

Twitter Equity Firm Value
CS4624: Multimedia, Hypertext, and Information Access

Blacksburg, VA 24061
 5/8/2018

Client: Ziqian Song
Instructor: Dr. Edward A. Fox

By: Nathaniel Guinn, Christian Wiskur, Erik Agren, Jacob Smith, and Rohan Rane

1

Table of Contents

Table	of	Figures	...2	

Table	of	Tables	...3	

1.	Executive	Summary	..4	

2.	Introduction	...5	

3.	Requirements	..5	

4.	Design	..6	
4.1	High	Level	Design	..	6	
4.2	Twitter	Collection	..	6	
4.3	Stock	Collection	..	8	
4.4	Tweet	Analysis...	8	
4.5	Fama	French	Model	..	9	

5.	Implementation	...	10	
5.1	Twitter	Component..	10	
5.1.1	Acquiring	the	Data	...10	
5.1.2	Additional	Data	Collection	..10	
5.1.3	Tweet	Analysis	..11	

5.2	Stock	Component	..	11	
5.2.1	Acquiring	the	Data	...11	
5.2.2	Scrubbing	the	Data	..11	
5.2.3	Applying	Fama	French..12	
5.2.4	Further	Stock	Analysis	...12	

6.	Assessment	..	13	

7.	Developer	and	User	Manual..	16	
7.1	File	Inventory	..	16	
7.1.1	Tweet	Data	Collection	Files	..16	
7.1.2	Stock	Data	Collection	Files	..18	
7.1.3	Data	Analysis	Files	...19	

7.2	Installation	Tutorial..	20	

8.	Lessons	Learned...	23	
8.1	Timeline	...	23	

2

8.2	Team	Member	Roles	..	24	
8.3	Problems	and	Solutions	...	24	
8.4	Future	work	...	24	

9.	Acknowledgements	...	25	

10.	References	...	26	

11.	Appendices	..	27	
Appendix	A:	Code	..	27	
Appendix	B:	Tables	..	41	

Table of Figures
Figure 1: High Level Design ……………………………………………………………… 6
Figure 2: Tweet Collection Process ……………………………………………………… 6
Figure 3: Profile Scraping Process…………………………………….…………………. 7
Figure 4: Announcement-Reply Determination Process ………………………………. 7
Figure 5: Stock Collection Process ………………………………………………………. 8
Figure 6: User Sentiment Analysis Process …………………………………………….. 8
Figure 7: Link Counting Process …………………………………………………………. 9
Figure 8: Fama French Model ……………………………………………………………. 9
Figure 9: Bottom Six Data Breaches Data ……………………………………………… 14
Figure 10: Top Seven Data Breaches Data …………………………………………….. 14
Figure 11: User Tweet Analysis Data ……………………………………………........... 14
Figure 12: Company Tweet Analysis Data ……………………………………………… 14
Figure 13: Positive Sentiment of User Tweets for Top Seven and Bottom Six........... 15
Figure 14: Column headers for FindAccountNamesActive.csv ……………................ 16
Figure 15: Column headers for DataBreachesActive.csv ……………………………… 17
Figure 16: Column headers for stockReturn.csv……………………………….............. 18
Figure 17: Column headers for -3to3.csv ……………………………………………….. 18
Figure 18: Column headers for abnormalDif.csv ……………………………………….. 19
Figure 19: Github Account Creation Page …………..…………………………………... 21
Figure 20: GetOldTweets-python API Github page ..…………………………………... 21
Figure 21: Cloning the Twequity repository ……………………………………………... 22
Figure 22: Installing Python ……………………………………………………………..... 22
Figure 23: Directory of Required Files.……………………………………….………….. 22
Figure 24: Installing Project Requirements ……………………………………………… 23
Figure 25: Installing Remaining Dependencies ………………………………………… 23

3

Table of Tables
Table 1: Keywords …………………………………………………………………........... 41
Table 2: List of Company Breaches ……………………………………...………........... 41
Table 3: Company Stock Performance Abnormalities ………………………............... 62

4

1. Executive Summary

This report outlines the way that the Twitter Equity team researched modern day data
breaches and the way that Twitter has played a role in effecting a company's stock price
following a breach. The introduction explains the importance of our research and the
requirements explain the scope of our project. The design section explains the
approach to each step of the project. It walks through our data collection of Twitter and
stock data, how we analyzed all of this data, with a specific section on how we analyzed
the stock data using the Fama French model, and lastly how we constructed our
company guide. Following this is our user manual that explains all of the data files that
we use in our code and that are available for future research on this project. The
developers manual guides the reader through the process of setting up and running all
of our scraping and analysis scripts. The lessons learned section of the document
elaborates on some issues we experienced throughout the duration of the project and
explains future work that could be done. This report finishes with acknowledging
everyone who provided assistance, referencing all of the information used to produce
our research, and an appendix of our code and reference tables.

The magnitude of the work that we did is large. We were given over seven hundred data
breaches to analyze. From there we had to gather all tweets related to that event
sometimes with over ninety thousand tweets scraped. After all the gathering we wanted
to analyze different aspects of the Twitter information to try and find trends in
companies who performed well despite a data breach.

Many of the data files that we produced aren’t present in the report because we
generated over fifteen hundred but there is at least one example file to demonstrate the
different inputs and outputs that our code works with.

5

2. Introduction
Incidents of data breaches that reveal company secrets or confidential client information
can affect the firm seriously. This project records how firms use Twitter to manage the
flow of information about data breach incidents. Also, it determines how users comment
and spread the data breach information on Twitter. It then analyzes whether the above
behaviors would have impact on firm stock performance after the data breach incidents.

For example, Equifax reported a data breach in September of 2017, which was all over
the media. 143 million people were affected by this breach, and Equifax didn't release
this information until 6 months after the incident occurred [1]. The stock market value of
Equifax plummeted when they did announce the breach, and the company handled the
entire response to the breach terribly. They tweeted out a link to a very poorly designed
website and they also had multiple leadership changes before the breach was
announced. We researched other companies who have gone through data breaches
and determined if their social media interaction lessened the effects of the breach on
the company’s stock market price. We analyzed data breaches over the past 10 years
and mined Twitter data from companies related to these breaches.

3. Requirements
For our project, we need to first gather tweet data before and after data breaches.
Using this data, we need to look at how each firm responded to the event, for example
some firms may respond to every user or make an announcement about the breach,
while others may not have any activity on Twitter related to the breach. We also need
to see if the firm’s Twitter account had abnormal behavior after the data breach event
and then compare it to their activity before the breach. Furthermore, we need to gather
data on the firm’s tweet data, including the firm’s number of tweets, retweets, and likes.
This will help us get a better idea of how much the firm used their account to handle
other Twitter users, and events related to the breach.

Moreover, we also need to gather Twitter data for each data breach event, searching for
tweets published during the event time using a provided keyword list. This includes
many tweets, not just the firm’s tweets. The goal is to analyze the topics of user
discussion, classify different types of Twitter users, and identify influential users. After
collecting the data, we need to analyze the stock market trends of the companies during
the data breach event. Based on the firm’s stock during the breach, we need to analyze
companies which successfully managed the data breach and those that didn’t.
Ultimately, we need to come up with a proposal for how a company should handle a
data breach based on our findings.

6

4. Design

4.1 High Level Design
Figure 1 below demonstrates the high level design of our project.

Figure 1: High Level Design

4.2 Twitter Collection
The process of collecting company and user Twitter data given in Figure 2. Refer to
scrape_company_tweets.py and user_tweets.py in the Appendix.

Figure 2: Tweet Collection Process

An input CSV file, which contains a list of data breaches, was processed by a Python
script which returned a set of CSV files containing all relevant tweets and tweet

7

metadata. Each output CSV file corresponded to a data breach entry in the input CSV
file.

Additional data was collected including user profile information and tweet type. Tweet
type encompassed whether a tweet from a company was an announcement or reply.
These data collection steps are illustrated in Figure 3 and 4. Refer to profile_scrape.py
and accouncement_reply_firm.py in the Appendix.

Figure 3: Profile Scraping Process

Figure 4: Announcement-Reply Determination Process

8

4.3 Stock Collection
Figure 5 explains how we designed our stock collection. Please refer to
stockManipulation.py in the Appendix.

Figure 5: Stock Collection Process

4.4 Tweet Analysis
Figure 6 and Figure 7 illustrate our tweet analysis process. The process in Figure 6
determines user sentiment for a group of CSVs containing tweet data. The process in
Figure 7 determines if a URL exists and the number of URLs for a group of CSVs
containing tweet data. Refer to user_sentiment.py and countURLs.py in the Appendix.

Figure 6: User Sentiment Analysis Process

9

Figure 7: Link Counting Process

4.5 Fama French Model
A very popular model used to predict stock performance is the Fama French Model [2].
Our client instructed us to use this model so that is why we chose this model over other
models that could also be used. Our goal of using this model was to be able to predict
what the stock performance of a firm would have been had there never been a data
breach, and compare that to what the stock performance actually was. The model can
be seen in Figure 8 and explains each variable that makes up the model [5].

Figure 8: Fama French Model

While all of the variables defined above are given by the overall stock market, the alpha
and beta values are trainable variables for each particular stock. These values are
formed through a similar process as linear regression over the course of 150 data points

10

or 150 stock return days. Once the model was trained we then used our estimated
alpha and beta values to plug into the equation and the formula would then compute the
stock return on the days of the breach and after the breach. We took these estimated
data points and compared them to the actual stock performance on those dates. We did
this to see which companies were able to minimize their stock failure after a data breach
occurs.

The importance of the model in Figure 8 is that it gets rid of many confounding variables
that could happen in our analysis if we just looked at which stocks fell the most. The
factors represented in the model in Figure 8 take into consideration the size of the
companies, different stock values, and other effects. They give us a more accurate way
of predicting how much the stock changed.

5. Implementation

5.1 Twitter Component

5.1.1 Acquiring the Data

The gathering of Twitter data was accomplished using a Python script utilizing the
GetOldTweets API. Two Python scripts were written, one collecting company Twitter
data called scrape_company_tweets.py and another collecting user tweets based on
specific keywords called keyword_tweets.py. Both scripts took an input CSV file which
held data of specific breach events containing information such as the breach date,
company name, company Twitter handle, and specific eventID. This input file is parsed
by our script, and start and end dates for scraping are set. Company tweets are
collected 120 before and 30 days after the breach event. The user tweets are collected
10 days before and 30 days after the event. The user tweets are also parsed and
filtered for specific keywords given in Table 1. These collected tweets are then output to
CSV files labeled with the eventID and company Twitter handle.

5.1.2 Additional Data Collection
After collecting basic tweet data through the GetOldTweets API, it was necessary to do
some additional data collection. To accomplish this two Python scripts were written,
profile_scrape.py and announcement_reply_firm.py. The profile_scrape.py script utilized
the Requests and Beautiful Soup libraries to gather additional information on the users
in the keyword tweet files that were produced by keyword_scrape.py. Specifically, it
added the user’s username, bio, following count, follower count, and verified status to

11

each row of these files. Then, the announcement_reply_firm.py script was run on all
company tweet CSV files that were produced by scrape_company_tweets.py. Using the
value under the Mentions header that had been retrieved using GetOldTweets, it
determined whether or not a tweet was an announcement to all users or a reply to
another user’s tweet. The resulting value (either Announcement or Reply) was
appended by the script to the tweet’s row.

5.1.3 Tweet Analysis
After collected and filtering our data, we analyzed our tweets based on two criteria. The
first criteria was to check the sentiment of the tweets. The second was to count the
number of URLs present in each tweet. Both these criteria were satisfied by writing
Python scripts that appended to our CSVs containing Twitter data. User sentiment was
calculated by using the TextBlob API [7]. A Naive Bayes analysis was conducted on
each tweet, and sentiment being positive or negative was recorded. The percent
positive and percent negative for each tweet was also recorded. In order to count the
URLs each tweet data CSV file was input to our Python script which analyzed each row
of tweets for a URL. Two columns were appended to our CSV file; one containing a
value if a URL was present in the tweet, and another containing the number of links it
found in the tweet.

5.2 Stock Component

5.2.1 Acquiring the Data
To gain meaningful insight into the effect of a company’s responses to data breaches,
we had to analyze the change in stock prices after release of information. We provided
our client with a list of every company involved in data breaches since 2006 (Table 2).
In a CSV file, we included each company name along with its stock ticker. Using this
data, our client generated a CSV named stockReturn.csv with the previous 10 years of
stock data for each company. This file included a row for every day a company’s stock
was traded, with attributes including company name, date, ticker, and closing price. This
amounted to 1006614 rows of information.

5.2.2 Scrubbing the Data
The CSV of stock data contained far more data than necessary for our later
calculations. We needed to filter down this data to only include the dates surrounding
the data breach events. The formula we used to detect anomalies in stock prices, which
will be discussed in the Applying Fama French section of the report, requires the stock
prices of the company in a range from 120 before to 30 days after the event. The date
format found in the CSV was YYYYMMDD, whereas our master CSV of data breach

12

events had a date format of MM/DD/YYYY. The first step in processing the data was to
map all the dates in the stock CSV file to the MM/DD/YYYY format. This was
accomplished within Excel, using the format cells functionality.

Next, we wrote a Python script to manipulate the data into deliverables that were in turn
fed into the stock analysis formula. Using the Pandas library [4], we read in
stockReturn.csv and dataBreachesActive.csv as Pandas DataFrames. Next, we create
two new attributes within the data breach DataFrame - StartDate and EndDate. These
columns will hold the boundary values for our timeframe for each given data breach. We
iterate over the rows in dataBreachesActive.csv and use the datetime Python library to
calculate the date 120 days before and 30 days after the date found in the ‘Date Made
Public’ attribute, storing these values in new columns within the CSV.

The next step in the process was to iterate over the rows again, this time outputting a
new CSV file specific to each EventId associated with a company and data breach. It
would not be sufficient to create an output file for each company, because some
companies experienced multiple data breaches, meaning that we need a set of 150
rows for each of these events. We temporarily filtered our stockReturn.csv to only
contain the rows of information pertaining to the company involved in the current
security breach. We filtered again on these rows, removing all the days that weren’t
within our 150 day range for the current data breach. Once we had our required rows,
we removed unnecessary columns (‘oldDate’ and ‘PERMNO’). We created a string to
represent the filename using the EventId concatenated with the company’s name.
Finally, we generated the result as a CSV and repeated the process until every row had
been processed. Each data breach row was mapped to a new CSV file, containing the
desired 150 day range of stock values with each row containing columns EventId, Date,
Ticker, and Name.

5.2.3 Applying Fama French
Once the stock files were collected we were able to start training our Fama French
Model and fitting it to the Fama French model. We trained our Fama French Model from
one hundred and fifty days before the data breach to ten days before the event. Then
we wanted to analyze the predictive model from three days before the breach to three
days after. We used the three and five factor model which just gets rid of the last two
variables from the figure in the Design section of the report. We were then able to see
how much the stock price should have been versus what it was.

5.2.4 Further Stock Analysis
The result of the Fama French file was a CSV containing numbers representing how
abnormal each company’s stock performed 7 days before and after each date of the

13

data breach event. The next step in the process was to find events in which company’s
stock performed abnormally poorly or abnormally well. We accomplished this through
the use of a short Python script, abnormal.py, which can be found in Appendix A. We
found the mean of the values 3 days after the event and subtracted the mean of the
values 3 days before the event to find the change in stock abnormality, stored in the diff
column of the output. The output was a CSV file named abnormalDif.csv , which
contained a row for each data breach event and included company ticker, evtdate, and
diff values. This table can be found in Appendix B as Table 3. Data breach events with
diff values close to 0 can be interpreted as having a very small change in how abnormal
their stock performed before and after the data breach event. Companies with positive
values for diff had abnormal good stock performance after the data breach event when
compared to their performance before the event. Lastly, companies with negative
values for diff exhibited stock performance that was abnormally poor after the data
breach event when compared to their performance before the event.

