
Secure Intermittent Computing: Precomputation and

Implementation

Charles E. Suslowicz

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Patrick R. Schaumont, Chair

Alan J. Michaels

Cameron D. Patterson

May 7, 2018

Blacksburg, Virginia

Keywords: intermittent computing, embedded systems, random number generation

Copyright 2018, Charles E. Suslowicz

Secure Intermittent Computing: Precomputation and

Implementation

Charles E. Suslowicz

(ABSTRACT)

This thesis explores the security of intermittent devices, embedded systems designed to

retain their state across periods of power loss, for cases both when the device has an excess

of available energy and when power loss is unavoidable. Existing work with intermittent

systems has focused on the problems inherent to the intermittent paradigm and ignored the

security implications of persistent state across periods of power loss. The security of these

devices is closely linked to their unique operational characteristics and are addressed here in

two studies. First, the presence of an energy harvester creates an opportunity to use excess

energy, available when additional energy is harvested after the local energy reservoir is filled,

to precompute security related operations. Precomputation powered by this excess energy

can reduce the cost of expensive tasks during periods of energy scarcity, potentially enabling

the use of expensive security operations on traditionally unsecured devices. Second, when

energy is limited and intermittent operation is required, the secure storage of checkpoints

is a necessity to protect against adversary manipulation of the system state. To examine

the secure storage of checkpoints a protocol is implemented to ensure the integrity and

authenticity of a device’s checkpoints, and evaluated for its energy overhead and performance.

The cost of properly ensuring the integrity and authenticity of these checkpoints is examined

to identify the overhead necessary to execute intermittent operations in a secure manner.

Taken together, these studies lay the groundwork for a comprehensive view of the current

state of intermittent device security.

Secure Intermittent Computing: Precomputation and

Implementation

Charles E. Suslowicz

(GENERAL AUDIENCE ABSTRACT)

This thesis explores two unique aspects of the intermittent computing paradigm, the precom-

putation during periods of excess energy and the security of system checkpoints. Intermittent

systems are a class of embedded device that lack a classic, consistent, energy source and in-

stead rely on transient energy collected from their surroundings. This removes the need for

connection to a power grid or battery management, but introduces challenges in operation

since the device can lose power at any time. Additionally, excess energy is available to these

systems when they have filled their local energy reservoir, a capacitor or small rechargeable

battery, and additional energy can still be collected form the environment. In this case, it is

possible to begin precomputing energy intensive operations to enable more operations at a

later time on a limited energy budget. Since their power source is inconsistent, intermittent

systems checkpoint their current state to allow execution to resume at the beginning of the

next power cycle. The security ramifications of saving the current system state into a check-

point have not been considered in the state of the art. This thesis implements a protocol

to properly secure system checkpoints and evaluates its performance to identify the energy

overhead required for a secure checkpointing scheme. The results demonstrate the need for

the development of more efficient solutions within the domain. Together, the two approaches

presented in this thesis provide case studies on the behavior of intermittent devices when

provided with either an excess or a dearth of energy. The optimization and improvement

of modern intermittent devices will need to address both of these extremes as the field is

further improved.

Dedication

This work is dedicated to my wife, Arena, whose patience has been boundless throughout its

creation.

iv

Acknowledgments

I would like to thank my committee: Dr. Schaumont, Dr. Michaels, and Dr. Patterson for

their guidance and oversight. I would like to acknowledge and thank all the members of the

Secure Embedded Systems group for their help, thoughts, and advice over the last two years.

I would especially like to thank the other members of the Energy Harvesting team: Archanaa

S. Krishnan and Daniel Dinu for their dedication to our shared projects.

The members of both the Virginia Tech IT Security Lab and Hume Center were instru-

mental in my initial research attempts and provided excellent guidance in my early work. I

owe them a special thanks for helping bring me back to an academic mindset and knock the

rust of my learning faculties.

Finally, I must offer my deepest gratitude to Dr. Schaumont for his patience and under-

standing throughout my time under his direction.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Precomputation . 3

1.2 Secure Intermittent Operation . 4

1.3 Contributions . 5

1.4 Attribution . 6

2 Optimizing Cryptography in Energy Harvesting Applications 8

2.1 Abstract . 8

2.2 Introduction . 9

2.2.1 Contributions . 11

2.3 Background . 12

2.3.1 Energy Harvested System Operations 13

2.3.2 Previous Work in Precomputation . 14

2.3.3 Scaling Within the Internet of Things 16

2.3.4 Threat Model . 19

vi

2.4 Precomputation, Energy Harvested Devices, and Cryptography 19

2.4.1 Intermittent Computing and Cryptography 20

2.4.2 Coupons and the Precomputation of Algorithms 20

2.4.3 Metrics for Comparison . 21

2.4.4 Conversion of Energy to Data via Precomputation 23

2.4.5 Effect of Precomputation on Security 25

2.5 Case Studies . 28

2.5.1 Experimental setup . 28

2.5.2 AES counter mode . 29

2.5.3 Hardware Random Number Generator 34

2.6 Future Work . 37

2.7 Conclusion . 38

Bibliography . 38

3 The Price of Continuity in Intermittent Systems 43

3.1 Abstract . 43

3.2 Introduction . 44

3.2.1 Contributions . 46

3.3 Approach . 47

3.3.1 A Secure Protocol . 49

vii

3.3.2 Implementation . 51

3.4 Measurement Platform and Test Structure 54

3.4.1 Platform . 55

3.4.2 Testbed . 55

3.5 Evaluation and Results . 58

3.5.1 Experimental Results . 58

3.5.2 Analysis . 58

3.6 Conclusion . 62

Bibliography . 63

4 Conclusions 66

Bibliography 67

viii

List of Figures

2.1 The process for a single operation, shown on left, and the precomputed opera-

tion, shown on right. When combined, the coupon and runtime data, available

only immediately before execution, allow the generation of an output identical

to the single, monolithic, process. 15

2.2 Intermittent computing ensures that as much output as possible is created

during a scarcity of energy. Our work ensures that excess energy is utilized

to improve the efficiency of future operations with coupons. 18

2.3 Illustration of the energy required for a monolithic computation versus sepa-

ration into a precomputation and runtime operation. 22

2.4 Operations per second as a function of Energy influx into the system. When

coupons are available the device is able to execute more operations within

a given time period until limited by the latency of the minimum runtime

computation (Dr). 24

2.5 Block diagram of counter mode operation [8] with precomputable portion

highlighted. 30

2.6 Pseudo-code for Monolithic AES-CTR . 30

2.7 Pseudo-code for precomputed AES-CTR . 32

ix

3.1 The measurement circuit constructed to observe the energy required for dif-

ferent device operations. The device under test (DUT) was powered by an

external power supply to execute a continuous loop of operations including

oscilloscope triggers via GPIO. 56

3.2 Energy consumption as a function of the operational frequency shows the

effect of our device’s larger static power consumption, leading to a non-linear

relationship between 1, 4, and 8 MHz operation. The dramatic spike in

energy costs for 16 MHz is tied to the increased minimum supply voltage

required for the testbed to operate and the introduction of FRAM wait-states

at frequencies above 8 MHz. 59

3.3 The effect of system state size on the execution time and energy consumption

of the three security functions operating at 8 MHz is reasonable. SW-SIC

requires slightly more resources than HW-SIC and initialize is the cheapest

and simplest of the three operations. 60

x

List of Tables

2.1 Data and Energy Retention Time . 12

2.2 Key features of MSP430FR5994 and MSP432P401R 28

2.3 Cost of Monolithic AES-CTR encryption . 31

2.4 Runtime Cost of AES-CTR with precomputed OTP 32

2.5 Improvements in AES-CTR with precomputation 32

2.6 TRNG Structures and Labels . 33

2.7 TRNG Measurements and Precomputation 34

3.1 Effect on Code Size, .text (B) . 62

xi

List of Abbreviations

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CMAC Cipher-Based Message Authentication Code

CRC Cyclic Redundency Check

CT Cipher Text

CTPL Compute Thru Power Loss

CTR Counter

DCO Digitally Controlled Oscillator

DMA Direct Memory Access

DPA Differential Power Analysis

ECDSA Elliptic-Curve Digital Signature Algorithm

EDP Energy-Delay Product

FRAM Ferro-electric Random Access Memory

GPIO General Purpose Input Output

IV Initialization Vector

JTAG Debug Port Connection (Joint Test Action Group), IEEE Standard 1149.1-1990

xii

LPM Low Power Mode

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NVM Non-volatile memory

OMAC One-Key Message Authentication Code

OTP One-Time Pad

PRNG Pseudo-Random Number Generator

PT Plain Text

RISC Reduced Instruction Set Computer

RNG Random Number Generator

SRAM Static Random Access Memory

TRNG True Random Number Generator

VLO Very-Low Frequency Oscillator

XOR Exclusive Or

xiii

xiv

Chapter 1

Introduction

The expansion of the Internet of Things (IoT) and rapid growth of embedded systems ap-

plications has created a requirement for low power devices operating without significant or

frequent support. Traditional embedded systems operate on a consistent power source, often

batteries that are either rechargeable or replaced during maintenance, but leave much to be

desired for some classes of lightweight or remote applications.

Energy harvested devices have developed as a potential solution to this problem, operating

off energy collected from their immediate environment without additional resources, main-

tenance, or incurring additional load on existing energy sources. The unique challenge for

the operation of energy harvested devices is the unreliable nature of their harvested energy,

often leading to abrupt power loss and interruption of the current system task. If all system

tasks were sufficiently atomic that they could be completed during the same power cycle,

this would not be an issue for the employment of energy harvested devices. Unfortunately,

most tasks are not this small, even on very simple embedded devices, and a new operational

paradigm is necessary for their successful application [11].

A second challenge unique to energy harvested systems stems from their direct connection to

a constantly fluctuating energy source. This connection creates a unique operating paradigm

where the device is either charging or discharging its energy reservoir depending on the state

of the harvester and its operation. Previous work has focused on improving the device

efficiency and extending the period during which a device can operate when no additional

1

2 Chapter 1. Introduction

energy is provided via the energy harvesting circuit [7, 9, 10, 12]. Very little work has been

done to consider the case where the energy reservoir is filled and additional energy is still

produced by the energy harvesting circuit.

A wide ranging assumption within current literature is that a harvester cannot gather enough

energy to both run a device and continue charging an energy reservoir. This is already un-

realistic, as research by Simjee and Chou [13] showed it was possible with a solar harvester,

and energy harvesting technologies only improved since their publication. Chapter 2, Opti-

mizing Cryptography in Energy Harvesting Applications, explores a potential application for

this otherwise wasted energy in the precomputation of cryptographic operations.

Intermittent systems take their name from their ability to operate in the opposite condition,

when insufficient energy is present to run the device and execution must be paused until

additional energy is gathered. Normal embedded systems stop when their energy reserve is

exhausted and then restart, from a set initial state, their software when additional energy

is collected. An intermittent device is capable of storing the current state of the system in

a checkpoint before shutting down and using this checkpoint to restore the system to its

previous state when power is restored.

