Evolution of the Geohydrologic Cycle During the Past 700 Million Years

Adam M. Angel

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Ph.D. of Science
In
Geosciences

Robert J. Bodnar
Robert P. Lowell
Benjamin C. Gill
Alicia M. Wilson (University of South Carolina)

February 13, 2018
Blacksburg, VA

Keywords: geohydrologic cycle, numerical modeling, Earth history, cryosphere, biosphere, snowball Earth, global temperature
Evolution of the Geohydrologic Cycle During the Past 700 Million Years

Adam M. Angel

ABSTRACT

Water is a primary driver of the physical, geochemical and biological evolution of the Earth. The near-surface hydrosphere (exosphere) includes the atmosphere, cryosphere (glacial and polar ice), the biosphere, surface water, groundwater, and the oceans. The amounts of water in these various reservoirs of the hydrologic cycle have likely varied significantly over the past 700 Ma, with the cryosphere and continental biosphere reservoirs likely showing the most dramatic variations relative to the modern. For example, 700 Ma, during snowball-Earth conditions, the planet may have been almost entirely enveloped in ice, whereas throughout much of the Phanerozoic, greenhouse conditions predominately prevailed and the Earth had a much smaller cryosphere. Similarly, before about 444 Ma and the proliferation of land plants, the continental biosphere reservoir would have effectively non-existent. However, today, plants play a critical role in storage and transfer of water within the hydrologic cycle. Because the amount of water in the exosphere is thought to have remained relatively constant during the past 700 Ma, variations in the amounts of water held by the in the various exogenic reservoirs exert concomitant effects on other reservoirs in the exosphere.

We present a conceptual and numerical model that examines variations in the amount of water in the various reservoirs of the near-surface hydrologic cycle (exosphere) during the past 700 Ma and quantify variations in the rates of exchange of water between these reservoirs in deep time. We find that variations in the sizes of major reservoirs are primarily controlled by changes in global average temperature, and the flux of water between the atmosphere, surface water, and ocean reservoirs varies in concert with the waxing and waning of the cryosphere, with some fluxes decreasing to 0.0 kg/yr during snowball-Earth conditions. We find that the amount of water precipitated from the atmosphere to the cryosphere increases from greenhouse conditions to -10.5°C and decreases from -10.5°C to snowball-earth conditions, highlighting “tipping-point” behavior due to changes in temperature and cryosphere surface area. The amount of surface runoff to the oceans varies in proportion to the amount of water removed from the surface water reservoir and transferred into the continental biosphere. Variations in the movement of water between near-surface reservoirs that are driven by the waxing and waning of the cryosphere and emergence and growth of plant life thus have significant implications for the transfer of weathering products to the oceans and could contribute to short-term (<1 Ma) variations in seawater composition and isotopic signatures.
GENERAL ABSTRACT

Water drives the evolution of the planet, and the distribution of water throughout Earth’s atmosphere and surface has varied during the geologic past. The amounts of water in the atmosphere, polar ice, the biosphere, surface water, groundwater, and the oceans have changed during the past 700 million years, and the polar ice and biosphere reservoirs have undergone the most significant changes during that time. For example, at extremely cold conditions the planet may have been covered in ice, and during warmer conditions the planet may have been covered in little to no ice. Similarly, before 444 million years ago, the biosphere on Earth’s continental surface was almost non-existent. The evolution of land plants after 444 Ma resulted in an increase in the amount of water in the biosphere. Changes in the amounts of water in one reservoir of water over time will have effects on the other reservoirs of water in the water cycle.

We produce a numerical model that examines changes in the sizes of water cycle reservoirs and the movement of water between those reservoirs during the past 700 million years. Variations in reservoir sizes are primarily controlled by changes in global average temperature, and the movement of water between the atmosphere, surface water, and ocean reservoirs varies with changes in the amount of polar ice on Earth. We find that total annual precipitation to polar ice increases from greenhouse temperatures to -10.5°C and decreases from -10.5°C to cold snowball-earth temperatures due to changes in both temperature and the surface area of polar ice. The amount of surface runoff to the oceans varies in proportion to the amount of water removed from the surface water reservoir and transferred into the continental biosphere. Variations in the movement of water between reservoirs that are driven by the waxing and waning of polar ice and the growth of plant life have significant implications for the movement of dissolved material to the oceans and could contribute to short-term (<1 Ma) variations in seawater chemistry.
Table of Contents

Table of Contents ... iv
List of Figures .. v
List of Tables .. ix
List of Appendices ... x

Introduction .. 1
1 Background .. 1
2 Overview of the Numerical Model .. 4
3 The Cryosphere ... 8
 a. Role of the Cryosphere in Earth’s Modern Water Cycle .. 8
 b. Evolution of the Cryosphere during the past 700 Ma ... 10
 c. Conceptual Model of the Cryosphere .. 14
4 The Continental Biosphere ... 18
 a. Role of the Continental Biosphere in Earth’s Modern Water Cycle 18
 b. Evolution of the Continental Biosphere during the past 700 Ma 20
 c. Conceptual Model of the Continental Biosphere .. 24

Algorithms Describing Variations in Sizes of Exosphere Reservoirs in Deep Time .. 25
1 Variations in the CRYO Reservoir .. 25
2 Variations in the BIOc Reservoir .. 35
3 Variations in the Atmosphere Reservoir (ATM) ... 42
4 Variations in the Surface Water Reservoir (SW) .. 46
5 Variations in the Groundwater Reservoir (GW) ... 49
6 Variations in the Ocean Reservoir (Oceans) ... 49
7 Summary ... 51

Algorithms Describing Variations in the Fluxes of Water Between Exosphere
Reservoirs in Deep Time .. 51
1 Water flux from the atmosphere to the cryosphere .. 51
2 Water flux from the cryosphere to the atmosphere ... 56
3 Water flux from the oceans to the cryosphere .. 58
4 Water flux from the cryosphere to the oceans .. 59
5 Water flux from the cryosphere to surface water .. 61
6 Water flux from surface water to the cryosphere .. 62
7 Water flux from the atmosphere to surface water and to the oceans 63
8 Water flux from surface water and from the oceans to the atmosphere 67
9 Water flux from surface water (the continents) to the oceans 70
10 Water flux between surface water and groundwater .. 71
11 Water flux between groundwater and the ocean reservoirs 74
12 Water fluxes from surface water (SW, continents) to the biosphere and from the
 biosphere to the atmosphere ... 81
13 Water flux from the biosphere to surface water .. 83
14 Water flux from the atmosphere to the biosphere ... 85
15 Summary of variations in fluxes in the hydrologic cycle during the past 700
 Ma ... 86

Summary and Discussion of the Evolution of the Hydrologic Cycle During the Past
700 Ma ... 87

References .. 101
List of Figures

Figure 1: Box model of the exospheric hydrologic cycle showing the six major water reservoirs that comprise the exosphere, including the atmosphere (ATM), the cryosphere (CRYO), the biosphere (BIO), surface water (SW), groundwater (GW), and the oceans (Ocean). A green box indicates that the reservoir is part of the hydrologic cycle, and a red box indicates a reservoir that is absent and is not included in the hydrologic cycle. Solid lines connect reservoirs that exchange water, and arrows show the direction of water movement. Dashed lines originate or end at reservoirs that are not part of the hydrologic cycle at that time and, as such, water does not move into or out of that reservoir. Panel (A) represents the present hydrologic cycle with all six reservoirs included; panel (B) represents the water cycle during snowball Earth conditions when the Earth was enveloped in a shell of ice and the SW and continental BIO (BIOc) reservoirs were absent; panel (C) represents times in the late Proterozoic and early Phanerozoic (pre-444 Ma) when some ice existed on Earth but the continental biosphere had not yet developed; panel (D) represents greenhouse conditions during the late Ediacaran and early Cambrian before the continental biosphere had developed; panel (E) corresponds to the early Silurian when the continental biosphere had developed and greenhouse conditions applied.

Figure 2: Relationship between global average temperature and waxing and waning of the cryosphere during the past 700 Ma. Periods when average global temperature is greater than 18°C are considered greenhouse periods (Grénier et al., 2015) when no polar ice exists on Earth and the cryosphere is not included in the hydrologic cycle. Periods when average global temperature is between 18°C and -27°C are periods when some ice is present (Hyde et al., 2000) and the cryosphere reservoir is included in the hydrologic cycle. Periods when average global temperature is less than -27°C represent snowball-Earth periods when the planet is completely covered in ice (Hyde et al., 2000). Temperature estimates from 542 Ma to the present are based on the global carbon cycle model of Godderis et al. (2014).

Figure 3: Graphical description of the method used to estimate the amount of water in the cryosphere as a function of average global temperature. The filled blue circle represents the amount of water in the cryosphere (3.32x10^{19} kg H_2O) at the present time (average global temperature =14.6°C). The filled red circle represents the amount of water in the cryosphere (0 kg H_2O) at the beginning of greenhouse conditions (18°C; Grénier et al., 2015). Assuming a linear relationship between the amount of water in the cryosphere and global average temperature between these two values defines a slope of -9.76x10^{18} kg H_2O/°C. A line with this slope (dashed line) extrapolated to -27°C (representing the global average temperature corresponding to snowball Earth conditions) predicts a cryosphere containing 4.39x10^{20} kg H_2O at snowball earth conditions.

Figure 4: Relationship between the relative amount of the Earth’s surface covered by ice (Cryosphere), oceans, and continents as a function of average global temperature. These areas, in turn, constrain the relative sizes of the cryosphere, oceans and surface water reservoirs that are available to interact with and exchange water with other reservoirs in the hydrologic cycle. “Cryogenian” refers to snowball-
Earth conditions at ~700 Ma when the planet’s surface is completely covered in ice and the continents and oceans are not exposed to the atmosphere. “Greenhouse” refers to conditions when polar ice did not exist. “Present-Day” indicates the proportions of the Earth’s surface covered by cryosphere, oceans, and continental surface area at the present-day temperature of 14.6°C. For simplicity, we assume that the oceans and continents are distributed evenly across the entire surface of the Earth. Thus, as the surface area of polar ice linearly decreases from 100% starting at -27°C, the surface areas of both the continents and the oceans linearly increase......37

Figure 5: Effect of different models for growth of the continental biosphere over the past 444 Ma. All four scenarios assume that the continental biosphere contains 0.0 kg of H₂O at 444 Ma and increases to the present value of 2.9×10²⁵ kg H₂O. The red line labeled “Linear Growth” assumes a constant (linear) rate of biomass increase and corresponds to an increase in the amount of H₂O in the continental biosphere of 6.5×10¹² kg/Ma during the past 444 Ma. The blue curve labeled “Body Mass Optimization” assumes that the increase in the amount of H₂O in the continental biosphere follows the biological optimum for all continental organisms (Alroy, 1998). Accordingly, the rate of growth of the amount of H₂O in the continental biosphere is high during the early Phanerozoic and decreases towards the present. The green irregular growth curve labeled “Biodiversity” assumes that the increase in the amount of H₂O in the continental biosphere is proportional to variations in the number of plant family taxa during the Phanerozoic (Benton, 1993; 1995). This scenario indicates that the amount of water in the continental biosphere was significantly less than the modern value for most of the Phanerozoic and increased rapidly to present values over about the past 150 Ma. The orange curve labeled “Colonization Curve” assumes that the increase in the amount of H₂O in the continental biosphere is proportional to the influence or “forcing” of land plant colonization on global chemical cycles. This model suggests that the size of amount of water contained in the continental biosphere increased rapidly from about 444 to 300 Ma and then remained fairly constant to the present time (after Bergman et al., 2004).

Figure 6: Relationship between the amount (mass) of water in the atmosphere as a function of global average temperature and relative humidity (RH). Inset: Variations in global average temperature and climatic conditions during the past 700 Ma (see Figure 2). Individual curves show the amount of water in the atmosphere as a function of temperature for various choices of relative humidity, ranging from 5 to 100%. The modern global average relative humidity is 77%. The vertical line at 14.6°C represents the current average global temperature, and the shaded area represents the possible range in temperature and relative humidity, and corresponding amount of water in the atmosphere, during the Phanerozoic.

Figure 7: Relationship between global average temperature and the relative amounts of water in the atmosphere, cryosphere, oceans, and surface water reservoirs, all shown relative to the amount of water in each reservoir today. At -27°C, “snowball-Earth” conditions prevail and the CRYO reservoir contains 4.39x10²⁰ kg H₂O, or 1,235% more than the amount of water in the CRYO reservoir at present (3.32x10¹⁹ kg H₂O). As global average temperature decreases and the CRYO reservoir grows, water added to the cryosphere is removed from the oceans,
resulting in a \(~-30\%\) decrease in the amount of water in the oceans compared to the
modern value. During snowball Earth conditions, the continental surface is
completely covered by ice and the amount of water in the surface water reservoir is
zero, or \(-100\%\) of the modern value. The amount of water in the atmosphere
decreases as global average temperature decreases, and the atmosphere contains
96\% less water at \(-27^\circ C\) compared to the modern value. As global temperature
increases, polar ice melts and returns to the oceans. Also, continental ice masses
shrink and expose the continental surface, increasing the area that can
accommodate the surface water reservoir. Thus, as global average temperature
increases to greenhouse conditions (18\(^\circ\)C), the amount of water in CRYO decreases
to zero and the amounts of water in the oceans, surface water, and atmosphere
reservoirs increase by 2\%, 8\%, and 24\%, respectively, compared to their present
values.

Figure 8: Schematic representation of the variation in the sizes (mass of water)
contained in the various reservoirs of the hydrologic cycle during the past 700 Ma,
all compared to the size that reservoir today (Modern value). On the temperature
plot (A) the yellow shaded areas correspond to periods when the average global
temperature was \(\geq 18^\circ\)C and greenhouse conditions prevailed and polar ice did not
exist (see the dashed lines on the CRYO panel C). Note that each panel is schematic
and not to scale – the lines are only intended to highlight times during the past 700
Ma when the amount of water in a given reservoir was greater than or less than
modern values, and when those changes occurred. Dashed lines in the CRYO and
continental biosphere panels represent times when those reservoirs were absent
and not included in the hydrologic cycle.

Figure 9: Relationship between the global average temperature and the fluxes of
water into and out of the cryosphere, relative to the fluxes into and out of the
cryosphere today (average global temperature 14.6\(^\circ\)C). During the “Cryogenian” (T\(\leq\)
\(-27^\circ\)C) the planet is covered in an \(~1\) km thick shell of ice and at temperatures above
18\(^\circ\)C, no polar ice exists on Earth. The amount of water that is transferred from the
atmosphere to the cryosphere is a function of both global average temperature and
the surface area of the cryosphere. As temperature increases from \(-27^\circ\)C, the
amount of precipitation per unit area of the CRYO reservoir increases, while at the
same time the total surface area of the cryosphere decreases. Thus, as temperature
increases from \(-27^\circ\)C to \(~-10.5^\circ\)C, the total flux of water from the atmosphere to the
cryosphere is dominated by the temperature effect, whereas at higher temperatures
(\(~-10.5^\circ\)C) the decreasing surface area of the cryosphere dominates. As a result, the
total flux of water from the atmosphere to the cryosphere reaches a maximum at \(~-10.5^\circ\)C and decreases as temperature increases or decreases from this tipping point.
See text for additional details.

Figure 10: Variations in fluxes of water into and out of the CRYO reservoir, all
calculated as the change in flux relative to the modern value.

Figure 11: Relationship between global average temperature and fluxes of water
into and out of the surface water reservoir, plotted as a percent change from
modern values. All fluxes tied to the surface water reservoir change by the same
relative amount as the size of the SW reservoir varies, mostly in response to
variations in precipitation rates and exposed area of the continents not covered by
ice. The inset shows the relationship between global average temperature and individual fluxes connected to the SW reservoir. ..67

Figure 12: Variations in fluxes of water into and out of the atmosphere (ATM) reservoir, all calculated as the change in flux relative to the modern value.68

Figure 13: Relationship between the fluxes of water between the atmosphere and oceans (blue, purple) and the GW reservoir and oceans (red, orange) and global average temperature. See text for details. ...70

Figure 14: Variations in fluxes of water into and out of the surface water (SW) reservoir, all calculated as the change in flux relative to the modern value.74

Figure 15: Change in length of global coastline during the past 700 Ma, relative to the estimated length of coastline today (Modern value). ...80

Figure 16: Variations in fluxes of water into and out of the ocean reservoir, all calculated as the change in flux relative to the modern value.82

Figure 17: Variation in the flux of water between the surface water reservoir and the continental biosphere, atmosphere and ocean reservoirs for four different models for growth of the continental biosphere (amount of biomass) during the past 444 Ma. (A) Linear increase in the amount of water in the continental biosphere from 444 Ma to the present. (B) “Mass optimization” logarithmic function whereby the amount of water in the continental biosphere rapidly increases early in the Phanerozoic, followed by a more gradual increase to the present value. (C) The amount of water in the biosphere increases in proportion to biodiversity (data from Benton, 1993). (D) Amount of water in the biosphere following a “colonization forcing curve”, whereby the amount of water is linked to the influence of the biosphere on other global chemical cycles (after Bergman et al., 2004). Fluxes of water from the SW reservoir to the ATM and Ocean reservoirs are primarily driven by temporal variations in global average temperature and are not significantly affected by the growth model used. ...86

Figure 18: Summary of variations in fluxes between reservoirs of the hydrologic cycle during the past 700 Ma, all shown relative to the modern value. Note that departures from the modern line are schematic and are only intended to show the timing and direction of changes in fluxes and not the magnitude of the departures. The scale on the left side of each panel corresponds to the period from 700 to 540 Ma (pre-Phanerozoic) and the scale on the right side of each panel corresponds to the Phanerozoic (540 to 0 Ma). Note also that in some cases the positive and negative scales on the same side of individual panels are different in order to better emphasize variations in fluxes. ..91
List of Tables

Table 1: The impact of Phanerozoic extinction events on the amount of water contained in the continental biosphere and changes in fluxes of water between major reservoirs in the hydrologic cycle that result. ...23
Table 2: Summary of relationships that describe variations in the amounts of water in major exospheric reservoirs on Earth. ...27
Table 3: Summary of mathematical expressions that describe variations in the amounts of water in major exospheric reservoirs on Earth. See text for complete description of individual terms. ...28
Table 4: Areas and perimeters of Earth’s major landmasses, their fractal dimensions (FD) calculated according to Eqn. 35, and the ideal circumference assuming that each continent has the shape of a circle. ...78
Table 5: The average major ion compositions of seawater and river water (after Livingstone, 1963). Residence times from Berner and Berner (1987).103
List of Appendices

Appendix 1: Flowchart of the interactions of parameters, reservoirs, and fluxes within the numerical model (See also Fig. 1).................................119
Introduction

1. Background

Water is arguably the most important natural resource on Earth. Without water, food could not be produced, resource extraction and manufacturing activity would cease and, indeed, humans and other life forms could not exist. Recent decades have witnessed a growing awareness and interest in the Earth’s water resources as human population continues to expand and easily accessible clean water becomes more difficult to locate and produce. Moreover, recent increases in global average temperature are affecting the distribution of water within the exogenic hydrosphere, contributing to rising sea level, and catalyzing larger and more damaging storms. As such, there is a need to develop a better understanding of the linkages and feedbacks within the hydrologic cycle to better predict the future impacts of these changes and to gain a better understanding of the changes in the water cycle and their subsequent effects on other portions of the Earth in the geologic past.

The geohydrologic cycle is comprised of various reservoirs on and near Earth’s surface (the exosphere), and within the solid Earth (the geosphere) (Bodnar et al., 2013). The modern exosphere consists of six reservoirs, including the atmosphere (ATM), the cryosphere (CRYO), continental surface water (SW), groundwater (GW), the biosphere (BIO), and the oceans (Fig. 1A) (Berner and Berner, 2012 Drever, 1997. The largest of these reservoirs are the oceans that contain ~96.5% of all water in the near-surface hydrologic cycle. Ice on Earth (the cryosphere) contains ~1.75% of the total water in the exosphere and is the largest reservoir of fresh water on Earth. Plant life on Earth contains ~0.0003% of the total water in the exosphere and is the smallest of the six major
Figure 1: Box model of the exospheric hydrologic cycle showing the six major water reservoirs that comprise the exosphere, including the atmosphere (ATM), the cryosphere (CRYO), the biosphere (BIO), surface water (SW), groundwater (GW), and the oceans (Ocean). A green box indicates that the reservoir is part of the hydrologic cycle, and a red box indicates a reservoir that is absent and is not included in the hydrologic cycle. Solid lines connect reservoirs that exchange water, and arrows show the direction of water movement. Dashed lines originate or end at reservoirs that are not part of the hydrologic cycle at that time and, as such, water does not move into or out of that reservoir. Panel (A) represents the present hydrologic cycle with all six reservoirs included; panel (B) represents the water cycle during snowball Earth conditions when the Earth was enveloped in a shell of ice and the SW and continental BIO (BIOc) reservoirs were absent; panel (C) represents times in the late Proterozoic and early Phanerozoic (pre-444
Ma) when some ice existed on Earth but the continental biosphere had not yet developed; panel (D) represents greenhouse conditions during the late Ediacaran and early Cambrian before the continental biosphere had developed; panel (E) corresponds to the early Silurian when the continental biosphere had developed and greenhouse conditions applied.
exosphere reservoirs. The water in the geosphere consists of H₂O sequestered in the continental crust, oceanic crust, upper mantle, transition zone, lower mantle, and the core (Bodnar et al., 2013). The net flux of water between the exosphere and geosphere is small relative to fluxes between reservoirs within the exosphere. As such, during the past 700 Ma the amounts of water in both the exosphere and the geosphere remain essentially constant, but variation in relative amounts of water in the exosphere and geosphere over the history of the Earth is poorly constrained and a matter of debate (Bounama et al., 2001).

