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Ryan Nikin-Beers

ABSTRACT

Dengue viral infection is a mosquito-borne disease prevalent in tropical areas, resulting in

over 300 million cases each year, a quarter of which are symptomatic. Dengue virus has

four distinct serotypes, where the interactions between these strains have implications on the

severity of the disease outcomes. During primary infections with one strain, dengue infection

is largely asymptomatic, sometimes resulting in mild dengue fever. However, patients that

develop a secondary infection with a different strain are at an increased risk of more severe

disease, such as dengue hemorrhagic fever or dengue shock syndrome.

The two competing hypotheses for the increased severity during secondary infections are anti-

body dependent enhancement and original antigenic sin. Antibody dependent enhancement

suggests that long-lived antibodies from primary infection dominate antibody responses to

secondary virus strains. The pre-existing antibody does not remove virus; instead, it signals

phagocytes to migrate to the site of infection and ingest antibody-virus particles. Once in-

side the cell, virus unbinds and infects the phagocyte, which leads to enhanced infection and

more severe disease. Original antigenic sin proposes that T lymphocytes specific to primary

infection dominate cellular immune responses during secondary infections, but are inefficient

at clearing cells infected with non-specific strains. Thus, the infected cells are not cleared

quickly enough, leading to the immune cells remaining for longer periods, producing more

cytokines, and leading to more severe disease.



To analyze these hypotheses, we developed and analyzed within-host mathematical models.

In previous work, we developed models of neutralizing and non-neutralizing antibody re-

sponse. We found that in order to fit the secondary infection model to data, we must predict

a decreased non-neutralizing antibody effect during secondary infection. Since this effect ac-

counts for decreased viral clearance and the virus is in quasi-equilibrium with infected cells,

we could be accounting for reduced cell killing and the original antigenic sin hypothesis.

To further understand these interactions, we then develop a model of T cell responses to

primary and secondary dengue virus infections that considers the effect of T cell cross-

reactivity in disease enhancement. We fit the models to published patient data and show

that the overall infected cell killing is similar in dengue heterologous infections, resulting

in dengue fever and dengue hemorrhagic fever. The contribution to overall killing, how-

ever, is dominated by non-specific T cell responses during the majority of secondary dengue

hemorrhagic fever cases. By contrast, more than half of secondary dengue fever cases have

predominant strain-specific T cell responses with high avidity. These results support the

hypothesis that cross-reactive T cell responses occur mainly during severe disease cases of

heterologous dengue virus infections.

Finally, using the results from our within-host models and making certain simplifying as-

sumptions, we develop an immunoepidemiological model of dengue viral infection which

couples the within-host virus dynamics to the population level through a system of partial

differential equations. The resulting multiscale model examines the dynamics of between-

host infections in the presence of two circulating virus strains that involves feedback from

the within-host and between-host interactions. We analytically determine the relationship

between the model parameters and the characteristics of the solutions to the model, and

find analytical thresholds under which infections persist in the population. Furthermore,

we develop and implement a full numerical scheme for our immunoepidemiological model,

allowing the simulation of population dynamics under variable parameter conditions.
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GENERAL AUDIENCE ABSTRACT

Dengue viral infection is a mosquito-borne disease with four distinct strains, where the in-

teractions between these strains have implications on the severity of the disease outcomes.

The two competing hypotheses for the increased severity during secondary infections are

antibody dependent enhancement and original antigenic sin. Antibody dependent enhance-

ment suggests that long-lived antibodies from primary infection remain during secondary

infection but do not neutralize the virus. Original antigenic sin proposes that T cells specific

to primary infection dominate cellular immune responses during secondary infections, but

are inefficient at clearing cells infected with non-specific strains.

To analyze these hypotheses, we developed within-host mathematical models. In previous

work, we predicted a decreased non-neutralizing antibody effect during secondary infection.

Since this effect accounts for decreased viral clearance and the virus is in quasi-equilibrium

with infected cells, we could be accounting for reduced cell killing and the original antigenic

sin hypothesis.



To further understand these interactions, we develop a model of T cell responses to primary

and secondary dengue virus infections that considers the effect of T cell cross-reactivity in

disease enhancement. We fit the models to published patient data and show that the overall

infected cell killing is similar in dengue heterologous infections, resulting in dengue fever and

dengue hemorrhagic fever. The contribution to overall killing, however, is dominated by non-

specific T cell responses during the majority of secondary dengue hemorrhagic fever cases.

By contrast, more than half of secondary dengue fever cases have predominant strain-specific

T cell responses. These results support the hypothesis that cross-reactive T cell responses

occur mainly during severe disease cases of heterologous dengue virus infections.

Finally, using the results from our within-host models, we develop a multiscale model of

dengue viral infection which couples the within-host virus dynamics to the population level

dynamics through a system of partial differential equations. We analytically determine the

relationship between the model parameters and the characteristics of the solutions, and find

thresholds under which infections persist in the population. Furthermore, we develop and

implement a full numerical scheme for our model.
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Chapter 1

Introduction

The outline of this dissertation is as follows. In the second chapter, we review the biolog-

ical background necessary for understanding the studies, including the epidemiology and

immunology of dengue viral infection. The hypotheses of original antigenic sin and antibody

dependent enhancement are discussed. In the third chapter, we review the mathematical

background of modeling disease dynamics, including an overview of epidemiological, immuno-

logical, and immunoepidemiological models. We summarize the results from our review of

HIV immunonepidemiological models, which was joint work with Dr. Narges Dorratoltaj,

Dr. Stanca Ciupe, Dr. Stephen Eubank, and Dr. Kaja Abbas. In the fourth chapter, we

describe a within-host model of original antigenic sin in dengue viral infection. This study,

completed under the guidance of Dr. Stanca Ciupe, was motivated by the results from a

previous within-host model of antibody dependent enhancement, which we describe briefly in

chapter three. In the fifth chapter, we describe an immunoepidemiological model of dengue

viral infection, which was joint work with Dr. Julie Blackwood, Dr. Lauren Childs, and

Dr. Stanca Ciupe. This model used the results from our within-host models in order to

understand how the within-host dynamics of dengue viral infection affect the extinction,

persistence of a single strain, or coexistence of multiple strains at the population level. In

the sixth chapter, we summarize our main results and describe future work.

1
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Chapter 2

Biological Background

2.1 Epidemiology

Epidemiology is the study of how and why diseases spread in populations. To properly study

these effects, and to institute proper control measures against diseases, reliable and accurate

data must be obtained [92]. The intensity of a disease often focuses on three measures: the

incidence, which is the number of new cases in a specific time period; the prevalence, which

is the number of current cases at a particular time point; and the severity, which describes a

specific stage of development of the disease (for example, the size of a lesion or the volume

of a tumor) [92].

2.1.1 Epidemiology of dengue

Dengue viral infection is a mosquito-borne disease prevalent in tropical areas, resulting in

over 300 million cases each year, a quarter of which are symptomatic [13]. Dengue virus

has four distinct serotypes, namely DENV 1-4. The interactions between these strains have

implications on the severity of the disease outcomes. During primary infections with one

strain, dengue infection is largely asymptomatic, sometimes resulting in mild dengue fever

3
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(DF). DF is characterized by rash, headache, and nausea [82]. After infection, lifelong

immunity from reinfection with homologous serotype is developed, and a period of cross-

protection against other strains occurs for one to three months [59]. However, after this

period of cross-protection, patients that develop a secondary infection with a different strain

are at an increased risk of more severe disease, such as dengue hemorrhagic fever (DHF) or

dengue shock syndrome (DSS) [13]. DHF is characterized by symptoms such as high blood

platelet count, bleeding, and liver damage, whereas DSS involves high blood pressure, weak

pulse, internal bleeding, and shock if not treated properly [82].

Illnesses with symptoms similar to DF have been documented since 400 AD in the Chin

dynasty [38]. Although long known to be associated with insects, dengue virus has only

been recently discovered to be transmitted by mosquitos within the past hundred years [83].

Epidemics are caused mostly by transmission through the vector Aedes aegypti, although

slow-moving outbreaks caused by the less efficient Aedes albopictus vector have also been

observed [32, 44]. While DF has had a long history, the more severe diseases of DHF and

DSS have only been recently documented, with the first observed case of DHF occurring in

1953 [38]. Although dengue occurs mostly in tropical and subtropical areas, up to 3.6 billion

people are thought to be living in areas susceptible to dengue, with seventy-five percent of

the susceptible population living in the Asia-Pacific region [124]. The range and spread of

dengue viral infection has been increasing in recent years, along with the number of severe

cases [83]. Before 1970, only nine countries reported having severe cases of dengue, while

the number of countries currently with severe cases of dengue is over thirty [82, 83]. Since

the spread of the mosquito vector is correlated with temperature, one hypothesis for this

increased spread has been the increase in global temperature over recent decades, although

other factors such as globalization and wider movement of people may be contributing factors

[83]. One of the most striking cases of the emergence of more severe disease was seen in Cuba

in the early 1980s. After a vector control campaign had eliminated most cases of dengue

fever prior to 1970, the campaign was discontinued [83]. In 1977, an epidemic involving strain

DENV-1 occurred, although most cases were asymptomatic, and the most severe cases were
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mild dengue fever [73]. However, in 1981, after a strain of DENV-2 had been introduced

into the region, a severe outbreak occurred, with thousands of cases of DHF and DSS, along

with many more thousands of cases of overt DF [44]. The more severe cases often occurred

in patients who had been infected with DENV-1 in 1977 [43].

Due to the increased prominence of dengue viral infection in the past few decades, much

effort has been made recently to develop a dengue vaccine. Populations presumed to most

benefit from a dengue vaccine are residents of and travelers to endemic areas, and thus

any vaccine should be effective across all age groups [82]. Currently, there is one licensed

dengue vaccine, Dengvaxia, that has undergone clinical trials. Two other vaccines, TDV and

LATV, are currently in phase III clinical trials [45]. One of the reasons that dengue vaccines

have not been developed earlier is due to the significant complications that may arise when

introducing a dengue vaccine into a population. Due to the higher risk of more severe disease

during secondary infections, any vaccine that is not protective across all strains may induce

prevalence of more severe diseases [45]. While Dengvaxia has been licensed, Halstead raises

concerns that results from the trials show evidence of vaccine-enhanced infection [45], which

raises significant ethical quandaries.

2.2 Immunology

Immunology studies the different reactions of an immune system within a host to the invasion

of the host by a foreign particle, often a virus, parasite, or fungus. The immune system

response can be split into two main parts, namely innate immunity and adaptive immunity.

Innate immunity contains no memory, and involves a non-specific response to any invading

pathogen. Adaptive immunity relies on memory of previous infections, and develops a specific

response depending on the pathogen [6].

The adaptive immune responses consists of two main types: an antibody response often

carried out by B cells and a cell-mediated immune response often carried out by T cells.
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The antibody response activates B cells, which mature into plasma cells and produce anti-

bodies, which then bind to the infiltrating pathogen. Antibodies can be classified as either

neutralizing, meaning the antibody-pathogen particle is refrained from the ability to bind

to a target cell; or non-neutralizing, meaning that while the antibody-pathogen particle can

still infect a target cell, the antibody marks the cell to be ingested by phagocytes, which are

cells that exist specifically to eliminate infected cells [17].

In cell-mediated immune responses, activated T cells eliminate infected cells that have virus

proteins on their surface, destroying infected cells before the virus has a chance to replicate

inside them [6]. Certain kinds of T cells release cytokines, which can inhibit viral production,

increase the chance infected cells are recognized, and actively recruit more effector cells to

the infection site [17].

2.2.1 Immunology of dengue

In patients with dengue viral infection, the immune response is thought to contribute to

the incidence of more severe disease during secondary heterologous infection. While cases

of DHF and DSS can occur during primary infection, they much more often occur during

secondary infection [113]. These cases are associated with viraemia levels much higher than

those associated with cases of DF [113]. During primary infection, the immune response to

dengue viral infection is relatively typical, with an early Immunoglobulin M (IgM) response

followed by a later Immunoglobulin G (IgG) response [59], where the term immunoglobulins

is used to characterize different types of antibody molecules [17]. During secondary infection

with a different strain, a faster IgG response occurs, often with a lesser IgM response [59].

Protective antibodies are produced against all four strains, even if the patient has only been

infected with two strains, which is why cases of tertiary or quaternary infection rarely occur

[82].

The two competing hypotheses for the increased severity during secondary heterologous

infections are antibody dependent enhancement and original antigenic sin. Antibody de-
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pendent enhancement suggests that long-lived antibodies from primary infection dominate

antibody responses to secondary virus strains. The pre-existing antibody does not remove

virus; instead, the antibody-virus particles bind to receptors on circulating monocytes for the

fragment crystallizable region of IgG antibody molecules (Fcγ receptors) [17]. Monocytes

of this type are not normally infected during primary infection. However, once inside these

monocytes, virus unbinds and infects these cells, which leads to enhanced infection and more

severe disease [46, 25].

Original antigenic sin proposes that T lymphocytes specific to primary infection dominate

cellular immune responses during secondary infections, but are inefficient at clearing cells

infected with non-specific strains. Thus, the infected cells are not cleared quickly enough,

leading to the immune cells remaining for longer periods, producing more cytokines, and

leading to more severe disease [112, 120]. More severe disease has been shown to be associated

with higher dengue-specific CD8+ T cell responses [80].



Chapter 3

Mathematical Background

Mathematical modeling can be used in a variety of ways, but in the context of this thesis, we

will discuss the ways it can be used to describe the dynamics of infectious diseases. Models

can make quantitative predictions or discover qualitative aspects about the underlying sys-

tem. In lieu of large-scale experimental studies, models can analyze the costs and benefits of

vaccination campaigns, drug therapies, and control measures. They allow biologists to gain

insight into the interactions occurring within hosts, between hosts, or the interplay between

these two levels. Due to the complexities of most biological systems, we often make simpli-

fying assumptions so that we can work practically with the models. An understanding of

the most important biological aspects of a system is required to make the model outcomes

biologically relevant. Due to recent technological advances, vast amounts of new data can

help to refine our mathematical models, which can then help to refine the biological experi-

ments performed. Models can use a variety of different methods to describe the behavior of

biological systems, including ordinary or partial differential equations, difference equations,

stochastic equations, and individual-based models. For the purposes of this thesis, we will

focus mostly on describing models of differential equations.

8
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3.1 Epidemiological modeling background

One of the simplest models used to describe how a disease spreads throughout a population

is the compartmental SIR model, which describes the interaction between susceptible indi-

viduals (S), infected individuals (I), and recovered individuals (R) [28, 54]. It is assumed

that infected individuals infect susceptible individuals at rate β, individuals recover at rate

γ, each class dies at rate µ, and susceptible individuals are birthed at rate µ. Due to the

equal birth and death rates, the population remains constant. Note that the mean duration

of infection is 1
γ
and the mean lifetime of an individual is 1

µ
. A diagram of this model is shown

below in Figure 3.1. We can then write this model as the following system of differential

equations,

dS

dt
= µ− βSI − µS,

dI

dt
= βSI − (γ + µ)I,

dR

dt
= γI − µR.

(3.1)

While the model in this form assumes each class describes proportions of the population,

and thus S + I + R = 1, the model can be modified so that each class describes a number

of individuals. By setting each of the rates equal to zero, we can solve for the two equilibria

(S, I, R) of this system, namely,

E1 = (1, 0, 0),

E2 =

(

γ + µ

β
,
µ(β − (γ + µ))

β(γ + µ)
,
γ(β − (γ + µ))

β(γ + µ)

)

.
(3.2)

The steady state E1 is known as the epidemic equilibrium, while E2 is known as the endemic

equilibrium. If the system reaches the epidemic steady state, this means the disease will

eventually clear from the population, possibly after one epidemic. However, to reach the

endemic steady state, multiple epidemics usually occur, and eventually there will always be
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Figure 3.1: SIR model. A diagram of model (3.1), showing the interactions between
susceptible (S), infected (I), and recovered (R) individuals.

a number of people in the population who are infected. We can define the reproduction

number

R0 =
β

γ + µ
,

which describes the number of new infections produced by each infected individual [28]. It

can be shown that the epidemic steady state is locally asymptotically stable if R0 < 1 (and

unstable if R0 > 1), and the endemic steady state is locally asymptotically stable if R0 > 1

(and unstable if R0 < 1). Thus, one goal of any intervention in an endemic area is to attempt

to diminish R0 below 1 to force extinction of the disease.

While this model has mostly been used in theoretical contexts, it can be used to derive

estimates for R0 in populations. Using the incidence rate at endemic equilibrium of βIE2

and an assumption of an exponential waiting time in S, then the average age of infection

can be calculated as

A =
1

βIE2

.
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Thus, using the average lifetime of the population

L =
1

µ
,

it can be shown that R0 = 1 + L
A
. This estimate has been used to calculate R0 for multiple

diseases in developed countries, such as measles, chicken pox, mumps, and rubella [53].

These estimates for R0 can then be used to determine estimates for minimum values of herd

immunity

h = 1−
1

R0
,

which tells the proportion of the population that must have immunity, whether disease- or

vaccination-induced, such that an epidemic does not occur [54].

3.1.1 Epidemiological modeling in dengue

Many models have been developed to describe the dynamics of dengue viral infection in a

population. They can incorporate one or multiple strains, explicitly model both the vector

population and the host population, or implicitly model the vector population through direct

contact [7]. One of the earliest models developed to describe dengue dynamics assumed just

a single strain in the population [10]. The model explicitly accounted for both the vector

and human populations, where the human population is modeled by an SIR model, with

susceptible, infected, and recovered classes Sh, Ih, and Rh, respectively; while the vector

population is modeled by an SI model, with susceptible and infected classes Sv and Iv,

respectively. It is assumed that mosquitos stay infected until death and that the total host

population Nh = Sh + Ih +Rh. The model assumes transmission probabilities from infected

vector to susceptible host βh and from infected host to susceptible vector βv. The biting rate

b, which is the mean number of bites per vector per unit of time, is also accounted for, and

affects the transmission between vectors and hosts. The mosquito population is regenerated

by the recruitment rate r, which is assumed to be some constant proportion of eggs out
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of the mosquito population that mature into adult females, which are the only mosquitos

that can infect humans with dengue. The host recovery rate is γh, and the host and vector

death rates are µh and µv, respectively. The situation is summarized in Figure 3.2, and the

equations are given as

dSh

dt
= µhNh −

βhb

Nh

ShIv − µhSh,

dIh
dt

=
βhb

Nh

ShIv − (γh + µh)Ih,

dRh

dt
= γhIh − µhRh,

dSv

dt
= r −

βvb

Nh
SvIh − µvSv,

dIv
dt

=
βvb

Nh
SvIh − µvIv.

(3.3)

Many epidemiological dengue models are based on an extension of this model, looking at

impact of travellers, temperature, stages of mosquito, predicting control measures on out-

breaks [33, 68, 97]. For example, Luz et al extended the model to include both larvae and

adult populations of mosquitos to analyze different control measures [68]. They found that

while applying insecticide to larvae may reduce outbreaks drastically in the short term, could

result in large outbreaks in the future due to resistance developing. They found the optimal

and most cost-effective strategy, applying insecticide to adult population six times per year

[68].

Due to the enhanced disease effects from the interactions between different strains, more re-

cent models have taken into account multiple serotypes in a region. Two different hypotheses

for enhanced disease are suspected: either susceptibllity enhancement, which assumes that

individuals are more susceptible to secondary infection if they are infected with primary

infection; or transmission enhacement, which assumes that the transmission rate is higher

for individuals with secondary infection [7]. Although there is still controversy about which

effect has more of an impact, most dengue models involving multiple serotypes assume trans-

mission enhancement [7].
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Figure 3.2: Host-vector model. A diagram of model (3.3), showing the interactions
between susceptible (Sh), infected (Ih), and recovered (Rh) hosts, and susceptible (Sv) and
infected (Iv) vectors.



14

Hartley et al developed a model of multiple serotypes in order to determine which parame-

ters varied by seasonality were most impactful on outbreaks. Comparing their model with

data from an outbreak in Thailand, they found that parameters such as biting rate, vector

mortality, and the infectious period of hosts were the most important [50].

Dengue epidemiological models may also model the mosquito population implicitly by us-

ing models of direct contact. These models account for the mosquito population through

transmission by direct contact between hosts, since individuals infect mosquitos, which then

infect other individuals [34]. Billings et al used a model of this type to study the effect of

transmission enhancement and cross-immunity, including vaccines protecting against a single

strain and vaccines protecting against multiple strains [16]. They found that using separate

vaccines to protect against each serotype would not lead to the eradication of the disease,

consistent with the knowledge that a vaccine must be protective against all strains at once

in order to be effective [16].

3.2 Immunological modeling background

Mathematical models can also be used to study the underlying dynamics occcurring within

a single host, often involving dynamics of the pathogen load or the immune response [95].

For example, to study the interactions between target cells T , infected cells I, and virus V ,

we can use a model similar to the compartmental SIR model described in Equations 3.1. In

this case, target cells recruit from some source at rate λ and are infected by virus at rate β,

becoming infected cells, which then produce virus at rate p. Virus is cleared at rate c, and

target cells and infected cells die at rates dT and dI , respectively. Figure 3.3 describes these
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Figure 3.3: Viral infection model. A diagram of model (3.4), showing the interactions
between target cells (T ), infected cells (I), and virus (V ).

interactions, which we then can use to obtain the system of differential equations,

dT

dt
= λ− βTV − dTT,

dI

dt
= βTV − dII,

dV

dt
= pI − cV.

(3.4)

Solving for the equilibria, we find there are two steady states (T , I, V ),

A =

(

λ

dT
, 0, 0

)

,

C =

(

cdI
βp

,
βpλ− cdIdT

βpdI
,
βpλ− cdIdT

βcdI

)

.

(3.5)

In this case, the steady states can be used to describe A, a short-term acute infection, and



16

C, a long-term chronic infection. It can be shown that the reproduction number

R0 =
βpλ

cdIdT

is the average number of virions produced by an infected cell. Thus, if R0 < 1, A will be

locally asymptotically stable (and unstable if R0 > 1), meaning the virus will eventually clear

from the host. However, if R0 > 1, C will be locally asymptotically stable (and unstable

if R0 < 1), meaning a certain number of virus and infected cells will always remain in the

body. The goal of drug therapy for chronic infection should thus be to reduce R0 below this

threshold.

One of the most successful uses of this model has been in the context of HIV, due to the

abundance of data available, although variations of the model have been used in the context

of other infections including hepatitis C, hepatitis B, and influenza [90, 94, 95, 108]. HIV is

a chronic infection, which has three main stages of infection: the acute phase, the chronic

phase, and the AIDS stage [63]. The above model can account for the first two stages,

because during the chronic phase, the virus stays relatively constant, which is known as the

set-point viral load [57]. Using the model with minor variations to account for drug therapy,

the virus production and clearance rates were determined by comparing the model to patient

data. Modeling results found that the half-life of virus was estimated at approximately six

hours [96]. Since during the chronic phase, the virus is effectively at steady state, this means

the patient must produce virus quickly as well, leading to an average estimate of 1010 virions

produced daily [96]. Due to the rapid production and clearance of HIV, it could be shown

that the virus could easily mutate and become resistant to drugs, if measures were not taken

to counteract these effects [95]. Even though this model does not incorporate an immune

response, it can still approximate viral dynamics during the first two stages of HIV infection,

although the model may need an immune response early in infection during the acute phase

to more accurately model this phase of the infection.

For certain infections, an immune system response is required to clear the infection, such
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as a T cell or antibody response [95]. For example, a simple model describing T cells may

include proliferation, recruitment, and death. Therefore, if T cells E proliferate at rate pE ,

recruit from some source s, and die at rate dE, this can be modeled as

dE

dt
= s+ pEE − dEE. (3.6)

We can also distinguish between active and resting T cells. The resting T cells Er recruit

from some source s, a proportion a of resting T cells differentiate into active T cells Ea, and

a proportion r of active T cells differentiate into resting T cells. Active and resting T cells

proliferate and die at rates pEa
and dEa

and pEr
and dEr

, respectively. These interactions

can be modeled as

dEr

dt
= s+ pEr

Er − dEr
Er − aEr + rEa,

dEa

dt
= pEa

Ea − dEa
Ea + aEr − rEa.

(3.7)

These models are shown in Figure 3.4, and can be incorporated into the TIV model. Models

of T cells have also been used in HIV to clarify its dynamics. Experiments were unclear

about whether the drop in T cells during the AIDS phase of HIV was due to high turnover

rate of T cells, such that at some point the T cells were not able to sustain their killing rate

of the virus [56]; or if it was due to T cell production being lowered [52]. Given that the

death rate of T cells can be used as an estimate of the turnover rate of the T cell population,

it was shown through estimating the parameters of the model based on experimental data,

the proliferation and death rates of T cells were three times the rate of normal levels [79].

Thus, it is strongly suggested that the period of decline of T cells from the chronic phase to

the AIDS phase can be described by increased T cell death, and not decreased production

rate of T cells [79].
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Figure 3.4: T cell models. (a) A diagram of model (3.6), showing the proliferation of T
cells (E). (b) A diagram of model (3.7), showing the interactions between resting (Er) and
active (Ea) T cells.