By storing the system state in non-volatile memory (NVM), sensitive data can be exposed to

tampering by an adversary interacting with the device. Ensuring the integrity and authentic-

ity of intermittent system checkpoints is a new and largely ignored concern for intermittent

systems. This security relationship is explored in Chapter 3 The Price of Continuity in In-

termittent Systems through the implementation of a simple checkpointing scheme, similar to

the one presented by Jayakumar et al. [7], which is then extended to validate the integrity

and authenticity of the system’s checkpoints. The energy overhead required for these opera-

tions is then studied and presented for both hardware-supported and software-only versions

of the system.

1.1. Precomputation 3

1.1 Precomputation

Chapter 2 of this thesis explores the use of excess energy to precompute portions of expensive

cryptographic operations and thereby reduce their runtime energy costs. Central to its ap-

proach is the creation of coupons through the precomputation of portions of a cryptographic

operation for later use to reduce the energy required to complete the task. For some oper-

ations, this reduced energy cost is significantly lower than the normal operational cost and

can result in significant energy savings when a coupon is consumed at runtime. To benefit

from this arrangement the coupon must be created during a period of abundant energy and

be used to reduce the runtime energy cost of the cryptographic operation.

Identifying operations well suited for precomputation is a challenge, but the technique has

been employed within the cryptographic community previously [5, 6]. The application of

precomputation to energy harvested devices is a different challenge as the state of the energy

harvester determines when precomputation or coupon usage should occur. Some work has

been done to employ precomputation to reduce energy consumption [1, 2], but these solutions

were not applied to energy harvested devices and their unusual energy storage characteristics.

Chapter 2 presents the unique challenges faced in identifying when precomputation should

be employed to support an energy harvested device, a metric for identifying operations well

suited for precomputation, and two case studies exploring the use of precomputation to

reduce the energy required for a cryptographic operation on an such a device. The results

of the case studies show that it is exceptionally worthwhile to precompute coupons for use

at runtime, reducing energy consumption by more than 10x for some operations, and we

conclude that future solutions for energy harvested devices should consider precomputation

of complex operations during periods of excess energy.

4 Chapter 1. Introduction

1.2 Secure Intermittent Operation

Chapter 3 discusses the opposite conditions from those suited for precomputation, when

insufficient energy is available for continuous operation of a device and intermittent operation

is a necessity. The ability to save and restore the system state when an energy reservoir is

exhausted serves as the underlying capability for intermittent devices, continuing the same

execution across multiple power cycles.

To enable this unique behavior, the majority of intermittent systems create and store check-

points of their operational state during normal execution. These checkpoints are then used

to restore the system state after a period of power loss and enable the continued execution

of a long running task as though no interruption had occurred.

The effective creation and restoration of checkpoints has been a very active research area

for the past decade. Determining when, where, and how to record a system’s operational

state creates challenges in maintaining a program’s control flow and data consistency that

have lead to a variety of proposed solutions. The earliest attempts by Ransford et al. [12]

created checkpoints when the monitored energy store was determined to cross a hard coded

voltage threshold. This process was further improved in work by Balsamo et al. with their

Hibernus solution [3, 4] which employed ferro-electric RAM (FRAM) to dramatically reduce

the hibernation cost of their systems.

These and other solutions all took a simple approach to safely interrupting program exe-

cution, leaving it to the developer to reason about the side effects of partially completed

operations. Work by Lucia et al. presented an alternative programming paradigm, DINO

[9], that offered an alternative approach for structuring an embedded systems software.

Following their methods, it is clear, within the source code itself, what tasks are eligible

locations for checkpoints to occur and guarantees can be made about the state of the system

1.3. Contributions 5

when it is restored. An improvement and extension of these concepts was demonstrated

by Woude and Hicks with their introduction of Ratchet [16], which automatically breaks

a program into idempotent sections during compilation and ensured that checkpoints only

occur on the boundaries of these sections. This prevents any data corruption from occurring

in non-volatile memory through the repeated execution of side-effect causing instructions.

Despite this extensive body of work, which all strictly focused on the successful execution

of such intermittent operations, the security considerations necessary for operation in a real

world environment have been completely ignored. By writing the information necessary to

restore execution into a checkpoint, traditionally private information, present only in volatile

memory, is written to NVM and available for inspection by an adversary.

Chapter 3 of this thesis explores the energy cost necessary to secure the integrity and au-

thenticity of intermittent device checkpoints through the implementation of a straightfor-

ward checkpointing scheme and extensive measurement of the energy costs associated with

ensuring the integrity and authenticity of the resultant checkpoints.

1.3 Contributions

This thesis examines the effect of these two opposing conditions on the security of embedded

systems. Chapter 2 examines the potential for precomputation of cryptographic operations

with the excess energy occasionally available via an energy harvester. Through the use of oth-

erwise wasted energy, it is possible to dramatically reduce the runtime energy cost of certain

cryptographic operations, laying the groundwork for future efforts to employ stronger cryp-

tographic primitives on embedded systems reliant on energy harvesters for power. Chapter

3 explores the energy costs incurred to verify the integrity and authenticity of intermittent

system checkpoints. Our measurements show that ensuring the integrity and authenticity of

6 Chapter 1. Introduction

system checkpoints is a necessary but expensive task. The use of a hardware accelerated or

lightweight permutation is necessary for even moderately reasonable overhead. Future work

may be able to further reduce this computational overhead, possibly through the integration

of a precomputation scheme or other optimizations unique to the intermittent computing

domain.

1.4 Attribution

The manuscripts presented in this thesis are the combined effort of multiple individuals.

For both manuscripts I served as the primary author, structuring the outline, drafting the

abstract, compiling references, and constructing the overall document.

I developed the primary argument and application for the precomputation techniques dis-

cussed in Chapter 2 with my advisor, Dr. Schaumont, and validated their validity through

the development and execution of the True Random Number case study presented in the

manuscript. The random number generators used within the case study were constructed

specifically for this study and tested to pass the NIST Statistical Test Suite before their

inclusion in the case study. The AES-CTR mode case study, created by my co-author, is the

only element of this paper I did not create. This manuscript was accepted and presented

at Attacks and Solutions in Hardware Security (ASHES) 2017 and can be referenced as the

following:

• Charles Suslowicz, Archanaa S. Krishnan, and Patrick Schaumont. Optimizing cryp-

tography in energy harvesting applications. In Proceedings of the 2017 Workshop on

Attacks and Solutions in Hardware Security - ASHES 2017. ACM Press, 2017. doi:

10.1145/3139324.3139329. URL https://doi.org/10.1145/3139324.3139329

https://doi.org/10.1145/3139324.3139329

1.4. Attribution 7

The intermittent system used within the second manuscript, Chapter 3, is built on a secure

intermittent operation library I developed. This library supports both the checkpointing and

security operations discussed throughout the manuscript. The checkpointing functionality is

a heavily modified version of the Texas Instruments Compute Thru Power Loss library [15],

including rewrites of all low level code to support a different compiler, addition of developer

initiated checkpoints, integration of a secure program section, and the capability to call a

security function from within the checkpointing process. Finally, I developed the debugging

and test suite code used within the evaluations presented in Chapter 3. Two major elements

of Chapter 3 I did not create are the Secure Intermittent Computing Protocol theory and

the oscilloscope automation and measurement software created by my co-authors. This

manuscript has been submitted to ACM/IEEE International Symposium on Low Power

Electronics and Design (ISLPED) 2018 and is pending review.

Chapter 2

Optimizing Cryptography in Energy

Harvesting Applications

Charles Suslowicz1, Archanaa S. Krishnan1, Patrick Schaumont1

1Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,

VA 34061 USA

2.1 Abstract

The Internet of Things will need to support ubiquitous and continuous connectivity to re-

source constrained and energy constrained devices. To this end, we consider the optimization

of cryptographic protocols under energy harvesting conditions. Traditionally, computing us-

ing energy harvesting power sources is handled as a case of intermittent-computing: working

towards the completion of a goal under uncertain energy supply. In our work we consider

the often ignored case when there is excess harvested energy available, but there are no

useful operations to complete. In cryptographic protocols, this can occur while the pro-

tocol waits for the next message. To avoid waste, we partition cryptographic algorithms

into an offline portion and an online portion, where only the online portion has a real-time

dependency to the availability of data. The offline portion is precomputed with the result

stored as a coupon for the remaining online operation. We show that this structure brings

8

2.2. Introduction 9

multiple benefits including decreased response latency, a smaller energy store requirement,

and reduced energy waste in a harvester supported system. We present a case study of two

canonical cryptographic applications: true random number generation and bulk-encryption.

We analyze the precomputed implementations on an MSP430 with ferroelectric RAM and

an ARM Cortex M4 with nonvolatile flash memory. Our solutions avoid energy waste during

the offline phase, and they offer gains in energy efficiency during the online phase of up to

28 times for bulk-encryption and over 100 times for random number generation.

2.2 Introduction

Devices within the Internet of Things (IoT) are expected to maintain a ubiquitous network

connection. This presents a significant challenge in its implementation as many devices

lack access to a continuous and uninterrupted power supply. Energy harvesting devices

resolve this problem by recharging their local power reservoir, often a supercapacitor or a

rechargeable battery, via energy available in their surroundings. This improves IoT logistics,

but creates a challenge in the computing domain through the introduction of unexpected

and difficult to predict power loss.

The domain of intermittent computing contains a significant amount of work to address power

loss during a devices operation including techniques such as DINO, Clank, or Hibernus [18]

[12] [4]. In all of these cases there is an assumption that the device will be doing more work

than there is energy available, and this is reflected in their design to preserve the system

state gracefully or avoid ever reaching a state where power loss is detrimental to the device’s

computations. In this paper, we analyze the less addressed case that an IoT device will have

excess power during periods where there is little to no work to be done.

Computing devices have long periods of idle activity before executing their necessary task.

10 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

These idle periods are common enough to lead to the development of power management

features to reduce the amount of power wasted on non-productive CPU cycles. Energy har-

vested systems face similar problems and many technologies exist, such as the low power

modes of the MSP430 chip family, to reduce power draw when a system is idle. However,

energy harvested systems are bounded on the other extreme by the maximum amount of

harvested energy they can store in their local battery or supercapacitor. As a result, remain-

ing idle during a period where the storage medium is full and additional energy is collected

by the energy harvested results in a complete waste of useful energy.

The expectation of excess energy for energy harvested systems is not unreasonable. Work

by Simjee and Chou showed that a solar cell could rapidly, within a few minutes, recharge a

supercapacitor while powering a sensor node and that there were large periods of time during

a multi-day stress test where the supercapacitor was fully charged during sensor operation

[26].

