-

put from their environment to alter the behavior of the radio accordingly. One use-case

of a CR is to dynamically access spectrum as a secondary user while minimizing interfer-

ence with the primary user of the channel. The radio performs spectrum sensing prior to

transmission in order to ensure that the primary user is not occupying the channel.

An Universal Software Radio Peripheral (USRP) is a family of SDRs manufactured by

Ettus Research which will be used extensively through this thesis. Key features of the

USRP compared to other commercial SDRs are that the devices are relatively inexpensive

and are Open-Source Hardware. USRPs have been largely adopted by open-source radio

software like GNU Radio which makes it a useful tool for sharing research and promoting

the replication of experimental results.

Chapter 3

Physical Layer Security

Physical Layer Security (PLS) is a classification of security methods that take advantage

of physical properties in the waveform or channel to secure communication. Over the

past decade, advancements in Multiple-Input Multiple-Output (MIMO) systems have ex-

panded the potential capabilities of PLS, meanwhile the development of technologies

such as the IoT has provided new applications. While PLS has been heavily researched,

literature that includes implementation is still developing. [19] analyzes the implemen-

tation of a phased-array beamformer masked with the Direction Modulation (DM) tech-

nique and [20] expands on this implementation with the development of a DM-enabled

Digital Video Broadcast transmitter. [21] characterizes the performance of the Out-Phase

Array Linearized Signaling technique developed in [22]. [23] describes the implementa-

tion of a system that performs secret key generation using shared channel characteristics

tested on both Long-Term Evolution (LTE) and WiFi signals. The design work covered in

this thesis attempts to add to this area of developing research by creating an open-source

implementation of two PLS techniques that can be used directly with common SDR front-

end devices to enable easy OTA experimentation and adaptation into new waveforms.

The focus of the last decade’s MIMO PLS research has centered around the areas of secure

multiantenna techniques and key generation. This chapter highlights the major advance-

22

Kevin S. Ryland Chapter 3. Physical Layer Security 23

ments made in area of secure multiantenna techniques and covers the metrics used to

evaluate PLS techniques in the literature.

3.1 Secure Multiantenna Techniques

PLS can be achieved through effective precoding at the transmitter. The examined tech-

niques create a secrecy rate by attempting to degrade Eve’s channel relative to Bob’s.

Four techniques that are representative of this area are Beamforming, Zero-Forcing (ZF),

Convex Optimization (CVX), and Artificial Noise (AN). Figure 3.1, found in [4], describes

each technique in terms of the transmission’s orthogonality to Bob and Eve.

Figure 3.1: Secure Multiantenna Techniques [4].

Beamforming is analyzed in the context of PLS as providing the best possible channel

to Bob while indiscriminately allowing leakage to Eve. While Bob’s capacity will be the

highest for this technique, it does not necessarily provide the largest capacity difference

between Bob and Eve.

ZF is precoding that places all transmissions completely orthogonal to Eve, thus forcing

her capacity to zero. While Eve’s capacity is the lowest with this technique, it does not

account for how little information is received by Bob as a result. Therefore, the capacity

difference between Bob and Eve isn’t maximized in this case either.

CVX is the only technique that achieves secrecy capacity by maximizing the capacity dif-

Kevin S. Ryland Chapter 3. Physical Layer Security 24

ference between Bob and Eve. This is done by optimizing between beamforming towards

Bob and ZF towards Eve. CVX is more computationally expensive than Beamforming or

ZF.

While ZF and CVX provide secrecy benefits, they both rely on knowledge of Eve’s chan-

nel in order to work. In the case of a passive eavesdropper where Eve’s channel is not

available, the AN technique can provide more secrecy than beamforming by injecting

noise orthogonal to Bob on top of a beamformed information signal.

3.1.1 Generalized Singular Value Decomposition Beamforming

Generalized Singular Value Decomposition (GSVD) Beamforming takes advantage of

Bob’s and Eve’s CSI to align the source information to the nullspace of Eve while op-

timally directing the transmission in Bob’s subspace. The precoding applied is x = vs

where the elements of s are complex Gaussian distributed RVs and v corresponds to the

largest generalized eigenmode of (I + PhH
b hb, I + PHH

e He), but this will be sub-optimal

across all values of Signal-to-Noise Ratio (SNR) [24]. In the high SNR regime, the optimal

beamforming approach is to direct the message to Bob while being constrained to remain

in the nullspace of Eve. For low SNR, directing the message towards Bob without regard

for Eve’s nullspace is optimal. With only statistical CSI at Eve, a SVD scheme is proposed

in [24] that can be adjusted close to Eve’s nullspace and in Bob’s subspace.

[12] presents a GSVD precoding scheme for MIMO that focuses on separating the spatial

channels of the transmission into two different subspaces, S1 and S2. S1 is designed to be

only seen by Bob while S2 can be seen by both Bob and Eve. The majority of the trans-

mit power is transmitted into S1, and the power that is distributed to each subspace is

split uniformly across the dimensions of that subspace [25]. At high SNR, this precoding

achieves the secrecy capacity of the channel. At low SNR, this scheme does not achieve

capacity. [26] describes another GSVD precoding scheme where the only spatial direc-

Kevin S. Ryland Chapter 3. Physical Layer Security 25

tions that are used are the ones where Bob sees a stronger signal than Eve. This scheme

performs better than the subspace separation method at lower SNR.

3.1.2 Zero Forcing

[27] developed a Zero Forcing (ZF) precoding scheme that separates messages into dif-

ferent beamforming directions which are repeated at several antennas. The ZF precoding

matrix Fz cancels out the gain of the wiretap channel and is designed such that there is

no interference between antennas. The received signals of Bob and Eve are modeled as

yb

ye

 =

Hb

He

Fzx

Where the security constraint is HeFZ = 0 and the reliability constraint is F−1Z

Hb

He

FZ = I.

This scheme requires Alice to have more antennas than Eve. ZF will provide a larger

secrecy rate than GSVD when the number of antennas at Alice, Bob and Eve satisfy Nb +

Ne ≤ Na.

This scheme is of particular interest, because it introduces the idea of using Mean Squared

Error (MSE) as a metric for secrecy instead of equivocation. MSE will not guarantee per-

fect information theoretic security, rather it only provides a finite level of confusion for

the eavesdropper. This is framed in the context of applications that require a minimum

MSE to function. An example given is a secure video broadcasting service where the

video provider wishes to provide subscribed users a high quality video while limiting

unsubscribed users to degraded video.

Another way to look at this scheme is that filters are designed at Alice and Bob such that

the MSE of Bob is kept above a threshold (the reliability constraint) while keeping the

Kevin S. Ryland Chapter 3. Physical Layer Security 26

MSE of Eve below a target value (the secrecy constraint).

The authors of [27] claim that their analysis addresses PLS is "from the estimation-theoretic

point of view, rather than the information-theoretic viewpoint."

3.1.3 CVX

CVX is a convex optimization solver that can be used with ZF and AN schemes to precode

with minimal CSI. Methods in the literature use an exhaustive search to find an optimal

transmit covariance matrix that can maximize the secrecy rate of the scheme. CVX solvers

are written in MATLAB, allowing constraints and objectives to be incorporated into MAT-

LAB models.

3.1.4 Artificial Noise Generation

[28] proposed an Artificial Noise (AN) Generation scheme where Alice divides her power

between transmitting a message to Bob in his subspace and transmitting Gaussian noise

into Bob’s nullspace. Assuming Bob’s and Eve’s channels are independently faded, Eve

will see some of the AN in her subspace. This technique’s major strength is that the

secrecy provided scales well with SNR since an increase in SNR at Eve will increase the

received AN power as well as the message power. Another interesting property of this

scheme is that the communication’s secrecy does not depend on the secrecy of Bob’s CSI

[28]. This means that Bob can transmit his CSI gains directly to Alice without fear of them

being intercepted by Eve.

The AN technique is a focus of the implementation work in this thesis and will be ex-

panded on in chapter 4.

Kevin S. Ryland Chapter 3. Physical Layer Security 27

3.2 Metrics for Comparing PLS Techniques

There are a vast array of different strategies for achieving confidentiality at the physical

layer. Each technique requires certain assumptions to be made about the communication

system’s resources and knowledge. To understand how these techniques compare to each

other, it is useful to define the assumptions that can be made about the system as well as

the different metrics used to evaluate the system’s security.

3.2.1 Channel State Information

CSI is one of the most fundamental assumptions made in PLS. CSI refers to each commu-

nicant’s knowledge of their own channel, and the channels between other users. Figure

3.2 depicts a typical MIMOME channel where the channel matrices H and G contains the

gains for the Alice-Bob and Alice-Eve channels, respectively.

Figure 3.2: MIMOME Channel with Alice-Bob Channel H and Alice-Eve Channel G.

Bob and Eve can learn their respective channels through a number of channel estima-

Kevin S. Ryland Chapter 3. Physical Layer Security 28

tion techniques. Channel estimation is relatively easy to accomplish through data-aided

schemes involving unique words or through dedicated sub-carriers in the case of Orthog-

onal Frequency Domain Multiplexing (OFDM).

Things start to become more complicated when Alice needs to know her channel to Bob.

Bob can either sound the channel for Alice or directly send Alice the channel gains. From

a security standpoint, if Bob’s channel gains are sent OTA to Alice, Eve is assumed to

intercept them and therefore know both channels.

By performing her own channel estimate, Alice can prevent Eve from knowing Bob’s

channel. This is beneficial from a security perspective, but comes at a few costs. First,

we must assume reciprocity between the transmitter and receiver in order to apply this

method. Channel reciprocity can’t be assumed in all cases, such as Frequency-Division

Duplex (FDD) systems where the uplink and downlink are on different frequencies. The

RF chains of Alice and Bob are also not generally assumed to be reciprocal and must

be calibrated to assume reciprocity [29]. Second, performing another channel estimation

at Alice increases her complexity. Lastly, a second round of estimation error is incurred

when Alice estimates the channel gains independently from Bob. Therefore, unless the

secrecy of Bob’s CSI is necessary for the secrecy of communication, it is usually preferable

for Bob to send his CSI explicitly to Alice.

CSI at the Transmitter (CSIT) and CSI at the Receiver (CSIR) can be categorized as: full

instantaneous CSI, deterministic imperfect CSI, indeterministic imperfect CSI, or statisti-

cal CSI [5]. A realistic assumption in the case of a passive eavesdropper would be that

Alice has deterministic imperfect CSI for Bob, and statistical CSI for Eve. Many of the

precoding techniques that were discussed assume full or imperfect knowledge of Eve’s

CSI which is unrealistic in the case of a passive eavesdropper.

Kevin S. Ryland Chapter 3. Physical Layer Security 29

3.2.2 Secrecy Measures

To compare PLS techniques, [4] uses two metrics: secret channel capacity and compu-

tational complexity. Secret channel capacity, commonly referred to as secrecy capacity,

is a measure of the Low Probability of Intercept (LPI) characteristics of a technique that

provide information-theoretic security.

The One-Time Pad (OTP) is a theoretically unbreakable encryption technique first de-

scribed by Frank Miller in 1882 to secure telegraph communications [30].

Plaintext is XORed with a completely random (non-repeating) OTP which serves as a

key and is communicated in a completely secure manner. Shannon later proved that the

OTP was information-theoretic secure. This means that given the cipher text, a reader

could not learn anything about the plain text except the maximum possible length [31].

Regardless of the computational power of an adversary, the OTP could not be broken.

Wyner showed that for discrete memoryless channels where the eavesdropper’s channel

is degraded, information-theoretic secure communication could take place at rates below

the secrecy capacity of the channel defined as the difference in the capacity of the intended

receiver and the eavesdropper [1].

Cs = CB − CE

Leung later generalized this result to Gaussian channels [32].

Generally, an eavesdropper of encrypted communications requires a secret key to success-

fully receive the transmitted message. When this is the case, the amount of possibilities

for the secret key will be directly proportional to the security of the encryption. This is

when the eavesdropper’s only option is to perform an exhaustive search over all possible

keys. This metric is applicable to a few PLS schemes that rely on sequences or codebooks

for security.

Kevin S. Ryland Chapter 3. Physical Layer Security 30

[5] produced Figure 3.3 to illustrate how the availability of CSI affects the performance

metrics available to measure security in PLS.

Figure 3.3: Performance Metrics in Physical Layer Security[5].

Note that these CSI assumptions are required at both the intended receiver and the eaves-

dropper. For a passive eavesdropper, Alice will know at most the statistical CSI, therefore,

secrecy rate and secrecy capacity will not be achievable metrics.

Chapter 4

Theory and Simulation Work

This chapter introduces the two PLS techniques implemented in this thesis, AN and

PEAC, are introduced.

To verify and further understand the behavior of the PEAC and AN systems, simulations

of both techniques are conducted in MATLAB.

4.1 Artificial Noise Generation

4.1.1 System Model

[28] proposes an AN precoding scheme where Alice divides her power between transmit-

ting a message to Bob and transmitting Gaussian noise into Bob’s nullspace. Assuming

Bob’s and Eve’s channels are independently faded, Eve will see some of the AN in her

rangespace. This technique’s major strength is that the secrecy provided scales well with

SNR since an increase in SNR at Eve will increase the received AN power along with the

message power.