6. Assessment
After outputting all of our differences of stock performance abnormalities, which were
explained in section 6.2.4 we had finally collected all of our data and analysis and could
start preparing our company guide. We realized that we wouldn’t be able to apply all of
our analysis on every single data breach because the analysis would have taken weeks
to complete due to the amount of data we were analyzing. Therefore we decided we
were going to run our analysis on the companies that had the best and worst abnormal
differences. We didn’t want to pick an arbitrary number of companies so we used Z
scores to narrow down our company list. After computing the mean and standard
deviation of the abnormal differences we decided that the Z score that would allow for
us to run our analysis would be companies 2.5 standard deviations above and below
the mean. This left us with the six lowest abnormal differences and the top seven
abnormal differences. The bottom six data breaches are listed in Figure 9; the top seven
data breaches are in Figure 10.

14

Figure 9: Bottom Six Companies. Ticker is the stock ticker, evtdate is the day of the

data brach, diff is the abnormal stock difference after and before the breach, and Z is
the score in relation to the mean of abnormal differences.

Figure 10: Top Seven Companies. Ticker is the stock ticker, evtdate is the day of the
data brach, diff is the abnormal stock difference after and before the breach, and Z is

the score in relation to the mean of abnormal differences.

Once these companies were narrowed down we ran the sentiment analysis and user
profile scraping on all of the tweets associated with each company. One hardship was

15

that any data breach before 2010 had a sparse data set. We did our best to work
around this issue. The analysis for the user tweets of each data breach is in fFgure 11.
If a data breach was in the top seven or bottom six but is no longer there then that
means there was no Twitter data available due to the lack of tweeting around that data
breach.

Figure 11: The column headers explain the meaning of each. When it says Total it
means all the user tweets summed together. Percentages are divided by total tweet

count.

The analysis for the company tweets of each data breach is in Figure 12. The same
thing applies for missing breaches in this figure as well.

Figure 12: The column headers explain the meaning of each. When it says Total it
means all the company tweets summed together. Percentages are divided by total

tweet count.

We found some correlation between ratio of replies to total tweets and the stock
performance as well as user sentiment and stock performance. The company with the
best overall stock difference had the highest ratio of replies to total tweets while the
company with the worst stock performance had the lowest ratio. Also when comparing
the user sentiment of the bottom six to the top seven we realized that the mean of
positive sentiment of the top seven was significantly higher than the bottom six. A graph
showing this can be seen in Figure 13.

16

Figure 13: Graph of positive sentiment from user tweets comparing the bottom six

breaches to the top seven breaches.
From these two main findings we have a few main points for companies to consider
when announcing a data breach. The main focus of social media should be making
replies to worried user’s, instead of announcement tweets. The main way to make
minimal announcements may be to make sure that company announcements are well
thought out and cover any questions that could come up at a later time. Company’s
shouldn’t hastily make announcements but should ensure that an announcement will be
covering a magnitude of problems. This may also lower the number of tweets from
users that are replies, which will make it easier to reply to all of their concerns. Another
reason why to focus on replying, and making clear, concise, and few announcements, is
to keep user sentiment positive. The reason why this can effect user sentiment may be
that when a company looks to have the data breach under control and can make few
announcements, then the users will believe that the company will fix the issue. Also
replying to the user tweets may keep their sentiment positive because it demonstrates
that the company cares about its users and fixing this issue.

7. Developer and User Manual

7.1 File Inventory

7.1.1 Tweet Data Collection Files
● requirements.txt

17

○ List of requirements that must be installed on your machine in order
to run the GetOldTweets code.

● keywords.txt
○ List of keywords to be used and searched for in

keyword_scrape.py.
○ Delimit keywords with a newline character.

● FindAccountNamesActive.csv
○ List of data breaches to be used by scrape_company_tweets.py

and keyword_scrape.py.
○ Figure 14 shows the header layout for the file.

Event ID Company Ticker Symbol Company Name Breach Date Company Twitter Handle

Figure 14: Column headers for FindAccountNamesActive.csv

● scrape_company_tweets.py

○ Takes FindAccountNamesActive.csv as an input argument and
outputs a CSV file for every row in FindAccontNamesActive.csv.

○ Each output CSV file contains every tweet made by the company in
the row from 120 days before the breach date to 30 days after the
breach date.

○ Each output CSV file row contains the tweet’s date, text, number of
retweets, number of favorites, mentions, and hashtags.

○ Run using “python scrape_company_tweets.py CSVFILE.csv”.
● keyword_scrape.py

○ Takes FindAccountNamesActive.csv and keywords.txt as input
arguments and outputs a CSV file for every row in
FindAccontNamesActive.csv.

○ Each output CSV file contains every tweet within 10 days before
the breach date and 30 days after the breach date that contains
either the company’s name and a keyword, or the company’s
Twitter handle and a keyword. These tweets can be from any user.

○ Each output CSV file row contains the tweet’s date, text, number of
retweets, number of favorites, mentions, hashtags, and ID.

○ Run using “python keyword_scrape.py CSVFILE.csv
KEYWORDFILE.txt”.

● announcement_reply_firm.py
○ Determines if a tweet is a reply or announcement for each tweet in

the CSV files produced by scrape_company_tweets.py.

18

○ Runs on all CSV files in the same directory as the script. To use,
place all desired CSV files in a directory with the script and run
using “python announcement_reply_firm”.

○ Appends to each row in the CSV files whether the tweet is a reply
or announcement.

● profile_scrape.py
○ Uses Requests and Beautiful Soup to collect data on the users who

tweeted in the keyword tweet CSV files produced by
keyword_scrape.py.

○ Runs on all CSV files in the same directory as the script. To use,
place all desired CSV files in a directory with the script and run
using “python profile_scrape.py”.

○ Appends to each row in the CSV files the username of the user
who tweeted, their bio, their following count, their follower count,
and whether or not they are a verified user (0 for not verified, 1 for
verified).

Please refer to Figure 2 in the Design section for an illustration of the tweet data collection process.

7.1.2 Stock Data Collection Files
● DataBreachesActive.csv

○ List of data breaches to be used by stockManipulation.py
○ Row format is “Event ID”, “Company Ticker Symbol”, “Breach

Date”, “Company Name”.
○ Figure 15 shows the header layout for the file.

Event ID Ticker Breach Date Company Name

Figure 15: Column headers for DataBreachesActive.csv

● stockReturn.csv

○ Raw stock data file containing every stock value since 2005.
○ Figure 16 shows the header layout for the file.

PERMNO Date Ticker Company Name Stock Price

Figure 16: Column headers for stockReturn.csv

19

● stockManipulation.py
○ Takes DataBreachesActive.csv and stockReturn.csv as input and

outputs a CSV file for every row in DataBreachesActive.csv.
○ Each output CSV file contains the stock data for the company in the

row from 120 days before the breach date to 30 days after the
breach date.

○ Each output CSV file row contains the Event ID, Stock Price Date,
Stock Ticker Symbol, Company Name, and Stock Price

○ Run using “python stockManipulation.py”.

Please refer to Figure 3 in the Design section for an illustration of the stock data collection process.

7.1.3 Data Analysis Files
● -3to3.csv

○ Contains the stock abnormality values from 3 days before to 3 days
after a company’s breach. Values were calculated using the Fama
French Model. Provided to us by our client.

○ Figure 17 shows the header layout for the file.

Ticker Breach Date Stock Date Abnormality

Figure 17: Column headers for -3to3.csv

● abnormalDif.csv

○ Contains the difference of the average abnormality after the breach
and average abnormality before the breach for each breach using
the values from -3to3.csv .

○ Figure 18 shows the header layout for the file.

Ticker Breach Date Difference

Figure 18: Column headers for abnormalDif.csv

● user_sentiment.py

○ Uses the TextBlob library to calculate sentiment values for every
tweet in your keyword tweet CSV files produced by
keyword_scrape.py.

20

○ Runs on all CSV files in the same directory as the script. To use,
place all desired CSV files in a directory with the script and run
using “python user_sentiment.py”.

○ Appends to each row in the CSV files the overall sentiment, the
positive sentiment value, and the negative sentiment value.

● Company_sentiment.py
○ Uses the TextBlob library to calculate sentiment values for every

tweet in your keyword tweet CSV files produced by
scrape_company_tweets.py.

○ Runs on all CSV files in the same directory as the script. To use,
place all desired CSV files in a directory with the script and run
using “python company_sentiment.py”.

○ Appends to each row in the CSV files the overall sentiment, the
positive sentiment value, and the negative sentiment value.

● abnormal.py
○ Takes -3to3.csv as input and outputs abnormalDif.csv.
○ Finds the Top 7 and Bottom 6 Data Breaches based on the Z

Score.
○ Produces plots of our differences compared to sentiment and

replies.
○ Run using “python abnormal.py CSVFILE.csv”.

● countURLs.py
○ Determines how many links are present in the body of a tweet.

Used for the CSV files produced by both
scrape_company_tweets.py and keyword_scrape.py.

○ Runs on all CSV files in the same directory as the script. To use,
place all desired CSV files in a directory with the script and run
using “python countURLs.py”.

○ Appends to each row in the CSV files if there is a link or not in the
tweet (0 or 1), and how many links are in the tweet.

7.2 Installation Tutorial
1. Create a GitHub account if you don’t already have one.

21

Figure 19: Github account creation page

2. Fork a copy of the GitHub repository located at https://github.com/Jefferson-
Henrique/GetOldTweets-python/.

Figure 20: GetOldTweets-python API Github page

3. Clone the repository to your local machine.

22

Figure 21: Cloning the Twequity repository from Github

4. Install Python on your machine if you don’t already have it.

Figure 22: Installing Python using the command line

5. Add all of the files listed in the file inventory to your local repository.

Figure 23: Directory containing the required files

6. Run “pip install -r requirements.txt” on your machine.

23

Figure 24: Installing the project requirements using the command line

7. Install the packages required for the additional tweet data collection and data

analysis scripts: Requests, Beautiful Soup, and TextBlob.

Please run: “sudo pip install requests”
 “sudo apt-get install python-bs4”
 “sudo pip install -U textblob”

“python -m textblob.download_corpora”

Figure 25: Series of commands executed to download remaining dependencies

8. You are now ready to begin running the Python scripts for both collection and
analysis of the tweet/stock data.

8. Lessons Learned

8.1 Timeline
Our timeline was split into five different milestones in order to help us get the project
done in a timely manner. The first milestone was to gather company/user tweet data,
which went smoothly. The second milestone involved gathering company stock data for
each of the data breaches. Furthermore, the third milestone included analyzing the
stock prices of the companies during the event. The fourth milestone consisted of
analyzing company successes and failures, while the last milestone was to come up
with a guide for companies that have been breached. Overall, these milestones were
very effective and helped us gain a good sense of our progress during the project. The
only problem we had with our timeline was that we had new requirements added to the
project later on in the semester, which hindered our time budgeting and caused us to
have less time to work on the remaining milestones.

24

8.2 Team Member Roles
In our project, Jacob Smith was the lead editor. His responsibilities involved looking
over all work and making sure that our writing was grammatically correct and relevant.
Jacob also checked for any errors in our assignments and turned in all of our
assignments as well. Erik Agren was the head of testing. He was in charge of writing all
the Python scripts and sending the CSVs back to the team after the scripts were run.
Christian was the project lead and helped in all phases of the project. He helped
organize the project and constantly checked in with other team members to make sure
everyone was on track. Nathaniel Guinn was the designated note taker. His
responsibilities involved taking notes during group meetings so that the team could look
at the notes and understand what went on during each meeting. Rohan was the
presentation lead. His role involved organizing the presentations throughout the
semester and making sure the presentations accurately reflected our group’s current
progress.

8.3 Problems and Solutions
One of the problems we encountered while scraping for data on Twitter was the scarcity
of tweets around 2008. Back then, Twitter was not as popular, so most companies
either didn’t have a Twitter account or didn’t use it to talk to customers over the social
network. This makes it harder for us because there is sparse data to look at for
breaches that occurred before 2010. We will have to be very cautious with our
recommendations based on some of the breaches in the early 2000’s based on the
small amount of tweets.

Another problem we encountered was also with changes in Twitter. In 2016, Twitter
changed the way mentions and replies were presented. Replying to tweets did not show
up as actual tweets and in order to find the replies you have to go to the original tweet
instead of having the reply show up as a tweet on the user’s page. This means that if a
company replied to a user, it wouldn’t show up on the company’s page but instead just
under the original tweet. Also, mentions on Twitter worked the same way and did not
show up as actual tweets on the company’s page. This problem was easily solved; it
just made us made changes for tweets past 2016 to account for mentions and replies to
other user’s tweets.

8.4 Future work
Throughout the course of the project, we used Google Drive as our data sharing
platform. Our team drive stored not only our presentations but also all of our data which
consisted of hundreds of CSV files. As we added more CSV files to the drive, it started

25

to become very slow and caused formatting issues as well. We would suggest using a
different data sharing platform in order to make file sharing easier and more fluid.

Furthermore, at the end of our project when we were running scripts, it would take a
very long time to look at thousands of tweets. We would suggest adding parallelization
to the scripts in order to run more than one at the same time. This would save days of
running scripts and since that would allow more data to be collected, we would then be
able to analyze more data. Spending more time on data analysis would also help us
provide a more accurate and in-depth company guide, which could help companies deal
with data breaches in an effective way.

9. Acknowledgements
We would like to thank our client Ziqian Song for all of her help on the project; she can
be contacted at ziqian@vt.edu. She has been instrumental with regards to training the
stock data in order to predict what the stock would have been if no data breach
occurred. Thanks also go to our professor Dr. Fox and our teaching assistant Jin.

26

10. References
1. Gressin, Seena. “The Equifax Data Breach: What to Do.” Consumer Information,

13 Mar. 2018, www.consumer.ftc.gov/blog/2017/09/equifax-data-breach-what-do.
Accessed 18 Mar. 2018

2. Hendricks, Kevin, et al. “Article Tools.” Management Science, Institute for
Operations Research and the Management Sciences, 14 Oct. 2015.

3. Lee, Lian Fen, et al. “The Role of Social Media in the Capital Market: Evidence
from Consumer Product Recalls.” Journal of Accounting Research, 27 Mar. 2015.

4. Wes McKinney. Data Structures for Statistical Computing in Python, Proceedings
of the 9th Python in Science Conference, 51-56 (2010)

5. Davidson, Adrian. “FAMA-FRENCH MODEL Concept and Application.”
SlidePlayer, 10 Aug. 2017 slideplayer.com/slide/9516030/. Accessed 01 May
2018

6. Henrique, J. GetOldTweets - Python. Github. 2018. https://github.com/Jefferson-
Henrique/GetOldTweets-python. Accessed 04 Feb 2018.

7. Loria, S. et al. TextBlob: Simplified Text Processing. 2018.
http://textblob.readthedocs.io/en/dev/authors.html. Accessed 04 April 2018.