3.2.1 Immunological modeling in dengue

Even with controversy over the impact of the immune response on increased disease severity

in secondary infection, there have been relatively few attempts modeling the within-host

dynamics of dengue. However, there has been an increase in attempts in recent years due to

more data becoming available [67]. Results from vaccination studies in the future will hope-

fully make more data available, which can then be used in models to better understand these

impacts [67]. For the models that have been developed, they mostly focus on incorporating

at least one type of immune response, whether neutralizing antibodies, non-neutralizing an-

tibodies, or T cells [11, 40, 88]. Due to the early stages of development of these models, there

have been contradictory results, and it is unclear whether these are due to different data

sets being used or the different models created. For example, studies found that increased

disease severity was due to enhancing neutralizing antibodies [40], effects from both T cells

and antibodies [11], and non-neutralizing antibody effects [88].
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We briefly describe the model that we developed with Dr. Stanca Ciupe below, which incor-

porates both neutralizing and non-neutralizing antibody effects. This work was published

in Mathematical Biosciences [88].

During primary infection, we assume target cells T are uninfected monocytes, which are

produced at rate s, die at rate dT , and become infected by dengue virus V at rate β.

Infected monocytes I then die at rate δ > dT due to toxicity induced by both the virus

and immune response [70, 74]. Virus is produced at rate p and cleared at rate c. Resting

B cells B become activated B cells Ba at rate α when encountering virus. Activated B

cells become plasma cells P at rate k, also dependent on virus. To account for long-lived

plasma cells remaining in the body, we assume plasma cells have logistic growth rate r and

carrying capacity KP . They produce antibodies A at rate N , which in turn then reduce

viral infectivity at rate η (neutralizing antibody effects) and enhance viral clearance at rate

γ (non-neutralizing antibody effects). Resting B cells, activated B cells, and antibodies die

at rates dB, dBa
, and dA, respectively.

We model secondary infection similar to primary infection, with the caveat that during

secondary infection with a different strain V2, both strain-specific antibodies A2 and cross-

reactive antibodies A1 are produced. Under the assumption of antibody dependent en-

hancement, we model the neutralizing antibody effects by assuming the infectivity rate β2

of secondary virus is enhanced by the presence of cross-reactive antibody and reduced by

strain-specific antibodies at rate η. The non-neutralizing antibody effects of strain-specific

antibody are still accounted for, as A2 enhances viral clearance at rate γ2. However, we as-

sume that cross-reactive antibody renders the virus unavailable for binding by strain-specific

antibody, leading to a reduction of secondary viral clearance at rate γEA1.

We diagram these interactions of secondary infection in Figure 3.5, with the model equations

given below. The model for primary infection can be found by ignoring I2, V2, A2, Ba2 , P2,
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and A2.

dT

dt
= s− dTT −

β1TV1

1 + ηA1
−

β2TV2

1 + ηA2
,

dIi
dt

=
βiTVi

1 + ηAi
− δIi,

dV1

dt
= p1I1 − (c+ γ1A1)V1,

dV2

dt
= p2I2 − (c+ γ2A2 − γEA1)V2,

dB

dt
= −αBV1 − αBV2 − dBB,

dBai
dt

= αBVi − kBaiVi − dBa
Bai ,

dPi

dt
= rPi

(

1−
Pi

KP

)

+ kBaiVi,

dAi

dt
= NPi − dAAi,

(3.8)

where i = 1, 2.

Using patient data [117], we found that our model was unable to explain the data when

assuming enhancement by neutralizing antibodies during secondary infection. Instead, we

found that in order to successfully fit the secondary infection model, we must predict a

decreased non-neutralizing antibody effect during secondary infection. One possible biolog-

ical explanation for this result may be that by binding to heterologous virus, cross-reactive

antibodies render the virus unavailable for removal by strain-specific antibodies. However,

since this non-neutralizing effect accounts for decreased viral clearance and the virus is in

quasi-equilibrium with infected cells, we could be accounting for reduced cell killing and the

original antigenic sin hypothesis. Due to these results, we thus developed a new model which

takes into account the T cell responses, which we describe in chapter four.
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Figure 3.5: Antibody-dependent enhancement model. A diagram of model (3.8),
showing the interaction between target cells (T ), infected cells (I), virus (V ), B cells (B),
activated B cells (Ba), plasma cells (P ), cross-reactive antibodies (A1), and strain-specific
antibodies (A2). Neutralizing antibodies are dark green (strain-specific) or light green (cross-
reactive) and non-neutralizing antibodies are dark blue (strain-specific) or light blue (cross-
reactive).
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3.3 Multiscale modeling background

While we have previously described models that have studied the impacts of within-host

dynamics and population dynamics separately, in reality, the within-host effects often have

effects on the population dynamics between hosts [49, 76]. For example, certain drug thera-

pies for influenza have been known to lessen the period of symptoms and decrease viraemia

levels [51], which could then lead to lower transmission rates for individuals on the drug

therapy [66]. Thus, these drug therapies may have an important role to play in lessen-

ing the chances for influenza outbreaks, outcomes which could be tested through modeling

[49]. In recent years, there has been increased interest in discovering how the effects at the

within-host and between-host scales can be coupled to account for these scales affecting each

other.

Within-host and between-host models are usually linked in one of two ways: either the

within-host model only impacts the between-host model, or there is some feedback between

the two levels. An example of the within-host model only impacting the between-host level

may be during an outbreak of HIV or influenza, where the viral load correlates to the

transmission rate between hosts, but this in turn does not affect within-host dynamics of

getting the disease [49, 102]. Alternatively, modeling a disease transmitted by environmental

spores may require feedback between the two levels, assuming the number of spores in the

environment changes the inoculum size [103]. Thus, if the within-host dynamics affect the

number of spores transmitted, which then affect the number of spores in the environment,

which then changes the inoculum size, which then affects the within-host dynamics, both

levels have a clear impact on the other [76].

Deciding how the within-host and between-host levels are linked is one of the current chal-

lenges in using coupled models. One of the simplest assumptions that can be made is that

pathogen load is in some way linked to the rate of transmission, which has been shown in

studies of multiple diseases including HIV and dengue viral infection [9, 85]. However, there

have been relatively few studies examining whether other aspects such as infection dura-
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tion, viral peak, or area under the viral load affects transmission [49]. Incorporating host

symptoms may impact levels of infectiousness and shedding within the host, which may thus

impact transmission [49].

We diagram an example of a coupled model in Figure 3.6 and show how it can be derived

mathematically. We can first assume that the within-host dynamics are modeled by the

interactions of target cells, infected cells, and virus as described in Equations (3.4), supposing

they are modeled over time τ instead of time t. Using the output of this model, we can

define functions β(τ) and α(τ) that incorporate the solutions T (τ), I(τ), and/or V (τ).

We then develop a between-host SI model over time t describing the interaction between

susceptible individuals S(t) and infected individuals i(τ, t) at time t that have been infected

for time τ . We can thus use our function β(τ) as the transmission rate and α(τ) as the loss

rate of infected individuals, whether that occurs through natural mortality, disease-induced

morality, or recovery. Susceptibles are birthed at rate Λ and die at rate µ. We thus write

the between-host model as

dS(t)

dt
= Λ− µS(t)− S(t)

∫

∞

0

β(τ)i(τ, t) dτ,

∂i(τ, t)

∂t
= −

∂i(τ, t)

∂τ
− α(τ)i(τ, t),

i(0, t) = S(t)

∫

∞

0

β(τ)i(τ, t) dτ.

(3.9)

New insights can be gained into different epidemiological effects by using models similar to the

one described above. Ganusov and Antia showed that making the simplifying assumption to

treat recovery rate as an independent parameter may not account for all its effects, especially

during vaccination [37]. While vaccination may increase recovery rate, it can also induce an

immune response that can change the impact of transmission and virulence, resulting in a

different evolution of disease spread than increasing recovery rate alone [37]. Other models

which incorporate multiple strains of a pathogen have analyzed how within-host fitness and

competition between strains within hosts can affect the overall evolution of strains [22, 69].
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Figure 3.6: Multiscale model. A diagram of model (3.9), showing the interaction between
susceptible (S) and infected (i) individuals. The transmission and recovery rates may depend
on a model of within-host dynamics, which describes the interactions between target cells
(T ), infected cells (I), and virus (V ).
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Using results from our within-host dengue models described in Section 3.2.1 and Chapter

4, we incorporate these within-host dynamics into an epidemiological model of dengue in

Chapter 5. We study the effects of within-host dynamics on the spread of dengue fever and

dengue hemorrhagic fever.

3.3.1 Review of multiscale modeling in HIV

To further understand the different types of multiscale modeling used, we conducted a review

of these types of models in the context of HIV with Dr. Narges Dorratoltaj, Dr. Stanca

Ciupe, Dr. Stephen Eubank, and Dr. Kaja Abbas. Dr. Dorratoltaj, Dr. Abbas, and I

collaborated on writing the paper; Dr. Dorratoltaj and I analyzed and reviewed the papers

and created figures and tables; and Dr. Ciupe and Dr. Eubank helped in final revisions of

the paper. This work has been published in PeerJ [30]. We summarize some of the results

from the paper below and in Table 3.1.

Linking mechanisms

The potential for transmission between HIV+ individuals to susceptibles is affected by the

viral load of infected hosts [9]. In all the models that we analyzed in this review, the

transmission rate between hosts is dependent on the within-host viral load. We categorize

the models into those where the transmission rate is a function of viral load and those where

the equilibria of the within-host model are used to determine the transmission rate.

The within-host and between-host scales of HIV immunoepidemiological models are coupled

by basing the transmission rate on the time-varying viral load since infection. The viral load

(and thus the transmission rate) is high during the acute and AIDS stages of HIV infection

while being low during the chronic stage [57, 26]. Unlike the basic SI epidemiological model

that assumes constant transmission rate β, the between-host model assigns time-varying

transmission rate, which is dependent on the non-linear viral immune dynamics of HIV in
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the within-host model.

In some models, the transmission rate depends on the viral load continuously over time

[105, 72, 102]. Saenz and Bonhoeffer also distinguished between drug-resistant and drug-

sensitive strains and their corresponding impact on the transmission rate [102]. Martcheva

and Li made the death of infected individuals depend on the viral load over time, since the

AIDS stage is associated with high viral load [72].

In the context of HIV evolution, while the transmission rate varies through time depending

on the viral load, the viral load is also modeled to distinguish between different strains

[29, 69]. The transmission rate depends on a predefined infectivity profile which changes

depending on the stage of infection, and the frequency of the different viral strains in an

infected population. Doekes et al made the transmission rate depend on the frequency of

viral strains that were only in actively infected CD4+ T cells [29].

The within-host viral load can be used to individualize the transmission rate over time

[125, 107]. The CD4+ T cell count can also be used to determine the stage of infection [125].

Another method of linking the within-host and between-host scales is to use the within-host

model to determine an equilibrium for the viral load. This equilibrium can then be used

as a constant parameter in the between-host model, which can then be analyzed further

by differing the parameters of the within-host model [75, 24]. Cuadros and Garćıa-Ramos

accounted for the amplified viral load due to co-infection and the corresponding increase in

HIV transmission rate [24]. Metzger et al determined the differing viral loads associated with

HIV and therapeutic infecting particles, and their effect on the transmission probabilities

between infected populations [75].

Clinical and public health implications

Clinical studies have shown that HIV has evolved an intermediate level of virulence at the

within-host level that optimizes the transmission potential of the virus at the population
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level [35]. However, at the within-host level, HIV can evolve quickly [63], virulence increases

during the course of the infection [60], and infections with higher replicative capacities have

higher virulence [60]. Replicative capacities also increase over the course of infection, albeit

slowly [60]. Because of this behavior of HIV at the within-host level, it might be expected

that HIV would evolve a high virulence at the within-host level, even if it did not optimize the

transmission potential at the population level. To understand these seemingly contradictory

results, immunoepidemiological models were used, which incorporated these behaviors of

HIV at the within-host level [69, 29]. The model developed by Lythgoe et al found that

small rates of within-host evolution optimize the transmission potential at the population

level, whereas higher rates of within-host evolution lead to high levels of virulence, but lower

transmission potential [69]. Lythgoe et al suggest that the clinical observations seen in HIV

may be a result of a within-host fitness landscape that is complex to traverse, since this leads

to smaller rates of within-host evolution [69]. They also suggest the effect of the adaptive

immune response may play a role in explaining the observed behavior [69]. Based off the

results from Lythgoe et al, a similar model was constructed by Doekes et al, which included

a latent reservoir of CD4+ T cells at the within-host level [29]. They found that this latent

reservoir may be responsible for delaying the evolutionary dynamics at the within-host level,

which then leads to the transmission potential being optimized [29].

While there is uncertainty over the timing of initiating antiretroviral therapy (ART), some

studies have suggested there may be benefits to beginning treatment early [121, 21]. Exper-

imental studies also suggest that because ART reduces transmissibility, increasing coverage

levels may reduce the prevalence of HIV [21]. However, drug-resistant strains can emerge,

which can lead to treatment failure [58, 48]. Immunoepidemiological models were used to

understand these effects of ART, focusing on treatment timing [107, 125], coverage levels

[105], and drug resistance [102, 107]. The models showed that in general, initiating treat-

ment early [125, 107], increasing coverage [105, 102], and increasing effectiveness of ART

[105, 102] reduces the prevalence of HIV.

However, in certain cases, increases in the prevalence of HIV may occur even with early
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treatment initiation, increased coverage, and increased effectiveness of ART to drug-sensitive

strains. Models showed that as ART coverage levels increase, the prevalence of drug-resistant

strains increase, which cause an increase in HIV prevalence [102]. Prevalence can also increase

if drug-resistant strains cause the drug efficacy to decrease significantly [107]. These results

imply that there may be an optimal therapy coverage level that will minimize the number

of infections [102]. Therefore, in these cases, the models suggest that HIV prevalence can be

reduced by focusing efforts on decreasing the risk of drug resistance emergence [102].

Clinical studies have observed that under certain conditions, the prevalence of HIV increases

when ART coverage levels increase [126]. Zaidi et al hypothesize that since ART reduces

viral load, patients may live longer, and thus have the ability to infect more people [126].

Immunoepidemiolgical models also observed this effect [105], including a model of super-

infection [72]. Both model outcomes are consistent with the hypothesis of Zaidi et al, since the

models find that the increased prevalence is due solely to decreases in viral load [105, 72]. The

model developed by Shen et al found that this effect can be minimized if drug effectiveness

is high [105].

Clinical trials have shown that therapeutic interfering particles (TIPs) have the potential to

reduce within-host viral load [64] and transmit between hosts [1]. Experimental studies have

also shown that HIV transmission rates between hosts depend on the within-host viral load

[35]. Based on these assumptions, an immunoepidemiological model is developed, which de-

ploys TIPs to a small proportion (1%) of the population [75]. The effect on HIV prevalence

due to deploying TIPs is compared to deploying ART and to deploying a hypothetical HIV

vaccine. When TIPs have the ability to transmit between hosts, the model shows deploying

TIPs reduces HIV prevalence to lower levels than deploying ART therapy or deploying vac-

cines. However, the model shows that if TIPs do not have the ability to transmit between

hosts, then there is minimal effect on the reduction of HIV prevalence [75]. While more

study of TIPs is needed, TIPs have the potential to be an effective therapy than either ART

or vaccines.
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Experimental studies suggest that co-infection may be responsible for increases seen in set-

point viral load (spVL) at the within-host level over time [78]. These increases due to

co-infection vary substantially within-host [61]. Also, the concentrations of co-infection in

high-risk groups versus low-risk groups may affect how HIV spreads in the general population

[2]. To study the mechanisms responsible for these effects of co-infection, an immunoepi-

demiological model was developed [24]. They found that populations with higher spVL lead

to higher increases in viral load due to co-infection, whereas populations with lower spVL

leads to lower increases in viral load due to co-infection. This leads to a greater chance of

co-infection increasing the prevalence of HIV in populations with high average spVL [24].

Therefore, the effects of co-infection may be mitigated by identifying the viral factors that

can reduce the spVL in the population.

Table 3.1: Characteristics of HIV multiscale modeling studies. The study topic,
objective, model implementation, linking mechanism between within-host and between-host
models, and inferences of the studies included in the review are summarized.

Study Topic Objective Implementation
Linking

Mechanism
Inferences

[72] Super-

infection

How does HIV

super-infection

affect population

dynamics?

Partial differential equa-

tions

Transmission rate between

hosts and death rate of in-

dividuals depend on viral

load within host over time.

In certain cases, decreasing vi-

ral load can cause higher preva-

lence of HIV since infected in-

dividuals may live longer; os-

cillations at population level

do not occur in superinfec-

tion, contrasting previous stud-

ies that did not use linked mod-

els.

[102] Drug re-

sistance

How do the

dynamics of

drug-sensitive

and drug-

resistant HIV

strains within

hosts affect the

prevalence of

drug-resistant

strains in the

population?

Partial differential equa-

tions

Transmission rate between

hosts depends on viral load

within host over time.

Increasing early initiation and

coverage decreases total preva-

lence upto an optimal treat-

ment coverage level but in-

creases incidence and preva-

lence of drug resistant infec-

tions; above the optimal treat-

ment coverage level, number of

infections may not decrease in

the long term and can even in-

crease.
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Study Topic Objective Implementation
Linking

Mechanism
Inferences

[69] Evolution How does com-

petition between

strains within-

host affect evo-

lution of HIV

virulence?

Integro-differential equa-

tions with delay

Strain-specific infectivity

rate between hosts de-

pends on frequency of

strains within-host.

Small rates of within-host evo-

lution modestly increase HIV

virulence while maximizing

transmission potential; high

rates of within-host evolution

largely increase HIV viru-

lence but lower transmission

potential.

[29] Evolution How does latent

reservoir of in-

fected CD4+ T

cells affect the

types of strains

of HIV that will

evolve within and

between hosts?

Integro-differential equa-

tions with delay

Strain-specific infectivity

rate between hosts de-

pends on frequency of

strain in actively infected

CD4+ T cells within-host.

Relatively large latent reser-

voirs cause delay to within-host

evolutionary processes, which

select for moderately virulent

strains that optimize transmis-

sion at the population level;

with no reservoir, highly vir-

ulent strains are selected for

within-host that do not opti-

mize transmission at the pop-

ulation level.

[24] Co-

infection

How does co-

infection affect

the HIV replica-

tion capacity?

Ordinary differential equa-

tions

Transmission rate between

hosts depends on steady-

state of viral load within

host.

Impact of co-infection increases

as average set-point viral load

of population increases.

[125] ART How does the

timing of an-

tiretroviral

therapy (ART)

in individuals

affect the spread

of HIV?

Individual-based model Transmission rate to

each susceptible partner

depends on viral load of

infected individual.

Beginning ART during acute

infection is most effective for

reducing spread of HIV.

[105] ART How does an-

tiretroviral ther-

apy (ART) affect

HIV prevalence?

Partial differential equa-

tions

Transmission rate depends

on saturated viral load

within-host, and varies be-

tween stages of infection.

While ART decreases the viral

load and infectiousness of each

infected host, in certain cases,

this can lead to higher spread

of HIV throughout the popula-

tion because these infected in-

dividuals live longer; HIV can

still be controlled in these cases

if drug effectiveness is high.

[107] ART How does an-

tiretroviral ther-

apy (ART) affect

HIV prevalence?

Individual-based model Transmission rate to

each susceptible partner

depends on viral load of

infected individual.

Initiating ART early causes

lower transmission of HIV in

population; however, when

ART efficacy decreases with

emergence of drug resistance,

early treatment leads to higher

HIV spread in the popula-

tion because the prevalence of

drug resistant strains increases

rapidly.
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Study Topic Objective Implementation
Linking

Mechanism
Inferences

[75] TIPs How does in-

troduction of

therapeutic inter-

fering particles

(TIPs) affect HIV

prevalence?

Ordinary differential equa-

tions

Transmission rate between

hosts depends on steady-

states of TIP and HIV vi-

ral loads within-host.

Deploying TIPs in even small

numbers of infected individuals

reduces the prevalence of HIV

to low levels due to TIPs’ abil-

ity to transmit between hosts

and target high-risk groups; us-

ing TIPs reduces challenges of

antiretroviral therapy and vac-

cines, and complements them.



Chapter 4

Modeling Original Antigenic Sin in

Dengue Viral Infection

In previous work, further described in Section 3.2.1, we developed a within-host model of

dengue viral infection, using ordinary differential equations, for the interactions between

target cells, infected cells, virus, B cells, plasma cells, and antibodies [88]. We included both

neutralizing antibody effects, which reduce viral infectivity, and non-neutralizing antibody

effects, which enhance the clearance of the virus. We first determined parameters which

allowed the model to match the dynamics of dengue primary infection, and then used clinical

data [117] to parameterize the changes between primary and secondary infections. We found

that in order to fit the secondary infection model to data, we must predict a decreased

non-neutralizing antibody effect during secondary infection. Since this effect accounts for

decreased viral clearance and the virus is in quasi-equilibrium with infected cells, we could

be accounting for reduced cell killing and the original antigenic sin hypothesis. We thus

developed a new model which takes into account the T cell responses.

This work was done under the guidance of Dr. Stanca Ciupe and has been published in

Mathematical Medicine and Biology [89]. Parts of the manuscript have been modified for

this dissertation.

32
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4.1 Abstract

Cross-reactive T cell responses induced by a primary dengue virus infection may contribute

to increased disease severity following heterologous infections with a different virus serotype

in a phenomenon known as the original antigenic sin. In this study, we developed and

analyzed in-host models of T cell responses compared to primary and secondary dengue virus

infections that considered the effect of T cell cross-reactivity in disease enhancement. We fit

the models to published patient data and showed that the overall infected cell killing is similar

in dengue heterologous infections, resulting in dengue fever and dengue hemorrhagic fever.

The contribution to overall killing, however, is dominated by non-specific T cell responses

during the majority of secondary dengue hemorrhagic fever cases. By contrast, more than

half of secondary dengue fever cases have predominant strain-specific T cell responses with

high avidity. These results support the hypothesis that cross-reactive T cell responses occur

mainly during severe disease cases of heterologous dengue virus infections.

4.2 Introduction

There are currently two competing hypotheses for the mechanisms behind increased disease

severity during secondary heterologous infections: the antibody dependent enhancement

(ADE) and the original antigenic sin (OAS). The ADE hypothesis proposes that, during

secondary heterologous infections, antibodies specific to the primary infection bind to the

secondary virus but cannot neutralize it [122, 42, 81, 46, 116, 23]. Instead, phagocytes

recruited to clear the virus-antibody immune complexes internalize non-neutralized virus

and become infected in the process [114, 122, 98]. This leads to increased infectivity and,

potentially, to increased disease severity.

The OAS hypothesis proposes that cross-reactive CD4 and CD8 T cells specific to the original

virus serotype dominate the overall T cell immune responses during secondary heterologous
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virus infections [120, 47, 70, 74, 80, 101]. These lower avidity cross-reactive T cells, inefficient

in removing infected cells, outcompete the higher avidity T cells specific to the new serotype.

Their function is altered with an increased production of pro-inflammatory cytokines con-

tributing to severe dengue pathogenesis [80]. Moreover, the observed disease enhancement

due to OAS in the adult population [77] is correlated with weak patient and HLA-specific T

cell responses [118, 120]. The OAS hypothesis, however, is contradicted by several studies.

It has been shown that T cell responses can offer protection in the general population [118],

that heterologous T cell responses are not needed for disease enhancement in children [86],

and that peak CD8 T cell responses do not correlate with capillary leakage in children with

DHF [31].

To address the role of T cells during secondary heterologous infections we develop, analyze

and compare to data mathematical models of T cell responses during primary and secondary

dengue infections. Mathematical models of dengue infections have focused on the efficacy

of the dengue vaccine [55, 23] on the transmission and severity of heterologous infections at

the population levels [84] and on the role of antibody dependent enhancement at the in-host

level [88, 20, 11, 91]. To address the role of ADE, we recently developed an in-host model of

both neutralizing and non-neutralizing antibody responses during heterologous dengue virus

infections. We found that, during secondary heterologous infections, cross-reactive non-

neutralizing antibodies bind the heterologous virus and render it unavailable for binding and

subsequent removal by strain-specific antibodies through antibody-dependent cell-mediated

viral inhibition (ADCVI) and/or antibody-dependent cell-mediated cytotoxicity (ADCC)

[88]. Such a decrease in the non-neutralizing effects during secondary infections may, in fact,

be attributed to a decrease in the strength of T cell responses during secondary infections due

to OAS. In this study, we investigate this hypothesis by developing mathematical models of

T cell responses during primary and secondary dengue infections. By comparing our models

to published DF and DHF adult patient data [20, 117], we predict that T cell responses are

delayed and non-specific during the majority of DHF cases, but strain-specific in more than

half of the DF cases, suggesting that the original antigenic sin may correlate with disease
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severity.

The paper is structured as follows. In Section 4.3, we develop models of T cell responses

to primary and secondary heterologous dengue virus infection, which includes both strain-

specific and cross-reactive T cells. In Section 4.4, we present analytical results regarding

the stability of our models and numerical results from fitting the models to published adult

primary DF, secondary DF and secondary DHF patient data. In particular, we use the

estimates to determine the role of cross-reactive T cell responses in disease enhancement.

We conclude in Section 4.5 with a discussion.

4.3 Model development

4.3.1 Primary infections

We model T cell mediated immune responses to the primary dengue virus infection as follows.