To construct the AN, Alice must know Bob’s CSI. For a Rayleigh channel with flat fading,

31

Kevin S. Ryland Chapter 3. Theory and Simulation Work 32

Bob only needs to either sound the channel or relay his channel coefficients to Alice faster

than the coherence time of the channel. Another interesting property of this scheme is

that the communication’s secrecy does not depend on the secrecy of Bob’s CSI [28]. This

means that Bob can transmit his CSI directly to Alice without fear of it being intercepted

by Eve.

Alice transmits

xk = sk + wk

where xk and wk are complex Gaussian vectors and wk is chosen to lie in the nullspace of

hk by satisfying

Hkwk = 0.

The AN term, wk, is generated from

wk = Zkvk

where Zk is a unitary matrix that is the orthonormal basis for the nullspace of Hk. Since

Eve may be in a channel realization that aligns her nullspace with Bob’s, the best strategy

is to make each element of vk a Gaussian distributed random variable. By doing this,

the AN is generated randomly from the available orthonormal basis vectors for Bob’s

nullspace. The number of possible basis vectors for Bob’s nullspace, Nnull, is limited by

the difference in the array sizes of Alice and Bob

Nnull = NAlice −NBob for NAlice ≥ NBob.

The signal received by Bob is

zk = Hkxk + nk

zk = Hk(sk + wk) + nk

zk = Hksk + nk.

Kevin S. Ryland Chapter 3. Theory and Simulation Work 33

The signal received by Eve is

yk = Gkxk + ek

yk = Gk(sk + wk) + ek

yk = Gksk + Gkwk + ek

where the Gkwk represents the additional noise seen by Eve.

Figure 4.1 displays an example of a wiretap code being applied to the AN scheme. To

encode data with the wiretap code, one of four possible constellation points (one in each

quadrant) are chosen for each of the four symbols. This scenario is the same wiretap code

introduced in section 2.1.3, where Bob can only see the source information and has a SNR

large enough to demodulate 16-QAM. Eve sees AN along with the source information

and only has a SNR large enough to demodulate QPSK. When Eve receives a transmitted

symbol, she can only tell which quadrant it is in and since all of the source symbols can

map to points in every quadrant, it is completely ambiguous to Eve which symbol was

sent. The wiretap coding adds redundancy by mapping a single symbol to four possible

constellation points and therefore the effective transmission rate is reduced by half which

agrees with the theoretical calculation of the secrecy rate

RS = RB −RE

RS = 4 bits/sym− 2 bits/sym = 2 bits/sym.

It is important to emphasize that this scenario will only exist when Eve’s receiver is in an

edge case where it can do absolutely no better than QPSK.

Kevin S. Ryland Chapter 3. Theory and Simulation Work 34

Bob

⋮
𝑛𝑏

1

2

Eve

⋮
𝑛𝑒

1

2

Bob’s SNR is Large Enough to Demodulate 16-QAM

Eve’s SNR is Just Large Enough to Demodulate QPSK

𝑅𝑏 = 4 𝑏𝑖𝑡s/sym

𝑅𝑒 = 2 𝑏𝑖𝑡s/sym

Secrecy Rate 𝑹𝒔 = 𝑹𝒃 − 𝑹𝒆 = 𝟐 𝒃𝒊𝒕s/sym

Im

Re

Alice

⋮
𝑛𝑎

1

2

Artificial Noise

Pattern

Information

Pattern

Null Space

Figure 4.1: An example wiretap coding scheme applied to the Artificial Noise technique.

4.1.2 AN Simulations

Simulation Description

The AN technique is simulated in Matlab as a masked beamformer described in [24]

where Alice has 2 antennas while Bob and Eve both have a single antenna. Alice uses

the transmit beamforming technique shown in Figure 4.2.

The transmitter sends signals

x =

x1
x2

 =

β1s
β2s

 .
The received signal is

r = hx + n

r = h1x1 + h2x2 + n

Kevin S. Ryland Chapter 3. Theory and Simulation Work 35

Figure 4.2: 2× 1 Transmit Beamformer.

r = h1β1s+ h2β2s+ n.

Beamforming weights are chosen to be normalized phase shifts

βk =
h∗k
|hk|

, for k = 1, ...,Mt

where Mt is the number of transmit antennas [33]. The received signal becomes

r =
h1h

∗
1s

|h1|
+
h2h

∗
2s

|h2|
+ n = (|h1|+ |h2|)s+ n.

Additionally, the simulation uses QPSK modulation and a Rayleigh flat-faded channel.

The power tradeoff between the information signal and AN signal is parameterized with

α, the ratio of AN amplitude to total amplitude. The transmitted symbol, x, with total

power P is
√
Pxk =

√
(1− α)Ps+

√
αPw.

The AN simulation has a unity transmit power constraint and the resulting transmit sig-

nal is

xk =
√

1− αs+
√
αw.

Kevin S. Ryland Chapter 3. Theory and Simulation Work 36

Simulation Results

Figure 4.3 shows the simulation results for the case where there is no AN added. For

comparison, the theoretical BER curves for a 1 × 2 Single-Input Multiple-Output (SIMO)

system using Maximal Ratio Combining (MRC) and a 1 × 1 Single-Input Single-Output

(SISO) system in a Rayleigh channel are also plotted along side the simulation results.

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Eb/No, dB

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

BER for QPSK with Artificial Noise (α = 0.00) and Transmit Beamforming in a Rayleigh Channel

theory SIMO (nTx=1, nRx=2, MRC)
theory SISO (nTx=1, nRx=1, Rayleigh)
sim Bob (nTx=2, nRx=1, TX BF with AN)
sim Eve (nTx=2, nRx=1, TX BF with AN)

Figure 4.3: Simulated BER curves for Bob and Eve with TX Beamforming and no AN
added.

Bob’s BER curve in Figure 4.3 agrees with the theoretical performance of the MRC algo-

rithm. The MRC algorithm will slightly outperform TX beamforming because the noise

scaling provided by the two algorithms slightly favors MRC. Eve’s BER curve is experi-

encing the same performance as a SISO system in a Rayleigh channel because Eve will

not receive the diversity gain that Bob gets from Alice’s TX beamforming.

Kevin S. Ryland Chapter 3. Theory and Simulation Work 37

Figures 4.4, 4.5, and 4.6 show the simulation results of the AN system with a power ratios

of α = 0.25, α = 0.50, and α = 0.75, respectively.

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Eb/No, dB

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

BER for QPSK with Artificial Noise (α = 0.25) and Transmit Beamforming in a Rayleigh Channel

theory SIMO (nTx=1, nRx=2, MRC)
theory SISO (nTx=1, nRx=1, Rayleigh)
sim Bob (nTx=2, nRx=1, TX BF with AN)
sim Eve (nTx=2, nRx=1, TX BF with AN)

Figure 4.4: Simulated BER curves for Bob and Eve with TX Beamforming and AN added
with a power ratio of α = 0.25.

Figure 4.4 shows the effects of devoting a quarter of the total transmission power to AN.

Eve’s BER is drastically increased at higher SNRs and even appears to be asymptotically

approaching a limit in the high SNR regime. This limit makes sense conceptually since an

increase in Eve’s received SNR will increase the SNR of the AN along with the informa-

tion. For low SNR, there will be a decrease in BER from 0.5 until the SNR of information

signal reaches the Signal-to-Interference Ratio (SIR) caused by the AN, which forms the

high SNR regime limit. Therefore, Eve’s system can outperform Bob’s in terms of received

SNR and still benefit very little or not at all from it! In comparison to Bob’s BER curve

from Figure 4.3, the performance gain of Bob’s curve in 4.4 has diminished. This is due to

Kevin S. Ryland Chapter 3. Theory and Simulation Work 38

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Eb/No, dB

10-5

10-4

10-3

10-2

10-1

100
B

it
E

rr
or

 R
at

e
BER for QPSK with Artificial Noise (α = 0.50) and Transmit Beamforming in a Rayleigh Channel

theory SIMO (nTx=1, nRx=2, MRC)
theory SISO (nTx=1, nRx=1, Rayleigh)
sim Bob (nTx=2, nRx=1, TX BF with AN)
sim Eve (nTx=2, nRx=1, TX BF with AN)

Figure 4.5: Simulated BER curves for Bob and Eve with TX Beamforming and AN added
with a power ratio of α = 0.50.

the fact that 25% of the transmit power that was originally going towards the information

signal is now being used for the AN signal.

These trends can be further illustrated by examining Figures 4.5 and 4.6. As the power go-

ing towards the AN (α) increases, Eve’s BER asymptote increases and Bob’s performance

gain decreases. The optimal amount of AN power used will depend on the BER of both

Bob and Eve in a given scenario, but will tend to be around α = 0.5 for high SNR cases

[28].

Kevin S. Ryland Chapter 3. Theory and Simulation Work 39

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Eb/No, dB

10-5

10-4

10-3

10-2

10-1

100
B

it
E

rr
or

 R
at

e
BER for QPSK with Artificial Noise (α = 0.75) and Transmit Beamforming in a Rayleigh Channel

theory SIMO (nTx=1, nRx=2, MRC)
theory SISO (nTx=1, nRx=1, Rayleigh)
sim Bob (nTx=2, nRx=1, TX BF with AN)
sim Eve (nTx=2, nRx=1, TX BF with AN)

Figure 4.6: Simulated BER curves for Bob and Eve with TX Beamforming and AN added
with a power ratio of α = 0.75.

4.2 Phase-Enciphered Alamouti Coding

4.2.1 System Model

Alamouti Space-Time Block Code

In [34], Alamouti proposed a Space-Time Block Code (STBC) to achieve transmitter diver-

sity. Prior to this, diversity techniques were only applied at the receiver using algorithms

such as MRC. These techniques required multiple receiver antennas and were often im-

practical to implement on mobile handsets in cellular networks, since doing so would

require extra RF chains for every phone on the network. As a result, diversity techniques

were only used at base stations to improve their reception quality. Alamouti showed that

Kevin S. Ryland Chapter 3. Theory and Simulation Work 40

it was possible to achieve the same advantages, or diversity order, with a technique re-

quiring multiple transmit antennas and a single receive antenna. Furthermore, he showed

that the transmit data can be separated at the receiver with only linear computational

complexity, making the processing requirements comparable to MRC. An additional fea-

ture of the Alamouti coding scheme is that it provides diversity gains independent of the

degeneracy of the channel.

The Alamouti coding scheme is usually described by the 2× 2 matrix

C =

s1 −s∗2
s2 s∗1

where the columns represent timeslots and the rows represent different transmit anten-

nas.

Secure STBCs without Transmitter CSI

For many PLS techniques, Alice needs to have an accurate estimate of Bob’s CSI. When

Alice’s CSI estimate is inaccurate, these techniques become less reliable and may even ill-

condition the environment for Bob. For the AN scheme, the inaccuracy in Alice’s knowl-

edge of Bob’s CSI directly corresponds to AN leakage into Bob’s channel.

The author of [35] introduces a technique to achieve a secure STBC without needing to

estimate CSI at the transmitter. This technique relies on a mutual RSSI measurement in

order to seed a psuedo-random sequence used to secure communication. The psuedo-

random sequence will determine phase shifts, θ1 and θ2, that are applied to each transmit

element in the Alamouti STBC. Each phase shift is applied for one code duration. For a

Kevin S. Ryland Chapter 3. Theory and Simulation Work 41

single codeword, the transmitter encodes source information, s1 and s2, as

X =

 s1ejθ1 s2e
jθ2

−s∗2ejθ1 s∗1e
jθ2

where the rows of X represent different transmit antennas and the columns correspond

to time slots. Notice that this modified scheme still preserves the orthogonality of the

Alamouti coding scheme. Figure 4.7 describes this scheme for a 2× 1 system.

Figure 4.7: Phase-Enciphered Alamouti Coding Scheme.

This is an application of the key-generation branch of PLS, but the key is used to encrypt

the transmission at the physical layer rather than using a higher layer protocol. In the

implementation described in this thesis, the key generation is handled in software and

the design is focused on the realization of the physical layer encryption.

Bob’s received signal is

z = Xh + n

Kevin S. Ryland Chapter 3. Theory and Simulation Work 42

z1
z2

 =

 s1ejθ1 s2e
jθ2

−s∗2ejθ1 s∗1e
jθ2

h1
h2

+

n1

n2

Which can be represented more conveniently as

 z1

−z∗2

 =

 h1ejθ1 h2e
jθ2

−h∗2ejθ1 h∗1e
jθ2

s1
s2

+

 n1

−n2∗

z̃ = H(θ1, θ2)s + ñ

Using the MRC algorithm, the source information can be estimated as

ŝ = H+(θ1, θ2)z̃

where H+ = (H∗H)−1H∗ is the Moore-Penrose pseudoinverse of H.

Eve’s received signal is

y = Xg + e

which can be similarly decomposed into

ỹ = G(θ1, θ2)s + ẽ

where the source information can also be solved for

ŝ = G+(θ1, θ2)ỹ.

