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ABSTRACT 
 

This dissertation addresses the ultimate strength analysis of nonlinear beam-columns under axial 

compression, the sensitivity of the ultimate strength, structural optimization and reliability analysis 

using ultimate strength analysis, and Reliability-Based Design Optimization (RBDO) of the 

nonlinear beam-columns. The ultimate strength analysis is based on nonlinear beam theory with 

material and geometric nonlinearities. Nonlinear constitutive law is developed for elastic-

perfectly-plastic beam cross-section consisting of base plate and T-bar stiffener. The analysis 

method is validated using commercial nonlinear finite element analysis. A new direct solving 

method is developed, which combines the original governing equations with their derivatives with 

respect to deformation matric and solves for the ultimate strength directly. Structural optimization 

and reliability analysis use a gradient-based algorithm and need accurate sensitivities of the 

ultimate strength to design variables. Semi-analytic sensitivity of the ultimate strength is calculated 

from a linear set of analytical sensitivity equations which use the Jacobian matrix of the direct 

solving method. The derivatives of the structural residual equations in the sensitivity equation set 

are calculated using complex step method. The semi-analytic sensitivity is more robust and 

efficient as compared to finite difference sensitivity. The design variables are the cross-sectional 

geometric parameters. Random variables include material properties, geometric parameters, initial 

deflection and nondeterministic load. Failure probabilities calculated by ultimate strength 

reliability analysis are validated by Monte Carlo Simulation. Double-loop RBDO minimizes 

structural weight with reliability index constraint. The sensitivity of reliability index with respect 

to design variables is calculated from the gradient of limit state function at the solution of reliability 

analysis. By using the ultimate strength direct solving method, semi-analytic sensitivity and 

gradient-based optimization algorithm, the RBDO method is found to be robust and efficient for 

nonlinear beam-columns. The ultimate strength direct solving method, semi-analytic sensitivity, 

structural optimization, reliability analysis, and RBDO method can be applied to more complicated 

engineering structures including stiffened panels and aerospace/ocean structures. 
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GENERAL AUDIENCE ABSTRACT 
 

This dissertation presents a Reliability-Based Design Optimization (RBDO) procedure for 

nonlinear beam-columns. The beam-column cross-section has asymmetric I shape and the 

nonlinear material model allows plastic deformation. Structural optimization minimizes the 

structural weight while maintaining an ultimate strength level, i.e. the maximum load it can carry. 

In reality, the geometric parameters and material properties of the beam-column vary from the 

design value. These uncertain variations will affect the strength of the structure. Structural 

reliability analysis accounts for the uncertainties in structural design. Reliability index is a 

measurement of the structure’s probability of failure by considering these uncertainties. RBDO 

minimizes the structural weight while maintaining the reliability level of the beam-column. A 

novel numerical method is presented which solves an explicit set of equations to obtain the 

maximum strength of the beam-column directly. By using this method, the RBDO procedure is 

found to be efficient and robust.  
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1 Chapter One 

 

Introduction 

Deterministic structural design using yield criteria is a common practice for aerospace, ocean and 

land-based structures. Ships and offshore structures operate in the harsh ocean environment under 

large amount of uncertainties, including random wave/wind loads, nondeterministic structural 

properties and unpredictable human errors. These uncertain factors have to be considered in the 

design for structural safety. 

Traditionally in ocean structural design, the rare extreme cases like one-hundred/thousand-year 

storm, were often used as the design load depending on the structural type. Ship design usually 

uses working stress design (WSD) method which applies a safety factor to the yield stress 

(American Bureau of Shipping, 2017). In offshore industry the load resistance factor design 

(LRFD) method is commonly used (Det Norsk Veritas, 2014). LRFD applies different levels of 

safety factors to different loads. LRFD method is a reliability-based design method because it 

accounts for some of the uncertainties in the design (Hughes and Paik, 2010). Offshore industry is 

relatively new which and has developed since the mid-twentieth century compared to the over-

hundred-year history of modern ship industry. So the more advanced design methodology is 

adopted more broadly. Other more accurate reliability analysis methods like the first order, second 

order method and stochastic design take consideration of more uncertain factors than the partial 

safety factor method (Hughes and Paik, 2010).  

Structural optimization is important for ocean structural design, especially for high speed ships. 

Lower structural weight means lower material cost. Cargo ships or passenger ships can carry more 

live load by reducing self-weight. For high speed ships lower structural weight is also important 

in reducing the resistance leading to higher efficiency. However, lower weight requires thinner 

and less strong structural members. There is a trade-off between structural weight and structural 
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strength. The objective of structural optimization is to achieve the balance of the two goals, i.e. to 

reduce structural weight while maintaining a strength level. 

If yield criteria and extreme design loads are used for elasto-plastic materials like aluminum and 

steel, the structural deformation is only allowed in the elastic range. However, the extreme load 

case will be encountered rarely. Most of the time the working load during operation is much lower 

than the design load. In rare occasions the working load may exceed the design load. Under these 

extreme circumstances, the structure may have plastic deformations at some local area but still 

maintain structural integrity.  Once the extreme load is not in effect, these permanently deformed 

local structures can be repaired or replaced during maintenance. Thus, if plasticity is allowed, 

design by yield criteria will be over conservative because the structure can still take additional load 

after yielding occurs and before reaching the ultimate strength. Ultimate strength design uses the 

maximum load carrying capacity as the limit by allowing plasticity. Therefore, design by ultimate 

strength criteria is more rational for structures that allow plastic deformation. 

These are three aspects of rational structural design. Firstly, ultimate strength criterion is used for 

structural analysis. Secondly, reliability analysis is used to account for the design uncertainty. 

Thirdly, structural optimization is used to find the minimum weight design that satisfies the 

strength requirement. The goal of this dissertation is to develop Reliability-Based Design 

Optimization (RBDO) methodology that combines these three aspects. The structure in 

consideration is the commonly used stiffener-plate combination made of elasto-plastic material. 

The objective is to find the minimum weight design with reliability index constraint under ultimate 

limit state. 

1.1 ULTIMATE STRENGTH 

Research on ultimate strength of stiffened panels started as early as mid-20th century. Various 

forms of empirical formulas have been proposed based on test results and numerical analysis 

(Zhang, 2016). In the past few decades, the development of nonlinear finite element tools and 

increasing computational power have made it easier to perform full structure ultimate strength 
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analysis. For example, there is research on ultimate strength analysis of ship structures using 

nonlinear finite element analysis (FEA) (Paik et al, 2008c). 

For large ships and offshore structures, full scale test is not realistic. Full nonlinear finite element 

analysis is too costly and the numerical convergence for large model is difficult. Moreover, during 

the design cycle structural properties are constantly changing, so a large number of analyses will 

be repeated. The research of ultimate strength has been focused on the basic structural units: 

stiffened panels or so called ‘grillage’ which is the combination of base plate and attached 

stiffeners (Paik et al, 2008b). 

One common approach in large structure’s strength analysis is to break down the structure into 

hierarchical models (Hughes and Paik, 2010). A coarse global finite element model is used for the 

entire structure. The coarse elements of ship structures are usually cross-stiffened panels bounded 

by strong members like girders and bulkheads. From the global analysis, the global loads can be 

transferred onto individual panels. In detailed engineering, the ultimate strength analysis is applied 

to the stiffened panels under the local loads which is the combination of axial compression, 

bending moment, shear force, torsional force and lateral pressure. 

The stiffened panels under large loads will fail due to the development of plasticity at various 

locations and in various deformed modes. There are several factors affecting the failure modes, 

including the load combination, initial imperfection and structural scantlings. There are six typical 

failure modes for cross-stiffened panels (Paik and Thayamballi, 2003). These failure modes 

normally interact with each other and cannot be clearly separated. Due to the complexity of 

material and geometric nonlinearities, there is no analytic solution for the stiffened panel ultimate 

strength analysis. Some semi-analytic methods have been developed for some of the failure modes. 

For example, orthotropic plate theory can be applied to panels with small stiffeners under axial 

compression (Paik and Lee, 2005). Beam-column model can be used for panels with large 

stiffeners under uniaxial compression (Chen, 2003). These methods have been integrated into 

finite element analysis packages as the local ultimate strength analysis module (MAESTRO 

Marine, 2016). 
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IACS (International Association of Classification Societies) Common Structure Rule has included 

the incremental iterative method to calculate the ultimate strength of ship mid-section (IACS, 

2005). It is inefficient and the results are approximate due to some assumptions. Numerical 

methods like nonlinear finite element analysis have shown accuracy when compared to structural 

test results (Ghavami and Khedmati, 2006). Some simple ultimate strength design formulas are 

based on data from nonlinear FEA and structural tests (Cho et al, 2013). In general, these formulas 

have practical use because of the simplicity but the accuracy is not ideal. Some influential design 

variables, like initial imperfection, are not included in the formula. Nonlinear FEA is reliable for 

ultimate strength analysis if the model is set up properly but the cost of modeling and computation 

is high. FEA results of stiffened panels under various load combinations have been used as the 

benchmark for ultimate strength analysis method (Xu and Soares, 2013). Recent works has used 

nonlinear FEA for the ultimate strength analysis of cracked, pitted or damaged panels, and panels 

of innovative or unconventional design (Wang et al, 2015; Paik and Kumar, 2006; Badran et al, 

2013; Brubak et al., 2013). 

Beam-column model has been successfully used to predict the ultimate strength of stiffened panels 

under uniaxial compression (Hughes et al., 2004). A beam-column model consists of the stiffener 

and the attached plate strip. The cross-section has asymmetric I shape. The nonlinear beam-column 

model is the structure focused in this dissertation. 

Chapter 2 presents beam-column ultimate strength load-incremental analysis method based on 

nonlinear beam theory. The nonlinear constitutive equations for the asymmetric I cross-section 

and elasto-plastic material are developed.  

1.2 STRUCTURAL OPTIMIZATION 

Structural optimization had a long history and the optimization techniques have advanced with fast 

pace during the last a few decades with the development of modern computers (Haftka and Gurdal, 

1992). The two main branches of structural optimization, mathematic programming and optimality 

criteria, have been applied to various size, shape and topological optimization problems (Palizzolo, 
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2004; Bielski and Bochenek, 2008; Ohsaki and Pan, 2009). Finite element method is often used 

for structural analysis in the optimization. The iterations of optimization algorithms usually require 

large number of structural analysis (Lamberti et al., 2003). In order to improve the efficiency for 

large and complex structures, various techniques like adjoint method, constraint/force 

approximation, design variable linking, have been developed to reduce the number of design 

variables and structural analysis (Haftka and Gurdal, 1992). A robust optimizer requires accurate 

design variable sensitivity. Finite difference sensitivity is often used for convenience but the 

numerical errors from small step size can be significant and can affect the convergence of the 

optimization algorithm. Complex step sensitivity is very accurate if it can be calculated from the 

structural analysis. Analytic sensitivity requires extra effort to be derived from the structural 

analysis but it significantly improves the efficiency and the robustness of the optimization. 

Chapter 3 presents deterministic beam-column structural optimization with ultimate strength 

constraint. The beam-column ultimate strength direct solving method is used to calculate finite 

difference sensitivity which is more accurate than the sensitivity calculated by load-incremental 

analysis method. The nonlinear beam-column gradient-based optimization converges faster and is 

more robust than non-gradient-based algorithm. 

1.3 STRUCTURAL RELIABILITY ANALYSIS 

All parameters in structural design are non-deterministic in reality. The material properties, 

structural scantlings and initial imperfection have probabilistic distributions. The mean of the 

variable is the design value and the variance depends on the quality of manufacturing and 

fabrication (Xu et al., 2015). In ocean environment, the short term wave loads follow Raleigh 

distribution and long term wave loads follow Weibull distribution (Hughes and Paik, 2010). 

Oceanographic data also provides the scatter diagram for specific sea area in different seasons. 

The scatter diagram provides the probability of waves in different direction and of various 

significant wave height, which is often used for structural fatigue analysis. Besides the parameters 

that can be described by probabilistic distributions, some other factors like meteorological 

phenomenon, extreme waves, accidents and human factors, are epistemic or cannot be 
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characterized by a mathematical distribution. For example, the squall wind is completely random 

with unpredictable and constantly changing magnitude and direction. By ignoring the variation of 

random variables, the deterministic designs always have an unknown chance of structural failure 

even with imposed safety factors. Reliability is a better measurement of structural safety as it 

accounts for the uncertainties that can cause structural failure. 

Partial safety factor design has basic reliability consideration compared with the deterministic 

design which has a single safety factor on the working stress. In partial safety factor design 

different levels of safety factors are applied to different aspects of the design so the randomness of 

variables is addressed. If all the random variables can be described by mathematical distributions, 

first order and second order reliability methods are quite accurate in predicting the probability of 

failure provided the failure surface is not highly nonlinear. The first order second moment method 

has been widely used in practice (Ba-abbad et al., 2003). With more complicated mathematical 

approach, full probabilistic analysis can be performed in the reliability calculation (Hughes and 

Paik, 2010). Sampling method is usually used to validate the reliability analysis. Monte Carlo 

Simulation is often very costly and time consuming because large samples of structural analysis is 

required. Some techniques like Importance Sampling and Latin Hypercube Sampling can improve 

the efficiency (Choi, Grandhi & Canfield, 2007). When the failure probability is small, sampling 

method becomes unrealistic. For designs having epistemic variables, uncertainty quantification 

analysis can be used for reliability estimation (Hale, 2016). 

Chapter 4 presents structural reliability analysis for nonlinear beam-columns with ultimate strength 

constraint. First Order Reliability Method (FORM) is used to calculate the reliability index by 

optimization technique and beam-column ultimate strength direct solving method is used as the 

limit state function. Complex step sensitivity of ultimate strength with respect to random variables 

is calculated for the reliability analysis. The complex step sensitivity is more robust than finite 

difference sensitivity and as accurate as the analytic sensitivity. 
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1.4 RELIABILITY-BASED DESIGN OPTIMIZATION 

Reliability-Based Design Optimization (RBDO) adds reliability constraint to optimization thus 

accounting for the uncertainties in the analysis and design parameters. RBDO considers the cost, 

performance and safety of the design under uncertainties at the same time. In structural design, 

RBDO is usually solved as a double loop optimization problem. In the outer loop, the objective of 

structural optimization is to minimize the weight and the main constraint is to limit the reliability 

index. The inner loop of RBDO calculates the reliability index at the current design point. First 

Order Reliability Method (FORM) is accurate in calculating the reliability index if the structure’s 

failure surface is not highly nonlinear near the design point. The reliability index of FORM is the 

distance from the origin to the Most Probable Point (MPP) in the normalized random variable 

space. The search for MPP can be solved by an optimization procedure that finds the minimum 

distance from the origin to the failure surface. Thus RBDO using FORM is represented by a double 

loop optimization problem (Choi, Grandhi & Canfield, 2007). Sensitivity analysis is important for 

gradient-based optimization algorithms. Semi-analytic sensitivity calculates the sensitivity from 

linear sensitivity equations with analytic coefficient matrix and numerical structural residuals. 

Semi-analytic sensitivity has less computational cost as compared to complex step sensitivity. It 

is as accurate as the analytic sensitivity and is more robust than finite difference sensitivity as it 

eliminates the subtractive cancellation error at small step size. 

Chapter 5 demonstrates Reliability-Based Design Optimization procedure for nonlinear beam-

columns by using the ultimate strength direct solving method, semi-analytic sensitivity and 

gradient-based optimization algorithm. 
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2 Chapter Two 

 

Ultimate Strength of Steel Beam-Columns under 

Axial Compression  

2.1 TITLE 

Ultimate Strength of Steel Beam-columns under Axial Compression  

By: Zhongwei Li, Mayuresh Patil and Xiaochuan Yu 

2.2 ABSTRACT 

This paper presents a semi-analytical method to calculate the ultimate strength of inelastic beam-

columns with I-shaped cross-section by using geometrically-exact beam theory. A computer code 

based on this method has been applied to beam-columns under axial compression. The results 

agree with nonlinear finite element analysis. Compared with previous step-by-step integration 

approach, this new method is more efficient and can be extended to multi-span beam-columns and 

other load combinations including lateral pressure. The presented beam-column model is ideally 

suited for ultimate strength prediction of stiffened steel panels of ships and offshore structures. 

2.3 INTRODUCTION 

Stiffened panels are widely used in ships and offshore structures. Cross stiffened panel is usually 

called “grillage”. The strength of these grillages is important to structural safety. When the hull 

deforms in ocean waves, the stiffened panels is subjected to axial compression along with other 

loads including lateral pressure. In recent years, the ultimate strength of stiffened panels under 

these loading conditions has drawn significant interest in ocean structural design, especially for 

high performance ships (Paik and Thayamballi, 2003).  
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A typical grillage has bulkheads and frames in transverse direction. In longitudinal direction there 

are stiffeners built up or rolled up on the plates. Buckling analysis is important to the design of 

stiffened panels. Besides structural tests (Mukherjee and Yao, 2006), the ultimate strength of 

grillage can be calculated using analytical methods based on beam-column model or orthotropic 

plate model and numerical methods like finite difference method and finite element method. Due 

to the cost of tests, usually the results from nonlinear finite element analysis are benchmarks for 

ultimate strength analysis (Ghavami and Khedmati, 2006). Using commercial nonlinear finite 

element analysis software is time-consuming in terms of setting up and calibrating the analysis 

using tests, and creating finite element models and running numerous load cases.  On the other 

hand, simple design formulas are not always accurate for all the cases (Paik, 2007). 

Paik et al. have done intensive research on the ultimate strength of beam-columns, plates and cross 

stiffened panels. The loads include uniaxial compression, biaxial compression and additional 

lateral pressure and edge shear (Paik et al, 2008a, 2008b, 2008c). The developed methods have 

been integrated in a program ULSAP and have been used in ship structural design (Paik et al, 

2008d) and optimization (Ma et al, 2013). Details of the approach can be found in a recently 

published book (Hughes and Paik, 2010). Plasticity is accounted for by using empirical 

formulations to avoid difficulties of solving the governing equations with both geometric and 

material nonlinearities. The empirical formulas are based on the results of nonlinear finite element 

analysis. Zhang (2016) reviewed the current state of panel ultimate strength research and presented 

another set of formulas. Cho et al. (2013) developed an ultimate strength formulation for stiffened 

panel subject to combined loading. The unknown coefficients in the formulation are obtained by 

regression analysis based on numerical solution. 

The empirical formulas are approximations to either test data or numerical method. However, test 

data are limited and the initial imperfections of the test specimens are uncontrollable. Most of the 

formulas have already included a range of initial imperfection. Similarly, numerical analysis like 

nonlinear FEM also has applied initial deformed shape and deflection on the model. The fitted 

formulas may likely differ from numerical solutions if the initial imperfection changes. 
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Brubak et al. (2013) developed a semi-analytical method to predict the ultimate strength for 

stiffened panels. Plasticity in the stiffeners is accounted for by reducing the cross-sectional area. 

 Chen and Lui (1987) have done comprehensive research on beam-column buckling problems. 

Based on this, Chen (2003) developed a modified step-by-step integration method to calculate the 

ultimate strength of inelastic beam-columns under axial compression. Furthermore, the beam-

column ultimate strength was used to predict the ultimate strength of stiffened panels and the 

results agreed with ABAQUS nonlinear analysis. When solving three span beam-column problems, 

this approach assumes that the end bay remains elastic under axial compression. This method 

becomes inefficient for beam-columns with three or more spans without this assumption because 

of additional inner supports. The step-by-step integration is iterative and has to converge at each 

support point. Each additional support leads to additional iteration cycle. It is also difficult to 

converge if lateral pressure is added. 

The research in this paper presents a semi-analytical method of inelastic beam-column buckling 

analysis. Based on geometrically-exact beam theory (Hodges, 2006), the solution is obtained 

directly by numerical method without step-by-step integration. The efficiency and accuracy 

enables this approach be used for stiffened panel ultimate strength prediction by beam-column 

method under various loading conditions. The beam-column ultimate strength results are 

compared with nonlinear finite element buckling analysis (by using ABAQUS and ANSYS) for 

validation. This method can be used on beams of other cross-sectional shape and of various 

materials as long as the nonlinear constitutive law is correctly established. 

2.4 ULTIMATE STRENGTH 

Ultimate limit-state design is based on the criteria of structural plastic collapse or ultimate strength. 

Figure 2-1 illustrates the nonlinear behavior of a material versus that of a structure. The limit of 

elastic range of the structure is far from the peak load carried by the structure. Unlike in a material, 

load redistribution in a structure allows for this ability to carry higher loads. The true margin of 
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structural load-carrying capacity is thus the ultimate strength and its calculation requires an 

accurate and efficient nonlinear structural analysis method. 

2.4.1 Models of Stiffened Panels 

A beam-column model (Chen and Atsuta, 1976) cross section is shown in Figure 2-2. It is different 

from plate-stiffener separation model or orthotropic plate model. A beam-column model is more 

suitable for stiffened panels with medium or medium to large size stiffeners. 

 

Figure 2-1. Stress-strain relationship of steel and ultimate limit-state of structures (load – 

deflection). 

 

Figure 2-2. Beam-column model of stiffened panels. 

The beam-column ultimate strength approach of this paper is based on geometrically-exact beam 

theory. The nonlinear intrinsic dynamic equations are written in a matrix form without any 

geometrical approximation. Since the ultimate strength analysis of beam-columns is quasi-static, 

dynamic terms can be removed. Hodges developed a simple discretization scheme of 

geometrically-exact beam equations for a static case (Hodges, 2003) which is used in the present 
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paper. The research of this paper uses a simplified version of these equations based on several 

assumptions.  

2.4.2 Methodology 

When a geometrically perfect beam-column is under compression, the critical load is either the 

eigenvalue buckling load or squash load, depending on the slenderness.  

In ocean structures like ships and offshore platforms, initial imperfections are unavoidable during 

manufacturing. Therefore, lateral deflection occurs as soon as the beam-column is loaded.  

Considering the plasticity of steel material, some portion of the cross section will yield first. 

Consequently, only the portions that remain elastic are capable of carrying additional load. 

Buckling will occur when the stress level is beyond elastic range of the whole cross-section. This 

type of buckling is usually referred to as nonlinear buckling. The maximum load carrying 

capability of inelastic beam-column is the ultimate strength. 

2.4.3 Governing Equations 

The original equations of motion of geometrically-exact beam theory have dynamic terms (Hodges, 

2006). Equations 2.1 to 2.9 are the governing equations of equilibrium of a 2-D geometrically-

exact beam. Coordinate system is shown in Figure 2-3 and Figure 2-4. x direction is along the 

beam length. y direction is along the axis of symmetry for the I-shaped beam cross section. z 

direction is along the neutral axis of the I-shaped beam cross section. Origin can be chosen at the 

beam end for convenience. 

0)(  xyzzx fFkF    ( 2.1) 

0)(  yxzzy fFkF    ( 2.2 ) 

0)1(  zxyyxz mFFM    ( 2.3 ) 
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1)(sin)1(cos  xzyzyzxzx ukuuku    ( 2.4 ) 

)(cos)1(sin xzyzyzxzy ukuuku     ( 2.5 ) 

zz     ( 2.6 ) 

),,( zyxxx cF    ( 2.7 ) 

),,( zyxyy cF    ( 2.8 ) 

),,( zyxzz cM    ( 2.9 ) 

In equations 2.1 to 2.9, subscripts x, y and z indicate the components of the variables, parameters, 

and functions. F is the cross-sectional stress resultant force. M is the cross-sectional stress resultant 

moment. u is the deflection. zk and z  are the pre-twist/pre-curvature and deformed twist/curvature 

respectively. f is the applied force per unit length and m is the applied moment per unit length. z  

is the rotational angle.  is the beam generalized strain. xc , yc  and zc  are nonlinear functions of 

strain and curvature which determines the stress resultants via the beam cross-sectional integral of 

the constitutive law for the material. The terms with prime are the derivatives in the direction of 

beam length (x direction). 

These equations and the corresponding terms have been explained in detail by Hodges (2006). 

Equations 2.1 to 2.3 are equilibrium equations. Equations 2.4 to 2.6 are kinematics equations. 

Equations 2.7 to 2.9 are effective constitutive equations. 

Equations 2.1 to 2.9 have 6 differential equations and 3 algebraic equations. There are also 9 

unknown variables. Therefore 6 boundary conditions are required to solve the equations. 

For half of a simply supported beam in Figure 2-4, with only axial compressive load P the 

boundary conditions will be: 
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Center: PFx  ; 0yF ; 0z . 

Left End: 0xu ; 0yu ; 0zM . 

For quasi-static beam-column buckling problems, some assumptions can be adopted to reduce the 

number of unknown variables and equations. If forces are applied only at the end of the beam or 

additional supports, then 0 zx mf . For more complicated load cases with distributed load, 

these terms can be added into the equations when needed. 

2.4.3.1 Shear Assumption 

Euler-Bernoulli beam theory is assumed to be applicable here. Euler-Bernoulli assumption leads 

to infinite shear rigidity (zero shear flexibility) and thus the cross section remains plane after 

bending, and remains undeformed in the cross sectional plane. It should be noted that there is shear 

stress in the beam cross section. The shear force can be calculated from equilibrium. Zero shear 

strain leads to 0y .  

2.4.3.2 Small Deformation Assumption 

The lateral deflection of typical beam-columns in ship structures is small compared with beam 

length, even in the plastic range. Usually the deflection is less than 1% of the beam length. If   

is a small value which means 1  and L  is the beam length, then we have following 

relationships: 

 ~,~,~ z
yx

L

u

L

u
, 

L
k

L zz
 ~,~  

If there is only axial compressive force acting on the beam-column but no lateral pressure, shear 

force can be assumed to be a small value compared with axial force, i.e. xy FF ~ .Equations 

2.1 to 2.9 therefore can be further simplified with small deformation assumption by ignoring the 

second-order small terms. 
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Equation 2.1 then will only have one variable xF after the simplification. Actually for the beam-

column under only axial compression, xF  equals to the axial compressive force P . xu will only 

appear in Equation 2.4 after the simplification. Therefore, Equation 2.1 and 2.4 can be removed 

from the set. P replaces xF  and xu can be calculated during post process after the equation set is 

solved. 