8. Nair, Vineeth G. Getting Started with Beautiful Soup. Packt Publishing Ltd, 2014.
9. Reitz, K. Requests: HTTP for Humans. 2018. http://docs.python-

requests.org/en/master/. Accessed 21 April 2018

27

11. Appendices

Appendix A: Code
Python File, scrape_company_tweets.py

1. import sys
2. import got
3. import csv
4. import itertools
5. from datetime import datetime, timedelta
6. from dateutil import parser
7.
8. #Sets some intial lists and variables
9. dates = []
10. handles = []
11. eventIDs = []
12.
13. days_before = 120
14. days_after = 30
15.
16. #Checks if a input CSV file was given. If not exits the program
17. if len(sys.argv) == 1:
18. print "Missing input CSV file"
19. sys.exit(0)
20.
21. #Opens the CSV file and appends important data to the lists
22. with open(sys.argv[1]) as csvfile:
23. readCSV = csv.reader(csvfile, delimiter=',')
24. for row in readCSV:
25. print row[3]
26. date = datetime.strptime(row[3], "%m/%d/%Y").strftime("%Y-%m-%d")
27. dates.append(date)
28. handles.append(row[4])
29. eventIDs.append(row[0])
30.
31. #Iterates over each list and scrapes Twitter using GetOldTweets API
32. for date, handle, ID in itertools.izip(dates, handles, eventIDs):
33. event_date = parser.parse(date)
34.
35. #Calculates the start and end date based on the event date
36. start_date = (event_date - timedelta(days=days_before)).strftime("%Y-%m-%d")
37. end_date = (event_date + timedelta(days=days_after)).strftime("%Y-%m-%d")
38.
39. print handle + ":"
40. print "Event Date: ", event_date
41. print "Start Date: ", start_date
42. print "End Date: ", end_date
43.
44.

28

45. tweetCriteria =
got.manager.TweetCriteria().setUsername(handle).setSince(start_date).setUntil(end_date)

46. tweets = got.manager.TweetManager.getTweets(tweetCriteria)
47.
48. #Prints some statistics and creates a new CSV file to append information to.
49. print "Total Tweets: ", len(tweets)
50. filename = str(ID) + "_" + handle + ".csv"
51.
52. with open(filename, "w") as output:
53. writer = csv.writer(output, delimiter=',')
54. for t in tweets:
55. row = t.date, t.text, t.retweets, t.favorites, t.mentions, t.hashtags
56. writer.writerow([unicode(s).encode("utf-8") for s in row])

Python File, keyword_scrape.py

1. import sys
2. import got
3. import csv
4. import itertools
5. from datetime import datetime, timedelta
6. from dateutil import parser
7.
8. dates = []
9. names = []
10. handles = []
11. eventIDs = []
12. keywords = []
13. tweets = []
14.
15. days_before = 10
16. days_after = 30
17.
18. if len(sys.argv) != 3:
19. print "run using the following command line arguments: python keyword_scrape.py

CSVFILE.csv KEYWORDFILE.txt"
20. sys.exit(0)
21.
22. if (not('.csv' in sys.argv[1]) or not('.txt' in sys.argv[2])):
23. print "run using the following command line arguments: python keyword_scrape.py

CSVFILE.csv KEYWORDFILE.txt"
24. sys.exit(0)
25.
26.
27. with open(sys.argv[1]) as csvfile:
28. readCSV = csv.reader(csvfile, delimiter=',')
29. for row in readCSV:
30. date = datetime.strptime(row[3], "%m/%d/%Y").strftime("%Y-%m-%d")
31. dates.append(date)
32. handles.append(row[4])
33. names.append(row[2])

29

34. eventIDs.append(row[0])
35.
36. with open(sys.argv[2]) as keywordFile:
37. lines = keywordFile.read().splitlines()
38. for line in lines:
39. keywords.append(line)
40.
41. for date, handle, ID, name in itertools.izip(dates, handles, eventIDs, names):
42. event_date = parser.parse(date)
43.
44. start_date = (event_date - timedelta(days=days_before)).strftime("%Y-%m-%d")
45. end_date = (event_date + timedelta(days=days_after)).strftime("%Y-%m-%d")
46.
47. print handle + ":"
48. print "Event Date: ", event_date
49. print "Start Date: ", start_date
50. print "End Date: ", end_date
51.
52. tweetCriteria = got.manager.TweetCriteria().setSince(start_date).setUntil(end_date)
53.
54.
55. #build tweet query
56. query = ''
57. #add company name queries
58. for keyword in keywords:
59. query = query + name + ' AND ' + keyword +' OR '
60. #add company handle queries
61. for keyword in keywords:
62. query = query + handle + ' AND ' + keyword +' OR '
63.
64. #get rid of OR at end
65. query = query[:-3]
66. #turn it into a list
67. queries = query.split(' OR ')
68.
69. #loop through queries and collect tweets for each
70. ids = set()
71. noDupTweets = []
72. for q in queries:
73. #print 'Query: '+ q
74. keywordCriteria = tweetCriteria.setQuerySearch(q)
75. tweets = got.manager.TweetManager.getTweets(keywordCriteria)
76. #remove duplicates
77. for tweet in tweets:
78. if not tweet.id in ids:
79. ids.add(tweet.id)
80. noDupTweets.append(tweet)
81.
82. print "Total Tweets: ", len(noDupTweets)
83. filename = str(ID) + "_" + handle + "_keywords" + ".csv"

30

84.
85. with open(filename, "w") as output:
86. writer = csv.writer(output, delimiter=',')
87. for t in noDupTweets:
88. row = t.date, t.text, t.retweets, t.favorites, t.mentions, t.hashtags, t.id
89. writer.writerow([unicode(s).encode("utf-8") for s in row])

Python File, profile_scrape.py

1. import sys
2. import csv
3. import os
4. import glob
5. path = "*.csv"
6.
7. #Checks to see if all imports and installed
8. try:
9. import bs4
10. except ImportError:
11. raise ImportError('BeautifulSoup needs to be installed. Please run "sudo apt-get

install python-bs4"')
12. except AttributeError:
13. raise AttributeError('bs4 needs to be upgraded. Please run "pip install --upgrade

beautifulsoup4"')
14. try:
15. import requests
16. except ImportError:
17. raise ImportError('Requests needs to be installed. Please run "sudo pip install

requests"')
18.
19. #Iterates over every CSV file in the current directory
20. for fname in glob.glob(path):
21. if (fname != 'temp.csv'):
22. #Opens each csv file twice once to read and once to write
23. with open(fname) as csvfile :
24. readCSV = csv.reader(csvfile, delimiter=',')
25. with open('temp.csv', "w") as output:
26. print 'file: ' + fname
27. #Iterates over every row of tweets in an individual CSV file
28. for row in readCSV:
29. #Pushes a request towards a Twitter API based on a Tweet ID
30. url = 'https://twitter.com/FalcoLombardi/status/' + row[6]
31. page = requests.get(url)
32. soup = bs4.BeautifulSoup(page.text, 'html.parser')
33.
34. usernameTag = soup.find('b', {'class':'u-linkComplex-target'})
35.
36. #Attempts to grab user information from the requested page.
37. #If the user information is not avaliable preset all the

information
38. try:
39. username = usernameTag.text.encode('utf-8')

31

40. except AttributeError:
41. username = 'deleted'
42. bio = 'deleted'
43. following = 0
44. followers = 0
45. verified = 0
46. else:
47. url = 'https://twitter.com/' + username
48.
49. page = requests.get(url)
50. soup = bs4.BeautifulSoup(page.text, 'html.parser')
51. bioTag = soup.find('p', {'class':'ProfileHeaderCard-bio u-

dir'})
52. bio = bioTag.text.encode('utf-8')
53. followersTag = soup.find('a', {'data-nav':'followers'})
54. followingTag = soup.find('a', {'data-nav':'following'})
55. verifiedTag = soup.find('span', {'class':'ProfileHeaderCard-

badges'})
56.
57. try:
58. following = followingTag['title'].split(' ')[0]
59. except TypeError:
60. following = 0
61. try:
62. followers = followersTag['title'].split(' ')[0]
63. except TypeError:
64. followers = 0
65.
66. verified = 1
67. if (verifiedTag is None):
68. verified = 0
69. #Writes user information containing, bio, username, following,

followers, and verified status to the CSV file
70. writer = csv.writer(output, delimiter=',')
71. r = row[0], row[1], row[2], row[3], row[4], row[5], row[6],

username, bio, following, followers, verified
72. writer.writerow([s for s in r])
73. os.rename('temp.csv', fname)
74. print '- - Finished - -'

Python File, announcement_reply_firm.py

1. import numpy
2. from numpy import nan
3. import pandas
4. import glob
5. path = "*.csv"
6.
7. #Iterates over every file in the current directory
8. for fname in glob.glob(path):
9. table = pandas.read_csv(fname, header=None)

32

10. #Checks if the current tweet is a Accouncement or Reply based on the current
twitter data

11. table[len(table.columns)] = ["Announcement" if x is nan else "Reply" for x in
table[4]]

12. #Writes a new csv file with the appended column
13. table.to_csv(fname)
14. print('Appended announcement column to', fname)

Python File, user_sentiment.py

1. import sys
2. import csv
3. import itertools
4. import re
5. import glob
6. import pandas as pd
7. from textblob import TextBlob
8. from textblob.sentiments import NaiveBayesAnalyzer
9.
10. #Cleans any unwanted characters or symbols from a string input.
11. def clean_tweet(tweet):
12. return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ",

tweet).split())
13.
14. #Iterates over every file in the curreny directory with .csv extension
15. for fname in glob.glob('*.csv'):
16. table = pd.read_csv(fname)
17. count = 0
18. #Adds new empty columns to the csv table
19. table[len(table.columns)] = ""
20. table[len(table.columns)] = ""
21. table[len(table.columns)] = ""
22.
23. #iterates over every row in the current csv file
24. for index in table.iterrows():
25. #Grabs the tweet in the current row
26. string = table.ix[count,1]
27. if type(string) is str:
28. #Runs sentiment analysis for the tweet and adds data to the newly made

columns
29. analysis = TextBlob(clean_tweet(string), analyzer=NaiveBayesAnalyzer())
30. table.ix[count,len(table.columns)-3] = analysis.sentiment.classification
31. table.ix[count,len(table.columns)-2] = analysis.sentiment.p_pos
32. table.ix[count,len(table.columns)-1] = analysis.sentiment.p_neg
33. count = count + 1
34.
35. #Writes the new csv file
36. table.to_csv(fname, index=False, header=False)

Python File, countURLs.py

1. import glob
2. import re

33

3. import pandas as pd
4.
5. #Iterates over the CSVs in the current directory, counts number of URLs
6. #in each tweet, indicates if there are > 0 tweets in one column and counts
7. #them in the next, by appending to the original CSV. Don't run multiple
8. #times on the same files, or else you'll end up with duplicate columns
9.
10. def FindURL(string):
11. url = re.findall('http[s]?://[]?(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-

fA-F][0-9a-fA-F]))+', string)
12. return url
13.
14. for fname in glob.glob('*.csv'):
15. table = pd.read_csv(fname)
16. count = 0
17. table[len(table.columns)] = ""
18. table[len(table.columns)] = ""
19. for index in table.iterrows():
20. string = table.ix[count,1]
21. if type(string) is str:
22. listOfURLs = FindURL(string)
23. if len(listOfURLs) > 0:
24. table.ix[count,len(table.columns)-2] = 1
25. else:
26. table.ix[count,len(table.columns)-2] = 0
27. table.ix[count,len(table.columns)-1] = len(listOfURLs)
28. count = count + 1
29. table.to_csv(fname, index=False, header=False)

Python File, stockManipulation.py

1. #Import pandas for table manipulation
2. import pandas as pd
3. import datetime
4. from datetime import timedelta
5.
6. #Read in the stockReturn data as stockTable
7. stockTable = pd.read_csv('stockReturn.csv')
8. #Read in the dataBreach data as dataBreaches
9. dataBreaches = pd.read_csv('dataBreachesActive.csv')
10.
11. #Add columns to store calculated start and end dates
12. datesFrame = dataBreaches[['EventId', 'Ticker', 'Date Made Public', 'Name']].copy()
13. datesFrame['StartDate'] = ''
14. datesFrame['EndDate'] = ''
15.
16. #Add start and end dates to every eventID
17. for index, row in datesFrame.iterrows():
18. #Get the date the breach was made public
19. tempDate = datetime.datetime.strptime(row['Date Made Public'], '%x')
20. #Calculate 120 days before that date
21. start = tempDate-timedelta(days=120)

34

22. #Calculate 30 days after that date
23. end = tempDate+timedelta(days=30)
24. #Store these values in datesFrame
25. datesFrame.set_value(index, 'StartDate', start)
26. datesFrame.set_value(index, 'EndDate', end)
27.
28. #Remove the row with column headers from stockTable
29. stockTable = stockTable[1:]
30. #Convert the dates in stockTable to datetime format
31. stockTable['formattedDate'] = pd.to_datetime(stockTable['formattedDate'])
32. for index, row in datesFrame.iterrows():
33. print("Filtering: " + str(row['Name']))
34. #Get the current company's rows from stockTable
35. tempStock = stockTable[stockTable.TICKER == row.Ticker]
36. #Filter the current company's rows to the dates we care about
37. tempStock =

tempStock[(tempStock.formattedDate>=row['StartDate'])&(tempStock.formattedDate<=row['En
dDate'])]

38. #Create an EventId column in the new table
39. tempStock['EventId'] = row['EventId']
40. #Rename the old stock columns
41. tempStock.columns = ['PERMNO', 'oldDate', 'Ticker', 'Name', 'Price', 'Date',

'EventId']
42. #Pull out only the columsn we care about
43. tempStock = tempStock[['EventId', 'Date', 'Ticker', 'Name', 'Price']]
44. #Convert this to a new dataFrame
45. result = pd.DataFrame(tempStock)
46. #Remove / values that would mess with directories
47. if(type(row.Name)!=float):
48. tempRowName = row.Name.replace('/', '')
49. fileName = "csvs/" + str(row.EventId) + "_" + str(tempRowName) + ".csv"
50. #Export to a unique csv
51. result.to_csv(fileName)

Python File, abnormal.py

1. import pandas as pd
2.
3. #Read in the data to a dataFrame
4. data = pd.read_csv("-3to3.csv")
5. #Group by company ticker and evtdate together
6. groups = data.groupby(["ticker", "evtdate"])
7. #Create the DataFrame to output to
8. out = pd.DataFrame(columns = ["ticker", "evtdate", "diff"])
9. #Use an index to append to the ouptut DataFrame
10. index = 0
11. #iterate over the values of the groups
12. #i contains the ticker/evtdate
13. #j is a dataframe of the seven days for that event
14. for i, j in groups:
15. sumBefore = 0
16. sumAfter = 0
17. #Make sure the event has the right number of rows