In order to calculate ŝ, Eve will need an accurate estimate of G(θ1, θ2). Eve is presumed to

have perfect CSI, and therefore knowledge of g. Eve does not know the phase rotations,

θ1 and θ2, but she will know the L2 possible combinations of them. An exhaustive search

over the phase rotations along with the L2 possible symbol combinations will therefore

require a search complexity of O(L4) using Big O notation. Even with the brute-force

Kevin S. Ryland Chapter 3. Theory and Simulation Work 43

search, Eve still makes an ambiguous decisions between L equally valid combinations of

phase shifts and sent symbols.

[35] generalizes Eve’s maximum likelihood detector to discuss the relationship between

the number of phase rotatations, NRot, applied at Alice and Eve’s diversity order, DEve.

This relationship can be characterized as

DEve = NBob −NRot.

This thesis will only focus on the case where Alice applies the maximum number of phase

rotations to completely deny Eve access to the source information.

Additionally, [35] covers the design of a 4th order STBC and generalizes this technique to

securing STBCs of an arbitrary order. This thesis will examine the 2× 1 Alamouti case.

4.2.2 PEAC Simulations

The PEAC simulation uses QPSK modulation and rotations for both transmit antennas.

Bob uses a shared knowledge of the phase rotations to undo them during Alamouti equal-

ization while Eve uses a matched filter bank in an attempt to isolate the transmitted

symbol-phase rotation pair with a Minimum Mean Square Error (MMSE) estimator as

described in [35]. Figure 4.8 shows the BER curves for Bob and Eve with PEAC applied.

The theoretical BER curves for a SISO system in a Ralyeigh channel, Alamouti Coding,

and MRC are also plotted for comparison.

Kevin S. Ryland Chapter 3. Theory and Simulation Work 44

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

Eb/No, dB

10-5

10-4

10-3

10-2

10-1

100

B
it

E
rr

or
 R

at
e

theory (nTx=1,nRx=1)
theory (nTx=1,nRx=2, MRC)
theory (nTx=2, nRx=1, Alamouti)
sim Bob (nTx=2, nRx=1, Alamouti)
sim Eve (nTx=2, nRx=1, Matched Filterbank)

BER with QPSK modulation and Phase Enciphered Alamouti Coding (Rayleigh channel)

Figure 4.8: Simulated BER curves for Bob and Eve with Alice applying PEAC.

As expected, Eve’s BER is indicative of her being unable to decode any of the transmitted

information, because she is making ambiguous guesses at the transmitted symbol-phase

shift pairs. Bob’s performance gain agrees with the theoretical curve for Alamouti coding

and performs worse than MRC, but better than a SISO system.

Chapter 5

Experimental Setup

The design of both the PEAC and AN systems were done using GNU Radio, an open

source software toolkit designed for real-time signal processing on a SDR. The PEAC and

AN systems were then both evaluated in a testbed of USRP SDRs.

This chapter begins with an introduction of GNU Radio. Next, the requirements for con-

structing an OTA communications system in GNU Radio are introduced using a single-

carrier QPSK waveform as an example. Finally, the testbed used for experimentation is

described.

5.1 GNU Radio Introduction

GNU Radio possesses a library of pre-developed DSP functions in it’s core framework

which are implemented in blocks. Each block usually completes an independent func-

tion such as low-pass filtering or automatic gain control. Blocks are written in either

C++ or Python and connected together in a Python flowgraph. The flowgraph interfaces

with the GNU Radio scheduler to manage streams of samples between blocks. Addi-

tionally, flowgraphs will define variables that are in the scope of all blocks inside that

45

Kevin S. Ryland Chapter 5. Experimental Setup 46

flowgraph, allowing something like sample rate to be set common to many blocks. GNU

Radio Companion (GRC) is a graphical interface for constructing GNU Radio flowgraphs

from processing blocks.

5.1.1 Blocks

Blocks allow GNU Radio to implement DSP in modular stages. A block can have any

number of input and output ports which are used to interface with other blocks. Ports are

defined by their data type. Table 5.1 shows some common port data types in GNU Radio.

Table 5.1: Common port types in GNU Radio [8].

Data Type GRC Color Mapping Description

Complex Blue 2 x 32-bit Floating Point

Float Orange 32-bit Floating Point

Int Green 32-bit Signed Integer

Short Yellow 16-bit Signed Integer

Char Pink 8-bit Signed Integer

Async Message Gray Asynchronous Polymorphic Type

There are several block types which are defined by port locations and the relative data

rates of those ports. Table 5.2 shows various block types in GNU Radio.

5.1.2 Flowgraphs

While each block implements an individual process, signal processing applications will

almost always require multiple block operations to be carried out sequentially and/or

in parallel. GNU Radio implements this flow of data items between blocks in a flow-

graph. Flowgraphs manage the connections between blocks, defining block parameters,

Kevin S. Ryland Chapter 5. Experimental Setup 47

Table 5.2: Block types in GNU Radio [8].

Block Type Description Example Block

Synchronous The number of input items equals the num-
ber of output items (1:1)

Multiply Const

Decimation The number of input items is a fixed multi-
ple of the number of output items (N:1)

Low Pass Filter

Interpolation The number of output items is a fixed mul-
tiple of the number of input items (1:M)

Interpolating FIR Filter

General/Basic No relation between the number of input
and output items (N:M)

Rational Resampler

Sink Only input ports Audio Sink

Source Only output ports UHD: USRP Source

and interfacing with the Graphical User Interface (GUI) that controls the SDR while it is

running.

GRC is the GUI that can be used by the end-user to design flowgraphs. Each GRC file

represents a single flowgraph, consisting of blocks and global variables. A flowgraph

generated with GRC is written in Python, but flowgraphs can also be manually written in

C++. Figure 5.1 shows an example flowgraph used to demodulate Wide-Band Frequency

Modulated (WBFM) signals such as radio stations.

Figure 5.1 shows examples of several block types and data types. Notice that data types

must agree between connections and that this flowgraph contains a type of block not

defined in Table 5.2 - blocks with no ports. These blocks can define variables and objects

in the scope of the flowgraph or interface directly with the GUI, but will not directly

operate on items.

Kevin S. Ryland Chapter 5. Experimental Setup 48

Figure 5.1: GRC Flowgraph for a FM Receiver [6].

5.1.3 Customization

GNU Radio possesses a large library of pre-developed DSP functions in it’s core frame-

work, but users may still need to design customized blocks for their applications. Custom

blocks can be written in 3 different programming languages depending on the processing

speed required. Generally, a faster implementation is more difficult to program. Table 5.3

compares the different programming options for GNU Radio blocks.

Table 5.3: Customization options in GNU Radio.

Implementation Method Speed Difficulty

Python Embedded Python Block or OOT Module Slow Easy

C++ OOT Module Medium Medium

FPGA RFNoC Fast Hard

Embedded Python blocks are one of the easiest way to produce a custom block. The

Python block is included in the core block library and can be accessed directly from GRC.

By opening an editor in the block’s properties, unique functionality can be written di-

rectly without having to worry about the block’s integration into the programming envi-

Kevin S. Ryland Chapter 5. Experimental Setup 49

ronment.

Out of Tree (OOT) Modules are modules existing separate from the GNU Radio source

tree. This allows the user to maintain their code independent to the core GNU Radio

framework [36]. Creating OOTs has been made much easier with gr_modtool, a script

that edits makefiles and generates coding templates. OOTs can be used to write blocks in

either Python or C++.

Radio Frequency Network on Chip (RFNoC) is a network-distributed heterogeneous pro-

cessing tool that is designed to enable FPGA processing on USRP devices. RFNoC has

made FPGA programming much easier than traditional methods, but it is still more chal-

lenging than writing an OOT module.

Additionally, Hierarchical blocks can be created in GRC to reduce the size of a compli-

cated flowgraph by breaking it into parts. GRC will currently generates Hierarchical

blocks in python, but they can also be written in C++ like flowgraphs.

5.2 QPSK Transmitter

The GRC flowgraph shown in Figure 5.3 depicts the transmitter designed for an OTA

QPSK transmission of a single-carrier waveform. Figure 5.2 shows the parameter blocks

for this flowgraph.

Kevin S. Ryland Chapter 5. Experimental Setup 50

Figure 5.2: Parameter Blocks for the QPSK OTA Flowgraph.

K
evin

S.R
yland

C
hapter

5.Experim
entalSetup

51

Figure 5.3: GRC Flowgraph for a Single-Carrier QPSK Transmitter.

Kevin S. Ryland Chapter 5. Experimental Setup 52

5.2.1 Data Management

Information is often sent in a packet format to add additional information, or metadata,

about the information being sent. Metadata is included in a header while the source

information is sent in the payload. Even for physical layer processing, header data is use-

ful for incorporating error correcting codes such as the Cyclic Redundancy Check (CRC)

code. Additionally, headers can include a training sequence or pilot which can be used

for channel estimation, carrier recovery, and phase correction.

The QPSK OTA flowgraph produces TDMA frames similar to the structure used in GSM

cellular systems [37]. Starting from the left of Figure 5.3, there are five components of the

packeted TDMA signal: pure tone, unique word, frame number, guard byte, and payload.

The pure tone separates each packet and can be used for frequency error estimation. The

unique word and frame number are incorporated in the packet header and the guard

byte separates the header from the payload. The data for each of the components of the

packet header is generated with a Vector Source block while the payload of the packet

is generated with a File Source block. Both of these blocks are configured to repeat

specified bytes indefinitely.

The components of the packets are multiplexed together using a Stream Mux block,

then a second Stream Mux block is used to multiplex the packet with the tone to form a

TDMA frame. The multiplexed stream of bytes are unpacked into bits and repacked into

2-bit chunks with the Unpack K Bits and the Pack K Bits blocks, respectively. The

2-bits chunks are then encoded with the Differential Encoder block.

Vector Source

Figure 5.4 shows the Vector Source block and the parameters used for the unique

word in the QPSK OTA flowgraph. The output type is adjustable between the standard

data types in GNU Radio (complex, float, short, int, byte). The vector parameter is speci-

Kevin S. Ryland Chapter 5. Experimental Setup 53

fied as a tuple or array and can be either hex or decimal and is used to generate the output.

Stream tags can be applied with the tags parameter. Repeat specifies whether or not the

source should repeat the vector after it has reached the end of it. Vec Length specifies the

length of each output stream item from this source.

Figure 5.4: Vector Source Block and its relevant parameters.

File Source

Figure 5.5 shows the File Source block and the parameters used for the payload source

in the QPSK OTA flowgraph. The file input parameter specifies a path to a file used for the

output of the block. The output type, repeat, and vec length parameters are all identical

to the Vector Source block.

Stream Mux

Figure 5.6 shows the Stream Mux block and the parameters used by the left-most stream

mux in Figure 5.3. This block takes 4 bytes from its top input, 1 byte from the next input, 1

Kevin S. Ryland Chapter 5. Experimental Setup 54

Figure 5.5: File Source Block and its relevant parameters.

byte from the following input, and 50 bytes from the bottom input. The output is 66 bytes

long, and repeats as long as each of the sources feeding the inputs repeat. This behavior

is based on the lengths parameter which determines the allocation of each input port in

the output. Num inputs specifies the number of input ports multiplexed together by the

block.

Kevin S. Ryland Chapter 5. Experimental Setup 55

Figure 5.6: Stream Mux Block and its relevant parameters.

Unpack K Bits and Pack K Bits

Figure 5.7 shows both the Unpack K Bits and the Pack K Bits blocks along with the

parameters used in the transmitter of the QPSK OTA flowgraph.

Figure 5.7: Pack K Bits and Unpack K Bits Blocks and their relevant parameters.

Kevin S. Ryland Chapter 5. Experimental Setup 56

Differential Encoder

Differential coding is used to encode the source information in the change of symbol

states, rather than the state itself. For example, consider the constellation diagram for

QPSK in Figure 5.9. Each chunk of two bits maps to a particular constellation point,

for instance, a point in the upper-right quadrant maps to 00. With differential encoding

applied before this mapping, the information is now mapped to a change in the points.

An example of this is that now a change from a point in the upper-right quadrant to a

point in the upper-left quadrant now maps to 00. In this way, the information is relies on

two constellation points instead of one.

The main benefit of Differential coding is that the source information can be received

without resolving the absolute phase offset of the signal. Alternatively, a known portion

of the signal, such as a training sequence, could be used to check all possible phase offsets

to find the correct one.

The main drawback to differential coding is that if a single encoded symbol is received in-

correctly, it will result in two incorrectly decoded symbols. If consecutive symbols rarely

experience errors, this can double the BER!

Figure 5.8 shows the Differential Encoder block along with the parameters used in

the QPSK OTA flowgraph. The modulus parameter specifies the total number of constel-

lation points.

Figure 5.8: Differential Encoder Block and its relevant parameters.

Kevin S. Ryland Chapter 5. Experimental Setup 57

5.2.2 Digital Modulation

Quadrature Phase-Shift Keying (QPSK) is a digital modulation technique which encodes

source information into four discrete phases on a carrier signal. This is implemented

by mapping chunks of two input bits to one of four complex symbols. The mapping is

depicted in the constellation diagram in Figure 5.9.

Figure 5.9: QPSK constellation plot with Gray coding.

The stream of TDMA frame bytes are unpacked into pairs of bits and mapped to QPSK

symbols using the Chunks to Symbols block.