If there is only axial compressive force as external load, the simplified version of Equation 2.1 to 

2.9 is following: 

0 PkPF zzy    ( 2.10 ) 

0 yz FM   ( 2.11 ) 

0 yz u   ( 2.12 ) 

0 zz    ( 2.13 ) 

0),(  Pc zxx    ( 2.14 ) 

0),(  zzxz Mc    ( 2.15 ) 

2.4.3.3 Nonlinear Constitutive law 

In Equation 2.14 and 2.15, xc  and zc  are functions of beam strain x and beam curvature z . xc  

and zc  calculate the internal axial force and moment respectively. Let  ,   be the material stress 

and strain. The nonlinear constitutive law is derived here for a beam of the I-shaped cross section. 

To simplify the problem, elastic-perfectly-plastic steel material model is used in this research as 

shown by Figure 2-1. In the elastic range while the stress is less than yield stress, linear Hooke’s 

law is used:   E  where, E is Young’s modulus of steel, and also the slope of the elastic stress-
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strain part in Figure 2-1. In the plastic range, stress is assumed to remain equal to yield stress while 

strain can keep increasing as seen in the zero slope part in Figure 2-1. 

2.4.3.4 Constitutive Law of I-Shaped Cross-section 

Figure 2-3 shows the cross section geometry properties of a T type stiffener with attached plating 

(acting as the bottom flange), representing an asymmetric I-shaped cross section, which is of 

interest in the present paper. 

 

Figure 2-3. Strain diagram and cross-sectional geometry (asymmetric I). 

In Figure 2-3, the geometry of beam-column cross-section is defined by parameters b, b1, b2, h1, 

h2, h3 and h4. Conventionally the cross-section of a T type stiffener with attached plating has been 

defined by plate width bp, plate thickness tp, web height hw, web thickness tw, flange width bf and 

flange thickness tf. The following relationships relate the two sets of parameters: 

pfwpwf thhthhhhhbbtbbb  34213221 ,,,,,  ( 2.16 ) 

The location of neutral axis can be easily determined by bp, tp, hw, tw, bf and tf in order to get h1, h2, 

h3 and h4.  
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z  is the curvature of the beam. If 0z , the deformed shape of beam-column is shown in Figure 

2-4. The upper part of beam-column is in compression while the lower part may be in extension. 

 

Figure 2-4. Deformed simply supported beam with 0 . 

In the strain diagram of I-shaped cross-section in Figure 2-3, yh  and yg  are the upper and lower 

boundaries of elastic zone respectively, i.e. where the elastic stress reaches yield stress. Elastic 

stress )(y  is calculated by Hooke’s Law from elastic strain )(y , while in plastic zone the axial 

stress is always yield stress y . x  is the strain at centroid/neutral axis. Therefore if 0z : 

)()( yEy   , yy zx  )( , yy E  ,
z

yx
yh


 

 , 
z

xy
yg


 

  ( 2.17 ) 

By comparing 1h , 2h , 3h  and 4h  with yh  and yg  at a cross section, it can be determined if there is 

yielding in the plating, web or flange of that cross section. More details of the stress-strain diagram 

can be found in Chen and Lui14 and Chen15. 

If  0z , then the upper part of beam-column is in compression while the lower part may be in 

extension or less compression. Equation 2.17 remains valid except that the signs of z  and y  

will change. 

If  4hg y   and 1hhy   in 0z  case, the entire cross-section is in elastic range. Otherwise inside 

the cross-section there is yielding which could be in the stiffener flange, stiffener web or plate 

flange, which again depends on the values of yh , yg , 1h , 2h , 3h  and 4h . Totally there are 15 

P P 
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possible cases. Each case has different expressions of axial force P and internal moment M. For 

example, if 4hg y   and 1hhy  : 

 




 1

2

2

3

3

4
12 )()()(

h

h

h

h

h

h
dybyEbdyyEdybyEP    ( 2.18 ) 

 




 1

2

2

3

3

4
12 )()()(

h

h

h

h

h

hz ydybyEbydyyEydybyEM   ( 2.19 ) 

Expressions of P and M for all 15 cases can be found in the appendix. 

By substituting )(y  of Equation 2.17 into Equation 2.18 and 2.19, functions ),( zxxc   and 

),( zxzc  in Equation 2.14 and 2.15 can then be obtained. If 0z , the beam-column can be 

reversed vertically by 180 degrees. Then it is the same as 0z  case. That is, by exchanging the 

values of 1h and 4h , 2h  and 3h , the functions ),( zxxc   and ),( zxzc  of 0z  case can still be 

used.  

As an example, for the 0z  case if 4hg y   and 1hhy  , we get the linear elastic law given by: 
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  ( 2.20 ) 

where 

)()()( 3423221111 hhEbhhEbhhEbC  , 
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Similar expressions can be derived for all other possible cases.  

Therefore, the last two governing equations 2.14 and 2.15 are obtained. The set of equations 2.10 

to 2.15 has four differential equations and two nonlinear algebraic equations. There are also six 

unknown variables. With four boundary conditions, the equations can be solved by a proper 

nonlinear scheme. For half of a simply supported beam-column, the boundary conditions are: 

Center: 0yF ; 0z . 

Left end: 0yu ; 0zM . 

2.4.4 Numerical Method 

Finite difference method is used to discretize the differential equations. Then the iterative Newton-

Raphson scheme is used to solve the set of nonlinear equations. 

The beam is discretized into N  elements (of length L ) with 1N  nodes. The unknowns are the 

values of the variables at each node. (Total variables are  16  N .)  

Figure 2-5 shows one discretized beam element and the nodal variables. 

 

Figure 2-5. One beam element and nodal variables. 

The differential equations are approximated for the element in terms of the nodal values using 

central differencing scheme ( N4  equations). For example, equation 2.10 becomes 
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The algebraic equations are satisfied directly at the nodes (  12  N  equations). At the ith node, 

there is 

  Pc i
z

i
xx  ,   ( 2.22 ) 

0),(  z
i

z
i

x
i

z Mc    ( 2.23 ) 

For half of a simply supported beam-column, the boundary conditions are satisfied at the ends. 

There are four equations: 

Center: 01 N
yF ; 01 

z
N . 

Left end: 01 yu ; 01 zM . 

If there are more supports, elements have to be divided at each support and boundary conditions 

are added for each support. This will lead to more variables at each support, e.g. reaction force for 

pin joint, but also more equations. 

A computer program ULTBEAM2 has been developed using this scheme to solve the set of 

Equations 2.10 to 2.15 for beam-columns with I-shaped cross-sections.  

2.5 NUMERICAL EXAMPLES 

The ultimate strength of two beam-columns calculated by ULTBEAM2 is compared with 

ABAQUS and ANSYS results. Results from the program ULTBEAM1 of Chen15 is also listed, 

which uses the step-by-step integration method. Two different kinds of loading/boundary 

conditions are analyzed: 
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 Simply supported beam-column (single-span and three-span) under axial compression; 

 Single span clamped beam-column under axial compression. 

The ABAQUS model is fine meshed 2-D beam-column using 2 node Timoshenko beam element 

(B21). The ANSYS beam element model is created using Beam 188 element and the shell element 

model is created using Shell 181 element. Figure 2-6 shows ANSYS beam element model and 

shell element model for the half beam-columns. The cross sectional shape is the same as in Figure 

2-3 and material property is similar to Figure 2-1. The beam element model is actually one 

dimensional but is plotted as 3-D to show the cross section and plate thickness. It’s been verified 

that the results from beam element model and shell element model are nearly identical. All the 

results listed in following tables are from the beam element model. 

 

Figure 2-6. FEA model of beam-column B1 (beam element, left) and B2 (shell element, right). 

2.5.1 Single Span Simply Supported Beam-Column Under Axial 

Compression 

The initial deflected shape of the beam-columns is assumed to be sinusoidal as shown in Figure 

2-4. Initial curvature at each node can be calculated from the maximum deflection. ULTBEAM2 

is then used to trace the equilibrium path of beam-column under step-by-step increased axial 

compression. The maximum value of the axial force is the ultimate strength. 

Two sample beam-columns (B1 and B2) with asymmetric I cross-section are studied. The 

scantlings are listed in Table 2-1. Parameter “a” is the beam length and “w0” is the initial deflection 
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at the center of the beam. Other parameters have been explained earlier. These are the same beam-

columns analyzed by Chen. Beam B1 has larger stiffener and beam B2 has smaller stiffener. 

Therefore, the two models represent two different categories of beam-columns. 

Table 2-1. Geometric properties of one-span simply supported beam-column (mm). 

 a bp tp hw tw bf tf w0 

B1 5120 910 20 598.5 12 200 20 5.12 

B2 1524 304.8 6.4 64.25 4.65 27.94 6.35 2.9 

Material properties are: 

 B1: y  = 315.0 MPa, E = 208000 MPa,  = 0.3 

 B2: y  = 247.3 MPa, E = 205800 MPa,  = 0.3 

Two cases with different initial deflections are studied. One is with the downward initial deflection 

(toward the plate side, which causes the stiffener-induced failure), and the other one is with the 

upward initial deflection (toward the stiffener side, which causes the plate-induced failure). The 

ultimate loads of both the stiffener-induced failure and the plate-induced failure from ULEBEAM1, 

ULTBEAM2 and ANSYS/ABAQUS are listed in Table 2-2.  

 Table 2-2. Ultimate strength ( ult (MPa)) of stiffener and plate induced failure). 

 Stiffener-induced Plate-induced 

ULTBEAM FEM ULTBEAM FEM 

Ultbeam1 Ultbeam2 ANSYS ABAQUS Ultbeam1 Ultbeam2 ANSYS ABAQUS 

B1 304.1 301.5 304.0 303.6 310.8 309.9 311.3 310.8 
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B2 167.4 156.9 157.7 158.0 226.3 219.6 220.1 219.6 

 

 (a) Stiffener-induced failure    (b) Plate-induced failure 

Figure 2-7. Axial load (N) vs. max deflection (m) for B1.  

   

(a) ANSYS (MPa)      (b) ULTBEAM2 (Pa) 

Figure 2-8. Axial stress contour of B1 under ultimate load (stiffener-induced failure).  
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(a) ANSYS (MPa)      (b) ULTBEAM2 (Pa) 

Figure 2-9. Axial stress contour plot of B1 under ultimate load (plate-induced failure).  

 

(a) Stiffener-induced failure    (b) Plate-induced failure 

Figure 2-10. Axial force (N) vs. max deflection (m) for B2.  

 

(a) Shear stress along half beam   (b) Bending moment along half beam 

Figure 2-11. Shear stress and bending moment along half beam of B2 under ultimate load 

(stiffener-induced failure). 
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(a) ANSYS (MPa)      (b) ULTBEAM2 (Pa) 

Figure 2-12. Axial stress of B2 under ultimate load (stiffener-induced failure). 

 

Figure 2-13. Axial stress (MPa) contour plot of B2 under ultimate load (stiffener-induced) by 

ANSYS shell element model. 
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(a) ANSYS (MPa)      (b) ULTBEAM2 (Pa) 

Figure 2-14. Axial stress contour plot of B2 under ultimate load (plate-induced failure).  

Table 2-2 shows that for single span simply supported beam-columns under axial compression the 

ultimate strength calculated by ULTBEAM2 is very close to ANSYS and ABAQUS results. For 

beam-column B2, ULTBEAM2 results are closer to FEM results than ULTBEAM1. 

Figure 2-7 plots the applied axial force with beam-column maximum deflection (at center) of B1 

(for stiffener-induced and plate-induced buckling respectively) from ULTBEAM2 calculation. 

The maximum value of force P is the ultimate load which is the product of the yield stress in Table 

2-2 and the cross sectional area. These plots are similar to the load-deflection curve in Figure 2-1 

except that the calculation is stopped at ultimate load. B1 is relatively strong so the ultimate 

strength is close to yield stress and the load path is close to a straight line in Figure 2-7.  On the 

same figure ANSYS results are plotted. The final ultimate strength values are very close. Although 

there is difference of maximum deflection between ULTBEAM2 and ANSYS, the scale is minimal. 

Maximum difference is only about 0.05 mm which is negligible if compared with initial deflection 

5.12 mm, plate thickness 21 mm and beam length 5120 mm. On the other hand, the ultimate load 

is of greater interest and it shows very good agreement. 

The axial stress distributions under ultimate load from ULTBEAM2 calculation and ANSYS beam 

element model analysis are shown in Figure 2-8 for B1 stiffener induced case and Figure 2-9 for 
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B1 plate induced case. In these plots the plating is at the top and the stiffeners are downwards. The 

neutral axis is at height 0. The stress contour plots from ULTBEAM2 and ANSYS are very similar 

to each other. 

Figure 2-10 plots the applied axial force with beam-column maximum deflection (at center) of B2 

(for stiffener-induced and plate-induced buckling respectively) from ULTBEAM2 and ANSYS. 

The load-deflection curves in Figure 2-10 clearly show the plasticity of beam-column B2 under 

axial compression. The curves calculated by ULTBEAM2 are nearly identical with ANSYS results. 

Figure 2-11 plots the shear force and bending moment along the length of B2 under ultimate load 

(of stiffener-induced buckling) by ULTBEAM2. 

The stiffener-induced inelastic buckling of beam B2 has also been verified by ANSYS shell 

element model using Arc Length method. The ultimate load calculated by ANSYS shell element 

model is 158 MPa which is the same as ANSYS beam element model and ABAQUS results in 

Table 2-2. Figure 2-12 plots the axial stress of B2 under compressive ultimate load calculated by 

ULTBEAM2 and ANSYS beam element model respectively. Figure 2-13 is the axial stress contour 

plots from ANSYS shell element model. The stress distributions are very similar in all three plots. 

Similarly, for plate-induced buckling, the stress distributions are compared in Figure 2-14. 

2.5.2 Single Span Clamped Beam-Column Under Axial Compression 

Beam-column scantlings are the same as in Table 2-1 for the case of clamped boundary condition. 

If both ends of the beam-column are clamped, the boundary condition becomes: 

Center: 01 N
yF ; 01 

z
N . 

Left End: 01 yu ; 01 z . 

There are only minor changes to the equation set 2.10 to 2.15 and the Jacobian of the discretized 

model. A scheme similar to the simply supported case has been used to calculate the beam-column 

ultimate strength. 
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Table 2-3 shows the comparison of ULTBEAM1, ULTBEAM2 and ABAQUS calculated ultimate 

strength. Due to the symmetry, there is no difference of ultimate strength from stiffener-induced 

and plate-induced failure. Results calculated by ULTBEAM2 are still very close to ABAQUS 

results with about only 1% difference. 

Table 2-3. Ultimate strength ( ult (MPa)) of clamped beam-column. 

 ULTBEAM1 ULTBEAM2 ABAQUS 

B1 311.9 308.4 312.1 

B2 228.3 230.2 229.0 

Figure 2-15 plots the load-deflection curves of B1 and B2 under clamped boundary conditions 

from both ULTBEAM2 and ANSYS. The maximum deflection is measured at the center of the 

beam-column including the initial imperfection. Similar to simply supported load case, 

ULTBEAM results agree with FEM very well. Under ultimate load the maximum deflection of B2 

is about 3.25 mm which is less than 1% of the beam length 1524 mm. 

 

(a) Load-deflection curve of clamped B1  (b) Load-deflection curve of clamped B2 

Figure 2-15. Axial force (N) vs. max deflection (m) for clamped beam-columns. 
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2.5.3 Three Span Simply Supported Beam-Column Under Axial 

Compression 

In addition to the cases described above, 49 three span Beam-columns have been verified. The 

ultimate strength calculated by ULTBEAM2 and FEM have been compared in Table 4. The 

scantlings of the beam-columns are the same as from Chen (2003). Both ends of the beam-columns 

are simply supported and there are two additional restrains equally spaced between the two ends. 

The difference as indicated by the ratio in Table 2-4 is less than 10% for 45 of the 49 beam-

columns. Only one of the 49 cases has large difference which is a beam-column of unusual size 

with large flange and small web. Correction to such beam-columns will be applied when the results 

are used for stiffened panel ultimate strength calculation. 

Figure 2-16 compares ULTBEAM2 and ABAQUS ultimate strength in a non-dimensional format 

for all the 49 beam-columns. The ultimate strength has been divided by the yield stress 352.8 MPa. 

Each point has ULTBEAM2 result as abscissa and ABAQUS result as ordinate. It is visible that 

the difference is very small because all the data points are close to the diagonal line. Figure 2-17 

shows that most of the ratio of ultimate strength from ULTBEAM2 and ABAQUS for the 49 beam-

columns are very close to 1. The average of the ratio is 1.0363 and variance is 0.0006. 

Table 2-4. Ultimate loads ( ult (MPa)) of three span simply supported beam-column. 

 
2ULTBEAM  FEM  FEMULTBEAM  2  

B1 112.01 102.99 * 1.088 

B2 72.58 69.92 * 1.038 

B3 82.12 78.20 1.050 

B4 205.84 187.90 1.095 
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B5 145.92 140.20 1.041 

B6 176.89 173.30 1.021 

B7 321.48 318.40 1.010 

B8 245.23 229.00 1.071 

B9 235.80 228.60 1.032 

B10 109.18 101.40 1.077 

B11 68.83 64.30 1.070 

B12 75.68 72.80 1.040 

B13 160.75 154.30 1.042 

B14 135.44 131.40 1.031 

B15 116.81 113.20 1.032 

B16 297.78 291.60 1.021 

B17 270.45 264.10 1.024 

B18 220.19 218.20 1.009 

B19 86.48 83.10 1.041 

B20 81.07 79.20 1.024 

B21 48.70 47.43 * 1.027 

B22 206.20 203.20 1.015 
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B23 189.07 187.10 1.011 

B24 174.83 173.20 1.009 

B25 37.36 36.20 * 1.032 

B26 144.36 132.60 1.089 

B27 95.13 88.20 1.079 

B28 107.60 102.60 1.049 

B29 246.05 226.10 1.088 

B30 182.02 176.80 1.030 

B31 213.19 210.30 1.014 

B32 327.74 325.80 1.006 

B33 283.34 275.80 1.027 

B34 274.18 267.70 1.024 

B35 140.01 132.90 1.054 

B36 90.55 86.40 1.048 

B37 99.30 95.10 1.044 

B38 197.56 188.90 1.046 

B39 170.35 166.80 1.021 

B40 148.81 146.20 1.018 
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B41 315.44 311.80 1.012 

B42 300.06 296.30 1.013 

B43 256.05 251.50 1.018 

B44 113.96 109.20 1.044 

B45 107.04 103.80 1.031 

B46 99.08 96.20 1.030 

B47 248.28 239.60 1.036 

B48 225.44 224.10 1.006 

B49 210.71 209.50 1.006 

*: ANSYS results. 

All other FEM: ABAQUS results. 
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Figure 2-16. Ultimate strength comparison for 49 three-bay beam-columns. 

 

Figure 2-17. Ultimate strength comparison with FEM. 
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2.6 CONCLUSION 

The method of beam-column ultimate strength calculation presented by this paper successfully 

calculated the axial compressive ultimate load of two single span, I-shaped cross-section, elasto-

plastic beam-columns (with T bar stiffener and plate strip) for both simply supported and clamped 

boundary conditions. The results agree with nonlinear finite element analysis by ABAQUS and 

ANSYS. The method has also been used for 49 three-span, simply-supported beam-columns under 

axial compression. The calculated ultimate strength is very close to the results from nonlinear FEM. 

This new method is more efficient than previously developed step-by-step integration method. 

Especially for multi span beam-columns this method only needs to add a few more equations and 

variables at additional supports without oversimplified assumptions or adding significant 

computing time. 

As a semi-analytical approach, this new method can freely deal with different initial imperfections 

without simplifying assumptions. Therefore, as an efficient and accurate tool, it can be used for 

more extensive research regarding ultimate strength instead of using costly nonlinear FEM. The 

beam-column ultimate strength calculated by current method can be used effectively to predict 

stiffened panel ultimate strength by using the beam-column model.  

Future research work includes improving the non-linear solver for beam-column model governing 

equations in order to get post buckling results by using Riks algorithm. More load combinations 

which include pressure will also be considered so that this ultimate strength calculation method 

can be extended to broader applications. 
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3 Chapter Three  

 

Structural Optimization of Elasto-Plastic Beam-

Columns under Uniaxial Compression 

3.1 TITLE 

Structural Optimization of Elasto-Plastic Beam-Columns under Uniaxial Compression 

By: Zhongwei Li and Mayuresh Patil 

3.2 ABSTRACT 

This paper presents a procedure for structural optimization of inelastic beam-columns consisting 

of base plate and T-bar stiffener under uniaxial compression. The goal of the optimization is weight 

minimization under ultimate strength constraint. The ultimate compressive strength of such beam-

columns is calculated using geometrically exact beam theory and the nonlinear constitutive law of 

elasto-plastic material. These equations are discretized using finite difference spatial discretization 

and solved using an iterative nonlinear solver, and has been shown to agree with nonlinear finite 

element analysis. The design variables are cross-section geometric properties including plate width, 

web height, flange width and member thicknesses. A gradient-based optimization algorithm is 

used to search for the optimal solution. The improved ultimate strength analysis method developed 

in this paper can also be used to calculate accurate analytical sensitivities. The analysis, sensitivity 

analysis and optimization are robust and efficient. Though the focus of the present work is on 

deterministic design, the optimization procedure can be combined with reliability analysis 

procedure to perform reliability-based structural optimization for such elasto-plastic beam-

columns. 
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3.3 INTRODUCTION 

Stiffened panels are widely used in aerospace, marine and land-based structures. Structural 

optimization is important in designing structures with lower weight (cost) and higher load carrying 

capacities. 

Usually yield strength and buckling strength are the design criterion for these structures according 

to various commonly used design codes. Yield criteria does not take into account plastic 

deformation but in reality the plasticity of ductile material will allow the structure to carry 

additional load after yielding begins to occur. The true load-carrying limit is the ultimate strength. 

In addition, structures with initial imperfections will deform under small compressive load and as 

the load increases, the cross-section will transition from elasticity to progressive development of 

plasticity in contrast to the sudden collapse of perfect structures under the critical elastic buckling 

load. The ultimate strength is a more realistic load-carrying capacity of the structures if plastic 

deformation is allowed. 

Structural optimization theories and techniques have been developed and applied to engineering 

designs. In the past decade, with the advance of the computer aided design tools, various 

optimization algorithms have been used in the design process. At the same time, ultimate strength 

design has also been gradually accepted as the design criteria for structures made of elasto-plastic 

materials like steel and aluminum. However, structural optimization based on ultimate limit state 

is still challenging due to the complexity of the nonlinear elasto-plastic analysis. 

A beam consisting of a stiffener attached to a plate strip is the basic unit of a stiffened panel having 

multiple stiffeners. A large structural system like ship hulls has hundreds or thousands of such 

panels. Beam-column type buckling of stiffened panels is very common though it is often coupled 

with other buckling modes. The research of beam-column ultimate strength and optimization is 

important because it can be used to design the stiffened panels which in turn can be used in the 

design of the ship structural system. 
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Structural tests are the most trustworthy method of finding the ultimate strength. The results from 

tests may vary depending on the test condition and sample variation. It has been shown (Ghavamia, 

2006; Shi, 2012; Xu, 2013) that ultimate strength calculated by nonlinear FEA is close to results 

of structural tests for beams, stiffened panels and ship hull models. Therefore, nonlinear FEA tools 

are generally regarded as benchmarks for other ultimate strength analysis approaches including 

semi-analytical method and simplified design formulas. 

Hughes et al. (2004) used a beam-column model to predict the ultimate strength of stiffened panels 

under compression. The present authors have developed a more efficient method (Li, 2017) to 

calculate the beam-column ultimate strength and the results have been used to predict the ultimate 

strength of stiffened panels by applying a correction factor. 

Paik et al. (2005) have developed a semi-analytical method for the ultimate strength of stiffened 

panels under combined loading conditions. This method is part of the panel ultimate strength 

analysis package ALPS/ULSAP and has been integrated into the ship structural design software 

MAESTRO. 

There is also considerable research on inelastic beam design using various nonlinear buckling 

analysis methods and optimization algorithms. Palizzolo (2003) studied the minimum weight or 

maximum load multiplier design for elastic perfectly plastic beam under three limiting criterion.  

Ba-abbad et al. (2003) developed a reliability-based optimization method for an elastic-plastic T 

beam. The gradient-based optimizer first found a deterministic optimum design based on nonlinear 

FEA. Then the first-order second-moment reliability analysis was used to reduce the structural 

weight or increase the reliability.  

Bielski et al. (2008) optimized non-uniform I cross-section of elastic-plastic columns under axial 

compression. The nonlinear beam analysis used iterative step-by-step integration along beam 

segments to find the equilibrium path. The analysis omitted the progressive development of plastic 

zone. The optimizer used method of moving asymptotes to maximize the buckling load or stable 

buckling region for a given weight constraint.  
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Ohsaki et al. (2009) optimized cross-sectional shape of I beam under cyclic loads. The elasto-

plastic beam’s responses under the cyclic loads were calculated by nonlinear FEA and the 

optimizer used heuristic Simulated Annealing (SA) algorithm. The optimum design has maximum 

dissipated energy throughout the loading history which is better than the constant cross-section 

beams under cyclic loads. 

Caseiro et al. (2010) studied sizing optimization of inelastic aluminum plate-stiffener combination 

under axial compression. The constrained ultimate strength was calculated by nonlinear FEA. 

Three optimization algorithms, gradient-based, simulated annealing and hybrid differential 

evolution particle swarm, were compared for minimum weight design. All three optimum inelastic 

beam designs reduced the weight but the design found by the gradient-based algorithm was not as 

good as the other two. 

Cheng et al. (2010) optimized the stiffeners of moderately thick plates under uniaxial and biaxial 

compression. The minimum weight design is constrained to have a specified compressive ultimate 

strength calculated by orthotropic plate theory. The optimum designs obtained by math 

programming reduced weight from code designs. 

Recently Ni et al. (2016) reviewed the progress of buckling and post-buckling optimization of 

isotropic and composite stiffened panels. It has shown that there hasn’t been much research on 

structural optimization involving dynamic loading, ultimate strength (inelastic buckling) analysis 

and structures with initial imperfection. 