We assume that the virus strain, V , interacts with susceptible monocytes, T , at rate β,

producing infected monocytes, I. Infected cells produce p virions per day, die daily at rate

δ, and are killed by T cells, E, at rate µ. In the absence of infection, there are sE/dE dengue

specific T cells available, with sE being the source (from thymus) and dE being the per capita

death rate. When a naive T cell population encounters infected cells I, it starts expanding

at rate φ to produce effector cells specific to the virus, E. We assume that the expansion is

delayed τ days and model this by the term φE(t− τ)I(t− τ). The delay of τ days accounts

for the length of time it takes naive T cells before they become dengue specific, E. Finally,

virus has a natural decay rate of c. These interactions are modeled by the following system
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of delay differential equations.

dT

dt
= −βTV,

dE

dt
= sE + φE(t− τ)I(t− τ)− dEE,

dI

dt
= βTV − µEI − δI,

dV

dt
= pI − cV,

(4.1)

with constant history for the initial conditions

T (0) = T0 > 0, E(t) = E0 > 0, I(t) = I0 > 0, V (0) = V0 > 0, (4.2)

where −τ ≤ t ≤ 0 and E0 =
sE
dE

. We refer to time t = 0 as the time of virus detection.

4.3.2 Secondary infections

During secondary infections, heterologous virus, V2, infects target monocytes, T , at the same

rate β, giving rise to infected monocytes, I2. Population I2 produces p virions per day, dies

at per capita rate δ, and is removed through killing. During heterologous infections, it has

been reported that non-specific, cross reactive T cells respond faster to secondary infections

than strain-specific T cells, but they are less efficient in removing the infected cells [101].

We assume that there are both non-specific and strain-specific T cell responses against the

heterologous strain, namely E1, the non-specific response generated in the primary infection

(previously the E variable), and the V2-specific T cell response, E2. We model them as

follows. We assume that both non-specific and strain-specific T cells, E1 and E2, are at

levels sE/dE in the absence of infection, with sE being the source and dE the per capita

death rate. We model this by assuming the expansion of the effector population E2 at rate

φ2I2(t−τ1)E2(t−τ1), τ1 days after the interaction between infected cells I2 and E2. Moreover,

the population E1 expands at rate φ1I2(t−τ2)E1(t−τ2), τ2 days after the interaction between
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infected cells I2 and E1. Here, φ2 6= φ1. Thus, cross-reactive T cells respond faster to

secondary infections if φ1 > φ2. For mathematical simplicity, we assume τ1 = τ2 = τ .

Moreover, non-specific and strain-specific T cells remove I2 at rates ηI2E1 and µI2E2, with

η 6= µ. If non-specific T cell responses are dominant and inefficient, we would expect that

φ1 > φ2 and η < µ. Finally, V2 has a natural decay rate of c as in (4.1). We can ignore

populations I1 and V1, representing the infected cells and virus associated with primary

infection, which we assume are cleared at the time of secondary heterologous infection.

Because of this, we also assume that target cells have rebounded to their pre-infection levels

at the start of secondary infection. The model describing this is:

dT

dt
= −βTV2,

dE1

dt
= sE + φ1E1(t− τ)I2(t− τ)− dEE1,

dE2

dt
= sE + φ2E2(t− τ)I2(t− τ)− dEE2,

dI2
dt

= βTV2 − µE2I2 − ηE1I2 − δI2,

dV2

dt
= pI2 − cV2,

(4.3)

with constant history for the initial conditions

T (0) = T0 > 0, E1(t) = E0 > 0, E2(t) = E0 > 0, I2(t) = I0 > 0, V2(0) = V0 > 0, (4.4)

where −τ ≤ t ≤ 0, E0 =
sE
dE

, and t = 0 is the time of detection of heterologous virus strain

V2.
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4.4 Results

Analytical results show that both models (4.1) and (4.3) have viral clearance hyperplanes of

steady states:

S1 =

(

T ,
sE
dE

, 0, 0

)

, (4.5)

and

S2 =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

, (4.6)

respectively, where T can be any positive number. These states are globally asymptotically

stable for any delay τ , which we prove below. We will then use these models and temporal

viral data from primary and secondary infected patients to numerically investigate virus and

T cell dynamics for specific dengue cases.

4.4.1 Analysis of the primary infection model

We perform global stability analysis of the system (4.1) for τ = 0 and τ > 0. System (4.1)

has a viral clearance hyperplane of steady states:

S1 =

(

T ,
sE
dE

, 0, 0

)

, (4.7)

where T can be any positive number.

Proposition 4.4.1. For system (4.1) with τ = 0, the hyperplane S1 is globally attracting.

Proof. As in [27, 18, 93], we consider the following Lyapunov functional:

W (t) =
φ

µ

∫ T (t)

T

dr +

∫ E(t)

sE/dE

(

1−
sE
dEr

)

dr +
φ

µ

∫ I(t)

0

dr +
δφ

pµ

∫ V (t)

0

dr. (4.8)

Since all parameters and variables are positive, W (t) ≥ 0 and W (t) = 0 if and only if
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T (t) = T , E(t) =
sE
dE

, I(t) = 0 and V (t) = 0. For notational simplicity, we assume T , E, I,

and V are functions of t such that T = T (t), E = E(t), I = I(t), and V = V (t). Moreover,

dW

dt
=

φ

µ

(

dT

dt

)

+

(

1−
sE
dEE

)(

dE

dt

)

+
φ

µ

(

dI

dt

)

+
δφ

pµ

(

dV

dt

)

= −
φsE
dE

I −
cδφ

µp
V −

(

sE
dEE

− 1

)2

dEE ≤ 0,

(4.9)

and
dW

dt
= 0 if and only if (T,E, I, V ) =

(

T , sE
dE
, 0, 0

)

. Therefore, {S1} is the maximal

invariant set where
dW

dt
= 0 and, by LaSalle’s invariance principle, S1 is globally attracting.

Proposition 4.4.2. For system (4.1) with τ > 0, the hyperplane S1 is globally attracting.

Proof. Consider the Lyapunov functional:

W (t) =
φ

µ

∫ T (t)

T

dr +

∫ E(t)

sE/dE

(

1−
sE
dEr

)

dr +
φ

µ

∫ I(t)

0

dr

+
δφ

pµ

∫ V (t)

0

dr + φ

∫ t

t−τ

E(r)I(r) dr.

(4.10)

Note that since all parameters and variables are positive, we have W (t) ≥ 0. Also, W (t) = 0

if and only if T (t) = T , E(t) =
sE
dE

, I(t) = 0 and V (t) = 0. For notational simplicity, we

write T = T (t), E = E(t), I = I(t), and V = V (t). Moreover,

dW

dt
=

φ

µ

(

dT

dt

)

+

(

1−
sE
dEE

)(

dE

dt

)

+
φ

µ

(

dI

dt

)

+
δφ

pµ

(

dV

dt

)

+ φ(E(t)I(t)− E(t− τ)I(t− τ))

= −
φsE
dE

E(t− τ)I(t− τ)

E
−

cδφ

µp
V −

(

sE
dEE

− 1

)2

dEE ≤ 0,

(4.11)

for all t ≥ 0 and
dW

dt
= 0 if and only if (T,E, I, V ) =

(

T , sE
dE
, 0, 0

)

. Therefore, {S1} is the

maximal invariant set where
dW

dt
= 0 and, by LaSalle’s invariance principle, S1 is globally
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attracting.

4.4.2 Analysis of the secondary infection model

We perform global stability analysis of the system (4.3) for τ = 0 and τ > 0. System (4.1)

Since all parameters and variables are positive, we are only interested in the asymptotic

stability of the clearance hyperplane

S2 =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

, (4.12)

where T can be any positive number.

Proposition 4.4.3. For system (4.3) with τ = 0, the hyperplane S2 is globally attracting.

Proof. Consider the following Lyapunov functional:

W (t) =
φ1φ2(µ+ η)

µη

∫ T (t)

T

dr + φ2

∫ E1(t)

sE/dE

(

1−
sE
dEr

)

dr + φ1

∫ E2(t)

sE/dE

(

1−
sE
dEr

)

dr

+
φ1φ2(µ+ η)

µη

∫ I2(t)

0

dr +
φ1φ2δ

pµ

∫ V2(t)

0

dr.

(4.13)

For notational simplicity, we let T = T (t), E1 = E1(t), E2 = E2(t), I2 = I2(t), and V2 =

V2(t). Note that W (t) = 0 if and only if (T,E1, E2, I2, V2) =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

and W (t) > 0

otherwise since all parameters and variables are positive. Moreover,

dW

dt
=

φ1φ2(µ+ η)

µη

(

dT

dt

)

+ φ2

(

1−
sE

dEE1

)(

dE1

dt

)

+ φ1

(

1−
sE

dEE2

)(

dE2

dt

)

+
φ1φ2(µ+η)

µη

(

dI2
dt

)

+
φ1φ2δ

pµ

(

dV2

dt

)

= −2
φ1φ2sE
dE

I2 −
φ1φ2η

µ
E1I2 −

φ1φ2µ

η
E2I2 −

φ1φ2sE
dE

I2 −
φ1φ2δ

η
I2

−
φ1φ2cδ

pµ
V2 − φ1

(

sE
dEE2

− 1

)2

dEE2 − φ2

(

sE
dEE1

− 1

)2

dEE1 ≤ 0

(4.14)
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and
dW

dt
= 0 if and only if (T,E1, E2, I2, V2) =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

. Then {S2} is the maximal

invariant set where
dW

dt
= 0 and, by LaSalle’s invariance principle, S2 is globally attracting.

Proposition 4.4.4. For system (4.3) with τ > 0, the hyperplane S2 is globally attracting.

Proof. Consider the following Lyapunov functional:

W (t) =
φ1φ2(µ+ η)

µη

∫ T (t)

T

dr + φ2

∫ E1(t)

sE/dE

(

1−
sE
dEr

)

dr + φ1

∫ E2(t)

sE/dE

(

1−
sE
dEr

)

dr

+
φ1φ2(µ+ η)

µη

∫ I2(t)

0

dr +
φ1φ2δ

pµ

∫ V2(t)

0

dr

+ φ1φ2

∫ t

t−τ

(E1(r)I2(r) + E2(r)I2(r)) dr.

(4.15)

For notational simplicity, we let T = T (t), E1 = E1(t), E2 = E2(t), I2 = I2(t), and V2 =

V2(t). Note that W (t) = 0 if and only if (T,E1, E2, I2, V2) =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

and W (t) > 0

otherwise since all parameters and variables are positive. Moreover,

dW

dt
=

φ1φ2(µ+ η)

µη

(

dT

dt

)

+ φ2

(

1−
sE

dEE1

)(

dE1

dt

)

+ φ1

(

1−
sE

dEE2

)(

dE2

dt

)

+
φ1φ2(µ+ η)

µη

(

dI2
dt

)

+
φ1φ2δ

pµ

(

dV2

dt

)

+ φ1φ2(E1(t)I2(t) + E2(t)I2(t))

− φ1φ2(E1(t− τ)I2(t− τ) + E2(t− τ)I2(t− τ))

= −
φ1φ2η

µ
E1I2 −

φ1φ2µ

η
E2I2 −

φ1φ2δ

η
I2 −

φ1φ2cδ

pµ
V2

−
φ1φ2sE
dE

(

E1(t− τ)

E1
+

E2(t− τ)

E2

)

I2(t− τ)

− φ1

(

sE
dEE2

− 1

)2

dEE2 − φ2

(

sE
dEE1

− 1

)2

dEE1 ≤ 0

(4.16)

and
dW

dt
= 0 if and only if (T,E1, E2, I2, V2) =

(

T ,
sE
dE

,
sE
dE

, 0, 0

)

. Then {S2} is the maximal

invariant set where
dW

dt
= 0 and, by LaSalle’s invariance principle, S2 is globally attracting.
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4.4.3 Parameter values

We assume that t = 0 corresponds to the day of virus detection. Initially, there are T0 = 107

uninfected monocytes per ml [20], V0 = 357 virus RNA per ml [117], E0 = 60 T cells per ml

[19] and I0 = 1 infected monocyte per ml. Monocytes get infected at rate β = 1.72× 10−10

ml per RNA per day [20]. Infected monocytes die at rate δ = 0.14 per day [20]. Dengue

virus is produced at rate p = 104 per day [20] and has a natural decay rate of c = 3.48 per

day [20]. T cells die at per capita rate dE = 0.5 per day [19] and are at steady-state before

virus detection. Thus, sE = E0dE = 30 cells per ml per day. These fixed parameter values

are summarized in Table 4.1.

We assume that specific and non-specific T cell killing rates (µ and η), proliferation rates (φ1

and φ2), and the delay τ are unknown and we estimate them by comparing virus population

given by models (4.1) and (4.3) to temporal patient virus data.

We use published temporal viral load data from patients with primary DF infections induced

by the DENV-2 serotype [20] and patients with secondary DF and DHF infections induced

by the DENV-2 serotype [117, 20] after having been previously infected with one of the other

three serotypes. We obtained the data by examining the publications and their supplemen-

tary material. We first define a common time course between our models and the two data

sets [117, 20]. Virus detection time (t = 0 in our models), occurs 5.8 days prior to the first

data point reported in [20] (corresponding to symptom onset) and 9.8 days prior to the first

data point reported in [117] (corresponding to two days before the fever onset). To align the

model and the two data sets, we add 5.8 days to the time vector in [20] and 9.8 days to the

time vector in [117].
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4.4.4 T cell responses during primary infections

We estimate parameters µ, φ, and τ by fitting V (t) given by model (4.1) with initial con-

ditions (4.2) to temporal patient data. We use temporal viral load from five patients with

primary DF infections induced by the DENV-2 serotype published in [20] (patient ID: 21,

24, 25, 63, and 83). We align the data to the common time course as described in Section

4.4.3, set all other parameters at the values in Table 4.1, and estimate {µ, φ, τ} using the

Nelder-Mead simplex method, programmed using ‘fminsearch’ in Matlab [62]. From an ini-

tial n-dimensional vector x0, the Nelder-Mead simplex method creates a simplex of n + 1

points. The n+ 1 points are found by calculating x0+0.05x0(i) for i = 1, 2, ..., n, along with

the initial vector x0. It then calculates the function values for each of these points, and or-

ders them from lowest to highest. At each iteration, it discards the point associated with the

highest function value, and calculates a new point. Under certain conditions, it keeps only

the point with the smallest function value and calculates n new points. The algorithm stops

when both the new calculated point and its function value are within a specified tolerance

of all of the other points and their function values [62]. In our case, we use the criterion

n
∑

i=1

[log(y(ti))− log(v(ti))]

where y(ti) is the data at time ti and v(ti) is the viral load from the output of the model

at time ti. We use the Nelder-Mead simplex method since it is used for unconstrained opti-

mization and does not need to consider the differentiablility of the function to be minimized

[62].

We find that patient 63’s estimate for φ is two orders of magnitude lower than the estimates

for the other patients. We consider it an outlier, and we exclude it from our analysis.

For the remaining patients, we compute parameter averages, 95% confidence intervals using

bootstrapping, and inter-patient ranges (see Table 4.2). We predict an average delay of 20

hours in the activation of T cells following recognition of infection.
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We use the inter-patient average parameter estimates to characterize the dynamics of the

virus and T cell responses during primary infection (see Figure 4.1). We predict that virus

reaches a maximum concentration, of 1.04×1010 RNA per ml, 6.24 days after viral detection

(of 357 RNA per ml). Following peak viremia, the virus decays below the limit of detection

by day 11.3. These results are consistent with clinical reports [110, 113, 38].

We are interested in the role of T cell responses in clearing the virus through cell-cell mediated

killing of infected cells. We define the cumulative infected cell loss due to T cell mediated

killing on the interval 0 ≤ t ≤ γ to be

L(γ) =

∫ γ

0

µE(t)I(t) dt, (4.17)

and the average daily viral concentration on interval 0 ≤ t ≤ γ to be

AV (γ) =
1

γ

∫ γ

0

V (t) dt. (4.18)

Moreover, we define the viral and infected cell clearance times, tV C and tIC , to be the times

when V (t) < 1 RNA per ml and I(t) < 1 cell per ml, respectively. We define the difference

between the time of viral clearance and the time of infected cell clearance to be

D = tV C − tIC . (4.19)

For each patient, we quantified the temporal changes in L(γ) for 0 ≤ γ ≤ tIC , AV (γ) for

0 ≤ γ ≤ tV C and D. We found that the inter-patient average for AV (tV C) is 9.43 × 108

RNA per ml per day, for D is 4.56 days, and for L(tIC) is 6.40× 106 cells per ml. Individual

patient graphs showing the cumulative infected cell loss due to T cell mediated killing L(γ)

over time for 0 ≤ γ ≤ 15 are shown in Figure 4.2. Among the patients, the cumulative

infected cell loss increases sharply for the first 6.57 days after virus detection (on average

1.88 days before the time of infected cell clearance).
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Table 4.1: Fixed parameters and initial conditions.

Initial Condition Description Value Units Reference
T0 Initial uninfected monocytes 107 cells/ml [20]
E0 Initial T cells 60 cells/ml [19]
I0 Initial infected monocytes 1 cells/ml -
V0 Initial virus 357 RNA/ml [117]

Parameter Description Value Units Reference
β Infectivity rate 1.72× 10−10 ml/RNA · day [20]
sE Effector cell production rate 30 cells/ml · day [19]
dE Effector cell death rate 0.5 per day [19]
δ Infected monocytes death rate 0.14 per day [20]
p Virus production rate 104 RNA/ml · cells · day [20]
c Virus clearance rate 3.48 per day [20]

Table 4.2: Estimated parameters obtained by fitting model (4.1) to primary DF data.

Parameter Mean Confidence Intervals Range
µ 1.04× 10−5 [9.05× 10−6, 1.18× 10−5] [9.15× 10−6, 1.14× 10−5]
φ 4.44× 10−4 [3.27× 10−4, 5.59× 10−4] [3.61× 10−4, 5.48× 10−4]
τ 0.83 [0.34, 1.31] [0.41, 1.19]
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Figure 4.1: Virus dynamics during primary infections. Virus RNA per ml as given
by model (4.1) (solid lines) versus patient viral load data from primary DF infection with
DENV-2 serotype (solid dots).
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Figure 4.2: T cell mediated killing during primary infections. Cumulative infected
cell loss at time γ due to T cell mediated killing in primary DF infections as given by equation
(4.17).

4.4.5 T cell responses during secondary infections

We examine the possible changes in the virus and the T cell dynamics in patients with

secondary heterologous dengue infections as given by the model (4.3) as follows. We use

temporal virus data from 21 DF and 20 DHF patients infected with the DENV-2 serotype

[117, 20]. We align the data to a common time course as described in Section 4.4.3 and fix

parameters to the values given in Table 4.1. We assume the number of target cells have
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returned to their original state, which allows us to use the same number of initial target

cells T0. Moreover, we assume that parameters µ, φ1, and τ are the mean values in Table

4.2. We estimate the remaining parameters η (the killing rate of non-specific T cells) and

φ2 (the proliferation rate of strain-specific T cells) by fitting V2(t) as given by model (4.3)

with initial conditions (4.4) to individual patient virus data using the Nelder-Mead simplex

method, programmed using ‘fminsearch’ in Matlab [62]. The best fits for individual patients

with secondary infections resulting in DF and DHF cases are presented in Figures 4.3 and

4.4, respectively. Inter-patient average and 95% confidence intervals for each estimated

parameter are presented in Tables 4.3 and 4.4 for DF and DHF infections, respectively.

Table 4.3: Estimated parameters obtained by fitting model (4.3) to secondary DF data.

Parameter Mean Confidence Intervals Range
η 2.77× 10−6 [−1.01× 10−6, 6.54× 10−6] [1.47× 10−12, 3.79× 10−5]
φ2 1.53× 10−3 [5.02× 10−4, 2.56× 10−3] [4.97× 10−7, 7.34× 10−3]

Table 4.4: Estimated parameters obtained by fitting model (4.3) to secondary DHF data.

Parameter Mean Confidence Intervals Range
η 3.06× 10−6 [−4.27× 10−7, 6.54× 10−6] [1.06× 10−12, 3.24× 10−5]
φ2 3.09× 10−4 [−2.83× 10−4, 9.00× 10−4] [5.18× 10−9, 5.52× 10−3]
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Figure 4.3: Virus dynamics during secondary DF infections. Virus RNA per ml as
given by model (4.3) (solid lines) versus patient viral load data from secondary DF infections
with DENV-2 serotype (solid dots). (Patient 388 data not shown.)
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Figure 4.4: Virus dynamics during secondary DHF infections. Virus RNA per ml as
given by model (4.3) (solid lines) versus patient viral load data from secondary DHF cases
with DENV-2 serotype (solid dots).
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Figure 4.5: T cell mediated killing during secondary DF infections. Cumulative
infected cell loss at time γ due to non-specific (solid lines) and strain-specific (dashed lines)
T cell mediated killing in secondary DF infections as given by equation (4.20).
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Figure 4.6: T cell mediated killing during secondary DHF infections. Cumulative
infected cell loss at time γ due to non-specific (solid lines) and strain-specific (dashed lines)
T cell mediated killing in secondary DHF infections as given by equation (4.20).

As in the primary infections, we quantify the role of T cell responses in enhancing disease

severity. For i = 1, 2, we define the cumulative loss of infected cells due to T cell mediated

killing during the time interval 0 ≤ t ≤ γ to be

Li(γ) =

∫ γ

0

κiI2(t) dt, (4.20)

where κ1 = ηE1(t) and κ2 = µE2(t) correspond to non-specific and strain-specific T cell
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responses, and E1(t) and E2(t) are given by the model (4.3). The total cumulative infected

cell loss in secondary infections during time period 0 ≤ t ≤ γ is

L(γ) = L1(γ) + L2(γ). (4.21)

As before, we calculate the values L(tIC) (Equation 4.21), AV (tV C) (Equation 4.18 where

in this case V (t) = V2(t)), and D (Equation 4.19) for each individual patient experiencing

secondary DF and DHF infections, where tIC is the time of infected cell clearance and tV C

is the time of virus clearance. In order to make the distinction between infections where

infected cell killing is induced by strain-specific or non-specific T cells, we define

P =
L1(tIC)

L1(tIC) + L2(tIC)
, (4.22)

to be the percentage of non-specific killing and 1− P to be the percentage of strain-specific

killing of infected cells between the time of viral detection and the time of infected cell

clearance.

We investigate the differences in virus and T cell dynamics between the primary and sec-

ondary infections as given by models (4.1) and (4.3). When secondary infections result in

DF cases, we predict a virus peak of 1.06× 1010 RNA per ml, occurring 6.29 days after viral

detection, and decaying below detection 5.16 days later. These results are similar to those

from primary DF infection. By contrast, when secondary infections result in DHF cases, a

virus peak of 1.62 × 1010 RNA per ml occurs 6.72 days after detection and decays below

detection 5.38 days later. The peak virus concentration is 1.6-times higher than in primary

infection, as observed experimentally [113]. The timing of peak and decay, however, is not

significantly different than the timings of the primary and secondary DF infections.

During secondary DF infections, model (4.3) predicts that the proliferation rate of strain-

specific T cells is 3.4 times larger than that of non-specific T cells, φ2 = 1.53×10−3 compared

to φ1 = 4.44× 10−4 per cell per day. The killing rate of the non-specific T cells is 3.8 times
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smaller than that of strain-specific T cells, η = 2.77× 10−6 compared to µ = 1.04× 10−5 per

cell per day.

During secondary DHF infections, model (4.3) predicts that the proliferation rate of strain-

specific T cells is 1.4 times smaller than that of non-specific T cells, φ2 = 3.09 × 10−4

compared to φ1 = 4.44× 10−4 per cell per day. The killing rate of non-specific T cells is 3.4

times smaller than that of strain-specific T cells, η = 3.06×10−6 compared to µ = 1.04×10−5

per cell per day. These results are summarized in Figure 4.7.
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Figure 4.7: Comparing killing and proliferation rates in secondary DF and DHF
infections. The left figure compares µ (killing rate of strain-specific T cells) and η (killing
rate of non-specific T cells) in both secondary DF and DHF infections. The right figure
compares φ1 (proliferation rate of non-specific T cells) and φ2 (proliferation rate of strain-
specific T cells) in both secondary DF and DHF infections.

These results alone do not support the idea of OAS during secondary infections as η < µ

in both DF and DHF cases, but φ1 > φ2 in secondary DF cases and φ2 < φ1 in secondary
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DHF cases. To further determine the role of strain-specific and non-specific T cell responses

we calculate the average values of L(tIC) (Equation 4.21), AV (tV C) (Equation 4.18 where

V (t) = V2(t)) and D (Equation 4.19) as given by the best fit of the model (4.3) to data from

patients experiencing DF and DHF secondary infections.