Chunks to Symbols

Figure 5.10 shows the Chunks to Symbols block and the parameters used in the QPSK

OTA flowgraph. The symbol table parameter is a mapping of the input bits to the output

symbols, and in this case the mapping is specified by an attribute of the Constellation

Object.

Kevin S. Ryland Chapter 5. Experimental Setup 58

Figure 5.10: Chunks to Symbols Block and its relevant parameters.

Constellation Object

Figure 5.11 shows the Constellation Object block and the parameters used in the

QPSK OTA flowgraph. The Symbol Map and Constellation Points parameters specify the

chunks of bits and complex symbols to be mapped, respectively.

5.2.3 Pulse Shaping and Resampling

The QPSK symbols are then pulse shaped and up-sampled in the Polyphase Arbitrary

Resampler block. Additionally, the low-pass filter used in the Polyphase Arbitrary

Resampler block is used to matched filter the baseband data with a Root Raised Cosine

(RRC) filter. The RRC drop-off is determined by the alpha parameter.

Next, the upsampled QPSK samples are low-pass filtered to eliminate the high frequency

distortion resulting from the upsampling and matched filtering.

Kevin S. Ryland Chapter 5. Experimental Setup 59

Figure 5.11: Constellation Object Block and its relevant parameters.

Polyphase Arbitrary Resampler

Figure 5.12 shows the Polyphase Arbitrary Resampler block and the parameters

used in the QPSK OTA flowgraph. The algorithm behind this block is derived from Sec-

tion 7.5 of [38].

Low-Pass Filter

Figure 5.13 shows the Low Pass Filter block and the parameters used in the QPSK

OTA flowgraph. The gain, cutoff freq, and transition width parameters of the filter can be

directly specified. Additionally, different windowing functions can be applied to the filter

such as Blackman, Rectangular, and Hamming. The filter can be used to simultaneously

decimate samples by a factor specified in the decimation parameter.

Kevin S. Ryland Chapter 5. Experimental Setup 60

Figure 5.12: Polyphase Arbitrary Resampler block and its relevant parameters.

5.2.4 RF Front-End

Finally, the matched-filtered and upsampled baseband symbols are transmitted to the

UHD: USRP Sink block. The Universal Hardware Driver (UHD) is device driver pro-

vided by Ettus Research which interfaces with all USRPs. The complex samples received

by the UHD: USRP Sink block are upconverted and transmitted by the USRP.

UHD: USRP Sink

Figure 5.14 displays the necessary parameters to specify in order to send data generated

in GNU Radio to a USRP using the UHD. On the left are general parameters which deal

with connection and configuration of the device. The device address of the USRP is either

a serial number if connecting over USB or an IP address for a networked connection and

can be set to multiple addresses. The number of motherboards and channels associated

with this source are also specified. The synchronization and clock sources are specified in

Kevin S. Ryland Chapter 5. Experimental Setup 61

Figure 5.13: Polyphase Arbitrary Resampler block and its relevant parameters.

the case where an external clock source or synchronizer is being used.

On the right of Figure 5.14 are the RF parameters. The center frequency of the RF chain,

gain applied in the RF circuit, and antenna port are all specified in this tab. The channel

bandwidth is set to 0 to use the default filter settings.

Kevin S. Ryland Chapter 5. Experimental Setup 62

Figure 5.14: UHD: USRP Sink Block and its relevant parameters.

5.3 QPSK Receiver

The GRC flowgraph in Figure 5.15 implements the corresponding receiver for the single-

carrier OTA QPSK system.

K
evin

S.R
yland

C
hapter

5.Experim
entalSetup

63

Figure 5.15: GRC Flowgraph for a Single-Carrier QPSK Receiver.

Kevin S. Ryland Chapter 5. Experimental Setup 64

5.3.1 RF Front-End

Starting from the left, the signals received by the USRP are processed and communicated

to GNU Radio through the UHD: USRP Source block.

UHD: USRP Source

Figure 5.16 shows the UHD: USRP Source block and the parameters used in the QPSK

OTA flowgraph. The parameters for the UHD: USRP Source block are identical to the

UHD: USRP Sink block used in the transmitter, except that the device address now ref-

erences the receiving USRP and a different gain is applied.

Kevin S. Ryland Chapter 5. Experimental Setup 65

Figure 5.16: UHD: USRP Source Block and its relevant parameters.

5.3.2 Automatic Gain Control

The received samples are passed through the AGC2 block which implements an Auto-

matic Gain Control (AGC) closed feedback loop.

AGC2

Figure 5.17 shows the AGC2 block and the parameters used in the QPSK OTA flowgraph.

The AGC loop attempts to keep the output a constant amplitude when the input ampli-

tude fluctuates. The Reference parameter specifies the target amplitude for the output

Kevin S. Ryland Chapter 5. Experimental Setup 66

while the attack and decay Rates determine how quickly the loop adjusts the outputs.

Specifically, the attack rate determines the adjustment step size for decreasing the gain

and the decay rate determines the adjustment step size for increasing the gain. The max

gain parameter specifies the maximum gain that can be provided by the AGC.

For an AGC with a high attack rate and low Decay rate, the output will quickly decrease

when a large signal appears and will slowly increase when that signal goes away.

Figure 5.17: AGC2 Block with Parameters Specified for OTA QPSK flowgraph.

Control Loops in GNU Radio

[7] describes the way that control loops are implemented in GNU Radio. Control loops

are used in many elements of receive processing including clock recovery, blind equalizer,

and phase recovery (Phase Lock Loop). These control loops can be modeled as shown in

Figure 5.18.

Kevin S. Ryland Chapter 5. Experimental Setup 67

Figure 5.18: Control Loop with input φI and output φO [7].

The path gains, α and β are used to adjust the step size of the loop’s convergence in

frequency and phase, respectively. This relationship can be expressed as

f = f + α(error)

φ = φ+ f + β(error)

To get a more intuitive understanding of the loop gains, they can be related to the damp-

ing ratio of the loop ζ and the loop bandwidth θn

α =
4ζθn

1 + 2ζθn + θ2n

β =
4θ2n

1 + 2ζθn + θ2n

A derivation of this relationship can be found in [7].

A real control system (one that experiences finite loss) can exist in one of three states:

Kevin S. Ryland Chapter 5. Experimental Setup 68

underdamped, overdamped, and critically damped. In the underdamped case, the losses

on the system are small enough that the system will overshoot it’s original state and loose

energy slowly through each oscillation until it returns to that state. If the losses in the

system are large, the system will return to its original state without ever overshooting

it’s original state - this is the overdamped case. Finally, a critically damped system lies

between the underdamped and overdamped cases and will fail to overshoot or complete

an oscillation before returning to its original state.

The damping ratio is defined as the ratio of the damping of the system to the critical

damping case. In most applications, a critically damped system is desirable because it

converges to the original state quicker than the other cases of damping. Therefore, the

loop blocks in GNU Radio have the damping ratio of all loop blocks internally set to ζ =
√
2
2

so that the only loop gain parameter that needs to be adjusted is the loop bandwidth.

[7] recommends setting the loop bandwidth between 2π
200

and 2π
100

. The relationship be-

tween the loop gains and the loop bandwidth for a critically damped control loop is

shown in Figure 5.19.

Kevin S. Ryland Chapter 5. Experimental Setup 69

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

Loop Bandwith (Hz)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Lo
op

 G
ai

n
M

ag
ni

tu
de

Loop Gains vs. Loop Bandwith in a Critically Damped System

|α|
|β|

Figure 5.19: Control loop gains vs. loop bandwidth in a critically damped system.

Figure 5.19 demonstrates that as the loop bandwidth is increased, the loop gains will

increase. This will increase the step size for the loop which results in a quicker, but less

accurate convergence. This value is often adjusted empirically to find the optimal value,

or just left at a value in the recommended range.

5.3.3 Timing Recovery and Matched Filtering

The next step in the receiver chain is to eliminate any timing offset between the clock at

receiver and transmitter. Next, the receiver applies a RRC matched filter to eliminate Inter

Symbol Interference (ISI).

Kevin S. Ryland Chapter 5. Experimental Setup 70

Polyphase Clock Sync

Figure 5.21 shows the Polyphase Clock Sync block and the parameters used in the

QPSK OTA flowgraph. This block uses the polyphase filterbank clock recovery algorithm

described in section 13.3 of [38]. This block first recovers timing, applies a matched fil-

ter, and resamples to a new number of samples per symbol specified by the output SPS

parameter.

Figure 5.20: Polyphase Clock Sync Block with Parameters Specified for OTA QPSK
flowgraph.

Kevin S. Ryland Chapter 5. Experimental Setup 71

5.3.4 Equalization

Once the sample timing has been recovered, an equalization algorithm is applied to undo

any fading effects introduced by the channel. Digital equalizers come in many different

shapes and sizes. Blind equalizers know nothing about the constellation or the channel,

but must make other assumptions about the signal such as a constant modulus. Adaptive

equalizers minimize the error between the received signal and an expected value gener-

ated with statistical knowledge of the transmit signal. Adaptive equalizers don’t need

to know anything about the channel, but will require an initial guess in order to begin

converging to an estimate of the transmit signal. If the received signal is too degraded

when it reaches an adaptive equalizer, it may not converge to the correct value. For this

reason, it is common to improve the received signal with frequency recovery loops and

blind equalizers to coarsely acquire the signal before sending it to an adaptive equalizer

for fine tuning.

Of course, if an accurate estimate of the channel is available, a data-aided equalization

approach can be applied directly to the received signal with no assumptions about the

transmitted signal.

CMA Equalizer

The equalization applied in the QPSK OTA flowgraph is the Constant Modulus Algo-

rithm (CMA). CMA is a blind equalization technique which requires the transmitted

modulation points to have equal magnitude, also known as a constant modulus. The

modulus parameter specifies the assumed modulus of the transmit signal, which will be

the magnitude level that the equalizer tries to fix the symbols to. The modulus is set to 1

so that the output magnitude is normalized.

Kevin S. Ryland Chapter 5. Experimental Setup 72

Figure 5.21: CMA Equalizer Block with Parameters Specified for OTA QPSK
flowgraph.

5.3.5 Carrier Frequency Recovery

When two isolated radios communicate OTA, they attempt to tune their Local Oscillators

(LOs) to the same frequency. Unfortunately, there will usually be an offset in LO frequen-

cies, even if both radios are "tuned" to the same frequency. When down-converting the

signal at the receiver, this error results in a residual carrier persisting in the baseband sig-

nal. To adjust this out, the receiver can determine an estimate of the transmitter’s true

LO frequency and undo the carrier offset accordingly. If statistical information about the

transmit signal is available, such as its constellation, then a control loop can be used to

minimize the error without an estimate of the carrier.

Costas Loop

A Costas Loop is another control loop, catagorized as a Phase Lock Loop (PLL), which

can be used with PSK signals to minimize the phase error with knowledge of the trans-

mitted constellation. This loop works by measuring the symbol value at baud centers

Kevin S. Ryland Chapter 5. Experimental Setup 73

and comparing it to the closest ideal constellation point. The phase difference between

the measured point and the ideal point is considered the error and is used to adjust the

frequency of the baseband signal.

Figure 5.22 shows the Costas Loop block and the parameters used in the QPSK OTA

flowgraph. The order parameter can be set to 2, 4, and 8 to work with BPSK, QPSK, and

8-PSK, respectively.

Figure 5.22: Costas Loop Block with Parameters Specified for OTA QPSK flowgraph.

5.3.6 Digital Demodulation

After timing recovery, equalization, and carrier frequency offset correction, the symbols

are ready to be demodulated. The Constellation Decoder block shown in Figure 5.23

implements the mapping of symbols to chunks of bits. The symbol mapping is specified

in the same Constellation Object block that the Chunks to Symbols block used

to modulate the source information.

Kevin S. Ryland Chapter 5. Experimental Setup 74

Figure 5.23: Constellation Decoder Block with Parameters Specified for OTA
QPSK flowgraph.

5.3.7 Data Management

After demodulation, the 2-bit chunks are run through the Differential Decoder

block to undo the Differential coding applied at the transmitter.

The decoded chunks are unpacked into bits and repacked into bytes using the Unpack K

Bits and the Pack K Bits blocks, respectively. The bits are feed into a Time Raster

Plot and the bytes are feed into a File Sink to save the received data for post-processing.

Differential Decoder

Figure 5.24 shows the Differential Decoder block and the parameters used in the

QPSK OTA flowgraph.

Figure 5.24: Differential Decoder Block with Parameters Specified for OTA QPSK
flowgraph.

Kevin S. Ryland Chapter 5. Experimental Setup 75

File Sink

Figure 5.25 shows the File Sink block and the parameters used in the QPSK OTA flow-

graph.

Figure 5.25: File Sink Block with Parameters Specified for OTA QPSK flowgraph.

5.3.8 GUI and Output Comparison

The GUI supported by GNU Radio allows several types of plots that can be used to ob-

serve different points of the processing in real time. Additionally, parameters can be set

to be adjustable from the GUI so that variables such as transmitter gain can be adjusted

while operating the SDR.