Owing to the numerous possible interactions between reservoirs, changes in either the amount of water in a given reservoir, or the amount of water transferred between any two reservoirs, will have a “ripple effect” on other reservoirs and processes in the exosphere. For example, melting of ice caps associated with increasing global temperature would lead to an increase in the amount of water in the ocean reservoir, causing sea level to rise. Rising temperature could change the areal proportion of the continents covered by glaciers and oceans and, thus, influences the amount of water in the SW reservoir and the amount of runoff from the continents to the oceans. Also increases in global temperature would influence the amount of water held in the atmosphere, as well as, rates of evaporation and precipitation.

In this study, we develop a numerical model that describes variations in the exosphere hydrologic cycle during the past 700 Ma, including temporal variations in the sizes of reservoirs (amount, or mass, of water contained in the reservoir) as well as temporal variations in fluxes between reservoirs. This is accomplished through a series of equations describing variations in physical parameters (such as global average temperature) that control and drive the distribution of water on Earth as a function of
time. These relationships are incorporated into a model that balances the amount of water in the hydrologic cycle. Such an approach is required because, as any single parameter describing the hydrologic cycle (such as the size of the CRYO reservoir) changes, by necessity the amount of water in one or more of the other reservoirs in the hydrologic cycle must change in order to maintain a constant total amount of water in the hydrosphere. This, in turn, necessitates changes in the fluxes between reservoirs to allow the amount of water in a given reservoir to increase or decrease with time. As such, the model involves a series of interdependent components (equations) that must be solved iteratively and simultaneously to arrive at a solution, and this is implemented using the commercially available STELLA™ dynamic system modeling package.

The two reservoirs within the hydrologic cycle that have experienced the largest relative variation during the past 700 Ma are the cryosphere (CRYO) and the continental biosphere (BIOc) (discussed below), and we describe the evolution of these two reservoirs, and factors that drive the observed variations, in some detail. We then introduce these variations into the overall hydrologic cycle to develop a complete model for the hydrologic cycle during the past 700 Ma. We note that throughout the text we refer to these changes as occurring “during the Phanerozoic” for simplicity, recognizing that the 700 Ma time period includes both the Phanerozoic (541 Ma to today) as well as the end of the Neoproterozoic Era (1 Ga to 542 Ma).

2. Overview of the Numerical Model

The numerical model describing the evolution of the exosphere presented here includes all water present in the six major near-surface reservoirs: the atmosphere (ATM), the cryosphere (CRYO), the biosphere (BIO), surface water (SW), groundwater...
GW), and the oceans (Oceans). Previous workers have estimated that the total amount of water in the exosphere is 1.41×10^{21} kg (summarized in Bodnar et al., 2013). As discussed above, we assume that the amount of water in the exosphere has remained constant during the past 700 Ma, although some workers have suggested that the amount of water in the exosphere has gradually decreased with time as water is transferred to the interior of the Earth via subduction (Bounama et al., 2001). Given these uncertainties and the lack of information to rigorously test models related to variations in the total amount of water in the exosphere during the past 700 Ma, we assume that the total mass of water has remained constant and that the mass of water in the exosphere (M_{EXO}) equals the sum of the masses of water in the various reservoirs comprising the exosphere ($\Sigma M_{RES,t}$), and equals 1.41×10^{21} kg:

$$\Sigma M_{RES} = M_{ATM} + M_{BIO} + M_{ICE} + M_{SW} + M_{GW} + M_{OCEAN} = M_{EXO} = 1.41 \times 10^{21} \text{ kg}$$ (1)

We calculate the amount of water in any given reservoir at any time during the past 700 Ma based on the physical, chemical and/or biological factors that influence the capacity of the reservoir. These various factors have been quantified through a series of differential equations that describe the relationship between, for example, average global temperature and the various fluxes that control the movement of water through the exosphere. Thus, the amount of water in the cryosphere (CRYO) is a function of global average temperature, and we develop a relationship between global average temperature and the amount water in CRYO at any time in the past based on the amount of water in the CRYO reservoir at present, and the rate of change of this value as a function of global average temperature. The amount of water within a given reservoir in the exosphere (M_{RES}) at any time t during the past 700 Ma (t) is a function of those parameters that
control the amount of water in the reservoir \(f(g) \) and the manner in which they vary with time \(g(t) \):

\[
M_{RES,t} = f(g(t)) \quad (2)
\]

The amount (mass) of water in a reservoir at any given time \(M_{RES,1} \) is related to the amount of water in the reservoir at some earlier time \(M_{RES,0} \) and the rate of change in the amount of water in the reservoir with time \(\frac{d(M_{RES,0})}{dt} \) according to:

\[
M_{RES,1} = M_{RES,0} + \left(\frac{d(M_{RES,0})}{dt} \right) \Delta t \quad (3)
\]

where \(\Delta t \) is the time increment of interest. Variations in the amount of water in a reservoir are directly related to fluxes of water into or out of that reservoir, and the processes that lead to temporal variations in the fluxes. For example, evaporation adds water to the atmosphere, and precipitation removes water from the atmosphere. At any specific time, the evaporation and precipitation fluxes are essentially equal, but their magnitudes will change over longer time periods in response to changing global average temperature. Accordingly, the rate of change in the amount of water in a reservoir \(\frac{d(M_{RES,0})}{dt} \) equals the sum of the fluxes of water into that reservoir \(\Sigma F_{RES,in,0} \), minus the sum of the fluxes of water out of that reservoir \(\Sigma F_{RES,out,0} \):

\[
\frac{d(M_{RES,0})}{dt} = (\Sigma F_{RES,in,0} - \Sigma F_{RES,out,0}) \quad (4)
\]

The amount of water in a reservoir at any time \(M_{RES,1} \) is related to the amount of water in the reservoir at some earlier time \(M_{RES,0} \), plus the sum of the fluxes of water into \(\Sigma F_{RES,in,0} \) and out of \(\Sigma F_{RES,out,0} \) the reservoir over some time interval \(\Delta t \), according to Equations 3 and 4:

\[
M_{RES,1} = M_{RES,0} + [(\Sigma F_{RES,in,0} - \Sigma F_{RES,out,0}) \times \Delta t] \quad (5)
\]
In general, temporal variations in fluxes of water between most reservoirs described below are reasonably well-understood, at least semi-quantitatively. However, some water fluxes have not been previously quantified or are only poorly constrained. For these, we have estimated a flux that varies in response to changing conditions based on our understanding of the modern hydrologic cycle, or have chosen a flux that “balances” the other fluxes linked to a common reservoir. As discussed above, the sum of the fluxes of water into a reservoir over some time ($\sum \text{Flux}_{IN}$) minus the sum of the fluxes of water out of a reservoir over that time ($\sum \text{Flux}_{OUT}$) must equal the change in the amount of water in that reservoir over that same period of time ($\frac{dM_{RES}}{dt}$). For example, the change in the size of the CRYO reservoir during the past 700 Ma is largely a function of global average temperature. Moreover, water moves into the CRYO reservoir from the ATM, SW and ocean reservoirs, and water moves out of the CRYO reservoir and into those same reservoirs. The fluxes of water from the ATM and ocean reservoirs to the CRYO reservoir (and vice versa), and the drivers that control temporal variations, are reasonably well constrained based on analogs with the modern water cycle, whereas the flux of water from the CRYO reservoir to the oceans is less well constrained (discussed below). As such, the CRYO \rightarrow Ocean flux was selected to balance those fluxes that are well constrained and to be consistent with estimated variations in the size of the CRYO reservoir, as described in detail below.

In a similar manner, variations in the size of the continental biosphere (BIOc) during the past 444 Ma impact the amounts water contained in other reservoirs of the hydrologic cycle as well as fluxes between reservoirs. Below we examine the impact of temporal variations in reservoir sizes and fluxes associated with the cryosphere and the continental biosphere and consider the impact of these variations on the movement and storage of
water in the hydrologic cycle. We first focus on variations in the cryosphere, followed by an examination of temporal variations in the continental biosphere, recognizing that these two reservoirs are linked indirectly through the surface water and atmosphere reservoirs. Thus, a change in one of these reservoirs has the potential to affect the other because the total amount of water in the hydrologic cycle remains constant.

3. The Cryosphere

a. Role of the Cyrosphere in Earth’s Modern Water Cycle

Shrinking of the Earth’s cryosphere as a result of global warming has captured both the scientific and public interest for the past several decades. The Intergovernmental Panel on Climate Change (2007) states “Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level.” It is estimated that if all of the ice on Earth were to melt, and if all of that water flowed into the oceans, sea level would rise by ~80 m (Poore et al., 2000). Coastal cities and small-island developing states would be devastated by this worst-case scenario, where even a relatively modest increase in sea level can impact, if not entirely decimate, the economic viability of the community (Bloetcher and Romah, 2015; Arnall and Kothari, 2015; Betzold, 2015).

The recent melting of polar and glacial ice has also been linked to variations in regional ocean chemistry and biological primary production. For example, an increase in glacial melt runoff results in an increase in dissolved Fe transported to the oceans, which promotes the growth of local algal blooms (Aguilar-Islas et al., 2008; Lyons et al., 2015; Hawkings et al., 2015). Conversely, the seasonal freezing of sea ice locally produces
highly saline brines, which inhibits primary production (Gleitz et al., 1995). On a global scale, increasing imbalances in the amount of water exchanged between oceans and sea ice will dilute the concentrations of all constituents in seawater. Because marine primary producers are sensitive to variations in seawater chemistry, changes in global seawater composition related to variations in the amount of water held in the oceans and the cryosphere are likely to not only affect sea level and impact coastal areas, but has the potential to affect the marine biosphere and the global ocean ecosystem.

Variations in Earth’s ice budget also influence the transport of water and other constituents that are linked to the CRYO reservoir. For example, the loss of Arctic sea ice is linked to increased regional evaporation and a subsequent increase in the proportion of Arctic-sourced moisture in the atmosphere (Kopec et al., 2015). This increase in evaporation, in turn, influences the amount of water precipitated from the atmosphere to the oceans, to the CRYO reservoir, and to the continental surface where the water is incorporated into the surface water reservoir. This, in turn, is likely to lead to increased surface runoff to the oceans (Kopec et al., 2016; Bintanja and Selten, 2014), resulting in an increase in sediment transport to the ocean basins. Furthermore, the melting of sea ice releases chlorine gas (Cl₂) to the atmosphere, where it catalyzes ozone degradation and mercury oxidation reactions (Liao et al., 2014). The increase in chlorine gas related to sea ice melting occurs on a diurnal basis; it is uncertain whether annual or longer-term sea ice loss is associated with a more significant increase in atmospheric chlorine concentration.

The cryosphere also plays a major role in the global circulation of heat (thermal energy) via oceanic currents. Warm water flows from the equator to the poles, and colder water is returned to the equator (Trenberth et al., 2001). Models of the Atlantic thermohaline circulation system suggest that ocean currents become destabilized when the
amount of water in the cryosphere varies, and the destabilization of ocean circulation has
been linked to Arctic climate variations over the past 21 ka (Schmittner et al., 2002).

b. Evolution of the Cryosphere during the past 700 Ma

The main control on the amount of water contained in the CRYO reservoir is average
global temperature, and this in turn is a function of the amount of CO₂ (and other
greenhouses gases) in the atmosphere, albedo, and long-term variations in the Earth’s
orbit (Milankovitch cycles) (Goddéris et al., 2014). The mass of water contained in the
CRYO reservoir today has been estimated by various methods, with a general consensus
that the CRYO reservoir contains ~3.32×10¹⁹ kg H₂O (Bodnar et al., 2013). The amount
of water contained in the CRYO reservoir has been greater than and less than the modern
value at various times in the past 700 Ma. The amount has been greater during major
glaciation events during the past 700 Ma that include the Cryogenian Sturtian and
Marinoan glaciations, the Late Ordovician event, and the Permo-Carboniferous
glaciations, and the amount of water held by the CRYO reservoir has been less than the
present amount during a significant portion of the Phanerozoic when average global
temperatures were higher than today’s value (14.6°C). During much of the Phanerozoic,
an extensive cryosphere likely did not exist on Earth when greenhouse conditions
prevailed, except perhaps as high elevation continental glaciers.

The Sturtian glaciation occurred during the Cryogenian from 720 to 660 Ma and is
the first of two “snowball-Earth” events during the Cryogenian (Cohen et al., 2013).
Previous workers have correlated paleogeographic reconstructions of continent
distribution with dated glaciogenic formations to determine the global extent of the
Sturtian glacial event (Prave, 1999). It is well accepted that atmospheric CO₂ estimates
can be used as a proxy for global average temperature, and previous workers have used
global carbon cycle models to estimate the conditions necessary to achieve low-latitude
 glaciation (Hyde et al., 2000; Goddéris et al., 2003; Pollard and Kasting, 2004). Furthermore, Swanson-Hysell et al. (2010) suggested that increased continental
weathering that sequesters CO₂ in carbonate promoted the decrease in atmospheric CO₂
during the Cryogenian. There is some debate regarding the latitudinal extent of the
Sturtian ice caps, with some workers suggesting that equatorial seas open to the
atmosphere existed even during snowball conditions (Pierrehumbert, 2005). Furthermore,
some models of snowball-Earth conditions suggest that the thickness of the ice was not
uniform, with some areas of the planet’s surface covered by up to 5 km of ice (Hyde et
al., 2000). In our model we assume that polar ice extended to the equator and that
snowball earth conditions apply during the Cryogenian. This assumption affects the
movement of water between the oceans and atmosphere, whereby at snowball earth
conditions there is no ocean-atmosphere interaction, while at slushball earth conditions
some amount of water would be exchanged between the oceans and atmosphere. It is
thought that the end of the Sturtian glaciation occurred rapidly due to increased
submarine volcanic activity and a relatively rapid (<1 Ma) increase in the amount of CO₂
released to the atmosphere (Pierrehumbert, 2011; Gernon et al., 2016), as evidenced by a
carbon isotope excursion in the rock record (Halverson et al., 2005). The exact timing of
the submarine CO₂ release is unknown, and the extent of latitudinal ice cap retreat during
this period is also uncertain.

The Marinoan glaciation occurred during the late Cryogenian, from 650 to 635 Ma,
and is the second Cryogenian “snowball-Earth” event (Cohen et al., 2013). Glaciogenic
Marinoan formations occur near Sturtian-age formations, and Sturtian and Marinoan
formations are usually separated by thick cap limestones indicative of glacial retreat between the two glacial events (Pierrehumbert et al., 2011). Paleogeographic reconstructions suggest that the Marinoan glaciation was as extensive as the Sturtian, with ice caps advancing to equatorial regions (Ewing et al., 2014). The debates and uncertainties surrounding the Marinoan glaciation are similar to those concerning the Sturtian glaciations. In addition, rifting of the Rodinia supercontinent occurred during the Marinoan (Prave, 1999; Mahan et al., 2010). It is hypothesized that increased tectonic activity associated with this event influenced the timing and extent of glacial advance and retreat, although the magnitude of this influence is uncertain (Goddéris et al., 2003). Furthermore, it is unclear whether the global ice caps fully melted and retreated to the poles at the end of the Marinoan, or if some permanent ice remained (Ewing et al., 2014).

The Late Ordovician glaciation (~444 Ma) is thought to be a leading cause of the Ordovician-Silurian extinction, one of the “big five” extinction events in Earth history (Sheehan, 2001). Evidence in the rock record for this event includes glaciogenic deposits beneath Silurian shales in North Africa, and oxygen isotopic excursions (both δ^{18}O and clumped isotopes) in late Ordovician and early Silurian brachiopods suggest a brief period of global cooling lasting ~0.5 Ma (Brenchley et al., 2001; Finnegan et al., 2011). There is some debate regarding the duration of the glaciation, with earlier work suggesting that the Late Ordovician glaciation lasted ~35 Ma (Frakes et al., 1992). Furthermore, the mechanisms that triggered the onset of the glacial event remain uncertain. Lenton et al. (2014) suggest that the evolution and radiation of primitive land plants during the late Ordovician drew down atmospheric CO$_2$, resulting in global cooling and subsequent glaciation. Others suggest that continental configuration (Herrmann et al., 2004) or increased silicate weathering (Young et al., 2010; Lefebvre et
al., 2010) may have shifted climatic conditions to favor widespread glaciation. There is
general consensus that the Late Ordovician glaciation ended quickly (over a period of <1
Ma), although the cause is debated. Many workers associate the end of the glaciation with
an increase in atmospheric CO₂, which resulted in global warming and the collapse and
retreat of the polar ice sheets (Saltzman and Young, 2005; Young et al., 2010).

The Permo-Carboniferous glaciation occurred from 350 to 290 Ma. Glacial deposits
in the Karoo basin of South Africa are the primary evidence for global cooling and
glacial advance (DuToit, 1956; Visser, 1987). It is largely accepted that the widespread
radiation of land plants throughout the Carboniferous reduced atmospheric CO₂ and led
to a decrease in average global temperature (Ronov, 1982). As discussed above,
atmospheric CO₂ can be used as a proxy for global average temperature; the reduction of
CO₂ in the atmosphere by incorporation into land plants is linked to a decrease in
temperature, thus causing the onset of glaciation (Berner, 1994; Mii et al., 1999). There is
uncertainty surrounding the latitudinal extent of glaciation and the exact timing of glacial
retreat during and after this period. Gulbranson et al. (2010) used radiometric dating of
glaciogenic deposits in Argentina to infer that the Permo-Carboniferous glaciation
occurred in distinct “pulses” rather than as a singular onset of widespread glaciation.

The modern glacial period began at 35 Ma, shortly after the Paleocene-Eocene
thermal maximum (Zachos et al., 2008) and has continued to the present day. This period
includes the Last Glacial Maximum (LGM) that occurred approximately 100,000 years
ago. The latitudinal extent of the LGM is evidenced by terminal moraines at low latitudes
in North America and the widespread prevalence of glaciogenic lakes at higher latitudes
(Ehlers and Gibbard, 2004). There is extensive debate regarding the exact timing of ice
cap formation at the poles during the most recent glaciation, but it is well accepted that
the Antarctic ice sheet formed millions of years before the Arctic ice caps (Zachos et al., 2008). Scher et al. (2014) analyzed chemical signatures in Antarctic coastal sediments and suggested that the modern ice caps originally “flickered” into and out of existence before the onset of permanent ice.

c. Conceptual Model of the Cryosphere

The modern cryosphere (CRYO) consists of all permanent ice on Earth and includes the polar ice caps and glaciers that occur mostly at high elevations and/or high latitudes. The amount of water in the CRYO reservoir today is estimated to be 3.32×10^{19} kg (Bodnar et al., 2013). Within the hydrologic cycle, the CRYO reservoir exchanges water directly with the atmosphere (ATM), oceans, and surface water (SW) reservoirs (Fig. 1A), and is indirectly linked to the groundwater (GW) and biosphere (BIO) reservoirs – i.e., some water released from melting of ice flows into the SW reservoir and is subsequently transferred into either the GW or into the BIOc reservoir.

The CRYO reservoir interacts directly with the ATM reservoir via precipitation onto the Earth’s surface, and some amount of H$_2$O is transferred directly from the CRYO reservoir back into the ATM reservoir via sublimation (Fig. 1A). As average global temperature increases and ice over the oceans melts, the resulting melt water is transferred directly from the CRYO reservoir to the ocean reservoir. When ice on the continents melts, the resulting water is transferred directly to the surface water reservoir. Some water from the SW reservoir is transferred into the biosphere; note that before ~444 Ma the continental biosphere (BIOc) did not exist and this part of the cycle was absent (Fig. 1B, C, D), However, before 444 Ma, a marine biosphere (BIOm) was present and water was exchanged between the ocean biosphere and the oceans (Fig. 1C). As average
global temperature decreases and the CRYO reservoir grows, water from the oceans and from the atmosphere are incorporated into the growing ice sheet, and on the continents water from the atmosphere and surface water are transferred into the CRYO reservoir.

During the past 700 Ma Earth’s climate has fluctuated from one in which permanent ice sheets covered most of the Earth (“snowball-Earth” conditions during the Cryogenian) to those in which ice was largely absent (greenhouse-Earth conditions), with cyclical periods that allow for some ice caps on the Earth (similar to present-day conditions) (Fig. 1A). Periods when average global temperature is greater than 18°C are considered greenhouse periods (Oerlemans et al., 1998; Grénier et al., 2015) during which no significant cryosphere existed on Earth. When average global temperature is between +18°C and -27°C, some ice is present (mostly at polar latitudes and high elevations). When average global temperature is less than -27°C, the planet is covered in permanent ice to produce snowball Earth conditions (Hyde et al., 2000) (Fig. 2).

The Cryogenian Period lasted from 720-635 Ma (Cohen et al., 2013) and represents a period of time when average global temperature was sufficiently low that the planet was enveloped in a thick sheet of ice much of the time. During the Cryogenian the Earth’s near-surface water cycle would have been very different from the modern cycle, as the continental biosphere and surface water reservoirs did not exist (Fig. 1B), and the flux of water between the cryosphere and the oceans and atmosphere would have differed significantly from the modern.

