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1. Executive Summary 

This report outlines the way that the Twitter Equity team researched modern day data 
breaches and the way that Twitter has played a role in effecting a company's stock price 
following a breach. The introduction explains the importance of our research and the 
requirements explain the scope of our project. The design section explains the 
approach to each step of the project. It walks through our data collection of Twitter and 
stock data, how we analyzed all of this data, with a specific section on how we analyzed 
the stock data using the Fama French model, and lastly how we constructed our 
company guide. Following this is our user manual that explains all of the data files that 
we use in our code and that are available for future research on this project. The 
developers manual guides the reader through the process of setting up and running all 
of our scraping and analysis scripts. The lessons learned section of the document 
elaborates on some issues we experienced throughout the duration of the project and 
explains future work that could be done. This report finishes with acknowledging 
everyone who provided assistance, referencing all of the information used to produce 
our research, and an appendix of our code and reference tables.  
 
The magnitude of the work that we did is large. We were given over seven hundred data 
breaches to analyze. From there we had to gather all tweets related to that event 
sometimes with over ninety thousand tweets scraped. After all the gathering we wanted 
to analyze different aspects of the Twitter information to try and find trends in 
companies who performed well despite a data breach.  
 
Many of the data files that we produced aren’t present in the report because we 
generated over fifteen hundred but there is at least one example file to demonstrate the 
different inputs and outputs that our code works with.  
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2. Introduction 
Incidents of data breaches that reveal company secrets or confidential client information 
can affect the firm seriously. This project records how firms use Twitter to manage the 
flow of information about data breach incidents. Also, it determines how users comment 
and spread the data breach information on Twitter. It then analyzes whether the above 
behaviors would have impact on firm stock performance after the data breach incidents. 

For example, Equifax reported a data breach in September of 2017, which was all over 
the media. 143 million people were affected by this breach, and Equifax didn't release 
this information until 6 months after the incident occurred [1]. The stock market value of 
Equifax plummeted when they did announce the breach, and the company handled the 
entire response to the breach terribly. They tweeted out a link to a very poorly designed 
website and they also had multiple leadership changes before the breach was 
announced. We researched other companies who have gone through data breaches 
and determined if their social media interaction lessened the effects of the breach on 
the  company’s stock market price. We analyzed data breaches over the past 10 years 
and mined Twitter data from companies related to these breaches.  

3. Requirements 
For our project, we need to first gather tweet data before and after data breaches.  
Using this data, we need to look at how each firm responded to the event, for example 
some firms may respond to every user or make an announcement about the breach, 
while others may not have any activity on Twitter related to the breach.  We also need 
to see if the firm’s Twitter account had abnormal behavior after the data breach event 
and then compare it to their activity before the breach.  Furthermore, we need to gather 
data on the firm’s tweet data, including the firm’s number of tweets, retweets, and likes.  
This will help us get a better idea of how much the firm used their account to handle 
other Twitter users, and events related to the breach.   
 
Moreover, we also need to gather Twitter data for each data breach event, searching for 
tweets published during the event time using a provided keyword list. This includes 
many tweets, not just the firm’s tweets.  The goal is to analyze the topics of user 
discussion, classify different types of Twitter users, and identify influential users.  After 
collecting the data, we need to analyze the stock market trends of the companies during 
the data breach event.  Based on the firm’s stock during the breach, we need to analyze 
companies which successfully managed the data breach and those that didn’t.  
Ultimately, we need to come up with a proposal for how a company should handle a 
data breach based on our findings. 
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4. Design 

4.1 High Level Design 
Figure 1 below demonstrates the high level design of our project. 
 

 
Figure 1: High Level Design 

4.2 Twitter Collection 
The process of collecting company and user Twitter data given in Figure 2. Refer to 
scrape_company_tweets.py and user_tweets.py in the Appendix. 
 

 
Figure 2: Tweet Collection Process 

 
An input CSV file, which contains a list of data breaches, was processed by a Python 
script which returned a set of CSV files containing all relevant tweets and tweet 
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metadata. Each output CSV file corresponded to a data breach entry in the input CSV 
file. 
 
Additional data was collected including user profile information and tweet type. Tweet 
type encompassed whether a tweet from a company was an announcement or reply. 
These data collection steps are illustrated in Figure 3 and 4. Refer to profile_scrape.py 
and accouncement_reply_firm.py in the Appendix. 
 

 
Figure 3: Profile Scraping Process 

 

 
Figure 4: Announcement-Reply Determination Process 
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4.3 Stock Collection 
Figure 5 explains how we designed our stock collection. Please refer to 
stockManipulation.py in the Appendix. 

 
Figure 5: Stock Collection Process 

4.4 Tweet Analysis 
Figure 6 and Figure 7 illustrate our tweet analysis process. The process in Figure 6 
determines user sentiment for a group of CSVs containing tweet data. The process in 
Figure 7 determines if a URL exists and the number of URLs for a group of CSVs 
containing tweet data. Refer to user_sentiment.py and countURLs.py in the Appendix. 
  

 
Figure 6: User Sentiment Analysis Process 
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Figure 7: Link Counting Process 

4.5 Fama French Model  
A very popular model used to predict stock performance is the Fama French Model [2]. 
Our client instructed us to use this model so that is why we chose this model over other 
models that could also be used. Our goal of using this model was to be able to predict 
what the stock performance of a firm would have been had there never been a data 
breach, and compare that to what the stock performance actually was. The model can 
be seen in Figure 8 and explains each variable that makes up the model [5].  
 

 
 

Figure 8: Fama French Model 
 
While all of the variables defined above are given by the overall stock market, the alpha 
and beta values are trainable variables for each particular stock. These values are 
formed through a similar process as linear regression over the course of 150 data points 
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or 150 stock return days. Once the model was trained we then used our estimated 
alpha and beta values to plug into the equation and the formula would then compute the 
stock return on the days of the breach and after the breach. We took these estimated 
data points and compared them to the actual stock performance on those dates. We did 
this to see which companies were able to minimize their stock failure after a data breach 
occurs.  
 
The importance of the model in Figure 8 is that it gets rid of many confounding variables 
that could happen in our analysis if we just looked at which stocks fell the most. The 
factors represented in the model in Figure 8 take into consideration the size of the 
companies, different stock values, and other effects. They give us a more accurate way 
of predicting how much the stock changed. 

5. Implementation 

5.1 Twitter Component 

5.1.1 Acquiring the Data 

The gathering of Twitter data was accomplished using a Python script utilizing the 
GetOldTweets API. Two Python scripts were written, one collecting company Twitter 
data called scrape_company_tweets.py and another collecting user tweets based on 
specific keywords called keyword_tweets.py. Both scripts took an input CSV file which 
held data of specific breach events containing information such as the breach date, 
company name, company Twitter handle, and specific eventID. This input file is parsed 
by our script, and start and end dates for scraping are set. Company tweets are 
collected 120 before and 30 days after the breach event. The user tweets are collected 
10 days before and 30 days after the event. The user tweets are also parsed and 
filtered for specific keywords given in Table 1. These collected tweets are then output to 
CSV files labeled with the eventID and company Twitter handle.  
 

5.1.2 Additional Data Collection 
After collecting basic tweet data through the GetOldTweets API, it was necessary to do 
some additional data collection. To accomplish this two Python scripts were written, 
profile_scrape.py and announcement_reply_firm.py. The profile_scrape.py script utilized 
the Requests and Beautiful Soup libraries to gather additional information on the users 
in the keyword tweet files that were produced by keyword_scrape.py. Specifically, it 
added the user’s username, bio, following count, follower count, and verified status to 



 
 

11 

 

each row of these files. Then, the announcement_reply_firm.py script was run on all 
company tweet CSV files that were produced by scrape_company_tweets.py. Using the 
value under the Mentions header that had been retrieved using GetOldTweets, it 
determined whether or not a tweet was an announcement to all users or a reply to 
another user’s tweet. The resulting value (either Announcement or Reply) was 
appended by the script to the tweet’s row. 

5.1.3 Tweet Analysis 
After collected and filtering our data, we analyzed our tweets based on two criteria. The 
first criteria was to check the sentiment of the tweets. The second was to count the 
number of URLs present in each tweet. Both these criteria were satisfied by writing 
Python scripts that appended to our CSVs containing Twitter data. User sentiment was 
calculated by using the TextBlob API [7]. A Naive Bayes analysis was conducted on 
each tweet, and sentiment being positive or negative was recorded. The percent 
positive and percent negative for each tweet was also recorded. In order to count the 
URLs each tweet data CSV file was input to our Python script which analyzed each row 
of tweets for a URL. Two columns were appended to our CSV file; one containing a 
value if a URL was present in the tweet, and another containing the number of links it 
found in the tweet.  

5.2 Stock Component 

5.2.1 Acquiring the Data 
To gain meaningful insight into the effect of a company’s responses to data breaches, 
we had to analyze the change in stock prices after release of information. We provided 
our client with a list of every company involved in data breaches since 2006 (Table 2). 
In a CSV file, we included each company name along with its stock ticker. Using this 
data, our client generated a CSV named stockReturn.csv with the previous 10 years of 
stock data for each company. This file included a row for every day a company’s stock 
was traded, with attributes including company name, date, ticker, and closing price. This 
amounted to 1006614 rows of information. 

5.2.2 Scrubbing the Data 
The CSV of stock data contained far more data than necessary for our later 
calculations. We needed to filter down this data to only include the dates surrounding 
the data breach events. The formula we used to detect anomalies in stock prices, which 
will be discussed in the Applying Fama French section of the report, requires the stock 
prices of the company in a range from 120 before to 30 days after the event. The date 
format found in the CSV was YYYYMMDD, whereas our master CSV of data breach 



 
 

12 

 

events had a date format of MM/DD/YYYY. The first step in processing the data was to 
map all the dates in the stock CSV file to the MM/DD/YYYY format. This was 
accomplished within Excel, using the format cells functionality.  
  
Next, we wrote a Python script to manipulate the data into deliverables that were in turn 
fed into the stock analysis formula. Using the Pandas library [4], we read in 
stockReturn.csv and dataBreachesActive.csv as Pandas DataFrames. Next, we create 
two new attributes within the data breach DataFrame - StartDate and EndDate. These 
columns will hold the boundary values for our timeframe for each given data breach. We 
iterate over the rows in dataBreachesActive.csv and use the datetime Python library to 
calculate the date 120 days before and 30 days after the date found in the ‘Date Made 
Public’ attribute, storing these values in new columns within the CSV.  
 
The next step in the process was to iterate over the rows again, this time outputting a 
new CSV file specific to each EventId associated with a company and data breach. It 
would not be sufficient to create an output file for each company, because some 
companies experienced multiple data breaches, meaning that we need a set of 150 
rows for each of these events. We temporarily filtered our stockReturn.csv to only 
contain the rows of information pertaining to the company involved in the current 
security breach. We filtered again on these rows, removing all the days that weren’t 
within our 150 day range for the current data breach. Once we had our required rows, 
we removed unnecessary columns (‘oldDate’ and ‘PERMNO’). We created a string to 
represent the filename using the EventId concatenated with the company’s name. 
Finally, we generated the result as a CSV and repeated the process until every row had 
been processed. Each data breach row was mapped to a new CSV file, containing the 
desired 150 day range of stock values with each row containing columns EventId, Date, 
Ticker, and Name. 

5.2.3 Applying Fama French 
Once the stock files were collected we were able to start training our Fama French 
Model and fitting it to the Fama French model. We trained our Fama French Model from 
one hundred and fifty days before the data breach to ten days before the event. Then 
we wanted to analyze the predictive model from three days before the breach to three 
days after. We used the three and five factor model which just gets rid of the last two 
variables from the figure in the Design section of the report. We were then able to see 
how much the stock price should have been versus what it was.   

5.2.4 Further Stock Analysis  
The result of the Fama French file was a CSV containing numbers representing how 
abnormal each company’s stock performed 7 days before and after each date of the 
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data breach event. The next step in the process was to find events in which company’s 
stock performed abnormally poorly or abnormally well. We accomplished this through 
the use of a short Python script, abnormal.py, which can be found in Appendix A. We 
found the mean of the values 3 days after the event and subtracted the mean of the 
values 3 days before the event to find the change in stock abnormality, stored in the diff 
column of the output. The output was a CSV file named abnormalDif.csv , which 
contained a row for each data breach event and included company ticker, evtdate, and 
diff values. This table can be found in Appendix B as Table 3. Data breach events with 
diff values close to 0 can be interpreted as having a very small change in how abnormal 
their stock performed before and after the data breach event. Companies with positive 
values for diff had abnormal good stock performance after the data breach event when 
compared to their performance before the event. Lastly, companies with negative 
values for diff exhibited stock performance that was abnormally poor after the data 
breach event when compared to their performance before the event.  
 

6. Assessment 
After outputting all of our differences of stock performance abnormalities, which were 
explained in section 6.2.4 we had finally collected all of our data and analysis and could 
start preparing our company guide. We realized that we wouldn’t be able to apply all of 
our analysis on every single data breach because the analysis would have taken weeks 
to complete due to the amount of data we were analyzing. Therefore we decided we 
were going to run our analysis on the companies that had the best and worst abnormal 
differences. We didn’t want to pick an arbitrary number of companies so we used Z 
scores to narrow down our company list. After computing the mean and standard 
deviation of the abnormal differences we decided that the Z score that would allow for 
us to run our analysis would be companies 2.5 standard deviations above and below 
the mean. This left us with the six lowest abnormal differences and the top seven 
abnormal differences. The bottom six data breaches are listed in Figure 9; the top seven 
data breaches are in Figure 10.  
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Figure 9: Bottom Six Companies. Ticker is the stock ticker, evtdate is the day of the 

data brach, diff is the abnormal stock difference after and before the breach, and Z is 
the score in relation to the mean of abnormal differences.  

 

 
Figure 10: Top Seven Companies. Ticker is the stock ticker, evtdate is the day of the 
data brach, diff is the abnormal stock difference after and before the breach, and Z is 

the score in relation to the mean of abnormal differences.  
 
Once these companies were narrowed down we ran the sentiment analysis and user 
profile scraping on all of the tweets associated with each company. One hardship was 
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that any data breach before 2010 had a sparse data set. We did our best to work 
around this issue. The analysis for the user tweets of each data breach is in fFgure 11. 
If a data breach was in the top seven or bottom six but is no longer there then that 
means there was no Twitter data available due to the lack of tweeting around that data 
breach.  

Figure 11: The column headers explain the meaning of each. When it says Total it 
means all the user tweets summed together. Percentages are divided by total tweet 

count. 
 

The analysis for the company tweets of each data breach is in Figure 12. The same 
thing applies for missing breaches in this figure as well.  

 
Figure 12: The column headers explain the meaning of each. When it says Total it 
means all the company tweets summed together. Percentages are divided by total 

tweet count. 
 

We found some correlation between ratio of replies to total tweets and the stock 
performance as well as user sentiment and stock performance. The company with the 
best overall stock difference had the highest ratio of replies to total tweets while the 
company with the worst stock performance had the lowest ratio. Also when comparing 
the user sentiment of the bottom six to the top seven we realized that the mean of 
positive sentiment of the top seven was significantly higher than the bottom six. A graph 
showing this can be seen in Figure 13.  
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Figure 13: Graph of positive sentiment from user tweets comparing the bottom six 

breaches to the top seven breaches.  
From these two main findings we have a few main points for companies to consider 
when announcing a data breach. The main focus of social media should be making 
replies to worried user’s, instead of announcement tweets. The main way to make 
minimal announcements may be to make sure that company announcements are well 
thought out and cover any questions that could come up at a later time. Company’s 
shouldn’t hastily make announcements but should ensure that an announcement will be 
covering a magnitude of problems. This may also lower the number of tweets from 
users that are replies, which will make it easier to reply to all of their concerns. Another 
reason why to focus on replying, and making clear, concise, and few announcements, is 
to keep user sentiment positive. The reason why this can effect user sentiment may be 
that when a company looks to have the data breach under control and can make few 
announcements, then the users will believe that the company will fix the issue. Also 
replying to the user tweets may keep their sentiment positive because it demonstrates 
that the company cares about its users and fixing this issue. 