GUI Blocks

Five GUI blocks used in the design of the OTA systems in this thesis are the Time Sink,

Waterfall Sink, Constellation Sink, Frequency Sink, and Time Raster

Kevin S. Ryland Chapter 5. Experimental Setup 76

Sink shown in Figure 5.26.

Figure 5.26: GUI blocks used in GNU Radio.

5.4 Testbed Design

This testbed was designed to be flexibly used not only for the single-carrier applications

described in this thesis, but also for experimentation with wideband waveforms such

as OFDM. Such experiments require a large effective system bandwidth, reflected in the

maximum sampling rate acheivable by the radio. The system bandwidth is limited by

three main factors: Analog Bandwidth, FPGA Processing Bandwidth, and Host Band-

width.

Analog Bandwidth is defined as the 3 dB bandwidth between the RF port and the IF in-

terface in an RF channel. This bandwidth is limited by the IF filter on the USRP daughter-

Kevin S. Ryland Chapter 5. Experimental Setup 77

boards [9]. This testbed uses UBX-160 daugtherboard which have an analog bandwidth

of 160 MHz.

FPGA Processing Bandwidth is the maximum sampling rate that can be provided by the

ADCs and DACs USRP motherboard. For a USRP X310, the ADC can sample at 200 mil-

lion samples per second (MSps) and the DAC can sample at 800 MSps for 16-bit IQ sam-

ples [9]. The FPGA processing bandwidth is defined as the limiting factor, so the overall

rate for the X310 is considered to be set by the ADC at 200 MSps. To compare this to the

analog bandwidth set by the daughterboard, consider the effective analog bandwidth of

the ADC to be 80% of the Nyquist bandwidth corresponding to the rate [39]

BWbase = BN ∗ .80 = (fs/2) ∗ .80 = (200/2) ∗ .80 = 80MHz.

The Analog Bandwidth of the RF circuit is calculated for a passband signal,

BWpass = BWbase ∗ 2 = 160MHz.

Not surprisingly, the top performing daughterboard was designed to maximize the FPGA

Bandwidth available at the motherboard. Therefore, the total bandwidth of the device is

160 MHz which corresponds to a data rate of 200 MSps.

The Host Bandwidth is the maximum data rate between the FPGA in the USRP and the

host machine. Ideally, the network should be designed such that the limiting factor for

sampling rate is the device connected to it. Table 5.4 shows various interfaces and their

corresponding sample rates for 16-bit IQ samples [9].

The only two options that can match the device’s bandwidth are 10 Gigabit Ethernet

(GigE) and a 4-lane PCI Express connection. To expand the network to multiple devices

and hosts, 10 GigE was chosen for the interface. A diagram of the network with through-

put speeds is shown in Figure 5.27.

Kevin S. Ryland Chapter 5. Experimental Setup 78

Interface Sample Rate (MSps for 16-bit IQ) Half/Full Duplex

USB 2.0 8 Half Duplex

USB 3.0 61.44 Half Duplex

Gigabit Ethernet 25 Full Duplex

10 Gigabit Ethernet >200 Full Duplex

PCI-Express (4-lane) >200 Full Duplex

PCI-Express (1-lane) 50 Full Duplex

Table 5.4: Sample rates for various host interfaces [9].

Network Switch

10 GigE Switch

USRP 1

USRP 3

USRP 5

USRP 2

USRP 4

USRP 6

Server 1

Server 3

Server 5

Server 2

Server 4

Server 6

Internal
Network

Workstation Internet

Remote
Workstation

10 Gigabits/s

1 Gigabit/s

Unknown (≤ 1GigE)

Maximum Data Rate

Figure 5.27: Network Layout with maximum throughput.

Care was taken to keep network throughput at 10GigE between the USRPs and the servers

controlling them. For the local and remote workstations, the demands on throughput can

be relaxed significantly since the samples data never travels over those connections.

Another interesting note is that the storage capabilities of the servers will place limitations

Kevin S. Ryland Chapter 5. Experimental Setup 79

on the system. For example, the file size for a single RF channel sampling at 200 MSps is

size = tRb = 32tRs =
32bits

S
(30s)(200MSps) = 192, 000Mb = 24, 000MB = 24GB

A 30 second snapshot for a single channel takes up 24 GB of disk space! In fact, due to the

RAID setup on the servers (RAID 10) the data is stored twice, doubling the required space

to 48 GB. Four 800 GB drives are installed on the server, so these kinds of measurements

should not pose a problem if they are under a few minutes in length.

Chapter 6

PEAC Design

6.1 Transmitter

The design of the PEAC transmitter in Figure 6.1 is broken up into the aspects of data

management, modulation, space-time coding, pulse shaping, and interfacing with the RF

front-end device.

80

K
evin

S.R
yland

C
hapter

6.PEA
C

D
esign

81

Figure 6.1: PEAC Transmitter.

Kevin S. Ryland Chapter 6. PEAC Design 82

6.1.1 Data Management and Digital Modulation

The data management and digital modulation portions of the PEAC transmitter are shown

in Figure 6.2. QPSK-modulated symbols are generated in a similar way to the QPSK OTA

flowgraph described in chapter 5. The major difference in the PEAC flowgraph is how

the header and payload data are handled. Since the STBC is only applied to the payload,

the encoding is done before applying a header. The header is also applied in a different

manner - with the Vector Insert block shown in Figure 6.4.

Figure 6.2: Data Management in the PEAC Transmitter.

The header design is displayed in Figure 6.3. Unique Words (UWs) are used to sound

the channel for each antenna. Therefore, each of the UWs are placed in a Time Domain

Multiple Access (TDMA) structure to avoid interference. The details of how the header

is used to perform frame synchronization and channel estimation are discussed in the

description of the receiver.

Kevin S. Ryland Chapter 6. PEAC Design 83

Figure 6.3: Header Design for the PEAC System.

Vector Insert

Figure 6.4 shows the Vector Insert block and the parameters used for antenna 1 in

the PEAC transmitter flowgraph. The Vector parameter specifies the vector inserted into

the stream. The periodicity and offset parameters specify how often and in what position

the vector is inserted, respectively.

In order to packetize a stream of payload data with the Vector Insert block, the

header data is specified in the vector field, the total length of the packet is put in the

Periodicity field, and the offset is set to 0. This way, the header data is inserted every

packet length before the payload.

Figure 6.4: Vector Insert Block and its relevant parameters.

Kevin S. Ryland Chapter 6. PEAC Design 84

6.1.2 Space-Time Encoding

The PEAC space-time encoder is derived from the alamouti encoder in [40]. The flow-

graph for the PEAC space-time encoder is shown in Figure 6.5.

For reference, the PEAC scheme is coded

XA =

s1ejθ1 −s∗2ejθ1
s2e

jθ2 s∗1e
jθ2

where the rows of X represent different transmit antennas and the columns correspond to

time slots.

The upper half of Figure 6.5 implements alamouti coding by first deinterleaving an input

stream into s1 and s2 streams. After the coding is applied to each stream, they are inter-

leaved back together. The pseudo-random phase shifts are generated in the bottom half

of Figure 6.5 and are applied to each transmit antenna.

K
evin

S.R
yland

C
hapter

6.PEA
C

D
esign

85

Figure 6.5: PEAC Space-Time Encoder.

Kevin S. Ryland Chapter 6. PEAC Design 86

GLFSR Source

Figure 6.6 shows the Galois Linear Feedback Shift Register (GLFSR) Source and its rele-

vant parameters. The block generates numbers from a psuedo-random sequence specified

by the degree, mask, and seed parameters. The degree sets the length of the sequence, for

the PEAC system this length is 230 ≈ 109. The mask determines the generator polyno-

mials for the sequence which can completely change the resulting sequence. The seed

determines the initial fill of the registers used to generate the sequence, and will offset the

sequence by the specified value.

In the case of the PEAC system, a very long pseudo-random sequence is generated with

the GLFSR block and the seed is used as a key. This means that Eve will know the se-

quence being used, but will not know the offset of the sequence. This is similar to how

GPS Fine Acquisition (FA) codes are implemented.

Figure 6.6: GLFSR Source Block and its relevant parameters.

Kevin S. Ryland Chapter 6. PEAC Design 87

6.1.3 Pulse Shaping and RF Front-End Interface

The QPSK symbols are then up-sampled in the Polyphase Arbitrary Resampler

block which also perform pulse shaping with a RRC filter.

6.2 Receiver

Bob’s receiver is designed based on the QPSK receiver, but adds in the additional compo-

nents of space-time coding, packet synchronization, and channel estimation. Addition-

ally the PEAC receiver handles gain control and recovery loops.

K
evin

S.R
yland

C
hapter

6.PEA
C

D
esign

88

Figure 6.7: Bob’s PEAC Receiver.

Kevin S. Ryland Chapter 6. PEAC Design 89

6.2.1 Gain Control and Recovery Loops

The USRP functioning as the receiver is tuned with the UHD: USRP Source block which

provides complex baseband samples from the USRP.

First, gain control is performed with the AGC2 block. The next step in the receiver chain

is to eliminate any timing offset between the clock at receiver and transmitter. The timing

recovery and matched filtering are implemented with a Polyphase Clock Sync block.

Alamouti coding with QPSK does not lend itself to easy blind recovery of the carrier used

by the transmitter. Since both transmit elements will send independent QPSK symbols,

the received constellation is not QPSK, but rather a 3 × 3 grid of points formed by the

combination of all possible QPSK symbols. This constellation is shown in Figure 6.8. The

Figure 6.8: Received Constellation for Alamouti Coding with QPSK.

costas loops used in GNU Radio either in the Costas Loop block or more generally in

the Constellation Receiver block are not designed to perform frequency recovery

of constellations without a constant modulus such as QAM or the constellation in Figure

6.8. Instead, the transmitter and receiver are connected to a common clock and timing

Kevin S. Ryland Chapter 6. PEAC Design 90

source which eliminates the need to recover the carrier frequency at the receiver.

6.2.2 Packet Synchronization

To synchronize with a packet, the receiver correlates with the unique word using a Decimating

FIR Filter block. The discrete complex cross-correlation of two sequences p[n] and u[n]

of length N is defined as

R(p, u) =
N−1∑
m=0

p[m]u∗[m− n].

A FIR filter of order N − 1 performs a convolution operation of the input x[n] with the

filter taps h[n] to produce the output

y[n] =
N−1∑
m=0

x[m]h[n−m].

By substituting the taps

hcorr[n] = u∗[−n]

into the FIR filter, the output becomes

ycorr[n] =
N−1∑
m=0

x[m]u∗[m− n] = R(x, u).

Therefore, to implement the cross-correlation of the input with the unique word using a

FIR filter, the filter taps are set to the time-reversed and conjugated unique word. The

hierarchical block implementing the FIR Filter Correlator is shown in Figure 6.9.

The unique words shown in Figure 6.3 are chosen to be 63-bit Maximum-Length Se-

quences (MLS) that are zero padded to 64 bits. The MLSs were chosen to have ideal

autocorrelation and cross-correlation properties and the zero-padding was done to make

handling the sequence easier in GNU Radio.

K
evin

S.R
yland

C
hapter

6.PEA
C

D
esign

91
FIR Filter Correlator

Figure 6.9: FIR Filter Correlator hierarchical block.

Figure 6.10: An example of the magnitude-squared correlation filter outputs for each unique word and threshold
level.

Kevin S. Ryland Chapter 6. PEAC Design 92

An example of the magnitude-squared values of the output for the two correlation filters

in Figure 6.7 is shown in Figure 6.10. This graph corresponds to output seen with the

QT GUI Time Sink in Figure 6.7. The magnitude-squared correlation value is used

with the Threshold block to trigger a Burst Tagger which applies a stream tag to

the input data when a correlation spike occurs. Since the correlation filter introduces a

delay into the stream, a Delay block matches the input branch to the correlation branch

to appropriately align the stream tag.

6.2.3 Channel Estimation

The output of the correlation filter can also be used to perform an estimate of the channel

gains. Consider the cross-correlation of a unique word w of length N and amplitude 1

with the same unique word that experiences a complex Rayleigh flat fading gain h

R(hw[n],w[n]) =
N−1∑
m=0

hw[m]w∗[m− n].

The peak value occurs when the unique words overlap at n = 0

Rpeak =
N−1∑
m=0

hw[m]w∗[m] = Nh.

Therefore, the channel gain h can be estimated from the value of the correlation peak and

the length of the unique word.

Channel Estimator Block

An example of the complex values of the output for a single correlation filter in Figure

6.7 is shown in Figure 6.11. This output was derived from a simulated flat-fading channel

with Rayleigh fading gain h = 0.2 − 0.3j. Notice that by measuring the peak real and

Kevin S. Ryland Chapter 6. PEAC Design 93

imaginary values, which occur simultaneously, the channel gain can be accurately mea-

sured. This is because the FIR Filter Correlator block already provided the nec-

essary scaling by the unique word length. The stream tag "uw1" has been applied at the

peak value by the FIR Filter Correlator as described previously. The Channel

Estimator block shown in Figure 6.12 reads the value at this peak to determine the

channel gain and adds the estimates as stream tags to each unique word in the received

signal.

Figure 6.11: An example of the complex correlation filter output for one of the unique
words with Rayleigh fading channel gain h = 0.2− 0.3j.