The beginning of the Ediacaran period at about 635 million years ago is associated with dramatic increases in tectonic and volcanic activity at mid-ocean ridges, increasing atmospheric CO₂ content, and increasing global temperature as snowball-Earth conditions subsided (Gernon et al., 2016; Lund et al., 2016). This, in turn, exposed the continents.
Figure 2: Relationship between global average temperature and waxing and waning of the cryosphere during the past 700 Ma. Periods when average global temperature is greater than 18°C are considered greenhouse periods (Grénier et al., 2015) when no polar ice exists on Earth and the cryosphere is not included in the hydrologic cycle. Periods when average global temperature is between 18°C and -27°C are periods when some ice is present (Hyde et al., 2000) and the cryosphere reservoir is included in the hydrologic cycle. Periods when average global temperature is less than -27°C represent snowball-Earth periods when the planet is completely covered in ice (Hyde et al., 2000). Temperature estimates from 542 Ma to the present are based on the global carbon cycle model of Godderis et al. (2014).
and oceans to the atmosphere and reintroduced the SW reservoir as a component of the exosphere, and water was exchanged between the SW reservoir and adjacent reservoirs in the hydrologic cycle (Fig. 1C). As global temperature continued to increase and the climate transitioned toward greenhouse conditions, Earth’s cryosphere disappeared and no permanent ice existed on Earth for a significant portion of the Phanerozoic (Fig. 2). During greenhouse conditions, the amount of water in the CRYO reservoir and the transfer of water into and out of the CRYO reservoir were essentially nil (Fig. 1D). Note that during this period of the early Phanerozoic the continental biosphere had not fully developed and exchange of water between this portion of the biosphere and adjacent reservoirs also did not occur (Figs. 1B, C, D). As such, the reservoirs comprising the hydrologic cycle were limited to the oceans, atmosphere, surface water, groundwater and the marine and subsurface biospheres.

In the late Ordovician, the continental biosphere developed and plants began to exchange water with the atmosphere and SW reservoirs through transpiration and photosynthesis (Fig. 1E). Note that at this time greenhouse conditions prevailed, and no permanent ice was present on Earth (Figs. 1E, 2). As life radiated across the continental surface, plants began drawing down atmospheric CO₂, resulting in lower global average temperatures, leading to the onset of permanent ice at the poles during the late Pennsylvanian. Thus, the cryosphere reservoir and exchange of water between the CRYO reservoir and adjacent reservoirs again became a component of the hydrologic cycle (Fig. 1A). Since that time, Earth’s climate and the hydrologic cycle have fluctuated from periods when some permanent ice was present (late Pennsylvanian-early Triassic glaciation and the Oligocene-present period) (Fig. 1A) to periods of greenhouse conditions when the Earth was ice-free (Fig. 1E).
The impact of the cryosphere on present-day, short-term geohydrologic processes is easily recognized, and it is logical to assume that the waxing and waning of the cryosphere on a much larger scale during the past 700 Ma has had a similar but more pronounced influence on the Earth’s hydrologic cycle, affecting both the sizes of the other major water reservoirs and the amount of water moving between those reservoirs. As discussed above, while the general timing of glacial events in the past is reasonably well constrained, much uncertainty exists concerning the rate at which the CRYO reservoir expanded or shrank, whether ice was present and grew at a constant rate during the entire glacial event or if the CRYO reservoir expanded and shrank episodically during the overall event. There is also uncertainty as to whether permanent ice extended to the equator during snowball Earth conditions, or if some open ocean was present. While the driver of CRYO expansion and shrinkage was global average temperature, some uncertainty exists concerning the specific factors that resulted in temperature fluctuations. Owing to these uncertainties, we assume that the CRYO reservoir size is a simple function of global average temperature, without consideration of the drivers of global temperature variations.

4. The Continental Biosphere

a. Role of the Continental Biosphere in Earth’s Modern Water Cycle

The biosphere reservoir of the hydrologic cycle is comprised of three sub-reservoirs: the continental biosphere (BIOc) which consists of all living organisms (primarily land plants) on Earth’s continental surface, the marine biosphere (BIOm) which consists of all living organisms in Earth’s oceans, and the subsurface biosphere (BIOg) which consists of microorganisms in Earth’s subsurface. The modern BIOc reservoir is estimated to
contain 2.9×10^{15} kg H$_2$O (Bodnar et al., 2013), while the amounts in the marine
biosphere (BIOm) and in the subsurface biosphere (BIOg) are 2.3×10^{12} kg and 1.75×10^{15}
kg, respectively. Recently, however, Kallmeyer et al. (2012) re-evaluated the amount of
subseafloor biomass and, incorporating their new value into a global estimate, reported a
total subsurface biomass that is 50-78% lower than that reported by Whitman et al.
(1998). Accordingly, using this new estimate the total amount of water contained in the
subsurface biosphere (BIOg) would be reduced by these same amounts.

Within the modern hydrologic cycle, the BIOc reservoir is directly linked to the
atmosphere (ATM), and surface water (SW) reservoirs (Fig. 1A), and is indirectly linked
to the cryosphere (CRYO), groundwater (GW) and ocean (Ocean) reservoirs. Plants take
up water from the surface water reservoir through their root systems and incorporate a
small amount of that water into biomass. Some plants (epiphytes) extract water vapor
directly from the atmosphere through their leaves. The remaining water that is not used to
build biomass is transpired back to the atmosphere as water vapor. As plants die, the
water in the decaying biomass is transferred back into the surface water reservoir.

The continental biosphere plays a major role in critical zone geohydrologic processes.
According to the National Research Council (2001), the critical zone is the
“heterogeneous, near surface environment in which complex interactions involving rock,
soil, water, air, and living organisms regulate the natural habitat and determine the
availability of life-sustaining resources”. Indeed, the continental biosphere provides
pathways for water between the atmosphere and continental surface waters. The
distribution of land plants also influences surface runoff, where extensive root systems
take up surface water and mediate the flow of water to the oceans via rivers and streams.
Furthermore, deforestation and poor farming practices increase regional topsoil erosion,
which can reduce the arability of farmland and hinder agricultural efforts (Pimentel et al., 1995; Zheng, 2006). Recently, concerns have been raised concerning the effects of rapid deforestation on climate change (Shukla et al., 1990; Gash et al., 1996). The removal of plants from the global biome reduces the amount of CO₂ that is removed from the atmosphere by plants during photosynthesis, which in turn results in an increase in atmospheric CO₂ and an increase in global average temperature (Bala et al., 2006).

During the last few centuries especially, anthropogenic activities have contributed substantial amounts of CO₂ to the atmosphere (Zimen and Altenhein, 1973), and deforestation has reduced the ability of the biosphere to buffer this rapid change in atmosphere chemistry.

b. Evolution of the Continental Biosphere during the past 700 Ma

Before the Silurian (~444 Ma), sophisticated land plants did not exist, and Earth’s continents were covered in mosses and other primitive, low-biomass plants that required a nearby source of water to survive (Koslowski and Greguss, 1959). Here, we define the beginning of the continental biosphere at 444 Ma, and assume that before this time the BIOc reservoir was not a significant component of the hydrologic cycle. Note, however, that a biosphere was present in the oceans and water was exchanged between the marine biosphere and the oceans before 444 Ma (Fig. 1B, C, D). It is uncertain if a significant subsurface biosphere existed on the continents before the development of land plants.

The diversity of plant flora, as well as the emergence and dominance of particular groups of flora, has varied since the beginning of the Silurian. Progymnosperms, conifer-like trees with fern-like leaves, formed the planet’s first forests during the middle Devonian (Algeo and Scheckler, 1998). Pteridosperms, or “seed ferns”, became the most
diverse plant group during the Carboniferous, and the proliferation of these plants led to a
drawdown of \(pCO_2 \) and a period of global cooling (DiMichele et al., 2001). During the
early Mesozoic, proper ferns were the most diverse and abundant flora on Earth (Hallam,
1985) and shortly thereafter conifers became the dominant group during the early
Cretaceous (Harris, 1976; Hallam, 1985). Following the dominance of conifers and since
the beginning of the Cenozoic, angiosperms have been the most diverse group of plants
on Earth (Martin, 2006; Crisp and Cook, 2011; Graham, 2011).

Five major extinctions that destroyed a significant fraction of life on Earth (and,
presumably, reduced the amount of water in the BIO reservoir) have been recorded
during the Phanerozoic. During these events a majority of life was rapidly (<1 Ma)
destroyed (Jablonski and Chaloner, 1994). Diversity of both marine and continental
organisms sharply decreased during these extinction periods (Sepkoski, 1993), but marine
taxa and continental taxa were affected differently by these events (Benton, 1993, 1995).
The amount of time needed to recover taxon diversity depends on the severity of the
extinction event (Sepkoski, 1994). Recent studies of deforested Amazon jungle suggest
that biomass can recover 90% of its diversity in about 66 years, depending on the extent
of devastation and availability of water (Poorter et al., 2016). This rapid recovery
suggests that land plant biomass likely recovered very quickly (instantaneously in a
geonologic sense) following a major extinction event.

The Ordovician-Silurian extinction occurred at the end of the Ordovician (~444 Ma)
and destroyed ~26% of all family taxa (Jablonski and Chaloner, 1994) (Table 1). The
extinction occurred in two phases that coincide with the onset and offset of the Hirnantian
 glaciation; the first phase coincides with the growth of ice caps and lowering of seawater
temperature, and the second phase coincides with the melting of ice caps and a brief
<table>
<thead>
<tr>
<th>Event</th>
<th>Extinction</th>
<th>Total</th>
<th>Destroyed</th>
<th>BIO fluxes</th>
<th>ATM->Ocean,SW</th>
<th>GW->Ocean</th>
<th>GW->SW</th>
<th>SW->GW</th>
<th>SW->Ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Devonian</td>
<td>27%</td>
<td>5.49</td>
<td>1.48</td>
<td>-27%</td>
<td>-0.045%</td>
<td>-1.66%</td>
<td>-0.023%</td>
<td>-0.045%</td>
<td>0.16%</td>
</tr>
<tr>
<td>End Permian</td>
<td>55%</td>
<td>12.5</td>
<td>6.88</td>
<td>-55%</td>
<td>-0.21%</td>
<td>-7.16%</td>
<td>-0.11%</td>
<td>-0.21%</td>
<td>0.77%</td>
</tr>
<tr>
<td>End Triassic</td>
<td>43%</td>
<td>15.8</td>
<td>6.79</td>
<td>-43%</td>
<td>-0.20%</td>
<td>-6.85%</td>
<td>-0.10%</td>
<td>-0.20%</td>
<td>0.72%</td>
</tr>
<tr>
<td>KT Impact</td>
<td>11%</td>
<td>24.8</td>
<td>2.73</td>
<td>-11%</td>
<td>-0.091%</td>
<td>-2.51%</td>
<td>-0.047%</td>
<td>-0.091%</td>
<td>0.34%</td>
</tr>
</tbody>
</table>

Table 1: The impact of Phanerozoic extinction events on the amount of water contained in the continental biosphere and changes in fluxes of
period of continental shelf anoxia (Brenchley et al., 2001). Owing to the small number of primitive land plants on Earth before the Silurian, this event mostly affected marine life, and the fossil record does not show a decrease in the number of continental plant family taxa during this event (Benton, 1993). Thus, land plants were not significantly influenced by the late Ordovician extinction and, as a result, this event had little impact on the role of the continental biosphere (BIOc) in the global hydrologic cycle.

The Late Devonian extinction occurred at the end of the Devonian period (~360 Ma) and destroyed ~22% of all family taxa (Jablonski and Chaloner, 1994) (Table 1). Benton (1995) estimated that perhaps 23 plant family taxa were eliminated during this event, which comprised 27% of all land plant families. There is some debate regarding the timing of the Late Devonian extinction, with some workers suggesting that the extinction consisted of multiple distinct events occurring over a 25 Ma time period (McGhee, 1988; Sole and Newman, 2002). Various explanations for the decline in biodiversity have been offered, including ocean anoxia (Bond et al., 2004), extraterrestrial impact (Claeys et al. 1992; McGhee, 2001), or a general decrease in speciation (Bambach et al., 2004).

The End Permian extinction occurred at 252 Ma and marks the transition from the Paleozoic Era to the Mesozoic Era. It is estimated that ~51% of all family taxa (Jablonski and Chaloner, 1994) and ~70% of all land species (Retallack et al., 2006) and up to 55% of all land plant taxa were destroyed during this most extensive extinction event in Earth’s history (Benton, 1995; Benton and Twitchett, 2003) (Table 1). Erwin (2000) discussed several mechanisms that could have triggered the extinction, including plate tectonic and volcanic activity, variations in seawater chemistry, ocean anoxia, and bolide impact. Benton and Twitchett (2003) attributed catastrophic “runaway greenhouse” changes in atmosphere and ocean chemistry to large igneous province formation and
contemporaneous ash bed deposition. Ecological niches opened after the extinctions, and the evolution and radiation of ferns and conifers occurred shortly after this event (McElwain and Punyasena, 2007).

The End Triassic extinction event occurred at ~201 Ma and destroyed ~22% of all family taxa (Jablonski and Chaloner, 1994) and up to 43% of all land plant taxa (Benton, 1995) (Table 1). Recently, Blackburn et al. (2013) associated the event with the emplacement of the Central Atlantic Magmatic Province (CAMP) and a concomitant rapid (~600 ka) release of CO₂ to the atmosphere (Schaller et al., 2011) and decrease in ocean pH at this time (Hönisch et al., 2012). Blackburn et al. (2013) also note that the biological recovery from this extinction occurred ~100 ka after the extinction; the number of land plant family taxa continued to increase after this event (Benton, 1995).

The K-T Impact occurred at 65 Ma and destroyed the dinosaurs as well as 16% of all family taxa worldwide (Schulte et al., 2010; Jablonski and Chaloner, 1994). Seventy-five (75) plant family taxa were destroyed during the extinction event, making up 11% of all land plant families (Benton, 1995). D’Hondt et al. (1998) used carbon isotope excursions in marine sediments to estimate that the marine biosphere recovered from the K-T Impact within ~3 Ma after the event. It is uncertain how rapidly the continental biosphere recovered from the impact event.

c. Conceptual Model of the Continental Biosphere

The amount of H₂O contained in continental plant biomass on Earth has varied from essentially nil before the Silurian to the present-day value, although the factors that control how that amount has varied over time are poorly understood. To our knowledge, there are no defensible estimates of the rate at which biomass on the continents increased.
during the Phanerozoic, and here we assume a linear increase with time for reasons discussed below. The manner in which the size of the continental biosphere grows influences variations in the amounts of water transferred between the biosphere and other reservoirs within the exosphere, and thus has implications for the entire water cycle. The impact of the biosphere on present-day, short-term (< 10 ka) geohydrologic processes is easily recognized, and it is logical to assume that the growth and decline of the biosphere during the past 444 Ma has had a similar influence on Earth’s hydrologic cycle. In our model we also examine the short-term (instantaneous to 10 ka) modifications to the hydrologic cycle associated with each of the five major extinction events, assuming instantaneous loss of biomass followed by gradually recovery.

Algorithms Describing Variations in Sizes of Exosphere Reservoirs in Deep Time

Here we describe the manner in which the amount of water contained in the various reservoirs in the exosphere has varied during the past 700 Ma, as well as the rationale behind the algorithms employed to achieve these estimates (summarized in Table 2 and Table 3). In the following, the size of a reservoir indicates the mass of water (in kg) contained in the reservoir.

1. Variations in the CRYO reservoir

Presently, it is estimated that the CRYO reservoir contains ~3.32×10^{19} kg of H_2O (Bodnar et al., 2013). The manner in which the size of the CRYO reservoir varies with average global temperature is uncertain, but various studies indicate that no permanent ice existed on Earth when the average global temperature was ≥18°C (Grénier et al., 2015). Thus, we develop a relationship between the size of the cryosphere and average
<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Modern Amount (kg H$_2$O)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryosphere</td>
<td>3.32×10^{19}</td>
<td>$M_{CRYO} = (-1.04 \times 10^{19} \times T_{AVG}) + 1.85 \times 10^{20}$</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>1.3×10^{16}</td>
<td>Eqns. 5-9 (see text)</td>
</tr>
<tr>
<td>Continental biosphere</td>
<td>2.9×10^{15}</td>
<td>Before 444 Ma: 0 kg H$_2$O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After 444 Ma:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M_{BIOC,T} = M_{BIOC,T-1} + (6.5 \times 10^{12} \text{ kg } H_2O)$</td>
</tr>
<tr>
<td>Surface water</td>
<td>2.07×10^{17}</td>
<td>$M_{SW,T} = (2.23 \times 10^{17} \times S_{A_{exposed \text{ continent } fraction,T}})$</td>
</tr>
<tr>
<td>Groundwater</td>
<td>1.05×10^{19}</td>
<td>1.05×10^{19} kg H$_2$O</td>
</tr>
<tr>
<td>Oceans</td>
<td>1.37×10^{21}</td>
<td>$M_{OCEAN} = M_{EXO} - (M_{CRYO} + M_{ATM} + M_{BIOC} + M_{SW} + M_{GW})$</td>
</tr>
</tbody>
</table>

Table 2: Summary of relationships that describe variations in the amounts of water in major exospheric reservoirs on Earth.
Table 3: Summary of mathematical expressions that describe variations in the amounts of water in major exospheric reservoirs on Earth. See text for complete description of individual terms.

<table>
<thead>
<tr>
<th>Flux</th>
<th>Modern Flux (kg H$_2$O/yr)</th>
<th>Drivers</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM→CRYO</td>
<td>2.51×10^{10}</td>
<td>T, CRYO SA</td>
<td>$F_{CRYO \text{ Pptn}, T} = F_{Total \text{ Pptn}, T} \times (S_{ACRYO \text{ fraction}, T}^2)$</td>
</tr>
<tr>
<td>CRYO→ATM</td>
<td>2.00×10^{10}</td>
<td>CRYO SA</td>
<td>$F_{Sublimation, T} = F_{Sublimation, modern} \times \frac{S_{ACRYO \text{ fraction}, modern}}{S_{ACRYO \text{ fraction}, T}}$</td>
</tr>
<tr>
<td>OCEAN→CRYO</td>
<td>1.50×10^{10}</td>
<td>T</td>
<td>$F_{Sea \text{ Ice Freeze}, T} = F_{Sea \text{ Ice Freeze, modern}} \times \frac{M_{CROY, T}}{M_{CROY, modern}}$</td>
</tr>
<tr>
<td>CRYO→OCEAN</td>
<td>1.73×10^{10}</td>
<td>Balance</td>
<td>$F_{Sea \text{ Ice Melt}, T} = (F_{CRYO \text{ Pptn, T}} + F_{Sea \text{ Ice Freeze, T}} + F_{Glacial Advance, T}) - (F_{Sublimation, T} + F_{Deglaciation, T})$</td>
</tr>
<tr>
<td>CRYO→SW</td>
<td>4.10×10^{14}</td>
<td>T</td>
<td>$F_{Deglaciation, T} = (9.855 \times 10^{12} \times T) + 2.66 \times 10^{14}$</td>
</tr>
<tr>
<td>SW→CRYO</td>
<td>4.10×10^{14}</td>
<td>Balance</td>
<td>$F_{Glacial Advance, T} = F_{Deglaciation, T}$</td>
</tr>
<tr>
<td>ATM→OCEAN</td>
<td>3.50×10^{17}</td>
<td>T, Balance</td>
<td>$F_{Ocean \text{ Pptn, T}} = F_{Total \text{ Pptn, T}} - F_{CRYO \text{ Pptn, T}} + F_{SW \text{ Pptn, T}}$</td>
</tr>
<tr>
<td>SW→ATM</td>
<td>3.34×10^{16}</td>
<td>T, Balance</td>
<td>$F_{SW \text{ Evaporation, T}} = 0.2608 \times F_{SW \text{ Pptn, T}}$</td>
</tr>
<tr>
<td>OCEAN→ATM</td>
<td>4.53×10^{17}</td>
<td>Balance</td>
<td>$F_{Ocean \text{ Evaporation, T}} = (F_{Total \text{ Pptn, T}} + F_{ATM→BIOc, T}) - (F_{Sublimation, T} + F_{SW \text{ Evaporation, T}} + F_{BIOc→ATM, T})$</td>
</tr>
<tr>
<td>SW→OCEAN</td>
<td>1.00×10^{17}</td>
<td>T, CRYO SA</td>
<td>$F_{Runoff, T} = F_{SW \text{ Pptn, T}} - F_{SW \text{ Evaporation, T}} - F_{SW→BIOc}$</td>
</tr>
<tr>
<td>SW→GW</td>
<td>3.35×10^{16}</td>
<td>Balance</td>
<td>$F_{SW→GW, T} = (F_{Deglaciation, T} + F_{SW \text{ Pptn, T}} + F_{GW→SW, T} + F_{BIOc→GW, T}) - (F_{Glacial Advance, T} + F_{SW \text{ Evaporation, T}} + F_{Runoff, T} + F_{SW→BIOc, T})$</td>
</tr>
<tr>
<td>GW→SW</td>
<td>3.34×10^{16}</td>
<td>T, Balance</td>
<td>$F_{GW→SW, T} = 0.333 \times F_{Runoff, T}$</td>
</tr>
<tr>
<td>OCEAN→GW</td>
<td>2.60×10^{16}</td>
<td>-</td>
<td>$F_{OCEAN→GW, T} = Perimeter_{Coastline, T} \times F_{OCEAN→GW, T}$</td>
</tr>
<tr>
<td>GW→OCEAN</td>
<td>3.50×10^{16}</td>
<td>Balance</td>
<td>$F_{SGD, T} = (F_{SW→GW, T} + F_{SGRT}) - F_{GW→SW, T}$</td>
</tr>
<tr>
<td>SW→BIOc</td>
<td>5.56×10^{14}</td>
<td>BIO</td>
<td>$F_{SW→BIOc, T} = F_{SW→BIOc, modern} \times \frac{M_{BIOc, T}}{M_{BIOc, modern}}$</td>
</tr>
<tr>
<td>BIOc→ATM</td>
<td>5.50×10^{16}</td>
<td>BIO</td>
<td>$F_{BIOc→ATM} = 0.99 \times F_{SW→BIOc}$</td>
</tr>
<tr>
<td>BIOc→SW</td>
<td>9.00×10^{15}</td>
<td>BIO</td>
<td>$F_{BIOc→SW, T} = F_{BIOc→SW, modern} \times \frac{M_{BIOc, T}}{M_{BIOc, modern}}$</td>
</tr>
<tr>
<td>ATM→BIOc</td>
<td>3.44×10^{13}</td>
<td>Balance</td>
<td>$F_{ATM→BIOc, T} = (F_{BIOc→SW, T} + F_{BIOc→ATM}) - F_{SW→BIOc, T}$</td>
</tr>
</tbody>
</table>
global temperature using a linear extrapolation from 0 kg water in the cryosphere at 18°C to 3.32 \times 10^{19} \text{kg of water in the cryosphere at 14.6°C (the current average global temperature), and linearly extrapolate this relationship to -27°C to provide an estimate of the size of the CRYO reservoir during snowball Earth conditions (Fig. 3):}

\[M_{\text{CRYO}} = (-9.76 \times 10^{19} \times T_{\text{AVG}}) + 1.76 \times 10^{20} \]

where \(M_{\text{CRYO}} \) is the amount of water in the CRYO reservoir (kg) and \(T_{\text{AVG}} \) is average global temperature. We note that the actual manner in which the CRYO reservoir “grows” with decreasing temperature is uncertain, but the exact relationship between the amount of polar ice and temperature is of secondary concern because we are examining the effect that changing the size of one reservoir has on the other reservoirs in the cycle, and the effects on adjacent reservoirs will scale with actual size of the CRYO reservoir. Accordingly, the amount of water in the cryosphere at snowball Earth conditions (global average temperature \(\leq -27°C \)) is calculated to be 4.39 \times 10^{20} \text{kg}. This amount of ice corresponds to an ice sheet averaging ~1 km thick covering the entire Earth. This ice thickness is consistent with the Ashkenazy et al. (2013) model of latitudinal ice flow during cooling climate periods, whereby ~26% of all water in both the cryosphere and ocean reservoirs is sequestered in polar ice during snowball-Earth conditions. We also note that Hyde et al. (2000) estimated that polar ice sheets up to 5 km thick could have been present on landmasses during snowball-Earth conditions. For comparison, the mean thickness of the Antarctic ice sheet today is ~2.2 km, with a maximum thickness of ~4.8 km (http://nsidc.org/data/seaice_index/).