7. Developer and User Manual 

7.1 File Inventory 

7.1.1 Tweet Data Collection Files 
● requirements.txt 
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○ List of requirements that must be installed on your machine in order 
to run the GetOldTweets code. 

● keywords.txt 
○ List of keywords to be used and searched for in 

keyword_scrape.py. 
○ Delimit keywords with a newline character. 

● FindAccountNamesActive.csv 
○ List of data breaches to be used by scrape_company_tweets.py 

and keyword_scrape.py. 
○ Figure 14 shows the header layout for the file. 

 

Event ID Company Ticker Symbol Company Name Breach Date Company Twitter Handle 

 
Figure 14: Column headers for FindAccountNamesActive.csv 

 
● scrape_company_tweets.py 

○ Takes FindAccountNamesActive.csv as an input argument and 
outputs a CSV file for every row in FindAccontNamesActive.csv. 

○ Each output CSV file contains every tweet made by the company in 
the row from 120 days before the breach date to 30 days after the 
breach date. 

○ Each output CSV file row contains the tweet’s date, text, number of 
retweets, number of favorites, mentions, and hashtags. 

○ Run using “python scrape_company_tweets.py CSVFILE.csv”. 
● keyword_scrape.py 

○ Takes FindAccountNamesActive.csv and keywords.txt as input 
arguments and outputs a CSV file for every row in 
FindAccontNamesActive.csv. 

○ Each output CSV file contains every tweet within 10 days before 
the breach date and 30 days after the breach date that contains 
either the company’s name and a keyword, or the company’s 
Twitter handle and a keyword. These tweets can be from any user. 

○ Each output CSV file row contains the tweet’s date, text, number of 
retweets, number of favorites, mentions, hashtags, and ID. 

○ Run using “python keyword_scrape.py CSVFILE.csv 
KEYWORDFILE.txt”. 

● announcement_reply_firm.py 
○ Determines if a tweet is a reply or announcement for each tweet in 

the CSV files produced by scrape_company_tweets.py. 
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○ Runs on all CSV files in the same directory as the script. To use, 
place all desired CSV files in a directory with the script and run 
using “python announcement_reply_firm”. 

○ Appends to each row in the CSV files whether the tweet is a reply 
or announcement. 

● profile_scrape.py 
○ Uses Requests and Beautiful Soup to collect data on the users who 

tweeted in the keyword tweet CSV files produced by 
keyword_scrape.py. 

○ Runs on all CSV files in the same directory as the script. To use, 
place all desired CSV files in a directory with the script and run 
using “python profile_scrape.py”. 

○ Appends to each row in the CSV files the username of the user 
who tweeted, their bio, their following count, their follower count, 
and whether or not they are a verified user (0 for not verified, 1 for 
verified). 

 
 

Please refer to Figure 2 in the Design section for an illustration of the tweet data collection process. 

7.1.2 Stock Data Collection Files  
● DataBreachesActive.csv 

○ List of data breaches to be used by stockManipulation.py 
○ Row format is “Event ID”, “Company Ticker Symbol”, “Breach 

Date”, “Company Name”. 
○ Figure 15 shows the header layout for the file. 

 

Event ID Ticker Breach Date Company Name 

 
Figure 15: Column headers for DataBreachesActive.csv 

 
● stockReturn.csv 

○ Raw stock data file containing every stock value since 2005. 
○ Figure 16 shows the header layout for the file. 

 

PERMNO Date Ticker Company Name Stock Price 

 
Figure 16: Column headers for stockReturn.csv 
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● stockManipulation.py 
○ Takes DataBreachesActive.csv and stockReturn.csv as input and 

outputs a CSV file for every row in DataBreachesActive.csv. 
○ Each output CSV file contains the stock data for the company in the 

row from 120 days before the breach date to 30 days after the 
breach date. 

○ Each output CSV file row contains the Event ID, Stock Price Date, 
Stock Ticker Symbol, Company Name, and Stock Price 

○ Run using “python stockManipulation.py”. 
 
Please refer to Figure 3 in the Design section for an illustration of the stock data collection process. 
 

7.1.3 Data Analysis Files 
● -3to3.csv 

○ Contains the stock abnormality values from 3 days before to 3 days 
after a company’s breach. Values were calculated using the Fama 
French Model. Provided to us by our client. 

○ Figure 17 shows the header layout for the file. 
 

Ticker Breach Date Stock Date Abnormality  

 
Figure 17: Column headers for -3to3.csv 

 
● abnormalDif.csv 

○ Contains the difference of the average abnormality after the breach 
and average abnormality before the breach for each breach using 
the values from -3to3.csv . 

○ Figure 18 shows the header layout for the file. 
 

Ticker Breach Date Difference 

 
Figure 18: Column headers for abnormalDif.csv 

 
● user_sentiment.py 

○ Uses the TextBlob library to calculate sentiment values for every 
tweet in your keyword tweet CSV files produced by 
keyword_scrape.py. 
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○ Runs on all CSV files in the same directory as the script. To use, 
place all desired CSV files in a directory with the script and run 
using “python user_sentiment.py”. 

○ Appends to each row in the CSV files the overall sentiment, the 
positive sentiment value, and the negative sentiment value. 

● Company_sentiment.py 
○ Uses the TextBlob library to calculate sentiment values for every 

tweet in your keyword tweet CSV files produced by 
scrape_company_tweets.py. 

○ Runs on all CSV files in the same directory as the script. To use, 
place all desired CSV files in a directory with the script and run 
using “python company_sentiment.py”. 

○ Appends to each row in the CSV files the overall sentiment, the 
positive sentiment value, and the negative sentiment value. 

● abnormal.py 
○ Takes -3to3.csv as input and outputs abnormalDif.csv. 
○ Finds the Top 7 and Bottom 6 Data Breaches based on the Z 

Score. 
○ Produces plots of our differences compared to sentiment and 

replies. 
○ Run using “python abnormal.py CSVFILE.csv”. 

● countURLs.py 
○ Determines how many links are present in the body of a tweet. 

Used for the CSV files produced by both 
scrape_company_tweets.py and keyword_scrape.py. 

○ Runs on all CSV files in the same directory as the script. To use, 
place all desired CSV files in a directory with the script and run 
using “python countURLs.py”. 

○ Appends to each row in the CSV files if there is a link or not in the 
tweet (0 or 1), and how many links are in the tweet. 

7.2 Installation Tutorial 
1. Create a GitHub account if you don’t already have one. 
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Figure 19: Github account creation page 
 

2. Fork a copy of the GitHub repository located at https://github.com/Jefferson-
Henrique/GetOldTweets-python/. 

 

 
 

Figure 20: GetOldTweets-python API Github page 
 

3. Clone the repository to your local machine. 
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Figure 21: Cloning the Twequity repository from Github 
 

4. Install Python on your machine if you don’t already have it. 
 

 
 

Figure 22: Installing Python using the command line 
 

5. Add all of the files listed in the file inventory to your local repository. 
 

 
 

Figure 23: Directory containing the required files 
 

6. Run “pip install -r requirements.txt” on your machine. 
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Figure 24: Installing the project requirements using the command line 

 
7. Install the packages required for the additional tweet data collection and data 

analysis scripts: Requests, Beautiful Soup, and TextBlob.  
 

Please run: “sudo pip install requests” 
  “sudo apt-get install python-bs4” 
  “sudo pip install -U textblob” 

“python -m textblob.download_corpora” 
 

 

 

 

 
 

Figure 25: Series of commands executed to download remaining dependencies 
 

8. You are now ready to begin running the Python scripts for both collection and 
analysis of the tweet/stock data. 

8. Lessons Learned 

8.1 Timeline 
Our timeline was split into five different milestones in order to help us get the project 
done in a timely manner. The first milestone was to gather company/user tweet data, 
which went smoothly. The second milestone involved gathering company stock data for 
each of the data breaches. Furthermore, the third milestone included analyzing the 
stock prices of the companies during the event. The fourth milestone consisted of 
analyzing company successes and failures, while the last milestone was to come up 
with a guide for companies that have been breached. Overall, these milestones were 
very effective and helped us gain a good sense of our progress during the project. The 
only problem we had with our timeline was that we had new requirements added to the 
project later on in the semester, which hindered our time budgeting and caused us to 
have less time to work on the remaining milestones.   
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8.2 Team Member Roles 
In our project, Jacob Smith was the lead editor. His responsibilities involved looking 
over all work and making sure that our writing was grammatically correct and relevant.  
Jacob also checked for any errors in our assignments and turned in all of our 
assignments as well. Erik Agren was the head of testing. He was in charge of writing all 
the Python scripts and sending the CSVs back to the team after the scripts were run.  
Christian was the project lead and helped in all phases of the project. He helped 
organize the project and constantly checked in with other team members to make sure 
everyone was on track. Nathaniel Guinn was the designated note taker. His 
responsibilities involved taking notes during group meetings so that the team could look 
at the notes and understand what went on during each meeting. Rohan was the 
presentation lead. His role involved organizing the presentations throughout the 
semester and making sure the presentations accurately reflected our group’s current 
progress. 

8.3 Problems and Solutions 
One of the problems we encountered while scraping for data on Twitter was the scarcity 
of tweets around 2008. Back then, Twitter was not as popular, so most companies 
either didn’t have a Twitter account or didn’t use it to talk to customers over the social 
network.  This makes it harder for us because there is sparse data to look at for 
breaches that occurred before 2010. We will have to be very cautious with our 
recommendations based on some of the breaches in the early 2000’s based on the 
small amount of tweets.   
 
Another problem we encountered was also with changes in Twitter. In 2016, Twitter 
changed the way mentions and replies were presented. Replying to tweets did not show 
up as actual tweets and in order to find the replies you have to go to the original tweet 
instead of having the reply show up as a tweet on the user’s page. This means that if a 
company replied to a user, it wouldn’t show up on the company’s page but instead just 
under the original tweet. Also, mentions on Twitter worked the same way and did not 
show up as actual tweets on the company’s page. This problem was easily solved; it 
just made us made changes for tweets past 2016 to account for mentions and replies to 
other user’s tweets.   

8.4 Future work 
Throughout the course of the project, we used Google Drive as our data sharing 
platform. Our team drive stored not only our presentations but also all of our data which 
consisted of hundreds of CSV files. As we added more CSV files to the drive, it started 
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to become very slow and caused formatting issues as well. We would suggest using a 
different data sharing platform in order to make file sharing easier and more fluid.   
 
Furthermore, at the end of our project when we were running scripts, it would take a 
very long time to look at thousands of tweets. We would suggest adding parallelization 
to the scripts in order to run more than one at the same time. This would save days of 
running scripts and since that would allow more data to be collected, we would then be 
able to analyze more data. Spending more time on data analysis would also help us 
provide a more accurate and in-depth company guide, which could help companies deal 
with data breaches in an effective way.    
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11. Appendices 

Appendix A: Code 
Python File, scrape_company_tweets.py 

1. import sys   
2. import got   
3. import csv   
4. import itertools   
5. from datetime import datetime, timedelta   
6. from dateutil import parser   
7.    
8. #Sets some intial lists and variables   
9. dates = []   
10. handles = []   
11. eventIDs = []   
12.    
13. days_before = 120   
14. days_after = 30   
15.    
16. #Checks if a input CSV file was given. If not exits the program   
17. if len(sys.argv) == 1:   
18.     print "Missing input CSV file"   
19.     sys.exit(0)   
20.    
21. #Opens the CSV file and appends important data to the lists   
22. with open(sys.argv[1]) as csvfile:   
23.     readCSV = csv.reader(csvfile, delimiter=',')   
24.     for row in readCSV:   
25.         print row[3]   
26.         date = datetime.strptime(row[3], "%m/%d/%Y").strftime("%Y-%m-%d")   
27.         dates.append(date)   
28.         handles.append(row[4])   
29.         eventIDs.append(row[0])   
30.    
31. #Iterates over each list and scrapes Twitter using GetOldTweets API   
32. for date, handle, ID in itertools.izip(dates, handles, eventIDs):      
33.     event_date = parser.parse(date)   
34.        
35.     #Calculates the start and end date based on the event date   
36.     start_date = (event_date - timedelta(days=days_before)).strftime("%Y-%m-%d")   
37.     end_date = (event_date + timedelta(days=days_after)).strftime("%Y-%m-%d")   
38.    
39.     print handle + ":"   
40.     print "Event Date: ", event_date   
41.     print "Start Date: ", start_date   
42.     print "End Date: ", end_date   
43.    
44.    
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45.     tweetCriteria = 
got.manager.TweetCriteria().setUsername(handle).setSince(start_date).setUntil(end_date)   

46.     tweets = got.manager.TweetManager.getTweets(tweetCriteria)   
47.        
48.     #Prints some statistics and creates a new CSV file to append information to.   
49.     print "Total Tweets: ", len(tweets)   
50.     filename = str(ID) + "_" + handle + ".csv"   
51.    
52.     with open(filename, "w") as output:   
53.             writer = csv.writer(output, delimiter=',')   
54.             for t in tweets:   
55.                 row = t.date, t.text, t.retweets, t.favorites, t.mentions, t.hashtags   
56.                 writer.writerow([unicode(s).encode("utf-8") for s in row])   

 
Python File, keyword_scrape.py 

1. import sys   
2. import got   
3. import csv   
4. import itertools   
5. from datetime import datetime, timedelta   
6. from dateutil import parser   
7.    
8. dates = []   
9. names = []   
10. handles = []   
11. eventIDs = []   
12. keywords = []   
13. tweets = []   
14.    
15. days_before = 10   
16. days_after = 30   
17.    
18. if len(sys.argv) != 3:   
19.     print "run using the following command line arguments: python keyword_scrape.py 

CSVFILE.csv KEYWORDFILE.txt"   
20.     sys.exit(0)   
21.    
22. if (not('.csv' in sys.argv[1]) or not('.txt' in sys.argv[2])):   
23.     print "run using the following command line arguments: python keyword_scrape.py 