There is some research applying the panel ultimate strength analysis for marine structural 

optimization. Rinsberg et al. (2013) used IACS ultimate strength design formulas and FEA for the 

structural optimization of corrugated shell plating on an offshore platform. The optimization of 

local corrugated shell plating parameters is based on parametric studies in order to reduce the 

number of analysis. 

Hughes et al. (2014) applied vector evaluated genetic algorithm on multi objective ship hull 

structural design which included the ultimate limit failure modes. The integrated structural analysis 
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and optimization package is robust and efficient in finding designs of lower weight, cost and higher 

strength. 

Ma et al. (2016) improved the ship structural optimization package based on semi-analytical 

ultimate strength analysis by decomposing the system level optimization and the multi objective 

optimization of detailed structures (stiffened panels) within the design software MAESTRO. 

The purpose of this paper is to present the sizing optimization methodology of inelastic I beam-

columns (T-bar stiffener and plate strip combination) by using gradient-based nonlinear search 

algorithm and beam ultimate strength analysis method developed by the present authors. 

First, the sizing optimization problem is established. The objective function is the structural weight. 

Design variables are the cross-sectional geometric parameters. The constraint function is the 

required compressive ultimate strength (maximum load-carrying capacity). Next, the inelastic 

beam-column buckling analysis is explained including the calculation of design variable 

sensitivities. The original iterative numerical method is accurate in calculating the beam-column 

ultimate strength. The improved method presented here can solve for the exact beam ultimate 

strength directly and analytic sensitivity calculation method can be developed based on this new 

analysis method. The sequential quadratic programming (SQP) algorithm is used to solve the 

structural sizing optimization problem with ultimate strength constraint. Lastly, optimization of 

beam-columns with different design parameters are presented as numerical examples. The 

gradient-based optimization using the ultimate strength analysis shows robustness by converging 

at optimum designs efficiently. The convergence is much faster than non-gradient-based algorithm. 

The paper concludes with related future research topics including reliability-based ultimate 

strength optimization. 
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3.4 ULTIMATE STRENGTH ANALYSIS 

3.4.1 Beam-Column Model 

An I beam consists of a plate strip and attached T-bar stiffener as shown in Figure 3-1. There are 

six geometric parameters in the cross-section: plate width b, plate thickness t, web height hw, web 

thickness tw, flange width bf and flange thickness tf. Figure 3-2 shows the cross-section geometry 

of such beam-column. 

 

Figure 3-1. Simply supported I beam with initial deflection. 

When an inelastic beam with initial imperfection is under compressive axial force, the beam will 

deflect as the load is applied. As the load is increased above the yield load, a plastic zone is formed 

at critical locations along the beam. The ultimate strength is the load at which the plastic zone 

progression leads to a plastic hinge and the beam can carry no more load. The ultimate strength is 

the maximum load carry capacity of the beam. 
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Figure 3-2. Cross-sectional parameters of I beam. 

The equilibrium path of an Euler-Bernoulli beam can be calculated by solving following governing 

equations plus the boundary conditions: 

௬ܨ
ᇱ − ௭ܲߢ − ݇௭ܲ = 0  ( 3.1) 

௭ܯ
ᇱ + ௬ܨ = 0  ( 3.2 ) 

௭ߠ− + ௬ݑ
ᇱ = 0  ( 3.3 )  

௭ߠ
ᇱ − ௭ߢ = 0  ( 3.4 ) 

௫ߛ)௫ܥ , (௭ߢ + ܲ = 0  ( 3.5 ) 

௫ߛ)௭ܥ , (௭ߢ − ௭ܯ = 0  ( 3.6 ) 

௬ܨ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 3.7 ) 

௭ߠ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 3.8 ) 

௬ݑ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  (.3.9 ) 

௭ܯ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 3.10 ) 
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bf 

tf 
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Stiffener flange (bf, tf) 
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Plating (b, t) 
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where ܲ is the applied compressive load. ܨ௬ and ܯ௭ are the cross-sectional stress resultant force 

and moment. ݑ௬  and ߠ௭  are the deflection and rotational angle. ݇௭  and ߢ௭  are the pre-twist/pre-

curvature and deformed twist/curvature respectively. ߛ௫  is the beam generalized axial strain. 

Equations 3.1 and 3.2 are the equations of equilibrium and Equations 3.3 and 3.4 are the strain-

displacement relations. In Equations 3.5 and 3.6 the functions ܥ௫ and ܥ௭ represent the integrated 

cross-sectional axial force and moment respectively which take into account the development of 

plasticity. Equations 3.7 to 3.10 are the boundary conditions. By discretizing the beam into 

segments along the length, the equation set can be solved by spatial finite difference for a given 

axial load. Either by increasing the axial load or the strain, the equilibrium path can be obtained 

by Newton-Raphson scheme or Riks algorithm. The ultimate strength can be found as the peak 

load of the equilibrium path (load-deflection curve) (Li, 2017). 

3.5 SIZE OPTIMIZATION OF I BEAM  

3.5.1 Objective and Constraint Functions 

The objective of present structural optimization problem is to minimize the structural weight. For 

a beam of fixed length and uniform density it is equivalent to minimizing the cross-sectional area. 

So the objective function is: 

)ܨ തܺ) = ܾ ∙ ݐ + ℎ௪ ∙ ௪ݐ + ௙ܾ ∙  ௙  ( 3.11 )ݐ

The design variable set തܺ for the sizing optimization can be any one or several of the geometric 

parameters: [ܾ, ,ݐ ℎ௪, ,௪ݐ ௙ܾ ,  .[௙ݐ

The design needs to ensure that the beam ultimate compressive strength (axial force ௨ܲ) is greater 

than a prescribed limit ଴ܲ. So the constraint function is: 

)ܩ തܺ) = ଴ܲ − ௨ܲ( തܺ) ≤ 0  ( 3.12 ) 
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The design variables are bounded by lower and upper limits chosen by manufacturing requirements 

and design experience. Thus: 

തܺ௠௜௡ ≤ തܺ ≤ തܺ௠௔௫  ( 3.13 ) 

The ultimate load in the analysis typically does not exceed the yield force for pure compressive or 

the beam Euler buckling force, thus are not considered here. Other constraints can be considered 

to avoid weak local buckling resistance or large deflection. In the beam analysis the initial 

imperfection includes only the vertical deflection. The stiffener web horizontal buckling load 

constraint is not included. Deflection constraint is easy to add but it’s usually not important. It is 

necessary to cautiously check the optimum design for other non-dominant design constraints if 

they’re not included in the optimization process. 

3.5.2 Sensitivity Analysis 

Sequential Quadratic Programming (SQP) algorithm is used for the optimization and the design 

variables sensitivities are calculated by finite difference. Like in other gradient-based algorithms 

the accuracy of sensitivity is crucial for the optimization. Often times when a nonlinear structural 

analysis package is used as a black box, the gradient-based algorithm may not work well due to 

inaccurate sensitivity. For these cases other non-gradient based algorithms like Simulated 

Annealing, Particle Swarm or Pattern Search may be used instead and so the computation time 

may increase significantly. 

Due to the numerical analysis of the discrete beam, there are various ways to calculate the design 

variable sensitivity. Analytic sensitivity is the most reliable but it requires detailed study to find 

the terms in the linearized analytical form. Finite difference method is easy to use and often can 

give good approximation of the sensitivity. Sometimes the errors of finite difference from 

numerical approximation and small step size can cause problems in the optimization. 

Figure 3-3 shows the load deflection curves of one original design (O-A-B) and a perturbed design 

(O-C-D) by adding a small perturbation to one design variable (web height). P is the axial force 
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applied on the beam end and ݑ௖ is the beam’s central deflection. The peak load ௨ܲ is the ultimate 

load in the optimization constraint function. The equilibrium path (load deflection curve) of the 

original design is obtained by solving Equations 3.1 to 3.10 with Newton-Raphson scheme starting 

from the origin (point O in Figure 3-3). In each iteration the load is increased from previous 

iteration and the current solution is calculated using Newton-Raphson scheme and the solution of 

the previous iteration as the initial guess. The final maximum value of the load ௠ܲ௔௫ (point A in 

Figure 3-3) will be close to the real peak value ௨ܲ (point B in Figure 3-3) within a defined limit. 

Riks algorithm or displacement-controlled Newton-Raphson scheme can extend the equilibrium 

path beyond the peak (point B) but the calculated ultimate strength ௠ܲ௔௫ (point A) is still only an 

approximation of the real ௨ܲ. This iterative method is the approximate method. 

 

Figure 3-3. Equilibrium path of original and perturbed designs. 

There are two major types of errors in the finite difference sensitivity calculated by the 

approximate method:  
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(1) Small finite difference step size: It is significant if the step size is too small relative to the 

error in the analysis solution. In the present analysis the error comes from  

a) Round-off error, 

b) Numerical error from Newton-Raphson iteration, 

c) Approximation error of ௨ܲ from ௠ܲ௔௫ of the equilibrium path from load stepping. 

(2) Large finite difference step size: It is significant if the step size is large compared to the 

second derivative of the performance /constraints. 

The type (1)(b) error is controlled by the convergence criteria in the numerical iteration. The type 

(1)(a) error always exists in finite difference method but is typically negligible unless the step size 

is too small. It is important to monitor the type (1)(a) errors caused by finite difference step size. 

Error of type (2) can be minimized by taking a small step size but is possible only if error of type 

(1)(c) is avoided. The way to avoid type (1)(c) error is to use a modified method that can solve for 

௨ܲ directly.  

On the equilibrium path, ௨ܲ is characterized by the point where  ݀ܲ ⁄௖ݑ݀   is zero. To solve for ௨ܲ , 

Equations 3.1-3.10 are differentiated with respect to ݑ௖ . ܲ  is treated as an unknown variable. 

Equations 3.14-3.19 are the differentiated form of Equations 3.1-3.6. The terms in the brackets can 

be expanded by using chain rule. 

݀൫ܨ௬
ᇱ − ௭ܲߢ − ݇௭ܲ൯ ⁄௖ݑ݀ = 0  ( 3.14 ) 

݀൫ܯ௭
ᇱ + ௬൯ܨ ⁄௖ݑ݀ = 0  ( 3.15 ) 

݀൫−ߠ௭ + ௬ݑ
ᇱ ൯ ⁄௖ݑ݀ = 0  ( 3.16 ) 

௭ߠ)݀
ᇱ − (௭ߢ ⁄௖ݑ݀ = 0  ( 3.17 ) 

௫ߛ)௫ܥ)݀ , (௭ߢ + ܲ) ⁄௖ݑ݀ = 0  ( 3.18 ) 

௫ߛ)௭ܥ)݀ , (௭ߢ − (௭ܯ ⁄௖ݑ݀ = 0  ( 3.19 ) 
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The original set of equations and the differentiated set above (including the boundary conditions 

and their differentiation) can be solved by the addition of the following two equations.  

݀ ௨ܲ ⁄௖ݑ݀ = 0  ( 3.20 ) 

௖ݑ݀ ⁄௖ݑ݀ = 1  ( 3.21 ) 

 ௨ܲ can be directly solved if the Newton iteration starts from an estimate very close to the actual 

solution. The solution from the approximate method is a good estimate of the actual solution so it 

is suitable to be the initial guess. This method is called the exact method. The type (1)(c) error can 

be avoided with it and leads accurate gradients and convergence of the optimization algorithm. 

By using the approximate method or the exact method, there are four ways to get the ௨ܲ of the 

perturbed design from the original design as shown on Figure 3-3: 

(1)  Solve for the approximated ௨ܲ of the perturbed system from the approximated ௨ܲ of the 

original system by the approximate method. (O to A to C on Figure 3-3). Compare to 

approximate ௨ܲ of original design. 

(2) Solve for the approximated ௨ܲ of the perturbed system from the origin by the approximate 

method (full analysis). (O to A and O to C on Figure 3-3). Compare to approximate ௨ܲ of 

original design. 

(3) Solve for the exact ௨ܲ of the perturbed system from the approximate ௨ܲ (full analysis) of 

the perturbed system by the exact method. (O to A to B and O to C to D on Figure 3-3). 

Compare to the exact ௨ܲ of original design. 

(4) Solve for the exact ௨ܲ of the perturbed system from the exact ௨ܲ of the original system by 

the exact method. (O to A to B to D on Figure 3-3). Compare to the exact ௨ܲ of original 

design. 

Figure 3-4 shows the comparison of sensitivity calculated by forward finite difference using the 

above four analysis methods for a range of finite difference step size.  
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In Figure 3-4, some calculated gradients have too large errors so the values are outside the range 

of the figure. The approximate methods 1 and 2 have large errors when the step size is moderately 

small (10-5 or 10-6). The exact methods 3 and 4 only have large errors with very small step size 

(beyond 10-14). Method 1 cannot calculate the correct ௨ܲ of the perturbed design with large step 

size (10-1 and 10-2) because the new solution is not close to the original design so Newton-Raphson 

scheme didn’t converge. It is obvious that method 3 and 4 are more reliable than method 1 and 2. 

Furthermore, method 4 is more efficient than method 3. That is because method 3 is based on a 

full analysis but method 4 is based on an abridged analysis. Therefore, method 4 as the most 

efficient way should be used to calculate the perturbed values for finite difference sensitivity. If 

method 4 doesn’t work with large step size, method 3 can be used as an alternative. 

Correspondingly the best step size should be chosen from between 10-5 and 10-10. 

 

Figure 3-4. Comparison of finite difference sensitivity. 

In order to avoid all the finite difference errors in the sensitivity, it is necessary to develop analytic 

sensitivity analysis. The gradient of the objective function (weight/area) is very simple but the 

ultimate strength calculation in the constraint function is computational. Based on the exact 
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method, the analytic sensitivity analysis of the constraint function (ultimate strength) with respect 

to each design variable can be developed. This is in follow-up research work of this paper. 

3.5.3 Two Variable Design Space 

A simply supported elastic-perfectly-plastic I beam has following properties: 

௬ߪ =  247.3 MPa ܧ , =  205800 MPa ܮ , = 1524 mm , ܾ = 304.8 mm , t = 6.4 mm ௪ݐ , =

4.65 mm, ݐ௙ = 6.35 mm. 

The initial deflection is 11.6 mm, about 0.75% of the beam length. Design variables are [ℎ௪,  ௙ܾ] 

with lower bound [50 mm, 50 mm] and upper bound [150 mm, 150 mm]. The required ultimate 

compressive load limit ଴ܲ is 5.0 × 10ହ N. 

The contour lines of the objective function (stiffener area) and the shaded feasible design space 

are shown in Figure 3-5. The optimization using sequential quadratic programming (SQP) 

algorithm and finite difference gradient found the optimum design as [ℎ௪ = 135.7 mm,  ௙ܾ =

50 mm]. The objective function value is 948.68. This optimum design can be identified as the 

lower left vertex (red circle) of the shaded feasible region in Figure 3-5. 

 

Figure 3-5. Design space of hw and bf (objective function contours and shaded feasible region). 
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3.5.4 Four Variable Optimization  

The same beam now has the stiffener dimensions [ℎ௪, ,௪ݐ ௙ܾ ,  ௙] as the four design variables. Theݐ

plate dimensions and other parameters are the same as the two variable problem. The lower and 

upper limits are [100, 5, 50, 5] mm and [250, 25, 250, 25] mm respectively. Table 3-1 lists a series 

of optimization problems with different ultimate load limit ଴ܲ in each row. 

Table 3-1. Four variables optimization results (case 1). 

Optimum Design (mm) Objective Function Value Constraint Limit 

tw bf tf hw Area (mm4) Po (N) 

5 50 5 142 960 5.00E+05 

5 50 5 187.2 1186 6.00E+05 

5 75.8 11.9 250 2152.02 9.00E+05 

5 214.5 6 250 2537 1.00E+06 

5 216.7 25 250 6667.5 2.00E+06 

19.3 250 25 250 11075 3.00E+06 
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In Table 3-1, only the shaded cells have design variables not on the boundary. It is noticed that 

when the load limit is small, only ℎ௪ is not at the lower limit. Only after ℎ௪ reaches the upper 

limit under intermediate load constraint, ௙ܾ and ݐ௙ start to affect the design. Finally ݐ௪ becomes 

important only after the other three design variables are at the upper limit. This shows the 

influential level of each design variable for the beam design under different ultimate strength limit. 

In Table 3-1 when ଴ܲ  is 9.0 × 10ହ N and 1.0 × 10଺ N, the optimum designs have both flange 

width and thickness values not on the boundary. Figure 3-6 and Figure 3-7 plot the objective 

function contour lines and shaded feasible region for these two optimization problems. It can be 

seen that the boundary of the feasible region is nearly a constant weight line. That means the 

optimizer may find any point on this boundary as the optimum design. In order to have a single 

optimum design, there can be additional objective functions for these special cases. Figure 3-6 and 

Figure 3-7 also show that the flange area will affect the design as a single variable instead of bf 

and tf separately. 

 

Figure 3-6. Design space of bf and tf (objective function contours and shaded feasible region). 
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Figure 3-7. Design space of bf and tf (objective function contour and shaded feasible region). 

Table 3-2 lists another series of optimization problems with a different set of four design variables: 

web height hw and the thicknesses of plate, web and flange. It looks similar to Table 3-1 in the way 

that in each optimum design there is only one design variable not on the boundary. 

Table 3-2. Four variables optimization results (case 2). 

Optimum Design (mm) Objective Function Value Constraint Limit 

tw t tf hw Area (mm4) P0 (N) 

5 5 5 121.68 2382.38 4.00E+05 

5 5 7.26 150 2636.73 5.00E+05 

5 5 14.03 150 2975.27 6.00E+05 

5 7.78 15 150 3440.57 7.00E+05 
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5 11 15 150 3924.57 8.00E+05 

5 14.25 15 150 4410.95 9.00E+05 

6.44 15 15 150 4964.12 1.00E+06 

 

3.5.5 Six Variable Optimization  

When all six cross-sectional geometric parameters: [ܾ, ,ݐ ℎ௪ , ,௪ݐ ௙ܾ ,  ௙] are design variables, theݐ

computation time is higher but the optimization is not more complex compared with less design 

variables. As long as the finite difference sensitivities are accurate enough, the optimizer will 

search along the direction corresponding to the local quadratic approximation and converge to the 

optimum design. 

For the same I beam as the one described in previous section, six variable optimum designs found 

by SQP algorithm are shown in Table 3-3. When P0 is equal to 2.0 × 10଺ N  the optimization 

histories of SQP algorithm from four different initial points are shown in Figure 3-8. Figure 3-9 

shows the optimization histories of non-gradient based Pattern Search algorithm from the same 

four initial points. SQP algorithm converges to the same optimal design from the four different 

initial points. Pattern Search algorithm doesn’t converge well although points C and D are fairly 

close to the optimal design. The total number of function evaluation and CPU time of the two 

algorithms are compared in Table 3-4. SQP algorithm costs significantly less with less than 10% 

of the CPU time used by Pattern Search.  It is obvious that SQP algorithm is more efficient and 

robust than the non-gradient based Pattern Search. Although there are other improved heuristic 

random search algorithms, they often require larger number of structural analysis as compared to 

the gradient-based search. 
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Table 3-3. Six variables optimization results (SQP). 

Optimum Design (mm) Objective Function 

Value  

Constraint 

Limit 

b t hw tw bf tf Area (mm4) Po (N) 

250 10 250 5 58.45 15 4626.76 1.00E6 

250 10 250 16.55 150 15 8887.88 2.00E6 

250 25.78 250 20 150 15 13694.70 3.00E6 

391.62 30 250 20 150 15 18998.69 4.00E6 

 

Table 3-4. Comparison of SQP and Pattern Search (6 variable). 

Initial 

Point 

SQP Pattern Search 

Final Func. 

Value 

Total  

Func. Count 

CPU Time 

(S) 

Final  

Func. Value 

Total 

Func. Count 

CPU Time 

(S) 

A 8888 39 521 10733 626 9069 

B 8888 33 451 10072 632 8797 

C 8888 28 385 9035 261 3943 

D 8888 21 296 8950 259 3797 
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Figure 3-8. Six variable optimization (SQP) history. 

 

 

Figure 3-9. Six variable optimization (Pattern Search) history. 

3.6 CONCLUSION 

Structural optimization of elasto-plastic responses with nonlinear material constitutive law is 

complicated by the difficulties of calculating accurate design variable sensitivity. 
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The paper presents a methodology for structural optimization of inelastic I beam-columns using 

SQP algorithm with constraint on the maximum inelastic buckling strength (ultimate strength). 

The nonlinear buckling strength analysis has been improved to calculate robust and accurate 

ultimate strength and the corresponding design variable sensitivities. The optimization converges 

at optimum solutions much more efficiently than the non-gradient-based algorithm. The design 

space is explored thoroughly for various constraint limits and the importance of each design 

variables at different ultimate strength level is shown. 

The key contribution of the work is the improved exact method of ultimate strength calculation 

which is essential to develop accurate analytic sensitivities. Finite difference sensitivity is easy to 

use but the accuracy is affected by the accuracy of the analysis and the finite difference step size. 

The ultimate strength analysis and sensitivity analysis are shown to be fast and reliable for the 

deterministic optimization process. The ultimate strength analysis, sensitivity analysis and 

optimization method will be applied for the development of a reliability-based optimization 

methodology of the elasto-plastic beams in the future.  
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4 Chapter Four  

 

Reliability Analysis of Ultimate Strength for Beam-

Columns 

4.1 TITLE 

Reliability Analysis of Ultimate Strength for Beam-Columns 

By: Zhongwei Li and Mayuresh Patil 

4.2 ABSTRACT 

The prediction of ultimate strength and reliability analysis are essential for structural safety and 

rational design. This paper presents a procedure to estimate the reliability of elasto-plastic beam-

columns consisting of base plate and T-bar stiffener under axial compression. The ultimate 

compressive strength of such beam-columns is calculated by coupling geometrically exact beam 

theory and nonlinear constitutive law of the material. These equations are discretized using finite 

difference spatial discretization and solved using an iterative nonlinear solver. The random 

variables include structural scantlings (width, height and thickness), material properties and initial 

imperfection. The standard First Order Reliability Method (FORM) is used to calculate the 

reliability index and probability of failure. A gradient-based optimizer is used to solve the 

optimization problem of FORM. The sensitivity of the ultimate strength with respect to the random 

variables is calculated by finite difference and complex step method. Other than assessing the 

reliability of non-deterministic design, this reliability analysis procedure can also be used for 

reliability-based structural optimization of such elasto-plastic beam-columns. 
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4.3 INTRODUCTION 

Ocean structures are designed and operated under large uncertainties. Besides the probabilistic 

structural loads, the material properties and structural member scantlings have to be represented 

by random variables. Human factors are also uncertain during the design and operation. 

Traditionally, ships are designed using deterministic analysis methods. The uncertainties that 

affect the performance and safety are accounted for by applying a safety factor to the structural 

strength. However, the deterministic designs often over/under estimate the effect of uncertainties 

on the ship structural response. On the other hand, probabilistic and non-probabilistic uncertainty 

analysis consider the scatter of design variables around their mean values. Reliability analysis 

predicts the probability that a system will perform its function under those uncertainties. It is an 

important part of the probabilistic design method since the reliability is used as a measurement of 

structural safety. Probabilistic design methods are gradually having broader applications partly due 

to the increasing computational power. For example, partial safety factor method has been 

commonly used in offshore structural design. The present research develops a method for the 

reliability analysis of the commonly used plate-stiffener combination structure including the 

progressive development of plasticity. 

The ultimate strength is the true load-carrying capacity of structures made of elasto-plastic 

materials like steel and aluminum. The reliability analysis of such structures typically link the 

ultimate limit state function and the applied load. There are various ultimate strength analysis 

methods for beam-columns, stiffened panels and ship hull structures. Empirical design formulas 

based on structural tests and numerical data have been proposed in many forms (Zhang, 2016) but 

they are usually not accurate enough to be used for reliability assessment. Analytical solutions are 

difficult to obtain due to the complexity of nonlinear analysis. Numerical method like nonlinear 

finite element analysis (FEA) can calculate accurate ultimate strength results compared with 

structural tests. Paik et al (2007a, b) compared existing ultimate strength analysis methods for 

stiffened panels and hull structures. Hughes et al. (2004) used a beam-column model to predict the 

ultimate strength of stiffened panels under compression. The present authors (Li, 2017) have 

developed an efficient method to calculate the beam-column ultimate strength and the results can 
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be used to predict the stiffened panel’s ultimate strength fairly well by applying a correction factor. 

It has shown that (Li, 2016) the initial deflection is an important variable for the ultimate strength 

of beam-columns. 

Structural reliability analysis methods can be conducted using various methods including most 

probable point based method or simulation-based method. Both methods require accurate and 

efficient structural analysis. The former has fewer number of total analysis but needs accurate 

sensitivity with respect to random variables for finding the most probable failure point. The latter 

runs a large number of sample analysis to get approximate probability of failure and so the 

computation cost can become onerous if cost of a single analysis is high. Past research about 

structural ultimate limit state reliability analysis is based on nonlinear FEA (Ba-abbad, 2003), 

semi-analytical methods (Sharifi, 2011), simplified formulas (Zhao, 2016) and IACS incremental-

iterative ultimate strength analysis (Xu, 2015). 

Ba-abbad et al. (2003) developed a reliability-based optimization method for an elastic-plastic T 

beam. The gradient-based optimizer first found a deterministic optimum design based on nonlinear 

FEA. Then the first-order second-moment reliability analysis was used to reduce the structural 

weight or increase the reliability. 

Sharifi and Paik (2011) used FORM and sampling analysis as the reliability analysis methods and 

an analytic ultimate strength formula to evaluate the risks of corroded steel-box girder bridges over 

its service time. Uncertainties due to time-dependent corrosion deterioration have been evaluated 

for the purpose of developing a reliability-based maintenance plan. 

Xu et al. (2015) used model correction factor method on the reliability assessment of an oil tanker. 