We propose the alteration of an energy harvested system’s cryptographic algorithms to ex-

ploit the energy wasted when the harvester continues to collect energy after the storage

medium is full. Specifically, we show the device can use this excess energy to generate

coupons for future cryptographic operations. These coupons consist of the offline portions of

cryptographic operations that do not rely on the runtime inputs. Examples of this type of

precomputation include: generating the full hash chain of a Winternitz one-time signature

[3], generation and storage of random numbers, and the expansion of a key schedule [1].

These operations must be completed for the cryptographic operation to be successful, but

they do not need to be done at the exact moment the operation is requested. Previous work

has exploited this relationship to improve performance in many fields [6] [29] [25] [22]. We

explore this capability to improve the energy efficiency of devices with may have excess, or

free, energy available for use.

2.2. Introduction 11

Both side effects of precomputation: the reduction in runtime latency and the reduction in

energy required for the runtime operation, benefit energy harvested devices. In energy har-

vested devices the ability to power precomputation efforts with energy that would otherwise

be unused is valuable and unique. Our work demonstrates a coupon precomputation scheme

which allows the system to execute AES-CTR encryptions for up to 28 times less energy at

runtime and generate random numbers for over 100 times less energy at runtime compared

to the energy required to execute the entire operation.

2.2.1 Contributions

In this paper we present the following contributions for the optimization of cryptographic

operations in energy harvesting applications:

1. Precomputation as an Energy Optimization: We demonstrate the expansion of pre-

computation from a latency optimization to an energy optimization in cases where

an energy harvester can collect more energy than can be stored locally. This energy

optimization allows system designers to service more requests with an identical de-

vice, reduce the size of the necessary energy store to meet a designated worst case

operational capacity, and increase the device’s security against hardware attacks.

2. Identify Algorithms that Benefit from Precomputation: We demonstrate two different

algorithms that specifically benefit from this method of precomputation and highlight

the features of the algorithms that make them good candidates for coupon precompu-

tation. We describe empirical findings in the case of AES-CTR mode encryption on

MSP-430 and ARM-Cortex M4, and a true random number generator (on MSP-430).

3. Metric for Comparison: We present a framework of metrics for the comparison of al-

gorithms and the effect of precomputation on their performance in terms of energy

12 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Table 2.1: Data and Energy Retention Time

Technology Format Retention Time (˜20◦C)

Supercapacitor [19] Energy 5.5 days
Li-Ion Battery [27] Energy 1-2 years

FRAM [28] Data 100 years

consumed, cycle count, operational delay, and the Energy-Delay Product (EDP) of

their execution. This framework enables effective judgement on the suitability of pre-

computation for a particular implementation and provides insight into the potential

performance of a device utilizing precomputed coupons for cryptographic operations.

The remaining portions of this chapter are structured in the following manner. Section

2.3 discusses previous work in energy harvested systems, precomputation of cryptographic

algorithms, scaling within the IoT, and our threat model. Section 2.4 details our core

concepts: the computation of coupons and our framework of metrics for comparison between

precomputed and non-precomputed algorithms. Section 2.5 contains the two case studies and

their related analysis. Section 2.6 and Section 2.7 present future work and our conclusions

respectively.

2.3 Background

Neither energy harvested systems nor precomputation are new ideas or paradigms. Signifi-

cant previous work has outlined the growth and operation of energy harvested systems and

the difficulties created in intermittent computing operations. Additionally, precomputation

has been discussed as an optimization technique for decades in cryptography [6]. Here we

discuss these previous works, and how their contributions enable our work to optimize the

operation of energy harvested devices.

2.3. Background 13

2.3.1 Energy Harvested System Operations

Energy harvested systems are a class of transiently powered devices that gather energy from

the surrounding environment to power their operation. The methods used range from solar

cells, to the RFID PHY and MAC layer, to motion and vibration via piezoelectric circuits

[7] [22]. In all cases, the energy harvested device uses this ambient available energy to power

its operation and often fill a local energy store in the form of a rechargeable battery or

supercapacitor.

The nature of energy harvested devices leads to the possibility that power will be lost at

any point during an operation. A growing body of work on intermittent computing provides

potential solutions to this problem. For our study, we assume one of these solutions from

Mementos to QuickRecall or a hardware enabled solution like Clank is sufficient to resolve

the loss of power mid-computation [23] [14] [12]. It must be noted that without such a

solution, it is possible for the device to land in an undefined state as data has been written

to non-volatile memory by a partially completed operation, and subsequent operations will

fail due to these faulty or unexpected inputs [18] [9].

The volatile nature of power for energy harvested systems highlights the stable nature of data

stored in non-volatile memory compared to the retention of energy stored in a battery or

supercapacitor. Energy within a supercapacitor will discharge based on the leakage current

and surrounding circuitry at a relatively quick rate. A rechargeable battery will retain the

same energy for a longer period of time, but will also eventually discharge even if the device

has not executed any operations and no additional energy is provided [27] [19].

When that energy is converted to a coupon and stored in non-volatile memory, it can be

maintained in FRAM for 100 years at room temperature (20◦ C) and 10 years in extreme

conditions (85◦ C) [28]. The stability of this data is illustrated on Table 2.1 and is a strong

14 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

argument for precomputation when energy is available as the loss of energy in the future will

have little effect on data stored in a non-volatile memory [28].

The existence of this excess energy is a unique benefit of energy harvested devices. Work

in the mid 2000s by Kansal et al. and Hsu et al. showed the potential to increase or

decrease the duty cycle of energy harvested devices to match the energy available from a

harvester. When additional energy was available, energy harvested systems could consume

that energy to activate more frequently while maintaining a neutral energy balance, and

thereby conducting more operations than a similar system not making use of the increased

energy available from the harvester [13] [16]. In this paper, we explore using this excess

energy to precompute coupons and improve the efficiency of later cryptographic operations

rather than increase the sample or measurement rate of a sensor.

2.3.2 Previous Work in Precomputation

The concept of doing work ahead of time for an operation has been used throughout history

for complex techniques in the form of lookup tables and references. This process is illustrated

in Figure 2.1 highlighting the separation of a process into an offline, precompute, portion and

an online, runtime, portion. The application of this to cryptographic operations is a straight

forward adaptation and underlies the concept of rainbow tables and a other optimization

techniques [20] [6]. Additionally, precomputation has proven an effective optimization tool in

other fields, such as Quality of Service routing within large networks, where some parameters

of a problem are known ahead of time and latency is a critical metric [21].

Precomputation does not reduce operational latency without introducing its own challenges.

The energy cost of the precomputation itself must be accounted for, the precomputed values

must be kept secure, even during potential power loss, and the algorithms must be partitioned

2.3. Background 15

Figure 2.1: The process for a single operation, shown on left, and the precomputed operation,
shown on right. When combined, the coupon and runtime data, available only immediately
before execution, allow the generation of an output identical to the single, monolithic, pro-
cess.

16 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

in such a way that the runtime operation is sufficiently faster to warrant the data storage

expense imposed by coupons. In the case of energy harvested systems, the ability to employ

excess energy reduces the energy cost of the precomputed coupons to zero. This leaves

only the security of coupons and algorithmic partitioning as challenges to address in the

implementation of precomputation for energy harvested systems.

Within the IoT, previous work has identified the value of precomputation for resource con-

strained devices. Ateniese et al. identified and demonstrated the potential benefits for the

precomputation of ECDSA signatures in wireless sensor nodes in [1] and further expanded

on their work in [2] in 2017. This work highlighted the applicability of precomputation for

IoT devices and a cryptographic operation. We show here a more general concept for the

utilization of the excess energy generated by energy harvested devices and its effectiveness

across two very different cryptographic primitives.

2.3.3 Scaling Within the Internet of Things

Neither precomputation nor energy harvesting would be valuable avenues of consideration if

IoT devices scaled in the same manner as traditional computers. Unfortunately, the nature

of the IoT is to deploy many small devices, too many to easily manage or service, across a

large area over a long period of time [24]. This paradigm leads to cheap devices that are

expected to operate for as long as possible without additional human interaction or support

[8].

Batteries, if they scaled in the same manner as silicon, would provide the perfect power

source for such devices. Unfortunately, batteries do not scale in a manner similar to Moore’s

Law, and often make up the majority of mass in modern electrical equipment to provide only

a short period of power before recharging is required. Energy harvested devices provide a

2.3. Background 17

solution as a device with its own recharging mechanism paired with an energy store, either

a battery or supercapacitor depending on the application. This improves the scaling of

IoT devices by allowing each device to remain small, and cheap, while staying operational

without human intervention for far longer than a normal battery’s lifetime [26].

A challenge of energy harvested systems is the likelihood that at some points there will be no

energy available for the system and at other times there will be excess energy unused by the

system. Previous work on intermittent computing addresses the former case and provides

a backstop to ensure proper behavior when power is limited [18] [12]. Our work provides

an opportunity to exploit the latter case of excess energy. This is illustrated in Figure 2.2,

which highlights the ability of an intermittent process to produce as much output as there is

energy available, while a precomputation enabled process produces as much output as there

is data available and generates coupons with any excess energy.

Other scaling solutions for the IoT have been proposed, but they require much steeper trade-

offs in operational flexibility and cost for their improvements in IoT device performance. For

example, bespoke processors take a very different approach to operational efficiency, and have

shown dramatic improvements in energy usage. A bespoke processor is a microcontroller that

has been modified by removing all capability not required to properly execute its expected

program. This provides a significant energy cost improvement as all unnecessary hardware

components of the processor have been removed, but incurs additional costs as the device

is no longer reconfigurable and must be custom manufactured for a specific implementation

[8].

Our proposal for precomputation with energy harvested devices provides a solution to

the scaling problem facing new IoT devices without the drawbacks demonstrated by re-

cent hardware proposals and with full interoperability with existing intermittent computing

paradigms.

18 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Figure 2.2: Intermittent computing ensures that as much output as possible is created during
a scarcity of energy. Our work ensures that excess energy is utilized to improve the efficiency
of future operations with coupons.

2.4. Precomputation, Energy Harvested Devices, and Cryptography 19

2.3.4 Threat Model

A multitude of threats exist for energy harvested systems, especially those deployed in re-

mote and unsecured areas. In recognition of this, our threat model includes adversaries that

can physically access and control the environment around the device. Additionally, it is

assumed that adversaries can control the systems inputs and outputs during operation and

take physical measurements of the system during operation. We do not expect an adversary

to be able to view on-chip memory or register values during operation and expect this to be

beyond the capability of a competent adversary when the proper configuration recommenda-

tions are observed (JTAG locking enabled, no debugging port available, etc). This is a key

consideration of our coupon precomputation scheme as an adversary that can view on-chip

memory during device operation would be able to observe precomputed values prior to their

use in cryptographic operations and bypass all reasonable attempts to secure the operation

of the system.