CSVFILE.csv KEYWORDFILE.txt"   
24.     sys.exit(0)   
25.    
26.    
27. with open(sys.argv[1]) as csvfile:   
28.     readCSV = csv.reader(csvfile, delimiter=',')   
29.     for row in readCSV:   
30.         date = datetime.strptime(row[3], "%m/%d/%Y").strftime("%Y-%m-%d")   
31.         dates.append(date)   
32.         handles.append(row[4])   
33.         names.append(row[2])   
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34.         eventIDs.append(row[0])   
35.    
36. with open(sys.argv[2]) as keywordFile:   
37.     lines = keywordFile.read().splitlines()   
38.     for line in lines:   
39.         keywords.append(line)   
40.    
41. for date, handle, ID, name in itertools.izip(dates, handles, eventIDs, names):   
42.     event_date = parser.parse(date)   
43.    
44.     start_date = (event_date - timedelta(days=days_before)).strftime("%Y-%m-%d")   
45.     end_date = (event_date + timedelta(days=days_after)).strftime("%Y-%m-%d")   
46.    
47.     print handle + ":"   
48.     print "Event Date: ", event_date   
49.     print "Start Date: ", start_date   
50.     print "End Date: ", end_date   
51.    
52.     tweetCriteria = got.manager.TweetCriteria().setSince(start_date).setUntil(end_date)   
53.    
54.    
55.     #build tweet query   
56.     query = ''   
57.     #add company name queries   
58.     for keyword in keywords:   
59.         query = query + name + ' AND ' + keyword +' OR '   
60.     #add company handle queries   
61.     for keyword in keywords:   
62.         query = query + handle + ' AND ' + keyword +' OR '   
63.    
64.     #get rid of OR at end   
65.     query = query[:-3]   
66.     #turn it into a list   
67.     queries = query.split(' OR ')   
68.    
69.     #loop through queries and collect tweets for each   
70.     ids = set()   
71.     noDupTweets = []   
72.     for q in queries:   
73.         #print 'Query: '+ q   
74.         keywordCriteria = tweetCriteria.setQuerySearch(q)   
75.         tweets = got.manager.TweetManager.getTweets(keywordCriteria)   
76.         #remove duplicates   
77.         for tweet in tweets:   
78.             if not tweet.id in ids:   
79.                 ids.add(tweet.id)   
80.                 noDupTweets.append(tweet)   
81.    
82.     print "Total Tweets: ", len(noDupTweets)   
83.     filename = str(ID) + "_" + handle + "_keywords" + ".csv"   
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84.    
85.     with open(filename, "w") as output:   
86.         writer = csv.writer(output, delimiter=',')   
87.         for t in noDupTweets:   
88.             row = t.date, t.text, t.retweets, t.favorites, t.mentions, t.hashtags, t.id   
89.             writer.writerow([unicode(s).encode("utf-8") for s in row])   

 
Python File, profile_scrape.py 

1. import sys   
2. import csv   
3. import os   
4. import glob   
5. path = "*.csv"   
6.    
7. #Checks to see if all imports and installed   
8. try:   
9.     import bs4   
10. except ImportError:   
11.     raise ImportError('BeautifulSoup needs to be installed. Please run "sudo apt-get 

install python-bs4"')   
12. except AttributeError:   
13.     raise AttributeError('bs4 needs to be upgraded. Please run "pip install --upgrade 

beautifulsoup4"')   
14. try:   
15.     import requests   
16. except ImportError:   
17.     raise ImportError('Requests needs to be installed. Please run "sudo pip install 

requests"')   
18.    
19. #Iterates over every CSV file in the current directory   
20. for fname in glob.glob(path):   
21.     if (fname != 'temp.csv'):   
22.         #Opens each csv file twice once to read and once to write   
23.         with open(fname) as csvfile :   
24.             readCSV = csv.reader(csvfile, delimiter=',')   
25.             with open('temp.csv', "w") as output:   
26.                 print 'file: ' + fname   
27.                 #Iterates over every row of tweets in an individual CSV file   
28.                 for row in readCSV:   
29.                     #Pushes a request towards a Twitter API based on a Tweet ID   
30.                     url = 'https://twitter.com/FalcoLombardi/status/' + row[6]   
31.                     page = requests.get(url)   
32.                     soup = bs4.BeautifulSoup(page.text, 'html.parser')   
33.    
34.                     usernameTag = soup.find('b', {'class':'u-linkComplex-target'})   
35.                        
36.                     #Attempts to grab user information from the requested page.   
37.                     #If the user information is not avaliable preset all the 

information   
38.                     try:   
39.                         username = usernameTag.text.encode('utf-8')    
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40.                     except AttributeError:   
41.                         username = 'deleted'   
42.                         bio = 'deleted'   
43.                         following = 0   
44.                         followers = 0   
45.                         verified = 0   
46.                     else:   
47.                         url = 'https://twitter.com/' + username   
48.    
49.                         page = requests.get(url)   
50.                         soup = bs4.BeautifulSoup(page.text, 'html.parser')   
51.                         bioTag = soup.find('p', {'class':'ProfileHeaderCard-bio u-

dir'})   
52.                         bio = bioTag.text.encode('utf-8')    
53.                         followersTag = soup.find('a', {'data-nav':'followers'})   
54.                         followingTag = soup.find('a', {'data-nav':'following'})   
55.                         verifiedTag = soup.find('span', {'class':'ProfileHeaderCard-

badges'})   
56.            
57.                         try:   
58.                             following = followingTag['title'].split(' ')[0]   
59.                         except TypeError:   
60.                             following = 0   
61.                         try:   
62.                             followers = followersTag['title'].split(' ')[0]   
63.                         except TypeError:   
64.                             followers = 0   
65.    
66.                         verified = 1   
67.                         if (verifiedTag is None):   
68.                             verified = 0   
69.                     #Writes user information containing, bio, username, following, 

followers, and verified status to the CSV file   
70.                     writer = csv.writer(output, delimiter=',')   
71.                     r = row[0], row[1], row[2], row[3], row[4], row[5], row[6], 

username, bio, following, followers, verified   
72.                     writer.writerow([s for s in r])   
73.         os.rename('temp.csv', fname)   
74. print '- - Finished - -'   

 
Python File, announcement_reply_firm.py 

1. import numpy   
2. from numpy import nan   
3. import pandas    
4. import glob   
5. path = "*.csv"   
6.    
7. #Iterates over every file in the current directory   
8. for fname in glob.glob(path):   
9.     table = pandas.read_csv(fname, header=None)   
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10.     #Checks if the current tweet is a Accouncement or Reply based on the current 
twitter data   

11.     table[len(table.columns)] = ["Announcement" if x is nan else "Reply" for x in 
table[4]]   

12.     #Writes a new csv file with the appended column   
13.     table.to_csv(fname)   
14.     print('Appended announcement column to', fname)   

 
Python File, user_sentiment.py 

1. import sys   
2. import csv   
3. import itertools   
4. import re   
5. import glob   
6. import pandas as pd   
7. from textblob import TextBlob   
8. from textblob.sentiments import NaiveBayesAnalyzer   
9.    
10. #Cleans any unwanted characters or symbols from a string input.    
11. def clean_tweet(tweet):   
12.     return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", 

tweet).split())   
13.    
14. #Iterates over every file in the curreny directory with .csv extension   
15. for fname in glob.glob('*.csv'):   
16.     table = pd.read_csv(fname)   
17.     count = 0   
18.     #Adds new empty columns to the csv table   
19.     table[len(table.columns)] = ""   
20.     table[len(table.columns)] = ""   
21.     table[len(table.columns)] = ""   
22.        
23.     #iterates over every row in the current csv file   
24.     for index in table.iterrows():   
25.         #Grabs the tweet in the current row   
26.         string = table.ix[count,1]   
27.         if type(string) is str:   
28.             #Runs sentiment analysis for the tweet and adds data to the newly made 

columns   
29.             analysis = TextBlob(clean_tweet(string), analyzer=NaiveBayesAnalyzer())   
30.             table.ix[count,len(table.columns)-3] = analysis.sentiment.classification   
31.             table.ix[count,len(table.columns)-2] = analysis.sentiment.p_pos   
32.             table.ix[count,len(table.columns)-1] = analysis.sentiment.p_neg   
33.         count = count + 1   
34.    
35. #Writes the new csv file   
36. table.to_csv(fname, index=False, header=False)   

 
Python File, countURLs.py 

1. import glob   
2. import re   
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3. import pandas as pd   
4.    
5. #Iterates over the CSVs in the current directory, counts number of URLs   
6. #in each tweet, indicates if there are > 0 tweets in one column and counts   
7. #them in the next, by appending to the original CSV. Don't run multiple   
8. #times on the same files, or else you'll end up with duplicate columns   
9.    
10. def FindURL(string):   
11.     url = re.findall('http[s]?://[ ]?(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-

fA-F][0-9a-fA-F]))+', string)   
12.     return url   
13.    
14. for fname in glob.glob('*.csv'):   
15.     table = pd.read_csv(fname)   
16.     count = 0   
17.     table[len(table.columns)] = ""   
18.     table[len(table.columns)] = ""   
19.     for index in table.iterrows():   
20.         string = table.ix[count,1]   
21.     if type(string) is str:   
22.         listOfURLs = FindURL(string)   
23.         if len(listOfURLs) > 0:   
24.             table.ix[count,len(table.columns)-2] = 1   
25.         else:   
26.             table.ix[count,len(table.columns)-2] = 0   
27.         table.ix[count,len(table.columns)-1] = len(listOfURLs)   
28.         count = count + 1   
29.     table.to_csv(fname, index=False, header=False)   

 
Python File, stockManipulation.py 

1. #Import pandas for table manipulation   
2. import pandas as pd   
3. import datetime   
4. from datetime import timedelta   
5.    
6. #Read in the stockReturn data as stockTable   
7. stockTable = pd.read_csv('stockReturn.csv')   
8. #Read in the dataBreach data as dataBreaches   
9. dataBreaches = pd.read_csv('dataBreachesActive.csv')   
10.    
11. #Add columns to store calculated start and end dates   
12. datesFrame = dataBreaches[['EventId', 'Ticker', 'Date Made Public', 'Name']].copy()   
13. datesFrame['StartDate'] = ''   
14. datesFrame['EndDate'] = ''   
15.    
16. #Add start and end dates to every eventID   
17. for index, row in datesFrame.iterrows():   
18.     #Get the date the breach was made public   
19.     tempDate = datetime.datetime.strptime(row['Date Made Public'], '%x')   
20.     #Calculate 120 days before that date   
21.     start = tempDate-timedelta(days=120)   
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22.     #Calculate 30 days after that date   
23.     end = tempDate+timedelta(days=30)   
24.     #Store these values in datesFrame   
25.     datesFrame.set_value(index, 'StartDate', start)   
26.     datesFrame.set_value(index, 'EndDate', end)   
27.    
28. #Remove the row with column headers from stockTable   
29. stockTable = stockTable[1:]   
30. #Convert the dates in stockTable to datetime format   
31. stockTable['formattedDate'] = pd.to_datetime(stockTable['formattedDate'])   
32. for index, row in datesFrame.iterrows():   
33.     print("Filtering: " + str(row['Name']))   
34.     #Get the current company's rows from stockTable   
35.     tempStock = stockTable[stockTable.TICKER == row.Ticker]   
36.     #Filter the current company's rows to the dates we care about   
37.     tempStock = 

tempStock[(tempStock.formattedDate>=row['StartDate'])&(tempStock.formattedDate<=row['En
dDate'])]   

38.     #Create an EventId column in the new table   
39.     tempStock['EventId'] = row['EventId']   
40.     #Rename the old stock columns   
41.     tempStock.columns = ['PERMNO', 'oldDate', 'Ticker', 'Name', 'Price', 'Date', 

'EventId']   
42.     #Pull out only the columsn we care about   
43.     tempStock = tempStock[['EventId', 'Date', 'Ticker', 'Name', 'Price']]   
44.     #Convert this to a new dataFrame   
45.     result = pd.DataFrame(tempStock)   
46.     #Remove / values that would mess with directories   
47.     if(type(row.Name)!=float):   
48.         tempRowName = row.Name.replace('/', '')   
49.     fileName = "csvs/" + str(row.EventId) + "_" + str(tempRowName) + ".csv"   
50.     #Export to a unique csv   
51.     result.to_csv(fileName)   

 
Python File, abnormal.py 

1. import pandas as pd   
2.    
3. #Read in the data to a dataFrame   
4. data = pd.read_csv("-3to3.csv")   
5. #Group by company ticker and evtdate together   
6. groups = data.groupby(["ticker", "evtdate"])   
7. #Create the DataFrame to output to   
8. out = pd.DataFrame(columns = ["ticker", "evtdate", "diff"])   
9. #Use an index to append to the ouptut DataFrame   
10. index = 0   
11. #iterate over the values of the groups   
12. #i contains the ticker/evtdate   
13. #j is a dataframe of the seven days for that event   
14. for i, j in groups:   
15.     sumBefore = 0   
16.     sumAfter = 0   
17.     #Make sure the event has the right number of rows   
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18.     if j.shape == (7,4):   
19.         #find the mean of the 3 days before   
20.         sumBefore += float(j.iloc[0,3])   
21.         sumBefore += float(j.iloc[1,3])   
22.         sumBefore += float(j.iloc[2,3])   
23.         meanBefore = sumBefore / 3   
24.         #find the mean of the 3 days after   
25.         sumAfter += float(j.iloc[4,3])   
26.         sumAfter += float(j.iloc[5,3])   
27.         sumAfter += float(j.iloc[6,3])   
28.         meanAfter = sumAfter / 3   
29.     #Find the difference between the means   
30.     diff = meanAfter - meanBefore   
31.     #Append this as a new row with the desired values   
32.     out.loc[index] = [i[0], i[1], diff]   
33.     index= index + 1   
34. #Ouptut to csv   
35. out.to_csv("abnormalDif.csv")   
36. # Here begins our analysis from the abnormal differences   
37. import numpy   
38. import math   
39. import matplotlib.pyplot   
40. table = pd.read_csv('abnormalDif.csv')   
41. mean = numpy.mean(table["diff"])   
42. stdDev = numpy.std(table["diff"])   
43. #Find all companies that have a diff value less than 2.5 standard deviations from the 

mean   
44. bottom = [x for x in table["diff"] if (x < mean - 2.5 * stdDev)]   
45. #Find all companies that have a diff value greater than 2.5 standard deviations from 

the mean   
46. top = [x for x in table["diff"] if (x > mean + 2.5 * stdDev)]   
47. table["Z"] = [(x-mean)/stdDev for x in table["diff"]]   
48. bottom6 = table.sort_values("Z")[0:len(bottom)]   
49. top7 = table.sort_values("Z",ascending=False)[0:len(top)]   
50. #Read in all of the data for company and user tweets that has been analyzed for the 

bottom 6 and top7 companies   
51. #If any companies aren't present its because no twitter data existed for this data 

breach, most likely due to    
52. #the scarcity of tweets before 2010.   
53. HPY_user = pd.read_csv("4_HeartlandHPY_user.csv")   
54. HPY_user= HPY_user[:len(HPY_user)-1]   
55. FRP_user = pd.read_csv("101_Fairpoint_user.csv")   
56. SHLD_company = pd.read_csv("160_searsholdings.csv")   
57. SHLD_user = pd.read_csv("160_searsholdings_keywords.csv")   
58. TWTR_company = pd.read_csv("632_twitter.csv")   
59. TWTR_user = pd.read_csv("632_twitter_keywords.csv")   
60. DYN_company = pd.read_csv("647_Dyn_company.csv")   
61. DYN_user = pd.read_csv("647_Dyn_user.csv")   
62. DYN_user= DYN_user[:len(DYN_user)-1]   
63. PRAN_company = pd.read_csv("665_prAna.csv")   
64. PRAN_user = pd.read_csv("665_prAna_keywords.csv")   
65. EFX_user= pd.read_csv("690_equifax_user.csv")   
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66. EFX_sentiment_user = pd.read_csv("690_equifax_user_sentiment_250.csv")   
67. EFX_company = pd.read_csv("690_Equifax_company.csv")   
68. RAD_company = pd.read_csv("699_riteaid.csv")   
69. RAD_user = pd.read_csv("699_riteaid_keywords.csv")   
70. #Do further analysis on all of the user tweets by summing up the values in each user 

tweet file   
71. columns=["Date","Ticker","Diff","TotalFollowers","TotalFollowing", 

"VerifiedUsers","TotalNeg","TotalPos","TotalNegPercent","TotalPosPercent","TotalLinkCou
nt"]   

72. UserAnalysis = pd.DataFrame(columns=columns)   
73. row = 

[bottom6.iloc[2]["evtdate"],bottom6.iloc[2]["ticker"],bottom6.iloc[2]["diff"],sum([int(
x.replace(",","")) for x in HPY_user["Followers"]]), sum([int(x.replace(",","")) for x 
in HPY_user["Following"]]), sum([int(x) for x in HPY_user["Verified"]]), sum([1 for x 
in HPY_user["Sent"] if x == "neg"]),sum([1 for x in HPY_user["Sent"] if x == "pos"]), 
sum([float(x) for x in HPY_user["neg"]])/len(HPY_user), sum([float(x) for x in 
HPY_user["pos"]])/len(HPY_user),int(sum([x for x in HPY_user["LinkCount"]]))]   