The design by IACS ultimate strength rules was updated by a factor to match the nonlinear FEA 

of the same design after each iteration of the FORM reliability analysis. The process maintained 

the accuracy and reduced the computation effort at the same time by using the relatively simple 

incremental-iterative method for ultimate strength analysis and only a limited number of full 

nonlinear FEA to correct it. 
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Chojaczyk et al. (2015) combined Artificial Neural Network (ANN) models with Monte Carlo 

simulation for the reliability analysis of stiffened panels in ship structures. The structural analysis 

is based on nonlinear FEA. The uncertainties include probabilistic geometric variables, material 

properties, initial imperfection and applied bending moment. Reliability analysis method including 

FORM and Importance Sampling have been used to train the ANN. The limit state function 

evaluation by the ANN model was compared with reliability analysis without it. 

Zhao et al. (2016) used FORM to evaluate the reliability of stiffened composite under ultimate 

compressive load. Other than using nonlinear FEA for ultimate strength analysis, a simplified 

method was developed by using an assumed function as a factor to link the critical elastic buckling 

load to inelastic ultimate load. 

In the following sections, first the beam-column ultimate strength analysis method is introduced. 

The present authors have developed a method that solves for the ultimate strength directly so that 

analytic sensitivity of the random variables can be calculated based on it. The reliability analysis 

is based on First Order Reliability Method (FORM) where the most probable point is obtained by 

solving a constrained optimization problem using a gradient-based algorithm. The numerical 

examples present safety index and probabilities of failure of an elasto-plastic beam-column under 

various compressive forces. The results of FORM are compared with failure probabilities 

calculated by Monte Carlo simulation. In the conclusion, future research of developing reliability-

based optimization method is introduced. 
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4.4 ULTIMATE STRENGTH ANALYSIS 

4.4.1 Beam-Column Model 

 

Figure 4-1. Simply supported I beam with initial deflection. 

The beam-column consists of a plate strip and attached T-bar stiffener as shown in Figure 4-1. 

Figure 4-2 shows the cross-section geometry of the beam. There are six geometric parameters in 

the cross-section: plate width b, plate thickness t, web height hw, web thickness tw, flange width bf 

and flange thickness tf. Due to initial imperfection during manufacturing, the beam has initial 

vertical deflection. 

 

Figure 4-2. Cross-sectional parameters of I beam. 
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When an inelastic beam with initial imperfection is under compressive axial force, the beam will 

deflect as the load is applied. As the load is increased above the yield load, a plastic zone is formed 

at critical locations along the beam. The ultimate strength is the load at which the plastic zone 

progression leads to a plastic hinge and the beam can carry no more load. The ultimate strength is 

the maximum load carry capacity of the beam.  

The load-deflection path of a nonlinear Euler-Bernoulli beam can be calculated by solving the 

following governing equations: 

௬ܨ
ᇱ − ௭ܲߢ − ݇௭ܲ = 0  ( 4.1 ) 

௭ܯ
ᇱ + ௬ܨ = 0  ( 4.2 ) 

௭ߠ− + ௬ݑ
ᇱ = 0  ( 4.3 ) 

௭ߠ
ᇱ − ௭ߢ = 0  ( 4.4 ) 

௫ߛ)௫ܥ , (௭ߢ + ܲ = 0  ( 4.5 ) 

௫ߛ)௭ܥ , (௭ߢ − ௭ܯ = 0  ( 4.6 ) 

௬ܨ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 4.7 ) 

௭ߠ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 4.8 ) 

௬ݑ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 4.9 ) 

௭ܯ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 4.10 ) 

where ܲ is the applied compressive load. ܨ௬ and ܯ௭ are the cross-sectional stress resultant force 

and moment. ݑ௬  and ߠ௭  are the deflection and rotational angle. ݇௭  and ߢ௭  are the pre-twist/pre-

curvature and deformed twist/curvature respectively. ߛ௫  is the beam generalized axial strain. 

Equations 3.1-3.2 are the equations of equilibrium and Equations 4.3-4.4 are the strain-
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displacement relations. In Equations 4.5-4.6 the functions ܥ௫ and ܥ௭ represent the integrated cross-

sectional axial force and moment respectively which take into account the development of 

plasticity. Equations 4.7-4.10 are the boundary conditions. By discretizing the beam into segments 

along the length, the equation set can be solved by spatial finite difference for a given axial load. 

Either by increasing the axial load or the strain, the equilibrium path can be obtained by Newton-

Raphson scheme or Riks algorithm. The ultimate strength can be found as the peak load of the 

equilibrium path (load-deflection curve) (Li, 2017). 

Figure 4-3 shows the load deflection curves of one original design (O-A-B) and a perturbed design 

(O-C-D) by adding a small perturbation to one beam variable. P is the axial force applied on the 

beam end and ݑ௖ is the beam’s central deflection. The peak load ௨ܲ is the ultimate load in the limit 

state function. The equilibrium path (load-deflection curve) of the original design is obtained by 

solving Equations 4.1-4.6 with Newton-Raphson scheme starting from the origin (point O in 

Figure 4-3). In each iteration the load is increased from previous iteration and the current solution 

is calculated using the previous iteration’s solution as the initial guess. The final maximum value 

of the load ௠ܲ௔௫ (point A in Figure 4-3) will be close to the real peak value ௨ܲ (point B in Figure 

4-3) within a defined limit. Riks algorithm or displacement-controlled Newton-Raphson scheme 

can extend the equilibrium path beyond the peak (point B) but the calculated ultimate strength 

௠ܲ௔௫ (point A) is still only an approximation of the real ௨ܲ. This method is the approximate method. 
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Figure 4-3. Equilibrium path of original and perturbed designs. 

4.5 DIRECT METHOD 

In order to calculate the analytical gradient of ௨ܲ with respect to beam variables, it is necessary to 

solve for ௨ܲ explicitly.  

On the equilibrium path, ௨ܲ is characterized by the point where  dܲ ⁄௖ݑ݀   is zero. To solve for ௨ܲ , 

Equations 4.1-4.10 are differentiated with respect to ݑ௖ . ܲ  is treated as an unknown variable. 

Equations 4.11-4.16 are the differentiated form of Equations 4.1-4.6. The terms in the brackets can 

be expanded by using chain rule. Equations 4.15-4.16 have the most complicated form due to the 

complexity of functions ܥ௫ and ܥ௭. 

݀൫ܨ௬
ᇱ − ௭ܲߢ − ݇௭ܲ൯/݀ݑ௖ = 0  ( 4.11 ) 

݀൫ܯ௭
ᇱ + ௬൯ܨ ⁄௖ݑ݀ = 0  ( 4.12 ) 
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݀൫−ߠ௭ + ௬ݑ
ᇱ ൯ ⁄௖ݑ݀ = 0  ( 4.13 ) 

௭ߠ)݀
ᇱ − (௭ߢ ⁄௖ݑ݀ = 0  ( 4.14 ) 

௫ߛ)௫ܥ)݀ , (௭ߢ + ܲ) ⁄௖ݑ݀ = 0  ( 4.15 ) 

௫ߛ)௭ܥ)݀ , (௭ߢ − (௭ܯ ⁄௖ݑ݀ = 0  ( 4.16 ) 

The original set of equations and the differentiated set above (including the boundary conditions 

and their differentiation) can be solved by the addition of the following two equations.  

݀ ௨ܲ ⁄௖ݑ݀ = 0  ( 4.17 ) 

௖ݑ݀ ⁄௖ݑ݀ = 1  ( 4.18 ) 

௨ܲ can be directly solved if the Newton iteration starts from an estimate very close to the actual 

solution. The solution from the approximate method is a good estimate of the actual solution so it 

is suitable to be the initial guess. This method is called the exact method. 

In Figure 4-3 the computation process first finds the path of O to A by using the approximate 

method. Then the solution of B is obtained by using the exact method and the solution of A as an 

initial guess. 

4.6 SENSITIVITY ANALYSIS 

First Order Reliability Method (FORM) uses an optimization procedure to find the Most Probable 

Point (MPP) of failure. The gradients of the limit state function are required during the 

optimization. Analytic sensitivity analysis is the most dependable and efficient method of 

calculating gradients but it requires development of analytic form of the derivatives of the analysis 

equations. 
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4.6.1 Finite Difference 

Finite difference method is easy to use and usually gives good approximation of the sensitivity. 

Small step size is necessary to reduce the secant error but very small step size will lead to large 

subtractive cancelation error.  It is important to monitor the errors related to finite difference step 

size. 

In Figure 4-3, the derivative of the ultimate load ௨ܲ with respect to one design variable is calculated 

by adding a small perturbation on this variable in order to generate an adjacent design that has the 

equilibrium path O-C-D. The difference of ௨ܲ  at B and D is divided by the design variable 

perturbation to calculate the sensitivity. It is not necessary to start from point O in order to get to 

point D. Instead, the solution at D can be calculated by Newton-Raphson iteration using the 

solution at B as an initial guess. Alternatively, the solution at C can be calculated from the solution 

at A by the approximate method first. Then the exact method is used to get to D from C. 

4.6.2 Complex Step 

Complex step method can be used to avoid the subtractive cancelation error. This method perturbs 

the function by adding a small imaginary value to the design variable. Then the imaginary part of 

the perturbed function output is divided by the variable perturbation to get the sensitivity without 

the subtractive cancelation error. To get the perturbed solution at D it is similar to finite difference 

method by taking the path B-D. Figure 4-4 shows the comparison of finite difference sensitivity 

and complex step sensitivity with various step size.  

It can be seen from Figure 4-4 that the complex step sensitivity doesn’t change with perturbation 

step size (1x10-4 to 1x10-24) but the finite difference sensitivity starts to have very large errors with 

small step size (beyond 1x10-13). When analytic sensitivity is not available, complex step method 

can be used as an alternative. If finite difference method is used, it is always necessary to monitor 

and control the errors caused by small step size. 
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Figure 4-4. Comparison of sensitivity analysis. 

4.7 RELIABILITY ANALYSIS 

4.7.1 Limit State Function 

The limit state function ܩ( തܺ) of an inelastic I beam is defined as 

)ܩ തܺ) = ௨ܲ( തܺ) − ଴ܲ  ( 4.19 ) 

where തܺ  is the vector of random variables, ௨ܲ  is the ultimate strength calculated by solving 

Equations 4.1-4.18 and ଴ܲ is the applied load. Random variables can include geometric parameters, 

material properties and initial imperfection. The applied load can also be treated as random 

variable. The failure surface is defined as ܩ( തܺ) = 0. The Most Probable Point (MPP) is the point 

on the failure surface with the highest probability of failure. 
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4.7.2 FORM 

First Order Reliability Method (FORM) first transforms the set of independent random variables 

തܺ into a set of standard normal variables ഥܷ. The limit state function ܩ( തܺ) is then expressed as 

)ܩ ഥܷ). MPP is the point on the failure surface that has the shortest distance to the origin. In FORM, 

the limit state function is represented as the tangent hyperplane at the MPP. Reliability analysis 

thus focuses on finding the MPP and the corresponding shortest distance, i.e. the safety index  ߚ. 

The distance of a point in the normalized space to the origin is ( ഥ்ܷ ഥܷ)
భ
మ. So FORM involves solving 

the following constrained optimization problem: 

Minimize:     ߚ( ഥܷ) = ( ഥ்ܷ ഥܷ)
భ
మ  ( 4.20 ) 

Subject to:    ܩ( ഥܷ) = 0  ( 4.21 ) 

Various optimization algorithms can solve the optimization problem, including Hasofer-Lind 

iteration method or other gradient-based optimization algorithms. 

4.8 NUMERICAL EXAMPLES 

4.8.1 Beam Reliability Analysis by FORM 

An elasto-plastic beam-column as shown in Figure 4-1 and Figure 4-2 has following design values 

including the yield stress ߪ௬, Young’s modulus ܧ, beam-column length L, initial central deflection 

d and cross-sectional parameters. 

௬ߪ =  247.3 MPa ܧ , =  205800 MPa ܮ , = 1524 mm , ܾ = 304.8 mm ݐ , = 6.4 mm , ℎ௪ =

64.25 mm, ݐ௪ = 4.65 mm, ௙ܾ = 27.94 mm, ݐ௙ = 6.35 mm, ݀ = 3.81 mm. 

The ultimate compressive force calculated by Equations 4.1-4.10 is 351027 N. By solving 

Equations 4.1-4.18 the exact value of the ultimate compressive force is 351028 N. The difference 
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is controlled by the limit of load increment in the Newton-Raphson iteration which was set to be 

1 N when solving Equations 4.1-4.10. 

In reality all the above parameters are random. The random variables are typically described by a 

probabilistic distribution. The mean value is the design value and the coefficient of variance (COV) 

reflects the variation caused by the quality of fabrication. Table 4-1 lists the distributions of the 

random variables used in the present reliability analysis. The units are the same as in the above 

paragraph. Beam length L and plate width b are assumed to be deterministic.  

Table 4-1. Random variables. 

Variable Distribution Mean value COV Standard deviation 

 ௬ Normal 247.3 0.1 24.73ߪ

 Normal 2.058E5 0.1 2.058E4 ܧ

 Normal 6.4 0.02 0.128 ݐ

ℎ௪ Normal 64.25 0.01 0.6425 

 ௪ Normal 4.65 0.02 0.093ݐ

௙ܾ Normal 27.94 0.03 0.8382 

 ௙ Normal 6.35 0.02 0.127ݐ

݀ Normal 3.81 0.5 1.905 

 

In Table 4-1, all the random variables are assumed to be independent. The material is assumed to 

be elastic-perfectly-plastic. To simplify the process all variables are assumed to be normally 
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distributed. Sometimes lognormal distributions are used to avoid negative values. Non-Gaussian 

distributions have to be transformed into equivalent normal distribution before calculation of MPP. 

In the FORM analysis, a gradient-based optimizer is used to solve the optimization problem as 

described by Equations 4.20-4.21. The sensitivity of ߪ௬, E and d are calculated by complex step 

method. Finite difference method is used to calculate the gradients of the other five variables. 

Table 4-2 shows the reliability analysis results of the beam-column under various deterministic 

compressive force. The reliability index β is obtained from solving the optimization problem. The 

probability of failure is calculated from the reliability index by the standard normal cumulative 

distribution function. 

Table 4-2. FORM reliability analysis results. 

Load (N) Reliability index ߚ Probability of failure 

1.500E05 5.1809 1.1041E-07 

1.750E05 4.3009 8.5053E-06 

2.000E05 3.4725 2.5778E-04 

2.100E05 3.1602 7.8836E-04 

2.125E05 3.0834 0.0010 

2.150E05 3.0082 0.0015 

2.175E05 2.9330 0.0017 

2.200E05 2.8582 0.0021 

2.250E05 2.7126 0.0033 
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2.300E05 2.5694 0.0051 

2.400E05 2.2923 0.0109 

2.500E05 2.0277 0.0213 

The applied load (axial force) can also be random. Assuming the load follows normal distribution, 

Table 4-3 lists the reliability analysis results of various mean load values and COV. By comparing 

Table 4-2 and Table 4-3, it can be seen that the probability of failure increases significantly if 

uncertainty of the applied load is included. Table 4-3 also shows that with larger COV or standard 

deviation the probability of failure is higher. 

Table 4-3. FORM reliability analysis results for uncertain applied load in addition to the other 

random variables. 

Mean of Load (N) COV Reliability index Probability of failure 

1.50E05 0.1 4.5873 2.2451E-06 

1.75E05 0.1 3.7312 9.5296E-05 

2.00E05 0.1 2.9751 0.0037 

2.25E05 0.1 2.3116 0.0104 

1.50E05 0.3 3.0072 0.0013 

1.75E05 0.3 2.3712 0.0089 

2.00E05 0.3 1.8508 0.0321 

2.25E05 0.3 1.4163 0.0783 
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The ultimate compressive force of the deterministic design is 351028 N. By applying a safety 

factor of 2.0, the design load is about 1.75×105 N. With this design load, it is shown in Table 4-2 

that the probability of failure is 8.5053×10-6. If this load is also probabilistic with a COV of 0.1 or 

0.3, the probability of failure will increase to 9.5296×10-5 or 8.9×10-3, respectively, as shown in 

Table 4-3. Therefore, the uncertainties of material properties, structural scantlings and 

environmental loads are all important factors that can affect the probability of structural failure. 

Use of safety factor in deterministic design will overlook all these uncertainties. 

4.8.2 Monte Carlo Simulation 

The Monte Carlo simulation (MCS) method generates a large sized sample of limit state 

evaluations. The failure rate is calculated by the number of infeasible designs in the sample. Large 

sample size is needed to approximate the failure rate accurately. Usually in structural design the 

allowable probability of failure is as small as 10-5. The sample size has to be large enough to reflect 

the possibility of failure. If the ultimate strength analysis is not efficient, millions of such analyses 

are needed which will be extremely time-consuming. The beam-column ultimate strength analysis 

method presented in this paper is efficient and robust. To validate the FORM analysis, the sampling 

method is used with large sample size. 

Table 4-4 compares the failure rates of MCS with the probabilities of failure calculated by FORM 

under four deterministic axial loads. The reliability results of MCS and FORM are very close.  

Table 4-4. Reliability analysis by MCS compared with FORM. 

Load (N) MCS Sample size MCS failure rate FORM Probability 

of failure 

2.00E05 2.5E05 2.68E-04 2.5778E-04 

2.10E05 4.0E04 8.50E-04 7.8836E-04 
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2.15E05 1.0E04 0.00140 0.00150 

2.40E05 2.99E04 0.013 0.01090 

 

 

Figure 4-5. FORM optimization history (P0 = 2.15×105 N). 

Figure 4-5 shows the iteration history of the optimization problem in FORM analysis. After three 

iterations, the reliability index is already very close to the final optimum value. The total number 

of analyses is only 154 which is only 1.54% of the sample size in MCS (1×104). The gradient-

based FORM is much more efficient than the simulation method and is able to obtain similar 

probability of failure with much less computational effort. 
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4.9 CONCLUSION 

This paper presented the reliability analysis of elasto-plastic beam-columns by using FORM 

analysis. The ultimate strength analysis includes the progression of plasticity. The ultimate 

strength is calculated directly by imposing a zero slope condition on the load-deflection 

equilibrium path. Analytic sensitivity of random variables can be calculated by this analysis 

method. A gradient-based optimizer is used to solve the constrained optimization problem for the 

safety index based on FORM. The FORM analysis using finite difference and complex step 

sensitivity is efficient and accurate compared with sampling method. 

The reliability analysis method will be used for structural optimization in future research work. 

The reliability-based structural optimization will optimize the structural weight and maintain an 

acceptable level of safety by taking into account the uncertainty of design variables and other 

parameters. 
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5 Chapter Five  

 

Reliability-Based Design Optimization of Elasto-

Plastic Beam-Columns under Uniaxial Compression 

5.1 TITLE 

Reliability-Based Design Optimization of Elasto-plastic Beam-Columns under Uniaxial 

Compression 

By: Zhongwei Li and Mayuresh Patil 

5.2 ABSTRACT 

This paper presents a procedure for reliability-based design optimization (RBDO) of nonlinear 

beam-columns consisting of base plate and T-bar stiffener under uniaxial compression. The 

optimization minimizes structural weight with reliability constraint on the ultimate compressive 

strength. The ultimate compressive strength of the beam-column is calculated using geometrically-

exact beam theory and nonlinear constitutive law of elasto-plastic material. The governing 

equations are discretized using finite difference spatial discretization and solved using an iterative 

nonlinear solver. The design variables are cross-section geometric properties. Random variables 

include cross-sectional parameters, material properties, initial deflection and applied load. A direct 

solving method for ultimate strength analysis developed in an earlier paper is used to calculate 

accurate semi-analytic sensitivities. The direct solving method combines the original governing 

equation set and its derivatives w.r.t deflection to directly obtain the ultimate strength at the peak 

of load-deflection curve. The direct method avoids using load/displacement incremental method 

and allows calculation of analytic sensitivity. Here semi-analytic sensitivity is solved from a linear 

set of sensitivity equations using the Jacobian matrix of the original equations. Gradient-based 



 

75 

 

optimization algorithm is used to calculate reliability index and to search for the optimal design. 

The double loop RBDO based on the ultimate strength direct solving method and semi-analytic 

sensitivity analysis is robust and efficient. Numerical examples demonstrate the complete RBDO 

procedure for nondeterministic elasto-plastic beam-columns. 

5.3 INTRODUCTION 

Reliability-Based Design Optimization (RBDO) adds reliability constraint to optimization thus 

accounting for the uncertainties in the analysis and design parameters. RBDO considers the cost, 

performance and safety of the design under uncertainties at the same time. In structural design, 

RBDO is usually solved as a double loop optimization problem. In the outer loop, the objective of 

structural optimization is to minimize the weight and the main constraint is to limit the reliability 

index. The inner loop of RBDO calculates the reliability index at the current design point. First 

Order Reliability Method (FORM) is accurate in calculating the reliability index if the structure’s 

failure surface is not highly nonlinear near the design point. The reliability index of FORM is the 

distance from the origin to the Most Probable Point (MPP) in the normalized random variable 

space. The search for MPP can be solved by an optimization procedure that finds the minimum 

distance from the origin to the failure surface. Thus RBDO using FORM is represented by a double 

loop optimization problem. 

Wang et al. (1995) used nonlinear approximation of the design constraint to reduce the 

computational cost in safety index calculation and optimization for structural RBDO. Yu et al. 

(1997) mixed structural optimization and reliability-based design approach for probabilistic 

structural durability. Allen and Maute (2004) presented RBDO procedure for aeroelastic structures. 

Youn and Choi (2004) used Performance Measure Approach (PMA), response surface method and 

hybrid mean value method for RBDO. More recent works has been aimed on improving the 

efficiency and robustness of RBDO. For example, Motta and Afonso (2016) added reliability 

constraint to robust multi-objective optimization problem. PMA is used for reliability constraint 

assessment and approximation techniques like reduced-order modeling (ROM) are applied to the 

reliability-based robust design optimization. A number of researchers have focused on developing 
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semi or complete single-loop procedure for RBDO, e.g., Shan and Wang (2007), Liang et al. 

(2007), Nguyen et al. (2010), Lim and Lee (2016), Mansour and Olsson (2016), Jeong and Park 

(2017). 

The ultimate strength is the true load-carrying capacity of structures made of elasto-plastic 

materials like steel and aluminum. Beam-column model has been used from early days to develop 

ultimate strength design formulas for stiffened panels. Hughes et al. (2004) used a beam-column 

model to predict the ultimate strength of stiffened panels under compression. A more efficient 

method based on nonlinear beam theory has been developed by the present authors ((Li et al., 2017) 

to calculate the beam-column ultimate strength and the results are used to predict the stiffened 

panel’s ultimate strength by applying a correction factor. Structural optimization with ultimate 

strength constraint has been applied in many fields including civil engineering (Barros et al., 2012), 

ocean engineering (Ma et al., 2016), aerospace engineering (Ba-abbad and Kapania, 2003) and 

mechanical engineering (Bielski and Bochenek, 2008). 

Ocean structures and aerospace structures are designed and operated under large uncertainties. 

Besides the probabilistic structural loads, the material properties and structural member scantlings 

have to be represented by random variables. Reliability analysis predicts the probability that a 

system will perform its function under those uncertainties. The reliability analysis of such 

structures typically link the ultimate limit state function and the applied load. FORM is commonly 

used for the reliability analysis of nonlinear structures with ultimate strength constraint. For 

example, Sharifi and Paik (2011) presented reliability analysis of corroded steel-box girder bridge 

by using ultimate strength formula and FORM. Zhao et al. (2016) did reliability analysis of 

stiffened composite panels with ultimate compressive strength calculated by nonlinear Finite 

Element Analysis (FEA). 

Structural optimization and reliability analysis based on ultimate limit state is challenging due to 

the complexity of the nonlinear elasto-plastic analysis. One difficulty in RBDO for nonlinear 

structures is the calculation of the limit state function sensitivity and reliability index sensitivity. 

Usually the performance function of nonlinear structures cannot be represented by closed-form 
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equations. Nonlinear FEA uses a quasi-static approach to calculate ultimate strength of elasto-

plastic structures by increasing load or displacement at each step. It is possible to develop analytic 

sensitivities for nonlinear structural analysis for a given load, but sensitivity of ultimate load is 

more involved. Finite difference method is often used for sensitivity analysis but it requires higher 

computation cost in analysis and extra caution to avoid precision errors from small step size. 

Complex step perturbation method is accurate but the computation cost is high because a full re-

analysis with complex numbers is required for each design variable. Direct method also requires 

full re-analysis for each sensitivity calculation. Adjoint method can significantly reduce the 

computation cost. Approximation techniques are often used to avoid full re-analysis.  When 

accurate sensitivities are available, many gradient-based optimization algorithms like Sequential 

Quadratic Programming (SQP) can be used for structural optimization and reliability analysis. 

Without accurate sensitivity, non-gradient based optimization algorithms have to be used.  

Vaz and Hinton (1995) used optimization algorithm to solve the elastoplastic constitutive law in 

finite element shape sensitivity calculation. Haukaas and Scott (2006) used direct differentiation 

method to develop the finite element shape sensitivity of nonlinear structures. The same method 

has been used for sensitivity analysis of path-dependent inelastic structures (Haukaas, 2006), 

second-order response sensitivity (Bebamzadeh and Haukaas, 2008) and response sensitivity of 

nonlinear Timoshenko frame elements (Scott and Azad, 2017). 

If FORM is used in the inner loop of RBDO, the reliability index sensitivity in the outer loop can 

be calculated from the limit state function sensitivity at the MPP as shown by early sensitivity 

studies (Hohenbichler and Rackwitz, 1986, Bjerager and Krenk, 1987, Kwak and Lee, 1987). This 

method has been widely used in structural RBDO (Wang et al. 1995, Yu et al. 1997, Allen and 

Maute, 2004, Youn and Choi, 2004). 

The nonlinear beam-column analysis method presented in this paper solves for the ultimate 

strength directly from a set of discretized nonlinear equations. The direct solving method combines 

the original governing equation set and its derivatives w.r.t deflection to directly obtain the 

ultimate strength at the peak of load-deflection curve. Semi-analytic sensitivity analysis method is 
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developed from this ultimate strength direct solving method. First the sensitivity of the structural 

residual equations is calculated using complex step. Then the semi-analytic sensitivity is solved 

from a linear set of sensitivity equations using the Jacobian matrix of the original equations. The 

RBDO of nonlinear beam-columns uses semi-analytic sensitivity and gradient-based algorithm for 

the double loop optimization. 