The physical location of the CRYO reservoir on the surface of the Earth influences which other reservoirs exchange water with the CRYO reservoir. For example, during glacial growth and retreat on the continents the CRYO reservoir exchanges water with
Figure 3: Graphical description of the method used to estimate the amount of water in the cryosphere as a function of average global temperature. The filled blue circle represents the amount of water in the cryosphere (3.32x10^19 kg H_2O) at the present time (average global temperature = 14.6°C). The filled red circle represents the amount of water in the cryosphere (0 kg H_2O) at the beginning of greenhouse conditions (18°C; Grénier et al., 2015). Assuming a linear relationship between the amount of water in the cryosphere and global average temperature between these two values defines a slope of -9.76x10^{18} kg H_2O/°C. A line with this slope (dashed line) extrapolated to -27°C (representing the global average temperature corresponding to snowball Earth conditions) predicts a cryosphere containing 4.39x10^{20} kg H_2O at snowball earth conditions.
the SW reservoir. Because the surface water (SW) reservoir consists of lakes, rivers, and soil moisture, it is logical to assume that, as the amount of continental area covered by polar ice increases, the continental area that can accommodate lakes, rivers, and soil moisture decreases (we ignore any liquid water that might occur at the bottom of the ice sheet). Thus, the size (amount of water) of the SW reservoir is linked to the area of exposed continental surface. If the continental surface is completely covered by ice (snowball-Earth), lakes, rivers, and streams (not including lakes and fluvial activity on the surface of the glaciers themselves), and soil moisture would no longer be present on the continents and, therefore, the SW reservoir (and the processes linked to the SW reservoir) would no longer be included in the water cycle (Fig. 1B). Conversely, if the CRYO reservoir is absent (greenhouse Earth), the continents would be ice-free and the area of exposed continental surface capable of hosting the surface water reservoir would be equal to the total continental area. As such, the amount of water contained in the SW reservoir can be related to exposed continental surface area. Today, ~10% of the land surface (~14.8×10^6 km^2) is covered by glacial and polar ice (http://water.usgs.gov/edu/watercycleice.html). Modern sea ice makes up ~60% (by mass) of the CRYO reservoir and covers ~23.1×10^6 km^2 of the Earth’s surface (http://nsidc.org/data/seaice_index/). As such, ~40% of the total mass of water held in the CRYO reservoir is located on the continents.

Using variations in the amounts of water in the CRYO reservoir during the Phanerozoic, we can estimate variations in the amount of the land surface covered by the CRYO reservoir during the Phanerozoic, assuming that the relative proportion of cryosphere on land and on the oceans is similar to that observed today. During the Phanerozoic, the total continental area has fluctuated with time, with relatively more land...
area above sea level at about 600 Ma, at 200 Ma and present day, and relatively less continental area during periods of rifting and high sea level at ~450 and 100 Ma, but the average has remained relatively constant (Tardy et. al., 1989). Similarly, compared to the average land mass distribution during the Phanerozoic, a relatively larger proportion of the continental land mass today is located at higher latitudes (Tardy et al., 1989). As a result, a relatively larger proportion of polar ice should be located on the continents today compared to the proportion on the continents for the same average global temperature during most of the Phanerozoic when a larger proportion of the land surface was at low latitudes. Recognizing these variations in continental surface area and the distribution of the continents on the Earth during the Phanerozoic, for simplicity we assume that the total area and relative distribution is comparable to modern values – as with the variation in the CRYO reservoir described above, the actual relationship between amount of continental surface area covered by ice and temperature is of secondary importance as we are examining impacts on the water cycle as the covered area increases or decreases during the Phanerozoic. Correspondingly, the area of continental (land) surface covered by ice has varied from 0 km² during most of the Phanerozoic, when greenhouse conditions prevailed, to ~1.48×10⁸ km² at 700 Ma when snowball Earth conditions prevailed.

We assume that the total area and relative distribution of the oceans are comparable to modern values, and that the amount of Earth’s ocean surface covered by ice has varied from 0 km² during most of the Phanerozoic to ~3.62×10⁸ km² (at 700 Ma). If the CRYO reservoir is located over the oceans, the growth and retreat of sea ice will influence atmosphere-ocean interactions. When the ocean surface is completely covered by ice, exchange of water between the atmosphere and oceans does not occur. Conversely, when
the CRYO reservoir is absent (greenhouse conditions) atmosphere-ocean exchange is not
affected by ice coverage. Thus, the movement of water between the atmosphere and the
oceans can be related to exposed ocean surface area. Variations in the surface area of the
oceans during the Phanerozoic have been estimated in a manner similar to that described
above for surface area of the continents.

To estimate variations in the proportion of Earth’s surface covered by the cryosphere
as a function of global average temperature, we assume that polar ice on Earth is
contained within a uniformly thick ice mass that extends northward and southward from
the poles in proportion to average global temperature. We recognize, however, that the
thickness of the ice caps varies geographically, and the variation is related to latitude
(Pierrehumbert, 2011) as well as the distribution and position of the continents. As global
average temperature decreases, the amount of water sequestered in the CRYO reservoir
increases as the average thickness of the ice caps increases. As such, the amount of water
transferred into the CRYO reservoir from adjacent reservoirs must increase to
accommodate the growing CRYO reservoir, and the sizes of the source reservoirs would
decrease proportionally.

During snowball-Earth conditions, we assume that the 0°C average annual
temperature isotherm is located along the equator, and that the average temperature
decreases with distance north and south of the equator. Here, we assume that the change
in temperature with distance north of the equator is equal to the change in temperature
with distance south of the equator, recognizing that there are differences owing to the
obliquity of Earth’s rotational axis. During greenhouse conditions, we assume that the
0°C average annual temperature isotherm is located at the poles and that average
temperature increases linearly with distance from the poles towards the equator. The
global average temperature range between snowball-Earth conditions (-27°C) and greenhouse conditions (18°C) represents a 45 degree Celsius range in temperature. As noted above, we assume that permanent ice on Earth is represented by an ice layer of uniform thickness such that the amount of water in the cryosphere increases as the area of the Earth covered by ice increases with decreasing temperature. Thus, the mass of permanent ice (H₂O), or the size of the cryosphere, varies with temperature in proportion to the variation in the surface area of the Earth in which the average annual temperature is <0°C, i.e., the amount of surface area that is located north or south of the 0 degree Celsius isotherm corresponding to some global average temperature. The average temperature at polar latitudes (80° to 90° north and south of the equator) today is approximately -24°C and the average temperature at equatorial latitudes straddling the equator (0° to 20°) is approximately 25°C. Along a traverse from the equator to the poles, the distance on the surface of the Earth separating each one degree Celsius change in temperature is fairly constant between latitudes 20-80°. However, near the poles (80-90° latitude) and near the equator (0-20° latitude) the temperature remains reasonably constant at ~-24°C and ~25°C, respectively (New et al., 2000; Reynolds et al., 2002; Kalnay et al., 1996). Today, owing to the distribution of land and oceans, the southern extent of the boreal ice cap varies from about 70° to 38° north latitude, whereas the austral icecap around Antarctica is relatively symmetrical and extends to about 75° south latitude. Here, we assume that during the Phanerozoic polar ice was present at all locations on Earth where the average global temperature was ≤0°C. Our linear extrapolation of the amount of water contained in the cryosphere as a function of global average temperature (Fig. 3) assumes a uniform thickness of the ice sheet. As such, as the amount of water in the cryosphere increases, the latitudinal extent of the ice sheet (and
thus the surface area of the ice sheet) must increase proportionally. Thus, we calculate the
surface area S of a spherical ice cap using the relationship between the height h of a
spherical cap and the radius r of the Earth (6370 km):

$$ S_{\text{cap}} = 2\pi rh $$ (7)

A spherical ice cap (the region of a sphere above a particular plane) with $h=r$ represents a
complete hemisphere of ice from the poles to the equator, i.e., snowball-Earth conditions.
Furthermore, a spherical ice cap with $h=0$ represents conditions during which permanent
ice is absent, i.e., greenhouse conditions. We assume that the height (vertical distance
from a horizontal surface passing through the Earth at the equator) of the polar ice caps
increases linearly as global average temperature changes. Thus, we define the height h of
the ice caps as a function of global average temperature T at some time t:

$$ h = (18 - T_t) \times \left(\frac{45}{45}\right) $$ (8)

where 18 represents the average global temperature (°C) above which polar ice does not
exist on Earth, r is the radius of the Earth (6370 km), and 45 is the range in temperature
(degrees Celsius) between snowball-Earth and greenhouse conditions. Thus, for every
1°C decrease in temperature, the height of the spherical cap of ice increases by ~141 km.

It is important to note that latitude is measured by the angle between an imaginary line
from the center of the Earth and an imaginary plane through the equator, and the linear
increase in the height of the ice caps with changes in temperature does not correspond to
a linear decrease in the latitudinal extent of the ice caps.

The surface area of the earth corresponding to each 141 km increment in ice cap
height variation north or south of the equator is $\approx 5.67 \times 10^6$ km2 (Eqn. 7, 8). Thus, for each
141 km increment of migration of the polar ice cap height north and south of the equator
(corresponding to a 1 degree Celsius increase in average global temperature), the amount
of surface area covered by polar ice decreases by $11.34 \times 10^6 \text{ km}^2$ (5.67 \times 10^6 \text{ km}^2/\text{increment} \times 2 \text{ increments to account for both the boreal and austral poles}). Using the relationship between the area of the cryosphere compared to the total area of the Earth and average global temperature, the fraction of Earth’s surface occupied by the CRYO reservoir as a function of average global temperature is described as follows:

$$SA_{\text{CRYO \, fraction,} T} = (-0.0222 * T_{\text{AVG}}) + 0.4$$ (9)

As discussed above, during periods when the global average temperature was greater than 18°C, permanent ice did not exist, and at temperatures lower than -27°C, the Earth is completely covered in ice. Thus, at temperatures $\geq 18^\circ C$, the fraction of the Earth’s surface covered by cryosphere is 0, and at temperatures $\leq -27^\circ C$, the fraction of Earth’s surface covered by ice is 1. As the surface area of the Earth covered by ice increases at temperature decreases, the relative areas of the exposed oceans and continents decrease in proportion to the relative proportions of ocean (71%) and continents, or land (29%), today (Fig. 4).

To summarize, we assume that the amount of water in the cryosphere varies linearly with temperature. Moreover, the decrease in continental surface area covered by permanent ice scales with the migration of the ice caps away from the equator as global average temperature increases. As a result, the amount of H$_2$O contained in the cryosphere increases with decreasing average global temperature over the range -27°C to +18°C.

2. Variations in the BIOc reservoir

At present, the BIOc reservoir contains 2.9×10^{15} kg of H$_2$O (Bodnar et al., 2013), and before 444 Ma plant life was essentially non-existent on the continents. The manner in
Figure 4: Relationship between the relative amount of the Earth’s surface covered by ice (Cryosphere), oceans, and continents as a function of average global temperature. These areas, in turn, constrain the relative sizes of the cryosphere, oceans and surface water reservoirs that are available to interact with and exchange water with other reservoirs in the hydrologic cycle. “Cryogenian” refers to snowball-Earth conditions at ~700 Ma when the planet’s surface is completely covered in ice and the continents and oceans are not exposed to the atmosphere. “Greenhouse” refers to conditions when polar ice did not exist. “Present-Day” indicates the proportions of the Earth’s surface covered by cryosphere, oceans, and continental surface area at the present-day temperature of 14.6°C. For simplicity, we assume that the oceans and continents are distributed evenly across the entire surface of the Earth. Thus, as the surface area of polar ice linearly decreases from 100% starting at -27°C, the surface areas of both the continents and the oceans linearly increase.
which the size (amount of water) of the BIOc reservoir has varied over time is uncertain, and here we describe several plausible scenarios to estimate the amount of water contained in the continental biosphere during the Phanerozoic. We assume that no significant biomass existed on the continental surface before the Silurian (~0.0 kg wet biomass; 444 Ma) and that the amount of biomass on the continents today is ~2.9x10^{15} kg wet biomass. The simplest case for growth of the size of the continental biosphere is to assume that the amount of biomass has increased linearly, starting from 0 (zero) at 444 Ma to the present value (Fig. 5). Alternatively, we might assume that the rate of change in the amount of water contained in the continental biosphere during the Phanerozoic is related to the temporal change in size of organisms during the Phanerozoic. Various workers have noted an increase in average organism size during the Phanerozoic and conclude that if organism size increases and the abundance of organisms remains constant over time, then the total amount of biomass contained in the organisms increases (Bambach, 1993; Cope, 1887). Other workers observe that the biomass of Cenozoic mammals increases to a particular optimum mass, depending on the species (Alroy, 1998). Kingsolver and Pfennig (2004) report that this qualitative pattern of selection on size and other traits holds for all taxonomic groups, including plant life. Several mechanisms have been proposed to explain the increase in biomass, including an increase in available nutrients (Bambach, 1993; Martin, 1996) and an increase in nutrient uptake efficiency (McMenamin and McMenamin, 1994). Other workers suggest that the mechanisms and constraints associated with the increase in organism size with time vary between different organisms (Hone and Benton, 2005).

As one means to estimate the increase in the amount of water in the continental biosphere that is consistent with observations related to organism size, we can assume that the
Figure 5: Effect of different models for growth of the continental biosphere over the past 444 Ma. All four scenarios assume that the continental biosphere contains 0.0 kg of H₂O at 444 Ma and increases to the present value of 2.9×10^{25} kg H₂O. The red line labeled “Linear Growth” assumes a constant (linear) rate of biomass increase and corresponds to an increase in the amount of H₂O in the continental biosphere of 6.5×10^{12} kg/Ma during the past 444 Ma. The blue curve labeled “Body Mass Optimization” assumes that the increase in the amount of H₂O in the continental biosphere follows the biological optimum for all continental organisms (Alroy, 1998). Accordingly, the rate of growth of the amount of H₂O in the continental biosphere is high during the early Phanerozoic and decreases towards the present. The green irregular growth curve labeled “Biodiversity” assumes that the increase in the amount of H₂O in the continental biosphere is proportional to variations in the number of plant family taxa during the Phanerozoic (Benton, 1993; 1995). This scenario indicates that the amount of water in the continental biosphere was significantly less than the modern value for most of the Phanerozoic and increased rapidly to present values over about the past 150 Ma. The orange curve labeled “Colonization Curve” assumes that the increase in the amount of H₂O in the continental biosphere is proportional to the influence or “forcing” of land plant colonization on global chemical cycles. This model suggests that the size of amount of water contained in the continental biosphere increased rapidly from about 444 to 300 Ma and then remained fairly constant to the present time (after Bergman et al., 2004).
current amount of water in the continental biosphere is the “optimum” wet biomass, and
then calculate the rate of change in the amount of water in the continental biosphere
required to achieve the current value, starting from 0.0 kg at 444 Ma (Fig. 5). This results
in a rapid increase in the amount of water in the continental biosphere early, and a more
gradual increase later.

A third approach to estimate the growth of the continental biosphere during the
Phanerozoic is to relate the increase in continental biomass to biological diversity (Fig.
5). The total number of land plant taxonomic families preserved in the fossil record has
increased since the beginning of the Silurian. The number of major flora family taxa has
increased from 19 at 444 Ma to 1,519 today (Sepkoski, 1993; Benton, 1993). We
recognize that the diversity of plant taxa may not equate to plant biomass abundance
(Smith, 2007) because the fossil record is sampled from geographically (and
geo)logically accessible rock, and some areas are better preserved in the rock record and
are studied in more detail than others. The fossil record also contains many
unconformities representing missing strata and, therefore, does not provide a continuous
record of life on Earth. Furthermore, each available part of the fossil record represents a
local environment at a discrete time, which may not faithfully represent the average
global environment. Thus, the abundance and diversity of fossils found in a specific
location may not accurately represent the global abundance of life at that time. Smith
(2007) also argues that inconsistent taxonomic categorization affects our understanding
of biological diversity. Previous workers have shown that certain species of
morphologically similar crinoids are given different names depending on the epoch in
which the fossil is discovered (Ausich and Peters, 2005); a species may be “extinct” in
one epoch while another species “originates” in the next epoch without changing
morphology. This mis-categorization skews our understanding of extinction and species origination over time. Also, as the taxonomic classification of organisms becomes more specific (e.g., family to genus to species), the average duration of an organism’s existence decreases (Peters, 2006), i.e., the duration of a particular species within a family will be shorter than that of the family itself. Furthermore, the number of species in a given family varies by either biological diversification or sampling bias; previous workers show that more species are assigned to later families than earlier families (Flessa and Jablonski, 1985). Recognizing all of these limitations and uncertainties, if we assume that the amount of water scales with the variation in diversity, the continental biosphere would have contained little water early in the development of plant life on the continents and the amount of water in the BIOc reservoir would have increased slowly from about 444 Ma to about 150 Ma, followed by a dramatic increase during about the past 150 Ma (Fig. 5).

A fourth approach to estimate the growth of the continental biosphere on Earth during the past 444 Ma is to assume that plant biomass correlates with other geochemical cycles. The COPSE model of biogeochemical cycling during the Phanerozoic examines the role of land plant evolution and colonization on the global carbon, oxygen, phosphorus and sulfur cycles (Bergman et al., 2004). In this scenario, land plants represent a “forcing” value where 0 indicates that plants do not influence geochemical cycles (and would represent times when no land plants were present), and a value of 1 correlates with the modern impact of plants on geochemical cycles. The results of Bergman et al. (2004) suggest that land plant forcing increases from zero during the late Ordovician to 1.0 during the late Carboniferous and remains constant throughout the remainder of the Phanerozoic (Fig. 5). As such, the amount of water contained in the continental biosphere increases rapidly from nil to modern values during the late Ordovician to late
Carboniferous, and is then constant for the remainder of the Phanerozoic. These results
are consistent with the global spread of vegetation and the development of forests in the
fossil record (Benton, 1993).

Some workers have suggested that rather than increasing, plant biomass has
decreased during the last 500 Ma (Franck et al., 2006). Based on analysis of the carbon
cycle, these workers report that biomass will continue to decrease and that all biomass
will disappear from Earth in about 1.6 Gy.