74. UserAnalysis.loc[len(UserAnalysis)] = row   
75. row = 

[bottom6.iloc[0]["evtdate"],bottom6.iloc[0]["ticker"],bottom6.iloc[0]["diff"],sum([int(
x.replace(",","")) for x in FRP_user["Followers"]]), sum([int(x.replace(",","")) for x 
in FRP_user["Following"]]), sum([int(x) for x in FRP_user["Verified"]]), sum([1 for x 
in FRP_user["Sent"] if x == "neg"]),sum([1 for x in FRP_user["Sent"] if x == "pos"]), 
sum([float(x) for x in FRP_user["neg"]])/len(FRP_user), sum([float(x) for x in 
FRP_user["pos"]])/len(FRP_user),int(sum([x for x in FRP_user["LinkCount"]]))]   

76. UserAnalysis.loc[len(UserAnalysis)] = row   
77. row = [top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"],sum([int(x) 

for x in SHLD_user["Followers"]]), sum([int(x) for x in SHLD_user["Following"]]), 
sum([int(x) for x in SHLD_user["Verified"]]), sum([1 for x in SHLD_user["Sent"] if x == 
"neg"]),sum([1 for x in SHLD_user["Sent"] if x == "pos"]), sum([float(x) for x in 
SHLD_user["neg"]])/len(SHLD_user), sum([float(x) for x in 
SHLD_user["pos"]])/len(SHLD_user),int(sum([x for x in SHLD_user["LinkCount"]]))]   

78. UserAnalysis.loc[len(UserAnalysis)] = row   
79. row = [top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"],sum([int(x) 

for x in TWTR_user["Followers"]]), sum([int(x) for x in TWTR_user["Following"]]), 
sum([int(x) for x in TWTR_user["Verified"]]), sum([1 for x in TWTR_user["Sent"] if x == 
"neg"]),sum([1 for x in TWTR_user["Sent"] if x == "pos"]), sum([float(x) for x in 
TWTR_user["neg"]])/len(TWTR_user), sum([float(x) for x in 
TWTR_user["pos"]])/len(TWTR_user),int(sum([x for x in TWTR_user["LinkCount"]]))]   

80. UserAnalysis.loc[len(UserAnalysis)] = row   
81. row = 

[bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"],bottom6.iloc[5]["diff"],sum([int(
x.replace(",","")) for x in DYN_user["Followers"] if type(x) != float]), 
sum([int(x.replace(",","")) for x in DYN_user["Following"] if type(x) != float]), 
sum([float(x) for x in DYN_user["Verified"]]), sum([1 for x in DYN_user["Sent"] if x == 
"neg"]),sum([1 for x in DYN_user["Sent"] if x == "pos"]), sum([0 if math.isnan(x) else 
float(x) for x in DYN_user["neg"]])/len(DYN_user), sum([0 if math.isnan(x) else 
float(x) for x in DYN_user["pos"]])/len(DYN_user),sum([int(x) if x == 1.0 else 0 for x 
in DYN_user["LinkCount"]])]   

82. UserAnalysis.loc[len(UserAnalysis)] = row   
83. row = [top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"],top7.iloc[5]["diff"],sum([int(x) 

for x in PRAN_user["Followers"]]), sum([int(x) for x in PRAN_user["Following"]]), 
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sum([int(x) for x in PRAN_user["Verified"]]), sum([1 for x in PRAN_user["Sent"] if x == 
"neg"]),sum([1 for x in PRAN_user["Sent"] if x == "pos"]), sum([float(x) for x in 
PRAN_user["neg"]])/len(PRAN_user), sum([float(x) for x in 
PRAN_user["pos"]])/len(PRAN_user),int(sum([x for x in PRAN_user["LinkCount"]]))]   

84. UserAnalysis.loc[len(UserAnalysis)] = row   
85. row = 

[bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"],bottom6.iloc[4]["diff"],sum([int(
x.replace(",","")) for x in EFX_user["Followers"] if type(x) != float]), 
sum([int(x.replace(",","")) for x in EFX_user["Following"] if type(x) != float]), 
sum([int(x) if x == 1.0 else 0 for x in EFX_user["Verified"]]), sum([1 for x in 
EFX_sentiment_user["Sent"] if x == "neg"]),sum([1 for x in EFX_sentiment_user["Sent"] 
if x == "pos"]), sum([float(x) for x in 
EFX_sentiment_user["neg"]])/len(EFX_sentiment_user), sum([float(x) for x in 
EFX_sentiment_user["pos"]])/len(EFX_sentiment_user),sum([int(x) if x == 1.0 else 0 for 
x in EFX_user["LinkCount"]])]   

86. UserAnalysis.loc[len(UserAnalysis)] = row   
87. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"],top7.iloc[1]["diff"],0, 0, 

sum([int(x) if x == 1.0 else 0 for x in RAD_user["Verified"]]), sum([1 for x in 
RAD_user["Sent"] if x == "neg"]),sum([1 for x in RAD_user["Sent"] if x == "pos"]), 
sum([float(x) for x in RAD_user["neg"]])/len(RAD_user), sum([float(x) for x in 
RAD_user["pos"]])/len(RAD_user),sum([int(x) if x == 1.0 else 0 for x in 
RAD_user["LinkCount"]])]   

88. UserAnalysis.loc[len(UserAnalysis)] = row   
89. #Make a similar dataframe but just containing the four companies that have user tweet 

data in the bottom 6   
90. BottomSix = pd.DataFrame(columns=columns)   
91. row = 

[bottom6.iloc[2]["evtdate"],bottom6.iloc[2]["ticker"],bottom6.iloc[2]["diff"],sum([int(
x.replace(",","")) for x in HPY_user["Followers"]]), sum([int(x.replace(",","")) for x 
in HPY_user["Following"]]), sum([int(x) for x in HPY_user["Verified"]]), sum([1 for x 
in HPY_user["Sent"] if x == "neg"]),sum([1 for x in HPY_user["Sent"] if x == "pos"]), 
sum([float(x) for x in HPY_user["neg"]])/len(HPY_user), sum([float(x) for x in 
HPY_user["pos"]])/len(HPY_user),int(sum([x for x in HPY_user["LinkCount"]]))]   

92. BottomSix.loc[len(BottomSix)] = row   
93. row = 

[bottom6.iloc[0]["evtdate"],bottom6.iloc[0]["ticker"],bottom6.iloc[0]["diff"],sum([int(
x.replace(",","")) for x in FRP_user["Followers"]]), sum([int(x.replace(",","")) for x 
in FRP_user["Following"]]), sum([int(x) for x in FRP_user["Verified"]]), sum([1 for x 
in FRP_user["Sent"] if x == "neg"]),sum([1 for x in FRP_user["Sent"] if x == "pos"]), 
sum([float(x) for x in FRP_user["neg"]])/len(FRP_user), sum([float(x) for x in 
FRP_user["pos"]])/len(FRP_user),int(sum([x for x in FRP_user["LinkCount"]]))]   

94. BottomSix.loc[len(BottomSix)] = row   
95. row = 

[bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"],bottom6.iloc[5]["diff"],sum([int(
x.replace(",","")) for x in DYN_user["Followers"] if type(x) != float]), 
sum([int(x.replace(",","")) for x in DYN_user["Following"] if type(x) != float]), 
sum([float(x) for x in DYN_user["Verified"]]), sum([1 for x in DYN_user["Sent"] if x == 
"neg"]),sum([1 for x in DYN_user["Sent"] if x == "pos"]), sum([0 if math.isnan(x) else 
float(x) for x in DYN_user["neg"]])/len(DYN_user), sum([0 if math.isnan(x) else 
float(x) for x in DYN_user["pos"]])/len(DYN_user),sum([int(x) if x == 1.0 else 0 for x 
in DYN_user["LinkCount"]])]   

96. BottomSix.loc[len(BottomSix)] = row   
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97. row = 
[bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"],bottom6.iloc[4]["diff"],sum([int(
x.replace(",","")) for x in EFX_user["Followers"] if type(x) != float]), 
sum([int(x.replace(",","")) for x in EFX_user["Following"] if type(x) != float]), 
sum([int(x) if x == 1.0 else 0 for x in EFX_user["Verified"]]), sum([1 for x in 
EFX_sentiment_user["Sent"] if x == "neg"]),sum([1 for x in EFX_sentiment_user["Sent"] 
if x == "pos"]), sum([float(x) for x in 
EFX_sentiment_user["neg"]])/len(EFX_sentiment_user), sum([float(x) for x in 
EFX_sentiment_user["pos"]])/len(EFX_sentiment_user),sum([int(x) if x == 1.0 else 0 for 
x in EFX_user["LinkCount"]])]   

98. BottomSix.loc[len(BottomSix)] = row   
99. BottomSix   
100. #Make a similar dataframe but just containing the four companies that have user 

tweet data in the top 7   
101. TopSeven = pd.DataFrame(columns=columns)   
102. row = 

[top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"],sum([int(x) for x 
in SHLD_user["Followers"]]), sum([int(x) for x in SHLD_user["Following"]]), sum([int(x) 
for x in SHLD_user["Verified"]]), sum([1 for x in SHLD_user["Sent"] if x == 
"neg"]),sum([1 for x in SHLD_user["Sent"] if x == "pos"]), sum([float(x) for x in 
SHLD_user["neg"]])/len(SHLD_user), sum([float(x) for x in 
SHLD_user["pos"]])/len(SHLD_user),int(sum([x for x in SHLD_user["LinkCount"]]))]   

103. TopSeven.loc[len(TopSeven)] = row   
104. row = 

[top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"],sum([int(x) for x 
in TWTR_user["Followers"]]), sum([int(x) for x in TWTR_user["Following"]]), sum([int(x) 
for x in TWTR_user["Verified"]]), sum([1 for x in TWTR_user["Sent"] if x == 
"neg"]),sum([1 for x in TWTR_user["Sent"] if x == "pos"]), sum([float(x) for x in 
TWTR_user["neg"]])/len(TWTR_user), sum([float(x) for x in 
TWTR_user["pos"]])/len(TWTR_user),int(sum([x for x in TWTR_user["LinkCount"]]))]   

105. TopSeven.loc[len(TopSeven)] = row   
106. row = 

[top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"],top7.iloc[5]["diff"],sum([int(x) for x 
in PRAN_user["Followers"]]), sum([int(x) for x in PRAN_user["Following"]]), sum([int(x) 
for x in PRAN_user["Verified"]]), sum([1 for x in PRAN_user["Sent"] if x == 
"neg"]),sum([1 for x in PRAN_user["Sent"] if x == "pos"]), sum([float(x) for x in 
PRAN_user["neg"]])/len(PRAN_user), sum([float(x) for x in 
PRAN_user["pos"]])/len(PRAN_user),int(sum([x for x in PRAN_user["LinkCount"]]))]   

107. TopSeven.loc[len(TopSeven)] = row   
108. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"],top7.iloc[1]["diff"],0, 0, 

sum([int(x) if x == 1.0 else 0 for x in RAD_user["Verified"]]), sum([1 for x in 
RAD_user["Sent"] if x == "neg"]),sum([1 for x in RAD_user["Sent"] if x == "pos"]), 
sum([float(x) for x in RAD_user["neg"]])/len(RAD_user), sum([float(x) for x in 
RAD_user["pos"]])/len(RAD_user),sum([int(x) if x == 1.0 else 0 for x in 
RAD_user["LinkCount"]])]   

109. TopSeven.loc[len(TopSeven)] = row   
110. TopSeven   
111. #Make a similar data frame but this time for all the company tweets   
112. columns=["Date","Ticker","Diff","TotalLinkCount","NumReplies", 

"NumAnnouncements","TotalTweets"]   
113. CompanyAnalysis = pd.DataFrame(columns=columns)   
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114. row = [top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"], 
sum([int(x) if x == 1.0 else 0 for x in SHLD_company["LinkCount"]]),sum([1 if x == 
"Reply" else 0 for x in SHLD_company["Type"]]),sum([1 if x == "Announcement" else 0 for 
x in SHLD_company["Type"]]),len(SHLD_company)]   

115. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
116. row = [top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"], 

sum([int(x) if x == 1.0 else 0 for x in TWTR_company["LinkCount"]]),sum([1 if x == 
"Reply" else 0 for x in TWTR_company["Type"]]),sum([1 if x == "Announcement" else 0 for 
x in TWTR_company["Type"]]),len(TWTR_company)]   

117. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
118. row = [bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"], 

bottom6.iloc[5]["diff"],sum([int(x) if x == 1.0 else 0 for x in 
DYN_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in 
DYN_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in 
DYN_company["Type"]]),len(DYN_company)]   

119. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
120. row = [top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"], 

top7.iloc[5]["diff"],sum([int(x) if x == 1.0 else 0 for x in 
PRAN_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in 
PRAN_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in 
PRAN_company["Type"]]),len(PRAN_company)]   

121. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
122. row = [bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"], 

bottom6.iloc[4]["diff"],sum([int(x) if x == 1.0 else 0 for x in 
EFX_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in 
EFX_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in 
EFX_company["Type"]]),len(EFX_company)]   

123. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
124. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"], 

top7.iloc[1]["diff"],sum([int(x) if x == 1.0 else 0 for x in 
RAD_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in 
RAD_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in 
RAD_company["Type"]]),len(RAD_company)]   

125. CompanyAnalysis.loc[len(CompanyAnalysis)] = row   
126. CompanyAnalysis["RatioReplyTotal"] = 

CompanyAnalysis["NumReplies"]/CompanyAnalysis["TotalTweets"]   
127. #This plots the reply ratio to the difference. No strong correlation seen   
128. get_ipython().magic(u'matplotlib inline')   
129. import matplotlib.pyplot as plt   
130. plot = plt.scatter(x = 

CompanyAnalysis["NumReplies"]/CompanyAnalysis["TotalTweets"], y = 
CompanyAnalysis["Diff"], linewidths=2, c="g")   

131. plt.title("Ratio of Replies to Total Company Tweets vs Stock Difference")   
132. plt.xlabel("Ratio of Replies to Total Company Tweets ")   
133. plt.ylabel("Stock Difference")   
134. plot.figure.show()   
135. #This plot shows that the top 7 companies had a much higher mean positive 

sentiment value of user tweets   
136. plt.figure()   
137. plot = TopSeven.TotalPosPercent.plot.kde(color = "Orange")   
138. BottomSix.TotalPosPercent.plot.kde(color = "Blue", ax=plot)   
139. #The line above makes it reuse the plot   
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140. plt.legend(["Top 7","Bottom 6"])   
141. plt.title("Total Positive Sentiment Percentage of all Tweets from Users")   
142. plt.xlabel("TotalPosPercent")   
143. plot.figure.show()   
144. #Smoothed out histogram   
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Appendix B: Tables 
Table 1: Keywords 
 

Keywords 

security breach security 
management 

security 
monitoring 

security 
expenditure 

information 
security 

system security authentication encryption computer virus computer 
intrusion 

disaster 
recovery 

access control cyber security cyber attack denial of 
service 

hacker hijack infosec breach unauthorized 
access 

business 
continuity 

leakage theft fraud steal 

 
 
Table 2: List of Company Breaches 
 

Ticker EventDate CompanyName 

A 3/22/08 Agilent Technologies 
AA 7/15/10 Alcoa Global Mobility Group 

AACC 7/5/06 
RBS National Bank, Asset 
Acceptance LLC 

AAL 6/20/07 American Airlines 
AAL 2/17/11 American Airlines 
AAN 10/22/13 Aaron's 
AAN 11/2/11 Aaron's 
AAP 3/31/08 Advance Auto Parts 
AAP 3/16/16 Advanced Auto Parts 
AAPL 6/9/10 Apple Inc., AT&T 
AAPL 9/1/14 Apple 
AAPL 9/4/12 Apple 
AAPL 2/26/14 Apple 
AAPL 4/1/11 iTunes (Apple) 
AAPL 2/19/13 Apple 
AAPL 7/22/13 Apple Inc. 
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AAPL 2/16/16 Apple 
AAR 7/4/10 AMR Corporation 
AAR 7/2/10 AMR Corporation 
ABB 9/11/17 ABB Inc. 
ABM 4/21/11 ABM Industries 
ABM 11/14/17 ABM Industries 
ABS 8/15/14 Albertsons/AB Acquisitions LLC 

ABS 4/21/07 
Albertsons (Save Mart 
Supermarkets) 

ADBE 10/4/13 
Adobe, PR Newswire, National 
White Collar Crime Center 

ADBE 5/13/13 
Adobe, Washington 
Administrative Office of the Courts 

ADBE 11/14/12 Adobe 
ADP 7/6/06 Automatic Data Processing (ADP) 

ADP 7/30/13 

US Airways, McKesson, City of 
Houston, Automatic Data 
Processing (ADP), AlliedBarton 
Security Services 

ADP 7/30/13 
US Airways, Advanced Data 
Processing 

ADP 12/28/11 
Automatic Data Processing 
(ADP), A.W. Hastings' 

ADP 6/17/06 Automatic Data Processing (ADP) 
ADP 6/15/11  
ADP 5/5/16 ADP, LLC. 
ADVS 1/10/07 Advent Software Inc. 
AET 5/28/10 Aetna 

AET 12/12/06 

Aetna, Nationwide, WellPoint 
Group Health Plans, Humana 
Medicare, Mutual of Omaha 
Insurance Company, Anthem 
Blue Cross Blue Shield via 
Concentra Preferred Systems 

AET 5/28/09 Aetna 
AET 11/14/10 Aetna of Connecticut 
AET 8/24/17 Aetna 
AFBA 10/1/07 PFPC Inc., AFBA 

AFL 8/22/06 
AFLAC American Family Life 
Assurance Co. 