35

18. if j.shape == (7,4):
19. #find the mean of the 3 days before
20. sumBefore += float(j.iloc[0,3])
21. sumBefore += float(j.iloc[1,3])
22. sumBefore += float(j.iloc[2,3])
23. meanBefore = sumBefore / 3
24. #find the mean of the 3 days after
25. sumAfter += float(j.iloc[4,3])
26. sumAfter += float(j.iloc[5,3])
27. sumAfter += float(j.iloc[6,3])
28. meanAfter = sumAfter / 3
29. #Find the difference between the means
30. diff = meanAfter - meanBefore
31. #Append this as a new row with the desired values
32. out.loc[index] = [i[0], i[1], diff]
33. index= index + 1
34. #Ouptut to csv
35. out.to_csv("abnormalDif.csv")
36. # Here begins our analysis from the abnormal differences
37. import numpy
38. import math
39. import matplotlib.pyplot
40. table = pd.read_csv('abnormalDif.csv')
41. mean = numpy.mean(table["diff"])
42. stdDev = numpy.std(table["diff"])
43. #Find all companies that have a diff value less than 2.5 standard deviations from the

mean
44. bottom = [x for x in table["diff"] if (x < mean - 2.5 * stdDev)]
45. #Find all companies that have a diff value greater than 2.5 standard deviations from

the mean
46. top = [x for x in table["diff"] if (x > mean + 2.5 * stdDev)]
47. table["Z"] = [(x-mean)/stdDev for x in table["diff"]]
48. bottom6 = table.sort_values("Z")[0:len(bottom)]
49. top7 = table.sort_values("Z",ascending=False)[0:len(top)]
50. #Read in all of the data for company and user tweets that has been analyzed for the

bottom 6 and top7 companies
51. #If any companies aren't present its because no twitter data existed for this data

breach, most likely due to
52. #the scarcity of tweets before 2010.
53. HPY_user = pd.read_csv("4_HeartlandHPY_user.csv")
54. HPY_user= HPY_user[:len(HPY_user)-1]
55. FRP_user = pd.read_csv("101_Fairpoint_user.csv")
56. SHLD_company = pd.read_csv("160_searsholdings.csv")
57. SHLD_user = pd.read_csv("160_searsholdings_keywords.csv")
58. TWTR_company = pd.read_csv("632_twitter.csv")
59. TWTR_user = pd.read_csv("632_twitter_keywords.csv")
60. DYN_company = pd.read_csv("647_Dyn_company.csv")
61. DYN_user = pd.read_csv("647_Dyn_user.csv")
62. DYN_user= DYN_user[:len(DYN_user)-1]
63. PRAN_company = pd.read_csv("665_prAna.csv")
64. PRAN_user = pd.read_csv("665_prAna_keywords.csv")
65. EFX_user= pd.read_csv("690_equifax_user.csv")

36

66. EFX_sentiment_user = pd.read_csv("690_equifax_user_sentiment_250.csv")
67. EFX_company = pd.read_csv("690_Equifax_company.csv")
68. RAD_company = pd.read_csv("699_riteaid.csv")
69. RAD_user = pd.read_csv("699_riteaid_keywords.csv")
70. #Do further analysis on all of the user tweets by summing up the values in each user

tweet file
71. columns=["Date","Ticker","Diff","TotalFollowers","TotalFollowing",

"VerifiedUsers","TotalNeg","TotalPos","TotalNegPercent","TotalPosPercent","TotalLinkCou
nt"]

72. UserAnalysis = pd.DataFrame(columns=columns)
73. row =

[bottom6.iloc[2]["evtdate"],bottom6.iloc[2]["ticker"],bottom6.iloc[2]["diff"],sum([int(
x.replace(",","")) for x in HPY_user["Followers"]]), sum([int(x.replace(",","")) for x
in HPY_user["Following"]]), sum([int(x) for x in HPY_user["Verified"]]), sum([1 for x
in HPY_user["Sent"] if x == "neg"]),sum([1 for x in HPY_user["Sent"] if x == "pos"]),
sum([float(x) for x in HPY_user["neg"]])/len(HPY_user), sum([float(x) for x in
HPY_user["pos"]])/len(HPY_user),int(sum([x for x in HPY_user["LinkCount"]]))]

74. UserAnalysis.loc[len(UserAnalysis)] = row
75. row =

[bottom6.iloc[0]["evtdate"],bottom6.iloc[0]["ticker"],bottom6.iloc[0]["diff"],sum([int(
x.replace(",","")) for x in FRP_user["Followers"]]), sum([int(x.replace(",","")) for x
in FRP_user["Following"]]), sum([int(x) for x in FRP_user["Verified"]]), sum([1 for x
in FRP_user["Sent"] if x == "neg"]),sum([1 for x in FRP_user["Sent"] if x == "pos"]),
sum([float(x) for x in FRP_user["neg"]])/len(FRP_user), sum([float(x) for x in
FRP_user["pos"]])/len(FRP_user),int(sum([x for x in FRP_user["LinkCount"]]))]

76. UserAnalysis.loc[len(UserAnalysis)] = row
77. row = [top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"],sum([int(x)

for x in SHLD_user["Followers"]]), sum([int(x) for x in SHLD_user["Following"]]),
sum([int(x) for x in SHLD_user["Verified"]]), sum([1 for x in SHLD_user["Sent"] if x ==
"neg"]),sum([1 for x in SHLD_user["Sent"] if x == "pos"]), sum([float(x) for x in
SHLD_user["neg"]])/len(SHLD_user), sum([float(x) for x in
SHLD_user["pos"]])/len(SHLD_user),int(sum([x for x in SHLD_user["LinkCount"]]))]

78. UserAnalysis.loc[len(UserAnalysis)] = row
79. row = [top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"],sum([int(x)

for x in TWTR_user["Followers"]]), sum([int(x) for x in TWTR_user["Following"]]),
sum([int(x) for x in TWTR_user["Verified"]]), sum([1 for x in TWTR_user["Sent"] if x ==
"neg"]),sum([1 for x in TWTR_user["Sent"] if x == "pos"]), sum([float(x) for x in
TWTR_user["neg"]])/len(TWTR_user), sum([float(x) for x in
TWTR_user["pos"]])/len(TWTR_user),int(sum([x for x in TWTR_user["LinkCount"]]))]

80. UserAnalysis.loc[len(UserAnalysis)] = row
81. row =

[bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"],bottom6.iloc[5]["diff"],sum([int(
x.replace(",","")) for x in DYN_user["Followers"] if type(x) != float]),
sum([int(x.replace(",","")) for x in DYN_user["Following"] if type(x) != float]),
sum([float(x) for x in DYN_user["Verified"]]), sum([1 for x in DYN_user["Sent"] if x ==
"neg"]),sum([1 for x in DYN_user["Sent"] if x == "pos"]), sum([0 if math.isnan(x) else
float(x) for x in DYN_user["neg"]])/len(DYN_user), sum([0 if math.isnan(x) else
float(x) for x in DYN_user["pos"]])/len(DYN_user),sum([int(x) if x == 1.0 else 0 for x
in DYN_user["LinkCount"]])]

82. UserAnalysis.loc[len(UserAnalysis)] = row
83. row = [top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"],top7.iloc[5]["diff"],sum([int(x)

for x in PRAN_user["Followers"]]), sum([int(x) for x in PRAN_user["Following"]]),

37

sum([int(x) for x in PRAN_user["Verified"]]), sum([1 for x in PRAN_user["Sent"] if x ==
"neg"]),sum([1 for x in PRAN_user["Sent"] if x == "pos"]), sum([float(x) for x in
PRAN_user["neg"]])/len(PRAN_user), sum([float(x) for x in
PRAN_user["pos"]])/len(PRAN_user),int(sum([x for x in PRAN_user["LinkCount"]]))]

84. UserAnalysis.loc[len(UserAnalysis)] = row
85. row =

[bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"],bottom6.iloc[4]["diff"],sum([int(
x.replace(",","")) for x in EFX_user["Followers"] if type(x) != float]),
sum([int(x.replace(",","")) for x in EFX_user["Following"] if type(x) != float]),
sum([int(x) if x == 1.0 else 0 for x in EFX_user["Verified"]]), sum([1 for x in
EFX_sentiment_user["Sent"] if x == "neg"]),sum([1 for x in EFX_sentiment_user["Sent"]
if x == "pos"]), sum([float(x) for x in
EFX_sentiment_user["neg"]])/len(EFX_sentiment_user), sum([float(x) for x in
EFX_sentiment_user["pos"]])/len(EFX_sentiment_user),sum([int(x) if x == 1.0 else 0 for
x in EFX_user["LinkCount"]])]

86. UserAnalysis.loc[len(UserAnalysis)] = row
87. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"],top7.iloc[1]["diff"],0, 0,

sum([int(x) if x == 1.0 else 0 for x in RAD_user["Verified"]]), sum([1 for x in
RAD_user["Sent"] if x == "neg"]),sum([1 for x in RAD_user["Sent"] if x == "pos"]),
sum([float(x) for x in RAD_user["neg"]])/len(RAD_user), sum([float(x) for x in
RAD_user["pos"]])/len(RAD_user),sum([int(x) if x == 1.0 else 0 for x in
RAD_user["LinkCount"]])]

88. UserAnalysis.loc[len(UserAnalysis)] = row
89. #Make a similar dataframe but just containing the four companies that have user tweet

data in the bottom 6
90. BottomSix = pd.DataFrame(columns=columns)
91. row =

[bottom6.iloc[2]["evtdate"],bottom6.iloc[2]["ticker"],bottom6.iloc[2]["diff"],sum([int(
x.replace(",","")) for x in HPY_user["Followers"]]), sum([int(x.replace(",","")) for x
in HPY_user["Following"]]), sum([int(x) for x in HPY_user["Verified"]]), sum([1 for x
in HPY_user["Sent"] if x == "neg"]),sum([1 for x in HPY_user["Sent"] if x == "pos"]),
sum([float(x) for x in HPY_user["neg"]])/len(HPY_user), sum([float(x) for x in
HPY_user["pos"]])/len(HPY_user),int(sum([x for x in HPY_user["LinkCount"]]))]

92. BottomSix.loc[len(BottomSix)] = row
93. row =

[bottom6.iloc[0]["evtdate"],bottom6.iloc[0]["ticker"],bottom6.iloc[0]["diff"],sum([int(
x.replace(",","")) for x in FRP_user["Followers"]]), sum([int(x.replace(",","")) for x
in FRP_user["Following"]]), sum([int(x) for x in FRP_user["Verified"]]), sum([1 for x
in FRP_user["Sent"] if x == "neg"]),sum([1 for x in FRP_user["Sent"] if x == "pos"]),
sum([float(x) for x in FRP_user["neg"]])/len(FRP_user), sum([float(x) for x in
FRP_user["pos"]])/len(FRP_user),int(sum([x for x in FRP_user["LinkCount"]]))]

94. BottomSix.loc[len(BottomSix)] = row
95. row =

[bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"],bottom6.iloc[5]["diff"],sum([int(
x.replace(",","")) for x in DYN_user["Followers"] if type(x) != float]),
sum([int(x.replace(",","")) for x in DYN_user["Following"] if type(x) != float]),
sum([float(x) for x in DYN_user["Verified"]]), sum([1 for x in DYN_user["Sent"] if x ==
"neg"]),sum([1 for x in DYN_user["Sent"] if x == "pos"]), sum([0 if math.isnan(x) else
float(x) for x in DYN_user["neg"]])/len(DYN_user), sum([0 if math.isnan(x) else
float(x) for x in DYN_user["pos"]])/len(DYN_user),sum([int(x) if x == 1.0 else 0 for x
in DYN_user["LinkCount"]])]

96. BottomSix.loc[len(BottomSix)] = row

38

97. row =
[bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"],bottom6.iloc[4]["diff"],sum([int(
x.replace(",","")) for x in EFX_user["Followers"] if type(x) != float]),
sum([int(x.replace(",","")) for x in EFX_user["Following"] if type(x) != float]),
sum([int(x) if x == 1.0 else 0 for x in EFX_user["Verified"]]), sum([1 for x in
EFX_sentiment_user["Sent"] if x == "neg"]),sum([1 for x in EFX_sentiment_user["Sent"]
if x == "pos"]), sum([float(x) for x in
EFX_sentiment_user["neg"]])/len(EFX_sentiment_user), sum([float(x) for x in
EFX_sentiment_user["pos"]])/len(EFX_sentiment_user),sum([int(x) if x == 1.0 else 0 for
x in EFX_user["LinkCount"]])]

98. BottomSix.loc[len(BottomSix)] = row
99. BottomSix
100. #Make a similar dataframe but just containing the four companies that have user

tweet data in the top 7
101. TopSeven = pd.DataFrame(columns=columns)
102. row =

[top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"],sum([int(x) for x
in SHLD_user["Followers"]]), sum([int(x) for x in SHLD_user["Following"]]), sum([int(x)
for x in SHLD_user["Verified"]]), sum([1 for x in SHLD_user["Sent"] if x ==
"neg"]),sum([1 for x in SHLD_user["Sent"] if x == "pos"]), sum([float(x) for x in
SHLD_user["neg"]])/len(SHLD_user), sum([float(x) for x in
SHLD_user["pos"]])/len(SHLD_user),int(sum([x for x in SHLD_user["LinkCount"]]))]

103. TopSeven.loc[len(TopSeven)] = row
104. row =

[top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"],sum([int(x) for x
in TWTR_user["Followers"]]), sum([int(x) for x in TWTR_user["Following"]]), sum([int(x)
for x in TWTR_user["Verified"]]), sum([1 for x in TWTR_user["Sent"] if x ==
"neg"]),sum([1 for x in TWTR_user["Sent"] if x == "pos"]), sum([float(x) for x in
TWTR_user["neg"]])/len(TWTR_user), sum([float(x) for x in
TWTR_user["pos"]])/len(TWTR_user),int(sum([x for x in TWTR_user["LinkCount"]]))]

105. TopSeven.loc[len(TopSeven)] = row
106. row =

[top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"],top7.iloc[5]["diff"],sum([int(x) for x
in PRAN_user["Followers"]]), sum([int(x) for x in PRAN_user["Following"]]), sum([int(x)
for x in PRAN_user["Verified"]]), sum([1 for x in PRAN_user["Sent"] if x ==
"neg"]),sum([1 for x in PRAN_user["Sent"] if x == "pos"]), sum([float(x) for x in
PRAN_user["neg"]])/len(PRAN_user), sum([float(x) for x in
PRAN_user["pos"]])/len(PRAN_user),int(sum([x for x in PRAN_user["LinkCount"]]))]

107. TopSeven.loc[len(TopSeven)] = row
108. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"],top7.iloc[1]["diff"],0, 0,

sum([int(x) if x == 1.0 else 0 for x in RAD_user["Verified"]]), sum([1 for x in
RAD_user["Sent"] if x == "neg"]),sum([1 for x in RAD_user["Sent"] if x == "pos"]),
sum([float(x) for x in RAD_user["neg"]])/len(RAD_user), sum([float(x) for x in
RAD_user["pos"]])/len(RAD_user),sum([int(x) if x == 1.0 else 0 for x in
RAD_user["LinkCount"]])]

109. TopSeven.loc[len(TopSeven)] = row
110. TopSeven
111. #Make a similar data frame but this time for all the company tweets
112. columns=["Date","Ticker","Diff","TotalLinkCount","NumReplies",

"NumAnnouncements","TotalTweets"]
113. CompanyAnalysis = pd.DataFrame(columns=columns)

39

114. row = [top7.iloc[0]["evtdate"],top7.iloc[0]["ticker"],top7.iloc[0]["diff"],
sum([int(x) if x == 1.0 else 0 for x in SHLD_company["LinkCount"]]),sum([1 if x ==
"Reply" else 0 for x in SHLD_company["Type"]]),sum([1 if x == "Announcement" else 0 for
x in SHLD_company["Type"]]),len(SHLD_company)]

115. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
116. row = [top7.iloc[4]["evtdate"],top7.iloc[4]["ticker"],top7.iloc[4]["diff"],

sum([int(x) if x == 1.0 else 0 for x in TWTR_company["LinkCount"]]),sum([1 if x ==
"Reply" else 0 for x in TWTR_company["Type"]]),sum([1 if x == "Announcement" else 0 for
x in TWTR_company["Type"]]),len(TWTR_company)]

117. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
118. row = [bottom6.iloc[5]["evtdate"],bottom6.iloc[5]["ticker"],

bottom6.iloc[5]["diff"],sum([int(x) if x == 1.0 else 0 for x in
DYN_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in
DYN_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in
DYN_company["Type"]]),len(DYN_company)]

119. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
120. row = [top7.iloc[5]["evtdate"],top7.iloc[5]["ticker"],

top7.iloc[5]["diff"],sum([int(x) if x == 1.0 else 0 for x in
PRAN_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in
PRAN_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in
PRAN_company["Type"]]),len(PRAN_company)]

121. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
122. row = [bottom6.iloc[4]["evtdate"],bottom6.iloc[4]["ticker"],

bottom6.iloc[4]["diff"],sum([int(x) if x == 1.0 else 0 for x in
EFX_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in
EFX_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in
EFX_company["Type"]]),len(EFX_company)]

123. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
124. row = [top7.iloc[1]["evtdate"],top7.iloc[1]["ticker"],

top7.iloc[1]["diff"],sum([int(x) if x == 1.0 else 0 for x in
RAD_company["LinkCount"]]),sum([1 if x == "Reply" else 0 for x in
RAD_company["Type"]]),sum([1 if x == "Announcement" else 0 for x in
RAD_company["Type"]]),len(RAD_company)]

125. CompanyAnalysis.loc[len(CompanyAnalysis)] = row
126. CompanyAnalysis["RatioReplyTotal"] =

CompanyAnalysis["NumReplies"]/CompanyAnalysis["TotalTweets"]
127. #This plots the reply ratio to the difference. No strong correlation seen
128. get_ipython().magic(u'matplotlib inline')
129. import matplotlib.pyplot as plt
130. plot = plt.scatter(x =

CompanyAnalysis["NumReplies"]/CompanyAnalysis["TotalTweets"], y =
CompanyAnalysis["Diff"], linewidths=2, c="g")

131. plt.title("Ratio of Replies to Total Company Tweets vs Stock Difference")
132. plt.xlabel("Ratio of Replies to Total Company Tweets ")
133. plt.ylabel("Stock Difference")
134. plot.figure.show()
135. #This plot shows that the top 7 companies had a much higher mean positive

sentiment value of user tweets
136. plt.figure()
137. plot = TopSeven.TotalPosPercent.plot.kde(color = "Orange")
138. BottomSix.TotalPosPercent.plot.kde(color = "Blue", ax=plot)
139. #The line above makes it reuse the plot

40

140. plt.legend(["Top 7","Bottom 6"])
141. plt.title("Total Positive Sentiment Percentage of all Tweets from Users")
142. plt.xlabel("TotalPosPercent")
143. plot.figure.show()
144. #Smoothed out histogram

41

Appendix B: Tables
Table 1: Keywords

Keywords

security breach security
management

security
monitoring

security
expenditure

information
security

system security authentication encryption computer virus computer
intrusion

disaster
recovery

access control cyber security cyber attack denial of
service

hacker hijack infosec breach unauthorized
access

business
continuity

leakage theft fraud steal

Table 2: List of Company Breaches

Ticker EventDate CompanyName

A 3/22/08 Agilent Technologies
AA 7/15/10 Alcoa Global Mobility Group

AACC 7/5/06
RBS National Bank, Asset
Acceptance LLC

AAL 6/20/07 American Airlines
AAL 2/17/11 American Airlines
AAN 10/22/13 Aaron's
AAN 11/2/11 Aaron's
AAP 3/31/08 Advance Auto Parts
AAP 3/16/16 Advanced Auto Parts
AAPL 6/9/10 Apple Inc., AT&T
AAPL 9/1/14 Apple
AAPL 9/4/12 Apple
AAPL 2/26/14 Apple
AAPL 4/1/11 iTunes (Apple)
AAPL 2/19/13 Apple
AAPL 7/22/13 Apple Inc.

42

AAPL 2/16/16 Apple
AAR 7/4/10 AMR Corporation
AAR 7/2/10 AMR Corporation
ABB 9/11/17 ABB Inc.
ABM 4/21/11 ABM Industries
ABM 11/14/17 ABM Industries
ABS 8/15/14 Albertsons/AB Acquisitions LLC

ABS 4/21/07
Albertsons (Save Mart
Supermarkets)

ADBE 10/4/13
Adobe, PR Newswire, National
White Collar Crime Center

ADBE 5/13/13
Adobe, Washington
Administrative Office of the Courts

ADBE 11/14/12 Adobe
ADP 7/6/06 Automatic Data Processing (ADP)

ADP 7/30/13

US Airways, McKesson, City of
Houston, Automatic Data
Processing (ADP), AlliedBarton
Security Services

ADP 7/30/13
US Airways, Advanced Data
Processing

ADP 12/28/11
Automatic Data Processing
(ADP), A.W. Hastings'

ADP 6/17/06 Automatic Data Processing (ADP)
ADP 6/15/11
ADP 5/5/16 ADP, LLC.
ADVS 1/10/07 Advent Software Inc.
AET 5/28/10 Aetna

AET 12/12/06

Aetna, Nationwide, WellPoint
Group Health Plans, Humana
Medicare, Mutual of Omaha
Insurance Company, Anthem
Blue Cross Blue Shield via
Concentra Preferred Systems

AET 5/28/09 Aetna
AET 11/14/10 Aetna of Connecticut
AET 8/24/17 Aetna
AFBA 10/1/07 PFPC Inc., AFBA

AFL 8/22/06
AFLAC American Family Life
Assurance Co.

AFL 4/19/06 Aflac
AFL 3/16/17 Aflac

AIG 6/14/06
American International Group
(AIG), Indiana Office of Medical

43

Excess, LLC
ALK 7/26/17 Virgin America
ALL 8/23/11 Allstate Financial

ALL 6/29/06
AllState Insurance Huntsville
branch

ALSK 2/20/14 Alaska Communications
ALU 5/18/07 Alcatel-Lucent
AMCC 4/4/11 Applied Micro Circuits Corporation

AMD 1/13/13
Advanced Micro Devices (AMD),
Nvidia

AMD 4/9/12
Intel, Advanced Micro Devices
(AMD)

AMP 12/25/05 Ameriprise Financial Inc.
AMQ 1/30/10 Ameriquest Mortgage Company
AMTD 9/14/07 TD Ameritrade Holding Corp.
AMTD 12/1/06 TD Ameritrade
AMTD 4/20/05 TD Ameritrade
AMZN 1/29/11 Amazon.com
AMZN 9/29/17 Whole Foods

AN 5/26/14
AutoNation Toyota of South
Austin

ANTM 12/12/06

Aetna, Nationwide, WellPoint
Group Health Plans, Humana
Medicare, Mutual of Omaha
Insurance Company, Anthem
Blue Cross Blue Shield via
Concentra Preferred Systems

ANTM 12/12/06

Aetna, Nationwide, WellPoint
Group Health Plans, Humana
Medicare, Mutual of Omaha
Insurance Company, Anthem
Blue Cross Blue Shield via
Concentra Preferred Systems

ANTM 2/5/15 Anthem
ANTM 5/13/11 Anthem Blue Cross
ANTM 11/10/14 Anthem Blue Cross
ANTM 7/31/17 Anthem
ARMK 6/6/06 ARAMARK Corporation
ARW 3/8/10 Arrow Electronics
ARW 3/8/10 Arrow Electronics
ARW 3/8/10 Arrow Electronics
ARW 3/8/10 Arrow Electronics
AV 6/3/09 Aviva
AWI 7/25/06 Armstrong World Industries,

44

Deloitte & Touche

AXP 7/13/12
American Express Travel Related
Services Company, Inc. (AXP)

AXP 12/29/13 American Express Company
AXP 8/14/09 American Express
AXP 3/25/14 American Express
AXP 4/7/14 American Express Company

AXP 4/1/13
Tennis Express, American
Express

AXP 3/29/13 American Express
BA 7/11/14 Boeing
BA 12/13/06 Boeing
BA 4/21/06 Boeing
BA 11/15/06 Boeing, Co
BA 11/19/05 Boeing
BA 2/8/17 The Boeing Corporation
BA 2/27/17 Boeing
BAC 8/11/09 Bank of America Corp.
BAC 6/8/10 Bank of America
BAC 5/25/11 Bank of America
BAC 12/14/06 Bank of America

BAC 8/18/11
Citigroup, Inc., Bank of America,
Corp.

BAC 2/13/11 Bank of America
BAC 2/25/05 Bank of America Corp.
BAC 7/17/14 Bank of America
BAC 9/23/05 Bank of America
BAC 4/12/07 Bank of America
BAC 4/7/10 Bank of America

BAC 4/28/05

Wachovia, Bank of America, PNC
Financial Services Group and
Commerce Bancorp

BAC 6/29/05 Bank of America
BBBY 9/25/15 Bed Bath and Beyond
BBBY 6/19/17 Bed Bath & Beyond
BBT 5/15/08 BB&T Insurance
BBY 5/6/11 Best Buy
BC 4/21/08 Brunswick Corp.
BC 2/16/07 Brunswick Corp.
BDL 5/20/11 Flanigan's
BEN 8/3/06 Franklin Templeton Investments

45

BGC 11/19/07 General Cable Corporation

BGS 12/6/13
B&G Foods North America, Inc.,
Maple Grove Farms

BHE 11/21/17 Uber
BK 3/26/08 Bank of New York Mellon
BKE 6/20/17 The Buckle Inc.
BKS 10/24/12 Barnes & Noble
BKW 2/25/12 Burger King
BLKB 6/17/09 Blackbaud Inc.
BMY 7/17/08 Bristol-Myers Squibb

BOH 3/1/13
Bank of Hawaii, First Hawaiian
Bank

BPF 11/27/17 Bulletproof

BR 6/22/09
Broadridge Financial Solutions,
Inc.

BRLI 8/25/14
BioReference Laboratories,
Inc./CareEvolve, Inc.

BSFT 9/5/17 BroadSoft
BSX 2/8/14 Boston Scientific
BUD 7/29/08 Anheuser-Busch
C 6/9/11 Citibank

C 9/21/07
Citigroup, ABN Amro Mortgage
Group

C 8/11/09 Citigroup Inc.
C 6/19/08 Citibank
C 10/14/10 Citibank
C 3/28/13 Citi
C 10/2/06 Citigroup

C 8/18/11
Citigroup, Inc., Bank of America,
Corp.

C 2/24/10 Citigroup
C 7/17/13 Citigroup
C 8/9/07 Citigroup
C 7/27/10 Citigroup Inc.
C 6/6/05 Citigroup, UPS

CAKE 9/29/10
Cheesecake Factory, PGA Tour
Grill, Outback Steakhouse

CAKE 9/11/10 Cheesecake Factory
CAKE 5/24/10 Cheesecake Factory
CAT 4/27/07 Caterpillar, Inc., SBA Inc.
CCI 11/25/13 Crown Castle International Corp
CELG 8/20/07 Celgene Corporation

46

CFR 5/19/06 Frost Bank

CHDN 9/4/12
Twinspires.com (Churchill Downs
Technology Initiatives Company)

CHH 4/26/12 Choice Hotels Internationals
CHH 3/22/13 Comfort Inn and Suites
CHSCP 12/31/10 CHS, Inc.

CHSI 4/17/12
Catalyst Health Solutions, Alliant
Health Plans, Inc.

CHTR 8/13/08 Charter Communications
CI 11/7/06 CIGNA HealthCare Corp
CI 12/7/06 CIGNA HealthCare Corp
CLGX 8/31/06 CoreLogic for ComUnity Lending
CMCSA 3/16/09 Comcast
CMCSA 10/3/13 Comcast Phone
CMCSA 5/20/12 Comcast
CME 11/17/13 CME Group, CME ClearPort
CMG 4/26/17 Chipotle Mexican Grill
CNC 1/26/16 Centene
CNET 7/14/14 CNET
CNQR 12/16/10 Concur Technologies Inc.
COF 3/4/14 Capital One
COF 2/12/13 J.P. Morgan Chase, Capital One
COF 5/18/10 Capitol One

COF 9/17/05
North Fork Bank (now Capital
One Bank)

COF 5/9/12 Capital One Bank
COF 2/6/17 Capital One
COF 7/6/17 Spark Pay
COLB 5/21/07 Columbia Bank
CPRT 8/28/06 Copart, Inc.
CPS 10/20/09 ChoicePoint
CS 2/20/07 Credit Suisse
CSC 4/3/13 Computer Sciences Corporation
CSCO 7/10/10 Cisco Live 2010

CSCO 4/9/12
Ernst & Young LLP, Cisco
Systems, Inc.

CSCO 10/25/16 Cisco

CVC 7/25/06
Cablevision Systems Corp., ACS,
FedEx

CVS 2/18/09 CVS Pharmacies
CVS 7/30/14 CVS/Caremark

47

CVS 6/21/05 CVS
CVS 7/18/15 CVS Pharmacy, Imperial Beach
CVS 4/15/07 CVS Pharmacy

CVS 11/28/13
CVS Pharmacy, Inc., Maryland
CVS Pharmacy, LLC

CVS 3/24/12 CVS Caremark
CVS 12/4/12 CVS Caremark
CVS 12/5/16 CVS Health
CVX 8/16/06 Chevron
CVX 3/9/11 Shell, Chevron
CYH 8/18/14 Community Health Systems
CYN 7/6/05 City National Bank, Iron Mountain
D 8/25/06 Dominion Resources
DBD 8/31/06 Diebold, Inc., GE Capital
DBMG 2/2/17 DBM Global
DENN 9/30/13 Denny's
DFS 2/21/14 Discover Financial Services
DFS 8/17/12 Discover Financial Services
DFS 11/11/13 Discover Financial Services
DFS 12/20/13 Discover Financial Services
DFS 9/9/06 Discover Bank
DGX 9/16/12 Quest Diagnostics
DHI 2/16/12 D.R. Horton Inc. (DHI Mortgage)

DIS 7/30/16
Disney Consumer Products and
Interactive Media

DLTR 8/1/06 Dollar Tree

DNB 9/26/13
LexisNexis, Dun & Bradstreet,
Kroll Background America

DNB 10/28/13 Dun & Bradstreet
DPZ 5/12/11 Domino's Pizza, KB Pizza
DPZ 6/18/08 Domino's Pizza
DRI 11/15/17 Cheddar's Scratch Kitchen
DRIV 6/4/10 Digital River Inc.
DRIV 12/22/10 Digital River Inc., SWReg Inc.

DSW 3/8/05
DSW Shoe Warehouse, Retail
Ventures

DTV 10/11/06
DirecTV, Deloitte and Touche
LLC

DTV 5/26/12 Direct TV
DVA 11/7/13 DaVita
DVA 3/3/08 DaVita Inc.

48

DXC 7/5/17 DXC Technology
DYN 10/21/16 Dyn
EBAY 5/21/14 Ebay
EFX 10/10/12 Equifax
EFX 2/11/10 Equifax
EFX 6/20/06 Equifax
EFX 5/6/16 Equifax Inc.
EFX 9/7/17 Equifax Corporation
EHTH 1/27/17 eHealth Insurance
EL 7/26/11 Este�© Lauder
EMR 5/4/12 Emerson (Funai Corporation)
ESBF 4/23/10 ESB Financial
ESRX 11/6/08 Express Scripts
ESRX 2/18/13 Express Scripts, Ernst & Young
ETFC 10/9/15 E-Trade
EV 2/8/12 Eaton Vance Management
EXEL 8/16/13 Exelixis

EXPE 11/15/06
Expedia Corporate Travel (now
Egencia)

EZPW 5/8/07 EZCORP, EZPAWN
F 12/22/05 Ford Motor Co.