Figure 6.12: The Channel Estimator block with its properties.

Kevin S. Ryland Chapter 6. PEAC Design 94

6.2.4 Space-Time Decoding

The PEA Decoder block implements the Alamouti equalization while undoing the pseudo-

random phase shifts applied at the transmitter. Prior to being fed into the PEA Decoder

block, the stream is aligned based on the UW1 tag added by the FIR Filter Correlator

block and then each packet is converted into a vector with the Stream to Vector

block. These blocks, along with the properties for the PEA Decoder, are shown in Figure

6.13.

Figure 6.13: The PEA Decoder block with its properties along with the preprocessing
blocks used to convert the stream to a packet vector.

In the decoder, the stream tags for each channel gain are used to generate the channel esti-

mates for each packet. A GLFSR block with a corresponding seed value to the transmitter

applies inverted phase shifts to undo the phase offset in the channel estimate.

Kevin S. Ryland Chapter 6. PEAC Design 95

6.3 Eve’s Receiver

Eve’s receiver is designed to be equivalent to Bob’s, with the only difference being that

Eve won’t have the correct seed value for the PEA Decoder block.

Chapter 7

Artificial Noise Design

7.1 Transmitter

The AN transmitter’s data management, header design, modulation, and pulse shaping

are handled identically to the PEAC transmitter. The major differences between the AN

and PEAC transmitters are the change from an Alamouti STBC in the PEAC system to a

transmit beamformer in the AN system and the addition of an AN generator to the AN

transmitter. Figure 7.1 displays the AN transmitter

96

K
evin

S.R
yland

C
hapter

7.A
rtificialN

oise
D

esign
97

Figure 7.1: AN Transmitter.

Kevin S. Ryland Chapter 7. Artificial Noise Design 98

7.1.1 Transmit Beamforming

The transmitter makes use of CSI feedback from Bob to perform transmit beamforming

with the BF Weights block. It does this in the manner described in section 4.1.2.

7.1.2 Artificial Noise Generation

For a 2×1 system, Alice generates AN such that hkwk = 0.wk is generated from wk = zkv

where v is a Gaussian distributed complex scaler and zk is a unit orthonormal basis vector

for the nullspace of hk. The general case is described in Section 4.1.

The AN is generated using a Gaussian Noise Source block to generate v multiplied by

z which is generated from Bob’s CSI feedback. The AN generation is implemented by the

AN Gen block shown in Figure 7.1. The top and bottom entries in w =

w1

w2

 are applied

to the first and second antennas, respectively.

7.2 Bob’s Receiver

The AN receiver’s recovery loops, packet synchronization, and channel estimation are

implemented identically to the PEAC receiver. The major difference between the AN and

PEAC receivers is the addition of CSI feedback in the former. Figure 7.2 displays Bob’s

AN receiver.

K
evin

S.R
yland

C
hapter

7.A
rtificialN

oise
D

esign
99

Figure 7.2: Bob’s AN Receiver.

Kevin S. Ryland Chapter 7. Artificial Noise Design 100

In the AN technique, CSI is required at the transmitter to generate noise in the nullspace

of Bob’s channel and to perform transmit beamforming. To facilitate this in a test envi-

ronment, the CSI is sent to the transmitter using GNU Radio’s asynchronous messaging

protocol which updates the AN Gen and BF Weights blocks.

7.3 Eve’s Receiver

Eve’s receiver functions identically to Bob’s except that the CSI feedback mechanism is

not implemented.

Chapter 8

Experimental Results

The goal of the experiments performed on the AN system was to produce an experimental

BER vs. SNR curve to compare to the theoretical results generated in chapter 4. This

chapter describes the methodology and the results of these experiments.

The testbed was configured such that the transmitter USRP and receiver USRP were in a

Non-Line-of-Sight (NLOS) channel, indoors in a laboratory environment with obstacles

to provide multipath scattering. A summary of the parameters used for the test is shown

in Table 8.1.

Parameter Value

Sample Rate 1 MSps

Transmit Frequency 2.489 GHz

GLFSR Order 24

Number of Antennas (Alice by Bob by Eve) 2x1x1

Table 8.1: Parameters used during experiment.

The data sequence used for source data in the test was generated using a GLFSR. A GLFSR

of order n produces a repeating psuedo-random sequence of length 2n−1 which will con-

101

Kevin S. Ryland Chapter 8. Experimental Results 102

tain every permutation of n bits. This is a great property for a BER test since the channel

may effect different sequences of bits in a unique way. By using every permutation of

bits, a more accurate average of the system’s BER for the given channel is attained.

To vary the SNR at the receiver, the gain at the transmitter was incremented from 0 dB to

20 dB in intervals of 0.5 dB for each run. The GRC Flowgraph used to run the experiments

is a combination of Figure 7.1 and Figure 7.2 with added File Sinks to collect symbols

and bits at verious stages of the processing.

Two MATLAB scripts are used to measure the SNR and the BER of each received signal.

The first MATLAB script processes the received complex symbols from a single run, and

measures the Error Vector Magnitude (EVM) of each constellation point. The script calcu-

lates the EVM by comparing the received symbols to an expected constellation. The EVM

is then determined by measuring the magnitude of the difference between the expected

and received constellation points. Finally, the SNR is computed through the inversely

proportional relationship of EVM and SNR shown in [41],

EVMRMS =
√

1/SNR =
√
N0/Es

whereN0/2 is the noise power spectral density andEs is the symbol energy. This relation-

ship is only completely accurate in a data-aided communication system, where the source

data can be compared at the receiver to determine EVM. In non data-aided systems, there

will be an error in the estimation of EVM at low values of SNR.

The second MATLAB script calculates the BER by aligning the received bits with the

source bits properly and comparing them to each other. The measurements of both scripts

were repeated over 10 runs and the results were averaged to produced the final experi-

mental BER vs. SNR curves.

This test was run in two different scenarios. The first scenario is a baseline where no AN

is transmitted, the BER vs. SNR curve with no AN is shown in Figure 8.1. In the second

Kevin S. Ryland Chapter 8. Experimental Results 103

scenario, the transmitter uses AN to mask the transmission with a power ratio of α = 0.5.

The BER vs. SNR curve with AN is shown in Figure 8.2.

Figure 8.1: Experimental BER curves for Bob (blue) and Eve (red) with no Artificial
Noise added.

Figure 8.2: Experimental BER curves for Bob (blue) and Eve (red) with Artificial Noise
added with a power ratio of α = 0.5.

Kevin S. Ryland Chapter 8. Experimental Results 104

Figure 8.1 confirms that other factors in the testing environment, such as positions of Bob

or Eve, do not have a significant impact on their relative performance. Figure 8.2 shows

the performance gap between Bob and Eve that is introduced by adding AN.

The BER measurements in Figure 8.2 must have an error associated with them since the

BER values for Eve are larger than 0.5 for low values of SNR. These results were collected

as part of an intern program assignment and, unfortunately, the source data used for

them cannot be recovered. Due to time considerations and the state of the laboratory

environment used to conduct these experiments, the results were not able to be modified

for this thesis.

Chapter 9

Conclusion

Many PLS techniques are well-researched and just on the edge of adoption into wireless

standards. By designing and incorporating these techniques in OTA systems, the practical

challenges of their implementation can be addressed. This thesis has demonstrated the

design process of two PLS systems that can both operate OTA. Additionally, a method-

ology for conducting a characterization of one of these systems was described and some

initial experimental results were provided.

An area of future work for the AN and PEAC systems is to perform a more strict OTA

characterization for a standardized channel model. This will require setting up an OTA

experiment in an environment that conforms to a particular channel model by using a

channel emulator and computing BER curves to compare against expected results from

simulations or theory. A good candidate for this channel model would be an indoor

WINNER 3GPP model.

Another area for future work is to increase the array sizes of Alice, Bob, and Eve to com-

pare the experimentally derived relationships between them with the theoretical results

of a masked beamformer found in [12]. Some work not included in this thesis was done

on examining the situations described in [12] where an eavesdropper with enough an-

105

Kevin S. Ryland Chapter 9. Conclusion 106

tennas can overcome AN. Demonstrating this property OTA would provide more insight

into how AN could be practically applied to existing communication systems.

A final recommendation for future work on this topic is in the application of AN to WIFI

systems. The 802.11n and 802.11ac standards make use of CSI feedback natively to per-

form closed-loop MIMO techniques such as transmit beamforming. Therefore, the ad-

dition of AN to these systems would be minimally invasive. In fact, since the noise is

additive, no modification to the router may be necessary. Instead, a "black box" solution

could be developed that is placed between the output SMA of the router and the antenna.

Chapter 10

Appendix A: Matlab Code

10.1 AN Simulation

1 % Artificial Noise Generation with Transmit Beamforming

2 % Created: 01/2017

3 % Last Modified: 09/2017

4 % Decription: This is a simulation of the Masked Beamforming scheme

5 % described in Secure Transmission with Multiple Antennas I: The MISOME

Wiretap Channel by A. Khisti.

6 % Sources: [1] Secure Transmission with Multiple Antennas I: The MISOME

Wiretap Channel by A. Khisti [2] http://www.dsplog.com/2009/04/13/

transmit−beamforming/

7

8 % Refresh Matlab

9 close all;

10 clear;

11 clc;

12

107

Kevin S. Ryland Appendix A. Matlab Code 108

13 % Parameters

14 N = 10^4; % Number of Information Symbols

15 n = 2; % Modulation Order

16 L = 2^n; % Number of Modulation Points

17 EbNo_dB = −25:1:30;

18 EbNo_lin = 10.^(EbNo_dB/10);

19 EsNo_dB = EbNo_dB+(n−1)*3;

20 r = 0.9; % Ratio of AN Power to Total Power

21

22 % Initializations

23 errors_bob = zeros(1,length(EbNo_dB));

24 errors_eve = zeros(1,length(EbNo_dB));

25

26 for ii = 1:1:length(EbNo_dB)

27 % CHANNELS (Alice−Bob, Alice−Eve)

28 % Rayleigh Fading Channel with Normalized Gain

29 h_ab = 1/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

30 h_ae = 1/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

31 % We assume the channel stays constant over 2 symbol durations

32 h_ab = repelem(reshape(h_ab,2,N/2),1,2);

33 h_ae = repelem(reshape(h_ae,2,N/2),1,2);

34

35 % TRANSMITTER (Alice)

36 % QPSK Modulation (using Grey coding)

37 x = 2*round(rand(1,N))+round(rand(1,N));

38 b = reshape(dec2bin(x).',1,2*N);

39 s = zeros(1,N);

40 for p=1:N

Kevin S. Ryland Appendix A. Matlab Code 109

41 if x(p) == 0

42 s(p) = −1;

43 elseif x(p) == 1

44 s(p) = −1j;

45 elseif x(p) == 2

46 s(p) = 1j;

47 else

48 s(p) = 1;

49 end

50 end

51

52 % Eigenmode Beamformer (TX Beamforming)

53 s = 1/sqrt(2)*repelem(s,2,1);

54 bf = [exp(−1j*angle(h_ab(1,:)));exp(−1j*angle(h_ab(2,:)))];

55 s(1,:) = s(1,:).*bf(1,:);

56 s(2,:) = s(2,:).*bf(2,:);

57

58 % Generate Artificial Noise Based on Bob's Channel

59 for i = 1:N

60 w(:,i) = null(h_ab(:,i).');

61 end

62 s = sqrt(1−r)*s + sqrt(r)*w;

63

64 % Additive White Gaussian Noise

65 awgn_ab = 10^(−(EsNo_dB(ii))/20)/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

66 awgn_ae = 10^(−EsNo_dB(ii)/20)/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

67

68 % Transmission Experiences Channel Effects

Kevin S. Ryland Appendix A. Matlab Code 110

69 r_bob = sum(h_ab.*s,1) + awgn_ab;

70 r_eve = sum(h_ae.*s,1) + awgn_ae;

71

72 % INTENDED RECEIVER (Bob)

73 sHat_bob = r_bob;

74 % Symbol decisions are made by measuring the phase of the received symbol

and

75 % comparing it to established decision boundaries.

76 theta_bob = 180/pi*angle(sHat_bob);

77 xHat_bob = zeros(1,N);

78 for d=1:N

79 if −45<=theta_bob(d) && theta_bob(d)<45

80 xHat_bob(d) = 3;

81 elseif 45<=theta_bob(d) && theta_bob(d)<135

82 xHat_bob(d) = 2;

83 elseif 135<=theta_bob(d) || −135>=theta_bob(d)

84 xHat_bob(d) = 0;

85 else

86 xHat_bob(d) = 1;

87 end

88 end

89 bHat_bob = reshape(dec2bin(xHat_bob).',1,2*N);

90

91 % UNINTENDED TRANSMITTER (Eve)

92 % (1) Equalization with both Bob and Eve's CSI

93 delta = 1./(h_ae(1,:).*conj(h_ab(1,:))./(abs(h_ab(1,:)))+h_ae(2,:).*conj(

h_ab(2,:))./(abs(h_ab(2,:))));

94 sHat_eve = r_eve.*delta;

Kevin S. Ryland Appendix A. Matlab Code 111

95

96 % Symbol decisions are made by measuring the phase of the received symbol

and

97 % comparing it to established decision boundaries.