2.4 Precomputation, Energy Harvested Devices, and

Cryptography

How can the latency and efficiency of cryptographic operations on these platforms be im-

proved? First, we evaluate the limiting factors of energy harvested platforms for crypto-

graphic operations, Second, we evaluate the partitioning of cryptographic algorithms, the

use of intermediate value coupons and their effect on process execution. Finally, we consider

a framework of metrics for evaluating the benefit to a particular implementation in terms of

energy efficiency.

In all of our considered cases, the underlying premise is the opportunity to exploit excess en-

20 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

ergy collected by an energy harvester. We propose utilizing this excess energy to precompute

coupons consisting of non-input related computations for future cryptographic operations.

Their use has ramifications for the design of future algorithms within this space according

to our analysis and the results of our case studies in Section 2.5.

2.4.1 Intermittent Computing and Cryptography

In this paper, we focus on methods to exploit the case where an abundance of energy is

available, but all of our proposed solutions should be implemented in conjunction with

an intermittent computing paradigm (checkpointing, idempotent processing, etc) to ensure

proper operation when during periods of low energy when coupons are most likely to be

consumed and performance benefits realized.

2.4.2 Coupons and the Precomputation of Algorithms

A coupon is some amount of data generated during a period of excess energy in preparation

for a future cryptographic operation. It must be stored in a secure location (in our case

studies on-chip non-volatile memory) and be readily available for the runtime operation in

order to maximize the coupon’s reduction of the runtime operation’s latency and energy cost.

The generation of a coupon will be unique to each cryptographic operation, but in all cases

it represents a function that accepts some input data not dependent on runtime parameters

and some amount of energy to produce an intermediate data block in the operation. This

process converts energy that would normally be stored in an energy storage medium, a

supercapacitor or rechargeable battery, into data that can be stored on silicon. By executing

this conversion, the energy harvesting system converts energy into data for a future operation

thereby reducing the energy required to produce the final output at runtime as illustrated

2.4. Precomputation, Energy Harvested Devices, and Cryptography 21

by the equations in (1).

Eoriginal ≤ Eprecomputation + Eruntime

Eruntime < Eoriginal

(2.1)

The value of this transformation can be seen when considering the energy-delay product

(EDP) of the final computation. A difference in the EDP of the runtime operation shows

that the energy efficiency improvements were not achieved strictly through a reduction in

processing speed or increased latency. The EDP improvements demonstrated in the Section 4

make it clear that cryptographic operations utilizing coupons provide better energy efficiency

and performance than those without.

2.4.3 Metrics for Comparison

To properly evaluate the effectiveness of coupon precomputation we considered the energy

required to complete an operation, the operation’s cycle count, an operation’s delay, and

the Energy-Delay Product (EDP) of the computation. This framework of metrics allows

evaluation of the benefit of precomputing a particular algorithm. Additionally, these metrics

support the comparison between different implementations of cryptographic algorithms on

energy harvested devices, and show definitively that the proper implementation of a coupon

precomputation scheme can be beneficial.

The first set of metrics considered are for a non-precomputed, or standard, operation. These

are taken as the energy (Eo), the cycle count (Co), the delay (Do), and the EDP (EDPo),

computed as Eo ×Do. These are compared with the separated metrics for precomputation,

identified with a subscript p, and for the runtime only operation, identified with a subscript

22 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Figure 2.3: Illustration of the energy required for a monolithic computation versus separation
into a precomputation and runtime operation.

r. In general it is expected that the following relationships are true:

Eo ≤ Ep + Er

Co ≤ Cp + Cr

Do ≤ Dp +Dr

(2.2)

This follows from the most efficient separation of an algorithm being an exact split without

any supporting logic for data manipulation. In the majority of cases the sum of the precom-

putation and runtime operations will be slightly greater than a monolithic execution of the

operation. Despite this, we are able to show tremendous gains in operational efficiently be-

cause the runtime operational parameters (Er, Cr, Dr) are much smaller than the monolithic

or original operations.

The EDP of the operation is an important metric to identify improvements in operational

efficiency when a device is able to reduce its energy consumption and work more slowly

on an operation or perform the opposite. By taking the EDP we are able to show that

the precomputed operations are significantly more efficient than the monolithic operations

regardless of operating mode for the device.

Finally, when analyzing a specific implementation we consider the ratios of the runtime

2.4. Precomputation, Energy Harvested Devices, and Cryptography 23

operation to the monolithic operation as the following terms:

Speedup : Ci =
Co

Cr

Energy Improvement : Ei =
Eo

Er

Latency Improvement : Di =
Do

Dr

EDP Improvement : EDPi =
EDPo

EDPr

(2.3)

By considering a ratio of the original computation to the runtime computation, which uti-

lizes a coupon, we are able to measure the benefit conferred by precomputing a portion of

the algorithm. The cost of computing a coupon, Ep, is less valuable than the ratio of Eo

and Er because the coupon computation is executed during periods of excess energy. The

Energy Improvement, Ei, provides a comparison of the unavoidable energy costs associated

with the operation despite a precomputation scheme and supports analysis on the value of

precomputation for that specific cryptographic operation.

Similarly, precomputation delay, Dp, is not considered when analyzing a specific implemen-

tation because the coupon computation should be executed when no other tasks are pending.

However, it should be noted that both Ep and Dp are non-zero and limit a system’s per-

formance if additional operations are required after all precomputed coupons have been

consumed. This will prevent a system from permanently executing at the upper limit, 1
Dr

,

shown in Figure 2.4.

2.4.4 Conversion of Energy to Data via Precomputation

The value of converting excess energy to data via precomputation deserves additional ex-

amination. The size of the system’s energy store defines an upperbound on the number

24 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Harvested Power0

In
te
rm

it
te
nt

C
om

p
u
ti
n
g Continuous

Operation

Ops
sec

1
Do

Eo

Do

1
Dr

Er

Dr

Precomputed

Monolithic

Figure 2.4: Operations per second as a function of Energy influx into the system. When
coupons are available the device is able to execute more operations within a given time period
until limited by the latency of the minimum runtime computation (Dr).

of consecutive operations that can be done without harvesting additional energy from the

environment. Ultimately, this serves as a limit on the designs maximum capacity for concur-

rently requested operations, including cryptographic operations, forcing either a limitation

on its expected performance or an increase in the size of the energy store. By precomputing

elements of necessary cryptographic operations as coupons, it is possible to transform a por-

tion of this energy storage requirement to a data storage requirement. As discussed in the

Background, modern non-volatile storage technologies such as FRAM provide a more effi-

cient and stable storage medium for data than current battery or supercapacitor technologies

provide for energy.

The transformation of energy to coupons for future use allows us to exploit the improved data

storage capacity of modern energy harvesting systems and improve the runtime performance

of our cryptographic operations. This is illustrated by Figure 2.4, which highlights the

potential to improve the performance of an energy harvested device, measured in completed

operations per second.

The solid line represents the operation of a system without precomputation, with a maximum

value where the number of operations executed per second is limited by the execution latency

2.4. Precomputation, Energy Harvested Devices, and Cryptography 25

(delay, Do) of the operation. With a precomputation method in place, the new theoretical

maximum number of operations per second is limited by the delay of the runtime only

computation, Dr, which may be orders of magnitude shorter than the original operation

depending on the algorithm. In reality, the theoretical limit, the dotted line, will not be

reached since it requires an infinite number of precomputed coupons. Instead the device

will operate within the highlighted area between the lower bound of operations lacking any

precomputation and an upper bound where all operations have been precomputed, changing

position depending on the number of coupons the device was able to generate and store

during periods of excess energy availability.

The inflection points for the two bounds are the points at which the available power, P , is

equal to the energy required for an operation divided by the operation’s delay. This is the

point at which sufficient power is available for the system to run the operation continuously

and the limiting factor changes from power to latency. The points are highlighted in Figure

2.4 as Eo

Do
for the original operation and Er

Dr
for the runtime operation with coupons.

2.4.5 Effect of Precomputation on Security

The security of the device is also improved through the implementation of a coupon pre-

computation scheme. As previously discussed, the energy required for the completion of a

cryptographic operation and the actual number of processor cycles needed to complete an

operation are reduced when compared to a normal operation. This has side effects includ-

ing reduced latency as observed by the distant end of communications, reduced emanations

susceptible to side-channel analysis, temporal separation of data dependent operations, and

improved resilience to denial of service attacks.

26 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Denial of Service

In all cases, the device is still susceptible to an adversary denying its operation through

physical destruction or disconnection. If no energy is available to the energy harvester, then

no operations will be completed with or without a precomputation scheme in place. However,

with a precomputation scheme in place, the device will recover from such an attack faster

if any coupons remain in non-volatile memory from before such an attack began. In this

work we assume such coupons are still valid since they are stored on-chip and therefore would

require an adversary well outside our threat model to effectively access and compromise these

coupons without destroying the device. Effectively, such a denial of service attack is only a

threat to the availability of coupons, but not a threat to their integrity or confidentiality. This

is still an improvement over a non-precomputed case since work can resume more quickly

once the device is available.

Temporal Separation of Data Dependent Operations

For some cryptographic operations, a coupon precomputation scheme can temporally sep-

arate data dependent operations. If a key schedule is computed as a coupon, it is more

difficult for an adversary to determine when this is occurring and attempt to observe the

device. Similarly, in our first case study we show that AES-CTR can be precomputed up to

the one-time pad (OTP) byte stream to be XOR’d with input data. This limits an attacker

to observing only the interaction of the attacker provided input and the OTP byte stream

rather than the entire AES-CTR operation. To bypass this, an attacker must now determine

when coupons are being created and which specific coupon is being processed to observe the

activity.

2.4. Precomputation, Energy Harvested Devices, and Cryptography 27

Reduced Risk of Side Channel Leakage

Precomputing brings two advantages from the perspective of side-channel attacks. First,

the reduction in cycle count for the runtime operation increases the difficulty for an at-

tacker to properly identify the effects of the cryptographic operation on the device’s side

channels. Second, precomputing allows to uncouple the generation of keystreams from their

usage. Device-level master secrets will ideally only be accessed during the precomputation

phase, and the device will not generate external input/ouput operations during that time.

This eliminates straightforward differential power analysis. And by using only precomputed

keystreams during the online phase, differential power analysis becomes harder for the online

phase as well.

Reduced Operational Latency

By reducing the operational latency of our device, we further limit attackers in their ability

to hijack communications or protocols dependent on the completion of cryptographic oper-

ations. Communications with a device utilizing precomputation can utilize larger key sizes

or stronger ciphers that are more resistant to compromise than those available to a device

unable to precompute portions of its cryptographic operations. For example, in our TRNG

case study we demonstrate the dramatic reduction in runtime latency, over 2000 times faster,

to access a 256-bit random value when a coupon is used compared collecting the necessary

entropy via oscillator jitter at runtime. This is an extreme case, but any level of improvement

can be directly applied to an increased computational complexity in the security protocol

employed for the device, providing a proportional amount of increased protection against

attacks.