F 5/5/12
Ford-Motor Websites (Connect
With Fiesta, Unleashfiesta)

FB 6/21/13 Facebook
FB 7/28/08 Facebook
FB 2/15/13 Facebook
FB 2/4/11 Twitter, Facebook and PayPal
FB 8/30/17 Instagram
FDX 2/4/06 FedEx

FDX 7/25/06
Cablevision Systems Corp., ACS,
FedEx

FINL 3/26/13 The Finish Line, Inc.
FIRE 11/27/12 Sourcefire

FIS 7/3/07

Fidelity National Information
Services/Certegy Check Services
Inc.

FIS 8/26/11
Fidelity National Information
Services, Inc. (FIS)

FIS 9/24/07

Fidelity National Information
Services, Fidelity National
Financial

FITB 4/13/06 Fifth Third Bank

49

FLWS 3/8/16 1-800-Flowers

FMS 2/8/07

Fresenius Medical Care Holdings
Inc., Fresenius Medical Care
North America (FMCNA)

FORR 12/5/07 Forrester Research
FOXA 4/16/09 Fox Entertainment Group
FRBA 10/16/06 VISA, FirstBank (1st Bank)
FRC 8/14/12 First Republic Bank
FRED 6/12/15 Fred's Inc.
FRP 4/20/09 FairPoint Communications Inc.
FSB 9/10/08 Franklin Savings and Loan
GCI 5/4/17 Gannett Co
GE 9/25/06 General Electric (GE)

GE 5/16/06
GE Money Bank, Lowe's
Companies Inc.

GE 2/9/07 General Electric
GM 8/3/12 General Motors Co.
GM 3/14/06 General Motors (GM)
GM 4/16/10 General Motors
GME 6/2/17 Game Stop

GNCMA 5/24/12
General Communication Inc.
(GCI)

GOOG 3/7/09 Google
GOOG 5/6/16 Google Inc.
GOOGL 5/4/17 Google Docs

GPI 7/19/06
Group 1 Automotive Inc,
Weinstein Spira & Company, P.C.

GPN 3/30/12 Global Payments Inc.
GPS 9/28/07 Gap Inc.
GPS 7/16/13 Gap, Banana Republic
GPS 4/16/10 Gap Inc.
GRPN 7/2/12 Groupon
GS 7/2/14 Goldman Sachs
GS 5/18/13 Goldman Sachs, Bloomberg LP
GUID 12/20/05 Guidance Software, Inc.
GYMB 10/27/06 Gymboree
H 1/15/16 Hyatt Hotels
H 11/16/17 Hyatt Hotels
HBAN 10/27/09 FirstMerit Bank
HBAN 5/9/11 Huntington National Bank

HCSG 12/9/11
Health Care Service Corporation
(HCSC)

50

HD 9/2/14 The Home Depot
HD 2/6/14 The Home Depot
HD 10/17/07 Home Depot
HD 12/14/10 Home Depot
HD 4/13/12 The Home Depot
HD 4/30/07 Home Depot
HD 5/24/07 Home Depot
HIG 4/6/11 Hartford Life Insurance Company
HIG 9/12/07 Hartford Life Insurance Company
HIG 10/30/07 Hartford Financial Services Group
HLT 9/25/15 Hilton Hotels
HMN 10/29/07 The Horace Mann Companies
HMN 11/12/07 The Horace Mann Companies
HNT 11/18/09 Health Net
HNT 7/2/13 Health Net, CalViva Health
HNT 4/16/10 Health Net
HOG 4/4/08 Harley-Davidson, Inc. (HOG)
HON 1/31/06 Honeywell International
HON 4/19/07 Honeywell International

HPE 8/17/07
Mercury Interactive, Hewlett-
Packard

HPE 11/23/16
Hewlett Packard Enterprise
Services

HPQ 12/11/08 Hewlett-Packard, Symantec
HPY 1/20/09 Heartland Payment Systems
HRB 3/23/10 H&R Block
HRB 3/23/12 H&R Block
HRB 12/22/05 H&R Block
HRB 4/8/10 H&R Block
HS 5/22/08 HealthSpring Inc.
HSBC 4/15/05 Polo Ralph Lauren, HSBC
HSBC 4/10/15 HSBC Finance Corporation
HSBC 8/9/10 HSBC Bank Nevada
HSBC 1/13/16 HSBC SBN

HSIC 3/16/07
Henry Schein, Financial Services,
Inc., ChoiceHealth Leasing

HTZ 11/11/06 Hertz Global Holdings, Inc.

HUM 12/12/06

Aetna, Nationwide, WellPoint
Group Health Plans, Humana
Medicare, Mutual of Omaha
Insurance Company, Anthem
Blue Cross Blue Shield via

51

Concentra Preferred Systems
HUM 5/23/14 Humana
HUM 6/3/06 Humana
HUM 10/9/15 Humana
HUM 8/18/10 Humana Inc, Matrix Imaging
IBM 5/15/07 IBM
IBM 3/15/06 Ernst & Young, IBM

IHG 9/3/13
InterContinental Mark Hopkins
San Francisco

IHG 7/26/16 Kimpton Hotels

IHG 2/3/17
InterContinental Hotels Group
(IHG)

IHS 2/27/13
Information Handling Services,
Inc. (IHS)

ING 6/18/06
ING U.S. Financial Services,
Jackson Health System

ING 10/12/10 ING
ING 6/18/06 ING U.S. Financial Services
INOD 1/13/09 Innodata Isogen, Inc.
INTC 2/10/12 Intel, Inc.
INTU 4/2/15 Intuit
INTU 5/11/17 Intuit
IR 11/6/06 Ingersoll Rand
IRM 1/17/08 GE Money , Iron Mountain
IRM 5/2/05 Time Warner, Iron Mountain Inc.
IRM 7/6/05 City National Bank, Iron Mountain

ITT 1/6/11
Marsh U.S. Consumer, Seabury
and Smith, ITT Corporation

JACK 2/22/11 Jack in the Box
JIVE 9/23/16 Jive Software/Producteev
JLL 8/9/10 Jones Lang LaSalle
JPM 8/28/14 J.P Morgan Chase
JPM 12/5/13 JPMorgan Chase
JPM 7/30/11 Chase Bank
JPM 10/1/13 JP Morgan Chase

JPM 1/26/07
Chase Bank and the former Bank
One, now merged

JPM 1/30/11 JP Morgan Chase, Citibank
JPM 2/12/13 J.P. Morgan Chase, Capital One
JPM 5/1/07 JP Morgan
JPM 5/1/07 JP Morgan
JPM 9/14/10 JP Morgan Chase Bank

52

JPM 1/20/11 Chase Bank

JPM 9/7/06

Circuit City and Chase Card
Services, a division of JP Morgan
Chase & Co.

JPM 6/12/10 JP Morgan Chase
JPM 8/30/05 JP Morgan Chase & Co.
JPM 3/28/13 JPMorgan Chase
JPM 1/19/10 CHASE
JWN 10/10/13 Nordstrom
KBH 1/18/07 KB Home
KBR 1/26/11 KBR, Inc.
KELYA 3/9/12 Kelly Services
KEY 5/9/12 Key Bank
KEY 11/18/06 KeyCorp
KEY 12/30/06 KeyCorp
KFY 10/12/12 Korn/Ferry International
KMB 11/2/17 Kimberly-Clark

KND 8/16/12

Kindred Healthcare Inc. (Kindred
Transitional Care and
Rehabilitation)

KO 1/24/14 Coca-Cola Company

KO 2/22/12
Coca-Cola Company Family
Federal Credit Union

KRFT 3/3/08 Kaft Foods

KRFT 9/5/07
Affiliated Computer Services
(ACS), Kraft Foods

LABL 6/16/16 Multi-Color Corporation
LCC 4/6/11 US Airways

LH 3/27/10
Laboratory Corporation of
America LabCorp

LH 6/9/13
Laboratory Corporation of
America (LabCorp)

LJPC 12/31/14 La Jolla Group
LLL 5/15/12 L-3 Communications Corporation
LMT 7/11/14 Lockheed Martin
LMT 5/27/11 Lockheed Martin

LNC 1/14/10
Lincoln National Corporation
(Lincoln Financial)

LNC 9/16/12

Lincoln Financial Securities
Corporation, Red Boat Advisor
Resources

LNC 7/21/10 Lincoln National Life Insurance
LNC 7/26/11 Lincoln National Life Insurance

53

Company, Lincoln Life & Annuity
Company of New York

LNC 8/23/11

Lincoln Financial Group, Lincoln
National Life Insurance Company,
Lincoln Life and Annuity Company
of New York

LNC 5/25/10 Lincoln Financial Group
LNKD 6/6/12 LinkedIn.com
LOW 5/19/14 Lowe's
LOW 5/22/14 Lowes Corporation

LOW 5/16/06
GE Money Bank, Lowe's
Companies Inc.

LPLA 7/8/08
LPL Financial (formerly Linsco
Private Ledger)

LPLA 10/12/07 LPL Financial
LPLA 3/9/10 LPL Financial
LPLA 8/11/10 LPL Financial
LRCX 4/14/10 Lam Research Corp.

LUX 11/26/08
Luxottica Group, Things
Remembered

LVS 2/12/14
Las Vegas Sands Hotels and
Casinos

LXK 2/15/08 Lexmark International
M 4/23/13 Macy's
MAR 12/28/05 Marriott International Inc.

MBI 10/7/14
Municipal Bond Insurance
Association (MBIA)

MCD 8/9/11 McDonald's
MCD 8/22/08 Liberty McDonald's Restaurant
MCD 3/9/12 McDonald's
MCD 11/18/11 McDonald's
MCD 11/18/11 McDonald's
MCD 9/12/11 McDonald's
MCD 11/5/11 McDonald's

MCD 12/14/10
McDonald's, Arc Worldwide,
Silverpop Systems Inc.

MCD 11/16/11 McDonald's

MCK 7/30/13

US Airways, McKesson, City of
Houston, Automatic Data
Processing (ADP), AlliedBarton
Security Services

MCK 9/9/07
McKesson Specialty,
AstraZeneca

MDB 9/5/17 MongoDB

54

MDT 2/8/14 Medtronic
MDT 8/2/13 Medtronic
MEET 8/18/14 MeetMe, Inc.

MET 1/24/12
Metropolitan Life Insurance
Company (MetLife) of Connecticut

MET 1/25/11 MetLife

MET 8/10/10
Metropolitan Life Insurance
Company (MetLife)

MGI 1/12/07 MoneyGram International
MHS 3/1/06 Medco Health Solutions
MHS 3/22/12 Medco Health Solutions, Inc.
MIK 5/11/11 Michaels Stores Inc.
MOH 5/6/14 Molina Healthcare
MOH 2/6/12 Molina Healthcare of California
MS 1/5/15 Morgan Stanley
MSFT 4/3/15 Microsoft/Xbox One
MSFT 12/26/14 Microsoft xBox
MSFT 2/22/13 Microsoft

MSG 11/22/16
The Madison Square Garden
Company

MSI 5/30/05 Motorola
MTB 5/17/06 M &T Bank via contractor PFPC

MTR 2/14/12

American Stock Transfer & Trust
Company, LLC, Mesa Royalty
Trust

MUSA 6/9/11 Murphy USA
MUSA 9/20/13 Murphy USA
MUSA 11/6/10 Murphy USA
MWV 11/1/07 MeadWestvaco
MWW 8/23/07 Monster.com
MWW 1/23/09 Monster.com
NDAQ 7/26/13 NASDAQ OMX Group Inc.
NDAQ 7/18/13 NASDAQ.com
NDLS 5/16/16 Noodles and Company
NFLX 1/1/10 Netflix
NFLX 5/4/11 Netflix
NFP 10/30/06 National Financial Partners (NFP)
NFP 10/8/07 National Financial Partners (NFP)
NGVC 3/2/15 Natural Grocers
NLSN 2/10/14 Nielsen
NNI 7/18/06 Nelnet Inc., UPS

55

NOC 8/9/13 Northrop Grunman

NOC 4/19/17
Northrop Grumman Systems
Corporation

NOVC 9/26/16 Novation Settlement Solutions
NSM 8/12/15 Nationstar Mortgage LLC
NTRS 7/29/14 Northern Trust Company
NTY 7/15/10 NBTY
NUAN 3/13/10 Nuance Communications Inc.

NVDA 1/13/13
Advanced Micro Devices (AMD),
Nvidia

NVDA 7/13/12 Nvidia
NVDA 1/6/15 NVIDIA Corporation
NYT 1/30/13 The New York Times

NYT 8/27/13
The New York Times, Melbourne
IT

OMX 2/9/06 OfficeMax
ORCL 11/11/07 Oracle Corporation, Lodestar
ORCL 8/8/16 Oracle's MICROS Point-of-Sale
OUTR 4/7/08 Redbox
OXY 1/14/09 Occidental Petroleum Corporation

PACB 9/25/14
Pacific BioSciences of California
Inc.

PAET 11/17/06 Paetec Communications
PAY 3/7/17 Verifone
PBG 1/2/09 Pepsi Bottling Group
PBI 3/19/07 Pitney Bowes
PF 11/27/12 Pinnacle Foods Group, LLC
PFE 5/12/08 Pfizer
PFE 9/4/07 Pfizer
PFE 10/10/07 Wheels Inc., Pfizer
PFE 4/7/08 Pfizer Inc
PFE 8/13/07 Pfizer, Axia Ltd.
PFE 6/11/07 Pfizer
PFE 9/28/07 Pfizer
PFG 5/14/10 Principal Financial Group
PFMT 8/14/17 Performant Financial Corporation
PGR 4/6/06 Progressive Casualty Insurance
PHH 5/10/13 PHH Corporation
PJC 2/8/07 Piper Jaffrey
PKI 3/16/16 PerkinElmer, Inc.
PLAY 5/12/08 Dave & Buster's

56

PLNT 10/17/08 The Planet

PNC 3/19/10
PNC Financial Services Group
Inc.

PNC 4/28/05

Wachovia, Bank of America, PNC
Financial Services Group and
Commerce Bancorp

PNX 12/4/10 Phoenix

PRA 8/11/10
ProAssurance Mid-Continent
Underwriters

PRAN 3/8/17 prAna
PRU 2/6/06 Prudential Financial Inc.

PRU 3/4/13
The Prudential Insurance
Company of America, Unisys

PRU 11/30/07 Prudential Financial
PSA 1/29/07 Public Storage Inc.
PSS 6/11/10 Payless Shoe Store
PULB 7/16/12 Pulaski Bank, Pulaski Financial
PWRD 4/25/12 Cryptic Studios, Perfect World
PYPL 2/4/11 Twitter, Facebook and PayPal
PZZA 11/7/05 Papa John's
QABA 12/1/05 First Trust Bank
QTM 6/17/10 Quantum Corporation
RAD 7/30/14 Rite Aid Pharmacy
RAD 9/27/12 Rite Aid Corporation
RAD 7/27/10 Rite Aid Corporation
RAD 1/12/12 RIte Aid Corporation
RAD 5/19/17 Rite Aid

RAX 5/2/12
Rackspace, Incorporating
Services, Ltd.

RCII 4/25/12 Rent-A-Center, Inc.