Inter-patient averages for the average daily virus loads AV (tV C) are 9.43×108, 1.06×109 and

1.69 × 109 RNA per ml during primary DF, secondary DF and secondary DHF infections,

respectively. The inter-patient average D values are 4.56, 4.81 and 5.18 days in primary DF,

secondary DF and secondary DHF infections. While the average viral load is higher and

time between virus and infected cell clearance are longer during DHF secondary infections,

the differences are not significant. Similarly, the inter-patient averages for the cumulative

cell loss L(tIC) are similar during primary DF, secondary DF and secondary DHF infections,

changing from 6.40 × 106 to 6.22 × 106 to 7.87 × 106 cells per ml, respectively. Therefore

the overall infected cell loss due to T cell mediated killing does not correlate with disease

severity. These results are summarized in Figure 4.8.
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Figure 4.8: Comparing loss, average viral load and difference in clearance in pri-
mary DF (PDF), secondary DF (SDF), and secondary DHF (SDHF) infections.
A comparison of L(tIC) (Equations 4.17 and 4.21, the total infected cell loss at time of in-
fected cell clearance), AV (tV C) (Equation 4.18, the average viral load between time of virus
detection and time of viral clearance), and D (Equation 4.19, the difference between the
time of viral clearance and the time of infected cell clearance) between primary, secondary
DF, and secondary DHF infections.

We next investigate whether specific and non-specific T cell mediated killing as given by

model (4.3) is different among secondary DF and DHF cases. For each patient with secondary

DF and DHF infections, we graphed L1(γ) and L2(γ) for 0 ≤ γ ≤ 15 (see Figures 4.5 and

4.6, respectively). We also calculated P (Equation 4.22) and 1 − P , which are defined as

the percentage of infected cell loss due to non-specific T cell responses and the percentage of

infected cell loss due to strain-specific T cell responses, respectively. We found that during

secondary DF infections, 57% of patients (12 out of 21) had strain-specific T cell responses

that were responsible for an average of 96.1% of infected cell loss. The other 43% of the

patients (9 out of 21) had non-specific T cell responses which were responsible for 94.2%
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of infected cell loss. For secondary DHF infections, 90% of the patients (18 out of 20) had

non-specific T cell killing responsible for 98.3% infected cell loss while the remaining 10% (2

out of 20) of the patients had strain-specific T cell responses responsible for 85.7% infected

cell loss. These results are summarized in Figure 4.9. We infer from these results that

more severe secondary DHF cases have mainly non-specific T cell responses. By contrast,

more than half of secondary DF cases have predominant strain-specific, high avidity, T cell

responses. These results support the OAS hypothesis that cross-reactive T cell responses

occur mainly during severe disease cases of heterologous dengue virus infections.
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Figure 4.9: Comparing infected cell loss in secondary DF and DHF infections. A
comparison between P (Equation 4.22, the percentage of killing done by non-specific T cells)
and 1 − P (the percentage of killing done by strain-specific T cells) in both secondary DF
and DHF infections. The percentage of secondary DF and DHF infections caused by either
non-specific or strain-specific T cell responses is also compared.
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4.5 Discussion

We developed a mathematical model of T cell responses to dengue primary infections. We

fitted the model to temporal dengue virus data [20], and we used it to evaluate parameters

for T cell expansion and killing capacity. We determined that an average of 20 hours delay

in immune cell expansion is needed to adequately capture the initial viral concentration

and the times of viral peak and viral clearance, as seen in primary infection data and other

clinical reports [38, 114, 110, 20]. For the estimated parameters our model predicted a sharp

increase in cumulative cell loss due to T cell mediated killing for the first week following

virus detection, followed by a slow decrease corresponding to infected cell removal.

We investigated the mechanisms behind disease enhancement during secondary infections

with heterologous virus strains. Several hypotheses have been proposed for the increase in

disease severity experienced during DHF and DSS cases, such as the antibody dependent

enhancement [122, 42, 81, 46] and the original antigenic sin [114, 122, 98]. We have previously

examined the effect of ADE using an in-host modeling approach [88] and predicted that cross-

reactive non-neutralizing antibodies may explain the increased virus concentration and time

to clearance seen in DHF cases.

Fewer studies and data have been generated on the possible role of T cell responses dur-

ing heterologous dengue infections. As with B cell responses [98], a secondary infection

may be dominated by cross-reactive memory T cells that are reactivated during heterolo-

gous challenge, yet have less avidity for the current infecting serotype, and may limit the

development of strain-specific T cell populations through competition for space and signal

[101, 36, 119, 120]. To determine whether non-specific T cell clones with less avidity for new

infections are predominant during heterologous infections, we adapted the T cell model to

secondary heterologous dengue virus infections. We considered that both strain-specific and

non-specific T cell populations are produced, and we investigated their individual contribu-

tion to disease outcome by fitting the model to temporal secondary infections dengue virus

data [20, 117]. We evaluated parameters for strain-specific and non-specific T cell expansion,
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as well as killing capacity.

We found that while both non-specific and strain-specific T cell responses are developed

during heterologous infections, their roles in the removal of infected cells differ during DF

and DHF cases. During heterologous DF cases, we predict that 12 out of 21 patients have

a predominantly strain-specific T cell response. By contrast, during DHF cases, 18 out of

20 patients have a non-specific T cell response. We did not predict any difference in overall

infected cell death due to T cell mediated killing during primary DF, secondary DF and

secondary DHF cases. However, the overall T cell response during DHF is higher than in

DF cases, suggesting that other T cell functions, such as cytokine production, may correlate

with disease severity. Further investigation is needed to determine the exact role of pro-

inflammatory cytokines.

In conclusion, we developed and analyzed in-host models of dengue viral infections that

considered the contributions of T cells to disease severity. We fitted the models to published

patient data and showed that the overall infected cell killing is similar in dengue secondary

infections resulting in DF and DHF cases. The contribution to overall killing, however, is

dominated by non-specific, less efficacious, T cell responses during secondary DHF cases

compared with strain-specific, high avidity T cell responses in at least half of secondary DF

cases. Therefore, the cross-reactive cellular immune responses, as described in the hypothesis

of original antigenic sin, may be present and responsible for the disease enhancement during

heterologous infections.



Chapter 5

Unraveling Within-Host Signatures of

Dengue Infection at the Population

Level

Based on the results from our previous within-host models, we developed a model that

describes how the within-host behavior of dengue viral infection affects epidemiological out-

comes. This was joint work done with Dr. Julie Blackwood, Dr. Lauren Childs, and Dr.

Stanca Ciupe. I developed the analytical results, Dr. Childs and Dr. Blackwood developed

the numerical scheme, and we all wrote and revised the manuscript and created the figures

together. We have modified parts of the manuscript for this dissertation. The manuscript

has been accepted by the Journal of Theoretical Biology, and is in the process of publication

[87].

60
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5.1 Abstract

Dengue virus causes worldwide concern with nearly 100 million infected cases reported an-

nually. The within-host dynamics differ between primary and secondary infections, where

secondary infections with a different virus serotype typically last longer, produce higher viral

loads, and induce more severe disease. We build upon the variable within-host virus dynam-

ics during infections resulting in mild dengue fever and severe dengue hemorrhagic fever.

We couple these within-host virus dynamics to a population-level model through a system

of partial differential equations creating an immunoepidemiological model. The resulting

multiscale model examines the dynamics of between-host infections in the presence of two

circulating virus strains that involves feedback from the within-host and between-hosts inter-

actions, encompassing multiple scales. We analytically determine the relationship between

the model parameters and the characteristics of the model’s solutions, and find an analyt-

ical threshold under which infections persist in the population. Furthermore, we develop

and implement a full numerical scheme for our immunoepidemiological model, allowing the

simulation of population dynamics under variable parameter conditions.

5.2 Introduction

Mathematical models have been used to determine the mechanisms behind the differences

in virus dynamics observed during primary and secondary infections, and during mild and

severe cases [8, 12, 20, 40, 88, 89, 91]. Virologically, disease severity translates to higher viral

loads that last for longer periods of time [65, 110]. In particular, during infections resulting in

dengue fever (denoted by F), virus has a lower delayed peak and a shorter time to clearance.

By contrast, during infections resulting in dengue hemorrhagic fever (denoted by H), virus

has a higher peak and a longer time to clearance [65, 110]. However, such virus profiles

alone are not indicators of disease severity, since there exists intra-patient immunological

variability. Mathematical models have examined the interplay between virus and host in
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the disease enhancement seen during secondary infections, in particular antibody dependent

enhancement [20, 88] and original antigenic sin [89]. Calibration of such models to data

from patients with mild and severe infections [20, 117] strongly supported original antigenic

sin, rather than antibody dependent enhancement, as the driver of increased disease severity

[89].

In this study, we investigate the relationship between individual virus-immune profiles and

the dynamics of dengue infection at the population level. In particular, we are interested

in the relationship between the type of disease (F versus H) during primary infection and

enhancement in susceptibility and transmissibility at the population level during secondary

infections with a heterologous serotype. Previous modeling work has reported both reduced

[4, 5] and enhanced transmission [14, 16, 25, 104] during secondary heterologous infections,

as well as enhanced susceptibility [3, 99] and cross-immunity between serotypes [15, 84].

We investigate the role of disease severity (F versus H) of primary and secondary infections

with two co-circulating dengue serotypes on the incidence and persistence of the strains in

the population. We first develop a time-since-infection immunoepidemiological model which

couples the within-host virus dynamics with the population-level transmission dynamics

of two dengue serotypes. We then investigate the model analytically and find conditions

for the extinction and persistence of one or both serotypes in the population. Finally, we

numerically approximate the model to determine how disease severity during primary and

secondary infections affects transmission, susceptibility, and the persistence of strains in the

population. The novelty of our approach consists of assessing how the severity of the in-host

infection translates into the disease persistence in the population.
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5.3 Materials and methods

5.3.1 Time-since-infection multiscale model

We develop a time-since-infection multiscale partial differential equation (PDE) model of

dengue infection. At the population level, our model considers the dynamics of two different

virus serotypes that are co-circulating in the population. We ignore explicit vector transmis-

sion and assume that infection acts like direct contact (i.e. people become infected, which

will infect a certain number of mosquitoes, which will then infect a certain number of other

people). Although there are four dengue serotypes, we make the simplifying assumption

that there are only two serotypes present in the population at one time. Lastly, we model

population densities and assume that the population size is fixed at the initial population

size, defined as the birth rate divided by the per capita mortality rate, Λ/m0.

For each serotype, we assume that individuals can either be susceptible (S), infected (I),

or recovered (R) from infection. At a given time t, we denote the population density of

individuals susceptible to both serotypes by NSS(t), recovered from a primary infection by

NRS(t) or NSR(t), and recovered from infections with both strains by NRR(t) (the subscripts

in our notation refer to the infection status with strain 1 and 2, respectively). Since infec-

tion with one strain typically induces immunity against repeated infections with the same

strain [77, 100], we only consider primary-secondary infection events caused by two different

virus strains. Although the dynamics of these populations can be described by ordinary

differential equations (ODEs), we additionally track the time-since-infection τ for infected

individuals. Therefore, the infected classes depend on two independent variables, t and τ ,

and are described by PDEs. To distinguish variables that depend on time versus those that

depend on both time and time-since-infection, we denote the former using capital letters

and the latter using lowercase letters. In particular, we denote the population density of

individuals who have been infected with a primary infection for τ days at time t by nIS(τ, t)

or nSI(τ, t). Similarly, the population density of individuals who have been infected with a
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second heterologous virus for τ days at time t is nRI(τ, t) or nIR(τ, t). We assume that the

outbreak occurs in a region of negligible disease mortality [39].

Both primary and secondary infections occur through contact with infected individuals at

rate bVi,j(τ) where b is a constant of proportionality that relates the viral load to the between-

host transmission rate, i denotes the strain (i ∈ {1, 2}) and j denotes the infection order (j ∈

{prim, sec}). While the relationship between transmission rate and viral load is assumed

to be linear in this case, we discuss other possibilities for this relationship in Section 4.

The dependence of Vi,j on τ accounts for the differences in between-host transmissibility

depending on an individual’s time-since-infection, which we define explicitly in Section 5.3.2.

We assume that the recovery rate, ri,j, can depend on both strain i and infection order

(j ∈ {prim, sec}). In our analysis, we assume the recovery rate ri,j and the virus profile Vi,j

are independent of each other. However, the recovery rate ri,j and the virus profile Vi,j are

related to each other in our simulations. For example, we assume the recovery rate is one

over the length of infection. See Table 5.1 for a summary of all parameters and variables. A

schematic representation of the model is provided in Figure 5.1.

Here, we present the complete mathematical representation of the system. The ODEs for
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Table 5.1: Variables and parameters of the between-host model.

Variable Definition Notes
t time t ∈ [0,∞)
τ time-since-infection τ ∈ [0,∞)
Nxy(t), nxy(τ, t) population size with status x (for strain 1)

and y (for strain 2) x, y ∈ {S, I, R}
NT total population size

Parameter Definition Notes
Λ fixed birth rate
m0 per capita mortality rate
b proportionality constant relating viral load

to transmission rate
ri,j recovery rate for an infection i ∈ {1, 2},

with strain i of order j j ∈ {prim, sec}
Vi,j viral load for an infection i ∈ {1, 2},

with strain i of order j j ∈ {prim, sec}

the population densities in disease-free states are given by

dNSS(t)

dt
= Λ−m0NSS(t)−

NSS(t)

NT (t)

∫

∞

0

[

bV1,prim(τ)nIS(τ, t) + bV2,prim(τ)nSI(τ, t)

+bV1,sec(τ)nIR(τ, t) + bV2,sec(τ)nRI(τ, t)

]

dτ,

dNSR(t)

dt
= −m0NSR(t)−

NSR(t)

NT (t)

∫

∞

0

[

bV1,prim(τ)nIS(τ, t) + bV1,sec(τ)nIR(τ, t)

]

dτ

+

∫

∞

0

r2,primnSI(τ, t) dτ,

dNRS(t)

dt
= −m0NRS(t)−

NRS(t)

NT (t)

∫

∞

0

[

bV2,prim(τ)nSI(τ, t) + bV2,sec(τ)nRI(τ, t)

]

dτ

+

∫

∞

0

r1,primnIS(τ, t) dτ,

dNRR(t)

dt
= −m0NRR(t) +

∫

∞

0

(

r1,secnIR(τ, t) + r2,secnRI(τ, t)
)

dτ.

(5.1)
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Figure 5.1: Schematic diagram of two-strain between-host dengue infection.
Shaded diamonds indicate infected states with strain 1 (blue) and strain 2 (red). Corre-
sponding colored arrows demonstrate infection of susceptible individuals by strain 1 (blue)
and strain 2 (red). Subscripts i, j indicate the disease status for strain 1 (first subscript) or
strain 2 (second subscript) with {i, j} ∈ {S, I, R}.

The PDEs for the infection states are given by

∂nSI(τ, t)

∂τ
+

∂nSI(τ, t)

∂t
= −m0nSI(τ, t)− r2,primnSI(τ, t),

∂nIS(τ, t)

∂τ
+

∂nIS(τ, t)

∂t
= −m0nIS(τ, t)− r1,primnIS(τ, t),

∂nRI(τ, t)

∂τ
+

∂nRI (τ, t)

∂t
= −m0nRI(τ, t)− r2,secnRI(τ, t),

∂nIR(τ, t)

∂τ
+

∂nIR(τ, t)

∂t
= −m0nIR(τ, t)− r1,secnIR(τ, t),
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with boundary conditions

nSI(0, t) =
NSS(t)

NT (t)

∫

∞

0

[

bV2,prim(τ)nSI(τ, t) + bV2,sec(τ)nRI (τ, t)

]

dτ,

nIS(0, t) =
NSS(t)

NT (t)

∫

∞

0

[

bV1,prim(τ)nIS(τ, t) + bV1,sec(τ)nIR(τ, t)

]

dτ,

nRI(0, t) =
NRS(t)

NT (t)

∫

∞

0

[

bV2,prim(τ)nSI(τ, t) + bV2,sec(τ)nRI(τ, t)

]

dτ,

nIR(0, t) =
NSR(t)

NT (t)

∫

∞

0

[

bV1,prim(τ)nIS(τ, t) + bV1,sec(τ)nIR(τ, t)

]

dτ.

The initial conditions for our system are given by

NSS(0) = NSS0, NSI(0) =

∫

∞

0

nSI0(τ)dτ,

NSR(0) = NSR0, NIS(0) =

∫

∞

0

nIS0(τ)dτ,

NRS(0) = NRS0, NRI(0) =

∫

∞

0

nRI0(τ)dτ,

NRR(0) = NRR0, NIR(0) =

∫

∞

0

nIR0(τ)dτ.

where

Nx(t) =

∫

∞

0

nx(τ, t)dτ for x ∈ {SI, IS, RI, IR}. (5.2)

Finally, the total population at each time t is given by

NT (t) = NSS(t) +NSR(t) +NRS(t) +NRR(t)

+

∫

∞

0

(

nSI(τ, t) + nIS(τ, t) + nRI(τ, t) + nIR(τ, t)
)

dτ.
(5.3)

Since the system is closed, NT (t) =
Λ

m0

for all t.

We refer to our model formulation collectively as system (5.1). We aim to determine un-

der what conditions one or both viruses establish as endemic in the population. We first

investigate this analytically, by determining the equilibria of system (5.1) and their stability.
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5.3.2 Within-host virus dynamics

As described in Section 5.3.1, we assume that the transmission rate of dengue virus between

individuals is proportional to the viral load within infected individuals which, in turn, di-

rectly depends on the time since infection (τ) [85]. While the profile of a viral load as τ

varies is subject to variability based on an individual’s immune characteristics [88, 89], the

virus profile across all infected individuals can be approximated by a triangular-like distri-

bution [20, 88, 89, 117]. Models of ordinary differential equations were used to describe the

interaction between primary and secondary virus, the host target cells, and the host immune

responses [88, 89]. Fitting of these models to human viral load data [20, 117] generated virus

profiles which were roughly triangular in nature when viewed on a log scale. Here, we ap-

proximate the dynamics of virus profiles by triangular distributions which follow the average

virus profiles described in [88, 89]. We consider two virus profiles: one describing dengue

fever (F); and one describing dengue hemorrhagic fever (H) based on data from [20, 117] (see

Figure 5.2). In the case of dengue fever, virus peaks at a lower value and earlier in infection

(see Figure 5.2, solid line) and, in the case of dengue hemorrhagic fever, virus has a higher

peak and persists for a longer time before clearance (see Figure 5.2, dashed line).

5.4 Analytical results

Here, we provide an asymptotic stability analysis of the model which is based on the methods

described in [71] (pp. 333-343). First, define

Γ1,prim =

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ,

Γ2,prim =

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim)τ dτ,

Γ1,sec =

∫

∞

0

bV1,sec(τ)e
−(m0+r1,sec)τ dτ,

Γ2,sec =

∫

∞

0

bV2,sec(τ)e
−(m0+r2,sec)τ dτ.
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Figure 5.2: Within-host viral load. The average virus profile for individuals from [20, 117]
as fitted in [88, 89] follows a triangular distribution when viewed on a log scale. Solid line
for dengue fever (F) and dashed line for dengue hemorrhagic fever (H).
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These equations capture the total force of infection of a given infection type (e.g. Γ1,prim

represents primary infection with strain 1) over an infectious period. For analytical purposes,

we do not assume anything about the nature of the virus profiles. We can first show that

the solutions of system (5.1) are bounded.

5.4.1 Boundedness

Proposition 5.4.1. The solutions of System (5.1) are bounded.

Proof. Note that based on the definitions (5.2), NT (t) as defined in (5.3) is thus

NT (t) = NSS(t) +NSR(t) +NRS(t) +NRR(t) +NSI(t) +NIS(t) +NRI(t) +NIR(t). (5.4)

Since patients will eventually die if infected long enough, we can assume that for all t,

lim
τ→∞

nSI(τ, t) = 0.

Now consider integrating the partial differential equation associated with nSI(τ, t) in System

(5.1) with respect to τ .

Thus, we have

∂nSI(τ, t)

∂τ
+

∂nSI(τ, t)

∂t
= −m0nSI(τ, t)− r2,primnSI(τ, t) dτ

∫

∞

0

(

∂nSI(τ, t)

∂τ
+

∂nSI(τ, t)

∂t

)

dτ =

∫

∞

0

(

−m0nSI(τ, t)− r2,primnSI(τ, t)

)

dτ

lim
s→∞

nSI(s, t)

∣

∣

∣

∣

s

0

+
d
(

∫

∞

0
nSI(τ, t) dτ

)

dt
= −(m0 + r2,prim)

∫

∞

0

nSI(τ, t) dτ

−nSI(0, t) +
dNSI(t)

dt
= −(m0 + r2,prim)NSI(t)

dNSI(t)

dt
= nSI(0, t)− (m0 + r2,prim)NSI(t).
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We can find similar results for nIS(τ, t), nRI(τ, t), and nIR(τ, t).

In summary, we have

dNSI(t)

dt
= nSI(0, t)− (m0 + r2,prim)NSI(t),

dNIS(t)

dt
= nIS(0, t)− (m0 + r1,prim)NIS(t),

dNRI(t)

dt
= nRI(0, t)− (m0 + r2,sec)NRI(t),

dNIR(t)

dt
= nIR(0, t)− (m0 + r1,sec)NIR(t). (5.5)

Using the boundary conditions from System (5.1), the equations (5.5), and the definitions

(5.2), we write the equations of System (5.1) as

dNSS(t)

dt
= Λ−m0NSS(t)− nSI(0, t)− nIS(0, t),

dNSR(t)

dt
= −m0NSR(t)− nIR(0, t) + r2,primNSI(t),

dNRS(t)

dt
= −m0NRS(t)− nRI(0, t) + r1,primNIS(t),

dNRR(t)

dt
= −m0NRR(t) + r2,secNRI(t) + r1,secNIR(t),

dNSI(t)

dt
= nSI(0, t)− (m0 + r2,prim)NSI(t),

dNIS(t)

dt
= nIS(0, t)− (m0 + r1,prim)NIS(t),

dNRI(t)

dt
= nRI(0, t)− (m0 + r2,sec)NRI(t),

dNIR(t)

dt
= nIR(0, t)− (m0 + r1,sec)NIR(t). (5.6)

Adding together the equations in (5.6) and using the definition of NT (t) in (5.4), we find

that
dNT (t)

dt
= Λ−m0NT (t).
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Thus,

NT (t) =
Λ

m0

+ Ce−m0t ≤
Λ

m0

+ C

for some constant C.

Thus, the solutions of System (5.1) are bounded.

5.4.2 Determining generic equilibrium

We look for equilibria of System (5.1) by looking for time-independent solutions that satisfy

System (5.1) with the time derivatives equal to zero.

The equilibria
(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)

of system (5.1) are given by

N∗

SS =
Λ− n∗

SI(0)− n∗

IS(0)

m0
,

N∗

SR =
r2,primn

∗

SI(0)− (m0 + r2,prim)n
∗

IR(0)

m0(m0 + r2,prim)
,

N∗

RS =
r1,primn

∗

IS(0)− (m0 + r1,prim)n
∗

RI(0)

m0(m0 + r1,prim)
,

N∗

RR =
1

m0

(

r1,secn
∗

IR(0)

m0 + r1,sec
+

r2,secn
∗

RI(0)

m0 + r2,sec

)

,

n∗

SI(τ) = n∗

SI(0)e
−(m0+r2,prim)τ ,

n∗

IS(τ) = n∗

IS(0)e
−(m0+r1,prim)τ ,

n∗

RI(τ) = n∗

RI(0)e
−(m0+r2,sec)τ ,

n∗

IR(τ) = n∗

IR(0)e
−(m0+r1,sec)τ ,

(5.7)
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where
(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)
)

are solutions of system (5.8)

n
∗

SI(0) =
1

Λ

(

Λ− n
∗

SI(0)− n
∗

IS(0)

)(

n
∗

SI(0)Γ2,prim + n
∗

RI(0)Γ2,sec

)

,

n
∗

IS(0) =
1

Λ

(

Λ− n
∗

SI(0)− n
∗

IS(0)

)(

n
∗

IS(0)Γ1,prim + n
∗

IR(0)Γ1,sec

)

,

n
∗

RI(0) =
1

Λ(m0 + r1,prim)

(

r1,primn
∗

IS(0)− (m0 + r1,prim)n∗

RI(0)

)(

n
∗

SI(0)Γ2,prim + n
∗

RI(0)Γ2,sec

)

,

n
∗

IR(0) =
1

Λ(m0 + r2,prim)

(

r2,primn
∗

SI(0)− (m0 + r2,prim)n∗

IR(0)

)(

n
∗

IS(0)Γ1,prim + n
∗

IR(0)Γ1,sec

)

.

(5.8)

Note that the total equilibrium population remains constant as

N∗

T = N∗

SS +N∗

SR +N∗

RS +N∗

RR +

∫

∞

0

(

n∗

SI(τ) + n∗

IS(τ) + n∗

RI(τ) + n∗

IR(τ)
)

dτ =
Λ

m0
.

Proposition 5.4.2. The solutions of System (5.8) can be used to determine the generic

equilibrium, as written in Equations (5.7).