AFL 4/19/06 Aflac 
AFL 3/16/17 Aflac 

AIG 6/14/06 
American International Group 
(AIG), Indiana Office of Medical 
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Excess, LLC 
ALK 7/26/17 Virgin America 
ALL 8/23/11 Allstate Financial 

ALL 6/29/06 
AllState Insurance Huntsville 
branch 

ALSK 2/20/14 Alaska Communications 
ALU 5/18/07 Alcatel-Lucent 
AMCC 4/4/11 Applied Micro Circuits Corporation 

AMD 1/13/13 
Advanced Micro Devices (AMD), 
Nvidia 

AMD 4/9/12 
Intel, Advanced Micro Devices 
(AMD) 

AMP 12/25/05 Ameriprise Financial Inc. 
AMQ 1/30/10 Ameriquest Mortgage Company 
AMTD 9/14/07 TD Ameritrade Holding Corp. 
AMTD 12/1/06 TD Ameritrade 
AMTD 4/20/05 TD Ameritrade 
AMZN 1/29/11 Amazon.com 
AMZN 9/29/17 Whole Foods 

AN 5/26/14 
AutoNation Toyota of South 
Austin 

ANTM 12/12/06 

Aetna, Nationwide, WellPoint 
Group Health Plans, Humana 
Medicare, Mutual of Omaha 
Insurance Company, Anthem 
Blue Cross Blue Shield via 
Concentra Preferred Systems 

ANTM 12/12/06 

Aetna, Nationwide, WellPoint 
Group Health Plans, Humana 
Medicare, Mutual of Omaha 
Insurance Company, Anthem 
Blue Cross Blue Shield via 
Concentra Preferred Systems 

ANTM 2/5/15 Anthem 
ANTM 5/13/11 Anthem Blue Cross 
ANTM 11/10/14 Anthem Blue Cross 
ANTM 7/31/17 Anthem 
ARMK 6/6/06 ARAMARK Corporation 
ARW 3/8/10 Arrow Electronics 
ARW 3/8/10 Arrow Electronics 
ARW 3/8/10 Arrow Electronics 
ARW 3/8/10 Arrow Electronics 
AV 6/3/09 Aviva 
AWI 7/25/06 Armstrong World Industries, 
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Deloitte & Touche 

AXP 7/13/12 
American Express Travel Related 
Services Company, Inc. (AXP) 

AXP 12/29/13 American Express Company 
AXP 8/14/09 American Express 
AXP 3/25/14 American Express 
AXP 4/7/14 American Express Company 

AXP 4/1/13 
Tennis Express, American 
Express 

AXP 3/29/13 American Express 
BA 7/11/14 Boeing 
BA 12/13/06 Boeing 
BA 4/21/06 Boeing 
BA 11/15/06 Boeing, Co 
BA 11/19/05 Boeing 
BA 2/8/17 The Boeing Corporation 
BA 2/27/17 Boeing 
BAC 8/11/09 Bank of America Corp. 
BAC 6/8/10 Bank of America 
BAC 5/25/11 Bank of America 
BAC 12/14/06 Bank of America 

BAC 8/18/11 
Citigroup, Inc., Bank of America, 
Corp. 

BAC 2/13/11 Bank of America 
BAC 2/25/05 Bank of America Corp. 
BAC 7/17/14 Bank of America 
BAC 9/23/05 Bank of America 
BAC 4/12/07 Bank of America 
BAC 4/7/10 Bank of America 

BAC 4/28/05 

Wachovia, Bank of America, PNC 
Financial Services Group and 
Commerce Bancorp 

BAC 6/29/05 Bank of America 
BBBY 9/25/15 Bed Bath and Beyond 
BBBY 6/19/17 Bed Bath & Beyond 
BBT 5/15/08 BB&T Insurance 
BBY 5/6/11 Best Buy 
BC 4/21/08 Brunswick Corp. 
BC 2/16/07 Brunswick Corp. 
BDL 5/20/11 Flanigan's 
BEN 8/3/06 Franklin Templeton Investments 
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BGC 11/19/07 General Cable Corporation 

BGS 12/6/13 
B&G Foods North America, Inc., 
Maple Grove Farms 

BHE 11/21/17 Uber 
BK 3/26/08 Bank of New York Mellon 
BKE 6/20/17 The Buckle Inc. 
BKS 10/24/12 Barnes & Noble 
BKW 2/25/12 Burger King 
BLKB 6/17/09 Blackbaud Inc. 
BMY 7/17/08 Bristol-Myers Squibb 

BOH 3/1/13 
Bank of Hawaii, First Hawaiian 
Bank 

BPF 11/27/17 Bulletproof 

BR 6/22/09 
Broadridge Financial Solutions, 
Inc. 

BRLI 8/25/14 
BioReference Laboratories, 
Inc./CareEvolve, Inc. 

BSFT 9/5/17 BroadSoft 
BSX 2/8/14 Boston Scientific 
BUD 7/29/08 Anheuser-Busch 
C 6/9/11 Citibank 

C 9/21/07 
Citigroup, ABN Amro Mortgage 
Group 

C 8/11/09 Citigroup Inc. 
C 6/19/08 Citibank 
C 10/14/10 Citibank 
C 3/28/13 Citi 
C 10/2/06 Citigroup 

C 8/18/11 
Citigroup, Inc., Bank of America, 
Corp. 

C 2/24/10 Citigroup 
C 7/17/13 Citigroup 
C 8/9/07 Citigroup 
C 7/27/10 Citigroup Inc. 
C 6/6/05 Citigroup, UPS 

CAKE 9/29/10 
Cheesecake Factory, PGA Tour 
Grill, Outback Steakhouse 

CAKE 9/11/10 Cheesecake Factory 
CAKE 5/24/10 Cheesecake Factory 
CAT 4/27/07 Caterpillar, Inc., SBA Inc. 
CCI 11/25/13 Crown Castle International Corp 
CELG 8/20/07 Celgene Corporation 
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CFR 5/19/06 Frost Bank 

CHDN 9/4/12 
Twinspires.com (Churchill Downs 
Technology Initiatives Company) 

CHH 4/26/12 Choice Hotels Internationals 
CHH 3/22/13 Comfort Inn and Suites 
CHSCP 12/31/10 CHS, Inc. 

CHSI 4/17/12 
Catalyst Health Solutions, Alliant 
Health Plans, Inc. 

CHTR 8/13/08 Charter Communications 
CI 11/7/06 CIGNA HealthCare Corp 
CI 12/7/06 CIGNA HealthCare Corp 
CLGX 8/31/06 CoreLogic for ComUnity Lending 
CMCSA 3/16/09 Comcast 
CMCSA 10/3/13 Comcast Phone 
CMCSA 5/20/12 Comcast 
CME 11/17/13 CME Group, CME ClearPort 
CMG 4/26/17 Chipotle Mexican Grill 
CNC 1/26/16 Centene 
CNET 7/14/14 CNET 
CNQR 12/16/10 Concur Technologies Inc. 
COF 3/4/14 Capital One 
COF 2/12/13 J.P. Morgan Chase, Capital One 
COF 5/18/10 Capitol One 

COF 9/17/05 
North Fork Bank (now Capital 
One Bank) 

COF 5/9/12 Capital One Bank 
COF 2/6/17 Capital One 
COF 7/6/17 Spark Pay 
COLB 5/21/07 Columbia Bank 
CPRT 8/28/06 Copart, Inc. 
CPS 10/20/09 ChoicePoint 
CS 2/20/07 Credit Suisse 
CSC 4/3/13 Computer Sciences Corporation 
CSCO 7/10/10 Cisco Live 2010 

CSCO 4/9/12 
Ernst & Young LLP, Cisco 
Systems, Inc. 

CSCO 10/25/16 Cisco 

CVC 7/25/06 
Cablevision Systems Corp., ACS, 
FedEx 

CVS 2/18/09 CVS Pharmacies 
CVS 7/30/14 CVS/Caremark 
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CVS 6/21/05 CVS 
CVS 7/18/15 CVS Pharmacy, Imperial Beach 
CVS 4/15/07 CVS Pharmacy 

CVS 11/28/13 
CVS Pharmacy, Inc., Maryland 
CVS Pharmacy, LLC 

CVS 3/24/12 CVS Caremark 
CVS 12/4/12 CVS Caremark 
CVS 12/5/16 CVS Health 
CVX 8/16/06 Chevron 
CVX 3/9/11 Shell, Chevron 
CYH 8/18/14 Community Health Systems 
CYN 7/6/05 City National Bank, Iron Mountain 
D 8/25/06 Dominion Resources 
DBD 8/31/06 Diebold, Inc., GE Capital 
DBMG 2/2/17 DBM Global 
DENN 9/30/13 Denny's 
DFS 2/21/14 Discover Financial Services 
DFS 8/17/12 Discover Financial Services 
DFS 11/11/13 Discover Financial Services 
DFS 12/20/13 Discover Financial Services 
DFS 9/9/06 Discover Bank 
DGX 9/16/12 Quest Diagnostics 
DHI 2/16/12 D.R. Horton Inc. (DHI Mortgage) 

DIS 7/30/16 
Disney Consumer Products and 
Interactive Media 

DLTR 8/1/06 Dollar Tree 

DNB 9/26/13 
LexisNexis, Dun & Bradstreet, 
Kroll Background America 

DNB 10/28/13 Dun & Bradstreet 
DPZ 5/12/11 Domino's Pizza, KB Pizza 
DPZ 6/18/08 Domino's Pizza 
DRI 11/15/17 Cheddar's Scratch Kitchen 
DRIV 6/4/10 Digital River Inc. 
DRIV 12/22/10 Digital River Inc., SWReg Inc. 

DSW 3/8/05 
DSW Shoe Warehouse, Retail 
Ventures 

DTV 10/11/06 
DirecTV, Deloitte and Touche 
LLC 

DTV 5/26/12 Direct TV 
DVA 11/7/13 DaVita 
DVA 3/3/08 DaVita Inc. 
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DXC 7/5/17 DXC Technology 
DYN 10/21/16 Dyn 
EBAY 5/21/14 Ebay 
EFX 10/10/12 Equifax 
EFX 2/11/10 Equifax 
EFX 6/20/06 Equifax 
EFX 5/6/16 Equifax Inc. 
EFX 9/7/17 Equifax Corporation 
EHTH 1/27/17 eHealth Insurance 
EL 7/26/11 Este�© Lauder 
EMR 5/4/12 Emerson (Funai Corporation) 
ESBF 4/23/10 ESB Financial 
ESRX 11/6/08 Express Scripts 
ESRX 2/18/13 Express Scripts, Ernst & Young 
ETFC 10/9/15 E-Trade 
EV 2/8/12 Eaton Vance Management 
EXEL 8/16/13 Exelixis 

EXPE 11/15/06 
Expedia Corporate Travel (now 
Egencia) 

EZPW 5/8/07 EZCORP, EZPAWN 
F 12/22/05 Ford Motor Co. 

F 5/5/12 
Ford-Motor Websites (Connect 
With Fiesta, Unleashfiesta) 

FB 6/21/13 Facebook 
FB 7/28/08 Facebook 
FB 2/15/13 Facebook 
FB 2/4/11 Twitter, Facebook and PayPal 
FB 8/30/17 Instagram 
FDX 2/4/06 FedEx 

FDX 7/25/06 
Cablevision Systems Corp., ACS, 
FedEx 

FINL 3/26/13 The Finish Line, Inc. 
FIRE 11/27/12 Sourcefire 

FIS 7/3/07 

Fidelity National Information 
Services/Certegy Check Services 
Inc. 

FIS 8/26/11 
Fidelity National Information 
Services, Inc. (FIS) 

FIS 9/24/07 

Fidelity National Information 
Services, Fidelity National 
Financial 

FITB 4/13/06 Fifth Third Bank 



 
 

49 

 

FLWS 3/8/16 1-800-Flowers 

FMS 2/8/07 

Fresenius Medical Care Holdings 
Inc., Fresenius Medical Care 
North America (FMCNA) 

FORR 12/5/07 Forrester Research 
FOXA 4/16/09 Fox Entertainment Group 
FRBA 10/16/06 VISA, FirstBank (1st Bank) 
FRC 8/14/12 First Republic Bank 
FRED 6/12/15 Fred's Inc. 
FRP 4/20/09 FairPoint Communications Inc. 
FSB 9/10/08 Franklin Savings and Loan 
GCI 5/4/17 Gannett Co 
GE 9/25/06 General Electric (GE) 

GE 5/16/06 
GE Money Bank, Lowe's 
Companies Inc. 

GE 2/9/07 General Electric 
GM 8/3/12 General Motors Co. 
GM 3/14/06 General Motors (GM) 
GM 4/16/10 General Motors 
GME 6/2/17 Game Stop 

GNCMA 5/24/12 
General Communication Inc. 
(GCI) 

GOOG 3/7/09 Google 
GOOG 5/6/16 Google Inc. 
GOOGL 5/4/17 Google Docs 

GPI 7/19/06 
Group 1 Automotive Inc, 
Weinstein Spira & Company, P.C. 