Owing to an incomplete understanding of how plant biomass and the related size of
the continental biosphere portion of the hydrologic cycle have evolved during the past
444 Ma, we assume a linear growth model. Thus, the size of the continental biosphere has
increased linearly from 0 at 444 Ma to 2.9×10^{15} kg of H$_2$O today. This growth
corresponds to an increase in the amount of water contained in biomass on the continents
of $\sim 6.5 \times 10^{12}$ kg H$_2$O/Ma during the past 444 Ma (Fig. 5). Thus, the amount of water in
the continental biosphere at any time during the past 444 Ma is given by:

$$M_{BIOe} = 6.5 \times 10^{12} \times (444 - t)$$

where t is the time of interest (Ma), i.e., millions of years before the present.

It is plausible that other environmental and evolutionary factors also influence the
impact of plant life during the Phanerozoic. For example, extinction events destroy a
significant portion of plant life, reducing plant biomass and likely modifying the effect
that plants have on geochemical cycles. However, owing to the observation that the
amount of plant biomass returns to pre-extinction values “instantly” (over hundreds of
thousands of years), the loss and recovery of plant biomass during and after extinction
events is too rapid to observe on the 1 Ma time steps of our model. In order to refine how
variations in continental biomass influence the whole-Earth hydrologic cycle requires a
better understanding of variations in plant abundances and biomass over shorter time scales ($10^4 - 10^5$ years).

3. Variations in the Atmosphere Reservoir (ATM)

The atmosphere reservoir (ATM) consists of all water from the surface of the Earth to the edge of the troposphere at ~12 km altitude (Barry and Chorley, 2009). Previous workers (Trenberth and Smith, 2005) estimated that the total mass of the atmosphere (including all volatile components) is $\sim 5.6 \times 10^{18}$ kg, and that the modern atmosphere contains $\sim 1.3 \times 10^{16}$ kg H$_2$O (Berner and Berner, 1987; Drever, 1988; Bodnar et al., 2013).

The water-carrying capacity of the atmosphere (for a given relative humidity) is controlled mainly by temperature (c.f., Lawrence, 2005), and increases exponentially as temperature increases, doubling for approximately every ten degree Celsius increase in temperature. At constant temperature, the amount of water in the atmosphere also increases with increasing relative humidity (Fig. 6). The current average global temperature is 14.6°C (NOAA National Climatic Data Center, 2015) and the relative humidity on Earth today varies over a wide range. In Antarctica and in the Amazon rain forest the relative humidity is typically about 80-90%, although the “carrying capacity” of the atmosphere in the Amazon is much higher than that of Antarctica owing to the large average temperature difference. The Sahara desert and other higher temperature desert regions typically have relative humidity in the range 25-50%. The NOAA National Climatic Data Center (2015) reports that global average relative humidity has decreased by an average of $\sim 3.1\%$ per degree Celsius as global average temperature increased during the period from 1981 to 2010. The variation in average global relative humidity with temperature will also vary depending on the distribution of land and
Figure 6: Relationship between the amount (mass) of water in the atmosphere as a function of global average temperature and relative humidity (RH). Inset: Variations in global average temperature and climatic conditions during the past 700 Ma (see Figure 2). Individual curves show the amount of water in the atmosphere as a function of temperature for various choices of relative humidity, ranging from 5 to 100%. The modern global average relative humidity is 77%. The vertical line at 14.6°C represents the current average global temperature, and the shaded area represents the possible range in temperature and relative humidity, and corresponding amount of water in the atmosphere, during the Phanerozoic.
oceans relative to the equator, as well as on the distribution of land masses, i.e., presence
of a supercontinent versus multiple separated continental land masses. Here, we have
assumed a constant average relative humidity during the past 700 Ma that is equal to the
current average relative humidity on Earth (see further justification for this below), owing
to our inability to offer defensible and realistic estimates of how average relative
humidity might have varied in the geologic past.

Willett et al. (2014) have shown that the average relative humidity over landmasses is
~70%, and the average relative humidity over the oceans is ~80%. Approximately 29% of
Earth’s surface is covered by land and the remaining 71% of the planet is covered by
oceans, ignoring parts of the oceans and continents that are covered by permanent ice.

Tardy et al. (1989) estimated that continental area has varied from about 125 × 10^6 km^2 to
187 × 10^6 km^2 during the Phanerozoic and that the ocean area has varied from 323 × 10^6
km^2 to 385 × 10^6 km^2 during this time. Thus, continents (area above sea level) has varied
from ~24.5% to ~36.7% of the Earth’s surface during the Phanerozoic, with relatively
more land area at 600 Ma, 200 Ma and at the present, and relatively less continental area
at 450 Ma and 100 Ma. Tardy et al. (1989) note that, while the proportions of land and
ocean have varied during the Phanerozoic, the average land area during the Phanerozoic
has been about 30%, or the same as the modern value. Thus, we use the modern
proportion of land surface to ocean surface to estimate a modern average global relative
humidity of 77% (Fig. 6).

To estimate variations in the amount of water in the atmosphere as global average
temperature varies during the Phanerozoic, we use the relationships between temperature,
the vapor pressure of water, relative humidity, and the molar masses of water and dry air
to calculate the specific humidity of the atmosphere. The vapor pressure of water in air $(e; \text{hPa})$ can be quantified as a function of temperature (T) (Lowe and Ficke, 1974):

$$e(T) = 6.1078 + 0.433 T + 1.42 \times 10^{-2} T^2 + 2.65 \times 10^{-4} T^3 + 3.031 \times 10^{-6} T^4 + 2.034 \times 10^{-8} T^5 + 6.137 \times 10^{-11} T^6$$ \tag{11}

We relate the vapor pressure of water in air to relative humidity (RH), representing the percentage of water vapor needed to saturate air at a given temperature. RH is related to the partial pressure of water in air ($P_{\text{H}_2\text{O}}$) and the vapor pressure of water at a given temperature (Eqn. 11) as follows:

$$RH = \left(\frac{P_{\text{H}_2\text{O}}}{e(T)} \right) * 100$$ \tag{12}

For a given temperature, we calculate $P_{\text{H}_2\text{O}}$ and relate that to the volume mixing ratio of water in air ($x_{\text{H}_2\text{O}}$), which is also related to the nominal pressure of the atmosphere at sea level (1013.25 hPa):

$$x_{\text{H}_2\text{O}} = \frac{P_{\text{H}_2\text{O}}}{p}$$ \tag{13}

Using Equations 11, 12, and 13, we relate the volume mixing ratio of water vapor in air to relative humidity and vapor pressure as a function of temperature according to:

$$x_{\text{H}_2\text{O}} = \frac{RH \cdot e(T)}{P \cdot 100}$$ \tag{14}

and use the volume mixing ratio of water in air to calculate specific humidity (q), which represents the mass ratio of water vapor to the total mass of air in a given system (kg H$_2$O/kg air). Specific humidity is then described by the volume mixing ratio of water in air ($x_{\text{H}_2\text{O}}$) as follows:

$$q = \frac{\text{kg} \text{ H}_2\text{O}}{\text{kg} \text{ air}} = \frac{x_{\text{H}_2\text{O}} \cdot M_{\text{H}_2\text{O}}}{(x_{\text{H}_2\text{O}} \cdot M_{\text{H}_2\text{O}}) + [(1-x_{\text{H}_2\text{O}}) \cdot M_{\text{dry}}]}$$ \tag{15}

where $M_{\text{H}_2\text{O}}$ is the molar mass of water (18.015 g/mol) and M_{dry} is the molar mass of dry air (28.96 g/mol). Above we have described $x_{\text{H}_2\text{O}}$ as a function of temperature. Thus, we
can calculate variations in specific humidity as a function of temperature, specific
humidity, and the amount of air in the atmosphere \(5.6 \times 10^{18}\) kg; Trenberth and Smith,
2005) to estimate the amount of water in the atmosphere as a function of global average
temperature (Fig. 6).

To summarize, we assume that the total mass of the atmosphere and the average
global relative humidity remain constant through time, and we use variations in
temperature to calculate the specific humidity of the atmosphere and estimate the amount
of water in the ATM reservoir. As average global temperature increases, the amount of
water in the atmosphere increases, as expected, and varies from \(5.24 \times 10^{14}\) kg at -27°C to
\(2.14 \times 10^{16}\) kg at 22.5°C (Fig. 6).

4. Variations in the Surface Water Reservoir (SW)

The surface water reservoir (SW) includes all water above the water table (and land
surface) that is not contained in the ocean reservoir, and includes lakes, rivers, swamp
water, and soil moisture (Gleick, 1996; Bodnar et al., 2013). The size of the surface water
reservoir has been estimated by various methods, with a general consensus that the SW
reservoir contains \(~2.07 \times 10^{17}\) kg H\(_2\)O (Berner and Berner, 1987; Gleick, 1996; Bodnar et
al., 2013). We relate variations in the amount of H\(_2\)O contained in the surface water
reservoir during the Phanerozoic to the area of the continents that is open to the
atmosphere, i.e., continental surface that is not flooded by oceans nor covered by glaciers
and polar ice. This assumes that the amount of water in the surface water reservoir varies
linearly with continental surface area. The current subaerial surface area of the continents
is \(~1.4 \times 10^8\) km\(^2\) (with a current ocean surface area of \(~3.6 \times 10^8\) km\(^2\) and a current CRYO
reservoir surface area of \(~1.63 \times 10^7\) km\(^2\)). We recognize that the amount of surface water
per unit area of continental surface area varies widely across the globe, depending on the location of the continent relative to the equator, and the location on the continents relative to the oceans (or other large bodies of water) and/or physiographic features such as mountains that affect global atmospheric circulation patterns. However, in the absence of detailed information concerning how these factors varied in the geologic past, we relate the fraction of exposed continental surface to the fraction of Earth’s surface area covered by polar ice (Eqn. 9) as average global temperature varies from -27°C to 18°C:

\[
SA_{\text{exposed continent fraction,}T} = \begin{cases}
0 & T \leq -27^\circ C \\
1 - SA_{\text{CRYO fraction,}T} & -27^\circ C \leq T \leq 18^\circ C \\
1 & T > 18^\circ C
\end{cases}
\]

(16)

Thus, at temperatures $\geq 18^\circ C$, the fraction of exposed continental surface area is 1, and at temperatures $\leq -27^\circ C$, the fraction of exposed continental surface is 0. Additionally, as described above, while the proportion of the Earth’s surface occupied by subaerial land masses has varied from about 25-37% during the Phanerozoic, the average is similar to the modern value. As such, we apply this relationship to the size of the SW reservoir accommodated by exposed continental surface (Eqn. 16):

\[
M_{SW, T} = (2.23 \times 10^{17} \times SA_{\text{exposed continent fraction,}T})
\]

(17)

where M_{SW} is the amount of water in the SW reservoir (kg). The variation in size of the surface water reservoir (amount of water) with changing average global temperature, plotted as the percent difference relative to the modern value, is shown on Figure 7. During snowball-Earth conditions ($\leq -27^\circ C$), the amount of water in the SW reservoir is zero because the entire continental surface is covered by ice. As temperature increases, the amount of water in the SW reservoir increases as more continental surface is exposed.
Figure 7: Relationship between global average temperature and the relative amounts of water in the atmosphere, cryosphere, oceans, and surface water reservoirs, all shown relative to the amount of water in each reservoir today. At -27°C, “snowball-Earth” conditions prevail and the CRYO reservoir contains 4.39×10^{20} kg H$_2$O, or 1,235% more than the amount of water in the CRYO reservoir at present (3.32×10^{19} kg H$_2$O). As global average temperature decreases and the CRYO reservoir grows, water added to the cryosphere is removed from the oceans, resulting in a ~-30% decrease in the amount of water in the oceans compared to the modern value. During snowball Earth conditions, the continental surface is completely covered by ice and the amount of water in the surface water reservoir is zero, or -100% of the modern value. The amount of water in the atmosphere decreases as global average temperature decreases, and the atmosphere contains 96% less water at -27°C compared to the modern value. As global temperature increases, polar ice melts and returns to the oceans. Also, continental ice masses shrink and expose the continental surface, increasing the area that can accommodate the surface water reservoir. Thus, as global average temperature increases to greenhouse conditions (18°C), the amount of water in CRYO decreases to zero and the amounts of water in the oceans, surface water, and atmosphere reservoirs increase by 2%, 8%, and 24%, respectively, compared to their present values.
until it reaches a maximum value of 2.23×10^{17} kg H2O at 18°C when the fraction of exposed continents is 1 (i.e., when no permanent ice covers the land surface).

5. Variations in the Groundwater Reservoir (GW)

The groundwater reservoir (GW) contains all pore and fracture-bound water in the Earth’s crust between the water table and an arbitrarily depth of 4 km (Berner and Berner, 1987; Bodnar et al., 2013). Below this depth, rock porosity is generally very low, the temperature is elevated, and the water is often very saline. Thus, water below this depth in the crust is considered to be part of the continental crust reservoir rather than the GW reservoir, as described by Bodnar et al. (2013), and is included in the geosphere water cycle rather than the exosphere described here. The amount of water in the groundwater reservoir between the water table and 4 km depth has been estimated by various methods, with a general consensus that the groundwater reservoir contains about 1.05×10^{19} kg H2O (Berner and Berner, 1987; Shiklomanov, 1993; Gleick, 1996; Bodnar et al., 2013). Temporal variations in the amount of water in the GW reservoir are largely unknown; for simplicity, we assume that the amount of water in the GW reservoir remains constant throughout the Phanerozoic. The GW reservoir has no direct interaction with the CRYO reservoir and also does not interact directly with the continental biosphere (Fig. 1). Thus, assuming that the size of the GW reservoir has remained constant during the past 700 Ma is expected to have little impact on the overall water cycle as the CRYO reservoir waxes and wanes during the past 700 Ma and as the BIOc reservoir grows over the past 444 Ma.

6. Variations in the Ocean Reservoir (Oceans)
The amount of water in the modern oceans is \(\sim 1.37 \times 10^{21} \) kg (Bodnar et al., 2013). While changes in global sea level during a portion of the Phanerozoic have been estimated, the variations are influenced not only by the amount (mass) of water in the oceans but also by changes in ocean bathymetry related to seafloor spreading rates (Müller et al., 2008). As such, estimates of relative sea level cannot be related directly to the total amount of water in the oceans. Owing to this, the total amount of water in the exosphere is assumed to be constant in our model, with water either added to or removed from the oceans to maintain a constant total mass of water in the exosphere during the Phanerozoic. Accordingly, the amount of water in the ocean reservoir \(M_{\text{OCEAN}} \) equals the total amount of water in the exosphere \(M_{\text{EXO}} \) minus the sum of the amounts of water in other five reservoirs comprising the exosphere:

\[
M_{\text{OCEAN}} = M_{\text{EXO}} - (M_{\text{CRYO}} + M_{\text{ATM}} + M_{\text{BIOC}} + M_{\text{SW}} + M_{\text{GW}})
\] (18)

As discussed above, the surface area of the oceans is influenced by the areal extent of the CRYO reservoir and can be linked to the movement of water between the atmosphere and ocean reservoirs. We describe relationships between the surface areas of the CRYO and SW reservoirs as functions of temperature, and we use a similar relationship between the surface area of the oceans and temperature that is related to the growth and retreat of permanent ice caps. We relate the fraction of exposed ocean surface to the fraction of Earth’s surface area covered by permanent ice (Eqn. 9) in the range of -27°C and 18°C, according to:

\[
SA_{\text{exposed ocean fraction},T} = \begin{cases}
0 & T \leq -27^\circ C \\
1 - SA_{\text{CRYO fraction},T} & -27^\circ C \leq T \leq 18^\circ C \\
1 & T > 18^\circ C
\end{cases}
\] (19)
During periods when the global average temperature was greater than 18°C, permanent ice did not exist, and at temperatures lower than -27°C, the Earth is completely covered in ice. Thus, at temperatures \(\geq 18^\circ \text{C} \), the fraction of exposed ocean surface area is 1, and at temperatures \(\leq -27^\circ \text{C} \), the fraction of exposed ocean surface is 0. We will later link this relationship to variations in the amounts of water transferred between the atmosphere and ocean reservoirs.

7. Summary

During the past 700 Ma the amount of water contained in the various reservoirs comprising the exosphere has varied (Fig. 8). Much of the variation can be directly related to changes in average global temperature (Fig. 8, top panel). Thus, as average global temperature increases, the size of the ATM, SW and ocean reservoirs increase, whereas the size of the CRYO reservoir decreases (Fig. 8). The size of the continental biosphere is not linked directly to temperature and is assumed to increase linearly from zero at 444 Ma to the present value, with minor and short-lived decreases in the size of the BIOc reservoir associated with extinction events (Fig. 8).

Algorithms Describing Variations in the Fluxes of Water Between Exosphere Reservoirs in Deep Time

1. Water flux from the atmosphere to the cryosphere

The total amount of water that falls from the atmosphere to the Earth’s surface as precipitation today is \(\approx 4.96 \times 10^{17} \) kg/yr (Berner and Berner, 1987; Schlesinger, 1997; Reeburgh, 1997). For purposes of this study we describe the total amount of precipitation to Earth’s surface as the sum of precipitation to the cryosphere, the non-ice-covered
Figure 8: Schematic representation of the variation in the sizes (mass of water) contained in the various reservoirs of the hydrologic cycle during the past 700 Ma, all compared to the size that reservoir today (Modern value). On the temperature plot (A) the yellow shaded areas correspond to periods when the average global temperature was ≥18°C and greenhouse conditions prevailed and polar ice did not exist (see the dashed lines on the CRYO panel C). Note that each panel is schematic and not to scale – the lines are only intended to highlight times during the past 700 Ma when the amount of water in a given reservoir was greater than or less than modern values, and when those changes occurred. Dashed lines in the CRYO and continental biosphere panels represent times when those reservoirs were absent and not included in the hydrologic cycle.
continents (whereby the water becomes part of the surface water reservoir), and the oceans:

\[F_{\text{Total Ptn.}} = F_{\text{CRYO Ptn.}} + F_{\text{SW Ptn.}} + F_{\text{Ocean Ptn.}} \] \hspace{1cm} (20)

While some portion of the total global precipitation falls onto glaciers and polar ice (mostly as solid H\textsubscript{2}O) and is incorporated into the CRYO reservoir, most earlier studies only described precipitation over the continents and over the oceans, and did not consider the amount of water that is transferred directly from the ATM to the CRYO reservoir as a separate flux. Based on estimates by Bentley and Giovinetto (1992) and Ohumura and Reeh (1991) concerning annual snow accumulations in Antarctica and Greenland, Bodnar et al. (2013) estimated a modern flux of water from the atmosphere to the CRYO reservoir of 2.2\times10^{15} \text{kg/yr}. The proportion of total precipitation that falls onto glaciers and polar ice is expected to vary as a function of global average temperature and the portion of Earth’s surface area covered by ice. Previous workers have included estimates of global precipitation during the Phanerozoic in global CO\textsubscript{2} cycle models (Tardy et al., 1989). Other workers have observed that precipitation increases by \sim 23\% for every 1\textdegree C increase in average global temperature (Liu et al., 2009). The change in amount of precipitation with temperature reported by Liu et al. (2009) is an order of magnitude greater than that estimated by other climate models (reported by Sun et al., 2007). However, the aforementioned models underestimate precipitation flux relative to the 7\% per \textdegree C increase estimated by Trenberth et al. (2003). Here, we assume that precipitation increases by 7\% per degree Celsius, as proposed by Trenberth et al. (2003). Thus, the flux of water from the atmosphere to the Earth’s surface \((F_{\text{Total Ptn.}}; \text{kg/yr})\) is related to average global temperature \((T)\) as follows:

\[F_{\text{Total Ptn.},T} = 1.785 \times 10^{17} e^{0.07\times(T)} \] \hspace{1cm} (21)
where \(1.75 \times 10^{17}\) represents the flux at 0°C (i.e., when \(T=0\), \(e^{0.07(T)} = 1\)).

Precipitation rate varies as a function of latitude (Tardy et al., 1989), regional geography and topography (Fawcett and Barron, 1998) and local temperature (Liu et al., 2009), and Tardy et al. (1989) report that the amount of precipitation per unit area increases from the poles to the equator. Above we estimated the manner in which the latitudinal extent of permanent ice varies with temperature. As temperature decreases to -27°C and permanent ice extends to the equator, the area of Earth’s surface occupied by the cryosphere reservoir increases. Here, the fluxes of water from the atmosphere to the CRYO reservoir, to the continents (SW), and to the oceans are functions of the relative surface areas of those reservoirs. We express global precipitation rate as a function of temperature, and we define the areal extent of the CRYO reservoir on the surface of the Earth as a function of the amount of water in the CRYO reservoir, which, in turn, is a function of temperature. Thus, the flux of water from the atmosphere to the CRYO reservoir at a given temperature \(F_{\text{CRYO pptn.}T}\) is a function of the fraction of Earth’s surface area covered by the CRYO reservoir at that temperature \(SA_{\text{CRYO fraction}T};\) Eqn. 9) and the flux of water from the atmosphere to the Earth’s surface at that temperature \(F_{\text{Total pptn.}T};\) Eqn. 17) (Fig. 9):

\[
F_{\text{CRYO pptn.}T} = F_{\text{Total pptn.}T} \times (SA_{\text{CRYO fraction}T})^2
\]

Here, the modern flux of water from the atmosphere to the CRYO reservoir is \(2.83 \times 10^{15}\) kg/yr, consistent with the estimate of Bodnar et al. (2013). The variation in flux of water from the atmosphere to the cryosphere as a function of temperature is shown on Figure 9, plotted as percent change in flux relative to the modern flux. Note that the flux reaches a maximum at about -10°C and decreases at temperatures above and below -10°C. This behavior reflects the competing effects of temperature and surface
Figure 9: Relationship between the global average temperature and the fluxes of water into and out of the cryosphere, relative to the fluxes into and out of the cryosphere today (average global temperature 14.6°C). During the “Cryogenian” (T ≤ -27°C) the planet is covered in an ~1 km thick shell of ice and at temperatures above 18°C, no polar ice exists on Earth. The amount of water that is transferred from the atmosphere to the cryosphere is a function of both global average temperature and the surface area of the cryosphere. As temperature increases from -27°C, the amount of precipitation per unit area of the CRYO reservoir increases, while at the same time the total surface area of the cryosphere decreases. Thus, as temperature increases from -27°C to ~10.5°C, the total flux of water from the atmosphere to the cryosphere is dominated by the temperature effect, whereas at higher temperatures (>10.5°C) the decreasing surface area of the cryosphere dominates. As a result, the total flux of water from the atmosphere to the cryosphere reaches a maximum at ~10.5°C and decreases as temperature increases or decreases from this tipping point. See text for additional details.
area of the CRYO. As temperature increases the flux per unit area increases, but as
temperature increases the total area of the CRYO reservoir decreases. Thus, as
temperature increases from -27°C, the flux from the atmosphere to the cryosphere
increases as the effect of increasing temperature is greater than the effect of decreasing
CRYO surface area. At temperatures above -10°C the effect of decreasing surface area of
the CRYO reservoir is greater than that of increasing temperature, and the flux
continuously decreases until the CRYO reservoir is completely gone at 18°C. Also note
that, as discussed above, permanent ice did not exist during greenhouse periods; i.e., the
amount of water in the CRYO reservoir was zero. As such, during periods when polar ice
did not exist, there would be no flux of water into and out of the (non-existent) CRYO
reservoir. The variation in the flux of water from the atmosphere to the CRYO reservoir
during the past 700 Ma is shown in Figure 10.