Proof. We look for time-independent solutions

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)
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that satisfy System (5.1) with the time derivatives equal to zero. Thus, System (5.1) becomes

Λ−m0N
∗

SS −
N∗

SS

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(τ) + bV2,prim(τ)n
∗

SI(τ)

+bV1,sec(τ)n
∗

IR(τ) + bV2,sec(τ)n
∗

RI(τ)

]

dτ = 0,

−m0N
∗

SR −
N∗

SR

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ)

]

dτ

+

∫

∞

0

r2,primn
∗

SI(τ) dτ = 0,

−m0N
∗

RS −
N∗

RS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

]

dτ

+

∫

∞

0

r1,primn
∗

IS(τ) dτ = 0,

−m0N
∗

RR +

∫

∞

0

(

r1,secn
∗

IR(τ) + r2,secn
∗

RI(τ)
)

dτ = 0, (5.9)

dn∗

SI(τ)

dτ
= −m0n

∗

SI(τ)− r2,primn
∗

SI(τ),

dn∗

IS(τ)

dτ
= −m0n

∗

IS(τ)− r1,primn
∗

IS(τ),

dn∗

RI(τ)

dτ
= −m0n

∗

RI(τ)− r2,secn
∗

RI(τ),

dn∗

IR(τ)

dτ
= −m0n

∗

IR(τ)− r1,secn
∗

IR(τ), (5.10)



75

where equations (5.10) have initial conditions

n∗

SI(0) =
N∗

SS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

]

dτ,

n∗

IS(0) =
N∗

SS

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ)

]

dτ,

n∗

RI(0) =
N∗

RS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

]

dτ,

n∗

IR(0) =
N∗

SR

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ)

]

dτ. (5.11)

Consider

dn∗

SI(τ)

dτ
= −m0n

∗

SI(τ)− r2,primn
∗

SI(τ) (5.12)

with initial condition in τ (i.e. from our boundary conditions of System (5.1))

n∗

SI(0) =
N∗

SS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

]

dτ. (5.13)

Solving the differential equation in (5.12) we have

n∗

SI(τ) = n∗

SI(0)e
−(m0+r2,prim)τ . (5.14)

However, note this is not an explicit solution since n∗

SI(0) depends on n∗

SI(τ), as can be seen

in equation (5.13). We can solve for n∗

IS(τ), n
∗

RI(τ), and n∗

IR(τ) similarly.
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Thus, in summary, we have

n∗

SI(τ) = n∗

SI(0)e
−(m0+r2,prim)τ ,

n∗

IS(τ) = n∗

IS(0)e
−(m0+r1,prim)τ ,

n∗

RI(τ) = n∗

RI(0)e
−(m0+r2,sec)τ ,

n∗

IR(τ) = n∗

IR(0)e
−(m0+r1,sec)τ . (5.15)

Substituting the solutions (5.15) into our initial conditions (5.11), we find

n∗

SI(0) =
N∗

SS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(0)e
−(m0+r2,prim)τ + bV2,sec(τ)n

∗

RI(0)e
−(m0+r2,sec)τ

]

dτ,

n∗

IS(0) =
N∗

SS

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(0)e
−(m0+r1,prim)τ + bV1,sec(τ)n

∗

IR(0)e
−(m0+r1,sec)τ

]

dτ,

n∗

RI(0) =
N∗

RS

N∗

T

∫

∞

0

[

bV2,prim(τ)n
∗

SI(0)e
−(m0+r2,prim)τ + bV2,sec(τ)n

∗

RI(0)e
−(m0+r2,sec)τ

]

dτ,

n∗

IR(0) =
N∗

SR

N∗

T

∫

∞

0

[

bV1,prim(τ)n
∗

IS(0)e
−(m0+r1,prim)τ + bV1,sec(τ)n

∗

IR(0)e
−(m0+r1,sec)τ

]

dτ.

(5.16)

Using the above definitions (5.16), we can write the other four equations (5.9) as

Λ−m0N
∗

SS − n∗

SI(0)− n∗

IS(0) = 0,

−m0N
∗

SR − n∗

IR(0) +

∫

∞

0

r2,primn
∗

SI(0)e
−(m0+r2,prim)τ dτ = 0,

−m0N
∗

RS − n∗

RI(0) +

∫

∞

0

r1,primn
∗

IS(0)e
−(m0+r1,prim)τ dτ = 0,

−m0N
∗

RR +

∫

∞

0

r1,secn
∗

IR(0)e
−(m0+r1,sec)τ + r2,secn

∗

RI(0)e
−(m0+r2,sec)τ dτ = 0. (5.17)

Note for a > 0, we have
∫

∞

0

e−aτ dτ =
1

a
.
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We operate under the assumption that all parameters are positive.

Thus, we can write equations (5.17) as

Λ−m0N
∗

SS − n∗

SI(0)− n∗

IS(0) = 0,

−m0N
∗

SR − n∗

IR(0) +
r2,primn

∗

SI(0)

m0 + r2,prim
= 0,

−m0N
∗

RS − n∗

RI(0) +
r1,primn

∗

IS(0)

m0 + r1,prim
= 0,

−m0N
∗

RR +
r1,secn

∗

IR(0)

m0 + r1,sec
+

r2,secn
∗

RI(0)

m0 + r2,sec
= 0.

Solving these equations for N∗

SS, N
∗

SR, N
∗

RS, and N∗

RR, we have

N∗

SS =
Λ− n∗

SI(0)− n∗

IS(0)

m0
,

N∗

SR =
r2,primn

∗

SI(0)− (m0 + r2,prim)n
∗

IR(0)

m0(m0 + r2,prim)
,

N∗

RS =
r1,primn

∗

IS(0)− (m0 + r1,prim)n
∗

RI(0)

m0(m0 + r1,prim)
,

N∗

RR =
1

m0

(

r1,secn
∗

IR(0)

m0 + r1,sec
+

r2,secn
∗

RI(0)

m0 + r2,sec

)

. (5.18)

At this point, we can write the generic equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)

using the equations in (5.15) and (5.18).

However, these equations still depend on the variables

(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)

)

.

Thus, we need to derive a system of these variables such that they can be solved for.



78

Using the equations (5.15), (5.18), and the definition of N∗

T , it can be shown that

N∗

T =
Λ

m0
. (5.19)

Substituting the equations (5.18) and (5.19) into equations (5.16), we have

n∗

SI(0) =
Λ− n∗

SI(0)− n∗

IS(0)

Λ

∫

∞

0

[

bV2,prim(τ)n
∗

SI(0)e
−(m0+r2,prim)τ

+ bV2,sec(τ)n
∗

RI (0)e
−(m0+r2,sec)τ

]

dτ,

n∗

IS(0) =
Λ− n∗

SI(0)− n∗

IS(0)

Λ

∫

∞

0

[

bV1,prim(τ)n
∗

IS(0)e
−(m0+r1,prim)τ

+ bV1,sec(τ)n
∗

IR(0)e
−(m0+r1,sec)τ

]

dτ,

n∗

RI(0) =
r2,primn

∗

SI(0)− (m0 + r2,prim)n
∗

IR(0)

Λ(m0 + r2,prim)

∫

∞

0

[

bV2,prim(τ)n
∗

SI(0)e
−(m0+r2,prim)τ

+ bV2,sec(τ)n
∗

RI(0)e
−(m0+r2,sec)τ

]

dτ,

n∗

IR(0) =
r1,primn

∗

IS(0)− (m0 + r1,prim)n
∗

RI(0)

Λ(m0 + r1,prim)

∫

∞

0

[

bV1,prim(τ)n
∗

IS(0)e
−(m0+r1,prim)τ

+ bV1,sec(τ)n
∗

IR(0)e
−(m0+r1,sec)τ

]

dτ. (5.20)

Using the definitions of Γ1,prim, Γ2,prim, Γ1,sec, and Γ2,sec, we can write equations (5.20) as

n
∗

SI(0) =
1

Λ

(

Λ− n
∗

SI(0)− n
∗

IS(0)

)(

n
∗

SI(0)Γ2,prim + n
∗

RI(0)Γ2,sec

)

,

n
∗

IS(0) =
1

Λ

(

Λ− n
∗

SI(0)− n
∗

IS(0)

)(

n
∗

IS(0)Γ1,prim + n
∗

IR(0)Γ1,sec

)

,

n
∗

RI(0) =
1

Λ(m0 + r1,prim)

(

r1,primn
∗

IS(0) − (m0 + r1,prim)n∗

RI(0)

)(

n
∗

SI(0)Γ2,prim + n
∗

RI(0)Γ2,sec

)

,

n
∗

IR(0) =
1

Λ(m0 + r2,prim)

(

r2,primn
∗

SI(0) − (m0 + r2,prim)n∗

IR(0)

)(

n
∗

IS(0)Γ1,prim + n
∗

IR(0)Γ1,sec

)

. (5.21)
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In summary, we now have a system of the variables

(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)

)

that can be solved for. We note the system in (5.21) is the same as System (5.8).

Using the solutions to System (5.8), we can thus write the generic equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)

using the definitions described in equations (5.15) and (5.18). We note these equations are

the same as the ones described in Equations (5.7).

Thus, the proposition is proved.

The solutions of system (5.8) result in four possible equilibria. We first list the equilibria.

5.4.3 Extinction equilibrium

Proposition 5.4.3. The extinction equilibrium is

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

m0
, 0, 0, 0, 0, 0, 0, 0

)

. (5.22)

Proof. Trivially, we see that one solution of System (5.8) is

(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)
)

= (0, 0, 0, 0).

Thus, plugging these values into Equations (5.7), we find this equilibrium is

(

Λ

m0
, 0, 0, 0, 0, 0, 0, 0

)

.
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We denote this equilibrium as the extinction equilibrium.

5.4.4 Strain 1 equilibrium

Proposition 5.4.4. The equilibrium where only strain 1 persists is

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ1,prim
, 0,

Λr1,prim(Γ1,prim − 1)

m0(m0 + r1,primΓ1,prim)
, 0, 0,

Λ(Γ1,prim − 1)

Γ1,prim
e−(m0+r1,prim)τ , 0, 0

)

. (5.23)

Proof. To find a non-trivial solution to System (5.8), we first assume that n∗

IR(0) = 0 and

n∗

RI(0) = 0. We also assume that n∗

IS(0) is nonzero.

Thus, the second equation from System (5.8) becomes

n∗

IS(0)−
1

Λ

(

Λ− n∗

SI(0)− n∗

IS(0)

)(

n∗

IS(0)Γ1,prim

)

= 0,

which implies

n∗

IS(0)

(

Λ(1− Γ1,prim) + Γ1,primn
∗

IS(0) + Γ1,primn
∗

SI(0)

)

= 0.

Since n∗

IS(0) is nonzero,

Λ(1− Γ1,prim) + Γ1,primn
∗

IS(0) + Γ1,primn
∗

SI(0) = 0,

which implies

n∗

IS(0) =
Λ(Γ1,prim − 1)− Γ1,primn

∗

SI(0)

Γ1,prim
. (5.24)
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Because n∗

RI(0) = 0, the third equation in System (5.8) becomes

1

Λ(m0 + r1,prim)

(

r1,primn
∗

IS(0)

)(

n∗

SI(0)Γ2,prim

)

= 0.

Since n∗

IS(0) is nonzero, we thus have that n∗

SI(0) = 0.

Thus, equation (5.24) becomes

n∗

IS(0) =
Λ(Γ1,prim − 1)

Γ1,prim

.

In summary, a solution to System (5.8) is

(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)

)

=

(

0,
Λ(Γ1,prim − 1)

Γ1,prim

, 0, 0

)

.

Thus, plugging these values into Equations (5.7), we find this equilibrium is

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ1,prim
, 0,

Λr1,prim(Γ1,prim − 1)

m0(m0 + r1,primΓ1,prim)
, 0, 0,

Λ(Γ1,prim − 1)

Γ1,prim
e−(m0+r1,prim)τ , 0, 0

)

.

We denote this as the equilibrium where only strain 1 persists.

5.4.5 Strain 2 equilibrium

Proposition 5.4.5. The equilibrium where only strain 2 persists is

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ2,prim
,

Λr2,prim(Γ2,prim − 1)

m0(m0 + r2,primΓ2,prim)
, 0, 0,

Λ(Γ2,prim − 1)

Γ2,prim
e−(m0+r2,prim)τ , 0, 0, 0

)

. (5.25)
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Proof. The proposition is proved similar to Proposition 5.4.4 by interchanging n∗

IS(0) with

n∗

SI(0).

Also, the first equation from System (5.8) is used instead of the second equation.

In summary, a solution to System (5.8) is

(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)

)

=

(

Λ(Γ2,prim − 1)

Γ2,prim
, 0, 0, 0

)

.

Thus, plugging these values into Equations (5.7), we find this equilibrium is

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ2,prim
,

Λr2,prim(Γ2,prim − 1)

m0(m0 + r2,primΓ2,prim)
, 0, 0,

Λ(Γ2,prim − 1)

Γ2,prim
e−(m0+r2,prim)τ , 0, 0, 0

)

.

We denote this as the equilibrium where only strain 2 persists.

5.4.6 Coexistence equilibrium

Remark 5.4.1. There are two coexistence equilibria.

Using Mathematica, we find that there exist two solutions to System (5.8) such that the

terms
(

n∗

SI(0), n
∗

IS(0), n
∗

RI(0), n
∗

IR(0)

)

are all nonzero.

Assuming all positive parameters, we find that at most one of the solutions has all positive

terms.

Thus, plugging these values back into Equations (5.7), we find two distinct coexistence

equilibria, where at most one coexistence equilibrium is positive.
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However, they are difficult to write explicitly for general parameters.

Therefore, using specific parameters, we solve for the equilibria numerically using System

(5.8) and Equations (5.7).

5.4.7 Determining generic stability

We now determine the stability for a generic equilibrium. We can then use these results to

determine the stability of our equilibria.

Define C1, C2, Γ1,prim,λ, Γ2,prim,λ, Γ1,sec,λ, and Γ2,sec,λ as

C1 =
m0

Λ

∫

∞

0

(

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ)

)

dτ,

C2 =
m0

Λ

∫

∞

0

(

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

)

dτ,

Γ1,prim,λ =
m0

Λ

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim+λ)τ dτ,

Γ2,prim,λ =
m0

Λ

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim+λ)τ dτ,

Γ1,sec,λ =
m0

Λ

∫

∞

0

bV1,sec(τ)e
−(m0+r1,sec+λ)τ dτ,

Γ2,sec,λ =
m0

Λ

∫

∞

0

bV2,sec(τ)e
−(m0+r2,sec+λ)τ dτ.

Proposition 5.4.6. Consider the generic equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)

.

Assume

NT (t) =
Λ

m0

.
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Using the matrix definition Mλ =























































λ+m0 0 0 1 1 0 0

0 λ+m0 0
−r2,prim

λ+m0+r2,prim
0 0 1

0 0 λ+m0 0
−r1,prim

λ+m0+r1,prim
1 0

−C2 0 0 1−N∗

SS
Γ2,prim,λ 0 −N∗

SS
Γ2,sec,λ 0

−C1 0 0 0 1−N∗

SSΓ1,prim,λ 0 −N∗

SSΓ1,sec,λ

0 0 −C2 −N∗

RS
Γ2,prim,λ 0 1−N∗

RS
Γ2,sec,λ 0

0 −C1 0 0 −N∗

SRΓ1,prim,λ 0 1−N∗

SRΓ1,sec,λ























































, (5.26)

the stability of the equilibrium can be found by analyzing the solutions to the equation

det(Mλ) = 0.

If all the solutions have negative real parts, then the generic equilibrium is locally asymptoti-

cally stable. If at least one of the solutions has positive real parts, then the generic equilibrium

is unstable.

Proof. Consider the generic equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)
)

.

To determine the stability of this particular equilibrium of the system, we first linearize

System (5.1) around the equilibrium.



85

We let

NSS(t) = N∗

SS +NSSp(t),

NSR(t) = N∗

SR +NSRp(t),

NRS(t) = N∗

RS +NRSp(t),

NRR(t) = N∗

RR +NRRp(t),

nSI(τ, t) = n∗

SI(τ) + nSIp(τ, t),

nIS(τ, t) = n∗

IS(τ) + nISp(τ, t),

nRI(τ, t) = n∗

RI(τ) + nRIp(τ, t),

nIR(τ, t) = n∗

IR(τ) + nIRp(τ, t), (5.27)

where the functions with subscript p represent perturbations from the equilibrium.

Recall

NT (t) =
Λ

m0

. (5.28)

Plugging in definitions (5.27) and (5.28) into System (5.1) and its boundary conditions, we
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have

d
(

N∗

SS +NSSp(t)
)

dt
= Λ−m0

(

N
∗

SS +NSS(t)
)

−

m0

Λ

(

N
∗

SS +NSSp(t)
)

∫

∞

0

[

bV1,prim(τ )
(

n
∗

IS(τ ) + nISp(τ, t)
)

+ bV2,prim(τ )
(

n
∗

SI(τ ) + nSIp(τ, t)
)

+ bV1,sec(τ )
(

n
∗

IR(τ ) + nIRp(τ, t)
)

+ bV2,sec(τ )
(

n
∗

RI(τ ) + nRIp(τ, t)
)

]

dτ,

d
(

N∗

SR +NSpR(t)
)

dt
= −m0

(

N
∗

SR +NSRp(t)
)

−

m0

Λ

(

N
∗

SR +NSRp(t)
)

∫

∞

0

[

bV1,prim(τ )
(

n
∗

IS(τ ) + nISp(τ, t)
)

+ bV1,sec(τ )
(

n
∗

IR(τ ) + nIRp(τ, t)
)

]

dτ +

∫

∞

0

r2,prim

(

n
∗

SI(τ ) + nSIp(τ, t)
)

dτ,

d
(

N∗

RS +NRSp(t)
)

dt
= −m0

(

N
∗

RS +NRSp(t)
)

−

m0

Λ

(

N
∗

RS +NRSp(t)
)

∫

∞

0

[

bV2,prim(τ )
(

n
∗

SI(τ ) + nSIp(τ, t)
)

+ bV2,sec(τ )
(

n
∗

RI(τ ) + nRIp(τ, t)
)

]

dτ +

∫

∞

0

r1,prim

(

n
∗

IS(τ ) + nISp(τ, t)
)

dτ,

d
(

N∗

RR +NRRp(t)
)

dt
= −m0

(

N
∗

RR +NRRp(t)
)

+

∫

∞

0

r1,sec

(

n
∗

IR(τ ) + nIR(τ, t)
)

+ r2,sec

(

n
∗

RI(τ ) + nRI(τ, t)
)

dτ,

∂
(

n∗

SI(τ ) + nSIp(τ, t)
)

∂τ
+

∂
(

n∗

SI(τ ) + nSIp(τ, t)
)

∂t
= −(m0 + r2,prim)

(

n
∗

SI(τ ) + nSIp(τ, t)
)

,

∂
(

n∗

IS(τ ) + nISp(τ, t)
)

∂τ
+

∂
(

n∗

IS(τ ) + nISp(τ, t)
)

∂t
= −(m0 + r1,prim)

(

n
∗

IS(τ ) + nISp(τ, t)
)

,

∂
(

n∗

RI(τ ) + nRIp(τ, t)
)

∂τ
+

∂
(

n∗

RI(τ ) + nRIp(τ, t)
)

∂t
= −(m0 + r2,sec)

(

n
∗

RI(τ ) + nRIp(τ, t)
)

,

∂
(

n∗

IR(τ ) + nIRp(τ, t)
)

∂τ
+

∂
(

n∗

IR(τ ) + nIRp(τ, t)
)

∂t
= −(m0 + r1,sec)

(

n
∗

IR(τ ) + nIRp(τ, t)
)

,
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(

n
∗

SI(0) + nSIp(0, t)
)

=
m0

Λ

(

N
∗

SS +NSSp(t)
)

∫

∞

0

[

bV2,prim(τ )
(

n
∗

SI(τ ) + nSIp(τ, t)
)

+ bV2,sec(τ )
(

n
∗

RI(τ ) + nRIp(τ, t)
)

]

dτ,

(

n
∗

IS(0) + nISp(0, t)
)

=
m0

Λ

(

N
∗

SS +NSSp(t)
)

∫

∞

0

[

bV1,prim(τ )
(

n
∗

IS(τ ) + nISp(τ, t)
)

+ bV1,sec(τ )
(

n
∗

IR(τ ) + nIRp(τ, t)
)

]

dτ,

(

n
∗

RI(0) + nRIp(0, t)
)

=
m0

Λ

(

N
∗

RS +NRSp(t)
)

∫

∞

0

[

bV2,prim(τ )
(

n
∗

SI(τ ) + nSIp(τ, t)
)

+ bV2,sec(τ )
(

n
∗

RI(τ ) + nRIp(τ, t)
)

]

dτ,

(

n
∗

IR(0) + nIRp(0, t)
)

=
m0

Λ

(

N
∗

SR +NSRp(t)
)

∫

∞

0

[

bV1,prim(τ )
(

n
∗

IS(τ ) + nISp(τ, t)
)

+ bV1,sec(τ )
(

n
∗

IR(τ ) + nIRp(τ, t)
)

]

dτ.
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Through multiplying out and taking derivatives, we have the following system.

dNSSp(t)

dt
= Λ−m0N

∗

SS

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ ) + bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

−m0NSSp(t)

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV2,prim(τ )nSIp(τ, t)

+ bV1,sec(τ )nIRp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

−

m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ ) + bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

−

m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV2,prim(τ )nSIp(τ, t)

+ bV1,sec(τ )nIRp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ,

dNSRp(t)

dt
= −m0N

∗

SR −

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primn
∗

SI(τ ) dτ

−m0NSRp(t)−
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

−

m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primnSIp(τ, t) dτ

−

m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ,

dNRSp(t)

dt
= −m0N

∗

RS −

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primn
∗

IS(τ ) dτ

−m0NRSp(t)−
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

−

m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primnISp(τ, t) dτ

−

m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ,

dNRRp(t)

dt
= −m0N

∗

RR +

∫

∞

0

[

r2,primn
∗

IR(τ ) + r2,secn
∗

RI(τ )

]

dτ

−m0NRRp(t) +

∫

∞

0

[

r2,primnIRp(τ, t) + r2,secnRIp(τ, t)

]

dτ,
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dn∗

SI(τ )

dτ
+

∂nSIp(τ, t)

∂τ
+

∂nSIp(τ, t)

∂t
= −(m0 + r2,prim)n∗

SI(τ )− (m0 + r2,prim)nSIp(τ, t),

dn∗

IS(τ )

dτ
+

∂nISp(τ, t)

∂τ
+

∂nISp(τ, t)

∂t
= −(m0 + r1,prim)n∗

IS(τ )− (m0 + r1,prim)nISp(τ, t),

dn∗

RI(τ )

dτ
+

∂nRIp(τ, t)

∂τ
+

∂nRIp(τ, t)

∂t
= −(m0 + r2,sec)n

∗

RI(τ )− (m0 + r2,sec)nRIp(τ, t),

dn∗

IR(τ )

dτ
+

∂nIRp(τ, t)

∂τ
+

∂nIRp(τ, t)

∂t
= −(m0 + r1,sec)n

∗

IR(τ )− (m0 + r1,sec)nIRp(τ, t),

n
∗

SI(0) + nSIp(0, t) =
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

+
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ,

n
∗

IS(0) + nISp(0, t) =
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ

+
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ,

n
∗

RI(0) + nRIp(0, t) =
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

+
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

+
m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ

+
m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ,

n
∗

IR(0) + nIRp(0, t) =
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ

+
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

+
m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ

+
m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ. (5.29)



90

At equilibrium, since N∗

T =
Λ

m0
, the following equations are satisfied, as described in Equa-

tions (5.9), (5.10), and (5.11).

Λ−m0N
∗

SS −

m0N
∗

SS

Λ

∫

∞

0

[

bV1,primn
∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ ) + bV1,secn
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ = 0,

−m0N
∗

SR −

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primn
∗

SI(τ ) dτ = 0,

−m0N
∗

RS −

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primn
∗

IS(τ ) dτ = 0,

−m0N
∗

RR +

∫

∞

0

[

r1,secn
∗

IR(τ ) + r2,secnRI(τ )
∗

]

dτ = 0,

dn∗

SI(τ )

dτ
= −(m0 + r2,prim)n∗

SI(τ ),

dn∗

IS(τ )

dτ
= −(m0 + r1,prim)n∗

IS(τ ),

dn∗

RI(τ )

dτ
= −(m0 + r2,sec)n

∗

RI(τ ),

dn∗

IR(τ )

dτ
= −(m0 + r1,sec)n

∗

IR(τ ),

n
∗

SI(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

n
∗

IS(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ,

n
∗

RI(0) =
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

n
∗

IR(0) =
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ. (5.30)

Since we assume our perturbations are small, we can ignore any quadratic terms of pertur-

bations. Using the equations (5.30) and ignoring the quadratic terms of perturbations, we
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can simplify system (5.29) to the following system.

dNSSp(t)

dt
= −m0NSSp(t)

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV2,prim(τ )nSIp(τ, t)

+ bV1,sec(τ )nIRp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

−

m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ )

+ bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

dNSRp(t)

dt
= −m0NSRp(t)−

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

−

m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primnSIp(τ, t) dτ,

dNRSp(t)

dt
= −m0NRSp(t)−

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

−

m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primnISp(τ, t) dτ,

dNRRp(t)

dt
= −m0NRRp(t) +

∫

∞

0

[

r2,primnIRp(τ, t) + r2,secnRIp(τ, t)

]

dτ,

∂nSIp(τ, t)

∂τ
+

∂nSIp(τ, t)

∂t
= −(m0 + r2,prim)nSIp(τ, t),

∂nISp(τ, t)

∂τ
+

∂nISp(τ, t)

∂t
= −(m0 + r1,prim)nISp(τ, t),

∂nRIp(τ, t)

∂τ
+

∂nRIp(τ, t)

∂t
= −(m0 + r2,sec)nRIp(τ, t),

∂nIRp(τ, t)

∂τ
+

∂nIRp(τ, t)

∂t
= −(m0 + r1,sec)nIRp(τ, t),
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nSIp(0, t) =
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nISp(0, t) =
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

+
m0NSSp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ,

nRIp(0, t) =
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSIp(τ, t) + bV2,sec(τ )nRIp(τ, t)

]

dτ

+
m0NRSp(t)

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIRp(0, t) =
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nISp(τ, t) + bV1,sec(τ )nIRp(τ, t)

]

dτ

+
m0NSRp(t)

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ. (5.31)

System (5.31) is a linear system. Thus, we look for solutions of the following forms.