In the following sections, first the double-loop RBDO problem of nonlinear beam-column is 

established. The inner loop reliability analysis is based on FORM and the outer loop structural 

optimization uses SQP algorithm. Next the load-incremental ultimate strength analysis and direct 

solving method are introduced, followed by the semi-analytic sensitivity analysis of the limit state 

function (ultimate strength). The sensitivity of the safety index needed in the outer loop is 

calculated based on the results of the inner loop MPP. Last, the numerical examples present 

ultimate strength analysis, sensitivity analysis, structural optimization, reliability analysis and 

RBDO. The design variables are the cross-sectional dimensions and the random variables include 

axial load, material properties, initial deflection and cross-sectional dimensions. 

5.4 RELIABILITY-BASED DEISIGN OPTIMIZATION FORMULATION 

The double loop RBDO has a structural optimization problem as the outer loop which is defined 

as: 

Minimize:     ܨ( തܺ)  ( 5.1 ) 

subject to:     ߚ଴ − )ߚ തܺ) ≤ 0  ( 5.2 ) 

തܺ௠௜௡ ≤ തܺ ≤ തܺ௠௔௫  ( 5.3 ) 

where തܺ is a vector of design variables, ߚ is the safety index, and   ߚ଴ is the defined limit of ߚ. 

The calculation of the safety index ߚ is the inner loop of RBDO. FORM is applied on a set of 

independent standard normal variables ഥܷ. Any non-Gaussian or non-standard normal distribution 

and correlated random variables have to be transformed before using FORM. MPP is the point on 
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the failure surface that has the shortest distance to the origin in the normalized space. In FORM, 

the limit state function is represented by the tangent hyperplane at the MPP. Reliability analysis 

thus focuses on finding the MPP and the corresponding shortest distance, i.e. the safety index ߚ. 

The inner loop reliability analysis is formulated as an optimization problem: 

Minimize:     ߚ( ഥܷ) = ( ഥ்ܷ ഥܷ)
భ
మ  ( 5.4 ) 

subject to:    ܩ( ഥܷ) = 0  ( 5.5 ) 

where ഥܷ = ܶ( തܻ) which is the vector of standard normal variables transformed from the original 

random variables തܻ. ܶ is the transform function. ܩ( ഥܷ) is the limit state function of the structural 

system in terms of the normal variables. 

The design variables can be random or deterministic, which means the variables in തܺ may or 

may not be in തܻ depending on whether it is random or deterministic. 

 

Figure 5-1. Simply supported I beam with initial deflection. 

An I beam consists of a plate strip and attached T-bar stiffener as shown in Figure 5-1. There are 

six geometric parameters in the cross-section: plate width b, plate thickness t, web height hw, web 

thickness tw, flange width bf and flange thickness tf. Figure 5-2 shows the cross-section geometry 

of such a beam-column. 
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Figure 5-2. Cross-sectional parameters of I beam. 

When an elasto-plastic beam-column with initial deflection d is under axial compression, the beam 

will deflect as the load is applied. As the load is increased, the stress in the beam increases. When 

the stress at any point goes above the yield stress, a plastic zone is formed at critical locations 

along the beam. The ultimate strength is the load at which the plastic zone progression leads to a 

state that the beam can carry no more load. The ultimate strength is the maximum load carrying 

capacity of the beam. This maximum compressive force ௨ܲ is the ultimate load. Figure 5-3 shows 

the equilibrium path (load-deflection curve) of an inelastic beam-column under axial compression. 

The beam is made of elastic-perfectly-plastic material and has geometry shown in Figure 5-1 and 

Figure 5-2.  

 

Figure 5-3. Load-deflection curve of I beam under uniaxial compression. 
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The six cross sectional variables are the design variables in തܺ. The objective function Equation 5.1 

in the outer loop of RBDO for the beam-column is: 

)ܨ തܺ) = ܾ ∙ ݐ + ℎ௪ ∙ ௪ݐ + ௙ܾ ∙  ௙  ( 5.6 )ݐ

The inner loop reliability analysis of RBDO is based on the ultimate strength analysis of the beam-

column. The limit state function in Equation 5.5 is: 

)ܩ ഥܷ) = ௨ܲ( ഥܷ) − ଴ܲ  ( 5.7 ) 

where ଴ܲ is the applied load which is also the limit of the ultimate load ௨ܲ. 

The initial deflection ݀, material properties (yield stress ߪ௬ and Young’s modulus ܧ) and cross-

sectional variables തܺ are chosen as the original random variables of തܻ. 

 

5.5 ULTIMATE STRENGTH ANALYSIS OF NONLINEAR BEAM-

COLUMNS 

5.5.1 Beam-Column Model 

The equilibrium path (Figure 5-3) of a simply-supported nonlinear Euler-Bernoulli beam 

(Figure 5-1 and Figure 5-2) can be calculated by solving following governing equations (Equation 

5.8-5.13) and boundary conditions (Equation 5.14-5.17): 

௬ܨ
ᇱ − ௭ܲߢ − ݇௭ܲ = 0  ( 5.8 ) 

௭ܯ
ᇱ + ௬ܨ = 0  ( 5.9 ) 

௭ߠ− + ௬ݑ
ᇱ = 0  ( 5.10 ) 

௭ߠ
ᇱ − ௭ߢ = 0  ( 5.11 ) 
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௫ߛ)௫ܥ , (௭ߢ + ܲ = 0  ( 5.12 ) 

௫ߛ)௭ܥ , (௭ߢ − ௭ܯ = 0  ( 5.13 ) 

௬ܨ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 5.14 ) 

௭ߠ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 5.15 ) 

௬ݑ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 5.16 ) 

௭ܯ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 5.17 ) 

where ܲ is the applied compressive load. ܨ௬ and ܯ௭ are the cross-sectional stress resultant force 

and moment. ݑ௬  and ߠ௭  are the deflection and rotational angle. ݇௭  and ߢ௭  are the pre-twist/pre-

curvature and deformed twist/curvature respectively. ߛ௫  is the beam generalized axial strain. 

Equations 5.8-5.9 are the equilibrium equations and Equations 5.10-5.11 are the strain-

displacement relations. In Equations 5.12-5.13 the functions ܥ௫  and ܥ௭  represent the integrated 

cross-sectional axial force and moment respectively which take into account the development of 

plasticity. Equations 5.14-5.17 are the simply-supported boundary conditions for half beam. By 

discretizing the beam into segments along the length, the equation set can be solved by spatial 

finite difference for a given axial load. Either by increasing the axial load or the displacement, the 

equilibrium path can be obtained by Newton-Raphson scheme or Riks algorithm. The ultimate 

strength is the peak load of the equilibrium path (load-deflection curve) (Li, 2017). 

5.5.2 Numerical Scheme 

Equations 5.8-5.11 are differential equations with respect to (w.r.t) beam axial coordinate. If the 

beam in Figure 5-1 is discretized into 2×N equal length elements, only half of the beam (N 

elements) need to be considered because of the symmetry at the center. Equations 5.1-5.4 can be 

represented by the nodal values using spatial finite difference. There are six unknown variables at 

each node which are [ܨ௬ , ௭ܯ , ௬ݑ , ௭ߢ , ௭ߠ ,  .௫]. The total number of unknown variables are 6×(N+1)ߛ
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Discretized Equations 8-11 are satisfied at N elements. Equations 5.12-5.13 are satisfied at (N+1) 

nodes. Including four boundary Equations 5.14-5.17, there are total 6×(N+1) equations which is 

equal to the number of unknown variables. The discretized system of the nonlinear equations is: 

௜݂(̅ݔ|ܲ) = 0 ,   ݅ = 1, 2 … 6 × (ܰ + 1)  ( 5.18 ) 

Newton-Raphson scheme is used to solve the nonlinear equation set. At load step (݆), the load is 

increased by a step size ݀ܲ from previous load ௝ܲିଵ. The change of solution {݀̅ݔ௝
௞} from previous 

solution ൛̅ݔ௝
௞ൟ is solved iteratively by: 

௝ݔ൫̅ܬൣ−
௞൯൧൛݀̅ݔ௝

௞ൟ = ൛݂൫̅ݔ௝
௞ห ௝ܲ൯ൟ , ݇ = 0, 1, 2, …  ( 5.19 ) 

where [ ܬ ]  is the Jacobian matrix of Equation 5.19 and ̅ݔ௝
௞ାଵ = ௝ݔ̅

௞ + ௝ݔ̅݀
௞ . ݇  is the iteration 

number at current load step (݆) . The above iterations stop when a convergence criteria 

ฮf൫̅ݔ௝
௞ାଵหP୨൯ฮ < ௝ݔis a given limit. The converged ൛̅ ߝ is met where ߝ

௞ାଵൟ is the solution {̅ݔ௝} at 

load step (݆). The Jacobian matrix is written as: 

[ ܬ ] = ൥
߲ ଵ݂ ⁄ଵݔ߲ ⋯ ߲ ଵ݂ ⁄௡ݔ߲

⋮ ⋮ ⋮
߲ ௡݂ ⁄ଵݔ߲ ⋯ ߲ ௡݂ ⁄௡ݔ߲

൩ , ݊ = 6 × (ܰ + 1) ( 5.20 ) 

At load step (݆ + 1), ൛̅ݔ௝ାଵ
଴ ൟ  is the initial guess of the solution which is the solution of previous 

load step  {̅ݔ௝}. If {̅ݔ௝} is close to ൛̅ݔ௝ାଵൟ, the solution of Equation 5.18 converges after a few 

iterations. If the load step from P୨ to P୨ାଵ is too large, the numerical scheme may not converge and 

load step has to be reduced. Then the solution under reduced load P୨ାଵ is searched for by Equation 

5.18 using the solution under load P୨ as an initial guess. 

Figure 5-3 shows a typical load-deflection curve of the beam-column in Figure 5-1 under 

uniaxial compression. The peak load ௨ܲ is the ultimate compressive strength of the beam-column. 

Load-incremental Newton-Raphson scheme simulates the quasi-static loading sequence from zero 

load to the peak load ௨ܲ. Displacement-controlled Newton-Raphson scheme or Riks algorithm can 
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get the solution beyond the peak of the curve. However, these methods can only find the 

approximation of peak load ௨ܲ. Furthermore, these methods cannot be used to calculate sensitivity 

accurately. The derivative of load w.r.t the displacement at the peak is zero. Small change of load 

corresponds to very large change of displacement. The load step when approaching the peak must 

be small enough in order to converge to a solution close to the exact peak value. The step size will 

determine the difference between the approximate ௨ܲ and the exact ௨ܲ. 

For analysis purpose, the approximate ௨ܲ  is accurate enough. For ultimate strength based 

design optimization and reliability analysis, however, using finite difference method to calculate 

the sensitivity of ௨ܲ is inefficient and inaccurate for large or small step size. In order to calculate 

more robust analytic sensitivity, it is necessary to solve for ௨ܲ directly instead of using the load-

incremental method. 

5.5.3 Direct Solving Method 

On the equilibrium path of the beam-column (load-deflection curve in Figure 5-3), ௨ܲ  is 

characterized by the point where  dܲ ⁄௖ݑ݀   is zero. ݑ௖ is any deflection. Here we choose the the 

central deflection ݑ௖௘௡௧௘௥. To solve for ௨ܲ , Equations 5.8-5.17 are differentiated w.r.t ݑ௖. ܲ  is 

treated as an unknown variable ௨ܲ. Equations 5.21-5.30 are the differentiated form of Equations 

5.8-5.17. The terms in the brackets can be expanded by using chain rule. 

݀൫ݕܨ
′ − ݖߢ ௨ܲ − ݖ݇ ௨ܲ൯ ⁄௖ݑ݀ = 0  ( 5.21 ) 

݀൫ܯ௭
ᇱ + ௬൯ܨ ⁄௖ݑ݀ = 0  ( 5.22 ) 

݀൫−ߠ௭ + ௬ݑ
ᇱ ൯ ⁄௖ݑ݀ = 0  ( 5.23 ) 

௭ߠ)݀
ᇱ − (௭ߢ ⁄௖ݑ݀ = 0  ( 5.24 ) 

௫ߛ)௫ܥ)݀ , (௭ߢ + ௨ܲ) ⁄௖ݑ݀ = 0  ( 5.25 ) 

௫ߛ)௭ܥ)݀ , (௭ߢ − (௭ܯ ⁄௖ݑ݀ = 0  ( 5.26 ) 
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௬ܨ݀ ⁄௖ݑ݀ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 5.27 ) 

௭ߠ݀ ⁄௖ݑ݀ = 0|௔௧ ௕௘௔௠ ௖௘௡௧௘௥  ( 5.28 ) 

௬ݑ݀ ⁄௖ݑ݀ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 5.29 ) 

௭ܯ݀ ⁄௖ݑ߲ = 0|௔௧ ௕௘௔௠ ௘௡ௗ  ( 5.30 ) 

The original set of equations (Equations 5.8-5.17) and the differentiated set (Equations 5.21-5.30) 

can be solved together by the addition of following two equations.  

݀ ௨ܲ ݀⁄ ௖ݑ = 0  ( 5.31 ) 

௖ݑ݀ ݀⁄ ௖ݑ = 1  ( 5.32 ) 

In the original discretized system of equation set (Equation 5.18), load ܲ  is replaced by the 

unknown variable ௨ܲ. It becomes: 

௜݂(̅ݔ, ௨ܲ ) = 0 ,   ݅ = 1, 2 … 6 × (ܰ + 1)  ( 5.33 ) 

where {̅ݔ}  is the original 6 × (ܰ + 1)  nodal variables. The differentiated equation set is 

discretized as: 

݂ሶ
௜൫̅ݔ, ሶݔ ̅ , ௨ܲ, ௨ܲሶ ൯ = 0 ,   ݅ = 1, 2 … 6 × (ܰ + 1)  ( 5.34 ) 

where  the overdot notation represent partial derivative w.r.t ݑ௖. ݑ௖ is one unknown variable in 

ሶݔ} . {ݔ̅} ̅} is the derivative of {̅ݔ} w.r.t ݑ௖. ௨ܲሶ  is ߲ ௨ܲ ߲⁄  ௖. The total number of unknown variablesݑ

is (6 × (ܰ + 1) × 2 + 2). Combine Equations 5.31-5.34 and there are (6 × (ܰ + 1) × 2 + 2) 

equations. The analysis method which solves the combined equation set is the direct solving 

method. 

௨ܲ  can be directly solved from the combined equation set by Newton-Raphson scheme. The 

Newton iteration must start from an estimate very close to the actual solution. The solution from 
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the load-incremental method is a good estimate of the actual solution so it is suitable as the initial 

guess. The solution of ௨ܲ from direct solving method is called exact ௨ܲ which is to be distinguished 

from the approximate ௨ܲ of load-incremental method. The Jacobian matrix [ ܣܬ ] of the combined 

equation set contains the Jacobian matrix [ ܬ ] of the original equation set. 

[ ܣܬ ] = ൤
[ ܬ ] ߲݂ ⁄തݕ߲

߲݂ሶ ⁄ݔ߲̅ ߲݂ሶ ⁄തݕ߲
൨  ( 5.35 ) 

where {ݕത} = ሶݔ } ̅ ; ௨ܲ; ௨ܲሶ }. Similar to the Newton-Raphson scheme expressed by Equation 5.19 in 

the load-incremental method, the iterative scheme for the direct solving method is:  

{௞̅ାଵݖ݀}[(௞̅ݖ)ܣܬ]− = , {(௞̅ݖ)݂} ݇ = 0, 1, 2, …  ( 5.36 ) 

where {ݖ௞തതത} = ; ݔ̅} {തݕ  = ; ݔ̅} ሶݔ  ̅  ; ௨ܲ ; ௨ܲሶ } at the ݇ݐℎ iteration. 

Although the difference between the exact ௨ܲ  and the approximate ௨ܲ  is very small, the direct 

solving method solves for the ultimate load ௨ܲ by explicit equations. Thus, it is possible to develop 

analytic or semi-analytic sensitivities of ௨ܲ  which is important for RBDO of nonlinear beam-

columns with ultimate load constraint. 

5.6 SENSITIVITY ANALYSIS 

5.6.1 Finite Difference Sensitivity Analysis 

The inner loop reliability analysis Equation 5.4-5.5 uses gradient-base optimization algorithm to 

search for the MPP. The sensitivity of the limit state function is required by the algorithm. From 

Equation 5.7, the sensitivity of the limit state function is equal to the derivative of the ultimate 

load ௨ܲ w.r.t random variables in  ഥܷ. 
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Figure 5-4. Equilibrium path of original and perturbed designs. 

Figure 5-4 shows the load deflection curves of one original design (O-A-B) and a perturbed design 

(O-C-D) by adding a small perturbation to one design variable. P is the axial force applied on the 

beam end and ݑ௖ is the beam’s central deflection. The peak load ௨ܲ is the ultimate load in the 

optimization constraint function. The equilibrium path (load deflection curve) of the original 

design is obtained by solving Equations 5.8-5.17 with Newton-Raphson scheme starting from the 

zero load (point O in Figure 5-4). In each iteration the load is increased from previous iteration 

and the current solution is calculated using Newton-Raphson scheme and the solution of the 

previous iteration as the initial guess. The final maximum value of the load ௠ܲ௔௫ (point A and C 

in Figure 5-4) can be calculated by the load-incremental method. ௠ܲ௔௫ will be close to the real 

peak value ௨ܲ (point B and D in Figure 5-4) within a defined limit. The difference of ௨ܲ of A and 

C is divided by the perturbation step size to get the finite difference sensitivity if load-incremental 

method is used. 
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There are two major types of errors in the finite difference sensitivity calculated by the load-

incremental method:  

(1) Small finite difference step size: It is significant if the step size is too small relative to the 

error in the analysis solution. In the present analysis the error comes from  

a. Numerical errors from spatial discretization and Newton-Raphson iteration, 

b. Approximation error of ௨ܲ from ௠ܲ௔௫ of the equilibrium path from load stepping. 

c. Round-off error, 

(2) Large finite difference step size: It is significant if the step size is large compared to the 

second derivative of the performance /constraints. 

The type (1)(a) error is controlled by the convergence criteria in the numerical iteration. Type (2) 

error can be minimized by taking a small step size but is possible only if error of type (1)(b) is 

avoided. The way to avoid type (1)(b) error is to use the direct solving method which uses the 

difference of ௨ܲ of B and D to calculate the finite difference sensitivity.  

Full analysis by the direct solving method can be used to solve for the exact ௨ܲ of the perturbed 

design, which is by the path from O to C to D. However, the more efficient way is to solve for the 

exact ௨ܲ at D (perturbed design) by using the solution at B (original design) as the initial guess for 

the direct solving method provided that the perturbation is small. The exact ௨ܲ at B and D are 

compared. The difference of ௨ܲ divided by the perturbation step size is the sensitivity of the limit 

state function at current design point. Thus the type (1)(b) error is eliminated by using the direct 

solving method to calculate finite difference sensitivity. 

The type (1)(c) error always exists in finite difference method but is typically negligible unless the 

step size is too small. Small finite difference step size is necessary to avoid type (2) error. However, 

if the step size is too small, type (1)(c) error becomes significant because of the subtractive 

cancellation. It is important to monitor type (1)(c) errors caused by finite difference step size.  
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5.6.2 Analytic Sensitivity of Limit State Function 

Sensitivity of the limit state function (ultimate load ௨ܲ) can be solved directly by differentiating 

Equations 5.8-5.17 and 5.21-5.32 w.r.t a design variable ܺ௜. Denote the combined equation set as 

;ܼ̅)ܨ തܺ) = 0  ( 5.37 ) 

where ܼ̅ is the unknown variable vector and തܺ is the design variable vector. Differentiate Equation 

5.37 w.r.t ܺ௜, it becomes 

డி(௓ത;௑ത)

డ௑೔
+

డி(௓ത;௑ത)

డ௓ത
డ௓ത

డ௑೔
= 0  ( 5.38 ) 

Rearrange Equation 5.38 as  

డி(௓ത;௑ത)

డ௓ത
డ௓ത

డ௑೔
= −

డி(௓ത;௑ത)

డ௑೔
  ( 5.39 ) 

After spatial discretization, Equation 5.39 becomes 

[ܣܬ]
డ௭̅

డ௑೔
= −

డ௙(௭̅;௑ത)

డ௑೔
  ( 5.40 ) 

where [ܣܬ] is the same Jacobian matrix in Equation 5.35-5.36. The analytic form of the right hand 

side of Equation 5.40 is required to solve for the derivatives of all unknown variables w.r.t to ܺ௜. 

The needed sensitivity 
డ௉ೠ

డ௑೔
 is one element of the full solution 

డ௓ത

డ௑೔
. 

For each design variable, analytic sensitivity is solved from Equation 5.40 after having the analytic 

form of the right hand side.  

Take Equation 5.12 and 5.25 as examples. By removing the subscripts, Equation 5.12 becomes 

,ߛ)ܥ (ߢ + ܲ = 0  ( 5.41 ) 

The simplified expansion of Equation 5.25 is  
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ሶߛఊܥ + ሶߢ఑ܥ + ሶܲ = 0  ( 5.42 ) 

where the subscript is the notation of partial derivative. The overdot notation is the derivative w.r.t 

ሶߛ .௖ݑ ሶߢ ,  and ሶܲ  are unknown variables. 

Differentiate Equation 5.41 w.r.t a design variable ܺ௜ to obtain the sensitivity equation.  

∗ߛఊܥ + ∗ߢ఑ܥ + ܲ∗ = −
డ൫஼(ఊ,఑,௑ത)൯

డ௑೔
  ( 5.43 ) 

where the asterisk notation is the derivative w.r.t ܺ௜. ܲ∗ =
డ௉ೠ

డ௑೔
, which is the needed sensitivity for 

RBDO. 

Similarly, the differentiated Equation 5.42 is 

ሶߛఊܥ ∗ + ∗ߛఊ,ఊܥሶߛ + ∗ߢఊ,఑ܥሶߛ + ሶߢ఑ܥ ∗ + ∗ߛఊ,఑ܥሶߢ + ∗ߢ఑,఑ܥሶߢ + ሶܲ ∗ 

= ሶߛ−
డቀ஼ം(ఊ,఑,௑ത)ቁ

డ௑೔
− ሶߢ

డ൫஼ഉ(ఊ,఑,௑ത)൯

డ௑೔
  ( 5.44 ) 

In Equation 5.43-5.44, all the coefficients of sensitivity terms on the left hand side have been 

developed for the Jacobian matrix in Equation 5.35. On the right hand side, ߛሶ  and ߢሶ  are solved at 

the design point. ߛ)ܥ, ,ߛ)ఊܥ , (ߢ ,ߛ)఑ܥ and (ߢ  and these functions contain ߢ ,ߛ are functions of (ߢ

the design variable ܺ௜. The analytic form of the derivatives on the right hand side of Equation 5.43-

5.44 needs to be developed in order to solve the linear sensitivity equation set for ܲ∗ which is the 

sensitivity of the ultimate load ௨ܲ. 

5.6.3 Semi-Analytic Sensitivity of Limit State Function 

Alternatively, another way to avoid the subtractive cancelation error is to use complex step method 

for sensitivity analysis. This method perturbs a random variable by adding a small imaginary value. 

Then the imaginary part of the complex ௨ܲ  solved for the perturbed design is divided by the 

variable perturbation to calculate the sensitivity. Complex step sensitivity requires a full re-
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analysis which uses the complex Jacobian matrix to solve the complex equation set iteratively. The 

cost of computation is high but the perturbation step size will not affect the sensitivity. 

A more efficient approach is to use complex step method to calculate the derivatives on the right 

hand side of Equation 5.40. 

డ௙(௭̅;௑ത)

డ௑೔
=

ூ௠(௙(௭̅;௑ത|೉೔స೉೔శ಺೓))

௛
  ( 5.45 ) 

where ܺ௜ is the design variable that is perturbed by the imaginary perturbation ܫℎ. ℎ should be a 

very small real number, for example, 10-30. 

The derivatives calculated by Equation 5.45 has no subtractive cancellation error. The calculation 

is simple and the results are accurate. Then by using Equation 5.40 the sensitivities can be solved 

by using the analytic Jacobian matrix. The semi-analytic sensitivity is more robust than finite 

difference sensitivity without the subtractive cancelation error caused by small step size. The semi-

analytic sensitivity is also more efficient than full complex step sensitivity analysis. 

When analytic sensitivity is not available, semi-analytic sensitivity can be used as an alternative 

because of the accuracy and robustness. The inner loop reliability analysis of RBDO can be solved 

efficiently by providing the semi-analytic sensitivity to a gradient-based optimizer like SQP. 

5.6.4 Sensitivity of Reliability Index 

In the outer loop optimization of RBDO, Equation 5.1-5.3, the sensitivity of reliability index ߚ is 

needed for gradient-based optimization algorithm. Finite difference sensitivity can be used but it 

is not robust, especially when there is nonlinearity in both the ultimate strength analysis and the 

reliability analysis. 

If FORM is used in the inner loop of RBDO, the sensitivity of reliability index ߚ has following 

form: 
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డఉ

డ௑೔
=

ଵ

หఇீ൫௎೘೛ , ௑೔ ൯ห

డீ൫௎೘೛ , ௑೔൯

డ௑೔
  ( 5.46 ) 

where ܷ௠௣ is the MPP of the inner loop reliability analysis, ∇ܩ(ܷ௠௣,  ܺ௜ ) is the gradient of the 

limit state function at MPP, i.e. 

,௠௣ܷ)ܩߘ  ܺ௜ ) =
డீ(௎೘೛, ௑೔)

డ௎
  ( 5.47 ) 

If the design variable ܺ௜ is a deterministic variable, the first term of Equation 5.46 is the result of 

the inner loop reliability analysis, and the second term has to be calculated separately. It is shown 

from Equation 5.7 that the derivative of limit state function is equal to the derivative of the ultimate 

load ௨ܲ. The same semi-analytic sensitivity analysis method for the inner loop reliability analysis 

can be used. By adding a very small imaginary perturbation to the design variable ܺ௜, Equation 

5.40 and 5.45 can be used to calculate the second term on the right hand side of Equation 5.46. 