28 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

2.5 Case Studies

The following case studies examine the effects of precomputation on two cryptographic prim-

itives. First, we analyze the precomputation of coupons for the key schedule and OTP for

AES in Counter mode (AES-CTR) and the benefit they bring to the execution of the run-

time encryption. Second, we analyze a true random number generator as one of the best

cases for the precomputation of coupons. Energy, delay and cycle count measurements from

the two case studies are for generating cipher text or a random number, the case studies do

not include measurements for the communication overhead which would appear in a remote

energy harvested node.

Table 2.2: Key features of MSP430FR5994 and MSP432P401R

Features MSP430FR5994 MSP432P401R

Core 16 bit RISC 32 bit ARM Cortex M4
Memory 8kB SRAM up to 64kB SRAM

NVM 256kB - FRAM 256kB - Flash
AM 1 current 100 µA/MHz 80 µA/MHz

HW accelerators AES/CRC/MPY AES/CRC
Operating mode AM, various LPM2 AM, various LPM

DMA 3-channel 8-channel

2.5.1 Experimental setup

We have used the Texas Instruments(TI) MSP430FR5994 and the TI SimpleLink MSP432P401R

launchpad development kits in our case studies. Different styles of TRNG were implemented

on the MSP430FR5994 and AES-CTR mode was implemented on both the devices. Table

2.2 lists some important features that makes the selected devices ideal to be used as an

1AM : Active mode
2LPM : Low Power Mode

2.5. Case Studies 29

energy harvested node. Code was developed using Code Composer Studio (CCSv7) and the

energy profile was measured using the integrated EnergyTrace technology. The principle

of energy measurement of EnergyTrace is based on counting charge cycles of a switched-

mode power-supply [10]. The two devices have specialized debug circuitry to work with

EnergyTrace.

2.5.2 AES counter mode

AES as a block cipher can be used in different modes of operation to encrypt messages

that are longer than one block of data. In counter mode (AES-CTR), a counter value

is encrypted first. The encrypted counter value - also known as one-time pad (OTP) is

then XOR’d with the message block to generate the cipher text. Decryption proceeds by

XORing again with a synchronized keystream. In AES-CTR mode, the actual block cipher

operation is independent of the input message, making it a good candidate for parallelizing

the encryption/decryption process. Similar to how the key schedule of one block of AES can

be precomputed offline [17], OTPs in AES-CTR can also be precomputed offline. Figure

2.5 shows the two inputs needed for offline encryption, EK , are key K and counter value

IV . When a message mn is available at runtime, it can be XOR’d with the precomputed

OTP which provides the resultant cipher text cn . Based on these features AES-CTR was

chosen to demonstrate how precomputing can optimize both energy required at runtime and

latency of the algorithm.

Since both the chosen microcontrollers have a dedicated AES encryption and decryption co-

processor, we have chosen to experiment on both software and hardware implementations of

AES. TI provides a C library for 128 bit encryption and decryption which was incorporated

along with the hardware AES module in AES-CTR mode. We also implemented AES-CTR

30 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

EK

IV

c0

m0

EK

IV ⊕ 1

c1

m1

EK

IV ⊕ 2

c2

m2

· · · · · · EK

IV ⊕ t

ct

mt

Precomputed

Figure 2.5: Block diagram of counter mode operation [15] with precomputable portion high-
lighted.

1 char *aes_ctr_monolithic(char *key , char *ctr ,

2 char *PT) {

3 while(blocks < 8) {

4 aes_encrypt(char *ctr ,char *key);

5 increment_counter(char *ctr);

6 xor_mask(char *PT, char *OTP , char *CT);

7 }

8 return CT;

9 }

Figure 2.6: Pseudo-code for Monolithic AES-CTR

mode using a software implementation of T-box based encryption on the MSP432 [11]. In

the following experiments we have considered a 128 byte message (8 blocks of 16 bytes each)

to be encrypted using a 128 bit key.

AES-CTR as a monolithic block

When no precomputation is involved, whole encryption of the message using AES-CTR

mode would be performed at runtime. This requires a node to perform the code sequence in

Figure 2.6 to encrypt a message.

The aes encrypt() function first performs key expansion and then encrypts the counter for

2.5. Case Studies 31

Table 2.3: Cost of Monolithic AES-CTR encryption

Device Test case Co Eo Do EDPo

Cycles µJ µs 10−12J

MSP432 SW T-box 18474 75.0 6055 454125.0
SW S-box 94981 384.2 31405 12065801.0

HW 10995 44.6 3605 160783.0
MSP430 SW S-box 153989 244.4 165746 40508322.4

HW 13043 17.8 12370 220186.0

every block of message.

When the whole encryption is done in one online stage, we measured a delay of 6055

µs to finish encrypting a 128 byte block using T-box implementation of software AES in

MSP432P401R (Table 2.3). This delay is proportional to the latency of algorithm at run-

time.

AES-CTR with precomputation

The above program in Figure 2.6 is optimized by precomputing the functions aes encrypt()

and increment counter() in the offline stage. Precomputed OTPs can then be stored as

coupons in non-volatile memory such as FRAM in MSP430FR5994 or flash in MSP432P401R.

The AES block cipher operation is then confined to the offline stage and removed from the

critical path of the online process. The only remaining function to be executed during

runtime is xor masking(), as shown in Figure 2.7, which greatly reduces the runtime energy

requirement.

Table 2.4 gives a clear picture of the cost of XOR masking in both MCUs. Since AES

block cipher operations are precomputed in the offline stage, the runtime latency arises

from retrieving precomputed coupons from non-volatile memory and XORing the plain text

message with those coupons. The energy required for fetching coupons and XOR masking in

32 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

1 char *aes_ctr_online(char *PT ,

2 char *precomp -coupons) {

3 while(blocks < 8) {

4 xor_mask(char *PT, char *precomp -coupons ,

5 char *CT);

6 }

7 return CT;

8 }

Figure 2.7: Pseudo-code for precomputed AES-CTR

Table 2.4: Runtime Cost of AES-CTR with precomputed OTP

Device Test case Cr Er Dr EDPr

Cycles µJ µs 10−12J

MSP432 XOR masking 3455 13.8 1105 15249.0
MSP430 XOR masking 6904 8.7 6312 54914.4

MSP432P401R is 13.8 µJ.

Discussion

By partitioning the AES-CTR algorithm, it can be optimized for latency and energy. Excess

energy from the harvester can be utilized for precomputing OTPs which are needed for

XOR masking. This precomputation can be continued as long as there is excess energy

to compute OTPs and memory available to store them. Even if only 10 % of non-volatile

memory is allocated for coupon storage, both devices can store almost 25.6kB of coupons.

Table 2.5: Improvements in AES-CTR with precomputation

Device Test case Co

Cr

Eo

Er

Do

Dr

EDPo

EDPr

MSP432 SW T-box 5.4 5.4 5.5 29.8
SW S-box 27.5 27.8 28.4 791.3

HW 3.2 3.2 3.3 10.5
MSP430 SW S-box 22.3 28.1 26.3 737.7

HW 1.9 2.1 2.0 4.0

2.5. Case Studies 33

Table 2.6: TRNG Structures and Labels

Label Structure

osc clksft Oscillator jitter with clock frequency shifting
osc noclksft Oscillator jitter with a Von Neumann extractor and XOR compression
sram aes SRAM values processed with a HW AES coprocessor
sram swaes SRAM values processed with a SW AES implementation
sram sha256 SRAM values processed through a SHA256 hash function
sram xor16cvn SRAM values processed with a 16 to 1 XOR and a Von Neumann extractor
sram xor32cvn SRAM values processed with a 32 to 1 XOR and a Von Neumann extractor

When the MSP432P401R is programmed to encrypt messages in AES-CTR mode using a

software S-box implementation, it can store 1600 OTPs, enough to encrypt the same number

of message blocks with a latency reduction by a factor of 27.5 for each message encryption.

Instead of consuming 76.9 mJ of energy for encrypting 1600 blocks (monolithic encryption),

a precomputed algorithm would require only 2.76 mJ of energy at runtime to compute the

same amount of cipher text. This energy consumption improvement from precomputation,

a factor of 28, could be utilized to reduce the required size of attached energy storage or

allow more executions per charge. These values are also applicable for the decryption process

as AES-CTR works in the same way for both encryption and decryption. From a security

point of view, the encryption/decryption operations performed using precomputed OTPs

are protected from side-channel analysis since the AES computations are performed during

an offline stage. Power traces of the online stage will not reveal any information related to

the key or counter value.

It can be seen that there is a vast improvement in runtime latency, energy requirement and

security in AES-CTR mode when OTPs are precomputed. The EDP improvement for the

AES-CTR implementations using hardware co-processors is lower than other implementa-

tions listed in Table 2.5. This is because the hardware co-processors are already optimized

and they do not contribute to much of the energy and delay values of the algorithm.

34 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Table 2.7: TRNG Measurements and Precomputation

Monolithic Computation Improvement with Precomputation
RNG Structure Co Eo Do EDPo

Co

Cr

Eo

Er

Do

Dr

EDPo

EDPr

cycles µJ µs 10−12Js

sram aes 142285 81.7 94.0 7680.9 209.6 118.2 132.6 15680.2
sram swaes 178747 118.9 130.0 15462.7 263.3 172.1 183.5 31566.6
sram xor16cvn 251140 196.8 301.3 59295.8 369.9 284.8 425.0 121050.5
sram xor32cvn 450498 382.7 406.8 155692.7 663.5 553.8 573.9 317841.6
sram sha256 1791832 1677.2 1752.4 2939160.5 2638.9 2427.2 2472.1 6000200.7
osc clksft 9603395 3131.6 1709.0 5352070.4 14143.4 4531.9 2410.9 10926077.8
osc noclksft 3233803 2955.9 3241.5 9581641.5 4762.6 4277.6 4572.8 19560609.8

Precomputation Cr Er Dr EDPr

Read from FRAM 679 0.691 0.709 0.490

2.5.3 Hardware Random Number Generator

This case study analyzes a true random number generator as a possible best case situation for

the precomputation of coupons. A RNG is a possible best case example because all random

number generation can be completed and securely stored before it is required by a runtime

operation. This generally reduces the request for a random value to a single memory access

to retrieve the next pre-generated random number. We implement two different styles of

TRNG on an MSP430FR5994 one which derives entropy from the jitter between two on-

chip oscillators and one which extracts entropy from the start-up values of an 8 kB SRAM.

For all examples considered in this case study the random number generators were used to

generate a 256-bit random value stored in non-volatile memory (FRAM).

Generator Structure

The first type of TRNG implemented was an oscillator based RNG constructed on an

MSP430FR5994 following the recommendations from Texas Instruments [30]. This oscillator

based TRNG generated a random value based on the jitter between two separate oscillators,

2.5. Case Studies 35

the very-low-frequency oscillator (VLO) and the digitally controlled oscillator (DCO), and

included a number of techniques to avoid any bias that might be present on the device and

influence the resulting random value. The second TRNG constructed was SRAM based, and

extracted a random value from the startup state of the MSP430FR5994’s 8kB SRAM. A

number of different techniques were measured for their energy and latency efficiency when

extracting a random value from the startup state of the SRAM. In all cases, the resultant

random values were tested with the NIST Statistical Test Suite to validate the randomness

the results [5]. Table 2.6 identifies the specific TRNGs used within the case study and the

label associated with that TRNG’s results throughout our collected data.