NSSp(t) = NSS0e
λt,

NSRp(t) = NSR0e
λt,

NRSp(t) = NRS0e
λt,

NRRp(t) = NRR0e
λt,

nSIp(τ, t) = nSI0(τ)e
λt,

nISp(τ, t) = nIS0(τ)e
λt,

nRIp(τ, t) = nRI0(τ)e
λt,

nIRp(τ, t) = nIR0(τ)e
λt, (5.32)

where NSS0, NSR0, NRS0, NRR0, nSI0(τ), nIS0(τ), nRI0(τ), nIR0(τ), and λ are nonzero. This

ensures we are dealing with a perturbation away from the equilibrium.

Thus, if system (5.31) is solved such that the real parts of λ are negative, then over time, the

perturbations get closer to zero, and thus our solutions (5.27) move closer to the equilibrium.

In this case, the equilibrium is locally asymptotically stable.
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If system (5.31) is solved such that the real parts of λ are positive, then over time, the

perturbations get larger, and thus our solutions (5.27) move away from the equilibrium. In

this case, the equilibrium is unstable.

Therefore, our goal is to write system (5.31) in such a form such that it can be used to

determine whether the system is solved when the real parts of λ are negative or when the

real parts of λ are positive.

Substituting the solutions (5.32) into the system (5.31), we obtain

d
(

NSS0e
λt
)

dt
= −m0NSS0e

λt

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ )e
λt + bV2,prim(τ )nSI0(τ )e

λt

+ bV1,sec(τ )nIR0(τ )e
λt + bV2,sec(τ )nRI0(τ )e

λt

]

dτ

−

m0NSS0e
λt

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ )

+ bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

d
(

NSR0e
λt
)

dt
= −m0NSR0e

λt
−

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ )e
λt + bV1,sec(τ )nIR0(τ )e

λt

]

dτ

−

m0NSR0e
λt

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primnSI0(τ )e
λt

dτ,

d
(

NRS0e
λt
)

dt
= −m0NRS0e

λt
−

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ )e
λt + bV2,sec(τ )nRI0(τ )e

λt

]

dτ

−

m0NRS0e
λt

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primnIS0(τ )e
λt

dτ,

d
(

NRR0e
λt
)

dt
= −m0NRR0e

λt +

∫

∞

0

[

r2,primnIR0(τ )e
λt + r2,secnRI0(τ )e

λt

]

dτ,
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∂
(

nSI0(τ )e
λt
)

∂τ
+

∂
(

nSI0(τ )e
λt
)

∂t
= −(m0 + r2,prim)nSI0(τ )e

λt
,

∂
(

nIS0(τ )e
λt
)

∂τ
+

∂
(

nIS0(τ )e
λt
)

∂t
= −(m0 + r1,prim)nIS0(τ )e

λt
,

∂
(

nRI0(τ )e
λt
)

∂τ
+

∂
(

nRI0(τ )e
λt
)

∂t
= −(m0 + r2,sec)nRI0(τ )e

λt
,

∂
(

nIR0(τ )e
λt
)

∂τ
+

∂
(

nIR0(τ )e
λt
)

∂t
= −(m0 + r1,sec)nIR0(τ )e

λt
,

nSI0(0)e
λt =

m0N
∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ )e
λt + bV2,sec(τ )nRI0(τ )e

λt

]

dτ

+
m0NSS0e

λt

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIS0(0)e
λt =

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ )e
λt + bV1,sec(τ )nIR0(τ )e

λt

]

dτ

+
m0NSS0e

λt

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ,

nRI0(0)e
λt =

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ )e
λt + bV2,sec(τ )nRI0(τ )e

λt

]

dτ

+
m0NRS0e

λt

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIR0(0)e
λt =

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ )e
λt + bV1,sec(τ )nIR0(τ )e

λt

]

dτ

+
m0NSR0e

λt

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ. (5.33)

Note from taking derivatives, we have

d
(

NSS0e
λt
)

dt
= λNSS0e

λt,

d
(

NSR0e
λt
)

dt
= λNSR0e

λt,

d
(

NRS0e
λt
)

dt
= λNRS0e

λt,

d
(

NRR0e
λt
)

dt
= λNRR0e

λt. (5.34)
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Consider
∂
(

nSI0(τ)e
λt
)

∂τ
+

∂
(

nSI0(τ)e
λt
)

∂t
= −(m0 + r2,prim)nSI0(τ)e

λt.

Then by taking derivatives, we have

eλt
(

dnSI0(τ)

dτ

)

+ λnSI0(τ)e
λt = −(m0 + r2,prim)nSI0(τ)e

λt

eλt
(

dnSI0(τ)

dτ

)

= −(m0 + r2,prim + λ)nSI0(τ)e
λt.

We can do this similarly for the other partial differential equations. In summary, we have

that the partial differential equations in system (5.33) can be written as

eλt
(

dnSI0(τ)

dτ

)

= −(m0 + r2,prim + λ)nSI0(τ)e
λt,

eλt
(

dnIS0(τ)

dτ

)

= −(m0 + r1,prim + λ)nIS0(τ)e
λt,

eλt
(

dnRI0(τ)

dτ

)

= −(m0 + r2,sec + λ)nRI0(τ)e
λt,

eλt
(

dnIR0(τ)

dτ

)

= −(m0 + r1,sec + λ)nIR0(τ)e
λt. (5.35)

After taking the derivatives as described in (5.34) and (5.35), a term of eλt can be factored

out of every equation of system (5.33). This term of eλt can then be eliminated from every
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equation of system (5.33). Therefore, we have that system (5.33) can be written as

λNSS0 = −m0NSS0

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ ) + bV2,prim(τ )nSI0(τ )

+ bV1,sec(τ )nIR0(τ ) + bV2,sec(τ )nRI0(τ )

]

dτ

−

m0NSS0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ )

+ bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

λNSR0 = −m0NSR0 −
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ ) + bV1,sec(τ )nIR0(τ )

]

dτ

−

m0NSR0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primnSI0(τ ) dτ,

λNRS0 = −m0NRS0 −
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ ) + bV2,sec(τ )nRI0(τ )

]

dτ

−

m0NRS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primnIS0(τ ) dτ,

λNRR0 = −m0NRR0 +

∫

∞

0

[

r2,primnIR0(τ ) + r2,secnRI0(τ )

]

dτ,

dnSI0(τ )

dτ
= −(m0 + r2,prim + λ)nSI0(τ ),

dnIS0(τ )

dτ
= −(m0 + r1,prim + λ)nIS0(τ ),

dnRI0(τ )

dτ
= −(m0 + r2,sec + λ)nRI0(τ ),

dnIR0(τ )

dτ
= −(m0 + r1,sec + λ)nIR0(τ ),
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nSI0(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ ) + bV2,sec(τ )nRI0(τ )

]

dτ

+
m0NSS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIS0(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ ) + bV1,sec(τ )nIR0(τ )

]

dτ

+
m0NSS0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ,

nRI0(0) =
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(τ ) + bV2,sec(τ )nRI0(τ )

]

dτ

+
m0NRS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIR0(0) =
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(τ ) + bV1,sec(τ )nIR0(τ )

]

dτ

+
m0NSR0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ. (5.36)

Solving the differential equations of system (5.36), we have the following.

nSI0(τ) = nSI0(0)e
−(m0+r2,prim+λ)τ ,

nIS0(τ) = nIS0(0)e
−(m0+r1,prim+λ)τ ,

nRI0(τ) = nRI0(0)e
−(m0+r2,sec+λ)τ ,

nIR0(τ) = nIR0(0)e
−(m0+r1,sec+λ)τ . (5.37)

Thus, substituting the solutions (5.37) into the other equations of system (5.36), we obtain
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the system of equations

λNSS0 = −m0NSS0

−

m0N
∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(0)e
−(m0+r1,prim+λ)τ + bV2,prim(τ )nSI0(0)e

−(m0+r2,prim+λ)τ

+ bV1,sec(τ )nIR0(0)e
−(m0+r1,sec+λ)τ + bV2,sec(τ )nRI0(0)e

−(m0+r2,sec+λ)τ

]

dτ

−

m0NSS0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV2,prim(τ )n∗

SI(τ ) + bV1,sec(τ )n
∗

IR(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

λNSR0 = −m0NSR0

−

m0N
∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(0)e
−(m0+r1,prim+λ)τ + bV1,sec(τ )nIR0(0)e

−(m0+r1,sec+λ)τ

]

dτ

−

m0NSR0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ +

∫

∞

0

r2,primnSI0(0)e
−(m0+r2,prim+λ)τ

dτ,

λNRS0 = −m0NRS0

−

m0N
∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(0)e
−(m0+r2,prim+λ)τ + bV2,sec(τ )nRI0(0)e

−(m0+r2,sec+λ)τ

]

dτ

−

m0NRS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ +

∫

∞

0

r1,primnIS0(0)e
−(m0+r1,prim+λ)τ

dτ,

λNRR0 = −m0NRR0 +

∫

∞

0

[

r1,secnIR0(0)e
−(m0+r1,sec+λ)τ + r2,secnRI0(0)e

−(m0+r2,sec+λ)τ

]

dτ,

nSI0(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(0)e
−(m0+r2,prim+λ)τ + bV2,sec(τ )nRI0(0)e

−(m0+r2,sec+λ)τ

]

dτ

+
m0NSS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIS0(0) =
m0N

∗

SS

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(0)e
−(m0+r1,prim+λ)τ + bV1,sec(τ )nIR0(0)e

−(m0+r1,sec+λ)τ

]

dτ

+
m0NSS0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ,

nRI0(0) =
m0N

∗

RS

Λ

∫

∞

0

[

bV2,prim(τ )nSI0(0)e
−(m0+r2,prim+λ)τ + bV2,sec(τ )nRI0(0)e

−(m0+r2,sec+λ)τ

]

dτ

+
m0NRS0

Λ

∫

∞

0

[

bV2,prim(τ )n∗

SI(τ ) + bV2,sec(τ )n
∗

RI(τ )

]

dτ,

nIR0(0) =
m0N

∗

SR

Λ

∫

∞

0

[

bV1,prim(τ )nIS0(0)e
−(m0+r1,prim+λ)τ + bV1,sec(τ )nIR0(0)e

−(m0+r1,sec+λ)τ

]

dτ

+
m0NSR0

Λ

∫

∞

0

[

bV1,prim(τ )n∗

IS(τ ) + bV1,sec(τ )n
∗

IR(τ )

]

dτ. (5.38)
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We can ignore the equation involving NRR0 in system (5.38) since NRR0 is uncoupled from

all the other equations in system (5.38).

Note
∫

∞

0

e−aτ dτ =
1

a
,

and only exists if the real part of a is positive.

Recall that C1, C2, Γ1,prim,λ, Γ2,prim,λ, Γ1,sec,λ, and Γ2,sec,λ are defined as

C1 =
m0

Λ

∫

∞

0

(

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ)

)

dτ,

C2 =
m0

Λ

∫

∞

0

(

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ)

)

dτ,

Γ1,prim,λ =
m0

Λ

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim+λ)τ dτ,

Γ2,prim,λ =
m0

Λ

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim+λ)τ dτ,

Γ1,sec,λ =
m0

Λ

∫

∞

0

bV1,sec(τ)e
−(m0+r1,sec+λ)τ dτ,

Γ2,sec,λ =
m0

Λ

∫

∞

0

bV2,sec(τ)e
−(m0+r2,sec+λ)τ dτ.

Thus, using these definitions and the fact that the integrals must exist, we can write (5.38)

as

λNSS0 = −m0NSS0 −N
∗

SSΓ1,prim,λnIS0(0)−N
∗

SSΓ2,prim,λnSI0(0)

−N
∗

SSΓ1,sec,λnIR0(0)−N
∗

SSΓ2,sec,λnRI0(0)− C1NSS0 − C2NSS0,

λNSR0 = −m0NSR0 −N
∗

SRΓ1,prim,λnIS0(0)−N
∗

SRΓ1,sec,λnIR0(0)

− C1NSR0 +
r2,prim

λ+m0 + r2,prim
nSI0(0),

λNRS0 = −m0NRS0 −N
∗

RSΓ2,prim,λnSI0(0)−N
∗

RSΓ2,sec,λnRI0(0)

− C2NRS0 +
r1,prim

λ+m0 + r1,prim
NIS0(0),
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nSI0(0) = N
∗

SSΓ2,prim,λnSI0(0) +N
∗

SSΓ2,sec,λnRI0(0) + C2NSS0,

nIS0(0) = N
∗

SSΓ1,prim,λnIS0(0) +N
∗

SSΓ1,sec,λnIR0(0) + C1NSS0,

nRI0(0) = N
∗

RSΓ2,prim,λnSI0(0) +N
∗

RSΓ2,sec,λnRI0(0) + C2NRS0,

nIR0(0) = N
∗

SRΓ1,prim,λnIS0(0) +N
∗

SRΓ1,sec,λnIR0(0) + C1NSR0. (5.39)

Rewriting the equations of system (5.39), we obtain

(λ+m0 + C1 + C2)NSS0 +N
∗

SSΓ2,prim,λnSI0(0) +N
∗

SSΓ1,prim,λnIS0(0)

+N
∗

SSΓ2,sec,λnRI0(0) +N
∗

SSΓ1,sec,λnIR0(0) = 0,

(λ+m0 +C1)NSR0 −
r2,prim

λ+m0 + r2,prim
nSI0(0) +N

∗

SRΓ1,prim,λnIS0(0) +N
∗

SRΓ1,sec,λnIR0(0) = 0,

(λ+m0 +C2)NRS0 +N
∗

RSΓ2,prim,λnSI0(0)−
r1,prim

λ+m0 + r1,prim
nIS0(0) +N

∗

RSΓ2,sec,λnRI0(0) = 0,

−C2NSS0 + (1−N
∗

SSΓ2,prim,λ)nSI0(0)−N
∗

SSΓ2,sec,λnRI0(0) = 0,

−C1NSS0 + (1−N
∗

SSΓ1,prim,λ)nIS0(0)−N
∗

SSΓ1,sec,λnIR0(0) = 0,

−C2NRS0 −N
∗

RSΓ2,prim,λnSI0(0) + (1−N
∗

RSΓ2,sec,λ)nRI0(0) = 0,

−C1NSR0 −N
∗

SRΓ1,prim,λnIS0(0) + (1−N
∗

SRΓ1,sec,λ)nIR0(0) = 0. (5.40)

We can now write system (5.40) as

Mλy = 0, (5.41)

where

yT =

(

NSS0, NSR0, NRS0, nSI0(0), nIS0(0), nRI0(0), nIR0(0)

)

,

0 = (0, 0, 0, 0, 0, 0, 0),

and

Mλ =
(

M1 M2

)

,
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where

M1 =



































λ+m0 + C1 + C2 0 0

0 λ+m0 + C1 0

0 0 λ+m0 + C2

−C2 0 0

−C1 0 0

0 0 −C2

0 −C1 0



































and

M2 =



































N∗

SSΓ2,prim,λ N∗

SSΓ1,prim,λ N∗

SSΓ2,sec,λ N∗

SSΓ1,sec,λ

−r2,prim
λ+m0+r2,prim

N∗

SRΓ1,prim,λ 0 N∗

SRΓ1,sec,λ

N∗

RSΓ2,prim,λ
−r1,prim

λ+m0+r1,prim
N∗

RSΓ2,sec,λ 0

1−N∗

SSΓ2,prim,λ 0 −N∗

SSΓ2,sec,λ 0

0 1−N∗

SSΓ1,prim,λ 0 −N∗

SSΓ1,sec,λ

−N∗

RSΓ2,prim,λ 0 1−N∗

RSΓ2,sec,λ 0

0 −N∗

SRΓ1,prim,λ 0 1−N∗

SRΓ1,sec,λ



































.

Mλ is a 7× 7 matrix.

Since yT is nonzero, equation (5.41) implies

det(Mλ) = 0. (5.42)

Equation (5.42) is an equation of λ. However, this is not a normal characteristic equation of

λ due to the definitions of Γ1,prim,λ, Γ2,prim,λ, Γ1,sec,λ, and Γ2,sec,λ.

Adding rows to other rows does not change the determinant of Mλ. Thus, we can simplify

Mλ slightly.

We add rows 4 and 5 to row 1, we add row 7 to row 2, and we add row 6 to row 3. Thus,
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we have Mλ =























































λ+m0 0 0 1 1 0 0

0 λ+m0 0
−r2,prim

λ+m0+r2,prim
0 0 1

0 0 λ+m0 0
−r1,prim

λ+m0+r1,prim
1 0

−C2 0 0 1−N∗

SSΓ2,prim,λ 0 −N∗

SSΓ2,sec,λ 0

−C1 0 0 0 1−N∗

SS
Γ1,prim,λ 0 −N∗

SS
Γ1,sec,λ

0 0 −C2 −N∗

RSΓ2,prim,λ 0 1−N∗

RSΓ2,sec,λ 0

0 −C1 0 0 −N∗

SR
Γ1,prim,λ 0 1−N∗

SR
Γ1,sec,λ























































. (5.43)

In summary, as described when we defined solutions (5.32), we have shown that the stability

of the generic equilibrium can be determined by analyzing the solutions λ to equation (5.42).

If the solutions all have negative real parts, the equilibrium will be locally asymptotically

stable. If at least one solution has positive real parts, then the solution will be unstable.

Note that (5.43) is the same matrix described in definition (5.26).

Thus, the proposition is proved.

5.4.8 Extinction stability

Proposition 5.4.7. The extinction equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

m0

, 0, 0, 0, 0, 0, 0, 0

)

(5.44)

1) is locally asymptotically stable if Γ1,prim < 1 and Γ2,prim < 1;

2) is unstable if Γ1,prim > 1 or Γ2,prim > 1.

Proof. To determine stability of the equilibrium, we can use the matrix Mλ defined in (5.26).
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Recall

Γ1,prim,λ =
m0

Λ

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim+λ)τ dτ,

Γ2,prim,λ =
m0

Λ

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim+λ)τ dτ.

We plug in the extinction equilibrium as defined in (5.44) into the matrix Mλ.

Using Mathematica, we find that

det(Mλ) = (λ+m0)
3

(

Λ

m0

Γ1,prim,λ − 1

)(

Λ

m0

Γ2,prim,λ − 1

)

.

Solutions λ must satisfy det(Mλ) = 0.

Thus, we have solutions λ1, λ2, and λ3 that satisfy the equations

λ1 +m0 = 0,

Λ

m0
Γ1primλ2 − 1 = 0,

Λ

m0
Γ2primλ3 − 1 = 0.

(5.45)

Let

H1,prim(λ) =

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim+λ)τ dτ, (5.46)

H2,prim(λ) =

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim+λ)τ dτ. (5.47)

From equations (5.45), we consider

Λ

m0
Γ1,prim,λ2 − 1 = 0.



104

This is equivalent to

H1,prim(λ2) = 1, (5.48)

where H1,prim is defined in equation (5.46).

Similarly, equation
Λ

m0
Γ2,prim,λ3 − 1 = 0

from equations (5.45) is equivalent to

H2,prim(λ3) = 1, (5.49)

where H2,prim is defined in equation (5.47).

Lemma 5.4.1. If Γ1,prim < 1, then solution λ2 from equations (5.45) has negative real parts.

Proof. Assume λ2 = α + βi where α ≥ 0.

Note |eβi| = 1 for all β.

Using H1,prim as defined in equation (5.46), we have

|H1,prim(λ2)| =

∣

∣

∣

∣

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim+λ2)τ dτ

∣

∣

∣

∣

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ |e−(α+βi)τ | dτ

=

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ |e−ατ ||e−βiτ | dτ

=

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τe−ατ dτ

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ

= Γ1,prim < 1

In summary, if Γ1,prim < 1 and λ2 has positive real parts, then |H1,prim(λ2)| < 1.
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However, solution λ2 must satisfy H1,prim(λ2) = 1, as shown in equation (5.48).

Therefore, in order to satisfy H1,prim(λ2) = 1, solution λ2 must have negative real parts.

Lemma 5.4.2. If Γ2,prim < 1, then solution λ3 from equations (5.45) has negative real parts.

Proof. The lemma is proved similar to Lemma 5.4.1 by replacing λ2 with λ3, Γ1,prim with

Γ2,prim, and H1,prim(λ) with H2,prim(λ), where H2,prim is defined in equation (5.47).

Lemma 5.4.3. If Γ1,prim < 1 and Γ2,prim < 1, then the extinction equilibrium is locally

asymptotically stable.

Proof. We show that the solutions λ1, λ2, and λ3 from equations (5.45) have negative real

parts.

Note that λ1 + m0 = 0 implies λ1 = −m0. Since m0 > 0, solution λ1 always has negative

real parts.

If Γ1,prim < 1, then from Lemma 5.4.1, solution λ2 has negative real parts.

If Γ2,prim < 1, then from Lemma 5.4.2, solution λ3 has negative real parts.

Thus, if Γ1,prim < 1 and Γ2,prim < 1, all solutions λ1, λ2, and λ3 from equations (5.45) have

negative real parts.

Thus, the extinction equilibrium is locally asymptotically stable.

Lemma 5.4.4. If Γ1,prim > 1, then solution λ2 from equations (5.45) has positive real parts.

Proof. Consider H1,prim(λ) as defined in equation (5.46).
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The solution λ2 must satisfy the equation H1,prim(λ2) = 1, as shown in equation (5.48).

Note that

H1,prim(0) =

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ = Γ1,prim.

If Γ1,prim > 1, then H1,prim(0) > 1.

Treating H1,prim(λ2) as a function of the real variable λ2, we note that

lim
λ2→∞

H1,prim(λ2) = 0

Since H1,prim(0) > 1, we have that the equation H1,prim(λ
∗

2) = 1 is only satisfied for some

λ∗

2 > 0.

In summary, if Γ1,prim > 1, then solution λ2 must have positive real parts.

Lemma 5.4.5. If Γ2,prim > 1, then solution λ3 from equations (5.45) has positive real parts.

Proof. The lemma is proved similar to Lemma 5.4.4 by replacing λ2 with λ3, Γ1,prim with

Γ2,prim, and H1,prim(λ) with H2,prim(λ), where H2,prim is defined in equation (5.47).

Lemma 5.4.6. If Γ1,prim > 1 or Γ2,prim > 1, the extinction equilibrium is unstable.

Proof. If Γ1,prim > 1, then from Lemma 5.4.4, solution λ2 from equations (5.45) has positive

real parts.

If Γ2,prim > 1, then from Lemma 5.4.5, solution λ3 from equations (5.45) has positive real

parts.

Thus, if Γ1,prim > 1 or Γ2,prim > 1, the extinction equilibrium is unstable.
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In summary, we proved statement 1) in Proposition 5.4.7 using Lemma 5.4.3.

We proved statement 2) in Proposition 5.4.7 using Lemma 5.4.6.

Thus, the proposition is proved.

5.4.9 Strain 1 stability

Proposition 5.4.8. The equilibrium where only strain 1 persists

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ1,prim
, 0,

Λr1,prim(Γ1,prim − 1)

m0(m0 + r1,primΓ1,prim)
, 0, 0,

Λ(Γ1,prim − 1)

Γ1,prim
e−(m0+r1,prim)τ , 0, 0

)

(5.50)

1) exists if Γ1,prim > 1;

2) is locally asymptotically stable if R01 < 1;

3) is unstable if R01 > 1,

where

R01 =
Γ2,prim

Γ1,prim
+

r1,prim(Γ1,prim − 1)Γ2,sec

(m0 + r1,prim)Γ1,prim
. (5.51)

Proof. We first use the following lemma.

Lemma 5.4.7. The equilibrium where only strain 1 persists exists only if Γ1,prim > 1.

Proof. Assuming nonnegative initial conditions on System (5.1), it can be shown that all

solutions are unique and nonnegative. Thus, in order for this equilibrium to exist, we need

Γ1,prim − 1 > 0. Thus, if the equilibrium exists, we must have Γ1,prim > 1.

From the definition of the equilibrium in (5.50), we have n∗

SI(τ) = 0 and n∗

RI(τ) = 0.
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Thus, we have

C2 =
m0

Λ

∫

∞

0

bV2,prim(τ)n
∗

SI(τ) + bV2,sec(τ)n
∗

RI(τ) dτ = 0.