98 theta_eve = 180/pi*angle(sHat_eve);

99 xHat_eve = zeros(1,N);

100 for d=1:N

101 if −45<=theta_eve(d) && theta_eve(d)<45

102 xHat_eve(d) = 3;

103 elseif 45<=theta_eve(d) && theta_eve(d)<135

104 xHat_eve(d) = 2;

105 elseif 135<=theta_eve(d) || −135>=theta_eve(d)

106 xHat_eve(d) = 0;

107 else

108 xHat_eve(d) = 1;

109 end

110 end

111 bHat_eve = reshape(dec2bin(xHat_eve).',1,2*N);

112

113 % Count the Errors

114 errors_bob(ii) = size(find(bHat_bob−b),2);

115 errors_eve(ii) = size(find(bHat_eve−b),2);

116

117 clearvars hEq_eve

118 end

119

120 % Simulation Results

121 BERsim_bob = errors_bob/(2*N);

Kevin S. Ryland Appendix A. Matlab Code 112

122 BERsim_eve = errors_eve/(2*N);

123

124 % Theoredical Results

125 p = 1/2 − 1/2*(1+1./EbNo_lin).^(−1/2);

126 theoryBer_nRx2 = p.^2.*(1+2*(1−p));

127 theoryBer_rayleigh = 0.5.*(1−sqrt(EbNo_lin./(EbNo_lin+1)));

128

129 % Graph Theoretical and Simulated Curves

130 close all

131 figure

132 semilogy(EbNo_dB,theoryBer_nRx2,'p−','LineWidth',2);

133 hold on

134 semilogy(EbNo_dB,theoryBer_rayleigh,'x−','LineWidth',2);

135 semilogy(EbNo_dB,BERsim_bob,'o−','LineWidth',2);

136 semilogy(EbNo_dB,BERsim_eve,'s−','LineWidth',2);

137 axis([−25 30 10^−5 1])

138 grid on

139 legend('theory SIMO (nTx=1, nRx=2, MRC)','theory SISO (nTx=1, nRx=1,

Rayleigh)','sim Bob (nTx=2, nRx=1, TX BF with AN)', 'sim Eve (nTx=2, nRx

=1, TX BF with AN)');

140 xlabel('Eb/No, dB');

141 ylabel('Bit Error Rate');

142 % Commented out to avoid interfering with Latex

143 %title(sprintf('$$\\textbf{BER for QPSK with Artificial Noise }\\mathbf{(\\

alpha=%.2f)}\\textbf{ and Transmit Beamforming in a Rayleigh Channel

}$$', r), 'interpreter', 'latex');

Kevin S. Ryland Appendix A. Matlab Code 113

10.2 PEAC Simulation

1 % Dynamic Phase Alamouti Code Simulation

2 % Created: 10/20/2016

3 % Last Modified: 09/01/2017

4 % Decription: This is a simulation of the Dynamic Phase Alamouti scheme

5 % described in Secure Space−Time Block Coding without Transmitter CSI by T.

Allen.

6 % Sources: [1] Secure Space−Time Block Coding without Transmitter CSI by T.

Allen [2] http://www.dsplog.com/2008/10/16/alamouti−stbc/

7

8 % Refresh Matlab

9 close all;

10 clear;

11 clc;

12

13 % Parameters

14 N = 10^6; % Number of Information Symbols

15 n = 2; % Modulation Order

16 L = 2^n; % Number of Modulation Points

17 EbNo_dB = −25:1:30;

18 EbNo_lin = 10.^(EbNo_dB/10);

19 EsNo_dB = EbNo_dB+(n−1)*3;

20

21 % Initializations

22 errors_bob = zeros(1,length(EsNo_dB));

23 errors_eve1 = zeros(1,length(EsNo_dB));

24 errors_eve2 = zeros(1,length(EsNo_dB));

Kevin S. Ryland Appendix A. Matlab Code 114

25

26 for ii = 1:1:length(EsNo_dB)

27 % TRANSMITTER (Alice)

28 % create QPSK symbols (using Grey coding)

29 x = 2*round(rand(1,N))+round(rand(1,N));

30 b = reshape(dec2bin(x).',1,2*N);

31 x_m = zeros(1,N);

32 for p=1:N

33 if x(p) == 0

34 x_m(p) = −1;

35 elseif x(p) == 1

36 x_m(p) = −1j;

37 elseif x(p) == 2

38 x_m(p) = 1j;

39 else

40 x_m(p) = 1;

41 end

42 end

43

44 % Alamouti STBC

45 s = 1/sqrt(2)*repelem(reshape(x_m,2,N/2),1,2);

46 temp = s;

47 s(1,2:2:end) = −conj(temp(2,2:2:end)); % S1 = [X1, −X2*]

48 s(2,2:2:end) = conj(temp(1,2:2:end)); % S2 = [X2, X1*]

49

50 % Phase Shifter Fed by a psuedo−random sequence

51 c = round((L−1)*rand(1,N));

52 c = repelem(reshape(c,2,N/2),1,2);

Kevin S. Ryland Appendix A. Matlab Code 115

53 % By zeroing out the first antenna's phase shifts, the diversity order

54 % of Eve's BER curve should be increased by 1.

55 theta_shift = c*2*pi/L; % [theta1 theta1 ...; theta2 theta2 ...]

56 s = s.*exp(1j*theta_shift);

57

58 % CHANNELS (Alice−Bob, Alice−Eve)

59 % Rayleigh Fading Channel with Normalized Gain

60 h_ab = 1/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

61 h_ae = 1/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

62 % We assume the channel stays constant over 2 symbol durations

63 h_ab = repelem(reshape(h_ab,2,N/2),1,2);

64 h_ae = repelem(reshape(h_ae,2,N/2),1,2);

65

66 % Additive White Gaussian Noise

67 awgn_ab = 10^(−EsNo_dB(ii)/20)/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

68 awgn_ae = 10^(−EsNo_dB(ii)/20)/sqrt(2)*(randn(1,N) + 1j*randn(1,N));

69

70 % Transmission Experiences Channel Effects

71 r_bob = sum(h_ab.*s,1) + awgn_ab;

72 r_eve = sum(h_ae.*s,1) + awgn_ae;

73

74 % INTENDED RECEIVER (Bob)

75 % (1) Convert received signal to format required to isolate the transmitted

symbols

76 r_bob = repelem(reshape(r_bob,2,N/2),1,2); % [r1 r1 ... ; r2 r2 ...]

77 r_bob(2,:) = conj(r_bob(2,:)); % [r1 r1 ... ; r2* r2*...]

78

79 % (2) Create the equalization matrix, undoing the phase shift with

Kevin S. Ryland Appendix A. Matlab Code 116

80 % knowledge of the psuedo−random sequence

81 theta_deshift = zeros(2,N);

82 theta_deshift(1,1:2:end) = −c(1,1:2:end)*2*pi/L;

83 theta_deshift(1,2:2:end) = −c(2,2:2:end)*2*pi/L;

84 theta_deshift(2,1:2:end) = c(2,1:2:end)*2*pi/L;

85 theta_deshift(2,2:2:end) = c(1,2:2:end)*2*pi/L; % [−theta1 −theta2 ...;

theta2 theta1 ...]

86 hEq_bob = zeros(2,N);

87 hEq_bob(:,1:2:end) = h_ab(:,1:2:end); % [h1 0 ...; h2 0 ...]

88 hEq_bob(:,2:2:end) = kron(ones(1,N/2),[1;−1]).*flipud(h_ab(:,1:2:end)); % [

h1 h2 ...; h2 −h1 ...]

89 hEq_bob(1,:) = conj(hEq_bob(1,:)); % [h1* h2* ...; h2 −h1 ...]

90 hEq_bob = hEq_bob.*exp(1j*theta_deshift); % [h1*exp(−jtheta1) h2*exp(−

jtheta2) ...; h2exp(jtheta2) h1exp(jtheta1) ...]

91 hEqPower_bob = sum(hEq_bob.*conj(hEq_bob),1); % hEqPower = [abs(h1)^2 + abs

(h2)^2, 0 ...; 0, abs(h1)^2 + abs(h2)^2 ...] = hermitian(H)*H

92

93 % (3) Determine the estimate of the received signal

94 sHat_bob = sum(hEq_bob.*r_bob,1)./hEqPower_bob;

95

96 % (4) QPSK Demodulation

97 theta_bob = 180/pi*angle(sHat_bob);

98 xHat_bob = zeros(1,N);

99 for d=1:N

100 if −45<=theta_bob(d) && theta_bob(d)<45

101 xHat_bob(d) = 3;

102 elseif 45<=theta_bob(d) && theta_bob(d)<135

103 xHat_bob(d) = 2;

Kevin S. Ryland Appendix A. Matlab Code 117

104 elseif 135<=theta_bob(d) || −135>=theta_bob(d)

105 xHat_bob(d) = 0;

106 else

107 xHat_bob(d) = 1;

108 end

109 end

110

111 bHat_bob = reshape(dec2bin(xHat_bob).',1,2*N);

112

113 % Maximum Likelihood Receiver Detailed in [1]

114

115 % UNINTENDED Receiver with Matched Filterbank (Eve2)

116 % (1) Convert received signal to format required to isolate the transmitted

symbols

117 r_eve2 = repelem(reshape(r_eve,2,N/2),1,2); % [r1 r1 ... ; r2 r2 ...]

118 r_eve2(2,:) = conj(r_eve2(2,:)); % [r1 r1 ... ; r2* r2*...]

119

120 % (2) Eve knows the scheme being used, but has no knowledge of the

121 % psuedo−random sequence. Therefore, she tries to estimate the symbols

122 % by employing L^2 parallel processing branches (matched filters),

123 % comparing the result to estimated symbols, and minimizing the

124 % mean−squared error.

125 theta_guess = 0:2*pi/L:(2*pi*(L−1))/L; % All possible shift values

126 [th1, th2] = meshgrid(theta_guess);

127 %th2 = zeros(4,4);

128 theta_guess = reshape(cat(2,th1,th2),[],2).'; % All possible combinations

of shift values

129 theta_guess = reshape(theta_guess,2,1,[]);

Kevin S. Ryland Appendix A. Matlab Code 118

130 theta_guess = repelem(theta_guess,1,N,1); % [theta1 ...; theta2 ...] Across

L^2 Entries in 3D

131 theta_eve2 = zeros(2,N,L^2);

132 theta_eve2(1,1:2:end,:) = −theta_guess(1,1:2:end,:);

133 theta_eve2(1,2:2:end,:) = −theta_guess(2,2:2:end,:);

134 theta_eve2(2,1:2:end,:) = theta_guess(2,1:2:end,:);

135 theta_eve2(2,2:2:end,:) = theta_guess(1,2:2:end,:); % [−theta1 −theta2 ...;

theta2 theta1 ...] Across L^2 Entries in 3D

136 hEq_eve2 = zeros(2,N);

137 hEq_eve2(:,1:2:end) = h_ae(:,1:2:end); % [h1 0 ...; h2 0 ...]

138 hEq_eve2(:,2:2:end) = kron(ones(1,N/2),[1;−1]).*flipud(h_ae(:,1:2:end)); %

[h1 h2 ...; h2 −h1 ...]

139 hEq_eve2(1,:) = conj(hEq_eve2(1,:)); % [h1* h2* ...; h2 −h1 ...]