GPN 3/30/12 Global Payments Inc. 
GPS 9/28/07 Gap Inc. 
GPS 7/16/13 Gap, Banana Republic 
GPS 4/16/10 Gap Inc. 
GRPN 7/2/12 Groupon 
GS 7/2/14 Goldman Sachs 
GS 5/18/13 Goldman Sachs, Bloomberg LP 
GUID 12/20/05 Guidance Software, Inc. 
GYMB 10/27/06 Gymboree 
H 1/15/16 Hyatt Hotels 
H 11/16/17 Hyatt Hotels 
HBAN 10/27/09 FirstMerit Bank 
HBAN 5/9/11 Huntington National Bank 

HCSG 12/9/11 
Health Care Service Corporation 
(HCSC) 
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HD 9/2/14 The Home Depot 
HD 2/6/14 The Home Depot 
HD 10/17/07 Home Depot 
HD 12/14/10 Home Depot 
HD 4/13/12 The Home Depot 
HD 4/30/07 Home Depot 
HD 5/24/07 Home Depot 
HIG 4/6/11 Hartford Life Insurance Company 
HIG 9/12/07 Hartford Life Insurance Company 
HIG 10/30/07 Hartford Financial Services Group 
HLT 9/25/15 Hilton Hotels 
HMN 10/29/07 The Horace Mann Companies 
HMN 11/12/07 The Horace Mann Companies 
HNT 11/18/09 Health Net 
HNT 7/2/13 Health Net, CalViva Health 
HNT 4/16/10 Health Net 
HOG 4/4/08 Harley-Davidson, Inc. (HOG) 
HON 1/31/06 Honeywell International 
HON 4/19/07 Honeywell International 

HPE 8/17/07 
Mercury Interactive, Hewlett-
Packard 

HPE 11/23/16 
Hewlett Packard Enterprise 
Services 

HPQ 12/11/08 Hewlett-Packard, Symantec 
HPY 1/20/09 Heartland Payment Systems 
HRB 3/23/10 H&R Block 
HRB 3/23/12 H&R Block 
HRB 12/22/05 H&R Block 
HRB 4/8/10 H&R Block 
HS 5/22/08 HealthSpring Inc. 
HSBC 4/15/05 Polo Ralph Lauren, HSBC 
HSBC 4/10/15 HSBC Finance Corporation 
HSBC 8/9/10 HSBC Bank Nevada 
HSBC 1/13/16 HSBC SBN 

HSIC 3/16/07 
Henry Schein, Financial Services, 
Inc., ChoiceHealth Leasing 

HTZ 11/11/06 Hertz Global Holdings, Inc. 

HUM 12/12/06 

Aetna, Nationwide, WellPoint 
Group Health Plans, Humana 
Medicare, Mutual of Omaha 
Insurance Company, Anthem 
Blue Cross Blue Shield via 
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Concentra Preferred Systems 
HUM 5/23/14 Humana 
HUM 6/3/06 Humana 
HUM 10/9/15 Humana 
HUM 8/18/10 Humana Inc, Matrix Imaging 
IBM 5/15/07 IBM 
IBM 3/15/06 Ernst & Young, IBM 

IHG 9/3/13 
InterContinental Mark Hopkins 
San Francisco 

IHG 7/26/16 Kimpton Hotels 

IHG 2/3/17 
InterContinental Hotels Group 
(IHG) 

IHS 2/27/13 
Information Handling Services, 
Inc. (IHS) 

ING 6/18/06 
ING U.S. Financial Services, 
Jackson Health System 

ING 10/12/10 ING 
ING 6/18/06 ING U.S. Financial Services 
INOD 1/13/09 Innodata Isogen, Inc. 
INTC 2/10/12 Intel, Inc. 
INTU 4/2/15 Intuit 
INTU 5/11/17 Intuit 
IR 11/6/06 Ingersoll Rand 
IRM 1/17/08 GE Money , Iron Mountain 
IRM 5/2/05 Time Warner, Iron Mountain Inc. 
IRM 7/6/05 City National Bank, Iron Mountain 

ITT 1/6/11 
Marsh U.S. Consumer, Seabury 
and Smith, ITT Corporation 

JACK 2/22/11 Jack in the Box 
JIVE 9/23/16 Jive Software/Producteev 
JLL 8/9/10 Jones Lang LaSalle 
JPM 8/28/14 J.P Morgan Chase 
JPM 12/5/13 JPMorgan Chase 
JPM 7/30/11 Chase Bank 
JPM 10/1/13 JP Morgan Chase 

JPM 1/26/07 
Chase Bank and the former Bank 
One, now merged 

JPM 1/30/11 JP Morgan Chase, Citibank 
JPM 2/12/13 J.P. Morgan Chase, Capital One 
JPM 5/1/07 JP Morgan 
JPM 5/1/07 JP Morgan 
JPM 9/14/10 JP Morgan Chase Bank 
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JPM 1/20/11 Chase Bank 

JPM 9/7/06 

Circuit City and Chase Card 
Services, a division of JP Morgan 
Chase & Co. 

JPM 6/12/10 JP Morgan Chase 
JPM 8/30/05 JP Morgan Chase & Co. 
JPM 3/28/13 JPMorgan Chase 
JPM 1/19/10 CHASE 
JWN 10/10/13 Nordstrom 
KBH 1/18/07 KB Home 
KBR 1/26/11 KBR, Inc. 
KELYA 3/9/12 Kelly Services 
KEY 5/9/12 Key Bank 
KEY 11/18/06 KeyCorp 
KEY 12/30/06 KeyCorp 
KFY 10/12/12 Korn/Ferry International 
KMB 11/2/17 Kimberly-Clark 

KND 8/16/12 

Kindred Healthcare Inc. (Kindred 
Transitional Care and 
Rehabilitation) 

KO 1/24/14 Coca-Cola Company 

KO 2/22/12 
Coca-Cola Company Family 
Federal Credit Union 

KRFT 3/3/08 Kaft Foods 

KRFT 9/5/07 
Affiliated Computer Services 
(ACS), Kraft Foods 

LABL 6/16/16 Multi-Color Corporation 
LCC 4/6/11 US Airways 

LH 3/27/10 
Laboratory Corporation of 
America LabCorp 

LH 6/9/13 
Laboratory Corporation of 
America (LabCorp) 

LJPC 12/31/14 La Jolla Group 
LLL 5/15/12 L-3 Communications Corporation 
LMT 7/11/14 Lockheed Martin 
LMT 5/27/11 Lockheed Martin 

LNC 1/14/10 
Lincoln National Corporation 
(Lincoln Financial) 

LNC 9/16/12 

Lincoln Financial Securities 
Corporation, Red Boat Advisor 
Resources 

LNC 7/21/10 Lincoln National Life Insurance 
LNC 7/26/11 Lincoln National Life Insurance 
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Company, Lincoln Life & Annuity 
Company of New York 

LNC 8/23/11 

Lincoln Financial Group, Lincoln 
National Life Insurance Company, 
Lincoln Life and Annuity Company 
of New York 

LNC 5/25/10 Lincoln Financial Group 
LNKD 6/6/12 LinkedIn.com 
LOW 5/19/14 Lowe's 
LOW 5/22/14 Lowes Corporation 

LOW 5/16/06 
GE Money Bank, Lowe's 
Companies Inc. 

LPLA 7/8/08 
LPL Financial (formerly Linsco 
Private Ledger) 

LPLA 10/12/07 LPL Financial 
LPLA 3/9/10 LPL Financial 
LPLA 8/11/10 LPL Financial 
LRCX 4/14/10 Lam Research Corp. 

LUX 11/26/08 
Luxottica Group, Things 
Remembered 

LVS 2/12/14 
Las Vegas Sands Hotels and 
Casinos 

LXK 2/15/08 Lexmark International 
M 4/23/13 Macy's 
MAR 12/28/05 Marriott International Inc. 

MBI 10/7/14 
Municipal Bond Insurance 
Association (MBIA) 

MCD 8/9/11 McDonald's 
MCD 8/22/08 Liberty McDonald's Restaurant 
MCD 3/9/12 McDonald's 
MCD 11/18/11 McDonald's 
MCD 11/18/11 McDonald's 
MCD 9/12/11 McDonald's 
MCD 11/5/11 McDonald's 

MCD 12/14/10 
McDonald's, Arc Worldwide, 
Silverpop Systems Inc. 

MCD 11/16/11 McDonald's 

MCK 7/30/13 

US Airways, McKesson, City of 
Houston, Automatic Data 
Processing (ADP), AlliedBarton 
Security Services 

MCK 9/9/07 
McKesson Specialty, 
AstraZeneca 

MDB 9/5/17 MongoDB 
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MDT 2/8/14 Medtronic 
MDT 8/2/13 Medtronic 
MEET 8/18/14 MeetMe, Inc. 

MET 1/24/12 
Metropolitan Life Insurance 
Company (MetLife) of Connecticut 

MET 1/25/11 MetLife 

MET 8/10/10 
Metropolitan Life Insurance 
Company (MetLife) 

MGI 1/12/07 MoneyGram International 
MHS 3/1/06 Medco Health Solutions 
MHS 3/22/12 Medco Health Solutions, Inc. 
MIK 5/11/11 Michaels Stores Inc. 
MOH 5/6/14 Molina Healthcare 
MOH 2/6/12 Molina Healthcare of California 
MS 1/5/15 Morgan Stanley 
MSFT 4/3/15 Microsoft/Xbox One 
MSFT 12/26/14 Microsoft xBox 
MSFT 2/22/13 Microsoft 

MSG 11/22/16 
The Madison Square Garden 
Company 

MSI 5/30/05 Motorola 
MTB 5/17/06 M &T Bank via contractor PFPC 

MTR 2/14/12 

American Stock Transfer & Trust 
Company, LLC, Mesa Royalty 
Trust 

MUSA 6/9/11 Murphy USA 
MUSA 9/20/13 Murphy USA 
MUSA 11/6/10 Murphy USA 
MWV 11/1/07 MeadWestvaco 
MWW 8/23/07 Monster.com 
MWW 1/23/09 Monster.com 
NDAQ 7/26/13 NASDAQ OMX Group Inc. 
NDAQ 7/18/13 NASDAQ.com 
NDLS 5/16/16 Noodles and Company 
NFLX 1/1/10 Netflix 
NFLX 5/4/11 Netflix 
NFP 10/30/06 National Financial Partners (NFP) 
NFP 10/8/07 National Financial Partners (NFP) 
NGVC 3/2/15 Natural Grocers 
NLSN 2/10/14 Nielsen 
NNI 7/18/06 Nelnet Inc., UPS 
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NOC 8/9/13 Northrop Grunman 

NOC 4/19/17 
Northrop Grumman Systems 
Corporation 

NOVC 9/26/16 Novation Settlement Solutions 
NSM 8/12/15 Nationstar Mortgage LLC 
NTRS 7/29/14 Northern Trust Company 
NTY 7/15/10 NBTY 
NUAN 3/13/10 Nuance Communications Inc. 

NVDA 1/13/13 
Advanced Micro Devices (AMD), 
Nvidia 

NVDA 7/13/12 Nvidia 
NVDA 1/6/15 NVIDIA Corporation 
NYT 1/30/13 The New York Times 

NYT 8/27/13 
The New York Times, Melbourne 
IT 

OMX 2/9/06 OfficeMax 
ORCL 11/11/07 Oracle Corporation, Lodestar 
ORCL 8/8/16 Oracle's MICROS Point-of-Sale 
OUTR 4/7/08 Redbox 
OXY 1/14/09 Occidental Petroleum Corporation 

PACB 9/25/14 
Pacific BioSciences of California 
Inc. 

PAET 11/17/06 Paetec Communications 
PAY 3/7/17 Verifone 
PBG 1/2/09 Pepsi Bottling Group 
PBI 3/19/07 Pitney Bowes 
PF 11/27/12 Pinnacle Foods Group, LLC 
PFE 5/12/08 Pfizer 
PFE 9/4/07 Pfizer 
PFE 10/10/07 Wheels Inc., Pfizer 
PFE 4/7/08 Pfizer Inc 
PFE 8/13/07 Pfizer, Axia Ltd. 
PFE 6/11/07 Pfizer 
PFE 9/28/07 Pfizer 
PFG 5/14/10 Principal Financial Group 
PFMT 8/14/17 Performant Financial Corporation 
PGR 4/6/06 Progressive Casualty Insurance 
PHH 5/10/13 PHH Corporation 
PJC 2/8/07 Piper Jaffrey 
PKI 3/16/16 PerkinElmer, Inc. 
PLAY 5/12/08 Dave & Buster's 
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PLNT 10/17/08 The Planet 

PNC 3/19/10 
PNC Financial Services Group 
Inc. 

PNC 4/28/05 

Wachovia, Bank of America, PNC 
Financial Services Group and 
Commerce Bancorp 

PNX 12/4/10 Phoenix 

PRA 8/11/10 
ProAssurance Mid-Continent 
Underwriters 

PRAN 3/8/17 prAna 
PRU 2/6/06 Prudential Financial Inc. 

PRU 3/4/13 
The Prudential Insurance 
Company of America, Unisys 

PRU 11/30/07 Prudential Financial 
PSA 1/29/07 Public Storage Inc. 
PSS 6/11/10 Payless Shoe Store 
PULB 7/16/12 Pulaski Bank, Pulaski Financial 
PWRD 4/25/12 Cryptic Studios, Perfect World 
PYPL 2/4/11 Twitter, Facebook and PayPal 
PZZA 11/7/05 Papa John's 
QABA 12/1/05 First Trust Bank 
QTM 6/17/10 Quantum Corporation 
RAD 7/30/14 Rite Aid Pharmacy 
RAD 9/27/12 Rite Aid Corporation 
RAD 7/27/10 Rite Aid Corporation 
RAD 1/12/12 RIte Aid Corporation 
RAD 5/19/17 Rite Aid 

RAX 5/2/12 
Rackspace, Incorporating 
Services, Ltd. 

RCII 4/25/12 Rent-A-Center, Inc. 