Also, since

n∗

IS(τ) =
Λ(Γ1,prim − 1)

Γ1,prim

e−(m0+r1,prim)τ

and

n∗

IR(τ) = 0,

we have

C1 =
m0

Λ

∫

∞

0

bV1,prim(τ)n
∗

IS(τ) + bV1,sec(τ)n
∗

IR(τ) dτ

=
(m0

Λ

)

(

Λ(Γ1,prim − 1)

Γ1,prim

)
∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ

=
(m0

Λ

)

(

Λ(Γ1,prim − 1)

Γ1,prim

)

Γ1,prim

=(m0)(Γ1,prim − 1). (5.52)

Using the equilibrium where only the first strain persists as defined in (5.50),

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ1,prim
, 0,

Λr1,prim(Γ1,prim − 1)

m0(m0 + r1,primΓ1,prim)
, 0, 0,

Λ(Γ1,prim − 1)

Γ1,prim
e−(m0+r1,prim)τ , 0, 0

)

,

we plug these values along with C1 and C2 into the matrix Mλ as defined in (5.26).
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Using Mathematica, we find that

det(Mλ) =

(

1

Γ2
1,primm

2
0(m0 + r1,prim)

)

(λ+m0)(λ+m0Γ1,prim)

(

m0Γ1,prim(λ+m0Γ1,prim)− ΛΓ1,prim,λ(λ+m0)

)

(

(m0 + r1,prim)(m0Γ1,prim − ΛΓ2,prim,λ) + Λr1,primΓ2,sec,λ(1− Γ1,prim)

)

Note that solutions λ must satisfy det(Mλ) = 0.

Thus, we have solutions λ1, λ2, λ3, and λ4 that satisfy the following equations.

λ1 +m0 = 0,

λ2 +m0Γ1,prim = 0,

m0Γ1,prim(λ3 +m0Γ1,prim)− ΛΓ1,prim,λ3(λ3 +m0) = 0,

(m0 + r1,prim)(m0Γ1,prim − ΛΓ2,prim,λ4) + Λr1,prim(1− Γ1,prim)Γ2,sec,λ4 = 0.

(5.53)

Lemma 5.4.8. Solutions λ1, λ2, and λ3 from equations (5.53) always have negative real

parts.

Proof. From equations (5.53), λ1+m0 = 0, which implies λ1 = −m0. Since m0 > 0, solution

λ1 always has negative real parts.

From equations (5.53), λ2+m0Γ1,prim = 0, which implies λ2 = −m0Γ1,prim. Since m0 > 0 and

Γ1,prim > 1, solution λ2 always has negative real parts. From equations (5.53), we consider

m0Γ1,prim(λ3 +m0Γ1,prim)− ΛΓ1,prim,λ3(λ3 +m0) = 0.



110

Then,

m0Γ1,prim(λ3 +m0Γ1,prim) = ΛΓ1,prim,λ3(λ3 +m0).

Thus,
Γ1,prim(λ3 +m0Γ1,prim)

λ3 +m0

=

(

Λ

m0

)

Γ1,prim,λ3. (5.54)

Assume λ3 = α + βi where α ≥ 0. Now consider the left side of equation (5.54).

Since Γ1,prim > 1, we have

∣

∣

∣

∣

Γ1,prim(λ3 +m0Γ1,prim)

λ3 +m0

∣

∣

∣

∣

= Γ1,prim

(

√

(α+m0Γ1,prim)2 + β2

√

(α+m0)2 + β2

)

> Γ1,prim.

Now consider the right side of equation (5.54).

Note that |eβi| = 1 for all β.

Also, note that

Γ1,prim,λ3 =
m0

Λ

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τe−λ3τ dτ.

Thus,

∣

∣

∣

∣

(

Λ

m0

)

Γ1,prim,λ3

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τe−λ3τ dτ

∣

∣

∣

∣

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ |e−(α+βi)τ | dτ

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ |e−ατ ||e−βiτ | dτ

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τe−ατ dτ

≤

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ

= Γ1,prim



111

Thus, if λ3 = α+βi where α ≥ 0, then the right side of equation (5.54) is less than or equal

to Γ1,prim, but the left side of equation (5.54) is greater than Γ1,prim.

Therefore, to satisfy equation (5.54), λ3 cannot have positive real parts, and thus λ3 must

have negative real parts.

In summary, solutions λ1, λ2, and λ3 always have negative real parts.

From equations (5.53), we consider

(m0 + r1,prim)(m0Γ1,prim − ΛΓ2,prim,λ4) + Λr1,prim(1− Γ1,prim)Γ2,sec,λ4 = 0.

Thus,

(m0 + r1,prim)(m0Γ1,prim − ΛΓ2,prim,λ4) = Λr1,prim(1− Γ1,prim)Γ2,sec,λ4,

which implies

m0(m0 + r1,prim)Γ1,prim = Λ ((m0 + r1,prim)Γ2,prim,λ4 + r1,prim(1− Γ1,prim)Γ2,sec,λ4) ,

which implies

(

Λ

m0(m0 + r1,prim)Γ1,prim

)

(

(m0+r1,prim)Γ2,prim,λ4+r1,prim(1−Γ1,prim)Γ2,sec,λ4

)

= 1. (5.55)

Thus, solution λ4 must satisfy equation (5.55).

Note

Γ2,prim,λ4 =
m0

Λ

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim+λ4)τ dτ,

Γ2,sec,λ4 =
m0

Λ

∫

∞

0

bV2,sec(τ)e
−(m0+r2,sec+λ4)τ dτ.
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Let

c = (m0 + r1,prim)Γ1,prim,

d = r1,prim(Γ1,prim − 1),

H1(λ) =
1

c

∫

∞

0

b

[

c

Γ1,prim
V2,prim(τ)e

−(m0+r2,prim)τ + dV2,sec(τ)e
−(m0+r2,sec)τ

]

e−λτdτ. (5.56)

Then we have that equation (5.55) is equivalent to

H1(λ4) = 1. (5.57)

Thus, solution λ4 must satisfy equation (5.57).

Lemma 5.4.9. If R01 < 1, the equilibrium where only strain 1 persists is locally asymptoti-

cally stable.

Proof. To prove this statement, we just need to to show that the solution λ4 from equations

(5.53) has negative real parts due to Lemma 5.4.8.

The solution λ4 must satisfy H1(λ4) = 1 as shown in equation (5.57), where H1 is defined in

(5.56).

Suppose λ4 = α + βi where α ≥ 0.

Note |eβi| = 1 for all β.
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Thus, using c, d, and H1 as defined in (5.56),

|H1(λ4)| =

∣

∣

∣

∣

1

c

∫

∞

0

[

c

Γ1,prim
bV2,prim(τ)e

−(m0+r2,prim)τ + dbV2,sec(τ)e
−(m0+r2,sec)τ

]

e−λ4τdτ

∣

∣

∣

∣

≤
1

c

∫

∞

0

[

c

Γ1,prim
bV2,prim(τ)e

−(m0+r2,prim)τ + dbV2,sec(τ)e
−(m0+r2,sec)τ

]

|e−(α+βi)τ |dτ

≤
1

c

∫

∞

0

[

c

Γ1,prim
bV2,prim(τ)e

−(m0+r2,prim)τ + dbV2,sec(τ)e
−(m0+r2,sec)τ

]

|e−ατ ||e−βiτ |dτ

=
1

c

∫

∞

0

[

c

Γ1,prim

bV2,prim(τ)e
−(m0+r2,prim)τ + dbV2,sec(τ)e

−(m0+r2,sec)τ

]

e−ατdτ

≤
1

c

∫

∞

0

[

c

Γ1,prim

bV2,prim(τ)e
−(m0+r2,prim)τ + dbV2,sec(τ)e

−(m0+r2,sec)τ

]

dτ

=
1

c

(

c

Γ1,prim
Γ2,prim + dΓ2,sec

)

=
Γ2,prim

Γ1,prim
+

d

c
Γ2,sec

=
Γ2,prim

Γ1,prim
+

r1,prim(Γ1,prim − 1)Γ2,sec

(m0 + r1,prim)Γ1,prim

= R01 < 1.

In summary, |H1(λ4)| < 1 if λ4 has positive real parts.

Therefore, in order to satisfy H1(λ4) = 1, solution λ4 must have negative real parts.

In conclusion, from Lemma 5.4.8, the solutions λ1, λ2, λ3 to the equations (5.53) always have

negative real parts.

We then showed that since R01 < 1, the solution λ4 to the equations (5.53) must have

negative real parts.

Therefore, if R01 < 1, the equilibrium is locally asymptotically stable.

Lemma 5.4.10. If R01 > 1, the equilibrium where only strain 1 persists is unstable.

Proof. We show that the solution λ4 from equations (5.53) has positive real parts if R01 > 1.
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We use c, d, and H1 as defined in (5.56).

Since R01 > 1,

H1(0) =
1

c

∫

∞

0

b

[

c

Γ1,prim

V2,prim(τ)e
−(m0+r2,prim)τ + dV2,sec(τ)e

−(m0+r2,sec)τ

]

dτ

=
1

c

(

c

Γ1,prim

Γ2,prim + dΓ2,sec

)

=
Γ2,prim

Γ1,prim

+
d

c
Γ2,sec

=
Γ2,prim

Γ1,prim
+

r1,prim(Γ1,prim − 1)Γ2,sec

(m0 + r1,prim)Γ1,prim

= R01 > 1.

The solution λ4 must satisfy H1(λ4) = 1, as shown in equation (5.57).

Treating H1(λ4) as a function of the real variable λ4, we note

lim
λ4→∞

H1(λ4) = 0.

Thus, since H1(0) > 1, we have that H1(λ
∗

4) = 1 for some λ∗

4 > 0.

Thus, H1(λ4) = 1 has a solution with a positive real part.

Therefore, if R01 > 1, the equilibrium is unstable.

In summary, we proved statement 1) in Proposition 5.4.8 using Lemma 5.4.7.

We proved statement 2) in Proposition 5.4.8 using Lemma 5.4.9.

We proved statement 3) in Proposition 5.4.8 using Lemma 5.4.10.

Thus, the proposition is proved.
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5.4.10 Strain 2 stability

Proposition 5.4.9. The equilibrium where only strain 2 persists

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

=

(

Λ

Γ2,prim
,

Λr2,prim(Γ2,prim − 1)

m0(m0 + r2,primΓ2,prim)
, 0, 0,

Λ(Γ2,prim − 1)

Γ2,prim
e−(m0+r2,prim)τ , 0, 0, 0

)

.

1) exists if Γ1,prim > 1;

2) is locally asymptotically stable if R01 < 1;

3) is unstable if R01 > 1,

where

R02 =
Γ1,prim

Γ2,prim
+

r2,prim(Γ2,prim − 1)Γ1,sec

Γ2,prim(m0 + r2,prim)
. (5.58)

Proof. The proof is similar to Proposition 5.4.8.

5.4.11 Coexistence stability

Conjecture 5.4.1. The coexistence equilibrium

(

N∗

SS, N
∗

SR, N
∗

RS, N
∗

RR, n
∗

SI(τ), n
∗

IS(τ), n
∗

RI(τ), n
∗

IR(τ)

)

exists and is locally asymptotically stable if

Γ1,prim > 1 (and/or) Γ2,prim > 1

and the following dependent conditions are met.

If Γ1,prim > 1, then also require R01 > 1; if Γ2,prim > 1, then also require R02 > 1.
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While we cannot prove this remark analytically, numerical results allow us to conjecture this

statement.

If Γ1,prim > 1 (and/or) Γ2,prim > 1, then the extinction equilibrium is unstable from Propo-

sition 5.4.7.

If Γ1,prim > 1 and R01 > 1, then the equilibrium where only strain 1 persists is unstable

from Proposition 5.4.8.

If Γ2,prim > 1 and R02 > 1, then the equilibrium where only strain 2 persists is unstable

from Proposition 5.4.9.

Also note the solutions to System (5.1) must be bounded, as shown in Proposition 5.4.1.

Therefore, if the statements listed in Remark 5.4.1 are true, the solution must approach an

equilibrium that is locally asymptotically stable.

Since no other equilibria are locally asymptotically stable, the coexistence equilibrium must

be locally asymptotically stable.

In our numerical simulations, we do not find a situation where the coexistence equilibrium

exists when one of the other equilibria is stable.

Thus, we postulate that the coexistence equilibrium only exists and is locally asymptotically

stable when all other equilibria are unstable.

5.5 Numerical results

5.5.1 Numerical algorithm

We provide a complete set of equations for the numerical algorithm required to simulate our

time-since-infection immunoepidemiological model, system (5.1). Here, denote time by t and

time-since-infection by τ . ∆t (= ∆τ) is the step size used; K is the maximum number of
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steps in τ -time; k is the reference index to denote the k-th step in time-since-infection; and

q is the reference index to denote the q-th step in system time. Note that this derivation

requires ∆t = ∆τ , and the numerical scheme is in a format so that it can be readily adapted

to code (i.e. the indices for τ have been shifted such that the lower bound starts at 1). We

also assume that NT =
Λ

m0
.

The algorithm for the PDEs in System (5.1) is

nk+1,q+1
SI =

nk,q
SI

1 + (m0 + r2,prim)∆t
,

nk+1,q+1
IS =

nk,q
IS

1 + (m0 + r1,prim)∆t
,

nk+1,q+1
RI =

nk,q
RI

1 + (m0 + r2,sec)∆t
, (5.59)

nk+1,q+1
IR =

nk,q
IR

1 + (m0 + r1,sec)∆t
,

with boundary conditions

n1,q+1
SI =

N q+1
SS

NT

[

b

K+1
∑

k=2

(

V k
2,primn

k,q+1
SI + V k

2,secn
k,q+1
RI

)

∆t

]

,

n1,q+1
IS =

N q+1
SS

NT

[

b
K+1
∑

k=2

(

V k
1,primn

k,q+1
IS + V k

1,secn
k,q+1
IR

)

∆t

]

,

n1,q+1
RI =

N q+1
RS

NT

[

b

K+1
∑

k=2

(

V k
2,primn

k,q+1
SI + V k

2,secn
k,q+1
RI

)

∆t

]

, (5.60)

n1,q+1
IR =

N q+1
SR

NT

[

b
K+1
∑

k=2

(

V k
1,primn

k,q+1
IS + V k

1,secn
k,q+1
IR

)

∆t

]

.
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The algorithm for the ODEs in System (5.1) is given by

N
q+1

SS =
Λ∆t+N

q
SS

1 +m0∆t+ ∆t
NT

[

b
∑K+1

k=2

(

V k
2,primn

k,q+1

SI + V k
1,primn

k,q+1

IS + V k
2,secn

k,q+1

RI + V k
1,secn

k,q+1

IR

)

∆t

] ,

N
q+1

SR =

N
q
SR + r2,prim∆t

[

∑K+1

k=2
n
k,q+1

SI ∆t

]

1 +m0∆t+ ∆t
NT

[

b
∑K+1

k=2

(

V k
1,primn

k,q+1

IS + V k
1,secn

k,q+1

IR

)

∆t

] ,

N
q+1

RS =

N
q
RS + r1,prim∆t

[

∑K+1

k=2
n
k,q+1

IS ∆t
]

1 +m0∆t+ ∆t
NT

[

b
∑K+1

k=2

(

V k
2,primn

k,q+1

SI + V k
2,secn

k,q+1

RI

)

∆t

] , (5.61)

N
q+1

RR =

N
q
RR +∆t

[

∑K+1

k=2

(

r1,secn
k,q+1

IR + r2,secn
k,q+1

RI

)

∆t

]

1 +m0∆t
.

The initial conditions are

NSS(0) = NSS0, NSI(0) =

K+1
∑

k=2

nk
SI0∆t,

NSR(0) = NSR0, NIS(0) =

K+1
∑

k=2

nk
IS0∆t,

NRS(0) = NRS0, NRI(0) =

K+1
∑

k=2

nk
RI0∆t,

NRR(0) = NRR0, NIR(0) =

K+1
∑

k=2

nk
IR0∆t.

We follow [71] (pp. 351-356) to develop the numerical algorithm. We include a discussion of

several important assumptions made throughout the derivation, which is intended to provide

some intuition in the choices that led to our final numerical scheme.
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Notation and Truncation of the Domain

We denote time by t and time-since-infection by τ . To discretize the domain, we divide the

age of infection direction by equally spaced steps using a step size of ∆τ such that after the

k-th step, τk = k∆τ . Similarly, the time direction is divided into equally spaced steps of

size ∆t such that after the q-th step, tq = q∆t. We assume variables in the ODEs in System

(5.1) evaluated at time tq have the form NSS(tq), and are approximated numerically by N q
SS.

The variables in the PDEs in System (5.1) have the form nSI(τk, tq), and are approximated

numerically by nk,q
SI .

As the domain of the system is infinite,

D = {(τ, t) : τ ≥ 0, t ≥ 0},

we must create a reasonable approximation and truncate the domain in both age of infection

(τ) and time (t)

D = {(τ, t) : 0 ≤ τ ≤ G, 0 ≤ t ≤ T}.

Because individuals eventually succumb to natural mortality if infected for a sufficiently long

period of time, lim
τ→∞

nSI(τ, t) = 0. To evaluate the infinite integral

∫

∞

0

r2,primnSI(τ, t) dτ,

we choose G large enough so that nSI(τ, t) < ǫ for all τ ≥ G. Thus, we guarantee the differ-

ence between the finite sum and the infinite integral is sufficiently small. Similar reasoning

can be applied for the infinite integrals involving nIS(τ, t), nRI(τ, t), and nIR(τ, t).

For the numerical simulations, we assume a constant recovery rate, implying an underlying

exponential distribution in τ . Even with a moderate average length of infection, there remain

individuals with long infections, so we must take care to choose G large enough to minimize

the proportion of the class discarded. We have found G = 100 to be sufficient.
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Partial Differential Equations

We first consider the partial differential equation for nSI from System (5.1) and evaluate it

at tq+1 and τk, which results in

∂

∂τ
nSI(τk, tq+1) +

∂

∂t
nSI(τk, tq+1) = −(m0 + r2,prim)nSI(τk, tq+1). (5.62)

Using forward differentiation for the derivative in τ , such that the term on the right hand

side occurs at time τk (step k), and backward differentiation for the derivative in t, such that

the term on the right hand side occurs at time tq +∆t (step q+1), we have

nk+1,q+1
SI − nk,q+1

SI

∆τ
+

nk,q+1
SI − nk,q

SI

∆t
= −(m0 + r2,prim)n

k,q+1
SI . (5.63)

The choice of forward differentiation for the derivative in τ and backward differentiation for

the derivative in t is needed for the cancellation of mixed terms (evaluated at the k-th step

with respect to τ and the q+1-th step with respect to t) on the left hand side.

To simplify, we assume both age of infection and time proceed at the same rate such that

∆τ = ∆t. This assumption is necessary for cancellation of the mixed terms in equation

(5.63), and forms a square mesh for the discretized domain.

Following cancellation on the left hand side of equation (5.63), the mixed term nk,q+1
SI only

appears on the right hand side. However, it is necessary that we approximate this variable

with a similar term to one appearing on the left hand side. Thus, we use the assumption

nk,q+1
SI ≈ nk+1,q+1

SI . Without such an assumption, the solution for nk+1,q+1
SI in equation (5.63)

depends on nk,q+1
SI and the solution for n1,q+1

SI in the boundary conditions (5.60) depends on

nk+1,q+1
SI , which cannot be numerically computed.

With ∆τ = ∆t, and with the assumption that nk,q+1
SI ≈ nk+1,q+1

SI , equation (5.63) simplifies
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to

nk+1,q+1
SI − nk,q

SI

∆t
= −(m0 + r2,prim)n

k+1,q+1
SI . (5.64)

Solving equation (5.64) for nk+1,q+1
SI , we obtain

nk+1,q+1
SI =

nk,q
SI

1 + (m0 + r2,prim)∆t
. (5.65)

Similar equations are obtained for the other PDEs, nk+1,q+1
IS , nk+1,q+1

IR , and nk+1,q+1
RI , which

are summarized in equations (5.59).

We return to the boundary conditions for the PDEs later in Section 5.5.1 as they depend on

NSS, NSR, and NRS at time tq+1, which we have not yet computed.

Ordinary Differential Equations

We consider the ordinary differential equation for NSS from System (5.1) and evaluate it at

tq+1, which results in

dNSS(tq+1)

dt
= Λ−m0NSS(tq+1)

−
NSS(tq+1)

NT (tq+1)

∫

∞

0

[

bV1,prim(τ)nIS(τ, tq+1) + bV2,prim(τ)nSI(τ, tq+1)

+ bV1,sec(τ)nIR(τ, tq+1) + bV2,sec(τ)nRI(τ, tq+1)

]

dτ. (5.66)

We then use backward differentiation from time tq+1, such that all terms on the right hand

side of equation (5.66) occur at step q + 1. The choice of backward differentiation comes

from the need to match the boundary condition which will be evaluated at step q + 1 (see

Boundary Conditions subsection).

The integral terms evaluate the τ -dependent variables across the entire history of infection.
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We approximate the integral with a sum by employing the right Riemann sum with step size

∆τ up to our maximum infection length considered, G. This results in K = G
∆τ

intervals of

length ∆τ . On each interval, we evaluate the integrand at the right endpoint. A component

of these integrands is the output of our within-host model after the kth interval, i.e. V k
i,j with

i ∈ {1, 2} and j ∈ {prim, sec}.

Thus, using backward differentiation from time tq+1 and approximating the integral using a

right Riemann sum, we can write equation (5.66) as

N q+1
SS −N q

SS

∆t
= Λ−m0N

q+1
SS

−
N q+1

SS

N q+1
T

[

b

K
∑

k=1

(

V k
2,primn

k,q+1
SI + V k

1,primn
k,q+1
IS + V k

2,secn
k,q+1
RI + V k

1,secn
k,q+1
IR

)

∆τ

]

.

(5.67)

We use that fact that there is constant population size such that N q+1
T = N q

T = NT = Λ
m0

,

i.e. System (5.1) sums to 0. Without a constant total population, it would not be possible

in our numerical scheme to explicitly solve for the variables from our ODEs, since N q+1
T

depends on N q+1
SS , which depends on N q+1

T , as can be seen in equations (5.67) and (5.68).

Additionally, we note that many available pre-packaged software programs assume a step-

size of ∆t = ∆τ = 1. We caution that this step-size may be too large to observe all the

dynamics, and may possibly lead to inconsistency in total population size.

Using the knowledge of constant population size and the assumption ∆t = ∆τ , we solve

equation (5.67) for N q+1
SS and obtain

N
q+1

SS =
Λ∆t+N

q
SS

1 +m0∆t+ ∆t
NT

[

b
∑K

k=1

(

V k
2,primn

k,q+1

SI + V k
1,primn

k,q+1

IS + V k
2,secn

k,q+1

RI + V k
1,secn

k,q+1

IR

)

∆t

] .

(5.68)

Next, we consider the ordinary differential equation for NSR in System (5.1). We use back-
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ward differentiation from time tq+1 and approximate the integrals using right Riemann sums

to obtain

N q+1
SR −N q

SR

∆t
= −m0N

q+1
SR −

N q+1
SR

N q+1
T

[

b
K
∑

k=1

(

V k
1,primn

k,q+1
IS + V k

1,secn
k,q+1
IR

)

∆τ

]

+ r2,prim

[

K
∑

k=1

nk,q+1
SI ∆τ

]

.

Again we consider constant population size NT , ∆t = ∆τ and solve for N q+1
SR to obtain

N q+1
SR =

N q
SR + r2,prim∆t

[

∑K
k=1 n

k,q+1
SI ∆t

]

1 +m0∆t + ∆t
NT

[

b
∑K

k=1

(

V k
1,primn

k,q+1
IS + V k

1,secn
k,q+1
IR

)

∆t

] .

Similar arguments are used to obtain N q+1
RS and N q+1

RR .

It is important to note, that as currently written, we start our reference indices k at k = 0.

We see that since we use right Riemann sums and we begin the sums at k = 1, this implies

the first interval used in τ -time is [τ0, τ1]. To avoid confusion when coding this algorithm in

coding languages that start with a default initial index of 1 (e.g. MATLAB), we shift the

indices for the τ variable up by one, thus starting our reference indices k at k = 1. This

results in a change to the bounds of the sums. For example, equation (5.68) becomes

N
q+1

SS =
Λ∆t+N

q
SS

1 +m0∆t+ ∆t
NT

[

b
∑K+1

k=2

(

V k
2,primn

k,q+1

SI + V k
1,primn

k,q+1

IS + V k
2,secn

k,q+1

RI + V k
1,secn

k,q+1

IR

)

∆t

] .

We summarize the algorithm for the ODEs in equations (5.61).

Boundary Conditions

We now return to consider the boundary conditions for our PDEs in System (5.1). We note

that since they depend on both the PDEs and ODEs, we must compute those before we can
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compute our boundary conditions.

As described in the Ordinary Differential Equations subsection, we start our reference indices

k at k = 1. Thus, we evaluate the boundary conditions at τ1 = 0 and tq+1. For example, the

boundary condition associated with nSI is

nSI(τ1, tq+1) =
NSS(tq+1)

NT (tq+1)

∫

∞

0

[

bV2,prim(τ)nSI(τ, tq+1) + bV2,sec(τ)nRI(τ, tq+1)

]

dτ. (5.69)

As done previously, we assume constant total population NT and ∆t = ∆τ , and we use right

Riemann sums to evaluate the integrals. We note we also computed NSS(tq+1) previously.