True Random Number Generation Without Precomputation

In normal operation, when a program requests a random value execution is handed off to a

TRNG process or a cryptographically secure pseudorandom number generator (PRNG) that

has been seeded with a truly random value of sufficient entropy. This process then generates

the random value to provide to the requesting program. Depending on the implementation,

the TRNG may block execution until sufficient entropy is harvested from the environment

or a computation completes. The oscillator based TRNGs tested here would work very well

in this style of implementation. They are able to generate an arbitrary number of random

bits, simply requiring a longer collection time for larger bit strings. The SRAM based

TRNGs are more difficult to employ in this manner because the device must be turned off

or placed in a Low Power Mode, which removes power from the SRAM modules, in order to

collect additional entropy. This places an additional delay burden on the non precomputed

versions of the SRAM based TRNG implementations that is not reflected in our results. If

included, this delay would only serve to further amplify the benefits of precomputation for

this structure of TRNG.

36 Chapter 2. Optimizing Cryptography in Energy Harvesting Applications

Random Number Generation With Precomputation

When precomputation is available to an energy harvested system, the energy and latency

cost of random number generation is reduced to a non-volatile memory access to retrieve

the next viable random number. For the MSP430FR5994, we calculated 679 clock cycles

were required to copy a 32 byte, 256-bit, value from FRAM to SRAM, requiring 0.691 µJ of

energy, and causing a delay of 0.709 µs. This is a multiple order of magnitude improvement

for all of the TRNG implementations, in line with the dramatic reduction in complexity

and difficulty when changing the operation to a simple memory access and copy. Copying

the data from the coupon into SRAM was chosen as the precomputed case because it was

representative of another operation accessing the random value in FRAM, via a normal

extended memory access, and writing a value into SRAM for use in any application specific

operations.

Discussion

This case shows the best possible situation for the precomputation of a cryptographic oper-

ation when excess energy is readily available. The algorithm does not need to be partitioned

as all operations except reading the result can be executed during the precomputation and

stored as a coupon. Additionally, the algorithm can be executed as often as possible until

the data storage area for coupons is filled.

Given these favorable conditions, it is not surprising that the improvements seen between

the monolithic operation and the runtime operation are tremendous. Depending on the

speed and resources required by the specific TRNG structure, we observed multiple order of

magnitude improvements in latency and energy required to produce a 256 bit random value.

For an energy harvested device, computing strong random values as coupons during periods

2.6. Future Work 37

of excess energy will dramatically improve the rate at which cryptographic operations can

be executed during runtime operations. Additionally, by precomputing random values it is

much easier to exploit more efficient entropy sources such as SRAM startup values that are

otherwise awkward or impossible to access in the middle of a larger computation.

It should be noted that the methods reviewed in this section were for true random number

generators and did not specifically address pseudorandom number generation (PRNG) tech-

niques. It is possible to construct a hybrid PRNG for a system that uses one of the analyzed

TRNGs to generate a seed value and then executes a less energy intensive computation for

each iteration of the PRNG. Ultimately, this technique would still benefit from precompu-

tation and would also result in an energy and latency cost equivalent to a single pointer

update after the use of a coupon. Due to the similarity of these results, we have highlighted

only the TRNG case in this study.

2.6 Future Work

Developing a standard method for the identification of precomputable algorithms used within

the IoT is a clear next step in our work. Additionally, exploration of the extent to which

our precomputation methods can be combined with developments from the intermittent

computing research to create an IoT device that behaviors favorably in all conditions would

provide additional insight into the optimization of cryptographic operations in this realm. A

detailed study of the effects coupon computation has on the resistance of IoT devices to side

channel analysis would also strengthen our understanding of these techniques and the level

of security improvement they provide. Analysis of coupon storage costs is also necessary

before implementation in production systems. Finally, it is critical to define the points at

which precomputation is not worthwhile for future developers to bracket their operations

38 BIBLIOGRAPHY

and ensure future devices are always executing in the most efficient manner.

2.7 Conclusion

This chapter presented an effective method for exploiting the excess energy available to en-

ergy harvested devices to improve the efficiency of cryptographic operations. We explored

the underlying concepts of this method, the conversion of excess energy in to coupons via

precomputation, and the utilization of coupons to improve the efficiency of cryptographic

operations executed at a later time. The security benefits of precomputation were iden-

tified and explored as a countermeasure against hardware attacks made at runtime on an

IoT device. Finally, we demonstrated the effectiveness of this method with two different

cryptographic operations, AES-CTR and a true random number generator, as concrete ex-

amples of the energy efficiency improvements available to energy harvested systems when

precomputation is employed to exploit their access to excess energy.

Bibliography

[1] Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost

standard signatures in wireless sensor networks: a case for reviving pre-computation

techniques? In Proceedings of NDSS 2013, 2013.

[2] Giuseppe Ateniese, Giuseppe Bianchi, Angelo T. Capossele, Chiara Petrioli, and Dora

Spenza. Low-cost standard signatures for energy-harvesting wireless sensor networks.

ACM Trans. Embed. Comput. Syst., 16(3):64:1–64:23, April 2017.

[3] Aydin Aysu and Patrick Schaumont. Precomputation methods for faster and greener

BIBLIOGRAPHY 39

post-quantum cryptography on emerging embedded platforms. Cryptology ePrint

Archive, Report 2015/288, 2015. http://eprint.iacr.org/2015/288.

[4] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L. Benini.

Hibernus: Sustaining computation during intermittent supply for energy-harvesting sys-

tems. IEEE Embedded Systems Letters, 7(1):15–18, March 2015.

[5] Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E.

Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel, David L. Banks,

Nathanael Alan Heckert, James F. Dray, and San Vo. Sp 800-22 rev. 1a. a statistical test

suite for random and pseudorandom number generators for cryptographic applications.

Technical report, Gaithersburg, MD, United States, 2010.

[6] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast

Exponentiation with Precomputation, pages 200–207. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1993.

[7] Michael Buettner, Richa Prasad, Alanson Sample, Daniel Yeager, Ben Greenstein,

Joshua R. Smith, and David Wetherall. Rfid sensor networks with the intel wisp. In

Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys

’08, pages 393–394, New York, NY, USA, 2008. ACM.

[8] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori. Bespoke

processors for applications with ultra-low area and power constraints. In Proceedings of

the 44th Annual International Symposium on Computer Architecture, ISCA ’17, pages

41–54, New York, NY, USA, 2017. ACM.

[9] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-

interference-free hardware-software debugger for intermittent energy-harvesting sys-

tems. SIGOPS Oper. Syst. Rev., 50(2):577–589, March 2016.

http://eprint.iacr.org/2015/288

40 BIBLIOGRAPHY

[10] H. Diewald, G. Zipperer, P. Weber, and A. Brauchle. Electronic device and methods

for tracking energy consumption, 2013. US Patent Application US20160077138.

[11] Viktor Fischer and Miloš Drutarovský. Two Methods of Rijndael Implementation in

Reconfigurable Hardware, pages 77–92. Springer Berlin Heidelberg, Berlin, Heidelberg,

2001.

[12] Matthew Hicks. Clank: Architectural support for intermittent computation. In Pro-

ceedings of the 44th Annual International Symposium on Computer Architecture, ISCA

’17, pages 228–240, New York, NY, USA, 2017. ACM.

[13] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan. Adaptive duty cycling

for energy harvesting systems. In ISLPED’06 Proceedings of the 2006 International

Symposium on Low Power Electronics and Design, pages 180–185, Oct 2006.

[14] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw

approach for enabling computations across power cycles in transiently powered comput-

ers. In 2014 27th International Conference on VLSI Design and 2014 13th International

Conference on Embedded Systems, pages 330–335, Jan 2014.

[15] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

[16] Aman Kansal, Jason Hsu, Mani Srivastava, and Vijay Raghunathan. Harvesting aware

power management for sensor networks. In Proceedings of the 43rd Annual Design

Automation Conference, DAC ’06, pages 651–656, New York, NY, USA, 2006. ACM.

[17] Bin Liu and Bevan M. Baas. Parallel aes encryption engines for many-core processor

arrays. IEEE Trans. Computers, 62:536–547, 2013.

[18] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution

model for intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference

https://www.iacr.org/authors/tikz/

BIBLIOGRAPHY 41

on Programming Language Design and Implementation, PLDI ’15, pages 575–585, New

York, NY, USA, 2015. ACM. DINO.

[19] Maxwell Technologies. Datasheet: HC Series Ultracapacitors, 2013.

[20] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off, pages 617–

630. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[21] A. Orda and A. Sprintson. Precomputation schemes for qos routing. IEEE/ACM

Transactions on Networking, 11(4):578–591, Aug 2003.

[22] S. Pelissier, T. V. Prabhakar, H. S. Jamadagni, R. VenkateshaPrasad, and I. Niemegeers.

Providing security in energy harvesting sensor networks. In 2011 IEEE Consumer

Communications and Networking Conference (CCNC), pages 452–456, Jan 2011.

[23] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-

running computation on rfid-scale devices. SIGARCH Comput. Archit. News, 39(1):159–

170, March 2011.

[24] Mastooreh Salajegheh, Shane S Clark, Benjamin Ransford, Kevin Fu, and Ari Juels.

Cccp: Secure remote storage for computational RFIDs. In USENIX Security Sympo-

sium, pages 215–230, 2009.

[25] Weidong Shi, H. S. Lee, M. Ghosh, Chenghuai Lu, and A. Boldyreva. High efficiency

counter mode security architecture via prediction and precomputation. In 32nd Inter-

national Symposium on Computer Architecture (ISCA’05), pages 14–24, June 2005.

[26] Farhan Simjee and Pai H. Chou. Everlast: Long-life, supercapacitor-operated wire-

less sensor node. In Proceedings of the 2006 International Symposium on Low Power

Electronics and Design, ISLPED ’06, pages 197–202, New York, NY, USA, 2006. ACM.

42 BIBLIOGRAPHY

[27] Chester Simpson. Characteristics of Rechargeable Batteries. Texas Instruments, 2011.

[28] Shan Sun and Scott Emley. Data Retention Performance of 0.13-um F-RAM Memory.

Cypress Semiconductor Corp., 7 2015. Rev. *A.

[29] Patrick P. Tsang and Sean W. Smith. Secure Cryptographic Precomputation with Inse-

cure Memory, pages 146–160. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[30] Lane Westlund. Random number generation using the msp430, 2006.