If the design variable ܺ௜ is also a random variable, the sensitivity of reliability index ߚ in Equation 

5.46 can be simplified as: 

 డఉ

డ௑೔
=

ଵ

ఉ
ܷ௠௣

డ்൫௒೘೛൯

డ௑೔
  ( 5.48 ) 

where ܶ(. ) is the function that transforms original random variables തܻ into the standard normal 

random variables ഥܷ, ௠ܻ௣ is the MPP in the original random variable space corresponding to ܷ௠௣. 

Usually the transform function ܶ(. ) is in explicit form of the nondeterministic variables including 

௜ܻ. The sensitivity of reliability index in Equation 5.48 can be easily calculated from the RBDO 

inner loop results ߚ and ܷ௠௣. 

For example, if all the random variables are independent normal variables, ௜ܻ has a mean ߤ௜ and 

standard deviation ߪ௜, the corresponding standard normal ௜ܷ is obtained by 

௜ܷ = ܶ( ௜ܻ) =
௒೔ିఓ೔

ఙ೔
  ( 5.49 ) 
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If the design variable ܺ௜ is the mean ߤ௜, the last term of the right hand side of Equation 5.48 is 

డ்(௒೔)

డఓ೔
|௒೔ୀ௒೔,೘೛

= −
ଵ

ఙ೔
  ( 5.50 ) 

In some cases, the coefficient of variation (COV) is a constant ܿ, which means ߪ௜ =  ௜. Equationߤܿ

5.49 becomes 

௜ܷ = ܶ( ௜ܻ) =
௒೔ିఓ೔

௖ఓ೔
=

௒೔

௖ఓ೔
−

ଵ

௖
  ( 5.51 ) 

Equation 5.50 becomes 

డ்(௒೔)

డఓ೔
|௒೔ୀ௒೔,೘೛

= −
௒೔

௖

ଵ

ఓ೔
మ |௒೔ୀ௒೔,೘೛

  ( 5.52 ) 

The reliability index sensitivity is accurate and robust by using the semi-analytic sensitivity of the 

limit state function. By providing the reliability index sensitivity to a gradient-based algorithm like 

SQP, the RBDO outer loop optimization can be solved efficiently. 

5.7 NUMERICAL EXAMPLES 

Figure 5-5 shows the process of ultimate strength analysis based RBDO for nonlinear beam-

columns. Both the inner loop reliability analysis and outer loop structural optimization use SQP 

algorithm as optimizer. The solution of load-incremental ultimate strength analysis is used as 

initial guess for direct solving method. Semi-analytic sensitivity based on the ultimate strength 

direct solving method is supplied to the SQP optimizer for reliability analysis and structural 

optimization. 

The simply supported nonlinear beam-column as shown in Figure 5-1 with the cross-section shown 

in Figure 5-2 has initial deflection ݀ at the center. The initial unloaded shape is half sinusoidal 

wave. Uniaxial compressive force ܲ is applied at both ends. The material is elastic-perfectly-

plastic. When the compressive force increases, the load-deflection curve is shown as in Figure 5-3. 

The RBDO problem of the nonlinear beam-column is formulated as Equation 5.1-5.7. The ultimate 
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load in the limit state function Equation 5.7 is calculated by the direct solving method. Semi-

analytic sensitivity of the limit state function and the reliability index are used for the inner loop 

and outer loop optimization of RBDO, respectively. 

 

Figure 5-5. Double-loop RBDO flow chart. 

5.7.1 Ultimate Strength Analysis 

A beam-column has following design values including the yield stress ߪ௬, Young’s modulus ܧ, 

beam-column length L, initial central deflection d and cross-sectional parameters: 
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௬ߪ =  247.3 MPa ܧ , =  205800 MPa ܮ , = 1524 mm , ܾ = 304.8 mm ݐ , = 6.4 mm , ℎ௪ =

64.25 mm, ݐ௪ = 4.65 mm, ௙ܾ = 27.94 mm, ݐ௙ = 6.35 mm, ݀ = 2.9 mm. 

The ultimate strength of the beam-column calculated by a MATLAB program ULTBEAM which 

solves the discretized original governing equation set (Equations 5.8-5.17) by load-incremental 

method is compared with ABAQUS and ANSYS nonlinear FEA results. For clamped boundary 

conditions Equations 5.15-5.17 are replaced accordingly. The ABAQUS model is fine meshed 2-

D beam-column using 2 node Timoshenko beam element (B21). The ANSYS beam-column model 

uses Beam188 element. 

 

Figure 5-6. Beam-column cross-section diagram. 

 

Figure 5-7. Half of initially curved beam-column (deflection towards the plate side). 

The initial unloaded shape of simply-supported beam-column is assumed to be sinusoidal as shown 

in Figure 5-1. Clamped beam-column has cosine wave as the initial unloaded shape. The initial 

maximum deflection ݀ at the beam center is 2.9 mm. Simply-supported beam-column under axial 

compression will have either stiffener-induced failure (stiffener side under greater compression) 

or plate-induced failure (plating side under greater compression) depending on the direction of 

initial deflection (towards the plate side, which causes the stiffener-induced failure or towards the 

stiffener side, which causes the plate-induced failure). For clamped beam-column, there is no such 

difference because of the symmetry of deformed shape. 
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As shown by the comparison in Table 5-1, ultimate strength calculated by ULTBEAM using the 

presented method is very close to nonlinear FEA for all three cases. The load-deflection curves of 

the three cases from the start of load step to the ultimate strength are compared in Figure 5-8 to 

Figure 5-10. The load path from ULTBEAM is very close to nonlinear FEA. 

Table 5-1. Ultimate strength (MPa) compared with nonlinear FEA. 

Boundary Condition Simply-supported Clamped 

Failure mode Stiffener-induced Plate-induced  

ULTBEAM 156.9 219.6 230.2 

ANSYS 157.7 220.1 229.5 

ABAQUS 158 219.6 229.0 

 

Figure 5-8. Load-deflection curve of simply-supported beam-column (stiffener-induced failure). 
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Figure 5-9. Load-deflection curve of simply-supported beam-column (plate-induced failure). 

 

Figure 5-10. Load-deflection curve of clamped beam-column.  
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5.7.2 Sensitivity Analysis 

Figure 5-11 shows the sensitivity of ultimate strength with respect to ℎ௪ for the simply-supported 

beam-column in 5.7.1 on a semi-log plot. Sensitivity calculated under different step size by three 

methods are compared. Forward finite difference sensitivity uses two analysis methods, load-

incremental method and direct solving method, respectively. Semi-analytic sensitivity is based on 

the direct solving method. Finite difference sensitivity calculated by load-incremental method 

starts to have large errors from step size smaller than 10-5. By using the direct solving method, 

errors of finite difference sensitivity only become significant for step size smaller than 10-15. The 

semi-analytic sensitivity is constant at different perturbation step size (10-1 to 10-30). Thus the semi-

analytic sensitivity is more robust and efficient as compared to the finite difference sensitivity. 

Figure 5-12 shows the sensitivity of reliability index with respect to one random design variable 

which is the mean of ℎ௪ by using two methods, finite difference and Equation 5.46. The inner loop 

reliability analysis uses semi-analytic sensitivity so the main errors are from the reliability index 

sensitivity analysis alone. As shown in the semi-log plot, the errors of finite difference sensitivity 

become significant at step size smaller than 10-13. By using Equation 5.46, there is no step size in 

the calculation so the sensitivity has constant value from the same MPP solution of the reliability 

analysis. Figure 5-13 shows similar comparison for the sensitivity of reliability index with respect 

to one deterministic design variable which is the mean of ܾ. The outer loop of RBDO using 

Equation 5.46 to calculate the reliability index sensitivity is robust and efficient. 
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Figure 5-11. Comparison of ultimate strength finite difference sensitivity by two analysis 

methods and semi-analytic sensitivity. 
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Figure 5-12. Comparison of reliability index sensitivity w.r.t a random variable  

by finite difference and Equation 5.46. 

 

Figure 5-13. Comparison of reliability index sensitivity w.r.t a deterministic variable  

by finite difference and Equation 5.46. 
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5.7.3 Sensitivities for Change in Failure Pattern 

When an initially curved asymmetrical beam-column is under axial compression and reaches 

ultimate strength, both the plating and flange could be under compression at the center where 

maximum stress is at. If the initial deflection is towards the plating side, under axial compression 

the flange side will have larger compressive stress because the area is smaller than the plating so 

the distance to neutral axis is larger. In this case the increment of cross-sectional dimensions will 

in general increase the ultimate strength. However, if the initial deflection is towards the flange 

side, under axial compression the plating side will have compressive stress but the flange side 

would have either compressive or tensile stress depending on the geometry. The yield will first 

occur either in the plating side in compression or in the flange side in extension. As the yield zone 

progresses from the surface towards the center, the beam-column will reach the ultimate strength 

with both compressive and tensile failure in the cross-section. In some cases, by increasing the 

cross-sectional dimension the shifting of neutral axis will cause different failure patterns to happen 

and result in decrease of ultimate strength. 

Figure 5-14 plots the ultimate strength of a beam-column with different plate width while all other 

geometric and material parameters are fixed with following properties: 

௬ߪ =  247.3 MPa ܧ , =  205800 MPa ܮ , = 1524 mm ݐ  , = 10.0 mm , ℎ௪ = 100.0 mm ௪ݐ , =

10.0 mm, ௙ܾ = 300.0 mm, ݐ௙ = 10.0 mm, ݀ = 50.0 mm. 

 The plate width ܾ changes in the range of 1.0 m to 2.0 m. The initial deflection is towards the 

stiffener flange side. The ultimate strength increases with the plate width from 1.0 m and reaches 

a peak when at about 1.4 m. Between 1.4 m to 2.0 m plate width, the ultimate strength actually 

decreases with increasing plate width. Figure 5-15 plots the ultimate strength sensitivity, i.e. 

derivative w.r.t the plate width. The sensitivity is positive and near constant from 1.0 m to 1.2 m 

where it starts to drop and reaches to zero at 1.4 m beyond which point it is negative. Figure 

5-14shows the change of failure pattern in the beam-column cross-section due to nonlinearity and 

asymmetry will affect the ultimate strength and sensitivity. The increment of axial compression 
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will cause stress re-distribution not only in the cross-section but also along the length. Since the 

beam-column has constant cross-sectional geometry, the change of failure pattern still results in 

smooth change of ultimate strength which is reflected by the continuous sensitivity shown in 

Figure 5-15. 

 

Figure 5-14. Validation of Pu with b around change in failure pattern. 
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Figure 5-15. Change in the sensitivity of Pu w.r.t b with change in failure pattern. 

5.7.4 Deterministic Structural Optimization 

Structural optimization of elasto-plastic beam-column is defined as 

Minimize:     ܨ( തܺ)  ( 5.53 ) 

subject to:     ଴ܲ − ܲ( തܺ) ≤ 0  ( 5.54 ) 

                        തܺ௠௜௡ ≤ തܺ ≤ തܺ௠௔௫  ( 5.55 ) 

where ܨ( തܺ) is the cross-sectional area, തܺ is a vector of design variables, ܲ is the ultimate strength 

calculated by the direct solving method, and  ଴ܲ is the defined limit of ܲ. 
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The semi-analytic sensitivity of the constraint function is calculated by Equation 5.45 and SQP 

algorithm is used to solve for the optimum design. 

First, two design variables [ℎ௪ ,  ௙ܾ] of a simply supported beam-column are optimized. The beam-

column has following properties: 

௬ߪ =  247.3 MPa ܧ , =  205800 MPa ܮ , = 1524 mm , ܾ = 304.8 mm ݐ , = 6.4 mm ௪ݐ , =

4.65 mm, ݐ௙ = 6.35 mm, ݀ = 2.9 mm. 

The initial deflection ݀ is 11.6 mm, about 0.75% of the beam length, towards plating side. The 

required ultimate compressive load limit ଴ܲ is 5.0 × 10ହ N. The two design variables [ℎ௪,  ௙ܾ] 

have lower bound തܺ௠௜௡ = [50 mm, 50 mm] and upper bound തܺ௠௔௫ = [150 mm, 150 mm]. Figure 

5-16 shows the contour lines of the objective function (cross-sectional area) and the shaded 

feasible design space. The optimum design is found as  [ℎ௪ = 135.7 mm,  ௙ܾ = 50 mm]. The 

objective function value is 948.68 mmସ. This optimum design can be identified as the lower left 

vertex (red circle) of the shaded feasible region in Figure 5-16.  

Next, four design variables [ݐ௪, ,ݐ ௙ݐ , ℎ௪] are optimized with a series of ultimate load limit ଴ܲ. The 

lower and upper bounds are [5, 5, 5, 100] mm and [15, 15, 15, 150] mm, respectively. Table 5-2 

lists the optimum design for different ultimate load limit ଴ܲ in each row. 

In Table 5-2, only the shaded cells have design values not on the boundary. It is noticed that when 

the load limit is small, only ℎ௪ is not at the lower limit. Only after ℎ௪ reaches the upper limit 

under intermediate load constraint, ݐ௙  starts to affect the design. Then comes ݐ  and finally ݐ௪ 

becomes important only after the other three design variables are at the upper limit. This shows 

the influence of each design variable under different ultimate strength limit. 
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Figure 5-16. Design space of hw and bf (objective function contours and shaded feasible region). 

Table 5-2. Four variables optimization results. 

Optimum Design (mm) Objective Function Value Constraint Limit 

௙ݐ ݐ ௪ݐ  ℎ௪ Area (mm4) Po (N) 

5 5 5 121.68 2382.38 4.00E+05 

5 5 14.03 150 2975.27 6.00E+05 

5 11 15 150 3924.57 8.00E+05 

6.44 15 15 150 4964.12 1.00E+06 

5.7.5 Structural Reliability Analysis 

The Structural reliability problem of the elasto-plastic beam-column is defined by Equations 5.4-

5.5. The limit state function is Equation 5.7. Original random variables are transformed by 
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Equation 5.51. The semi-analytic sensitivity of the limit state function is calculated by Equation 

5.44 and SQP algorithm is used to solve for safety index. 

Except length ܮ  and plate width ܾ , all other geometric and material parameters are normally 

distributed random variables. The initial design values are the mean values of the random variables. 

The Coefficient of Variation (COV) and Standard Deviation of all the random variables are listed 

in Table 5-3. All the random variables are assumed to be independent.  

Table 5-3. Random variables. 

Variable Distribution Mean value COV Standard deviation 

 ௬ Normal 247.3 0.1 24.73ߪ

 Normal 2.058E5 0.1 2.058E4 ܧ

 Normal 6.4 0.02 0.128 ݐ

ℎ௪ Normal 64.25 0.01 0.6425 

 ௪ Normal 4.65 0.02 0.093ݐ

௙ܾ Normal 27.94 0.03 0.8382 

 ௙ Normal 6.35 0.02 0.127ݐ

݀ Normal 3.81 0.5 1.905 
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The ultimate compressive load of the initial deterministic design is 351028 N. With a safety factor 

of 2.0, the design load is about 1.75×105 N. With a safety factor of 3.0, the design load is about 

1.15×105 N. Table 5-4 lists the reliability analysis results of the initial design under different design 

load by FORM. The design load is deterministic in first section and nondeterministic with two 

values of COV for comparison. The probability of failure ௙ܲ is calculated from reliability index ߚ 

by: 

௙ܲ =  ( 5.56 )  (ߚ−)∅

where ∅(. ) is the cumulative distribution function (CDF) of standard normal distribution. 

Table 5-4. FORM reliability analysis results. 

Load (N) Deterministic load Normally distributed 

load COV = 0.1 

Normally distributed 

load COV = 0.2 

 ௙ܲ ߚ ௙ܲ ߚ ௙ܲ ߚ 

1.15E5 6.45 5.5E-11 5.95 1.33E-9 4.99 2.94E-7 

1.25E5 6.09 5.7E-10 5.55 1.47E-8 4.59 2.26E-6 

1.50E5 5.18 1.10E-7 4.59 2.25E-6 3.69 1.13e-04 

1.75E5 4.30 8.51E-6 3.73 9.53E-5 2.94 0.0016 

2.00E5 3.47 2.58E-4 2.97 0.0037 2.32 0.0102 
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Monte Carlo simulation (MCS) method uses large sample of limit state evaluations to estimate the 

failure rate. When the probability of failure is small, the sample size has to be large enough to 

reflect the occurrence of failure event. For example, structural design could allow probability of 

failure to be as small as 10-5. So the sample size of MCS should be about 107 to have an accurate 

estimate. Even if the ultimate strength analysis is efficient, millions of such analyses will be 

extremely time-consuming. Each simulation will have different result due to the variance so 

multiple tests are necessary to get better estimate. By contrary, FORM will give an accurate and 

consistent estimation of small probability of failure if the failure surface near the MPP does not 

have large curvature, i.e. it can be approximated by the linearized limit state function and.  

MCS is used to validate FORM analysis. Table 5-5 compares the failure rates by MCS with the 

probabilities of failure calculated by FORM for deterministic design load. The sample size of MCS 

is 2.5 × 10ହ. For four cases of different deterministic axial loads, the reliability results of MCS 

and FORM are fairly close but FORM requires three orders of magnitude less ultimate strength 

evaluation than MCS sample size. 

Table 5-5. Reliability analysis by FORM compared with MCS (2.5×105 sample size). 

Load (N) MCS failure 

count 

MCS  

failure rate 

FORM probability 

of failure 

FORM function 

count 

2.00E05 67 2.68E-04 2.5778E-04 137 

2.10E05 179 7.16E-04 7.8836E-04 190 

2.15E05 314 0.001256 0.00150 154 

2.40E05 2793 0.011172 0.01090 235 
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5.7.6 Reliability-Based Design Optimization 

Table 5-6 lists the RBDO results for a beam-column under a normally distributed axial 

compressive load of 2.0E5 N with a COV of 0.1. The initial deflection ݀ has a mean of 11.6 mm 

and a COV of 0.5. Mean and standard deviation for all other random variables are the same values 

as listed in Table 5-3. Six design variables are the cross-sectional geometric parameters which are 

the deterministic plate width ܾ and the mean values of other five variables. The standard deviation 

of the nondeterministic design variables remain constant as the values listed in Table 5-3. 

In Table 5-6 the baseline design point is the average of the upper and lower limit. The deterministic 

optimum design has the same safety factor of the baseline design, i.e. the ultimate strength is the 

same. The RBDO design uses the baseline design’s reliability index as constraint limit. Both the 

deterministic optimum design and RBDO design reduced the weight from the baseline design with 

the RBDO design having slightly lower weight. Additional RBDO designs use various levels of 

reliability index as constraint limits. All optimum designs have only one design variable value not 

on the boundary (in shaded cells). Designs of higher reliability have higher structural weight. 
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Table 5-6. RBDO results. (The mean of ݀ is 11.6 mm and COV is 0.5. Other random variables’ 

distribution and standard deviation are the same as listed in Table 5-3.)  

Load = 2.0E5 N 

COV = 0.1 

Design variable (mm) Ultimate 

load (N) 

Objective 

function  

Reliability 

index  

Probability 

of failure 

଴ ௙ܲߚ ௙ ௨ܲ Area (mm2)ݐ ௪ ௙ܾݐ ℎ௪ ݐ ܾ   

Lower limit 

തܺ௠௜௡ 

200.0 10.0 80.0 5.0 30.0 5.0 2.7616E5 2550.00 1.2977 0.0972 

Upper limit 

തܺ௠௔௫  

400.0 15.0 120.0 10.0 50.0 10.0 1.1077E6 7700.00 7.6941 7.1247E-15 

Baseline തܺ଴ 300.0 12.5 100.0 7.5 40.0 7.5 6.1657E5 4800.00 5.3111 5.4471E-8 

Deterministic 

optimum design  

200.0 10.0 120.0 7.7 50.0 10.0 6.1657E5 3425.95 5.9266 1.5460E-9 

RBDO design  200.0 10.0 120.0 5.0 48.87 10.0 5.4401E5 3088.73 5.3111 5.4471E-8 

RBDO with 

different 

reliability limit 

200.0 10.0 91.8 5.0 30.0 5.0 3.1763E5 2608.85 2.0 0.0228 

200.0 10.0 110.3 5.0 30.0 5.0 3.7776E5 2701.71 3.0 0.0013 

200.0 10.0 120.0 5.0 30.0 7.37 4.4067E5 2821.05 4.0 3.1671E-5 

200.0 10.0 120.0 5.0 40.83 10.0 5.1592E5 3008.30 5.0 2.8665E-7 

200.0 10.0 120.0 8.0 50.0 10.0 6.2368E5 3459.98 6.0 9.8659E-10 

200.0 11.1 120.0 10.0 50.0 10.0 7.0443E5 3922.10 6.5 4.0160E-11 

209.7 15.0 120.0 10.0 50.0 10.0 8.2677E5 4845.66 7.0 1.2798E-12 

321.6 15.0 120.0 10.0 50.0 10.0 1.0040E6 6523.30 7.5 3.1909E-14 
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Figure 5-17. Pareto front of RBDO for three load conditions. 

The weight (area) and reliability index results of Table 5-6 are plotted in Figure 5-17 to show the 

Pareto front along with results of two additional loading conditions with axial loads having the 

same mean but different COV (0.01 and 0.2). It is shown that at low reliability levels the optimum 

designs of three load cases are close. At the same reliability level, optimum designs under load of 

larger COV have higher weight. The reliability index of the deterministic optimum design (with 

the same safety factor as the baseline design) are calculated under all three load cases and plotted 

as diamonds. The RBDO designs with the same reliability index as the baseline design are plotted 

as triangles. Among these design cases, the deterministic optimums are very close to the Pareto 

front calculated by RBDO. 
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A series of deterministic optimum designs are obtained under different levels of safety factor. The 

reliability index of each design is calculated under the three load conditions. The results are plotted 

with the Pareto front by RBDO in Figure 5-18.  

In Figure 5-19 and Figure 5-20, the Pareto front calculated from the same series of deterministic 

designs are plotted as lines. In Figure 5-19, the three cases have applied load of different mean but 

same COV (0.1). In Figure 5-20, the two cases have the same random load applied but the COV 

of initial deflection is different. All other random variables have a COV of 0.1. A few RBDO 

designs under the same loading conditions are plotted as triangle, square and diamond in Figure 

5-19 and Figure 5-20 for comparison.  

From Figure 5-18 to Figure 5-20 it can be seen that the Pareto fFront by RBDO and deterministic 

design approach are very close. 

In Figure 5-21, the Pareto front line is plotted in segments. The random variables are the same as 

in Table 5-6. Each segment is bounded by the designs at vertices where all design variables are at 

upper or lower boundary. Within each segment, only one design variable has values not on the 

boundary and it is regarded as the dominant variable. As the reliability index increases, the slope 

of the segments decreases. One reason is that the standard deviation of each design variable is a 

constant value in these designs. Thus it is the mean value of design variables that affects the 

reliability the most. As the required reliability increases, more influential design variables will take 

effect first and reach its upper limit before other design variables start to increase from the lower 

limit. There is no difference between the results from deterministic design and RBDO for this type 

of Pareto front. However, if the variances of different design variables have large gaps, the 

sequence of design variables taking effect in RBDO may be different from the sequence in 

deterministic optimization. For example, in the lower first two segments in Figure 5-21, ℎ௪ in 

increased before ݐ௙ in both deterministic optimization and RBDO. Under some circumstances, if 

ℎ௪  has very large COV compared to ݐ௙ , increasing ℎ௪  will actually be less effective than 

increasing ݐ௙ in terms of improving the reliability. In extreme cases, the reliability will actually 

decrease when the mean value of one design variable increases if the COV of it is large. This will 
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be reflected in the Pareto front line of deterministic designs with the lower segment having lower 

slope as compared to the higher segment, which is different from the lines shown in Figure 5-21. 

In these cases, RBDO will consider both the objectives, weight and reliability, in one design 

process and consequently have a different sequence of effective (dominant) design variables. Thus 

the Pareto front line from RBDO will still look similar to the one in Figure 5-21, and it will have 

advantage over the deterministic optimization which does not account for the influence of design 

variable’s large variance on reliability. 

 

Figure 5-18. Pareto front by RBDO for three load conditions of different COV compared with 

deterministic design. 
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Figure 5-19. Pareto front by deterministic design for three load conditions of different mean 

compared with RBDO design. 
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Figure 5-20. Pareto front by deterministic design for design series of different COV for ݀ 

compared with RBDO design. 
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Figure 5-21. Pareto front by deterministic design plotted in segments bounded by vertices. 
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5.8 CONCLUSION 

A RBDO procedure for nonlinear beam-columns of inelastic material and asymmetric I cross-

section is introduced in this paper. The ultimate strength analysis based-on nonlinear beam theory 

and nonlinear constitutive law is accurate and efficient. The direct solving method combines the 

governing equations and their derivatives with respect to a deformation parameter, and solves for 

the ultimate strength directly. Semi-analytic sensitivity of the ultimate load is calculated by solving 

a linear set of sensitivity equations based on the ultimate strength direct solving method. This 

approach is found to be robust and efficient as compared to finite difference sensitivity analysis. 

Structural reliability analysis and optimization use gradient-based SQP algorithm by providing the 

semi-analytic sensitivity to the optimizer. Double-loop RBDO minimizes the weight of nonlinear 

beam-column with nondeterministic applied load, geometric parameters and material properties 

under reliability constraints. Sensitivity of reliability index is calculated from the gradient of limit 

state function at the MPP of inner loop reliability analysis. The RBDO procedure presented in this 

paper is robust and efficient. The ultimate strength analysis, semi-analytic sensitivity analysis, 

reliability analysis, optimization and RBDO methods can be applied for combined load cases, 

beam-columns of non-constant cross-sections, frame system consisting of multiple beam-columns 

and other large engineering structures including stiffened panels and aerospace/ocean structures. 
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6 Chapter Six  

 

Conclusions 

This dissertation presents a Reliability-Based Design Optimization (RBDO) procedure for beam-

columns of inelastic material and asymmetric I cross-section. The RBDO procedure is robust and 

efficient and uses the ultimate strength direct solving method, semi-analytic sensitivity of the 

ultimate strength and gradient-based optimization algorithm for structural optimization and 

reliability analysis.  