RF 1/31/12
Regions Financial Corp., Ernst &
Young

RL 4/15/05 Polo Ralph Lauren, HSBC

RL 4/28/12

Taco Bell, McDonald's, Wrigley
Field, Ralph Lauren Restaurant
(RL Restaurant)

ROL 3/27/13 Rollins, Inc.
ROST 8/5/10 Ross

RRD 1/28/13
RR Donnelley, UnitedHealthcare,
Boy Scouts of America

RUN 2/2/17 Sunrun
S 3/11/09 Sprint
S 1/22/07 Sprint Nextel

57

S 12/19/06 Velocita Wireless, Sprint Nextel
S 9/2/10 Sprint
S 8/16/17 Virgin Mobile
SABR 8/7/15 Sabre Corporation
SABR 5/2/17 Sabre Corporation
SABR 5/17/17 Sabre Corporation

SAIC 3/19/07
Science Applications International
Corp. (SAIC)

SAIC 7/20/07
Science Applications International
Corp. (SAIC)

SAIC 2/12/05
Science Applications International
Corp. (SAIC)

SAIC 1/18/08 SAIC

SBCF 3/3/11
Racetrac, Seacoast National
Bank

SBH 3/5/14 Sally Beauty Supply
SBH 5/4/15 Sally Beauty Supply
SBUX 5/12/15 Starbucks
SBUX 11/3/06 Starbucks Corp.
SBUX 11/24/08 Starbucks Corp.
SCHW 4/9/10 Charles Schwab
SCHW 5/3/16 Charles Schwab
SCNB 1/12/10 Suffolk County National Bank
SCOR 6/12/13 comScore
SEAC 9/8/10 SeaChange International
SEMG 2/10/09 SemGroup LP

SFLY 11/26/14
Shutterfly/Tiny
Prints/Treats/Wedding Divas

SFM 2/25/13 Sprouts
SFM 3/28/16 Sprouts Farmers Market
SHLD 10/10/14 Sears Holding Company/K-Mart
SHLD 2/28/14 Sears
SHLD 5/23/12 Sears Portrait Studio

SHLD 4/28/06
Sears, Roebuck, Company
Contractor Compliance

SHLD 10/12/06 Sears Holding Corporation
SHLD 1/7/08 Sears, ManageMyHome.com
SMMF 6/22/15 Summit Financial Group
SMTC 10/8/07 Semtech
SNAP 3/4/16 Snapchat

SNE 4/27/11
Sony, PlayStation Network (PSN),
Sony Online Entertainment (SOE)

58

SNE 11/24/14 Sony Pictures

SNE 6/6/11
Sony Pictures, Sony Corporation
of America

SNE 12/26/14 Sony PlayStation
SNI 10/16/15 Scripps Network LLC. (Food.com)
SONC 9/26/17 Sonic Drive-In
SPLS 10/20/14 Staples Inc.
SPLS 2/2/12 Staples (Staples Business Depot)
SRCE 6/10/08 1st Source Bank
SRCE 11/19/10 1st Source Bank

STFGX 6/7/16
State Farm Mutual Automobile
Insurance Company

STI 5/16/11 SunTrust Bank
STI 2/22/10 SunTrust Bank

STT 5/29/08
State Street Corp, Investors
Financial Services

STX 3/6/16 Seagate
SVEV 3/3/10 7-Eleven
SVEV 2/24/10 7-Eleven
SVU 8/15/14 Supervalue
SWK 3/11/13 Stanley Black & Decker, Inc.
SWY 11/5/05 Safeway, Hawaii
SYMC 3/31/09 Symantec
SYMC 12/11/08 Hewlett-Packard, Symantec
SYMC 11/4/12 Symantec, ImageShack
SYNH 7/21/16 inVentiv Health, Inc.
T 6/9/10 Apple Inc., AT&T

T 8/29/06
AT&T via vendor that operates an
order processing computer

T 8/30/07 AT&T
T 6/10/14 AT&T Mobility, LLC
T 10/6/14 AT&T
T 4/8/15 AT&T
T 5/25/10 AT&T/Ferrell Communication
T 5/22/08 AT&T
T 7/8/09 AT&T
T 11/21/11 AT&T
T 6/16/10 AT&T
T 2/27/10 AT&T
TAX 2/13/15 Liberty Tax Services
TAX 12/13/10 Liberty Tax Service

59

TD 3/13/10 TD Bank
TD 10/8/12 TD Bank
TD 3/10/11 TD Bank
TD 3/4/13 TD Bank, N.A.
TGT 12/13/13 Target Corp.
Ticker EventDate Company
Ticker Date Made Public Name

TIME 12/31/09
Time Inc., Harvard Business
Review

TJG 5/29/13 TJG, Inc., Target Marketing

TJX 1/17/07

TJ stores (TJX), including
TJMaxx, Marshalls, Winners,
HomeSense, AJWright, KMaxx,
and possibly Bob's Stores in U.S.
& Puerto Rico -- Winners and
HomeGoods stores in Canada --
and possibly TKMaxx stores in
UK and Ireland

TM 8/4/06 Toyota
TM 8/26/16 Toyota Motor Corporation
TMUS 6/7/09 T-Mobile USA
TMUS 10/14/06 T-Mobile USA Inc.
TMUS 1/16/12 T-Mobile
TMUS 10/8/15 T-Mobile USA Inc.
TMUS 12/7/16 T-Mobile
TMUS 10/12/17 T-Mobile
TOO 11/9/17 Tween Brands, Inc.
TREE 4/22/08 LendingTree
TRI 8/11/10 Thomson Reuters
TRIP 3/24/11 TripAdvisor

TRMK 6/22/15
Trustmark Mutual Holding
Company

TRU 11/30/06
TransUnion Credit Bureau,
Kingman, AZ, court office

TRU 1/29/08
TransUnion, Intelenet Global
Services,

TRU 3/12/12

TransUnion LLC, Manufacturers
Life Insurance Company
(ManuLife)

TTEC 6/21/10 TeleTech, Sony Electronics
TWC 7/28/10 Time Warner Cable
TWC 1/8/16 Time Warner Cable
TWTR 2/2/13 Twitter
TWTR 2/4/11 Twitter, Facebook and PayPal

60

TWTR 6/13/16 Twitter
TWTR 5/19/17 Vine
TWX 5/2/05 Time Warner, Iron Mountain Inc.
TWX 7/31/17 HBO
TWX 10/30/17 Home Box Office (HBO)
TXT 7/31/07 Textron
TYL 3/13/17 Tyler Technologies Inc.

UA 4/20/12
Under Armour Inc.,
PricewaterhouseCoopers

UAL 7/29/15 United Airlines
UAL 1/1/15 United Airlines
UAL 1/13/09 Continental Airlines
UBNT 8/7/15 Ubiquiti Networks Inc.
UBS 11/7/07 UBS FInancial Services
UNB 4/5/12 Union Bank

UNH 10/12/11
United Healthcare Inc., Futurity
First Insurance Group

UNH 5/25/11 United Healthcare Inc.

UNH 5/18/12
UnitedHealthcare (United Health
Group Plan)

UNH 1/28/13
RR Donnelley, UnitedHealthcare,
Boy Scouts of America

UNH 8/6/10 United HealthGroup
UNH 8/6/10 United HealthGroup
UNH 10/11/10 UnitedHealth Group
UNH 8/6/10 United HealthGroup
UNH 8/6/10 United HealthGroup
UNP 6/16/06 Union Pacific
UPS 8/20/14 The UPS Store
UPS 7/18/06 Nelnet Inc., UPS

UPS 4/6/07
Hortica (Florists___ Mutual
Insurance Company), UPS

UPS 6/6/05 Citigroup, UPS
USB 9/28/10 US Bank
USB 8/1/06 US Bank
USB 3/1/10 US Bank
V 10/16/06 VISA, FirstBank (1st Bank)
VIAB 9/20/17 Viacom

VLY 2/14/12

Valley National Bank, American
Stock Transfer and Trust
Company, LLC

VLY 5/27/11 Valley National Bank

61

VMED 10/25/07 Virgin Mobile
VRA 10/12/16 Vera Bradley
VRSN 2/2/12 VeriSign Inc.
VRSN 8/6/07 Verisign
VSTO 9/19/16 Active Outdoors
VZ 8/12/05 Verizon
VZ 8/25/06 Verizon Wireless
VZ 3/8/06 Verizon Communications
WASH 8/28/08 The Washington Trust Co.
WCC 11/3/06 Wesco
WCG 4/8/08 WellCare Health Plans Inc.
WCG 12/6/14 WellCare Health Plans
WEB 8/19/15 Web.com
WEN 7/28/10 Wendy's
WEN 1/27/16 Wendy's
WFC 9/1/06 Wells Fargo via unnamed auditor
WFC 8/12/08 Wells Fargo

WFC 8/29/06

Wells Fargo, Paymap Inc., First
Horizon Home Loans, Western
Union

WFC 5/5/06 Wells Fargo
WFC 10/20/11 Wells Fargo
WFC 5/25/10 Wells Fargo
WFC 7/31/17 Wells Fargo
WIN 1/27/12 Windstream
WINN 6/23/07 Winn-Dixie
WKL 7/24/06 Wolters Kluwer

WLP 2/10/10
WellPoint, Anthem/Blue Cross
and Blue Shield

WLP 8/6/10 WellPoint, Inc.
WM 4/3/07 Waste Management Inc.
WM 4/3/07 Waste Management Inc.
WMB 8/1/09 Williams Cos. Inc.
WMT 9/28/07 Wal-Mart Stores Inc.
WMT 6/7/10 Wal-Mart, Sam's Club
WSBN 3/15/17 Wishbone

WSM 8/17/06
Williams-Sonoma, Deloitte &
Touche

WU 8/29/06

Wells Fargo, Paymap Inc., First
Horizon Home Loans, Western
Union

WU 7/17/07 Western Union

62

WU 12/20/16 Western Union
WY 8/10/06 Weyerhaeuser Company
WYN 2/28/10 Wyndham Hotels & Resorts
WYN 2/16/09 Wyndham Hotels & Resorts
XRIT 4/11/12 X-Rite Incorporated, Pantone.com
XRX 1/23/07 Xerox
YHOO 7/12/12 Yahoo! Voices
YHOO 9/22/16 Yahoo
YHOO 12/14/16 Yahoo
YUM 11/17/17 Pizza Hut
ZEN 2/21/13 Zendesk

Table 3: Company Stock Performance Abnormalities

ticker evtdate diff
A 24-Mar-08 0.00504333
AA 15-Jul-10 0.01982667
AAN 2-Nov-11 -0.00987
AAN 22-Oct-13 0.00018
AAP 16-Mar-16 -0.00505
AAP 31-Mar-08 0.01875667
AAPL 1-Apr-11 0.00166333
AAPL 19-Feb-13 0.00268
AAPL 2-Sep-14 -0.0210133
AAPL 22-Jul-13 0.01950667
AAPL 26-Feb-14 0.02055
AAPL 4-Sep-12 0.00382667
AAPL 9-Jun-10 0.00244333
ABB 11-Sep-17 -0.0049267
ABM 14-Nov-17 -0.0074333
ABM 21-Apr-11 0.0007
ADBE 13-May-13 0.01789
ADBE 14-Nov-12 0.00164
ADBE 4-Oct-13 -4.33E-05
ADP 15-Jun-11 0.00157667
ADP 19-Jun-06 -0.0019167
ADP 28-Dec-11 -0.00154
ADP 30-Jul-13 -0.0066533
ADP 5-May-16 0.00108333
ADP 6-Jul-06 -0.0099833
ADVS 10-Jan-07 -0.0005133

63

AET 12-Dec-06 -0.00711
AET 15-Nov-10 -0.0188167
AET 24-Aug-17 -0.0017733
AET 28-May-09 -0.0162
AET 28-May-10 0.01026
AFL 16-Mar-17 0.00166667
AFL 19-Apr-06 -0.0038033
AFL 22-Aug-06 0.00742667
AIG 14-Jun-06 -0.00535
ALK 26-Jul-17 0.00122333
ALL 23-Aug-11 -0.0189367
ALL 29-Jun-06 -0.00413
ALSK 20-Feb-14 -0.00402
ALU 18-May-07 0.01125667
AMCC 4-Apr-11 0.01212
AMD 14-Jan-13 0.00981667
AMD 9-Apr-12 0.01143
AMTD 1-Dec-06 -0.00645
AMTD 14-Sep-07 0.00079667
AMZN 29-Sep-17 -0.0069133
AMZN 31-Jan-11 0.00285
AN 27-May-14 0.00248667
ANTM 31-Jul-17 0.01337667
ANTM 5-Feb-15 0.00155333
ARW 8-Mar-10 0.00969
AXP . 0.00969
AXP 13-Jul-12 5.67E-05
AXP 14-Aug-09 0.01703333
AXP 25-Mar-14 0.00088333
AXP 30-Dec-13 0.00142333
AXP 7-Apr-14 0.00102
BA 11-Jul-14 -0.0017267
BA 13-Dec-06 -0.0042733
BA 15-Nov-06 0.00983333
BA 21-Apr-06 -0.01163
BA 27-Feb-17 0.00103
BA 8-Feb-17 -0.0046967
BAC 11-Aug-09 0.01693667
BAC 12-Apr-07 0.00463333
BAC 14-Dec-06 -0.0049067
BAC 14-Feb-11 -0.0114033
BAC 17-Jul-14 0.00620667
BAC 18-Aug-11 -0.0196733

64

BAC 25-May-11 -0.0037733
BAC 7-Apr-10 -0.00269
BAC 8-Jun-10 -0.00362
BBBY 19-Jun-17 -0.0063567
BBBY 25-Sep-15 -0.0120367
BBT 15-May-08 -0.0255867
BBY 6-May-11 -0.00686
BC 16-Feb-07 0.01812
BC 21-Apr-08 0.01118
BDL 20-May-11 -0.0013867
BEN 3-Aug-06 0.00275667
BGC 19-Nov-07 -0.0285967
BGS 6-Dec-13 0.0104
BHE 21-Nov-17 -0.0030733
BK 26-Mar-08 0.00447667
BKE 20-Jun-17 -0.01617
BKS 24-Oct-12 0.03563
BLKB 17-Jun-09 0.01194667
BMY 17-Jul-08 -0.02839
BOH 1-Mar-13 0.00017333
BR 22-Jun-09 -0.00973
BRLI 25-Aug-14 -0.01994
BSFT 5-Sep-17 -0.0389833
BSX 10-Feb-14 -0.0059567
BUD 29-Jul-08 -0.0058933
C 11-Aug-09 -0.0188433
C 14-Oct-10 -0.0014267
C 17-Jul-13 -0.0152867
C 18-Aug-11 0.01539333
C 19-Jun-08 -0.0204333
C 2-Oct-06 0.00968667
C 21-Sep-07 -0.0017933
C 24-Feb-10 -0.0015633
C 27-Jul-10 -0.0149233
C 28-Mar-13 -0.0033467
C 9-Aug-07 -0.0180633
C 9-Jun-11 0.02359333
CAKE 13-Sep-10 -0.0084367
CAKE 24-May-10 -0.0027933
CAKE 29-Sep-10 0.00259
CAT 27-Apr-07 -0.0039567
CELG 20-Aug-07 -0.0003967
CFR 19-May-06 0.00903667