RF 1/31/12 
Regions Financial Corp., Ernst & 
Young 

RL 4/15/05 Polo Ralph Lauren, HSBC 

RL 4/28/12 

Taco Bell, McDonald's, Wrigley 
Field, Ralph Lauren Restaurant 
(RL Restaurant) 

ROL 3/27/13 Rollins, Inc. 
ROST 8/5/10 Ross 

RRD 1/28/13 
RR Donnelley, UnitedHealthcare, 
Boy Scouts of America 

RUN 2/2/17 Sunrun 
S 3/11/09 Sprint 
S 1/22/07 Sprint Nextel 
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S 12/19/06 Velocita Wireless, Sprint Nextel 
S 9/2/10 Sprint 
S 8/16/17 Virgin Mobile 
SABR 8/7/15 Sabre Corporation 
SABR 5/2/17 Sabre Corporation 
SABR 5/17/17 Sabre Corporation 

SAIC 3/19/07 
Science Applications International 
Corp. (SAIC) 

SAIC 7/20/07 
Science Applications International 
Corp. (SAIC) 

SAIC 2/12/05 
Science Applications International 
Corp. (SAIC) 

SAIC 1/18/08 SAIC 

SBCF 3/3/11 
Racetrac, Seacoast National 
Bank 

SBH 3/5/14 Sally Beauty Supply 
SBH 5/4/15 Sally Beauty Supply 
SBUX 5/12/15 Starbucks 
SBUX 11/3/06 Starbucks Corp. 
SBUX 11/24/08 Starbucks Corp. 
SCHW 4/9/10 Charles Schwab 
SCHW 5/3/16 Charles Schwab 
SCNB 1/12/10 Suffolk County National Bank 
SCOR 6/12/13 comScore 
SEAC 9/8/10 SeaChange International 
SEMG 2/10/09 SemGroup LP 

SFLY 11/26/14 
Shutterfly/Tiny 
Prints/Treats/Wedding Divas 

SFM 2/25/13 Sprouts 
SFM 3/28/16 Sprouts Farmers Market 
SHLD 10/10/14 Sears Holding Company/K-Mart 
SHLD 2/28/14 Sears 
SHLD 5/23/12 Sears Portrait Studio 

SHLD 4/28/06 
Sears, Roebuck, Company 
Contractor Compliance 

SHLD 10/12/06 Sears Holding Corporation 
SHLD 1/7/08 Sears, ManageMyHome.com 
SMMF 6/22/15 Summit Financial Group 
SMTC 10/8/07 Semtech 
SNAP 3/4/16 Snapchat 

SNE 4/27/11 
Sony, PlayStation Network (PSN), 
Sony Online Entertainment (SOE) 
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SNE 11/24/14 Sony Pictures 

SNE 6/6/11 
Sony Pictures, Sony Corporation 
of America 

SNE 12/26/14 Sony PlayStation 
SNI 10/16/15 Scripps Network LLC. (Food.com) 
SONC 9/26/17 Sonic Drive-In 
SPLS 10/20/14 Staples Inc. 
SPLS 2/2/12 Staples (Staples Business Depot) 
SRCE 6/10/08 1st Source Bank 
SRCE 11/19/10 1st Source Bank 

STFGX 6/7/16 
State Farm Mutual Automobile 
Insurance Company 

STI 5/16/11 SunTrust Bank 
STI 2/22/10 SunTrust Bank 

STT 5/29/08 
State Street Corp, Investors 
Financial Services 

STX 3/6/16 Seagate 
SVEV 3/3/10 7-Eleven 
SVEV 2/24/10 7-Eleven 
SVU 8/15/14 Supervalue 
SWK 3/11/13 Stanley Black & Decker, Inc. 
SWY 11/5/05 Safeway, Hawaii 
SYMC 3/31/09 Symantec 
SYMC 12/11/08 Hewlett-Packard, Symantec 
SYMC 11/4/12 Symantec, ImageShack 
SYNH 7/21/16 inVentiv Health, Inc. 
T 6/9/10 Apple Inc., AT&T 

T 8/29/06 
AT&T via vendor that operates an 
order processing computer 

T 8/30/07 AT&T 
T 6/10/14 AT&T Mobility, LLC 
T 10/6/14 AT&T 
T 4/8/15 AT&T 
T 5/25/10 AT&T/Ferrell Communication 
T 5/22/08 AT&T 
T 7/8/09 AT&T 
T 11/21/11 AT&T 
T 6/16/10 AT&T 
T 2/27/10 AT&T 
TAX 2/13/15 Liberty Tax Services 
TAX 12/13/10 Liberty Tax Service 
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TD 3/13/10 TD Bank 
TD 10/8/12 TD Bank 
TD 3/10/11 TD Bank 
TD 3/4/13 TD Bank, N.A. 
TGT 12/13/13 Target Corp. 
Ticker EventDate Company 
Ticker Date Made Public Name 

TIME 12/31/09 
Time Inc., Harvard Business 
Review 

TJG 5/29/13 TJG, Inc., Target Marketing 

TJX 1/17/07 

TJ stores (TJX), including 
TJMaxx, Marshalls, Winners, 
HomeSense, AJWright, KMaxx, 
and possibly Bob's Stores in U.S. 
& Puerto Rico -- Winners and 
HomeGoods stores in Canada -- 
and possibly TKMaxx stores in 
UK and Ireland 

TM 8/4/06 Toyota 
TM 8/26/16 Toyota Motor Corporation 
TMUS 6/7/09 T-Mobile USA 
TMUS 10/14/06 T-Mobile USA Inc. 
TMUS 1/16/12 T-Mobile 
TMUS 10/8/15 T-Mobile USA Inc. 
TMUS 12/7/16 T-Mobile 
TMUS 10/12/17 T-Mobile 
TOO 11/9/17 Tween Brands, Inc. 
TREE 4/22/08 LendingTree 
TRI 8/11/10 Thomson Reuters 
TRIP 3/24/11 TripAdvisor 

TRMK 6/22/15 
Trustmark Mutual Holding 
Company 

TRU 11/30/06 
TransUnion Credit Bureau, 
Kingman, AZ, court office 

TRU 1/29/08 
TransUnion, Intelenet Global 
Services, 

TRU 3/12/12 

TransUnion LLC, Manufacturers 
Life Insurance Company 
(ManuLife) 

TTEC 6/21/10 TeleTech, Sony Electronics 
TWC 7/28/10 Time Warner Cable 
TWC 1/8/16 Time Warner Cable 
TWTR 2/2/13 Twitter 
TWTR 2/4/11 Twitter, Facebook and PayPal 
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TWTR 6/13/16 Twitter 
TWTR 5/19/17 Vine 
TWX 5/2/05 Time Warner, Iron Mountain Inc. 
TWX 7/31/17 HBO 
TWX 10/30/17 Home Box Office (HBO) 
TXT 7/31/07 Textron 
TYL 3/13/17 Tyler Technologies Inc. 

UA 4/20/12 
Under Armour Inc., 
PricewaterhouseCoopers 

UAL 7/29/15 United Airlines 
UAL 1/1/15 United Airlines 
UAL 1/13/09 Continental Airlines 
UBNT 8/7/15 Ubiquiti Networks Inc. 
UBS 11/7/07 UBS FInancial Services 
UNB 4/5/12 Union Bank 

UNH 10/12/11 
United Healthcare Inc., Futurity 
First Insurance Group 

UNH 5/25/11 United Healthcare Inc. 

UNH 5/18/12 
UnitedHealthcare (United Health 
Group Plan) 

UNH 1/28/13 
RR Donnelley, UnitedHealthcare, 
Boy Scouts of America 

UNH 8/6/10 United HealthGroup 
UNH 8/6/10 United HealthGroup 
UNH 10/11/10 UnitedHealth Group 
UNH 8/6/10 United HealthGroup 
UNH 8/6/10 United HealthGroup 
UNP 6/16/06 Union Pacific 
UPS 8/20/14 The UPS Store 
UPS 7/18/06 Nelnet Inc., UPS 

UPS 4/6/07 
Hortica (Florists___ Mutual 
Insurance Company), UPS 

UPS 6/6/05 Citigroup, UPS 
USB 9/28/10 US Bank 
USB 8/1/06 US Bank 
USB 3/1/10 US Bank 
V 10/16/06 VISA, FirstBank (1st Bank) 
VIAB 9/20/17 Viacom 

VLY 2/14/12 

Valley National Bank, American 
Stock Transfer and Trust 
Company, LLC 

VLY 5/27/11 Valley National Bank 
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VMED 10/25/07 Virgin Mobile 
VRA 10/12/16 Vera Bradley 
VRSN 2/2/12 VeriSign Inc. 
VRSN 8/6/07 Verisign 
VSTO 9/19/16 Active Outdoors 
VZ 8/12/05 Verizon 
VZ 8/25/06 Verizon Wireless 
VZ 3/8/06 Verizon Communications 
WASH 8/28/08 The Washington Trust Co. 
WCC 11/3/06 Wesco 
WCG 4/8/08 WellCare Health Plans Inc. 
WCG 12/6/14 WellCare Health Plans 
WEB 8/19/15 Web.com 
WEN 7/28/10 Wendy's 
WEN 1/27/16 Wendy's 
WFC 9/1/06 Wells Fargo via unnamed auditor 
WFC 8/12/08 Wells Fargo 

WFC 8/29/06 

Wells Fargo, Paymap Inc., First 
Horizon Home Loans, Western 
Union 

WFC 5/5/06 Wells Fargo 
WFC 10/20/11 Wells Fargo 
WFC 5/25/10 Wells Fargo 
WFC 7/31/17 Wells Fargo 
WIN 1/27/12 Windstream 
WINN 6/23/07 Winn-Dixie 
WKL 7/24/06 Wolters Kluwer 

WLP 2/10/10 
WellPoint, Anthem/Blue Cross 
and Blue Shield 

WLP 8/6/10 WellPoint, Inc. 
WM 4/3/07 Waste Management Inc. 
WM 4/3/07 Waste Management Inc. 
WMB 8/1/09 Williams Cos. Inc. 
WMT 9/28/07 Wal-Mart Stores Inc. 
WMT 6/7/10 Wal-Mart, Sam's Club 
WSBN 3/15/17 Wishbone 

WSM 8/17/06 
Williams-Sonoma, Deloitte & 
Touche 

WU 8/29/06 

Wells Fargo, Paymap Inc., First 
Horizon Home Loans, Western 
Union 

WU 7/17/07 Western Union 
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WU 12/20/16 Western Union 
WY 8/10/06 Weyerhaeuser Company 
WYN 2/28/10 Wyndham Hotels & Resorts 
WYN 2/16/09 Wyndham Hotels & Resorts 
XRIT 4/11/12 X-Rite Incorporated, Pantone.com 
XRX 1/23/07 Xerox 
YHOO 7/12/12 Yahoo! Voices 
YHOO 9/22/16 Yahoo 
YHOO 12/14/16 Yahoo 
YUM 11/17/17 Pizza Hut 
ZEN 2/21/13 Zendesk 
 