In Chapter 2, the ultimate strength load-incremental analysis method is based on nonlinear beam 

theory with material and geometric nonlinearities. Nonlinear constitutive law is developed for 

elastic-perfectly-plastic beam cross-section consisting of base plate and T-bar stiffener. The results 

of load-incremental ultimate strength analysis are validated using commercial nonlinear finite 

element analysis for single-span simply-supported/clamped beam-columns and multi-span simply-

supported beam-columns.  

In Chapter 3, a new ultimate strength direct solving method is introduced, which combines the 

original governing equations with their derivatives with respect to a deformation parameter and 

solves for the ultimate strength directly. The direct solving method is more robust than load-

incremental method in calculating finite difference sensitivity of the ultimate strength. 

Deterministic beam-column structural optimization results are presented using the ultimate 

strength direct solving method and a gradient-based optimization algorithm. The convergence is 

faster and more robust than non-gradient-based algorithm. 

In Chapter 4, structural reliability analysis is presented for nonlinear beam-columns with ultimate 

strength constraint by using First Order Reliability Method. The sensitivity of the limit state 

function is calculated by using complex step method and ultimate strength direct solving method. 

The complex step sensitivity is more robust than finite difference sensitivity as it eliminates the 
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subtractive cancellation error at small step size. Structural failure probabilities calculated by 

FORM are validated by Monte Carlo Simulation. 

In Chapter 5, the Reliability-Based Design Optimization procedure for nonlinear beam-columns is 

introduced by using the ultimate strength direct solving method, semi-analytic sensitivity and 

gradient-based optimization algorithm. Semi-analytic sensitivity of the ultimate strength is solved 

from a linear set of sensitivity equations using the Jacobian matrix of the direct solving method. 

The derivatives of the structural residual equations in the sensitivity equation set are calculated 

using the complex step method. The semi-analytic sensitivity is more robust and efficient as 

compared to finite difference sensitivity. The semi-analytic sensitivity is more efficient than 

complex step sensitivity which requires full re-analysis by solving complex equation set. The 

sensitivity of reliability index with respect to design variables is calculated from the gradient of 

limit state function at the MPP of reliability analysis. Double-loop RBDO minimizes structural 

weight with reliability index constraint. By using the ultimate strength direct solving method, semi-

analytic sensitivity and gradient-based optimization algorithm, the RBDO method developed in 

this dissertation is found to be robust and efficient. Pareto front with structural cost and reliability 

objectives is calculated for the nonlinear beam-columns under different nondeterministic loads and 

is compared with deterministic optimization. 

The RBDO procedure for nonlinear beam-columns of inelastic material and asymmetric I cross-

section presented in this dissertation is robust and efficient as it uses the semi-analytic sensitivity. 

The ultimate strength direct solving method, semi-analytic sensitivity analysis, reliability analysis, 

optimization and RBDO methods can be applied for combined load cases, nonlinear beam-

columns of non-constant cross-sections, frame system consisting of multiple beam-columns, and 

large/complicated engineering structures including stiffened panels, aerospace/ocean structures. 
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A Appendix 

A.1 ANNEX A  

CONSTITUTIVE EQUATIONS  

The cross-section geometry of the beam-column is shown in following figure: 

 

Assume the plating is on top and the stiffener is on the bottom, the dimensions 

ℎଵ, ℎଶ, ℎଷ, ℎସ, ܾଵ, ܾଶ and ܾ  are corresponding to the cross-sectional geometric parameters by 

following equations: 

ܾଵ = ܾ௣, ܾ = ,௪ݐ ܾଶ = ௙ܾ , ℎଶ + ℎଷ = ℎ௪ , ℎଵ = ℎଶ + ,௣ݐ ℎସ = ℎଷ +   ௙ݐ

where the geometric parameters are plate width b, plate thickness t, web height hw, web thickness 

tw, flange width bf and flange thickness tf. 

The distance of centroid axis to the middle of the web plate is denoted as ܥ௧ which is  

௧ܥ =
ଵ

ଶ
∗

൫ି௕೑൯∗௧೑
మି௕೑∗௧೑∗௛ೢା௕೛∗௧೛∗௛ೢା௕೛∗௧೛

మ

௕೑∗௧೑ା௛ೢ∗௧ೢା௕೛∗௧೛
  

ℎଵ, ℎଶ, ℎଷ and ℎସ are calculated by following equations: 
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ℎଵ = 0.5 ∗ ℎ௪ − ௧ܥ + ௣ , ℎଶݐ = 0.5 ∗ ℎ௪ − ௧ , ℎଷܥ = 0.5 ∗ ℎ௪ + ௧ , ℎସܥ = 0.5 ∗ ℎ௪ + ௧ܥ +   ௙ݐ

The stress-strain relationship of elastic-perfectly-plastic material and Euler-Bernoulli beam are 

(ݕ)ߪ = ,(ݕ)ߝܧ (ݕ)ߝ = ௫ߛ − ,ݕ௭ߢ ௬ߝ =   ௬ߪܧ

where ܧ is Young’s Modulus, ݕ is the distance from centroid axis, (ݕ)ߝ is elastic strain, (ݕ)ߪ is 

elastic stress, ߛ௫ is the strain at centroid axis, ߢ௭ is the curvature at centroid axis, ߪ௬ is yield stress 

and ߝ௬ is yield strain.  

When ߢ௭ > 0, the boundaries of plastic zone ℎ௬ and ݃௬ are calculated by 

ℎ௬ =
ఊೣାఌ೤

఑೥
, ݃௬ =

ିఊೣାఌ೤

఑೥
   

When ߢ௭ > 0, expressions of cross-sectional force ܲ and moment ܯ are distinguished by15 cases. 

The integration forms are shown below. The omitted expressions of moment can easily derived by 

adding the vertical distance ݕ to each integrand from the expressions of corresponding force. 

 

If ݃௬ > ℎସ 

 

Case 1: ℎ௬ > ℎଵ,  

ଵܲ = ׬ ݕଶܾ݀ߝܧ
ି௛య

ି௛ర
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௛య
+ ׬ ݕଵܾ݀ߝܧ

௛భ

௛మ
  

ଵܯ = ׬ ߝܧ ଶݕ݀ݕ
ି௛య

ି௛ర
+ ׬ ݕ݀ݕܾߝܧ

௛మ

ି௛య
+ ׬ ݕ݀ݕଵܾߝܧ

௛భ

௛మ
   

 

Case 2: ℎଵ > ℎ௬ > ℎଶ,  
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ଶܲ = ׬ ݕଶܾ݀ߝܧ
ି௛య

ି௛ర
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௛య
+ ׬ ݕଵܾ݀ߝܧ

௛೤

௛మ
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛೤
  

ଶܯ = ׬ ݕ݀ݕଶܾߝܧ
ି௛య

ି௛ర
+ ׬ ݕ݀ݕܾߝܧ

௛మ

ି௛య
+ ׬ ݕ݀ݕଵܾߝܧ

௛೤

௛మ
+ ׬ ݕ݀ݕଵܾ(௬ߪ−)

௛భ

௛೤
  

 

Case 3: ℎଶ > ℎ௬ > −ℎଷ,  

ଷܲ = ׬ ݕଶܾ݀ߝܧ
ି௛య

ି௛ర
+ ׬ ݕܾ݀ߝܧ

௛೤

ି௛య
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

௛೤
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

 

Case 4: −ℎଷ > ℎ௬ > −ℎସ,  

ସܲ = ׬ ݕଶܾ݀ߝܧ
௛೤

ି௛ర
+ ׬ ݕଶܾ݀(௬ߪ−)

ି௛య

௛೤
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

ି௛య
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

 

Case 5: −ℎସ > ℎ௬,  

ହܲ = ׬ ݕଶܾ݀(௬ߪ−)
ି௛య

ି௛ర
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

ି௛య
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

 

If ℎସ > ݃௬ > ℎଷ 

 

Case 6: ℎ௬ > ℎଵ,  

଺ܲ = ׬ ݕ௬ܾଶ݀ߪ
ି௚೤

ି௛ర
+ ׬ ݕଶܾ݀ߝܧ

ି௛య

ି௚೤
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௛య
+ ׬ ݕଵܾ݀ߝܧ

௛భ

௛మ
  

 



 

131 

 

Case 7: ℎଵ > ℎ௬ > ℎଶ,  

଻ܲ = ׬ ݕ௬ܾଶ݀ߪ
ି௚೤

ି௛ర
+ ׬ ݕଶܾ݀ߝܧ

ି௛య

ି௚೤
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௛య
+ ׬ ߝܧ ଵ݀ݕ

௛೤

௛మ
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛೤
  

 

Case 8: ℎଶ > ℎ௬ > −ℎଷ,  

଼ܲ = ׬ ݕ௬ܾଶ݀ߪ
ି௚೤

ି௛ర
+ ׬ ݕଶܾ݀ߝܧ

ି௛య

ି௚೤
+ ׬ ݕܾ݀ߝܧ

௛೤

ି௛య
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

௛೤
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

 

Case 9: −ℎଷ > ℎ௬ > −ℎସ,  

ଽܲ = ׬ ݕ௬ܾଶ݀ߪ
ି௚೤

ି௛ర
+ ׬ ݕଶܾ݀ߝܧ

௛೤

ି௚೤
+ ׬ ݕଶܾ݀(௬ߪ−)

ି௛య

௛೤
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

ି௛య
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

If ℎଷ > ݃௬ > −ℎଶ 

 

Case 10: ℎ௬ > ℎଵ,  

ଵܲ଴ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

ି௚೤

ି௛య
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௚೤
+ ׬ ݕଵܾ݀ߝܧ

௛భ

௛మ
  

 

Case 11: ℎଵ > ℎ௬ > ℎଶ,  

ଵܲଵ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

ି௚೤

ି௛య
+ ׬ ݕܾ݀ߝܧ

௛మ

ି௚೤
+ ׬ ݕଵܾ݀ߝܧ

௛೤

௛మ
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛೤
  

 

Case 12: ℎଶ > ℎ௬ > −ℎଷ,            
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ଵܲଶ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

ି௚೤

ି௛య
+ ׬ ݕܾ݀ߝܧ

௛೤

ି௚೤
+ ׬ ݕܾ݀(௬ߪ−)

௛మ

௛೤
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛మ
  

 

If −ℎଶ > ݃௬ > −ℎଵ 

 

Case 13: ℎ௬ > ℎଵ,  

ଵܲଷ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

௛మ

ି௛య
+ ׬ ݕ௬ܾଵ݀ߪ

ି௚೤

௛మ
+ ׬ ݕଵܾ݀ߝܧ

௛భ

ି௚೤
  

 

Case 14: ℎଵ > ℎ௬ > ℎଶ,  

ଵܲସ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

௛మ

ି௛య
+ ׬ ݕ௬ܾଵ݀ߪ

ି௚೤

௛మ
+ ׬ ݕଵܾ݀ߝܧ

௛೤

ି௚೤
+ ׬ ݕଵܾ݀(௬ߪ−)

௛భ

௛೤
  

 

If −ℎଵ > ݃௬ 

 

Case 15:  

ଵܲହ = ׬ ݕ௬ܾଶ݀ߪ
ି௛య

ି௛ర
+ ׬ ݕ௬ܾ݀ߪ

௛మ

ି௛య
+ ׬ ݕ௬ܾଵ݀ߪ

௛భ

௛మ
  

 

The constitutive equations of the beam-column are 

௫ߛ)௫ܥ , (௭ߢ + ܲ = 0 

௫ߛ)௭ܥ , (௭ߢ − ௭ܯ = 0 
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The functions ܥ௫ and ܥ௭ can be calculated by substituting the geometric parameters and material 

parameters into the integration equations of the 15 cases. ߛ௫  and ߢ௭  are replaced by ߛ  and ߢ 

respectively. 

 

Case1: 

௫ܥ =  ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ − ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ − ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ +

 ܾଶ ∗ ܧ ∗ ߛ ∗ ℎସ −
௕భ∗ா∗௛భ

మ∗఑

ଶ
 −

௕∗ா∗௛మ
మ∗఑

ଶ
 +

௕భ∗ா∗௛మ
మ∗఑

ଶ
 +

௕∗ா∗௛య
మ∗఑

ଶ
 −

௕మ∗ா∗௛య
మ∗఑

ଶ
+

௕మ∗ா∗௛ర
మ∗఑

ଶ
  

 

௭ܥ =
௕భ∗ா∗ఊ∗௛భ

మ

ଶ
+

௕∗ா∗ఊ∗௛మ
మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊ∗௛య
మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
−

௕మ∗ா∗ఊ∗௛ర
మ

ଶ
−

௕భ∗ா∗௛భ
య∗఑

ଷ
−

௕∗ா∗௛మ
య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
−

௕∗ா∗௛య
య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
−

௕మ∗ா∗௛ర
య∗఑

ଷ
  

 

Case 2:  

௫ܥ = ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ − ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ +  ܾଶ ∗ ܧ ∗ ߛ ∗ ℎସ +

௕భ∗ா∗ఊమ

ଶ∗఑
−

௕∗ா∗௛మ
మ∗఑

ଶ
+

௕భ∗ா∗௛మ
మ∗఑

ଶ
+

௕∗ா∗௛య
మ∗఑

ଶ
−

௕మ∗ா∗௛య
మ∗఑

ଶ
+

௕మ∗ா∗௛ర
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗ ܵ௬ +

௕భ∗ఊ∗ௌ೤

఑
+

௕భ∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ =
௕∗ா∗ఊ∗௛మ

మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊ∗௛య
మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
−

௕మ∗ா∗ఊ∗௛ర
మ

ଶ
+

௕భ∗ா∗ఊయ

଺∗఑మ −
௕∗ா∗௛మ

య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
−

௕∗ா∗௛య
య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
−

௕మ∗ா∗௛ర
య∗఑

ଷ
−

௕భ∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −
௕భ∗ௌ೤

య

ଷ∗ாమ∗఑మ −

௕భ∗ௌ೤∗൮௛భ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
               



 

134 

 

 

Case 3:  

௫ܥ = ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ +  ܾଶ ∗ ܧ ∗ ߛ ∗ ℎସ +
௕∗ா∗ఊమ

ଶ∗఑
+

௕∗ா∗௛య
మ∗఑

ଶ
−

௕మ∗ா∗௛య
మ∗఑

ଶ
+

௕మ∗ா∗௛ర
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗ ܵ௬ −  ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ +

௕∗ఊ∗ௌ೤

఑
+

௕∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ = −
௕∗ா∗ఊ∗௛య

మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
−

௕మ∗ா∗ఊ∗௛ర
మ

ଶ
+

௕∗ா∗ఊయ

଺∗఑మ −
௕∗ா∗௛య

య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
−

௕మ∗ா∗௛ర
య∗఑

ଷ
−

௕భ∗௛భ
మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
−

௕∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −
௕∗ௌ೤

య

ଷ∗ாమ∗఑మ −

௕∗ௌ೤∗൮௛మ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 4:  

௫ܥ = ܾଶ ∗ ܧ ∗ ߛ ∗ ℎସ +
௕మ∗ா∗ఊమ

ଶ∗఑
+

௕మ∗ா∗௛ర
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗ ܵ௬ −  ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ −  ܾ ∗

ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎଷ ∗ ܵ௬ +
௕మ∗ఊ∗ௌ೤

఑
+

௕మ∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ = −
௕మ∗ா∗ఊ∗௛ర

మ

ଶ
+

௕మ∗ா∗ఊయ

଺∗఑మ −
௕మ∗ா∗௛ర

య∗఑

ଷ
−

௕భ∗௛భ
మ∗ௌ೤

ଶ
−

௕∗௛మ
మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
+

௕∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −

௕మ∗ௌ೤
య

ଷ∗ாమ∗఑మ −

௕మ∗ௌ೤∗൮௛య
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
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Case 5:  

௫ܥ = −൫ܾଵ ∗ ℎଵ ∗ ܵ௬൯ −  ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ −  ܾ ∗ ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎସ ∗

ܵ௬  

 

௭ܥ = −
௕భ∗௛భ

మ∗ௌ೤

ଶ
−

௕∗௛మ
మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
+

௕∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛య
మ∗ௌ೤

ଶ
+

௕మ∗௛ర
మ∗ௌ೤

ଶ
  

 

Case 6:  

௫ܥ =  ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ − ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ − ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ −

௕మ∗ா∗ఊమ

ଶ∗఑
−

௕భ∗ா∗௛భ
మ∗఑

ଶ
−

௕∗ா∗௛మ
మ∗఑

ଶ
+

௕భ∗ா∗௛మ
మ∗఑

ଶ
+

௕∗ா∗௛య
మ∗఑

ଶ
−

௕మ∗ா∗௛య
మ∗఑

ଶ
+  ܾଶ ∗ ℎସ ∗ ܵ௬ +

௕మ∗ఊ∗ௌ೤

఑
−

௕మ∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ =
௕భ∗ா∗ఊ∗௛భ

మ

ଶ
+

௕∗ா∗ఊ∗௛మ
మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊ∗௛య
మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
−

௕మ∗ா∗ఊయ

଺∗఑మ −
௕భ∗ா∗௛భ

య∗఑

ଷ
−

௕∗ா∗௛మ
య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
−

௕∗ா∗௛య
య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
+

௕మ∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −
௕మ∗ௌ೤

య

ଷ∗ாమ∗఑మ +

௕మ∗ௌ೤∗൮ି௛ర
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 7:  

௫ܥ = ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ − ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ +
௕భ∗ா∗ఊమ

ଶ∗఑
−

௕మ∗ா∗ఊమ

ଶ∗఑
−

௕∗ா∗௛మ
మ∗఑

ଶ
+

௕భ∗ா∗௛మ
మ∗఑

ଶ
+

௕∗ா∗௛య
మ∗఑

ଶ
−

௕మ∗ா∗௛య
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬ +

௕భ∗ఊ∗ௌ೤

఑
+

௕మ∗ఊ∗ௌ೤

఑
+

௕భ∗ௌ೤
మ

ଶ∗ா∗఑
−

௕మ∗ௌ೤
మ

ଶ∗ா∗఑
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௭ܥ =
௕∗ா∗ఊ∗௛మ

మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊ∗௛య
మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
+

௕భ∗ா∗ఊయ

଺∗఑మ −
௕మ∗ா∗ఊయ

଺∗఑మ −
௕∗ா∗௛మ

య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
−

௕∗ா∗௛య
య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
−

௕భ∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ +
௕మ∗ఊ∗ௌ೤

మ

ଶ∗ா∗఑మ −
௕భ∗ௌ೤

య

ଷ∗ாమ∗఑మ −
௕మ∗ௌ೤

య

ଷ∗ாమ∗఑మ +

௕మ∗ௌ೤∗൮ି௛ర
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕భ∗ௌ೤∗൮௛భ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 8:  

௫ܥ =  ܾ ∗ ܧ ∗ ߛ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ߛ ∗ ℎଷ +
௕∗ா∗ఊమ

ଶ∗఑
−

௕మ∗ா∗ఊమ

ଶ∗఑
+

௕∗ா∗௛య
మ∗఑

ଶ
−

௕మ∗ா∗௛య
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗

ܵ௬ −   ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬ +
௕∗ఊ∗ௌ೤

఑
+

௕మ∗ఊ∗ௌ೤

఑
+

௕∗ௌ೤
మ

ଶ∗ா∗఑
−

௕మ∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ = −
௕∗ா∗ఊ∗௛య

మ

ଶ
+

௕మ∗ா∗ఊ∗௛య
మ

ଶ
+

௕∗ா∗ఊయ

଺∗఑మ −
௕మ∗ா∗ఊయ

଺∗఑మ −
௕∗ா∗௛య

య∗఑

ଷ
+

௕మ∗ா∗௛య
య∗఑

ଷ
−

௕భ∗௛భ
మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
−

௕∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ +
௕మ∗ఊ∗ௌ೤

మ

ଶ∗ா∗఑మ −
௕∗ௌ೤

య

ଷ∗ாమ∗఑మ −
௕మ∗ௌ೤

య

ଷ∗ாమ∗఑మ +

௕మ∗ௌ೤∗൮ି௛ర
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕∗ௌ೤∗൮௛మ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 9:  

௫ܥ =  −൫ܾଵ ∗ ℎଵ ∗ ܵ௬൯ −  ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬ +
௕∗ఊ∗ௌ೤

఑
+

௕మ∗ఊ∗ௌ೤

఑
+

௕∗ௌ೤
మ

ா∗఑
−

௕మ∗ௌ೤
మ

ா∗఑
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௭ܥ = −
௕భ∗௛భ

మ∗ௌ೤

ଶ
−

௕∗௛మ
మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
+

௕∗௛య
మ∗ௌ೤

ଶ
−

ଶ∗௕మ∗ௌ೤
య

ଷ∗ாమ∗఑మ +

௕మ∗ௌ೤∗൮ି௛ర
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕∗ௌ೤∗൮௛య
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 10:  

௫ܥ = ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ − ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ −
௕∗ா∗ఊమ

ଶ∗఑
−

௕భ∗ா∗௛భ
మ∗఑

ଶ
−

௕∗ா∗௛మ
మ∗఑

ଶ
+

௕భ∗ா∗௛మ
మ∗఑

ଶ
+  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬ +

௕∗ఊ∗ௌ೤

఑
−

௕∗ௌ೤
మ

ଶ∗ா∗఑
  

 

௭ܥ =
௕భ∗ா∗ఊ∗௛భ

మ

ଶ
+

௕∗ா∗ఊ∗௛మ
మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊయ

଺∗఑మ −
௕భ∗ா∗௛భ

య∗఑

ଷ
−

௕∗ா∗௛మ
య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
+

௕∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −
௕∗ௌ೤

య

ଷ∗ாమ∗఑మ +

௕∗ௌ೤∗൮ି௛య
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 11:  

௫ܥ = ܾ ∗ ܧ ∗ ߛ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଶ −
௕∗ா∗ఊమ

ଶ∗఑
+

௕భ∗ா∗ఊమ

ଶ∗఑
−

௕∗ா∗௛మ
మ∗఑

ଶ
+

௕భ∗ா∗௛మ
మ∗఑

ଶ
−  ܾଵ ∗ ℎଵ ∗

ܵ௬ +  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎଷ ∗ ܵ௬ + ܾଶ ∗ ℎସ ∗ ܵ௬ +
௕∗ఊ∗ௌ೤

఑
+

௕భ∗ఊ∗ௌ೤

఑
−

௕∗ௌ೤
మ

ଶ∗ா∗఑
+

௕భ∗ௌ೤
మ

ଶ∗ா∗఑
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௭ܥ =
௕∗ா∗ఊ∗௛మ

మ

ଶ
−

௕భ∗ா∗ఊ∗௛మ
మ

ଶ
−

௕∗ா∗ఊయ

଺∗఑మ +
௕భ∗ா∗ఊయ

଺∗఑మ −
௕∗ா∗௛మ

య∗఑

ଷ
+

௕భ∗ா∗௛మ
య∗఑

ଷ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
+

௕∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −
௕భ∗ఊ∗ௌ೤

మ

ଶ∗ா∗఑మ −
௕∗ௌ೤

య

ଷ∗ாమ∗఑మ −
௕భ∗ௌ೤

య

ଷ∗ாమ∗఑మ +

௕∗ௌ೤∗൮ି௛య
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕భ∗ௌ೤∗൮௛భ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 12:  

௫ܥ = −൫ܾଵ ∗ ℎଵ ∗ ܵ௬൯ −  ܾ ∗ ℎଶ ∗ ܵ௬ +  ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗

ܵ௬ +
ଶ∗௕∗ఊ∗ௌ೤

఑
  

 

௭ܥ = −
௕భ∗௛భ

మ∗ௌ೤

ଶ
+

௕భ∗௛మ
మ∗ௌ೤

ଶ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
−

ଶ∗௕∗ௌ೤
య

ଷ∗ாమ∗఑మ +

௕∗ௌ೤∗൮ି௛య
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕∗ௌ೤∗൮௛మ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 13:  

௫ܥ = ܾଵ ∗ ܧ ∗ ߛ ∗ ℎଵ −
௕భ∗ா∗ఊమ

ଶ∗఑
−

௕భ∗ா∗௛భ
మ∗఑

ଶ
+  ܾ ∗ ℎଶ ∗ ܵ௬ − ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗

ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬ +
௕భ∗ఊ∗ௌ೤

఑
−

௕భ∗ௌ೤
మ

ଶ∗ா∗఑
  

 



 

139 

 

௭ܥ =
௕భ∗ா∗ఊ∗௛భ

మ

ଶ
−

௕భ∗ா∗ఊయ

଺∗఑మ −
௕భ∗ா∗௛భ

య∗఑

ଷ
+

௕∗௛మ
మ∗ௌ೤

ଶ
−

௕∗௛య
మ∗ௌ೤

ଶ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
+

௕భ∗ఊ∗ௌ೤
మ

ଶ∗ா∗఑మ −

௕భ∗ௌ೤
య

ଷ∗ாమ∗఑మ +

௕భ∗ௌ೤∗൮ି௛మ
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 14:  

௫ܥ = −൫ܾଵ ∗ ℎଵ ∗ ܵ௬൯ +  ܾ ∗ ℎଶ ∗ ܵ௬ −  ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗

ܵ௬ +
ଶ∗௕భ∗ఊ∗ௌ೤

఑
  

 

௭ܥ =
௕∗௛మ

మ∗ௌ೤

ଶ
−

௕∗௛య
మ∗ௌ೤

ଶ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
−

ଶ∗௕భ∗ௌ೤
య

ଷ∗ாమ∗఑మ +

௕భ∗ௌ೤∗൮ି௛మ
మା

൬ം ష
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
−

௕భ∗ௌ೤∗൮௛భ
మି

൬ം శ
ೄ೤
ಶ ൰

మ

ഉమ ൲

ଶ
  

 

Case 15:  

௫ܥ = ܾଵ ∗ ℎଵ ∗ ܵ௬ +  ܾ ∗ ℎଶ ∗ ܵ௬ − ܾଵ ∗ ℎଶ ∗ ܵ௬ +  ܾ ∗ ℎଷ ∗ ܵ௬ −  ܾଶ ∗ ℎଷ ∗ ܵ௬ +  ܾଶ ∗ ℎସ ∗ ܵ௬  