65

CHDN 4-Sep-12 -0.0042433
CHH 22-Mar-13 0.00544333
CHH 26-Apr-12 -0.00446
CI 7-Dec-06 0.00250333
CI 7-Nov-06 -0.01389
CMCSA 16-Mar-09 -0.0035267
CMCSA 21-May-12 0.00170667
CMCSA 3-Oct-13 -0.0023233
CME 18-Nov-13 0.01443667
CMG 26-Apr-17 0.00514
CNC 26-Jan-16 0.03275333
CNET 14-Jul-14 0.01632667
CNQR 16-Dec-10 0.00439
COF 12-Feb-13 -0.0043833
COF 18-May-10 0.01651
COF 4-Mar-14 0.00022
COF 6-Feb-17 0.00847
COF 6-Jul-17 -0.0048433
COF 9-May-12 -0.0001733
COLB 21-May-07 0.00885
CPRT 28-Aug-06 0.00250333
CS 20-Feb-07 -0.02036
CSC 3-Apr-13 -0.00332
CSCO 12-Jul-10 0.00503667
CSCO 25-Oct-16 0.00641667
CSCO 9-Apr-12 0.01115667
CVC 25-Jul-06 0.00349333
CVS 16-Apr-07 -0.00024
CVS 18-Feb-09 0.01040667
CVS 20-Jul-15 0.00183333
CVS 26-Mar-12 -0.0126367
CVS 29-Nov-13 -0.0016833
CVS 30-Jul-14 0.00458667
CVS 4-Dec-12 0.00476
CVS 5-Dec-16 -0.0096333
CVX 16-Aug-06 0.01052667
CVX 9-Mar-11 0.00115
D 25-Aug-06 -0.0025367
DBD 31-Aug-06 -0.0037567
DENN 30-Sep-13 0.00027667
DFS 11-Nov-13 -0.0045433
DFS 17-Aug-12 0.00433667
DFS 20-Dec-13 0.00167

66

DFS 21-Feb-14 -0.0034367
DGX 17-Sep-12 0.01255333
DHI 16-Feb-12 -0.0163033
DIS 1-Aug-16 0.00317667
DLTR 1-Aug-06 0.02518
DNB 26-Sep-13 -0.00154
DNB 28-Oct-13 -0.0032033
DPZ 12-May-11 0.00421
DPZ 18-Jun-08 -0.0012067
DRI 15-Nov-17 -0.00471
DRIV 22-Dec-10 0.00706333
DRIV 4-Jun-10 0.00481667
DTV 11-Oct-06 0.01092667
DTV 29-May-12 -0.0063767
DVA 3-Mar-08 -0.0002167
DVA 7-Nov-13 0.02189667
DXC 5-Jul-17 0.01497333
DYN 21-Oct-16 -0.0502967
EBAY 21-May-14 -0.0104533
EFX 10-Oct-12 -0.0003133
EFX 11-Feb-10 0.00684333
EFX 20-Jun-06 -0.0039233
EFX 6-May-16 0.00227
EFX 7-Sep-17 -0.0680933
EHTH 27-Jan-17 -0.0002433
EL 26-Jul-11 0.00712333
ESRX 19-Feb-13 -0.0134033
ESRX 6-Nov-08 0.00689667
ETFC 9-Oct-15 0.01433667
EV 8-Feb-12 0.0025
EXEL 16-Aug-13 -0.00138
EXPE 15-Nov-06 0.02562333
F 7-May-12 0.00979
FB 15-Feb-13 -0.00517
FB 21-Jun-13 -0.0059133
FB 30-Aug-17 0.00166
FDX 25-Jul-06 -0.0088133
FINL 26-Mar-13 0.03099667
FIRE 27-Nov-12 0.00669667
FIS 24-Sep-07 0.00050667
FIS 26-Aug-11 0.00819333
FIS 3-Jul-07 0.00620333
FITB 13-Apr-06 0.00999333

67

FLWS 8-Mar-16 0.01192333
FMER 27-Oct-09 -0.0159267
FMS 8-Feb-07 -0.0136067
FORR 5-Dec-07 -0.01644
FRC 14-Aug-12 0.00156667
FRED 12-Jun-15 -0.0133767
FRP 20-Apr-09 -0.1296933
GCI 4-May-17 -0.0325033
GE 16-May-06 -0.00045
GE 25-Sep-06 0.00294333
GE 9-Feb-07 0.00898667
GM 14-Mar-06 -0.01429
GM 3-Aug-12 -0.0077533
GME 2-Jun-17 -0.00355
GNCMA 24-May-12 0.00981333
GOOG 6-May-16 -0.00524
GOOG 9-Mar-09 0.01639
GOOGL 4-May-17 -0.00787
GPI 19-Jul-06 0.00428
GPN 30-Mar-12 -0.0018167
GPS 16-Apr-10 0.00331667
GPS 16-Jul-13 0.00090333
GPS 28-Sep-07 0.00088
GRPN 2-Jul-12 -0.0313467
GS 2-Jul-14 0.00295333
GS 20-May-13 0.00217333
GYMB 27-Oct-06 -0.0165867
H 15-Jan-16 0.03979667
H 16-Nov-17 -0.00354
HBAN 9-May-11 0.00173
HCSG 9-Dec-11 0.00227
HD 13-Apr-12 0.00295333
HD 14-Dec-10 -0.0007533
HD 17-Oct-07 0.00417333
HD 2-Sep-14 -0.0049967
HD 24-May-07 -0.00672
HD 30-Apr-07 0.01304
HD 6-Feb-14 -0.00521
HIG 12-Sep-07 -0.0014367
HIG 30-Oct-07 -0.00308
HIG 6-Apr-11 0.00014667
HLT 25-Sep-15 0.00889333
HMN 12-Nov-07 -0.0277767

68

HMN 29-Oct-07 -0.04041
HNT 16-Apr-10 0.02267
HNT 18-Nov-09 0.001
HNT 2-Jul-13 -0.0111133
HOG 4-Apr-08 -0.0142433
HON 19-Apr-07 0.01905667
HPE 23-Nov-16 0.02445
HPQ 11-Dec-08 -0.0027133
HPY 20-Jan-09 -0.0939733
HRB 23-Mar-10 0.00134333
HRB 23-Mar-12 -0.0061167
HRB 8-Apr-10 -0.0023333
HSBC 10-Apr-15 -0.00161
HSBC 13-Jan-16 -0.0135833
HSIC 16-Mar-07 0.00319
HUM 12-Dec-06 -0.0003333
HUM 18-Aug-10 -0.0047467
HUM 23-May-14 -0.00631
HUM 5-Jun-06 0.00160667
HUM 9-Oct-15 0.01235
IBM 15-Mar-06 -0.0055833
IBM 15-May-07 0.00013
IHG 26-Jul-16 -0.0062633
IHG 3-Feb-17 0.00326333
IHG 3-Sep-13 0.00642333
IHS 27-Feb-13 0.00436667
ING 12-Oct-10 0.01059
ING 19-Jun-06 -0.00709
INOD 13-Jan-09 -0.07583
INTC 10-Feb-12 -0.00265
INTU 11-May-17 -0.00135
INTU 2-Apr-15 -0.00953
IR 6-Nov-06 -0.0004333
IRM 17-Jan-08 0.00745667
ITT 6-Jan-11 0.00499667
JACK 22-Feb-11 -0.0149733
JIVE 23-Sep-16 0.00259333
JLL 9-Aug-10 -0.00694
JPM 1-Aug-11 0.00214667
JPM 1-May-07 -0.0067
JPM 1-Oct-13 -0.0014967
JPM 12-Feb-13 0.00049
JPM 14-Jun-10 0.00851333

69

JPM 14-Sep-10 -0.0070867
JPM 19-Jan-10 -0.0085567
JPM 20-Jan-11 -0.0024433
JPM 26-Jan-07 -0.0054533
JPM 28-Aug-14 -0.00315
JPM 28-Mar-13 0.01004
JPM 31-Jan-11 -0.0024733
JPM 5-Dec-13 -0.00026
JPM 7-Sep-06 -0.0004667
JWN 10-Oct-13 -0.0033133
KBH 18-Jan-07 0.01010667
KBR 26-Jan-11 0.004
KELYA 9-Mar-12 -0.0033067
KEY 20-Nov-06 -0.0005667
KEY 3-Jan-07 0.00028
KEY 9-May-12 0.00112667
KFY 12-Oct-12 0.0019
KMB 2-Nov-17 0.00024667
KND 16-Aug-12 -0.0051267
KO 22-Feb-12 -0.0024867
KO 24-Jan-14 -0.0097433
LABL 16-Jun-16 -0.0157633
LCC 6-Apr-11 0.01391333
LH 10-Jun-13 -0.00039
LH 29-Mar-10 -0.0036733
LLL 15-May-12 -0.0054533
LMT 11-Jul-14 -0.0022633
LMT 27-May-11 0.00227
LNC 14-Jan-10 -0.0066633
LNC 17-Sep-12 -0.0005767
LNC 21-Jul-10 0.00273333
LNC 23-Aug-11 0.00810333
LNC 25-May-10 0.00327667
LNC 26-Jul-11 0.00739333
LNKD 6-Jun-12 0.01069
LOW 16-May-06 0.00619667
LOW 19-May-14 0.01241
LOW 22-May-14 -0.0032833
LRCX 14-Apr-10 0.00311667
LUX 26-Nov-08 0.03268
LVS 12-Feb-14 0.00161667
LXK 15-Feb-08 0.02230333
M 23-Apr-13 0.00743

70

MCD 12-Sep-11 0.01165
MCD 14-Dec-10 0.00587667
MCD 16-Nov-11 0.00333333
MCD 18-Nov-11 0.00389667
MCD 7-Nov-11 -0.0046033
MCD 9-Aug-11 -0.00836
MCD 9-Mar-12 0.00887
MCK 10-Sep-07 0.00842333
MCK 30-Jul-13 -0.01952
MDT 10-Feb-14 -0.00571
MDT 2-Aug-13 0.00912333
MEET 18-Aug-14 0.02469333
MET 10-Aug-10 -0.0117
MET 24-Jan-12 -0.0124433
MET 25-Jan-11 -0.0014767
MGI 12-Jan-07 0.01139
MOH 6-May-14 -0.0143133
MS 5-Jan-15 -0.00887
MSFT 22-Feb-13 -0.0012433
MSG 22-Nov-16 0.00279667
MTB 17-May-06 0.00361
MUSA . 0.00361
MUSA 8-Nov-10 -0.0118633
MUSA 9-Jun-11 -0.0109733
MWV 1-Nov-07 -0.0023333
MWW 23-Jan-09 0.00367333
NDAQ 18-Jul-13 0.00283
NDAQ 26-Jul-13 0.00173333
NDLS 16-May-16 0.00371333
NFLX 4-Jan-10 0.00117667
NFLX 4-May-11 0.00197333
NFP 30-Oct-06 0.0456
NFP 8-Oct-07 2.67E-05
NGVC 2-Mar-15 0.00095333
NLSN 10-Feb-14 -0.01482
NNI 18-Jul-06 0.00085
NOC 19-Apr-17 -0.0015567
NOC 9-Aug-13 -0.0034633
NSM 12-Aug-15 -0.0220333
NTRS 29-Jul-14 -0.0028567
NTY 15-Jul-10 -0.00596
NUAN 15-Mar-10 -0.0034667
NVDA 13-Jul-12 0.02254

71

NYT 30-Jan-13 0.00142333
ORCL 12-Nov-07 0.04819333
ORCL 8-Aug-16 0.00144333
OXY 14-Jan-09 -0.00458
PACB 25-Sep-14 -0.00082
PAY 7-Mar-17 -0.01861
PBI 19-Mar-07 0.00580333
PFE 12-May-08 -0.00173
PFG 14-May-10 0.01842667
PFMT 14-Aug-17 0.01730333
PGR 6-Apr-06 0.00467333
PJC 8-Feb-07 -0.0108733
PKI 16-Mar-16 0.00293333
PNC 19-Mar-10 -0.0116867
PRA 11-Aug-10 0.00330667
PRAN 8-Mar-17 0.04358333
PSA 29-Jan-07 -0.0037633
PSS 11-Jun-10 -0.0026567
PULB 16-Jul-12 -0.0031033
PWRD 25-Apr-12 -0.00931
QTM 17-Jun-10 -0.0276767
RAD 19-May-17 0.06994333
RAD 30-Jul-14 0.03878
RAX 2-May-12 0.00695
RCII 25-Apr-12 0.00973
RF 31-Jan-12 0.0008
RRD 28-Jan-13 0.02419333
RUN 2-Feb-17 -0.0010867
S 11-Mar-09 -0.03331
S 16-Aug-17 0.00480667
SABR 17-May-17 -0.00478
SABR 2-May-17 -0.0038167
SABR 7-Aug-15 -0.0292133
SBCF 3-Mar-11 -0.0099767
SBH 5-Mar-14 0.00124
SBUX 12-May-15 0.0036
SCHW 3-May-16 0.00205667
SCHW 9-Apr-10 -0.0077233
SCOR 12-Jun-13 -0.0016333
SEAC 8-Sep-10 0.04250667
SFLY 26-Nov-14 -0.0125167
SFM 28-Mar-16 0.00188
SHLD 10-Oct-14 0.08379333

72

SMMF 22-Jun-15 0.00046667
SMTC 8-Oct-07 -0.00742
SNE 27-Apr-11 0.00537
SNI 16-Oct-15 -0.00464
SONC 26-Sep-17 0.00560667
SPLS 20-Oct-14 0.01032667
SRCE 10-Jun-08 0.00208333
STI 16-May-11 0.00923333
STT 29-May-08 -0.0012867
STX 7-Mar-16 0.00031667
SVU 15-Aug-14 0.00329
SWK 11-Mar-13 0.00317333
SYMC 31-Mar-09 0.00653333
T 9-Jun-10 -0.0101033
TAX 13-Feb-15 -0.0068
TD 15-Mar-10 -0.0060733
TGT 13-Dec-13 0.00054333
TJX 17-Jan-07 0.00693333
TM 26-Aug-16 0.00464333
TM 4-Aug-06 0.00099333
TMUS 12-Oct-17 0.00486667
TMUS 7-Dec-16 -0.0239933
TOO 9-Nov-17 -0.0398067
TRI 11-Aug-10 0.01231333
TRMK 22-Jun-15 0.00559333
TRU 30-Nov-06 -0.0150933
TTEC 21-Jun-10 0.0079
TWC 28-Jul-10 0.01402667
TWC 8-Jan-16 -0.0065267
TWTR 13-Jun-16 0.04446
TWTR 19-May-17 0.00046
TWX 30-Oct-17 -0.0073533
TWX 31-Jul-17 -0.0098567
TXT 31-Jul-07 0.00839333
TYL 13-Mar-17 -0.0018
UA 20-Apr-12 -0.02126
UAL 29-Jul-15 -0.01277
UBNT 7-Aug-15 -0.00469
UBS 7-Nov-07 0.0185
UNH 12-Oct-11 -1.33E-05
UNP 16-Jun-06 -0.0090233
UPS 20-Aug-14 -0.0097733
USB 28-Sep-10 0.00772

73

VIAB 20-Sep-17 0.00556
VMED 25-Oct-07 0.00421
VRA 12-Oct-16 -0.00441
VRSN 2-Feb-12 -0.0166433
VSTO 19-Sep-16 0.00481333
WASH 28-Aug-08 -0.0277667
WCC 3-Nov-06 -0.00251
WCG 8-Apr-08 0.01199333
WEN 27-Jan-16 0.01807333
WEN 28-Jul-10 -0.0064567
WFC 1-Sep-06 0.00381667
WFC 31-Jul-17 0.00759333
WIN 27-Jan-12 0.00783
WINN 25-Jun-07 0.01490333
WLP 10-Feb-10 -0.0059233
WM 3-Apr-07 -0.00334
WMB 3-Aug-09 -0.01485
WMT 28-Sep-07 0.01419667
WSM 17-Aug-06 -0.03001
WU 20-Dec-16 0.00245
WY 10-Aug-06 -0.00462
WYN 1-Mar-10 -0.0052933
XRIT 11-Apr-12 -0.1164667
XRX 23-Jan-07 0.01905333
YHOO 12-Jul-12 -0.00946
YHOO 14-Dec-16 -0.01637
YHOO 22-Sep-16 -0.0013767
YUM 17-Nov-17 0.00539667