140 hEq_eve2 = repmat(hEq_eve2,1,1,L^2); % [h1* h2* ...; h2 −h1 ...] Across L

^2 Entries in 3D

141 hEq_eve2 = hEq_eve2.*exp(1j*theta_eve2); % [h1*exp(−jtheta1) h2*exp(−

jtheta2) ...; h2exp(jtheta2) h1exp(jtheta1) ...] Across L^2 Entries in 3

D

142 hEqPower_eve2 = sum(hEq_eve2.*conj(hEq_eve2),1); % hEqPower = [abs(h1)^2 +

abs(h2)^2, 0 ...; 0, abs(h1)^2 + abs(h2)^2 ...] = hermitian(H)*H

143

144 % Compute Estimates of the transmitted symbols for each theta pair

145 sTilda_eve2 = squeeze(sum(hEq_eve2.*repmat(r_eve2,1,1,L^2),1)./

hEqPower_eve2);

146

147 % Compare Estimates with estimated symbols and choose the one with the

148 % smallest error

Kevin S. Ryland Appendix A. Matlab Code 119

149 sHat_eve2 = sign(real(sTilda_eve2))+sign(imag(sTilda_eve2)); % Estimated

Symbols

150 dist = abs(sHat_eve2 − sTilda_eve2);

151 [dummy,index] = min(dist,[],2);

152 for kk = 1:length(sHat_eve2)

153 sFinal_eve2(kk) = sHat_eve2(kk,index(kk));

154 end

155

156 % (3) QPSK Demodulation

157 theta_eve2 = 180/pi*angle(sFinal_eve2);

158 xHat_eve2 = zeros(1,N);

159 for d=1:N

160 if −45<=theta_eve2(d) && theta_eve2(d)<45

161 xHat_eve2(d) = 3;

162 elseif 45<=theta_eve2(d) && theta_eve2(d)<135

163 xHat_eve2(d) = 2;

164 elseif 135<=theta_eve2(d) || −135>=theta_eve2(d)

165 xHat_eve2(d) = 0;

166 else

167 xHat_eve2(d) = 1;

168 end

169 end

170

171 bHat_eve2 = reshape(dec2bin(xHat_eve2).',1,2*N);

172

173 % Count the Errors

174 errors_bob(ii) = size(find(bHat_bob−b),2);

175 errors_eve2(ii) = size(find(bHat_eve2−b),2);

Kevin S. Ryland Appendix A. Matlab Code 120

176 clearvars hEq_eve

177 end

178

179 % Simulation Results

180 BERsim_bob = errors_bob/(2*N);

181 BERsim_eve2 = errors_eve2/(2*N);

182

183 % Theoredical Results

184 % Rayleigh Channel [1]

185 theoryBer_nRx1 = 0.5.*(1−1*(1+1./EbNo_lin).^(−0.5));

186 % MRC Algorithm [1]

187 p = 1/2 − 1/2*(1+1./(2*EbNo_lin)).^(−1/2);

188 theoryBerMRC_nRx2 = p.^2.*(1+2*(1−p));

189 % Alamouti Coding [1]

190 pAlamouti = 1/2 − 1/2*(1+2./EbNo_lin).^(−1/2);

191 theoryBerAlamouti_nTx2_nRx1 = pAlamouti.^2.*(1+2*(1−pAlamouti));

192

193 close all

194 figure

195 semilogy(EsNo_dB,theoryBer_nRx1,'p−','LineWidth',2);

196 hold on

197 semilogy(EsNo_dB,theoryBerMRC_nRx2,'d−','LineWidth',2);

198 semilogy(EsNo_dB,theoryBerAlamouti_nTx2_nRx1,'+−','LineWidth',2);

199 semilogy(EsNo_dB,BERsim_bob,'o−','LineWidth',2);

200 semilogy(EsNo_dB,BERsim_eve2,'s−','LineWidth',2);

201 axis([−25 30 10^−5 1])

202 grid on

Kevin S. Ryland Appendix A. Matlab Code 121

203 legend('theory (nTx=1,nRx=1)', 'theory (nTx=1,nRx=2, MRC)', 'theory (nTx=2,

nRx=1, Alamouti)', 'sim Bob (nTx=2, nRx=1, Alamouti)', 'sim Eve (nTx=2,

nRx=1, Matched Filterbank)');

204 xlabel('Eb/No, dB');

205 ylabel('Bit Error Rate');

206 title('BER with QPSK modulation and Phase Enciphered Alamouti Coding (

Rayleigh channel)')

Bibliography

[1] A. D. Wyner, “The wire-tap channel,” The Bell System Technical Journal, vol. 54, no. 8,

pp. 1355–1387, Oct 1975.

[2] D. J. C. MacKay, Information theory, inference, and learning algorithms. Cambridge

University Press, 2005, vol. 7.2.

[3] E. Biglieri, MIMO wireless communications. Cambridge University Press, 2010.

[4] Y. S. Shiu, S. Y. Chang, H. C. Wu, S. C. H. Huang, and H. H. Chen, “Physical layer se-

curity in wireless networks: a tutorial,” IEEE Wireless Communications, vol. 18, no. 2,

pp. 66–74, April 2011.

[5] X. Chen, D. W. K. Ng, W. Gerstacker, and H. H. Chen, “A survey on multiple-

antenna techniques for physical layer security,” IEEE Communications Surveys Tu-

torials, vol. PP, no. 99, pp. 1–1, 2016.

[6] v3l0c1r4pt0r, “Rtl-sdr fm radio receiver with gnu radio compan-

ion,” May 2016. [Online]. Available: http://www.instructables.com/id/

RTL-SDR-FM-radio-receiver-with-GNU-Radio-Companion/

[7] T. Rondeau, “Blog - control loop gain values,” Aug 2011. [Online]. Available:

http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.

html;jsessionid=51490B8FC8D317DF71A9FAF2B1A4688B.v5-web005

122

http://www.instructables.com/id/RTL-SDR-FM-radio-receiver-with-GNU-Radio-Companion/
http://www.instructables.com/id/RTL-SDR-FM-radio-receiver-with-GNU-Radio-Companion/
http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html;jsessionid=51490B8FC8D317DF71A9FAF2B1A4688B.v5-web005
http://gnuradio.squarespace.com/blog/2011/8/13/control-loop-gain-values.html;jsessionid=51490B8FC8D317DF71A9FAF2B1A4688B.v5-web005

Kevin S. Ryland Appendix A. Matlab Code 123

[8] “Guided tutorials,” Mar 2017. [Online]. Available: https://wiki.gnuradio.org/

index.php/Guided_Tutorials

[9] N. Pandeya, “About usrp bandwidths and sampling rates,” May 2016. [Online].

Available: https://kb.ettus.com/About_USRP_Bandwidths_and_Sampling_Rates

[10] A. Mukherjee, “Physical-layer security in the internet of things: Sensing and com-

munication confidentiality under resource constraints,” Proceedings of the IEEE, vol.

103, no. 10, pp. 1747–1761, 2015.

[11] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst, “Principles of

physical layer security in multiuser wireless networks: A survey,” IEEE Communica-

tions Surveys Tutorials, vol. 16, no. 3, pp. 1550–1573, Third 2014.

[12] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas part ii:

The mimome wiretap channel,” IEEE Transactions on Information Theory, vol. 56,

no. 11, pp. 5515–5532, Nov 2010.

[13] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first collision

for full sha-1.” IACR Cryptology ePrint Archive, vol. 2017, p. 190, 2017.

[14] R. Cox, “Lessons from the debian/openssl fiasco posted on wednesday, may 21,

2008.” May 2008. [Online]. Available: https://research.swtch.com/openssl

[15] “Usn-612-1: Openssl vulnerability,” May 2008. [Online]. Available: https:

//www.ubuntu.com/usn/usn-612-1/

[16] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of mimo

communications-a key to gigabit wireless,” Proceedings of the IEEE, vol. 92, no. 2,

pp. 198–218, 2004.

[17] J. Mitola, “Software radios: Survey, critical evaluation and future directions,” IEEE

Aerospace and Electronic Systems Magazine, vol. 8, no. 4, pp. 25–36, April 1993.

https://wiki.gnuradio.org/index.php/Guided_Tutorials
https://wiki.gnuradio.org/index.php/Guided_Tutorials
https://kb.ettus.com/About_USRP_Bandwidths_and_Sampling_Rates
https://research.swtch.com/openssl
https://www.ubuntu.com/usn/usn-612-1/
https://www.ubuntu.com/usn/usn-612-1/

Kevin S. Ryland Appendix A. Matlab Code 124

[18] T. Ulversoy, “Software defined radio: Challenges and opportunities,” IEEE Commu-

nications Surveys Tutorials, vol. 12, no. 4, pp. 531–550, Fourth 2010.

[19] M. P. Daly and J. T. Bernhard, “Beamsteering in pattern reconfigurable arrays using

directional modulation,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 7,

pp. 2259–2265, 2010.

[20] V. Pellegrini, F. Principe, G. De Mauro, R. Guidi, V. Martorelli, and R. Cioni, “Cryp-

tographically secure radios based on directional modulation,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, 2014, pp. 8163–8167.

[21] B. R. Jordan, E. R. Tollefson, and J. D. Gaeddert, “Characterization of out-phased

array linearized signaling (opals),” in IEEE International Symposium on Phased Array

Systems and Technology. IEEE, 2016, pp. 1–7.

[22] E. Tollefson, B. R. Jordan, and J. D. Gaeddert, “Out-phased array linearized signaling

(opals): A practical approach to physical layer encryption,” in Military Communica-

tions Conference, MILCOM 2015-2015 IEEE. IEEE, 2015, pp. 294–299.

[23] C. L. K. Ngassa, R. Molière, F. Delaveau, A. Sibille, and N. Shapira, “Secret key gen-

eration scheme from wifi and lte reference signals,” Analog Integrated Circuits and

Signal Processing, vol. 91, no. 2, pp. 277–292, 2017.

[24] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas i: The

misome wiretap channel,” IEEE Transactions on Information Theory, vol. 56, no. 7, pp.

3088–3104, July 2010.

[25] Y. Liu, H. H. Chen, and L. Wang, “Physical layer security for next generation wire-

less networks: Theories, technologies, and challenges,” IEEE Communications Surveys

Tutorials, vol. 19, no. 1, pp. 347–376, Firstquarter 2017.

Kevin S. Ryland Appendix A. Matlab Code 125

[26] S. A. A. Fakoorian and A. L. Swindlehurst, “Optimal power allocation for gsvd-

based beamforming in the mimo gaussian wiretap channel,” in 2012 IEEE Interna-

tional Symposium on Information Theory Proceedings, July 2012, pp. 2321–2325.

[27] H. Reboredo, J. Xavier, and M. R. D. Rodrigues, “Filter design with secrecy con-

straints: The mimo gaussian wiretap channel,” IEEE Transactions on Signal Processing,

vol. 61, no. 15, pp. 3799–3814, Aug 2013.

[28] R. Negi and S. Goel, “Secret communication using artificial noise,” in VTC-2005-Fall.

2005 IEEE 62nd Vehicular Technology Conference, 2005., vol. 3, Sept 2005, pp. 1906–1910.

[29] F. Kaltenberger, H. Jiang, M. Guillaud, and R. Knopp, “Relative channel reciprocity

calibration in mimo/tdd systems,” in 2010 Future Network Mobile Summit, June 2010,

pp. 1–10.

[30] S. M. Bellovin, “Frank miller: Inventor of the one-time pad,” Cryptologia, vol. 35,

no. 3, pp. 203–222, 2011.

[31] C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Technical

Journal, vol. 28, no. 4, pp. 656–715, Oct 1949.

[32] S. Leung-Yan-Cheong and M. Hellman, “The gaussian wire-tap channel,” IEEE

Transactions on Information Theory, vol. 24, no. 4, pp. 451–456, Jul 1978.

[33] K. R. Liu, Cooperative communications and networking. Cambridge university press,

2009.

[34] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-

tions,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458,

Oct 1998.

[35] T. Allen, J. Cheng, and N. Al-Dhahir, “Secure space-time block coding without trans-

mitter csi,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 573–576, Dec 2014.

Kevin S. Ryland Appendix A. Matlab Code 126

[36] “Outoftreemodules,” May 2017. [Online]. Available: https://wiki.gnuradio.org/

index.php/OutOfTreeModules

[37] E. ETSI, “300 908 (gsm 05.02), digital cellular telecommunications system,” Multi-

plexing and Multiple Access on the Radio Path.

[38] F. Harris, Multirate signal processing for communication systems. Prentice Hall PTR,

2004.

[39] “X300/x310,” Mar 2017. [Online]. Available: https://kb.ettus.com/X300/X310

[40] M. R. Cribbs, “Multiple-input multiple-output wavelet packet modulation based

software-defined radio transceiver design,” Ph.D. dissertation, Monterey, California:

Naval Postgraduate School, 2015.

[41] R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among

evm, ber and snr as performance metrics,” in Electrical and Computer Engineering,

2006. ICECE’06. International Conference on. IEEE, 2006, pp. 408–411.

https://wiki.gnuradio.org/index.php/OutOfTreeModules
https://wiki.gnuradio.org/index.php/OutOfTreeModules
https://kb.ettus.com/X300/X310

	Introduction
	Background
	Information-Theoretic Security
	Shannon Channel Capacity
	Wyner Wiretap Channel
	Example Wiretap Code

	Multiple-Input Multiple-Output Communications
	Software-Defined Radio

	Physical Layer Security
	Secure Multiantenna Techniques
	Generalized Singular Value Decomposition Beamforming
	Zero Forcing
	CVX
	Artificial Noise Generation

	Metrics for Comparing PLS Techniques
	Channel State Information
	Secrecy Measures

	Theory and Simulation Work
	Artificial Noise Generation
	System Model
	AN Simulations

	Phase-Enciphered Alamouti Coding
	System Model
	PEAC Simulations

	Experimental Setup
	GNU Radio Introduction
	Blocks
	Flowgraphs
	Customization

	QPSK Transmitter
	Data Management
	Digital Modulation
	Pulse Shaping and Resampling
	RF Front-End

	QPSK Receiver
	RF Front-End
	Automatic Gain Control
	Timing Recovery and Matched Filtering
	Equalization
	Carrier Frequency Recovery
	Digital Demodulation
	Data Management
	GUI and Output Comparison

	Testbed Design

	PEAC Design
	Transmitter
	Data Management and Digital Modulation
	Space-Time Encoding
	Pulse Shaping and RF Front-End Interface

	Receiver
	Gain Control and Recovery Loops
	Packet Synchronization
	Channel Estimation
	Space-Time Decoding

	Eve's Receiver

	Artificial Noise Design
	Transmitter
	Transmit Beamforming
	Artificial Noise Generation

	Bob's Receiver
	Eve's Receiver

	Experimental Results
	Conclusion
	Appendix A: Matlab Code
	AN Simulation
	PEAC Simulation

	Bibliography