 

௭ܥ =
௕భ∗௛భ

మ∗ௌ೤

ଶ
+

௕∗௛మ
మ∗ௌ೤

ଶ
−

௕భ∗௛మ
మ∗ௌ೤

ଶ
−

௕∗௛య
మ∗ௌ೤

ଶ
+

௕మ∗௛య
మ∗ௌ೤

ଶ
−

௕మ∗௛ర
మ∗ௌ೤

ଶ
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A.2 ANNEX B  

DERIVATIVES OF CONSTITUTIVE EQUATIONS  

A.2.1 First-Order Derivatives: 

Case1: 

 

߲஼ೣ

߲఑
= −

௕భ∗ா∗௛భ
మ

ଶ
−

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛ర
మ

ଶ
  

 

߲஼ೣ

߲ఊ
=  ܾଵ ∗ ܧ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ +  ܾଶ ∗ ܧ ∗ ℎସ  

 

߲஼೥

߲఑
= −

௕భ∗ா∗௛భ
య

ଷ
−

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
−

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
−

௕మ∗ா∗௛ర
య

ଷ
  

 

߲஼೥

߲ఊ
=

௕భ∗ா∗௛భ
మ

ଶ
+

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛ర
మ

ଶ
  

 

Case 2:  

 

߲஼ೣ

߲఑
= −

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛ర
మ

ଶ
−

௕భ∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ఊ∗ௌ೤

఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ  
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߲஼ೣ

߲ఊ
= ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ +  ܾଶ ∗ ܧ ∗ ℎସ +

௕భ∗ா∗ఊ

఑
+

௕భ∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
−

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
−

௕మ∗ா∗௛ర
య

ଷ
−

௕భ∗ா∗ఊయ

ଷ∗఑య +
௕భ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕భ∗ௌ೤

య

ଷ∗ாమ∗఑య −

௕భ∗ௌ೤∗ቀఊ ା
ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛ర
మ

ଶ
+

௕భ∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕భ∗ௌ௬∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 3:  

 

߲஼ೣ

߲఑
=

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛ర
మ

ଶ
−

௕∗ா∗ఊమ

ଶ∗఑మ −
௕∗ఊ∗ௌ೤

఑మ −
௕∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ +  ܾଶ ∗ ܧ ∗ ℎସ +

௕∗ா∗ఊ

఑
+

௕∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
−

௕మ∗ா∗௛ర
య

ଷ
−

௕∗ா∗ఊయ

ଷ∗఑య +
௕∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕∗ௌ೤

య

ଷ∗ாమ∗఑య −
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
= −

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛ర
మ

ଶ
+

௕∗ா∗ఊమ

ଶ∗఑మ −
௕∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   
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Case 4:  

 

߲஼ೣ

߲఑
=

௕మ∗ா∗௛ర
మ

ଶ
−

௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕మ∗ఊ∗ௌ೤

఑మ −  
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾଶ ∗ ܧ ∗ ℎସ +

௕మ∗ா∗ఊ

఑
+

௕మ∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕మ∗ா∗௛ర
య

ଷ
−

௕మ∗ா∗ఊయ

ଷ∗఑య +
௕మ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕మ∗ௌ೤

య

ଷ∗ாమ∗఑య −
௕మ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
= −

௕మ∗ா∗௛ర
మ

ଶ
+

௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 5:  

 

߲஼ೣ

߲఑
= 0  

 

߲஼ೣ

߲ఊ
= 0   

 

߲஼೥

߲఑
= 0  
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߲஼೥

߲ఊ
= 0   

 

Case 6:  

 

߲஼ೣ

߲఑
= −

௕భ∗ா∗௛భ
మ

ଶ
−

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕మ∗ఊ∗ௌ೤

఑మ +
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾଵ ∗ ܧ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ −

௕మ∗ா∗ఊ

఑
+

௕మ∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕భ∗ா∗௛భ
య

ଷ
−

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
−

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
+

௕మ∗ா∗ఊయ

ଷ∗఑య −
௕మ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕మ∗ௌ೤

య

ଷ∗ாమ∗఑య −

௕మ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕భ∗ா∗௛భ
మ

ଶ
+

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗ఊమ

ଶ∗఑మ +
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ   

 

Case 7:  
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߲஼ೣ

߲఑
= −

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
−

௕భ∗ா∗ఊమ

ଶ∗఑మ +
௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ఊ∗ௌ೤

఑మ −
௕మ∗ఊ∗ௌ೤

఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ +

௕మ∗ௌ೤
మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ +  ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ +

௕భ∗ா∗ఊ

఑
−

௕మ∗ா∗ఊ

఑
+

௕భ∗ௌ೤

఑
+

௕మ∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
−

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
−

௕భ∗ா∗ఊయ

ଷ∗఑య +
௕మ∗ா∗ఊయ

ଷ∗఑య +
௕భ∗ఊ∗ௌ೤

మ

ா∗఑య −
௕మ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕భ∗ௌ೤

య

ଷ∗ாమ∗఑య +

ଶ∗௕మ∗ௌ೤
య

ଷ∗ாమ∗఑య −
௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య −
௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
+

௕భ∗ா∗ఊమ

ଶ∗఑మ −
௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ +

௕భ∗ௌ೤∗ቀఊ ା
ೄ೤
ಶ

ቁ

఑మ   

 

Case 8:  

 

߲஼ೣ

߲఑
=

௕∗ா∗௛య
మ

ଶ
−

௕మ∗ா∗௛య
మ

ଶ
−

௕∗ா∗ఊమ

ଶ∗఑మ +
௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕∗ఊ∗ௌ೤

఑మ −
௕మ∗ఊ∗ௌ೤

఑మ −
௕∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾ ∗ ܧ ∗ ℎଷ −  ܾଶ ∗ ܧ ∗ ℎଷ +

௕∗ா∗ఊ

఑
−

௕మ∗ா∗ఊ

఑
+

௕∗ௌ೤

఑
+

௕మ∗ௌ೤

఑
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߲஼೥

߲఑
= −

௕∗ா∗௛య
య

ଷ
+

௕మ∗ா∗௛య
య

ଷ
−

௕∗ா∗ఊయ

ଷ∗఑య +
௕మ∗ா∗ఊయ

ଷ∗఑య +
௕∗ఊ∗ௌ೤

మ

ா∗఑య −
௕మ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕∗ௌ೤

య

ଷ∗ாమ∗఑య +
ଶ∗௕మ∗ௌ೤

య

ଷ∗ாమ∗఑య −

௕మ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ
మ

఑య −
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
= −

௕∗ா∗௛య
మ

ଶ
+

௕మ∗ா∗௛య
మ

ଶ
+

௕∗ா∗ఊమ

ଶ∗఑మ −
௕మ∗ா∗ఊమ

ଶ∗఑మ −
௕∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ +
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 9:  

 

߲஼ೣ

߲఑
= − ቀ

௕∗ఊ∗ௌ೤

఑మ ቁ −
௕మ∗ఊ∗ௌ೤

఑మ −
௕∗ௌ೤

మ

ா∗఑మ +
௕మ∗ௌ೤

మ

ா∗఑మ   

 

߲஼ೣ

߲ఊ
=

௕∗ௌ೤

఑
+

௕మ∗ௌ೤

఑
  

 

߲஼೥

߲఑
=

ସ∗௕మ∗ௌ೤
య

ଷ∗ாమ∗఑య −
௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య −
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕మ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑మ +
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 10:  
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߲஼ೣ

߲఑
= −

௕భ∗ா∗௛భ
మ

ଶ
−

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗ఊమ

ଶ∗఑మ −
௕∗ఊ∗ௌ೤

఑మ +
௕∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾଵ ∗ ܧ ∗ ℎଵ +  ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ −

௕∗ா∗ఊ

఑
+

௕∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕భ∗ா∗௛భ
య

ଷ
−

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
+

௕∗ா∗ఊయ

ଷ∗఑య −
௕∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕∗ௌ೤

య

ଷ∗ாమ∗఑య −
௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕భ∗ா∗௛భ
మ

ଶ
+

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗ఊమ

ଶ∗఑మ +
௕∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ   

 

Case 11:  

 

߲஼ೣ

߲఑
= −

௕∗ா∗௛మ
మ

ଶ
+

௕భ∗ா∗௛మ
మ

ଶ
+

௕∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ா∗ఊమ

ଶ∗఑మ −
௕∗ఊ∗ௌ೤

఑మ −
௕భ∗ఊ∗ௌ೤

఑మ +
௕∗ௌ೤

మ

ଶ∗ா∗఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾ ∗ ܧ ∗ ℎଶ −  ܾଵ ∗ ܧ ∗ ℎଶ −

௕∗ா∗ఊ

఑
+

௕భ∗ா∗ఊ

఑
+

௕∗ௌ೤

఑
+

௕భ∗ௌ೤

఑
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߲஼೥

߲఑
= −

௕∗ா∗௛మ
య

ଷ
+

௕భ∗ா∗௛మ
య

ଷ
+

௕∗ா∗ఊయ

ଷ∗఑య −
௕భ∗ா∗ఊయ

ଷ∗఑య −
௕∗ఊ∗ௌ೤

మ

ா∗఑య +
௕భ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕∗ௌ೤

య

ଷ∗ாమ∗఑య +
ଶ∗௕భ∗ௌ೤

య

ଷ∗ாమ∗఑య −

௕∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ
మ

఑య −
௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕∗ா∗௛మ
మ

ଶ
−

௕భ∗ா∗௛మ
మ

ଶ
−

௕∗ா∗ఊమ

ଶ∗఑మ +
௕భ∗ா∗ఊమ

ଶ∗఑మ +
௕∗ௌ೤

మ

ଶ∗ா∗఑మ −
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ +
௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 12:  

 

߲஼ೣ

߲఑
=

ିଶ∗௕∗ఊ∗ௌ೤

఑మ   

 

߲஼ೣ

߲ఊ
=

ଶ∗௕∗ௌ೤

఑
  

 

߲஼೥

߲఑
=

ସ∗௕∗ௌ೤
య

ଷ∗ாమ∗఑య −
௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య −
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑మ +
௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 13:  
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߲஼ೣ

߲఑
= −

௕భ∗ா∗௛భ
మ

ଶ
+

௕భ∗ா∗ఊమ

ଶ∗఑మ −
௕భ∗ఊ∗ௌ೤

఑మ +
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ  

 

߲஼ೣ

߲ఊ
= ܾଵ ∗ ܧ ∗ ℎଵ −

௕భ∗ா∗ఊ

఑
+

௕భ∗ௌ೤

఑
  

 

߲஼೥

߲఑
= −

௕భ∗ா∗௛భ
య

ଷ
+

௕భ∗ா∗ఊయ

ଷ∗఑య −
௕భ∗ఊ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕భ∗ௌ೤

య

ଷ∗ாమ∗఑య −
௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య   

 

߲஼೥

߲ఊ
=

௕భ∗ா∗௛భ
మ

ଶ
−

௕భ∗ா∗ఊమ

ଶ∗఑మ +
௕భ∗ௌ೤

మ

ଶ∗ா∗఑మ +
௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑మ   

 

Case 14:  

 

߲஼ೣ

߲఑
=

ିଶ∗௕భ∗ఊ∗ௌ೤

఑మ   

 

߲஼ೣ

߲ఊ
=

ଶ∗௕భ∗ௌ೤

఑
  

 

߲஼೥

߲఑
=

ସ∗௕భ∗ௌ೤
య

ଷ∗ாమ∗఑య −
௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑య −
௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑య   
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߲஼೥

߲ఊ
=

௕భ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑మ +
௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑మ   

 

Case 15:  

 

߲஼ೣ

߲఑
= 0  

 

߲஼ೣ

߲ఊ
= 0  

 

߲஼೥

߲఑
= 0  

 

߲஼೥

߲ఊ
= 0   

 

A.2.2 Second-Order Derivatives: 

Case 1: 

 

߲మ஼ೣ

߲఑మ = 0  
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߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
= 0  

 

߲మ஼೥

ௗ఑మ = 0  

 

߲మ஼೥

߲ఊమ = 0  

 

߲మ஼೥

߲఑߲ఊ 
= 0  

 

Case 2:  

 

߲మ஼ೣ

߲఑మ =
௕భ∗ா∗ఊమ

఑య −
௕భ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ =
௕భ∗ா

఑
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߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕భ∗ா∗ఊ

఑మ ቁ −
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
௕భ∗ா∗ఊయ

఑ర −
ଷ∗௕భ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕భ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
௕భ∗ா∗ఊ

఑మ +
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
= − ቀ

௕భ∗ா∗ఊమ

఑య ቁ +
௕భ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 3:  

 

߲మ஼ೣ

߲఑మ =
௕∗ா∗ఊమ

఑య −
௕∗ௌ೤

మ

ா∗఑య +
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ =
௕∗ா

఑
  

 

߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕∗ா∗ఊ

఑మ ቁ −
௕∗ௌ೤

఑మ   
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߲మ஼೥

ௗ఑మ =
௕∗ா∗ఊయ

఑ర −
ଷ∗௕∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
௕∗ா∗ఊ

఑మ +
௕∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
= − ቀ

௕∗ா∗ఊమ

఑య ቁ +
௕∗ௌ೤

మ

ா∗఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 4:  

 

߲మ஼ೣ

߲఑మ =
௕మ∗ா∗ఊమ

఑య −
௕మ∗ௌ೤

మ

ா∗఑య +
ଶ∗௕మ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ =
௕మ∗ா

఑
  

 

߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕మ∗ா∗ఊ

఑మ ቁ −
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
௕మ∗ா∗ఊయ

఑ర −
ଷ∗௕మ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕మ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕మ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   
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߲మ஼೥

߲ఊమ =
௕మ∗ா∗ఊ

఑మ +
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
= − ቀ

௕మ∗ா∗ఊమ

఑య ቁ +
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 5:  

 

߲మ஼ೣ

߲఑మ = 0  

 

߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
= 0  

 

߲మ஼೥

ௗ఑మ = 0  

 

߲మ஼೥

߲ఊమ = 0  
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߲మ஼೥

߲఑߲ఊ 
= 0  

 

Case 6:  

 

߲మ஼ೣ

߲఑మ = − ቀ
௕మ∗ா∗ఊమ

఑య ቁ +
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = − ቀ
௕మ∗ா

఑
ቁ  

 

߲మ஼ೣ

߲఑߲ఊ 
=

௕మ∗ா∗ఊ

఑మ −
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ = − ቀ
௕మ∗ா∗ఊయ

఑ర ቁ +
ଷ∗௕మ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕మ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ = − ቀ
௕మ∗ா∗ఊ

఑మ ቁ +
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

௕మ∗ா∗ఊమ

఑య −
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య   
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Case 7:  

 

߲మ஼ೣ

߲఑మ =
௕భ∗ா∗ఊమ

఑య −
௕మ∗ா∗ఊమ

఑య −
௕భ∗ௌ೤

మ

ா∗఑య +
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ =
௕భ∗ா

఑
−

௕మ∗ா

఑
  

 

߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕భ∗ா∗ఊ

఑మ ቁ +
௕మ∗ா∗ఊ

఑మ −
௕భ∗ௌ೤

఑మ −
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
௕భ∗ா∗ఊయ

఑ర −
௕మ∗ா∗ఊయ

఑ర −
ଷ∗௕భ∗ఊ∗ௌ೤

మ

ா∗఑ర +
ଷ∗௕మ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕భ∗ௌ೤

య

ாమ∗఑ర −
ଶ∗௕మ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +

ଷ∗௕భ∗ௌ೤∗ቀఊ ା
ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
௕భ∗ா∗ఊ

఑మ −
௕మ∗ா∗ఊ

఑మ +
௕భ∗ௌ೤

఑మ +
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
= − ቀ

௕భ∗ா∗ఊమ

఑య ቁ +
௕మ∗ா∗ఊమ

఑య +
௕భ∗ௌ೤

మ

ா∗఑య −
௕మ∗ௌ೤

మ

ா∗఑య − 
ଶ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 8:  
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߲మ஼ೣ

߲఑మ =
௕∗ா∗ఊమ

఑య −
௕మ∗ா∗ఊమ

఑య −
௕∗ௌ೤

మ

ா∗఑య +
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ =
௕∗ா

఑
−

௕మ∗ா

఑
  

 

߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕∗ா∗ఊ

఑మ ቁ +
௕మ∗ா∗ఊ

఑మ −
௕∗ௌ೤

఑మ −
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
௕∗ா∗ఊయ

఑ర −
௕మ∗ா∗ఊయ

఑ర −
ଷ∗௕∗ఊ∗ௌ೤

మ

ா∗఑ర +
ଷ∗௕మ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕∗ௌ೤

య

ாమ∗఑ర −
ଶ∗௕మ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +

ଷ∗௕∗ௌ೤∗ቀఊ ା
ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
௕∗ா∗ఊ

఑మ −
௕మ∗ா∗ఊ

఑మ +
௕∗ௌ೤

఑మ +
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
= − ቀ

௕∗ா∗ఊమ

఑య ቁ +
௕మ∗ா∗ఊమ

఑య +
௕∗ௌ೤

మ

ா∗఑య −
௕మ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 9:  

 



 

157 

 

߲మ஼ೣ

߲఑మ =
ିଶ∗௕మ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
= − ቀ

௕∗ௌ೤

఑మ ቁ −
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
ିସ∗௕మ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕మ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
௕∗ௌ೤

఑మ +
௕మ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

ିଶ∗௕మ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 10:  

 

߲మ஼ೣ

߲఑మ = − ቀ
௕∗ா∗ఊమ

఑య ቁ +
௕∗ௌ೤

మ

ா∗఑య −
ଶ∗௕∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య   
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߲మ஼ೣ

߲ఊమ = − ቀ
௕∗ா

఑
ቁ  

 

߲మ஼ೣ

߲఑߲ఊ 
=

௕∗ா∗ఊ

఑మ −
௕∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ = − ቀ
௕∗ா∗ఊయ

఑ర ቁ +
ଷ∗௕∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ = − ቀ
௕∗ா∗ఊ

఑మ ቁ +
௕∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

௕∗ா∗ఊమ

఑య −
௕∗ௌ೤

మ

ா∗఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య   

 

Case 11:  

 

߲మ஼ೣ

߲఑మ = − ቀ
௕∗ா∗ఊమ

఑య ቁ +
௕భ∗ா∗ఊమ

఑య +
௕∗ௌ೤

మ

ா∗఑య −
௕భ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = − ቀ
௕∗ா

఑
ቁ +

௕భ∗ா

఑
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߲మ஼ೣ

߲఑߲ఊ 
=

௕∗ா∗ఊ

఑మ −
௕భ∗ா∗ఊ

఑మ −
௕∗ௌ೤

఑మ −
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ = − ቀ
௕∗ா∗ఊయ

఑ర ቁ +
௕భ∗ா∗ఊయ

఑ర +
ଷ∗௕∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଷ∗௕భ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕∗ௌ೤

య

ாమ∗఑ర −
ଶ∗௕భ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +

ଷ∗௕భ∗ௌ೤∗ቀఊ ା
ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ = − ቀ
௕∗ா∗ఊ

఑మ ቁ +
௕భ∗ா∗ఊ

఑మ +
௕∗ௌ೤

఑మ +
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

௕∗ா∗ఊమ

఑య −
௕భ∗ா∗ఊమ

఑య −
௕∗ௌ೤

మ

ா∗఑య +
௕భ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 12:  

 

߲మ஼ೣ

߲఑మ =
ିଶ∗௕∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
=

ିଶ∗௕∗ௌ೤

఑మ   
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߲మ஼೥

ௗ఑మ =
ିସ∗௕∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +
ଷ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
ଶ∗௕∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

ିଶ∗௕∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 13:  

 

߲మ஼ೣ

߲఑మ = − ቀ
௕భ∗ா∗ఊమ

఑య ቁ +
௕భ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕భ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = − ቀ
௕భ∗ா

఑
ቁ  

 

߲మ஼ೣ

߲఑߲ఊ 
=

௕భ∗ா∗ఊ

఑మ −
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ = − ቀ
௕భ∗ா∗ఊయ

఑ర ቁ +
ଷ∗௕భ∗ఊ∗ௌ೤

మ

ா∗఑ర −
ଶ∗௕భ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర   
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߲మ஼೥

߲ఊమ = − ቀ
௕భ∗ா∗ఊ

఑మ ቁ +
௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

߲఑߲ఊ 
=

௕భ∗ா∗ఊమ

఑య −
௕భ∗ௌ೤

మ

ா∗఑య −
ଶ∗௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ

఑య   

 

Case 14:  

 

߲మ஼ೣ

߲఑మ =
ିଶ∗௕భ∗ௌ೤∗ቀିఊ ା

ೄ೤
ಶ

ቁ

఑య +
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
=

ିଶ∗௕భ∗ௌ೤

఑మ   

 

߲మ஼೥

ௗ఑మ =
ିସ∗௕భ∗ௌ೤

య

ாమ∗఑ర +
ଷ∗௕భ∗ௌ೤∗ቀఊ ି

ೄ೤
ಶ

ቁ
మ

఑ర +
ଷ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ
మ

఑ర   

 

߲మ஼೥

߲ఊమ =
ଶ∗௕భ∗ௌ೤

఑మ   
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߲మ஼೥

߲఑߲ఊ 
=

ିଶ∗௕భ∗ௌ೤∗ቀఊ ି
ೄ೤
ಶ

ቁ

఑య −
ଶ∗௕భ∗ௌ೤∗ቀఊ ା

ೄ೤
ಶ

ቁ

఑య   

 

Case 15:  

 

߲మ஼ೣ

߲఑మ = 0  

 

߲మ஼ೣ

߲ఊమ = 0  

 

߲మ஼ೣ

߲఑߲ఊ 
= 0  

 

߲మ஼೥

ௗ఑మ = 0  

 

߲మ஼೥

߲ఊమ = 0  

 

߲మ஼೥

߲఑߲ఊ 
= 0  
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A.3 ANNEX C  

ADDITIONAL RESULTS OF RBDO  

Load = 2.0E5 N 

COV = 0.01 

Design variable (mm) Ultimate 

load (N) 

Objective 

function  

Reliability 

index  

Probability 

of failure 

଴ ௙ܲߚ ௙ ௨ܲ Area (mm2)ݐ ௪ ௙ܾݐ ℎ௪ ݐ ܾ   

Lower limit 

തܺ௠௜௡ 

200.0 10.0 80.0 5.0 30.0 5.0 2.7616E5 2550.00 1.4356 0.0756 

Upper limit 

തܺ௠௔௫  

400.0 15.0 120.0 10.0 50.0 10.0 1.1077E6 7700.00 7.92386 1.1512E-15 

Initial value തܺ଴ 300.0 12.5 100.0 7.5 40.0 7.5 6.1657E5 4800.00 5.8010 3.2965E-9 

Deterministic 

optimum design  

200.0 10.0 120.0 7.7 50.0 10.0 6.1657E5 3425.95 6.3484 1.0881E-10 

RBDO design  200.0 10.0 120.0 5.0 49.3 10.0 5.4545E5 3093.11 5.8010 3.2965E-9 

RBDO with 

different 

reliability limit 

200.0 10.0 88.1 5.0 30.0 5.0 3.0488E5 2590.68 2.0 0.0228 

200.0 10.0 103.2 5.0 30.0 5.0 3.5440E5 2665.94 3.0 0.0013 

200.0 10.0 120.0 5.0 30.0 5.0 4.0690E5 2751.24 4.0 3.1671E-5 

200.0 10.0 120.0 5.0 50.0 9.9 5.4608E5 2897.60 5.0 2.8665E-7 

200.0 10.0 120.0 5.8 50.0 10.0 5.6821E5 3197.05 6.0 9.8659E-10 

200.0 10.0 120.0 8.5 50.0 10.0 6.3617E5 3525.13 6.5 4.0160E-11 

200.0 12.4 120.0 10.0 50.0 10.0 7.4023E5 4187.83 7.0 1.2798E-12 

254.3 15.0 120.0 10.0 50.0 10.0 9.0207E5 5513.80 7.5 3.1909E-14 
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Load = 2.0E5 N 

COV = 0.2 

Design variable (mm) Ultimate 

load (N) 

Objective 

function  

Reliability 

index  

Probability 

of failure 

଴ ௙ܲߚ ௙ ௨ܲ Area (mm2)ݐ ௪ ௙ܾݐ ℎ௪ ݐ ܾ   

Lower limit തܺ௠௜௡ 200.0 10.0 80.0 5.0 30.0 5.0 2.7616E5 2550.00 1.0713 0.142 

Upper limit തܺ௠௔௫  400.0 15.0 120.0 10.0 50.0 10.0 1.1077E6 7700.00 7.0903 6.6906E-13 

Initial value തܺ଴ 300.0 12.5 100.0 7.5 40.0 7.5 6.1657E5 4800.00 4.4827 3.6857E-6 

Deterministic 

optimum design  

200.0 10.0 120.0 7.7 50.0 10.0 6.1657E5 3425.95 5.0725 1.9633E-7 

RBDO with same 

reliability limit  

200.0 10.0 120.0 5.1 50.0 10.0 5.5037E5 3107.43 4.4827 3.6857E-6 

RBDO with 

different 

reliability limit 

200.0 10.0 100.1 5.0 30.0 5.0 3.4525E5 2650.34 2.0 0.0228 

200.0 10.0 120.0 5.0 30.0 6.0 4.2155E5 2781.35 3.0 0.0013 

200.0 10.0 120.0 5.0 37.9 10.0 5.0522E5 2978.95 4.0 3.1671E-5 

200.0 10.0 120.0 7.3 50.0 10.0 6.0612E5 3377.55 5.0 2.8665E-7 

200.0 10.0 120.0 9.8 50.0 10.0 6.6847E5 3681.34 5.5 1.8990E-8 

200.0 13.2 120.0 10.0 50.0 10.0 7.6185E5 4343.01 6.0 9.8659E-10 

241.4 15.0 120.0 10.0 50.0 10.0 8.8098E5 5320.29 6.5 4.0160E-11 

 

 