2. Water flux from the cryosphere to the atmosphere

Sublimation occurs when solid ice transitions directly into the gas phase at low
temperature, in the absence of melting to produce a liquid phase. Previous workers have
estimated that the amount of water transferred from the CRYO reservoir to the
atmosphere via sublimation today is $\sim 2.0 \times 10^{14}$ kg/yr (Bodnar et al., 2013). The rate of
sublimation (or ablation) from the CRYO reservoir is controlled by relative humidity,
wind speed, ice surface area and, to a lesser extent, temperature (Wagnon et al., 1999;
Bliss et al., 2011). Variations in these driving factors in the geologic past are unknown
and not easily estimated without large uncertainties. As discussed above, we estimate
variations in the surface area of the CRYO reservoir in the past as a function of the
amount of water in the CRYO reservoir, and we assume that average global relative
Figure 10: Variations in fluxes of water into and out of the CRYO reservoir, all calculated as the change in flux relative to the modern value.
humidity is similar to the modern value. Here, the flux of water from the CRYO reservoir to the atmosphere \(F_{\text{Sublimation},T}\) is related to the modern water flux from the CRYO reservoir to the atmosphere \(F_{\text{Sublimation,modern}}\) and is assumed to vary in proportion to the fraction of the earth’s surface area occupied by the CRYO reservoir \((S_{A_{\text{CRYO fraction},T}}; \text{Eqn. 9})\) compared to the modern CRYO surface area \((S_{A_{\text{CRYO fraction,modern}}})\):

\[
F_{\text{Sublimation},T} = F_{\text{Sublimation,modern}} \times \frac{S_{A_{\text{CRYO fraction},T}}}{S_{A_{\text{CRYO fraction,modern}}}} \tag{23}
\]

As discussed above, the flux of water from the CRYO to the ATM is zero during greenhouse conditions \((T\geq18^\circ\text{C})\) when permanent ice is absent. The variation in the flux of water from the CRYO reservoir to the atmosphere during the past 700 Ma is shown in Figure 10.

3. Water flux from the oceans to the cryosphere

Seawater freezes to form sea ice during polar winters and melts into the oceans during polar summers. Due to this seasonal cycling, the net amount of water transferred between the cryosphere and oceans on an annual basis is zero as long as the average global temperature remains constant. We recognize, however, that during the past few decades there has been a net transfer of water from the cryosphere to the oceans in response to increasing average global temperature. Workers have measured the decrease in Antarctic sea ice cover during summer and estimated that \(\sim1.5 \times 10^{16}\ \text{kg/yr}\) of water is transferred from the CRYO reservoir to the oceans via sea ice melting \((\text{Parkinson, 1996})\). Here, we use this value and assume that the amount of water transferred from the oceans to the CRYO reservoir today is \(1.5 \times 10^{16}\ \text{kg/yr}\).
While the history of glaciations during the Phanerozoic is reasonably well-understood (Soreghan et al., 1999; Zachos et al., 2008), temporal variations in water fluxes related to the CRYO reservoir are difficult to constrain. As the amount of water in CRYO increases, the extent of sea ice coverage away from the poles also increases. This means, in turn, that the change in surface area covered by ice corresponding to a one degree Celsius decrease in temperature increases with decreasing temperature. Stated differently, the amount of ice that undergoes seasonal melting/freezing at an average global temperature of 10°C is much less than the amount that undergoes seasonal melting at an average global temperature of 0°C. Thus, we relate variations in the flux of water from oceans to the CRYO reservoir to the amount of water present in the CRYO reservoir which, in turn, is related to the surface area covered by ice. Above, we described how the amount of water in the CRYO reservoir varies as a function of average global temperature. Here, the flux of water from the oceans to the CRYO reservoir at a given temperature \(F_{\text{Sea Ice Freeze},T} \) is a function of the relative amount of water in CRYO at that temperature \(M_{\text{CRYO},T} \); Eqn. 6), the modern amount of water in CRYO \(M_{\text{CRYO, modern}} \), and the modern flux of water from the oceans to CRYO \(F_{\text{Sea Ice Freeze, modern}} \) (Fig. 9).

\[
F_{\text{Sea Ice Freeze},T} = F_{\text{Sea Ice Freeze, modern}} \frac{M_{\text{CRYO},T}}{M_{\text{CRYO, modern}}} \tag{24}
\]

As discussed above, this flux approaches zero when the CRYO reservoir is absent during greenhouse periods. The variation in the flux of water from the oceans to the CRYO reservoir during the past 700 Ma is shown in Figure 10.

4. Water flux from the cryosphere to the oceans
Sea ice annually melts into the oceans during polar summers, and we assume that the amount of water removed from the oceans and incorporated into ice at one pole during its winter season is balanced by the amount of ice melted into the oceans during summer at the other pole (see above). Previous workers have measured the decrease in Antarctic sea ice cover during the austral summer and estimated that $\sim 1.5 \times 10^{16}$ kg/yr of water is transferred from CRYO to the oceans via melting (Parkinson, 1996). Other workers (Bodnar et al., 2013) have examined fluxes of water from the Antarctic continent to the oceans via glacial calving ($\sim 2 \times 10^{15}$ kg/yr; Allison, 1996) and estimated that the amount of water transferred from CRYO to the oceans by this process is 1.7×10^{16} kg/yr.

As discussed above, estimates of temporal variations in fluxes of water into and out of the CRYO reservoir are highly uncertain. Here, we follow the method of Bodnar et al. (2013) and calculate the flux of water from the CRYO reservoir to the oceans by mass balance, assuming that the sum of the fluxes into the CRYO reservoir (precipitation, sea ice freezing, and continental glacial advance; Eqns. 22, 24, 27) minus the sum of fluxes out of the CRYO reservoir (sublimation and continental glacial retreat; Eqns. 23, 26) equals the flux of water from the cryosphere to the oceans:

$$
F_{\text{Sea Ice Melt}, T} = (F_{\text{CRYO Pptn}, T} + F_{\text{Sea Ice Freeze}, T} + F_{\text{Glacial Advance}, T}) - (F_{\text{Sublimation}, T} + F_{\text{Deglaciation}, T})
$$

As such, we estimate a modern flux of water from CRYO to the oceans of 1.73×10^{16} kg/yr, consistent with the estimate of Bodnar et al. (2013). As discussed above, the flux of water from the cryosphere to the oceans approaches zero as the amount of water in the CRYO reservoir approaches zero during greenhouse conditions. The variation in the flux of water from the CRYO reservoir to the oceans during the past 700 Ma is shown in Figure 10.
5. Water flux from the cryosphere to surface water

As polar ice melts during warming periods, water is transferred to the continental surface (and thus the SW reservoir) as melt water runoff. The Greenland ice sheet is the largest body of continental ice in the Northern Hemisphere and discharges \(\sim 400 \text{ km}^3 \) \((4 \times 10^{14} \text{ kg})\) of freshwater annually (Hawkings et al., 2015). Other bodies of continental ice (reported in Meier and Bahr, 1996) are orders of magnitude smaller than the Greenland ice sheet and discharge concomitantly less water annually, and we do not include fluxes of water from those smaller bodies in our melt water estimate. We recognize, however, that smaller subpolar glaciers have been decreasing in area and mass over the past several decades and increasing the flux of water from the cryosphere to SW (Dyurgerov and Meier, 2005).

Janssens and Huybrechts (2000) modeled mass balance variations in the Greenland ice sheet and reported an annual melt water runoff of \(\sim 2.81 \times 10^{14} \text{ kg/yr} \). Helm et al. (2014) report an annual ice loss of \(\sim 375 \text{ km}^3/\text{yr} \), or \(3.75 \times 10^{14} \text{ kg/yr} \), from the Greenland ice sheet during the past three years. Meier and Bahr (1996) estimate an annual flux from the Greenland ice sheet to surface melt water of \(5.4 \times 10^{14} \text{ kg/yr} \). Hanna et al. (2008) analyzed runoff data from 1958 to 2006 and estimated that melt water runoff has increased from \(\sim 2.75 \times 10^{14} \text{ kg/yr} \) in 1958 to \(\sim 3.88 \times 10^{14} \text{ kg/yr} \) in 2006. Here, we use a linear extrapolation of the trend over time reported by Hanna et al. (2008) to estimate a modern flux of water from the CRYO reservoir to the SW reservoir of \(4.1 \times 10^{14} \text{ kg/yr} \). This value is consistent with current observations of Greenland ice sheet melt water discharge (\(\sim 400 \text{ km}^3 \), Hawkings et al., 2015).
Previous workers have linked increases in melt water runoff to increases in global temperature (Hanna et al., 2008). As discussed above, the amount of H2O contained in the cryosphere decreases linearly with increasing average global temperature over the range -27°C to +18°C. During snowball-Earth conditions, all landmasses on Earth are covered by ice, thus there is no water transferred from ice to surface water. As global temperature increases from snowball-Earth conditions (-27°C), permanent ice recedes and exposes continental surface and the amount of water transferred from ice to surface water increases. During greenhouse conditions, no permanent ice exists on Earth and thus no water is transferred from the cryosphere to surface water. We use a linear extrapolation of the data reported by Hanna et al. (2008) to determine the amount of water transferred from the cryosphere to the surface water reservoir as a function of average global temperature. We then estimate variations in the flux of water from the CRYO reservoir to the SW reservoir over the temperature range -27°C to 18°C (Fig. 9):

\[F_{\text{Deglaciation},T} = (9.855 \times 10^{12} \times T) + 2.66 \times 10^{14} \]

As discussed above, when the average global temperature is -27°C or lower, the flux of water from the cryosphere to the surface water reservoir is zero. The variation in the flux of water from the CRYO reservoir to the surface water reservoir during the past 700 Ma is shown in Figure 10.

6. Water flux from surface water to the cryosphere

Glacial ice annually melts during polar summers and local surface water freezes during the winter and is incorporated into glacial ice. Here, we relate the flux of water from the surface water reservoir to the CRYO reservoir to glacial advance and melt water retention on the surface of the continents. Extensive discussion has taken place regarding
the decrease in volume of glaciers over the past several decades. Most studies of glacial expansion and retreat examine the mass balance of ice sheets as a function of precipitation, sublimation, melt water runoff, and melt water retention over the short term (<1 Ma) (Janssens and Huybrechts, 2000; Dyurgerov and Meier, 2005; Luthcke et al., 2006; Hanna et al., 2008; Helm et al., 2014). To estimate the effect of glacial expansion and retreat on fluxes of water between the cryosphere and surface water over longer (>1 Ma) time scales, we assume that the flux of water from the SW reservoir to the CRYO reservoir is equal to the flux of water from the CRYO reservoir to the SW reservoir (see above) at any average global temperature (Fig. 9):

\[F_{\text{Glacial Advance},T} = F_{\text{Deglaciation},T} \]

(27)

Here, the modern flux of water from the SW reservoir to CRYO is 4.1×10^{14} kg/yr, which balances the modern flux of water from CRYO to SW. The variation in the flux of water from the surface water reservoir to the CRYO reservoir during the past 700 Ma is shown in Figure 10.

7. Water fluxes from the atmosphere to surface water and to the oceans

Precipitation onto the continents weathers exposed rock and transfers the products of weathering to surface runoff. Bodnar et al. (2013) estimated that the modern annual flux of water from the atmosphere to SW is 1.1×10^{17} kg/yr. Today, the continents (SW reservoir) occupy ~29% of Earth’s total surface (including ice covered surface), but the relative subaerial surface area of the continents has varied with changes in sea level during the Phanerozoic. Furthermore, because global precipitation varies with latitude (Tardy et al., 1989), the latitudinal position and arrangement of the continents influences the amount of annual continental precipitation (Fawcett and Barron, 1998). We describe
the relationship between the surface areas of the continents and the size of the cryosphere as functions of global average temperature, such that as the surface area of polar ice linearly decreases from complete coverage of the planet at temperatures of -27°C (and lower) to zero coverage at temperatures of 18°C (and higher). Concomitantly, the surface areas of both the continents and the oceans that are not covered by ice linearly increase with increasing temperature (Fig. 4). Furthermore, as discussed above, as global average temperatures decrease and permanent ice extends toward the equator, the mid-latitudes at which the continents receive relatively higher precipitation per unit area are covered by ice. Thus, the amount of water transferred from the atmosphere to the continents further decreases as global average temperature decreases (Fig. 11). We describe the flux of water from the atmosphere to the SW reservoir (the continents) as a function of the total precipitation to Earth’s surface (Eqn. 20), the fraction of Earth’s surface occupied by the continents (29%, excluding ice coverage), and the fraction of Earth’s surface occupied by the CRYO reservoir (Eqn. 9):

$$F_{SW\ Ptn,T} = F_{Total\ Ptn,T} \times 0.29 \times (1 - S_{CRYO \ Fraction,T}^2)$$ \hspace{1cm} (28)

Here, the annual amount of water transferred from the atmosphere to the surface water reservoir today is 1.43×10^{17} kg/yr, consistent with previous estimates (Bodnar et al., 2013). The variation in the flux of water from the atmosphere to the surface water reservoir during the past 700 Ma is shown in Figure 12.

Most global precipitation falls onto the oceans. Bodnar et al (2013) estimated that the modern annual flux of water from the atmosphere to the oceans is 3.85×10^{17} kg/yr. As discussed above, we relate variations in the total amount of precipitation to Earth’s surface to changes in global average temperature. Furthermore, the total amount of precipitation to Earth’s surface is related to the amounts of precipitation to the CRYO and
Figure 11: Relationship between global average temperature and fluxes of water into and out of the surface water reservoir, plotted as a percent change from modern values. All fluxes tied to the surface water reservoir change by the same relative amount as the size of the SW reservoir varies, mostly in response to variations in precipitation rates and exposed area of the continents not covered by ice. The inset shows the relationship between global average temperature and individual fluxes connected to the SW reservoir.
Figure 12: Variations in fluxes of water into and out of the atmosphere (ATM) reservoir, all calculated as the change in flux relative to the modern value.
SW reservoirs. Thus, the amount of water transferred from the atmosphere to the oceans is related to the total amount of water transferred from the atmosphere to the Earth’s surface, minus the amounts of water transferred directly from the atmosphere to the CRYO and SW reservoirs (Eqns. 21, 22, and 28), and each of these factors is in turn related to average global temperature (Fig. 13):

\[F_{\text{Ocean Ptn.}, T} = F_{\text{Total Ptn.}, T} - F_{\text{CRYO Ptn.}, T} + F_{\text{SW Ptn.}, T} \]

Accordingly, the modern flux of water from the atmosphere to the oceans is estimated to be \(3.5 \times 10^{17}\) kg/yr, consistent with previous estimates. The variation in the flux of water from the atmosphere to the oceans during the past 700 Ma is shown in Figure 12.

8. Water fluxes from surface water and from the oceans to the atmosphere

Evaporation from the continental surface includes evaporation from standing bodies of fresh water such as lakes, rivers, streams and swamps. In most assessments of the hydrologic cycle, evaporation and transpiration rates from the continents have traditionally been combined into a single value referred to as evapotranspiration (Berner and Berner, 1987). Bodnar et al. (2013) separated the evaporation and transpiration fluxes and estimated a modern flux of water from SW to the atmosphere (evaporation) of \(6.4 \times 10^{16}\) kg/yr. Recent studies have shown that the hydrogen isotopic composition (D/H) of meteoric waters and the average hydrogen isotopic composition of the atmosphere can be used to differentiate the amounts of water transferred to the atmosphere via transpiration and via surface water evaporation (Good et al., 2015). These workers determined that the amount of water evaporated from the continental surface to the atmosphere is ~26% of the total amount of water precipitated to the continents. Here, we use the estimated precipitation to the continents \((1.28 \times 10^{17}\) kg/yr) and the relationship
Figure 13: Relationship between the fluxes of water between the atmosphere and oceans (blue, purple) and the GW reservoir and oceans (red, orange) and global average temperature. See text for details.
between evaporation and precipitation reported in Good et al. (2015) to estimate that the modern annual amount of water transferred from the SW reservoir to the atmosphere is 3.34×10^{16} kg/yr, within an order of magnitude of previous estimates. Furthermore, we relate the flux of water evaporated from the SW reservoir to the atmosphere to the flux of water precipitated from the atmosphere to the continents (SW reservoir) (Eqn. 28) according to the proportions estimated by Good et al. (2015):

$$F_{SW \text{Evaporation},T} = 0.2608 \times F_{SW \text{Pptn},T}$$ \hspace{1cm} (30)

The temperature dependence of the flux of water from the surface water reservoir to the atmosphere is shown in Figure 11, and the variation in this flux during the past 700 Ma is shown in Figure 12.

Evaporation from the oceans has traditionally been calculated as the “balance” of other fluxes in the hydrologic cycle, with previous workers estimating that 4.25×10^{17} kg/yr of water is transferred annually from the oceans to the atmosphere (Schlesinger, 1997; Reeburgh, 1997; Bodnar et al., 2013). In a manner similar to evaporation from the continents, temporal variations in the amount of water evaporated from the oceans are related to global average temperature and the total surface area of the oceans. Here, we estimate the flux of water from the oceans to the atmosphere as a “balance” of the other fluxes of water into and out of the atmosphere:

$$F_{Ocean \text{Evaporation},T} = \left(F_{Total \text{Pptn},T} + F_{ATM \rightarrow BIoC,T} \right) - \left(F_{Sublimation,T} + F_{SW \text{Evaporation},T} + F_{BIoC \rightarrow ATM,T} \right)$$ \hspace{1cm} (31)

Recall that total precipitation includes precipitation from the atmosphere to the CRYO, SW, and ocean reservoirs. Here, the modern flux of water from the oceans to the atmosphere is 4.53×10^{17} kg/yr, consistent with previous estimates. The temperature dependence of the flux of water from the oceans to the atmosphere is shown in Figure 13,
and the variation in the flux of water from the oceans to the atmosphere during the past 700 Ma is shown in Figure 12.

9. Water flux from surface water (the continents) to the oceans

Water on the continental surface flows to the oceans via rivers and streams, and represents the dominant process that delivers solutes and sediment to the oceans. Previous workers produced consistent estimates of annual surface runoff, with a general consensus that ~3.6×10^{16} kg/yr flows from the SW reservoir (the continents) to the oceans (Berner and Berner, 1987; Drever, 1988; Bodnar et al., 2013; Good et al., 2015). Variations in surface runoff are influenced by changes in precipitation rate, surface topography, and the distribution and amount of vegetation on the continental surface (Otto-Bliesner, 1995; Berner, 1997). Berner and Berner (1987) described a relationship between surface runoff, precipitation and global average temperature and determined that the amount of runoff to the oceans increases as precipitation to the continents increases due to global warming. Other early climate models predicted a decrease in both continental precipitation and runoff with increases in temperature (Otto-Bliesner, 1995). Later workers observed that surface runoff increases by ~4% for every 1°C increase in average global temperature (Labat et al., 2004). The relationship between precipitation and runoff has been used to evaluate the role of surface runoff and continental weathering to changes in atmospheric CO$_2$ (Goddéris et al., 2014). Furthermore, it is widely accepted that the emergence and radiation of plant life during the Devonian stabilized soils and reduced physical weathering and runoff from the surface (Schumm, 1977; Johnsson, 1993; Algeo and Scheckler, 1998; Donnadieu et al., 2009; Le Hir et al., 2011).
As discussed above, the amount of water in the SW reservoir varies with the areal proportion of the continents not covered by ice. Furthermore, as the exposed surface area of the continents varies, the amount of water transferred from the atmosphere to the surface water reservoir also varies. An increase in exposed continental surface increases the amount of water transferred from the atmosphere to the continental surface and thus increases the amount of water that flows to the oceans as runoff. Furthermore, the amount of water evaporated into the atmosphere also increases as the amount of precipitation to the continents increases, and the portion of surface water taken up by plants varies in proportion to the size of the continental biosphere (see below). Here, the flux of water from the SW reservoir to the oceans varies with changes in the amount of water precipitated onto the continental surface (Eqn. 28), and the amounts of water removed from the SW reservoir by evaporation and uptake by land plants (Eqns. 30 and 38):

\[F_{\text{Runoff},T} = F_{\text{SW Pptn},T} - F_{\text{SW Evaporation},T} - F_{\text{SW \rightarrow BIOc}} \]

In the balanced model, the amount of water transferred from SW to the oceans today is \(1.00 \times 10^{17}\) kg/yr, which is an order of magnitude greater than previous estimates noted above. Note that the amount of water precipitated onto Earth’s surface varies with changes in temperature, and the amount of runoff to the oceans varies as a function of precipitation onto the continents. Thus, we can describe changes in the amount of water transferred from the SW reservoir to the oceans as a function of temperature. The temperature dependence of the flux of water from the surface water reservoir to the oceans is shown in Figure 11, and the variation in the flux of water from the surface water reservoir to the oceans during the past 700 Ma is shown in Figure 14.