 
Table 3: Company Stock Performance Abnormalities 
 
ticker evtdate diff 
A 24-Mar-08 0.00504333 
AA 15-Jul-10 0.01982667 
AAN 2-Nov-11 -0.00987 
AAN 22-Oct-13 0.00018 
AAP 16-Mar-16 -0.00505 
AAP 31-Mar-08 0.01875667 
AAPL 1-Apr-11 0.00166333 
AAPL 19-Feb-13 0.00268 
AAPL 2-Sep-14 -0.0210133 
AAPL 22-Jul-13 0.01950667 
AAPL 26-Feb-14 0.02055 
AAPL 4-Sep-12 0.00382667 
AAPL 9-Jun-10 0.00244333 
ABB 11-Sep-17 -0.0049267 
ABM 14-Nov-17 -0.0074333 
ABM 21-Apr-11 0.0007 
ADBE 13-May-13 0.01789 
ADBE 14-Nov-12 0.00164 
ADBE 4-Oct-13 -4.33E-05 
ADP 15-Jun-11 0.00157667 
ADP 19-Jun-06 -0.0019167 
ADP 28-Dec-11 -0.00154 
ADP 30-Jul-13 -0.0066533 
ADP 5-May-16 0.00108333 
ADP 6-Jul-06 -0.0099833 
ADVS 10-Jan-07 -0.0005133 
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AET 12-Dec-06 -0.00711 
AET 15-Nov-10 -0.0188167 
AET 24-Aug-17 -0.0017733 
AET 28-May-09 -0.0162 
AET 28-May-10 0.01026 
AFL 16-Mar-17 0.00166667 
AFL 19-Apr-06 -0.0038033 
AFL 22-Aug-06 0.00742667 
AIG 14-Jun-06 -0.00535 
ALK 26-Jul-17 0.00122333 
ALL 23-Aug-11 -0.0189367 
ALL 29-Jun-06 -0.00413 
ALSK 20-Feb-14 -0.00402 
ALU 18-May-07 0.01125667 
AMCC 4-Apr-11 0.01212 
AMD 14-Jan-13 0.00981667 
AMD 9-Apr-12 0.01143 
AMTD 1-Dec-06 -0.00645 
AMTD 14-Sep-07 0.00079667 
AMZN 29-Sep-17 -0.0069133 
AMZN 31-Jan-11 0.00285 
AN 27-May-14 0.00248667 
ANTM 31-Jul-17 0.01337667 
ANTM 5-Feb-15 0.00155333 
ARW 8-Mar-10 0.00969 
AXP . 0.00969 
AXP 13-Jul-12 5.67E-05 
AXP 14-Aug-09 0.01703333 
AXP 25-Mar-14 0.00088333 
AXP 30-Dec-13 0.00142333 
AXP 7-Apr-14 0.00102 
BA 11-Jul-14 -0.0017267 
BA 13-Dec-06 -0.0042733 
BA 15-Nov-06 0.00983333 
BA 21-Apr-06 -0.01163 
BA 27-Feb-17 0.00103 
BA 8-Feb-17 -0.0046967 
BAC 11-Aug-09 0.01693667 
BAC 12-Apr-07 0.00463333 
BAC 14-Dec-06 -0.0049067 
BAC 14-Feb-11 -0.0114033 
BAC 17-Jul-14 0.00620667 
BAC 18-Aug-11 -0.0196733 
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BAC 25-May-11 -0.0037733 
BAC 7-Apr-10 -0.00269 
BAC 8-Jun-10 -0.00362 
BBBY 19-Jun-17 -0.0063567 
BBBY 25-Sep-15 -0.0120367 
BBT 15-May-08 -0.0255867 
BBY 6-May-11 -0.00686 
BC 16-Feb-07 0.01812 
BC 21-Apr-08 0.01118 
BDL 20-May-11 -0.0013867 
BEN 3-Aug-06 0.00275667 
BGC 19-Nov-07 -0.0285967 
BGS 6-Dec-13 0.0104 
BHE 21-Nov-17 -0.0030733 
BK 26-Mar-08 0.00447667 
BKE 20-Jun-17 -0.01617 
BKS 24-Oct-12 0.03563 
BLKB 17-Jun-09 0.01194667 
BMY 17-Jul-08 -0.02839 
BOH 1-Mar-13 0.00017333 
BR 22-Jun-09 -0.00973 
BRLI 25-Aug-14 -0.01994 
BSFT 5-Sep-17 -0.0389833 
BSX 10-Feb-14 -0.0059567 
BUD 29-Jul-08 -0.0058933 
C 11-Aug-09 -0.0188433 
C 14-Oct-10 -0.0014267 
C 17-Jul-13 -0.0152867 
C 18-Aug-11 0.01539333 
C 19-Jun-08 -0.0204333 
C 2-Oct-06 0.00968667 
C 21-Sep-07 -0.0017933 
C 24-Feb-10 -0.0015633 
C 27-Jul-10 -0.0149233 
C 28-Mar-13 -0.0033467 
C 9-Aug-07 -0.0180633 
C 9-Jun-11 0.02359333 
CAKE 13-Sep-10 -0.0084367 
CAKE 24-May-10 -0.0027933 
CAKE 29-Sep-10 0.00259 
CAT 27-Apr-07 -0.0039567 
CELG 20-Aug-07 -0.0003967 
CFR 19-May-06 0.00903667 
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CHDN 4-Sep-12 -0.0042433 
CHH 22-Mar-13 0.00544333 
CHH 26-Apr-12 -0.00446 
CI 7-Dec-06 0.00250333 
CI 7-Nov-06 -0.01389 
CMCSA 16-Mar-09 -0.0035267 
CMCSA 21-May-12 0.00170667 
CMCSA 3-Oct-13 -0.0023233 
CME 18-Nov-13 0.01443667 
CMG 26-Apr-17 0.00514 
CNC 26-Jan-16 0.03275333 
CNET 14-Jul-14 0.01632667 
CNQR 16-Dec-10 0.00439 
COF 12-Feb-13 -0.0043833 
COF 18-May-10 0.01651 
COF 4-Mar-14 0.00022 
COF 6-Feb-17 0.00847 
COF 6-Jul-17 -0.0048433 
COF 9-May-12 -0.0001733 
COLB 21-May-07 0.00885 
CPRT 28-Aug-06 0.00250333 
CS 20-Feb-07 -0.02036 
CSC 3-Apr-13 -0.00332 
CSCO 12-Jul-10 0.00503667 
CSCO 25-Oct-16 0.00641667 
CSCO 9-Apr-12 0.01115667 
CVC 25-Jul-06 0.00349333 
CVS 16-Apr-07 -0.00024 
CVS 18-Feb-09 0.01040667 
CVS 20-Jul-15 0.00183333 
CVS 26-Mar-12 -0.0126367 
CVS 29-Nov-13 -0.0016833 
CVS 30-Jul-14 0.00458667 
CVS 4-Dec-12 0.00476 
CVS 5-Dec-16 -0.0096333 
CVX 16-Aug-06 0.01052667 
CVX 9-Mar-11 0.00115 
D 25-Aug-06 -0.0025367 
DBD 31-Aug-06 -0.0037567 
DENN 30-Sep-13 0.00027667 
DFS 11-Nov-13 -0.0045433 
DFS 17-Aug-12 0.00433667 
DFS 20-Dec-13 0.00167 
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DFS 21-Feb-14 -0.0034367 
DGX 17-Sep-12 0.01255333 
DHI 16-Feb-12 -0.0163033 
DIS 1-Aug-16 0.00317667 
DLTR 1-Aug-06 0.02518 
DNB 26-Sep-13 -0.00154 
DNB 28-Oct-13 -0.0032033 
DPZ 12-May-11 0.00421 
DPZ 18-Jun-08 -0.0012067 
DRI 15-Nov-17 -0.00471 
DRIV 22-Dec-10 0.00706333 
DRIV 4-Jun-10 0.00481667 
DTV 11-Oct-06 0.01092667 
DTV 29-May-12 -0.0063767 
DVA 3-Mar-08 -0.0002167 
DVA 7-Nov-13 0.02189667 
DXC 5-Jul-17 0.01497333 
DYN 21-Oct-16 -0.0502967 
EBAY 21-May-14 -0.0104533 
EFX 10-Oct-12 -0.0003133 
EFX 11-Feb-10 0.00684333 
EFX 20-Jun-06 -0.0039233 
EFX 6-May-16 0.00227 
EFX 7-Sep-17 -0.0680933 
EHTH 27-Jan-17 -0.0002433 
EL 26-Jul-11 0.00712333 
ESRX 19-Feb-13 -0.0134033 
ESRX 6-Nov-08 0.00689667 
ETFC 9-Oct-15 0.01433667 
EV 8-Feb-12 0.0025 
EXEL 16-Aug-13 -0.00138 
EXPE 15-Nov-06 0.02562333 
F 7-May-12 0.00979 
FB 15-Feb-13 -0.00517 
FB 21-Jun-13 -0.0059133 
FB 30-Aug-17 0.00166 
FDX 25-Jul-06 -0.0088133 
FINL 26-Mar-13 0.03099667 
FIRE 27-Nov-12 0.00669667 
FIS 24-Sep-07 0.00050667 
FIS 26-Aug-11 0.00819333 
FIS 3-Jul-07 0.00620333 
FITB 13-Apr-06 0.00999333 
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FLWS 8-Mar-16 0.01192333 
FMER 27-Oct-09 -0.0159267 
FMS 8-Feb-07 -0.0136067 
FORR 5-Dec-07 -0.01644 
FRC 14-Aug-12 0.00156667 
FRED 12-Jun-15 -0.0133767 
FRP 20-Apr-09 -0.1296933 
GCI 4-May-17 -0.0325033 
GE 16-May-06 -0.00045 
GE 25-Sep-06 0.00294333 
GE 9-Feb-07 0.00898667 
GM 14-Mar-06 -0.01429 
GM 3-Aug-12 -0.0077533 
GME 2-Jun-17 -0.00355 
GNCMA 24-May-12 0.00981333 
GOOG 6-May-16 -0.00524 
GOOG 9-Mar-09 0.01639 
GOOGL 4-May-17 -0.00787 
GPI 19-Jul-06 0.00428 
GPN 30-Mar-12 -0.0018167 
GPS 16-Apr-10 0.00331667 
GPS 16-Jul-13 0.00090333 
GPS 28-Sep-07 0.00088 
GRPN 2-Jul-12 -0.0313467 
GS 2-Jul-14 0.00295333 
GS 20-May-13 0.00217333 
GYMB 27-Oct-06 -0.0165867 
H 15-Jan-16 0.03979667 
H 16-Nov-17 -0.00354 
HBAN 9-May-11 0.00173 
HCSG 9-Dec-11 0.00227 
HD 13-Apr-12 0.00295333 
HD 14-Dec-10 -0.0007533 
HD 17-Oct-07 0.00417333 
HD 2-Sep-14 -0.0049967 
HD 24-May-07 -0.00672 
HD 30-Apr-07 0.01304 
HD 6-Feb-14 -0.00521 
HIG 12-Sep-07 -0.0014367 
HIG 30-Oct-07 -0.00308 
HIG 6-Apr-11 0.00014667 
HLT 25-Sep-15 0.00889333 
HMN 12-Nov-07 -0.0277767 
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HMN 29-Oct-07 -0.04041 
HNT 16-Apr-10 0.02267 
HNT 18-Nov-09 0.001 
HNT 2-Jul-13 -0.0111133 
HOG 4-Apr-08 -0.0142433 
HON 19-Apr-07 0.01905667 
HPE 23-Nov-16 0.02445 
HPQ 11-Dec-08 -0.0027133 
HPY 20-Jan-09 -0.0939733 
HRB 23-Mar-10 0.00134333 
HRB 23-Mar-12 -0.0061167 
HRB 8-Apr-10 -0.0023333 
HSBC 10-Apr-15 -0.00161 
HSBC 13-Jan-16 -0.0135833 
HSIC 16-Mar-07 0.00319 
HUM 12-Dec-06 -0.0003333 
HUM 18-Aug-10 -0.0047467 
HUM 23-May-14 -0.00631 
HUM 5-Jun-06 0.00160667 
HUM 9-Oct-15 0.01235 
IBM 15-Mar-06 -0.0055833 
IBM 15-May-07 0.00013 
IHG 26-Jul-16 -0.0062633 
IHG 3-Feb-17 0.00326333 
IHG 3-Sep-13 0.00642333 
IHS 27-Feb-13 0.00436667 
ING 12-Oct-10 0.01059 
ING 19-Jun-06 -0.00709 
INOD 13-Jan-09 -0.07583 
INTC 10-Feb-12 -0.00265 
INTU 11-May-17 -0.00135 
INTU 2-Apr-15 -0.00953 
IR 6-Nov-06 -0.0004333 
IRM 17-Jan-08 0.00745667 
ITT 6-Jan-11 0.00499667 
JACK 22-Feb-11 -0.0149733 
JIVE 23-Sep-16 0.00259333 
JLL 9-Aug-10 -0.00694 
JPM 1-Aug-11 0.00214667 
JPM 1-May-07 -0.0067 
JPM 1-Oct-13 -0.0014967 
JPM 12-Feb-13 0.00049 
JPM 14-Jun-10 0.00851333 
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JPM 14-Sep-10 -0.0070867 
JPM 19-Jan-10 -0.0085567 
JPM 20-Jan-11 -0.0024433 
JPM 26-Jan-07 -0.0054533 
JPM 28-Aug-14 -0.00315 
JPM 28-Mar-13 0.01004 
JPM 31-Jan-11 -0.0024733 
JPM 5-Dec-13 -0.00026 
JPM 7-Sep-06 -0.0004667 
JWN 10-Oct-13 -0.0033133 
KBH 18-Jan-07 0.01010667 
KBR 26-Jan-11 0.004 
KELYA 9-Mar-12 -0.0033067 
KEY 20-Nov-06 -0.0005667 
KEY 3-Jan-07 0.00028 
KEY 9-May-12 0.00112667 
KFY 12-Oct-12 0.0019 
KMB 2-Nov-17 0.00024667 
KND 16-Aug-12 -0.0051267 
KO 22-Feb-12 -0.0024867 
KO 24-Jan-14 -0.0097433 
LABL 16-Jun-16 -0.0157633 
LCC 6-Apr-11 0.01391333 
LH 10-Jun-13 -0.00039 
LH 29-Mar-10 -0.0036733 
LLL 15-May-12 -0.0054533 
LMT 11-Jul-14 -0.0022633 
LMT 27-May-11 0.00227 
LNC 14-Jan-10 -0.0066633 
LNC 17-Sep-12 -0.0005767 
LNC 21-Jul-10 0.00273333 
LNC 23-Aug-11 0.00810333 
LNC 25-May-10 0.00327667 
LNC 26-Jul-11 0.00739333 
LNKD 6-Jun-12 0.01069 
LOW 16-May-06 0.00619667 
LOW 19-May-14 0.01241 
LOW 22-May-14 -0.0032833 
LRCX 14-Apr-10 0.00311667 
LUX 26-Nov-08 0.03268 
LVS 12-Feb-14 0.00161667 
LXK 15-Feb-08 0.02230333 
M 23-Apr-13 0.00743 
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MCD 12-Sep-11 0.01165 
MCD 14-Dec-10 0.00587667 
MCD 16-Nov-11 0.00333333 
MCD 18-Nov-11 0.00389667 
MCD 7-Nov-11 -0.0046033 
MCD 9-Aug-11 -0.00836 
MCD 9-Mar-12 0.00887 
MCK 10-Sep-07 0.00842333 
MCK 30-Jul-13 -0.01952 
MDT 10-Feb-14 -0.00571 
MDT 2-Aug-13 0.00912333 
MEET 18-Aug-14 0.02469333 
MET 10-Aug-10 -0.0117 
MET 24-Jan-12 -0.0124433 
MET 25-Jan-11 -0.0014767 
MGI 12-Jan-07 0.01139 
MOH 6-May-14 -0.0143133 
MS 5-Jan-15 -0.00887 
MSFT 22-Feb-13 -0.0012433 
MSG 22-Nov-16 0.00279667 
MTB 17-May-06 0.00361 
MUSA . 0.00361 
MUSA 8-Nov-10 -0.0118633 
MUSA 9-Jun-11 -0.0109733 
MWV 1-Nov-07 -0.0023333 
MWW 23-Jan-09 0.00367333 
NDAQ 18-Jul-13 0.00283 
NDAQ 26-Jul-13 0.00173333 
NDLS 16-May-16 0.00371333 
NFLX 4-Jan-10 0.00117667 
NFLX 4-May-11 0.00197333 
NFP 30-Oct-06 0.0456 
NFP 8-Oct-07 2.67E-05 
NGVC 2-Mar-15 0.00095333 
NLSN 10-Feb-14 -0.01482 
NNI 18-Jul-06 0.00085 
NOC 19-Apr-17 -0.0015567 
NOC 9-Aug-13 -0.0034633 
NSM 12-Aug-15 -0.0220333 
NTRS 29-Jul-14 -0.0028567 
NTY 15-Jul-10 -0.00596 
NUAN 15-Mar-10 -0.0034667 
NVDA 13-Jul-12 0.02254 
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NYT 30-Jan-13 0.00142333 
ORCL 12-Nov-07 0.04819333 
ORCL 8-Aug-16 0.00144333 
OXY 14-Jan-09 -0.00458 
PACB 25-Sep-14 -0.00082 
PAY 7-Mar-17 -0.01861 
PBI 19-Mar-07 0.00580333 
PFE 12-May-08 -0.00173 
PFG 14-May-10 0.01842667 
PFMT 14-Aug-17 0.01730333 
PGR 6-Apr-06 0.00467333 
PJC 8-Feb-07 -0.0108733 
PKI 16-Mar-16 0.00293333 
PNC 19-Mar-10 -0.0116867 
PRA 11-Aug-10 0.00330667 
PRAN 8-Mar-17 0.04358333 
PSA 29-Jan-07 -0.0037633 
PSS 11-Jun-10 -0.0026567 
PULB 16-Jul-12 -0.0031033 
PWRD 25-Apr-12 -0.00931 
QTM 17-Jun-10 -0.0276767 
RAD 19-May-17 0.06994333 
RAD 30-Jul-14 0.03878 
RAX 2-May-12 0.00695 
RCII 25-Apr-12 0.00973 
RF 31-Jan-12 0.0008 
RRD 28-Jan-13 0.02419333 
RUN 2-Feb-17 -0.0010867 
S 11-Mar-09 -0.03331 
S 16-Aug-17 0.00480667 
SABR 17-May-17 -0.00478 
SABR 2-May-17 -0.0038167 
SABR 7-Aug-15 -0.0292133 
SBCF 3-Mar-11 -0.0099767 
SBH 5-Mar-14 0.00124 
SBUX 12-May-15 0.0036 
SCHW 3-May-16 0.00205667 
SCHW 9-Apr-10 -0.0077233 
SCOR 12-Jun-13 -0.0016333 
SEAC 8-Sep-10 0.04250667 
SFLY 26-Nov-14 -0.0125167 
SFM 28-Mar-16 0.00188 
SHLD 10-Oct-14 0.08379333 
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SMMF 22-Jun-15 0.00046667 
SMTC 8-Oct-07 -0.00742 
SNE 27-Apr-11 0.00537 
SNI 16-Oct-15 -0.00464 
SONC 26-Sep-17 0.00560667 
SPLS 20-Oct-14 0.01032667 
SRCE 10-Jun-08 0.00208333 
STI 16-May-11 0.00923333 
STT 29-May-08 -0.0012867 
STX 7-Mar-16 0.00031667 
SVU 15-Aug-14 0.00329 
SWK 11-Mar-13 0.00317333 
SYMC 31-Mar-09 0.00653333 
T 9-Jun-10 -0.0101033 
TAX 13-Feb-15 -0.0068 
TD 15-Mar-10 -0.0060733 
TGT 13-Dec-13 0.00054333 
TJX 17-Jan-07 0.00693333 
TM 26-Aug-16 0.00464333 
TM 4-Aug-06 0.00099333 
TMUS 12-Oct-17 0.00486667 
TMUS 7-Dec-16 -0.0239933 
TOO 9-Nov-17 -0.0398067 
TRI 11-Aug-10 0.01231333 
TRMK 22-Jun-15 0.00559333 
TRU 30-Nov-06 -0.0150933 
TTEC 21-Jun-10 0.0079 
TWC 28-Jul-10 0.01402667 
TWC 8-Jan-16 -0.0065267 
TWTR 13-Jun-16 0.04446 
TWTR 19-May-17 0.00046 
TWX 30-Oct-17 -0.0073533 
TWX 31-Jul-17 -0.0098567 
TXT 31-Jul-07 0.00839333 
TYL 13-Mar-17 -0.0018 
UA 20-Apr-12 -0.02126 
UAL 29-Jul-15 -0.01277 
UBNT 7-Aug-15 -0.00469 
UBS 7-Nov-07 0.0185 
UNH 12-Oct-11 -1.33E-05 
UNP 16-Jun-06 -0.0090233 
UPS 20-Aug-14 -0.0097733 
USB 28-Sep-10 0.00772 
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VIAB 20-Sep-17 0.00556 
VMED 25-Oct-07 0.00421 
VRA 12-Oct-16 -0.00441 
VRSN 2-Feb-12 -0.0166433 
VSTO 19-Sep-16 0.00481333 
WASH 28-Aug-08 -0.0277667 
WCC 3-Nov-06 -0.00251 
WCG 8-Apr-08 0.01199333 
WEN 27-Jan-16 0.01807333 
WEN 28-Jul-10 -0.0064567 
WFC 1-Sep-06 0.00381667 
WFC 31-Jul-17 0.00759333 
WIN 27-Jan-12 0.00783 
WINN 25-Jun-07 0.01490333 
WLP 10-Feb-10 -0.0059233 
WM 3-Apr-07 -0.00334 
WMB 3-Aug-09 -0.01485 
WMT 28-Sep-07 0.01419667 
WSM 17-Aug-06 -0.03001 
WU 20-Dec-16 0.00245 
WY 10-Aug-06 -0.00462 
WYN 1-Mar-10 -0.0052933 
XRIT 11-Apr-12 -0.1164667 
XRX 23-Jan-07 0.01905333 
YHOO 12-Jul-12 -0.00946 
YHOO 14-Dec-16 -0.01637 
YHOO 22-Sep-16 -0.0013767 
YUM 17-Nov-17 0.00539667 
 