Chapter 3

The Price of Continuity in

Intermittent Systems

Charles Suslowicz1, Archanaa S. Krishnan1, Daniel Dinu1, Patrick Schaumont1

1Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg,

VA 34061 USA

3.1 Abstract

Intermittent systems operate embedded devices without a source of constant reliable power.

They overcome this limitation by retaining and restoring system state as checkpoints across

periods of powerloss. Previous works have addressed a multitude of problems created by the

intermittent paradigm. In this chapter, we address the security concerns created through

the introduction of checkpoints to an embedded device. When the non-volatile memory that

holds checkpoints can be tampered, the checkpoints can be replayed or duplicated. We define

application continuity as a defense against this attack. Continuity is the assurance that the

application continues where it left off upon powerloss. Our solution to support continuity is

to add integrity and authenticity to the checkpoints. We develop two solutions for our secure

checkpointing design. The first solution uses a hardware accelerated implementation of AES,

while the second one is based on a software implementation of a lightweight cryptographic

43

44 Chapter 3. The Price of Continuity in Intermittent Systems

algorithm, Chaskey. We analyze the feasibility and overhead of these designs in terms of

energy consumption, execution time, and code size across several application configurations.

We compare this overhead to a non-secure checkpointing system similar to QuickRecall. We

conclude that application continuity does not come cheap, and that it increases the overhead

of checkpoint restoration from 3.79 µJ to 42.96 µJ with the hardware accelerated solution

and 57.02 µJ with the software based solution. To date, no one has considered the cost to

provide security guarantees to intermittent operation. Our work provides future developers

with an empirical evaluation of this cost, and with a problem statement for future research

in this area.

3.2 Introduction

The introduction of intermittent computing to embedded devices has the potential to dra-

matically change the field. Intermittent devices are able to continue their operations across

periods of powerloss through the retention of their system state in non-volatile memory

(NVM). This is possible through the advent of low energy NVM technologies such as ferro-

electric RAM (FRAM) and phase-change memory [18, 21].

Similarly, improvements in energy harvesting have created the potential for energy harvested

embedded systems that are not limited to a strict battery life [16]. Instead, new systems

can be equipped with an energy harvester, a small energy store, and intermittent capability

to allow continuous operation without the need for a human to recharge or maintain the

deployed system. This creates opportunities to deploy embedded systems to locations that

are difficult to support or manage, especially for sensor applications and control applications

in remote locations.

One aspect of these systems has been ignored by the current body of work, the security

3.2. Introduction 45

implications of intermittent operation. The act of storing the complete system state in

NVM exposes a number of critical pieces of system information to potential tampering by

an adversary with access to the device.

Existing intermittent computing solutions operate on the assumption that if a checkpoint

exists, it is valid and will properly restore the system [9, 11, 22]. This is a naive and po-

tentially dangerous assumption. Once in non-volatile memory, the checkpoint is at risk of

modification, copy, replacement, or corruption by both malignant and erroneous actions. If

corrupted, the intermittent system risks entering an invalid state which can only be cor-

rected by a factory or developer reset, since a normal reset operation will restore the altered

checkpoint and leave the system unusable or vulnerable.

A small number of NVM protection techniques have been proposed which incorporate encryp-

tion into every memory access [3, 10]. Unfortunately, these techniques treat the encryption

overhead as a constant and ignore the threat of powerloss to the system’s integrity. Ghosdi et

al. suggest securing intermittent system checkpoints through the encryption of each check-

point, but their solution provides only confidentiality and fails to account for checkpoint

integrity, authenticity or freshness [8] .

If a checkpoint is tampered, the system is exposed to a host of problems. Secret information

on the device, such as private keys, could be exposed. Sensitive operations could be replayed

to enable side-channel attacks on normally secure behaviors. Traditional security features,

control-flow integrity monitoring or memory protection schemes, can be bypassed through

the modification of their data structures during the power-off period [2, 14]. Some schemes,

such as SANCUS [15], which include custom hardware support for their security guarantees

are also susceptible if the checkpointing process exposes the values stored in the protection

mechanism’s custom registers or shadow stack within a checkpoint [4]. The storage of this

information would be necessary to restore the correct system state, but it exposes other-

46 Chapter 3. The Price of Continuity in Intermittent Systems

wise protected information to tampering by an adversary and creates a discontinuity in the

security guarantees provided by these protection mechanisms.

For intermittent devices to benefit from existing security solutions and have application

continuity, they must verify that their stored state information is correct and unmodified.

This can be accomplished through the cryptographic verification of the checkpoint’s integrity,

authenticity, and freshness. By verifying the integrity of the checkpoint, it is possible for the

intermittent system to ensure that no tampering has occurred since the time the checkpoint

was created.

Similarly, we must verify the authenticity of the checkpoint to ensure that it was in fact

created by the intermittent system itself. Without authenticity, it is possible for an adversary

to create a valid checkpoint of a vulnerable or weakened state on a test device and later load

it onto the target device to facilitate an attack.

Finally, the freshness of the checkpoint must be validated to prevent previously created

checkpoints from being reloaded onto the device. Without this feature, it would be possible

for an adversary to ‘roll-back’ the state of a device to an arbitrary previous checkpoint.

By their nature, intermittent systems will restore their most recent checkpoint during their

operation. But, allowing the restoration of any prior checkpoint, which exposes the device

to replay attacks, would undermine application level security protections.

Naturally, security protection does not come for free, as cryptographic operations consume

energy and processor cycles. Our goal is to evaluate, for a realistic scenario in intermittent

computing, the overhead of secure application continuity.

3.2.1 Contributions

We present the following contributions through our work:

3.3. Approach 47

• We highlight the need for continuity in intermittent systems and provide a road-map

to support the continuity of existing embedded security applications.

• We introduce a protocol for ensuring the integrity, authenticity, and freshness of an

intermittent system’s checkpoints across periods of powerloss.

• We empirically evaluate the cost to provide the necessary checkpoint security with both

a software implementation utilizing lightweight cryptography and a hardware solution

using a hardware accelerated standard cryptographic primitive.

The remaining portions of this chapter are structured as follows: Section 3.3 describes our

approach to providing application continuity to a system’s checkpointing process and details

our protocol to secure the checkpointing process. It outlines our implementation of a basic

intermittent system with integrity, authenticity, and freshness. Section 3.4 details the steps

involved in integrating security to intermittent system on our test platform. Section 3.5

discusses our experimentation strategy, evaluation, and results. Finally, we close with our

conclusions.

3.3 Approach

Our approach is to target the checkpoint system itself, protect it, and provide existing

embedded security solutions the continuity to protect intermittent systems. This will enable

the use of previously developed embedded security systems by ensuring their continuity

across the periods of powerloss and checkpointing behavior unique to intermittent systems.

48 Chapter 3. The Price of Continuity in Intermittent Systems

Algorithm 1 refresh and restore

Require: KEY , STATE, Si, CNTi, Ti, where i ∈ {A,B}
operation ∈ {REFRESH, RESTORE}

1: if TB = MAC(SA|CNTA|TA, KEY) then
2: if operation = RESTORE then
3: STATE ← SA

4: end if
5: CNTB ← CNTA + 1
6: SB ← STATE
7: TA ←MAC(SB|CNTB|TB, KEY)
8: else
9: if TA = MAC(SB|CNTB|TB, KEY) then
10: if operation = RESTORE then
11: STATE ← SB

12: end if
13: CNTA ← CNTB + 1
14: SA ← STATE
15: TB ←MAC(SA|CNTA|TA, KEY)
16: end if
17: else
18: abort()
19: end if

3.3. Approach 49

3.3.1 A Secure Protocol

Algorithm 1 depicts the protocol we developed to achieve application continuity in our

intermittent system. It details the two necessary functions: refresh for the creation of

checkpoints and restore for the restoration of checkpoints. Both functions are essentially

the same except for the extra step of copying the stored system state, Si, into the device’s

current state, STATE, in steps 3 and 11 during checkpoint restoration. We store the system

checkpoint in one of two buffers, A or B. The buffers are updated in an alternating manner to

ensure that at least one secure checkpoint remains valid in the event of powerloss during the

execution of refresh or restore. This ensures that our protocol is robust against powerloss.

When stored, each secure checkpoint is a tuple of three elements: the checkpointed state

(Si), a 128-bit nonce (CNTi), and a 128-bit authentication tag (Ti).

The checkpoint state, Si, is a copy of STATE, the current state of the device. It includes

three types of information. First, the necessary application specific state required to resume

program execution after powerloss. Second, the microcontroller system state including the

program counter, stack pointer, status register and other general purpose registers. And

finally, the necessary microcontroller peripheral settings for any peripherals in use.

A nonce is required to provide freshness to each checkpoint. It is introduced to our check-

points in the form of a counter, CNTi, whenever the checkpoint is generated or restored. The

authentication tag, Ti, is computed over the current checkpoint state and current counter

value using a device unique key, KEY , which is at least 128-bit long. A Message Authenti-

cation Code (MAC) is used to securely generate the authentication tag. The use of a device

unique key, which is kept secret, ensures that every checkpoint is tied to the device and that

the checkpoint cannot be replayed on another device.

When a checkpoint is generated the entire control flow of the microcontroller, including the

50 Chapter 3. The Price of Continuity in Intermittent Systems

program counter, stack, status register, and other system critical information, is stored as

data in NVM. To preserve the control flow integrity of the program across powerlosses we

introduce the concept of tag-chaining to authentication tags. We include the authentication

tag of the previous secure checkpoint in the computation of the current secure checkpoint’s

authentication tag, creating a unique chain of tags which reflects the current state and all

the past states of the device. The current tag can only be regenerated if the device’s current

state is reached after execution of exactly the same pattern of previous states. A valid

secure checkpoint will now contain the current system state, the current counter value and

the corresponding tag which authenticates this system state, and all the past system states,

and counter value.

When the system is powered on, the most recent checkpoint, as determined by the tag chain,

is used to restore the system. This execution of the restore function occurs before any other

operations, an approach similar to the solution proposed for Quickrecall [9].

A part of the checkpoint, if not the whole, must be made inaccessible to the adversary to

prevent replay attacks. To provide this protection, we have divided the NVM available on

the device into tamper-free NVM and tamper-sensitive NVM. Tamper-free NVM is a small

section of memory that cannot be tampered or accessed by the adversary even when the

device is powered off. It is used to store the smallest elements of our secure checkpoints,

the nonces and the device unique key. Since the nonce is unavailable to the adversary, they

cannot obtain a copy the entire checkpoint for the purpose of a replay attack.

Tamper-free memory is not currently a standard component of most microcontroller plat-

forms, but recent work in attestation and isolation for microcontrollers demonstrates the

feasibility of tamper-free NVM in future devices and Texas Instruments provides limited

memory protection capabilities in existing platforms [7, 19]. Tamper-sensitive NVM, the

vast majority of our device’s NVM, does not posses tamper resistance, and is used to store

3.3. Approach 51

the rest of the secure checkpoint including the checkpoint states and the authentication tags.