10. Water flux between surface water and groundwater
Figure 14: Variations in fluxes of water into and out of the surface water (SW) reservoir, all calculated as the change in flux relative to the modern value.
It is generally accepted that surface recharge is the primary source of water flowing into the groundwater (GW) reservoir. Recent models of global groundwater recharge estimate that $\sim 1.27 \times 10^{16}$ kg/yr of water was transferred from surface waters into the global groundwater system from 1961 to 1990 (Döll and Fiedler, 2007). This value is consistent with the $\sim 1.5 \times 10^{16}$ kg/yr estimated by previous workers (Zekster and Loaiciga, 1993; Bodnar et al., 2013). Here, the flux of water from SW to GW is calculated as a “balance” of the other fluxes of water into and out of the SW reservoir:

$$F_{SW\rightarrow GW, T} = (F_{Deglaciation, T} + F_{SW \rightarrow GW, T} + F_{GW \rightarrow SW, T} + F_{BIO\rightarrow SW, T}) - (F_{Glacial\ Advance, T} + F_{SW \rightarrow GW, T} + F_{Runoff, T} + F_{SW \rightarrow BIOC, T})$$ \hspace{1cm} (33)

This approach predicts that 3.35×10^{16} kg/yr of water is currently being transferred from the SW reservoir to the GW reservoir, within the same order of magnitude as previous estimates. The temperature dependence of the flux of water from the SW reservoir to the GW reservoir is shown in Figure 11, and the variation in this flux during the past 700 Ma is shown in Figure 14.

In more humid and temperate environments in which gaining (or effluent) streams are common, water flows from the groundwater reservoir to springs, streams, and rivers and adds water to the SW reservoir. Although local and regional-scale GW and SW system models have been developed for specific areas, the global flux of water from GW to SW is uncertain. Previous workers have estimated that the flux of water from GW to SW is $\sim 1/3$ of the total annual amount of water transferred from SW to the oceans (Bodnar et al., 2013), and we adopt that estimate here:

$$F_{GW\rightarrow SW, T} = 0.333 \times F_{Runoff, T}$$ \hspace{1cm} (34)

Thus, the amount of water transferred from GW to SW today is 3.34×10^{16} kg/yr (i.e., 1/3 of the flux to the oceans, which is 1.00×10^{17} kg/yr). This value is similar to the flux of
water from SW to GW. The temperature dependence of the flux of water from the GW
reservoir to the SW reservoir is shown in Figure 11 variation in the flux of water from the
surface water reservoir to the groundwater reservoir during the past 700 Ma is shown in
Figure 14.

11. Water flux between the groundwater and the ocean reservoirs

Submarine groundwater recharge (SGR) describes the flow of seawater from the
oceans to the coastal seabed through continental margins (Burnett et al., 2003; Moore,
2010). It is logical to assume that the amount of water transferred from the oceans to
coastal aquifers scales with the total length of continental coastline at any time.
Moreover, it is well understood that the formation and breakup of supercontinents
influences global coastline length, and reconstructions of continental configurations at
various times during the Phanerozoic presented by Scotese (2001) may be used to
produce “snapshots” of coastline length at various times during the Phanerozoic. During
this time, landmass distribution has varied from periods when all of the landmasses on
Earth were combined into a single landmass (e.g., supercontinents of Pangaea and
Pannotia) to periods of time when multiple continents of various sizes are present (e.g.,
the present distribution).

Because the perimeters of the continents are highly irregular, the length of coastline
corresponding to a landmass of given area is not well defined and is dependent upon the
increments used in the measurement. This “coastal paradox” results in widely varying
estimates of modern global coastal length, with an accepted estimate of \(4.88 \times 10^5\) km
\(\pm 27\%\) (CIA WorldBook; NASA). The total coastline of a single supercontinent,
intuitively, should be less than that of a similar-sized land area consisting of several
smaller continents; however, a supercontinent with a perimeter that is much more irregular than the modern continents could have a longer coastline. As such, the extent of coastline irregularity of such a supercontinent must be available to estimate paleo-coastline length, but this information is largely unknown.

The perimeter of an area with an irregular outer boundary can be described by its fractal dimension, a numerical index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.

Fractal Dimension (FD) is related to the measured perimeter (P) and area (A) of a shape according to Mandlebrot (1983):

$$FD = \frac{2 \ln (0.25+P)}{\ln (A)}$$ (35)

whereby $FD=1$ indicates a shape with a smooth or regular outer boundary and $FD=2$ indicates a shape with a largely complex and irregular boundary.

We can estimate the perimeter (coastline length) of a Pangaea-like supercontinent by calculating the average fractal dimension of the modern continents and applying that calculated fractal dimension to a supercontinent with $A = 1.50 \times 10^8$ km2 (the total area of all landmasses on Earth today). We ignore changes in sea level associated with supercontinent formation and breakup that occur when coastal areas are submerged or exhumed during the supercontinent cycle (c.f., Murphy and Nance, 2013). Using the areas and estimated perimeters of the modern-day continents (Table 4), we find that the average FD of the modern continents is ~ 1.151. A single landmass with an area of 1.5×10^8 km2 and $FD=1.151$ has a perimeter of 2.04×10^5 km2, or 58.2% less coastline than the modern continental configuration. We can also estimate the perimeter of a Pangaea-like supercontinent by describing continents as perfectly circular landmasses. Each continent is thus represented by a circle with a coastline corresponding to the
<table>
<thead>
<tr>
<th>Continent</th>
<th>Area (km²)</th>
<th>Perimeter (km)</th>
<th>FD</th>
<th>Ideal Circumference (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurasia</td>
<td>5.50x10⁷</td>
<td>262300</td>
<td>1.245</td>
<td>26289.7</td>
</tr>
<tr>
<td>Africa</td>
<td>3.04x10⁷</td>
<td>26000</td>
<td>1.019</td>
<td>19535.6</td>
</tr>
<tr>
<td>North America/Greenland</td>
<td>2.47x10⁷</td>
<td>295300</td>
<td>1.317</td>
<td>17621.1</td>
</tr>
<tr>
<td>South America</td>
<td>1.78x10⁷</td>
<td>32700</td>
<td>1.079</td>
<td>14972.8</td>
</tr>
<tr>
<td>Antarctica</td>
<td>1.40x10⁷</td>
<td>18000</td>
<td>1.022</td>
<td>13262.8</td>
</tr>
<tr>
<td>Australia/Oceania</td>
<td>8.53x10⁶</td>
<td>71200</td>
<td>1.227</td>
<td>10350.9</td>
</tr>
</tbody>
</table>

Table 4: Areas and perimeters of Earth’s major landmasses, their fractal dimensions (FD) calculated according to Eqn. 35, and the ideal circumference assuming that each continent has the shape of a circle.
circumference of a circle having an area equal to the continental area. We can then calculate the ratio of the circumference of the supercontinent \((Perimeter_{Super}) \) to the sum of the circumferences of the individual continents \((Perimeter_{Multi}) \) and use this ratio, combined with the known modern coastline \((Coastline_{Multi}; 4.88 \times 10^5 \text{ km}) \), to estimate the coastline of the supercontinent \((Coastline_{Super}; \text{ unknown}) \) according to:

\[
\frac{Perimeter_{Super}}{Perimeter_{Multi}} = \frac{Coastline_{Super}}{Coastline_{Multi}}
\]

(36)

A circular supercontinent with an area of \(1.50 \times 10^8 \text{ km}^2 \) has a circumference of \(\sim 43,416 \text{ km} \) \((Perimeter_{Super}) \). If each of the modern continental masses described above (Table 4) is represented by a separate circular landmass, the sum of the six circumferences is \(102,033 \text{ km} \) \((Perimeter_{Multi}) \). Using these estimated values and the CIA/NASA average global coastal length \((Coastline_{Multi}; 4.88 \times 10^5 \text{ km}) \), we find that the coastline of our theoretical supercontinent \((Coastline_{Super}) \) is \(2.08 \times 10^5 \text{ km} \), or 57.4% less coastline than the modern estimate. A supercontinent with a coastline of \(2.08 \times 10^5 \text{ km} \) and an area of \(1.50 \times 10^8 \text{ km}^2 \) has a fractal dimension of \(\sim 1.153 \); this FD value is similar to the average FD value of the modern continents (discussed above).

Based on these results, we assume that during the period when Pangea was completely assembled (~200-300 Ma) the exchange of water between the groundwater and ocean reservoirs would have been reduced by 57% compared to modern values (Fig. 15). We further assume, based on plate reconstruction models, that starting at 200 Ma and continuing to the present, the number of continents and, therefore, the increase in coastline with time, has been linear from 57% at 200 Ma to the modern value today. Pangea began to assemble at about 480 Ma when Laurentia merged with other microcontinents. Owing to uncertainties about the timing of Rodina breakup and formation/breakup of Pannotia, we arbitrarily assume that pre-480 Ma the total coastline...
Figure 15: Change in length of global coastline during the past 700 Ma, relative to the estimated length of coastline today (Modern value).
was intermediate between modern values and that associated with Pangea, and assume a
value of 70% of the modern value between 700 and 480 Ma. Finally, we assume a linear
change in coastline length between 480 and 300 Ma (Fig. 15).

Based on the above discussion, we can estimate the amount of water exchanged
between the oceans and GW reservoirs in the past as some fraction of the amount of
water exchanged today. However, much uncertainty exists concerning the magnitude of
submarine groundwater recharge (SGR) today. Previous workers have calculated SGR as
a “balance” of other fluxes that are reasonably well constrained (Taniguchi et al., 2002;
Bodnar et al., 2013). Bodnar et al. (2013) estimated that the modern flux of water from
the oceans to GW is 2.6×10^{14} kg/yr. Here, we accept the estimate of Bodnar et al. (2013)
for the modern flux and calculate the flux of water from the oceans to GW during the past
700 Ma based on the relative difference in length of coastline today compared to the
length in the past as shown in Figure 15. Applying these results to our model, the
variation in the flux of water from the oceans to groundwater during the past 700 Ma is
shown in Figure 16.

Submarine groundwater discharge (SGD) represents the flow of water through
continental margins from the coastal seabed into the ocean. Previous workers have
identified hydraulic gradients between land and ocean related to tidal pumping and wave
activity as the primary mechanism driving seawater circulation through coastal margins
(Riedl et al., 1972; Nielsen, 1990; Burnett et al., 2003; Moore, 2010). Zekster and
Loaiciga (1993) estimated an annual SGD flux of 2.4×10^{15} kg/yr, and Taniguchi et al.
(2009) estimate fluxes ranging from $6.1-12.8 \times 10^{16}$ kg/yr. Recent integrated radium tracer
studies have been used to estimate a global SGD flux of 1.2×10^{17} kg/yr (Kwon et al.
2014). These estimates, ranging over two orders of magnitude, highlight the large
Figure 16: Variations in fluxes of water into and out of the ocean reservoir, all calculated as the change in flux relative to the modern value.
uncertainties associated with estimating SGD. Owing to these uncertainties, at any time in the past 700 Ma we calculate the GW-Ocean flux as a “balance” based on the other, better constrained, processes that transfer water into and out of the GW reservoir:

\[F_{SGD,T} = (F_{SW \rightarrow GW,T} + F_{SGR,T}) - F_{GW \rightarrow SW,T} \]

Accordingly, the modern flux of water from GW to the oceans is \(\approx 3.5 \times 10^{14} \) kg/yr, which is similar to the flux of water from the oceans to the GW reservoir and is one order of magnitude lower than the value reported by Zekster and Loaiciga (1993) and three orders of magnitude less than that of Kwon et al. (2014). It is clear that development of more reliable models for the global water cycle today and in the past require better constraints on the processes associated with GW-Ocean interactions and the amounts of water transferred between these two reservoirs. Given these uncertainties, the variation in the flux of water from groundwater reservoir to the oceans during the past 700 Ma predicted by our model is shown in Figure 16.

12. Water fluxes from surface water (SW; continents) to the biosphere and from the biosphere to the atmosphere

Transpiration is the process by which plants absorb water through their root system, and use some portion of that water for photosynthesis \((CO_2 + H_2O = CH_2O + O_2)\), and expel excess water vapor to the atmosphere from leaves, stems and flowers. Stated differently, transpiration is the flux of water from surface water through the continental biosphere (BIOc) and into the atmosphere. Approximately 99% of the surface water taken up by plants is evaporated to the atmosphere; the remainder is stored in plant biomass (Cummins, 2007; Bodnar et al., 2013).
Previous workers have estimated a total flux of water from the continents to the atmosphere of 7.1×10^{16} kg/yr (Berner and Berner, 1987; Reeburgh, 1997). This reported flux from the continents includes soil moisture evaporation, transpiration, and polar ice sublimation. Later workers defined soil evaporation and transpiration as an “evapotranspiration” flux, ignoring evaporation from open surface water and ice caps (Trenberth, 2007; Ryu et al., 2011). Lawrence et al. (2007) estimate that 13-41% of reported evapotranspiration fluxes are due to transpiration. Recently, Good et al. (2015) used the hydrogen (D/H) isotopic compositions of continental meteoric waters to estimate that today plants transpire $55(\pm 12) \times 10^{15}$ kg/yr water to the atmosphere. Here, we adopt the estimate of Good et al. (2015). Furthermore, if the amount of water transpired to the atmosphere is 99% of all water taken up by plant biomass, then the modern flux of water from the SW reservoir to the continental biosphere is 5.56×10^{16} kg/yr.

Owing to uncertainties regarding the total flora biomass on Earth and the average water uptake rate of plants at any time during the past 444 Ma, temporal variations in the amount of water transferred from the surface water reservoir to the continental biosphere are difficult to constrain. It is logical to assume that the amount of water uptake through roots of plants is related to flora biomass on Earth, i.e., as the biomass increases, the amount of water being extracted from the continental surface water reservoir by plants increases, and thus the rate of root water uptake increases. During the early Phanerozoic when plant life was absent from the continental surface (pre-444 Ma), movement of water from the surface water reservoir to the biosphere and from the biosphere to the atmosphere were not part of the hydrologic cycle. As discussed above and shown in Figure 5, we assumed a linear increase in the amount of biomass on the continents during the last 444 Ma. Therefore, we can relate the flux of water from the SW reservoir to the
biosphere at any time during the past 444 Ma to the modern flux of water from the SW reservoir to the biosphere using the calculated amount of wet biomass at that time:

\[F_{SW\rightarrow BIOc,t} = F_{SW\rightarrow BIOc,modern} \times \frac{M_{BIOc,t}}{M_{BIOc,modern}} \] (38)

The variation in the flux of water from the surface water reservoir to the continental biosphere during the past 700 Ma is shown in Figure 14. Figure 17 shows the relationship between the model chosen for growth of the continental biosphere during the past 444 Ma (as discussed above), and variations in fluxes of water between reservoirs. While the choice of growth model influences temporal variations in fluxes of water into and out of the biosphere, it has little impact on other reservoirs owing to the relatively small amount of water held in the biosphere reservoir.

As discussed above, the flux of water from the continental biosphere to the atmosphere represents 99% of the flux of water from the SW reservoir to the biosphere (Eqn. 38):

\[F_{BIOc\rightarrow ATM} = 0.99 \times F_{SW\rightarrow BIOc} \] (39)

The variation in the flux of water from the continental biosphere to the atmosphere during the past 700 Ma is shown in Figure 12.

13. Water flux from the biosphere to surface water

As plants grow they transfer water from the SW reservoir to the BIOc reservoir, and when the plants die, H₂O (and other nutrients) contained in biomass are surrendered back to the local ecosystem. Some of the water contained in expired plant material evaporates into the atmosphere, some is consumed by detritivores that promote plant decomposition, and some is returned to the SW reservoir. Here, owing to the lack of data and a defensible model to estimate the proportions of water evaporated to the atmosphere, consumed by
Figure 17: Variation in the flux of water between the surface water reservoir and the continental biosphere, atmosphere and ocean reservoirs for four different models for growth of the continental biosphere (amount of biomass) during the past 444 Ma. (A) Linear increase in the amount of water in the continental biosphere from 444 Ma to the present. (B) “Mass optimization” logarithmic function whereby the amount of water in the continental biosphere rapidly increases early in the Phanerozoic, followed by a more gradual increase to the present value. (C) The amount of water in the biosphere increases in proportion to biodiversity (data from Benton, 1993). (D) Amount of water in the biosphere following a “colonization forcing curve”, whereby the amount of water is linked to the influence of the biosphere on other global chemical cycles (after Bergman et al., 2004). Fluxes of water from the SW reservoir to the ATM and Ocean reservoirs are primarily driven by temporal variations in global average temperature and are not significantly affected by the growth model used.
other organisms during decomposition, and transferred to the SW system, we assume that all water contained in the living BIOc is transferred to the SW reservoir when an organism on the continents dies. This simplifying assumption has little impact on the overall hydrologic cycle because the total amount of water lost from the continental biosphere each year as a result of plant death ($9 \times 10^{13} \text{ kg/yr}$) represents only about 0.02% of the total amount of water transferred into the atmosphere from all reservoirs today, and only about 0.07% of the total amount of water transferred into the surface water reservoir from all other reservoirs today. Bodnar et al. (2013) estimated that the modern flux of water from BIOc to the SW reservoir is $9 \times 10^{13} \text{ kg/yr}$, and we adopt this value here.

As discussed above, we assume that the amount of wet biomass in the continental biosphere increases linearly from 0.0 kg at 444 Ma to the present value of $2.9 \times 10^{15} \text{ kg}$. Accordingly, variations in the amount of water transferred from the continental biosphere to the surface water reservoir scale in proportion to the rate of increase of biomass during the past 444 Ma. Thus, the flux of water from the biosphere to the SW reservoir at any time during the past 444 Ma is related to the modern flux of water from the biosphere to the SW reservoir and the proportion of biomass at that time relative to the modern biomass:

$$F_{\text{BIOc to SW}, t} = F_{\text{BIOc to SW}, \text{modern}} \frac{M_{\text{BIOc}, t}}{M_{\text{BIOc}, \text{modern}}}$$ \hspace{1cm} (40)

The variation in the flux of water from the continental biosphere to the surface water reservoir during the past 700 (444) Ma is shown in Figure 14.

14. Water flux from the atmosphere to the biosphere

Epiphytes (often referred to as air plants) and related plant species adsorb water directly from the atmosphere during photosynthesis, rather than taking in water through
their root system. Benzing (2004) reports that epiphytes have existed since the Carboniferous, although the exact timing of epiphyte appearance in the fossil record is uncertain. To our knowledge, the annual global rate of water uptake by modern epiphytes has not been estimated. Moreover, owing to ongoing discovery of new plant species, genera, and families (The Plant List, 2013), the proportion of epiphytes compared to all flora on Earth is uncertain. Furthermore, the rate of water vapor uptake by different epiphytic species varies significantly compared to the rate of soil moisture uptake. Bodnar et al. (2013) estimated that the amount of water removed annually from the atmosphere by modern epiphytes is \(6.3 \times 10^{13}\) kg/yr – this value is not based on any measured data but, rather, represents a “mass balance” estimate. Other fluxes linked to the BIOc reservoir (transpiration, root uptake, and plant death and decomposition) are reasonably well constrained (see above). Thus, estimating the amount of water vapor uptake as a “balance” based on other fluxes that are better constrained is reasonable. Following this logic, we estimate the flux of water from the atmosphere to the BIOc as a “balance” between the other fluxes of water into and out of the continental biosphere (Eqns. 38, 39, and 40):

\[
F_{\text{ATM} \rightarrow \text{BIOc},t} = (F_{\text{BIOc} \rightarrow \text{SW},t} + F_{\text{BIOc} \rightarrow \text{ATM}}) - F_{\text{SW} \rightarrow \text{BIOc},t}
\]

(41)

The variation in the flux of water from the atmosphere to the continental biosphere during the past 700 Ma is shown in Figure 12.

15. Summary of variations in fluxes in the hydrologic cycle during the past 700 Ma

As described in detail above, most fluxes of water between reservoirs in the hydrologic cycle have varied significantly during the past 700 Ma. Moreover, because we assume that the total amount of water held in the six reservoirs that comprise the
exosphere remains constant, increases in one flux require decreases in one or more other
fluxes to maintain a balanced system. Synergies and feedbacks between different
reservoirs are shown schematically in Figure 18, where the total flux into and out of each
reservoir during the past 700 Ma is shown. As such, increases in average global
temperature (panel A) lead to increases in the total flux of water into the ATM, SW, GW
and ocean reservoirs, and decrease in the total flux of water into the CRYO reservoir.
With the exception of the continental biosphere reservoir, all total fluxes vary in concert
with changes in average global temperature.