Thus, we write equation (5.69) as

n1,q+1
SI =

N q+1
SS

NT

[

b
K+1
∑

k=2

(

V k
2,primn

k,q+1
SI + V k

2,secn
k,q+1
RI

)

∆t

]

. (5.70)

We can write the other boundary conditions similarly using our previously computed PDEs

and ODEs. The boundary conditions are summarized in equations (5.60).

5.5.2 Generating numerical results

We simulate two virus profiles that are defined for τ ≥ 0, where VF(τ) is the profile associ-

ated with dengue fever, and VH(τ) is the profile associated with dengue hemorrhagic fever

(see Figure 5.2). The recovery rates rF and rH, associated with dengue fever and dengue

hemorrhagic fever respectively, are also determined from the virus profiles as one over the

average length of infection (see Table 5.2). We determine the total infectiousness under each

condition based on the shape of virus profiles in Figure 5.2 as

Dengue fever:

∫

∞

0

VF(τ)e
−(m0+rF)τ dτ ≈ 40.8003,

Dengue hemorrhagic fever:

∫

∞

0

VH(τ)e
−(m0+rH)τ dτ ≈ 52.4801.
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The choice of parameterization will impact the quantitative values for the existence and

stability of the different equilibria, which we refer to as equilibrium structure. The derivation

of the equilibrium structure under our chosen parameterization is described in Section 5.6.

Table 5.2: Parameter values for simulations.

Parameter Standard value Units
Λ 10000

365
people · day−1

m0
1

365·70
day−1

b varied in [0,0.03] ml·(RNA · day)−1

rF
1
12

day−1

rH
1
14

day−1

VF see Figure 2 solid line RNA · ml−1

VH see Figure 2 dashed line RNA · ml−1

5.5.3 Numerical simulations

We determine the equilibrium structure based on the course of infection, i.e. which strain

infects first and whether each infection results in dengue fever or dengue hemorrhagic fever.

Therefore, we consider all possible combinations of strain order and disease type. Since

we assume infection with one strain induces immunity against secondary infections with

the same strain, we only consider primary-secondary infection events caused by two different

virus strains. For example, in Figure 5.3, the course of infection is either (i) primary infection

with strain 1 resulting in dengue fever followed by secondary infection with strain 2 resulting

in dengue fever (V1,prim = F, V2,sec = F) or (ii) primary infection with strain 2 resulting in

dengue hemorrhagic fever followed by secondary infection with strain 1 resulting in dengue

hemorrhagic fever (V2,prim = H, V1,sec = H). For each combination we determine whether

both strains can coexist within the population, both strains go extinct, or only one strain

persists. The equilibrium reached is based on parameter b, the constant that relates viral load

to between-host transmission rate, and the disease type each strain induced (F versus H).

Under fixed model parameterization and changing b, we can obtain all the described between-
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Figure 5.3: Between-host infected population dynamics. The total infected population
(combining both primary and secondary infections) of strain 1 (blue solid) and strain 2 (red
dashed) over 10,000 days results in (a) the extinction equilibrium, (b) persistence of only
strain 2 and (c) the coexistence equilibrium. In (a), b = 0.018, NSR0 = 5 × 104, and
NSS0 = 5.2485 × 105. In (b), b = 0.023, NSR0 = 5 × 104, and NSS0 = 5.2485 × 105.
In (c), b = 0.028, NSR0 = 1.4 × 105, and NRS0 = 4.3485 × 105. Parameters: Λ, m0,
rF, rH found in Table 5.2, V1,prim = VF, V2,prim = VH, V1,sec = VH, V2,sec = VF. Initial
conditions: NRS0 = 6.5 × 104, NRR0 = 6 × 104, NSI0 = 90, NIS0 = 40, NRI0 = NIR0 = 10.
See Section 5.6.4 for the τ distribution of initial values. Numerical algorithm parameters:
∆t = ∆τ = 0.5, max(τ) = 100, max(t) = 10, 000.

host dynamics: extinction, persistence of one virus strain and coexistence (see Figure 5.3).

Our model predicts that both the strain order and disease type can lead to different between-

host stable equilibria (see Figures 5.4 and 5.5). When both virus strains produce a primary

infection resulting in dengue fever, there is between-host extinction of both infections, assum-

ing that b is sufficiently low (b < 0.024096). In contrast, primary infection by either strain

resulting in dengue hemorrhagic fever is more likely to lead to between-host coexistence, or

at least the persistence of a single strain in the population for a minimum b (0.0190548 < b).

Over a range of b (0.0190548 < b < 0.024096), all equilibria are possible, and the between-

host equilibrium structure depends on the strain order and disease severity (see Figure 5.5).

It is important to recognize that these results demonstrate the equilibrium structure under

our chosen parameterization as b is varied. While this shows the overall importance of strain

order and disease type for shaping the between-host equilibrium structure, similar analyses

should be conducted to determine the structure for strains with different characteristics.
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Because dengue fever usually occurs during primary infection and dengue hemorrhagic fever

is more likely to occur during secondary infection, the most biologically relevant scenario to

analyze when considering a de novo infection is the case F-H/F-H, where both courses of in-

fection lead to dengue fever in primary infection and dengue hemorrhagic fever in secondary

infection. In this scenario, the only possible outcomes are either extinction or coexistence.

This is often the case with dengue viral infection, as areas either have no strains circulating

or multiple strains circulating. However, our model can also account for two later infections

(e.g. third and forth exposure in the population) in which case an H-F/H-F scenario is

possible.

5.6 Equilibrium structure

5.6.1 Introduction

The parameter b is the proportionality constant relating the viral load to the transmission

rate. For a particular strain order and disease type, we can calculate how changing the value

of b will affect the equilibrium structure.

Let

V1P =

∫

∞

0

V1,prim(τ)e
−(m0+r1,prim)τ dτ,

V2P =

∫

∞

0

V2,prim(τ)e
−(m0+r2,prim)τ dτ,

V1S =

∫

∞

0

V1,sec(τ)e
−(m0+r1,sec)τ dτ, (5.71)

V2S =

∫

∞

0

V2,sec(τ)e
−(m0+r2,sec)τ dτ.

The following four equations come up in our stability conditions that determine the difference
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Figure 5.4: Qualitative between-host equilibrium structure varying the propor-
tionality constant relating viral load to between-host transmission rate, b. In
addition to the impact of b, the strain order and disease type (F = dengue fever, H = dengue
hemorrhagic fever) affect the between-host equilibrium structure. The two possible courses
of infection are V1,prim − V2,sec and V2,prim − V1,sec.
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Figure 5.5: Qualitative between-host equilibrium structure when b = 0.024. The
strain order and disease type (F = dengue fever, H = dengue hemorrhagic fever) affect the
between-host equilibrium structure. The two possible courses of infection are V1,prim − V2,sec

and V2,prim − V1,sec. This plot summarizes the qualitative between-host equilibria when
b = 0.024 as displayed in Fig. 5.4.



130

between an equilibrium being locally asymptotically stable or unstable.

Γ1,prim = 1, (5.72)

Γ2,prim = 1, (5.73)

R01 = 1, (5.74)

R02 = 1, (5.75)

where

Γ1,prim =

∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ,

Γ2,prim =

∫

∞

0

bV2,prim(τ)e
−(m0+r2,prim)τ dτ,

(5.76)

andR01 andR02 are defined in (5.51) and (5.58) respectively. Note that all of these equations

involve b and at least one of the definitions in (5.71).

Thus, we can solve for the values of b that satisfy these conditions.

5.6.2 Solving for values of b

We now solve the equations (5.72), (5.73), (5.74), and (5.75) for b. We associate each of

these equations with a different value of b, i.e bG1P
, bG2P

, bR01 , and bR02 .
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Solving equation (5.72) for b, we have

Γ1,prim = 1
∫

∞

0

bV1,prim(τ)e
−(m0+r1,prim)τ dτ = 1

b · V1P = 1 (5.77)

b =
1

V1P
.

Thus, we label

bG1P
=

1

V1P
. (5.78)

Similarly, by solving equation (5.73) for b, we find

bG2P
=

1

V2P
. (5.79)
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Solving equation (5.74) for b, we have

R01 = 1

Γ2,prim

Γ1,prim

+
r1,prim(Γ1,prim − 1)Γ2,sec

Γ1,prim(m0 + r1,prim)
= 1

bV2P

bV1P
+

r1,prim(bV1P − 1)bV2S

bV1P (m0 + r1,prim)
= 1

V2P

V1P

+
r1,prim(bV1P − 1)bV2S

bV1P (m0 + r1,prim)
= 1

V2P

V1P
+

br1,primV2S(bV1P − 1)

bV1P (m0 + r1,prim)
= 1

V2P

V1P
+

r1,primV2SV1P b− r1,primV2S

V1P (m0 + r1,prim)
= 1

V2P (m0 + r1,prim) + r1,primV2SV1P b− r1,primV2S = V1P (m0 + r1,prim)

m0(V1P − V2P ) + r1,prim(V1P + V2S − V2P )

r1,primV1PV2S

= b.

Thus, we label

bR01 =
m0(V1P − V2P ) + r1,prim(V1P + V2S − V2P )

r1,primV1PV2S
. (5.80)

Similarly, by solving equation (5.75) for b, we find

bR02 =
m0(V2P − V1P ) + r2,prim(V2P + V1S − V1P )

r2,primV2PV1S
. (5.81)

Note the equations (5.77) show Γ1,prim = 1 is equivalent to b = bG1P
. Thus, Γ1,prim < 1 is

equivalent to b < bG1P
and Γ1,prim > 1 is equivalent to b > bG1P

. We have similar equivalences

for bG2P
, bR01, and bR02.
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In summary, from the above derivations, we have the following equivalences.

Γ1,prim < 1 ⇐⇒ b < bG1P

Γ1,prim ≥ 1 ⇐⇒ b ≥ bG1P

Γ2,prim < 1 ⇐⇒ b < bG2P

Γ2,prim ≥ 1 ⇐⇒ b ≥ bG2P
(5.82)

R01 < 1 ⇐⇒ b < bR01

R01 ≥ 1 ⇐⇒ b ≥ bR01

R02 < 1 ⇐⇒ b < bR02

R02 ≥ 1 ⇐⇒ b ≥ bR02

5.6.3 Determining equilibrium structure

We use the definitions (5.78)-(5.81) and the equivalences (5.82) to determine for which values

of b each equilibrium is locally asymptotically stable.

Extinction equilibrium

From Proposition 5.4.3, the extinction equilibrium is locally asymptotically stable when

Γ1,prim < 1 and Γ2,prim < 1.

From the equivalences (5.82), the extinction equilibrium is locally asymptotically stable if

b < bG1P
and b < bG2P

.

Thus, the extinction equilibrium is locally asymptotically stable if

0 < b < min(bG1P
, bG2P

). (5.83)
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Equilibrium where only strain 1 persists

From Proposition 5.4.4, the equilibrium where only strain 1 persists is locally asymptotically

stable if Γ1,prim > 1 and R01 < 1.

From the equivalences (5.82), the equilibrium where only strain 1 persists is locally asymp-

totically stable if b > bG1P
and b < bR01 .

Thus, the equilibrium where only strain 1 persists is locally asymptotically stable if

bG1P
< b < bR01 . (5.84)

Note if V1P = V2P (meaning the virus types of both strains during primary infection are the

same), then bG1P
= bR01 . Therefore, the equilibrium can never be stable in this case.

Equilibrium where only strain 2 persists

From Proposition 5.4.5, the equilibrium where only strain 2 persists is locally asymptotically

stable if Γ2,prim > 1 and R02 < 1.

From the equivalences (5.82), the equilibrium where only strain 2 persists is locally asymp-

totically stable if b > bG2P
and b < bR02.

Thus, the equilibrium where only strain 2 persists is locally asymptotically stable if

bG2P
< b < bR02 . (5.85)

Note if V1P = V2P (meaning the virus types of both strains during primary infection are the

same), then bG2P
= bR02 . Therefore, the equilibrium can never be stable in this case.
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Coexistence equilibrium

From Conjecture 5.4.1, the coexistence equilibrium is locally asymptotically stable if all of

the other states are unstable.

If the extinction equilibrium is unstable, then b > min(bG1P
, bG2P

).

If the equilibrium where only strain 1 persists is unstable (and the extinction equilibrium is

also unstable), then b > bR01 .

If the equilibrium where only strain 2 persists is unstable (and the extinction equilibrium is

also unstable), then b > bR02 .

Thus, based on these results, the coexistence equilibrium is locally asymptotically stable if

b > max
(

min(bG1P
, bG2P

), bR01 , bR02

)

. (5.86)

5.6.4 Generating figures 5.3 and 5.4

Introduction

Note Section 5.6.3 gives the general conditions for stability of the equilibria in terms of b. In

order to calculate the definitions (5.78)-(5.81), we use the definitions (5.71), which depend

on the virus profiles of strain order and disease type.

In our simulations, we use two virus profiles VF(τ) and VH(τ), where VF(τ) is the virus

profile associated with dengue fever and VH(τ) is the virus profile associated with dengue

hemorrhagic fever. These virus profiles are shown in Figure 5.2.

The recovery rates for dengue fever and dengue hemorrhagic fever are rF = 1
12

and rH = 1
14

respectively, since the virus profile for dengue fever in Figure 5.2 clears in 12 days and the

virus profile for dengue hemorrhagic fever in Figure 5.2 clears in 14 days.

We also use m0 =
1

70(365)
≈ 3.9139× 10−5 to represent an average lifespan of 70 years.
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We define

vF =

∫

∞

0

VF(τ)e
−(m0+rF)τ dτ,

vH =

∫

∞

0

VH(τ)e
−(m0+rH)τ dτ,

which we can calculate using the above parameters. These parameters are summarized in

Table 5.2.

We note that based on the particular combination of strain order and disease type, each of

V1P , V2P , V1S, and V2S as defined in (5.71) will be equal to either vF or vH. Also, each of

r1,prim, r2,prim, r1,sec, and r2,sec will be equal to either rF or rH.

Figure 5.4

Based on the parameters in Table 5.2, we calculate the values of bG1P
, bG2P

, bR01 , and bR02

as defined in (5.78)-(5.81) for a particular combination of strain order and disease type.

Thus, we can determine the equilibrium structure for the particular combination of strain

order and disease type.

For example, if we have V1,prim = F, V2,prim = H, V1,sec = H, V2,sec = F, we have that

V1P = vF, V2P = vH, V1S = vH, and V2S = vF.

Therefore, bG1P
= 0.0245096, bG2P

= 0.0190548, bR01 = 0.01749, and bR02 = 0.0232979.

From equation (5.83), the extinction equilibrium is locally asymptotically stable if

0 < b < 0.0190548.

From equation (5.84), the equilibrium where only strain 1 persists must always be unstable

since bR01 < bG1P
.
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From equation (5.85), the equilibrium where only strain 2 persists is locally asymptotically

stable if 0.0190548 < b < 0.0232979.

From equation (5.86), the coexistence equilibrium is locally asymptotically stable if

b > 0.0232979.

We can use this same process to determine the equilibrium structure for all possible combi-

nations of strain order and disease type. These results are summarized in Figure 5.4.

Figure 5.3

We use the F-F/H-H row of Figure 5.4 to produce the three different outcomes of extinction,

single-strain persistence, and coexistence as shown in Figure 5.3. Here, extinction occurs if

0 < b < 0.0190548, strain 2 persists if 0.0190548 < b < 0.0232979, and coexistence occurs if

b > 0.0232979.

Thus, we choose b = 0.018 to produce the extinction equilibrium, b = 0.023 to produce the

equilibrium where strain 2 persists, and b = 0.028 to produce the coexistence equilibrium.

We use the parameters as described in the Figure 5.3 caption. The τ -distribution of our

initial conditions is

nSI0(τ) =

{

r2,primNSI0 if 0 ≤ τ ≤
1

r2,prim
; 0 if τ >

1

r2,prim

}

,

nIS0(τ) =

{

r1,primNIS0 if 0 ≤ τ ≤
1

r1,prim
; 0 if τ >

1

r1,prim

}

,

nRI0(τ) =

{

r2,secNRI0 if 0 ≤ τ ≤
1

r2,sec
; 0 if τ >

1

r2,sec

}

,

nIR0(τ) =

{

r1,secNIR0 if 0 ≤ τ ≤
1

r1,sec
; 0 if τ >

1

r1,sec

}

.
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5.7 Discussion

The precise mechanisms generating the population-level dynamics of dengue serotypes re-

main difficult to uncover as a result of the complexity of the pathogen itself. For example,

four distinct dengue serotypes exist and there is a marked increase in disease severity fol-

lowing a secondary infection with a heterologous serotype. Multiple competing hypotheses

exist to explain this phenomenon, and further uncertainty exists surrounding the role of

both primary and secondary infection and the disease type induced (F vs H) in driving

the transmission and persistence of multiple serotypes in the population. We developed

a time-since-infection immunoepidemiological model as a means of integrating the within-

host and population-level dynamics of two co-circulating strains of dengue. Through both

model analysis and numerical simulations, we demonstrate that the between-host equilib-

rium structure critically depends on both the strain order and disease type. To be precise, it

may be more appropriate to consider this model as an infection-age structured model with

transmission rate related to within-host viral load. Even though our virus profiles are gener-

ated from within-host models [88, 89], we simplify these profiles to triangular distributions

during our simulations. This is different than other self-described immunoepidemiological

models [111, 41], which generate the within-host model using differential equations. Our

simplifications may have an affect on our results and is something worth exploring in the

future.

Although dengue has four serotypes, we simplified our analysis to consider two co-circulating

strains. At the population level, we assumed that the transmission dynamics for each strain

followed the classic SIR paradigm and we simultaneously tracked the infection status for

both strains in the population. Importantly, we assumed that the transmission rate asso-

ciated with each dengue infection is directly proportional to the viral load of an infectious

individual. Because viral load is directly related to an individual’s time-since-infection, we

coupled our population-level model with the within-host virus dynamics, where we consid-

ered that primary and secondary infections may result in either dengue fever or dengue
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hemorrhagic fever. We find that, for large enough transmission rates, we can observe ei-

ther between-hosts extinction of both virus infections, persistence of one virus infection, or

coexistence of both virus infections depending on the profiles of infection. In particular, if

the within-host primary infections for both strains result in dengue hemorrhagic fever then

one or both strains will remain endemic in the population. That is true even if the within-

host secondary infection by either or both strains results in dengue fever. This implies that

the severity of infection in the population is not dependent on the increased severity of a

secondary heterologous infection in an individual, and only depends of the profile of the

individual’s primary infection.

Our model assumes that the individual’s virus profile influences transmission to another

individual. These results may change if we change our assumption to account for an indi-

vidual’s immunological responses [89], their role in transmission [4, 5, 14, 16, 25, 104], or

if we consider cross-immunity between virus strains [15, 84]. Moreover, we assume a linear

relationship between the transmission rate and viral load. Further investigation is needed

to determine whether these results will change if we use density dependent transmission

rates [105], Hill-type transmission rates [35], or strain variability in per contact transmission

probability [106].

Dengue persistence and extinction in a population are influenced by factors other than order

of infection and viral type. Previous studies focusing on the role of spatial spread [115],

stochastic extinction events [109, 123], and seasonal forcing [4] have all shown that these

characteristics can drive the spread of dengue infection in a population. Understanding the

impacts of such added complexities is important to obtain a more global picture of this

system; however, it will likely impact the analytic tractability of our system and is beyond

the scope of our current work.
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5.8 Conclusion

Using a modeling framework that integrated the within-host transmission dynamics and

between-host virus dynamics of dengue virus infection, we investigated the roles of order

and type of infection in driving the long term persistence of co-circulating dengue serotypes

in a population. Our findings indicate that these processes can determine whether both

strains co-exist, both become extinct, or only one persists. The integration of multiple scales

– in our case both within-host and between-hosts dynamics – provides a means to investigate

complex processes that have significant dependence on input from different levels.



Chapter 6

Conclusion

In summary, we have outlined different mathematical models describing dengue viral infec-

tion, both at the within-host level and at the epidemiological level.

We first developed within-host models of dengue viral infections that considered the con-

tributions of T cells to disease severity. We fitted these models to published patient data

and showed that the overall infected cell killing is similar in dengue secondary infections

resulting in DF and DHF cases. The contribution to overall killing, however, is dominated

by non-specific, less efficacious, T cell responses during secondary DHF cases compared with

strain-specific, high avidity T cell responses in at least half of secondary DF cases. Therefore,

the cross-reactive cellular immune responses, as described in the hypothesis of original anti-

genic sin, may be present and responsible for the disease enhancement during heterologous

infections.

Using the results from our within-host models and certain simplifying assumptions, we stud-

ied the effects of incorporating the within-host viral dynamics into the transmission dynamics

at the betwen-host level. We investigated the roles of order and type of infection in driving

the long term persistence of co-circulating dengue serotypes in a population. Our findings

indicate that these processes can determine whether both strains co-exist, both become

141
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extinct, or only one persists.

In the future, we are interested in expanding the dengue infection immuno-epidemiolgical

study to address the effects of vaccination. Due to the higher risk of more severe disease

during secondary infections due to cross-reactive immune responses, a vaccine that is not

protective across all strains may induce prevalence of more severe diseases [45]. Mathematical

models are a cost-efficient way to study this possible outcome, and to predict prevention

methods that limit negative effects that may arise from the introduction of vaccines. We

are also interested in including vector transmission explicitly and analyzing how different

control methods may affect the spread of the virus in different populations. Even though we

have mainly studied dengue viral infection, we are interested in applying models of a similar

nature to other diseases.

In our review of immunoepidemiological models, we only focused on models of HIV. In the

future, we would like to review how immunoepidemiological models are applied to infectious

diseases on a broader scale, categorize how these models are validated against data, and

classify how their results differ from epidemiological models.

Since we would like the work we do to have an impact on the spread of the diseases we are

studying, we would like to collaborate with biologists to determine whether we can design

experiments that can further inform the models. For example, we would like to verify our

explanation for the role of original antigenic sin during dengue viral infection, which may

give more insight into developing better vaccines. We are also interested in how the results

of the immunoepidemiological model can be validated experimentally, and further studying

optimization algorithms to obtain better model predictions.
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[42] M. G. Guzmán, G. Kouŕı, L. Valdés, J. Bravo, S. Vázquez, and S. B. Halstead. En-

hanced severity of secondary dengue-2 infections: Death rates in 1981 and 1997 Cuban

outbreaks. Rev. Panam. Salud Publica, 11:223–227, 2002.



148

[43] M. G. Guzmán, G. P. Kouri, J. Bravo, M. Soler, S. Vazquez, and L. Morier. Dengue

hemorrhagic fever in Cuba, 1981: A retrospective seroepidemiologic study. Am. J.

Trop. Med. Hyg., 42(2):179–184, 1990.

[44] S. B. Halstead. Dengue. Lancet, 370(9599):1644–1652, 2007.

[45] S. B. Halstead. Which dengue vaccine approach is the most promising, and should we

be concerned about enhanced disease after vaccination? There is only one true winner.

Cold Spring Harb. Perspect. Biol., page a030700, 2017.

[46] S. B. Halstead, S. Mahalingam, M. A. Marovich, S. Ubol, and D. M. Mosser. Intrin-

sic antibody-dependent enhancement of microbial infection in macrophages: Disease

regulation by immune complexes. Lancet Infect. Dis., 10:712–722, 2010.

[47] S. B. Halstead, S. Rojanasuphot, and N. Sangkawibha. Original antigenic sin in dengue.

Am. J. Trop. Med. Hyg., 32:154–156, 1983.

[48] R. L. Hamers, C. L. Wallis, C. Kityo, M. Siwale, K. Mandaliya, F. Conradie, M. E.

Botes, M. Wellington, A. Osibogun, K. C. Sigaloff, I. Nankya, R. Schuurman, F. W.

Wit, W. S. Stevens, M. Vugt, and T. F. R. de Wit. HIV-1 drug resistance in

antiretroviral-naive individuals in sub-Saharan Africa after rollout of antiretroviral

therapy: A multicentre observational study. Lancet Infect. Dis., 11(10):750–759, 2011.

[49] A. Handel and P. Rohani. Crossing the scale from within-host infection dynamics to

between-host transmission fitness: A discussion of current assumptions and knowledge.

Phil. Trans. R. Soc. B, 370(1675):20140302, 2015.

[50] L. Hartley, C. Donnelly, and G. Garnett. The seasonal pattern of dengue in en-

demic areas: Mathematical models of mechanisms. Trans. R. Soc. Trop. Med. Hyg.,

96(4):387–397, 2002.

[51] F. G. Hayden, J. J. Treanor, R. F. Betts, M. Lobo, J. D. Esinhart, E. K. Hussey,



149

et al. Safety and efficacy of the neuraminidase inhibitor gg167 in experimental human

influenza. JAMA, 275(4):295–299, 1996.

[52] M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder,

D. Schmidt, R. Hoh, R. Neese, D. Macallan, et al. Directly measured kinetics of cir-

culating T lymphocytes in normal and HIV-1-infected humans. Nature Med., 5(1):83,

1999.

[53] H. W. Hethcote. Three basic epidemiological models. In Applied mathematical ecology,

pages 119–144. Springer, 1989.

[54] H. W. Hethcote. The mathematics of infectious diseases. SIAM Rev., 42(4):599–653,

2000.

[55] T. J. Hladish, C. A. Pearson, D. L. Chao, D. P. Rojas, G. L. Recchia, H. Gómez-
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