Summary and Discussion of the Evolution of the Hydrologic Cycle During the Past 700 Ma

As discussed above, the calculated amount of water in the CRYO reservoir is a
function of the average global temperature (Eqn. 6) and increases in this reservoir
correlate reasonably well with the major glaciation events (Fig. 8). In this study, global
average temperatures obtained from models of the global carbon cycle at specific times
during the past 700 Ma were used (Goddéris et al., 2014). Uncertainties in these paleo-
temperature estimates will, therefore, be manifest in our results as uncertainty in those
aspects of the hydrologic cycle that are most sensitive to temperature, such as waxing and
waning of the cryosphere. For example, there is evidence for widespread glaciation
during the late Ordovician (Brenchley et al., 2001), and the Paleocene-Eocene Thermal
Maximum (PETM) (~56 Ma) is a brief greenhouse period associated with rapid
atmospheric CO₂ increase when the planet had no polar ice (McInerney et al., 2011;
Bowen et al., 2015). However, our model does not predict the presence of a CRYO
reservoir during the late Ordovician (Fig. 8), whereas our model does indicate the
Figure 18: Summary of variations in fluxes between reservoirs of the hydrologic cycle during the past 700 Ma, all shown relative to the modern value. Note that departures from the modern line are schematic and are only intended to show the timing and direction of changes in fluxes and not the magnitude of the departures. The scale on the left side of each panel corresponds to the period from 700 to 540 Ma (pre-Phanerozoic) and the scale on the right side of each panel corresponds to the Phanerozoic (540 to 0 Ma). Note also that in some cases the positive and negative scales on the same side of individual panels are different in order to better emphasize variations in fluxes.
presence of some permanent ice during the PETM. These results indicate that while waxing and waning of the CRYO reservoir may be mainly controlled by average global temperature, other factors such as organization and distribution of continents, topography, etc., that are unaccounted for in our model and not well documented in the literature also play a role. Importantly, these results provide incentives for paleo-climate researchers to consider other drivers that control the size of the CRYO reservoir. Higher resolution, short-term (<1-10 Ma) proxies for climate variations during the Phanerozoic would also allow more robust models to be developed to examine the effect of short-term temperature excursions.

As the cryosphere expands across the oceans during global cooling, water is transferred from seawater to the ice phase, resulting in higher concentrations of all dissolved components in seawater. During snowball-Earth conditions, the concentrations of all aqueous species in seawater would be ~47% higher than in modern seawater, assuming that all water added to the cryosphere was removed from the oceans and that the total mass of all dissolved species in seawater remained constant (Angel et al., in prep). We note that a decrease in sea level associated with the expanding cryosphere would likely result in the formation of basins and lagoons that may lead to formation of evaporite deposits and remove solutes from seawater, though the extent to which this would influence seawater chemistry on a global scale is uncertain.

During greenhouse periods, permanent ice melts and exposes the continental surface to weathering processes. Also, as the surface area of the continents increases, the total amount of precipitation onto the continents increases, subsequently increasing runoff to the oceans, assuming the flux of water from the atmosphere to the surface water reservoir remains constant. Furthermore, as discussed above, the loss of Arctic sea ice is linked to
increased regional evaporation (Kopec et al., 2016) and the increase in evaporation, in turn, would be returned to the Earth’s surface in the form of precipitation to the oceans, CRYO, and the SW reservoir, leading to a further increase in surface runoff to the oceans (Bintanja and Selten, 2014). Feedbacks linked to the retreat of glaciers and the melting of polar ice produce variations in the amounts of water and other materials transferred to the oceans and likely play a major role in temporal variations in global ocean chemistry (Angel et al., in prep).

The dilution and enrichment of chemical species due to the exchange of water between oceans and CRYO reservoirs may impact marine organisms that rely on specific seawater conditions for survival. For example, the seasonal freezing of sea ice locally produces highly saline brines, which inhibits marine primary production (Gleitz et al., 1995). As such, during the onset of snowball-Earth conditions the latitudinal extension of polar ice caps would eventually reach tropical zones where primary producers thrive. Thus, we would expect to see a decrease in marine primary production corresponding to lower global average temperatures and associated changing seawater chemistry. It is possible that near-complete inhibition or destruction of marine life could occur as a result of global glaciation. However, although primitive pre-Cambrian life did exist on Earth, the most recent snowball-Earth event (the Marinoan) occurred before the Cambrian Explosion. There has been extensive study of the effect of snowball-Earth conditions on the marine biosphere that discuss major trends in microorganism biodiversity as influenced by changes in mean ocean temperature and ocean chemistry (e.g. Corsetti et al. 2006; Olcott et al. 2005; Riedman et al. 2014). Owing to the relatively small influence of the marine biosphere on the whole-Earth hydrologic cycle, variations in marine biodiversity are beyond the scope of this work.
There is extensive debate regarding the scale and timing of the freezing and melting of permanent ice during greenhouse-glacial period transitions, and recent studies suggest that polar ice exists in “flickering” pulses millions of years before the formation of permanent ice caps (Scher et al., 2011). Other workers suggest that the transition from extensive permanent ice to full snowball conditions (as average temperature decreases from 0° to -27°C) occurs very quickly, within tens of thousands of years (Hyde et al., 2000; Goddéris et al., 2003). Moreover, anthropogenic influence on the Earth system complicates our understanding of pre-human hydrologic processes. Based on modern rates of polar ice melting and sea level rise, it is suggested that all of Earth’s ice will melt within tens of thousands of years, if not sooner, due to anthropogenic influences on climate and energy added to the atmosphere and ocean currents (Grénier et al., 2015).

Modern worst-case scenario models of Earth’s climate suggest that the rate of melting is accelerating (Cox et al., 2000).

Today, the oceans contain 13.7x10^{20} kg of water, and model results suggest that the total has varied from a maximum of ~14.0x10^{20} kg during greenhouse conditions, to a minimum of 9.64x10^{20} kg during snowball earth conditions, corresponding to paleo-oceans containing from 2.4% more water to 32% less water than the amount in the oceans today. As the amount of H₂O contained in the oceans varies, so does relative sea level. If all the ice present today were to melt and increase the amount of water in the oceans by 2.4%, sea level would rise by ~80 m (Poore et al., 2001). This rise in sea level would reduce the size of exposed continental area by about 15.6%. However, as the ice melts, new continental area is exposed. Today, ~10% of the land surface (~14.8x10^6 km²) is covered by permanent ice (http://water.usgs.gov/edu/watercycleice.html), and for each square kilometer of permanent ice that melts (assuming a uniform thickness of ice of 0.94...
km), sea level rises by 2.33×10^{-6} m and ~0.29 square kilometers of new continental surface is exposed. Today, about ~34% of the world’s population live in areas that would become submerged if all permanent ice were to melt (Cohen and Small, 1998).

Conversely, as the amount of polar ice increases, sea level would fall and expose more continental area. However, this is offset by the fact that more of the continental area is covered by ice (and therefore not exposed) as the amount of ice increases. For each square kilometer of permanent ice that forms on the planet’s surface, ~0.29 square kilometers of exposed continental surface is lost. Moreover, upon reaching snowball Earth conditions, the entire continental landmass would be covered by ice, regardless of the change in sea level as ocean water is sequestered in permanent ice. Stronger constraints on submarine topography during the Phanerozoic during snowball Earth and extremely cold climate conditions are necessary to better understand the influences of ice coverage and sea level regression on the amount of exposed continental landmass.

Transfer of water into and out of the CRYO reservoir involves interactions between CRYO and the oceans, atmosphere and surface water reservoirs. For every 1°C change in average global temperature, 9.76×10^{18} kg of water is transferred into or out of the CRYO reservoir. Thus, as temperature decreases and the CRYO reservoir grows, the amount of precipitation from the atmosphere to the CRYO increases owing to the increase in surface area of the CRYO reservoir. At the same time, the amount of water transferred from the CRYO to the atmosphere through sublimation increases owing to the increase in ice surface area. Similarly, as the CRYO reservoir grows in response to decreasing average global temperature, the annual flux of water from the CRYO to oceans increases because a larger amount of ice is at latitudes that are within the “seasonal melting range”. In a similar manner the flux from the oceans to the CRYO reservoir increases with decreasing
average temperature. Thus, as the size of the cryosphere grows overall with decreasing
temperature, the effect of the cryosphere on local ocean chemistry increases as a larger
amount of water is removed and added to the ocean during seasonal freeze/melting
episodes. This, in turn, leads to significant annual local fluctuations in ocean chemistry
that would likely exert increasing environmental stresses on the local marine ecosystem.

Unlike the cryosphere-ocean interactions described above, as global average
temperature decreases and the CRYO reservoir grows, the flux of water from the CRYO
to the surface water reservoir decreases, as does the flux from the SW reservoir to the
CRYO (Fig. 17). This occurs mostly as a result of the decrease in exposed continental
surface as ice expands and covers the land surface.

The amount of water transferred from the atmosphere to the CRYO reservoir varies
from zero during interglacial (greenhouse) periods of the Phanerozoic to a maximum of
3.54×10^{16} kg/yr at ~609 Ma (Fig. 10), owing to competing effects of temperature and
reservoir surface area. Global precipitation increases as global average temperature
increases. Conversely, the surface area of the CRYO reservoir increases as global
temperature decreases. Thus, as average temperature decreases, the flux of water from the
atmosphere to the planet’s surface decreases but the proportion of the surface covered by
ice increases such that the total amount of water transferred from the atmosphere to the
cryosphere increases. Thus, as temperature increases from -27°C to ~-10.5°C, the amount
of water transferred from the atmosphere to the cryosphere increases (Fig. 9) because the
effect of surface area of ice on the flux is greater than that of increasing temperature. At -
10.5°C, a “tipping point” is reached (Fig. 9) whereby the decreasing area of permanent
ice has a greater effect on total flux than does the effect of increasing temperature. Thus,
as temperature increases from -10.5°C to 18°C, even though the rate of precipitation is
increasing in response to increasing temperature, the total amount of water transferred from the atmosphere to the CRYO reservoir decreases because the surface area of the cryosphere has decreased sufficiently to counter the effect of increased precipitation. At temperatures >18°C, polar ice is does not exist and the CRYO reservoir is removed from the hydrologic cycle; hence, the flux of water from the atmosphere to the CRYO reservoir is zero.

The amount of water transferred from the CRYO to the ATM via sublimation varies from zero during greenhouse periods of the Phanerozoic to a maximum of ~2.65 × 10^{21} kg/Ma at 650 and 700 Ma (Figs. 10, 17). The sublimation flux to the atmosphere varies in a manner similar to the fluxes of water between the ocean and the cryosphere (discussed below), whereby the amount of water transferred decreases as global average temperature increases (Fig. 9). As discussed above, the primary control on the amount of water transferred from the cryosphere to the atmosphere via sublimation is the surface area of the cryosphere, which varies as a function of global average temperature. As such, when the surface of the Earth is completely covered by glacial and polar ice (snowball-earth, 650 and 700 Ma), the sublimation flux is at its maximum value. At temperatures >18°C, the CRYO reservoir is removed from the hydrologic cycle and the flux of water from the CRYO reservoir to the atmosphere is zero.

The flux of water from the oceans to the CRYO reservoir varies from zero during interglacial periods of the Phanerozoic to a maximum of 1.99 × 10^{23} kg/Ma at 650 and 700 Ma when the amount of water in the CRYO reservoir is at the maximum of 4.39 × 10^{20} kg (Fig. 10) and the rate of change of average global temperature with time is greatest (Fig. 8A). As discussed above, the flux of water from the oceans to CRYO decreases as global average temperature increases and the total amount of water in the CRYO reservoir
decreases in response to increasing temperature (Eqn. 24, Figs. 7, 8). During snowball-Earth conditions, the oceans would be completely covered in ice and seasonal freeze/thaw variations do not occur (Hyde et al., 2000). Some workers, however, propose that relatively warmer seas existed at the equator, even during snowball-Earth conditions (Pierrehumbert, 2005). This “slushball” hypothesis would allow for seasonal variations in sea ice extent and transfer of water between the oceans and the cryosphere at extremely low global average temperatures.

The amount of water transferred from the CRYO reservoir to the oceans varies from zero during interglacial periods of the Phanerozoic to a maximum of 2.23×10^{23} kg/Ma at 700 Ma when the amount of water in the CRYO reservoir is 4.39×10^{20} kg. The flux of water from the oceans to CRYO is balance-calculated and decreases as global average temperature increases (Eqn. 25). This trend is similar to that of water transfer from the CRYO reservoir to the oceans (Fig. 10). As discussed above, the possibility of equatorial “slushball” seas allows for seasonal variations in sea ice extent, and exchange of water between the cryosphere and oceans may occur at extremely low average global temperatures.

The flux of water from the CRYO reservoir to the SW reservoir decreases with decreasing temperature as the area of exposed continental surface decreases, and varies from zero during interglacial periods of the Phanerozoic to a maximum of 4.40×10^{20} kg/Ma during interglacial/glacial period transitions when global average temperature is $\geq 18^\circ$C, at which point the amount of water in the CRYO reservoir is zero (Fig. 10). The flux of water from the CRYO reservoir to the oceans increases with increasing global average temperature until greenhouse conditions are reached and no polar ice exists on Earth.
The amount of water transferred from the SW reservoir to the CRYO reservoir varies from zero during interglacial periods of the Phanerozoic to a maximum of 4.43×10^{20} kg/Ma at interglacial/glacial period transitions. Variations in the amount of water in the CRYO reservoir due to rapid glacialiation and deglaciation during the Cryogenian significantly increase the amount of water transferred from the SW reservoir to the CRYO reservoir.

As the area of exposed continental surface area decreases during expansion of the cryosphere, the amount of water in the SW reservoir is reduced, as well as the amounts of water transferred into and out of the SW reservoir. We link the glacial coverage of the continents to variations in global average temperature (Fig. 4) and quantify the fluxes of water into and out of the atmosphere and SW reservoirs as a function of temperature (Figs. 9, 10). Studies suggest a lack of terrigenous sediment flux from Antarctic meltwater runoff at the onset of polar ice formation during the late Eocene (Scher et al., 2014). This observation is consistent with the assumption in our model that expansion of the cryosphere covers continental landmass and reduces runoff from the SW reservoir to the oceans (Fig. 14). It is logical to assume that glacial coverage of the continents also influences the movement of water between the atmosphere and the surface water reservoir in a similar manner. As ice covers the continents and the surface area of the continents exposed to the atmosphere decreases, total precipitation to the surface water reservoir (continents) decreases, and evaporation from surface water to the atmosphere also decreases. Thus, as global temperature decreases, the flux of water between the atmosphere and SW reservoir decrease (Fig. 12). The same is true for the fluxes of water between the atmosphere and the ocean (Fig. 12); as sea ice covers the oceans and the exposed surface area of the oceans decreases, total precipitation onto the oceans...
decreases, and the amount of water evaporated from the oceans to the atmosphere also decreases. Thus, as global temperature decreases, the flux of water between the atmosphere and ocean decrease (Figs. 12, 16, 18).

As global temperature decreases and ice sheets expand, the surface area of the continents exposed to the atmosphere decreases (Fig. 4). The decrease in exposed continental surface area results in a decrease in the amount of water that precipitates onto the land (non-ice covered) surface, and this, in turn, reduces the amount of water that flows from the continents to the oceans as runoff. Thus, the flux of water from the SW reservoir to the oceans varies with the amount of exposed subaerial continental surface in response to changes in temperature (Figs. 14, 18). The flux of water from the SW reservoir to the oceans as runoff increases from 0.0 kg/Ma during snowball-Earth conditions (-27°C) when no subaerial continental surface is present, to \(1.39 \times 10^{23}\) kg/Ma during greenhouse conditions (18°C) when the continental surface is fully exposed (Figs. 11, 14).

As global average temperature increases and the total precipitation onto the continents increases, the amount of surface runoff to the oceans increases. The increased precipitation and runoff also lead to increased weathering and erosion, and the products of weathering/erosion are added to the surface water reservoir, both as dissolved species and transported sediment. As such, increasing global average temperature results in an increase in the amount of water and dissolved and solid materials transferred from the continents to the oceans. In our model we estimate the amount of sediment transported annually to the oceans during the Phanerozoic by examining variations in surface runoff. Today, surface runoff annually transfers \(1.00 \times 10^{17}\) kg of H\(_2\)O and \(~20\) billion tons \(\left(18.1 \times 10^{12}\right)\) kg of sediment to the oceans (Holeman, 1968). For comparison, at 573 Ma
(slushball earth conditions), ~28% of the continental surface was covered by ice and total precipitation onto the continents was commensurately decreased. As such, the amount of water transferred from the SW reservoir to the oceans (5.05x10^{16} \text{ kg/yr}) was ~50% less than the present value. Assuming that the relationship between surface runoff and sediment transport was the same as today, the amount of sediment annually transported into the oceans by rivers at 573 Ma would be ~10 billion tons (9.07x10^{12} \text{ kg}), or ~50% of the modern amount. Potential impacts on ocean chemistry and sediment accumulation rates of such variations in masses of sediment delivered to the oceans is considered elsewhere (Angel et al., in prep).

Surface runoff from the continents to the oceans not only transports sediments but also transports dissolved components that to a large extent control ocean chemistry. Dissolved components that are transported to the oceans in the largest amounts today by rivers are silica, bicarbonate, Ca, Na, Mg and Cl. Variations in surface runoff discussed can be related to changes in the amount (number of moles) of dissolved species annually transferred to the oceans during the Phanerozoic. Moreover, if the rate of input of dissolved species into the oceans increases (or decreases), and if the rate at which physical and chemical processes remove these components from seawater remains constant, then average residence times must change. Today, major dissolved chemical species in seawater have residence times that vary from thousands to millions of years (Table 5).

Marine organisms such as foraminifera and diatoms rely on dissolved bicarbonate and silica to produce protective tests (shells). The replacement (residence) times of H_{4}SiO_{4} and HCO_{3} are relatively short (<1 Ma), and variations in surface runoff could significantly affect the concentrations of both of these components that are critical to
<table>
<thead>
<tr>
<th>Element</th>
<th>Seawater (mmol/kg)</th>
<th>River water (mmol/kg)</th>
<th>Seawater residence time (10^6 yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>546.0</td>
<td>0.22</td>
<td>87</td>
</tr>
<tr>
<td>Na</td>
<td>468.0</td>
<td>0.26</td>
<td>55</td>
</tr>
<tr>
<td>Mg</td>
<td>53.1</td>
<td>0.17</td>
<td>13</td>
</tr>
<tr>
<td>SO₄</td>
<td>28.2</td>
<td>0.11</td>
<td>8.7</td>
</tr>
<tr>
<td>Ca</td>
<td>10.3</td>
<td>0.38</td>
<td>1.0</td>
</tr>
<tr>
<td>K</td>
<td>10.2</td>
<td>0.07</td>
<td>10</td>
</tr>
<tr>
<td>HCO₃</td>
<td>2.39</td>
<td>0.96</td>
<td>0.083</td>
</tr>
<tr>
<td>H₂SiO₄</td>
<td>0.0483</td>
<td>0.218</td>
<td>0.021</td>
</tr>
</tbody>
</table>

biomineralization processes. An increase in surface runoff would increase the amount of
\(\text{H}_4\text{SiO}_4 \) and \(\text{HCO}_3^- \) transported to the oceans, which could result in a surge in marine
primary productivity as forams and diatoms produce tests in bicarbonate and silica-rich
water. Conversely, a decrease in surface runoff and concomitant decrease in \(\text{H}_4\text{SiO}_4 \) and
\(\text{HCO}_3^- \) transport could result in a decrease in primary productivity as seawater becomes
increasingly bicarbonate and silica depleted.

Many geochemical processes that operate in the near-surface environment involve
water or aqueous solutions that serve to mediate and promote these processes. As such,
other global chemical cycles (e.g., carbon cycle, sulfur cycle, atmosphere oxygenation)
that occur within the hydrosphere will also be affected by changes in the sizes of
reservoirs within the hydrologic cycle and rates at which water is exchanged between
reservoirs. A broader understanding of the interplay between the Earth’s hydrologic cycle
in deep time and other global chemical cycles will advance our knowledge concerning
the evolution of the planet we live on. We encourage future work to identify and quantify
specific factors or events that link the water cycle to other geochemical cycles, so that we
may better understand the Earth system as a whole.
References

Cummins, 2007, Biological Science (3 ed.), Freeman, Scott, p. 215

Intergovernmental Panel on Global Climate, 2007, Climate change 2007: The physical science basis. Agenda, v. 6(07), p. 333.

Lowe, P. R., & Ficke, J. M., 1974, The computation of saturation vapor pressure (No. ENVPREDRSCCH-TECH-PAPER-4-74). Naval Environmental Prediction Research Facility, Monterey, CA.

National Research Council, 2001, Basic research opportunities in earth science, National Academy Press, Washington DC, USA.

NOAA National Climatic Data Center, 2015: http://www.ncdc.noaa.gov/

Poore, R.Z., Williams, R.S., Jr., and Tracey, C., 2000, Sea level and climate: U.S. Geological Survey Fact Sheet 002–00: https://pubs.usgs.gov/fs/fs2-00/

Appendix 1: Flowchart of the interactions of parameters, reservoirs, and fluxes within the numerical model (See also Fig. 1).