3.3.2 Implementation

To validate our protocol we extended and modified an existing intermittent solution, the

Compute-Thru-Power-Loss (CTPL) library from Texas Instruments [18]. First, we modified

the library to be compatible with the msp430-elf-gcc compiler to work with our other

existing MSP430 code base and tools. Since the original CTPL code only supported tran-

sitions to low power modes and the creation of system checkpoints before shutdown, next,

we extended the CTPL feature set to include on-demand checkpointing, a user identified se-

cure data section, alternating checkpoint storage, and integration of the security primitives

required by our protocol within the checkpoint creation and restoration process. Finally, we

selected cryptographic algorithms based on the available hardware modules and previously

demonstrated performance of existing lightweight MACs.

To integrate the necessary security features into CTPL, it was necessary to rewrite the low-

level assembly functions of the library that relied on functionality unique to TI’s cl430

compiler. This included changes to dependency resolution, macros, and section declarations

while maintaining the overall functionality of each low level function. The addition of security

functions to the checkpoint process required significant modification to the control flow of the

checkpointing process. Support was added to identify if the requested checkpoint required

the use of a security function and to execute the identified function after a checkpoint

was assembled. Finally, the original ctpl state flag used by the library was re-purposed

to prevent endless checkpoint loops during the wakeup process rather than identify if a

checkpoint existed for the system.

52 Chapter 3. The Price of Continuity in Intermittent Systems

Data Identification and Storage

The first requirement was met through the definition of a memory section, .secure, within

the device’s linker description file. The .secure section was defined in a portion of the

device’s NVM and provided developers with the ability to clearly declare variables that

should be included within the device’s checkpoints. In fact, the section serves as a live

snapshot of the device’s current state and includes the allocated non-volatile memory to store

the device’s stack, register information, and peripheral information during the checkpoint

creation process. The use of a specified memory section simplified the creation of checkpoints

by collating all of the necessary system data in one contiguous memory region. The collection

of the processor state and peripheral information was completed through the normal CTPL

process. To create a checkpoint, the device’s peripherals were polled and their appropriate

register states were stored in the .secure memory section. The register information was then

pushed onto the system stack and a copy of the stack was stored in the .secure section.

Once all of the relevant data had been collected, the secure checkpoint creation function

refresh was invoked.

Secure Checkpointing Functions

The refresh function implements the protocol we developed to determine which checkpoint

storage slot is available, then appropriately store the new checkpoint. This is done through

the verification of each stored checkpoint’s MAC as described by Algorithm 1. The write of

the newly computed MAC serves as the transition to the new checkpoint as the valid stored

state. Any powerloss prior to the completion of this write will have the system restore the

previous checkpoint; once the write is complete, the new checkpoint will pass validity checks

and the old checkpoint will fail.

3.3. Approach 53

The restoration of checkpoints is implemented in the restore function. This is the same

process as the one used by refresh except for the addition of the copy of the state informa-

tion stored in a checkpoint into the .secure memory section. Once the copy is complete,

restore also updates the protocol counters and recomputes the MAC of the stored check-

point. This re-computation is critical for any application level security that needs to be

aware of the restoration of checkpoints.

To securely start a new system, we implement an initialize function that checks NVM

for the device reset memory pattern. This is the memory pattern written into NVM by the

device’s factory reset function, 0xffff in the case of our test device. If the pattern is found,

it is overwritten to prevent multiple initializations, and an initial checkpoint of the starting

system is created. This bootstraps our chain of checkpoints, and allows the refresh and

restore functions to be used throughout the rest of the device’s operation.

Cryptographic Primitives

For our evaluation we chose to employ two different cryptographic primitives, a software

based and a hardware based primitive, for MAC operations. This evaluation shows the

viability of both approaches, but primarily highlights the computational cost to properly

validate a system’s checkpoints. Throughout the evaluation process they are referenced as

HW-SIC, SW-SIC, and NON-SIC based on the employed cryptographic operations.

HW-SIC used a hardware accelerated AES module to compute checkpoint MACs using CMAC.

CMAC is a block cipher mode of operation recommended by NIST for use in determining the

integrity of data against malicious modification [6]. Our implementation was developed using

the Cifra cryptographic library [1] and required very few modifications to utilize the AES

co-processor for its block cipher operations instead of the Cifra AES implementation. This

54 Chapter 3. The Price of Continuity in Intermittent Systems

structure provided an excellent baseline for a hardware accelerated standard cryptographic

primitive supporting 64-bit collision resistance for MAC operations and was representative

of a solution for systems that either contain cryptographic co-processors or need to employ

a NIST standard cryptographic primitive for compliance.

SW-SIC implemented a software based MAC using Chaskey [13] to measure the overhead

that would be experienced by devices that lack an AES hardware accelerator. Chaskey is

an efficient lightweight MAC algorithm for use with 128-bit keys. It specifically targets

platforms that are not robust enough to employ a standard hash-based authentication code

(HMAC) but still require effective security. We chose Chaskey as a representative MAC

for this category for two reasons: its MSP430 performance in the FELICS test suite, where

it outperformed many other similar lightweight ciphers [5], and its current consideration

for standardization by ISO [12]. Combined, we felt these qualities made it a reasonable

representative of lightweight cryptographic primitives that may be considered for use in

intermittent systems.

Finally, we implemented our protocol without MAC support in order to provide a baseline

for a non-secure checkpointing system. NON-SIC used the same functions to create and

restore checkpoints, but omits the verification steps and instead blindly copies or updates

the system state whenever it is requested. To be clear, this implementation does not support

any of our expected security guarantees and is strictly for use as an example of an unsecured

checkpointing system.

3.4 Measurement Platform and Test Structure

With these elements identified and created, we were able to integrate them into a fully

operational secure intermittent system for use in our evaluation.

3.4. Measurement Platform and Test Structure 55

3.4.1 Platform

To exercise our protocol and determine the overhead incurred by our approach we looked for

a reasonable low-cost development device which was representative of systems that might be

employed for sensitive operations while supported by an energy harvester. For our platform

we chose a MSP430FR5994 Launchpad Development board. This provided the following

benefits: we were able to extensively modify TI’s Compute-Thru-Power-Loss (CTPL) li-

brary to support our security protocol while retaining its original board compatibility, the

MSP430FR5994 supports 256 kB of ferro-electric RAM (FRAM) providing a high speed

NVM to store checkpoints, and is an ultra-low power platform reasonable for an energy

harvested application.

The FRAM present on the MSP430FR5994 is an excellent example of the new non-volatile

technologies enabling intermittent computing systems. It is efficient, consuming only 225

µA of current for each FRAM read or write at 8 MHz operation [20]. Additionally, the

manufacturer guarantees write atomicity regardless of the current power condition for the

chip. This allows our system to assume that if a write to FRAM is executed, the data is

written correctly and does not require additional error checking to detect partial writes at

the byte level [17]. The FRAM is capable of normal operation up to 8 MHz and is supported

by processor wait-states, which utilizes a 2-way associative 256-bit cache for frequencies up

to 16 MHz. We were able to see the effect of the processor wait-states and cache on the

device’s behavior and energy consumption during our evaluation of the device at 16 MHz.

3.4.2 Testbed

Measurements were taken with a Tektronic DPO3034 oscilloscope across a shunt resistor of

1 kΩ as depicted in Figure 3.1. We computed the energy consumed by the target device

56 Chapter 3. The Price of Continuity in Intermittent Systems

Figure 3.1: The measurement circuit constructed to observe the energy required for different
device operations. The device under test (DUT) was powered by an external power supply
to execute a continuous loop of operations including oscilloscope triggers via GPIO.

3.4. Measurement Platform and Test Structure 57

during a function’s execution as shown in Equation 3.1.

E = V · I ·∆t = (VCC − VAB) · I ·∆t

=
1

R
·
∫ t2

t1

(VCC − v(t)) · v(t) · dt
(3.1)

The three critical functions for secure intermittent operations were measured for both energy

consumption and execution time. Each execution was identified within the testbench via a

GPIO trigger on the test board. To account for the additional energy cost of the GPIO

activation, additional samples were taken with a second active GPIO to compute the energy

overhead of a GPIO activation.

Cycle counts were generated for each test case through the use of the on-board timer and an

interrupt to catch rollover events. Since this introduced slight variations in each function’s

execution time, 100 executions were measured to produce an average cycle count. Portions

of the checkpointing process normally disable interrupts for real world applications, these

were modified to leave interrupts enabled allowing accurate measurement of the cycle count.

Because refresh and restore execute an additional MAC computation if the first test is

invalid, we forcibly tested the functions an equal number of times for each condition. These

values were averaged to produce the data in Figures 3.2 and 3.3. To verify the stability of

our test bench, we computed the standard error for our energy measurements. Since these

values were less than 10−8 J , we omitted them for clarity.

58 Chapter 3. The Price of Continuity in Intermittent Systems

3.5 Evaluation and Results

With an experimental setup established, we tested our implementation and gathered mea-

surements across a range of feasible system configurations. We recorded the effect that

different system configurations had on the overhead incurred by the software and hardware

integrity verifications in order to identify patterns that may be useful when choosing oper-

ating conditions for future intermittent devices used in sensitive operations.

3.5.1 Experimental Results

From our experiments we were able to successfully observe the energy consumption of the

intermittent system across all scenarios. The energy required for securing the checkpointing

process highlighted an interesting characteristic of our chosen platform, a reduced energy

consumption at the middle clock frequencies, that we explore in more detail in our analysis.

The results from changes to the size of the system state, depicted in Figure 3.3, were as

expected, increasing the energy required as the state size increased. Finally, the code size

also followed our expectations with the software supported operations required more space

than the hardware supported primitive.

3.5.2 Analysis

From our experiments we observe a few odd behaviors and recognize the very high cost

of securing a system’s intermittent operation. The overhead for protecting the integrity of

an intermittent systems checkpoints is very high. The energy required to secure a 512 B

state is 42.96 µJ (HW-SIC) or 57.02 µJ (SW-SIC), an increase by a factor of 11.33 or 15.04

over the non-secure solution at 8 MHz. Further reducing this overhead through more novel

3.5. Evaluation and Results 59

1 4 8 16

0

200

400

600
E

n
er

gy
(µ
J

)

NON-SIC

1 4 8 16

Frequency (MHz)

HW-SIC

1 4 8 16

SW-SIC

initialize refresh restore

Figure 3.2: Energy consumption as a function of the operational frequency shows the effect
of our device’s larger static power consumption, leading to a non-linear relationship between
1, 4, and 8 MHz operation. The dramatic spike in energy costs for 16 MHz is tied to the
increased minimum supply voltage required for the testbed to operate and the introduction
of FRAM wait-states at frequencies above 8 MHz.

applications of established cryptographic primitives or re-engineering of the overall system

to better support the high computational requirements for the verification operations is a

worthwhile future endeavor.

An interesting behavior we observed in Figure 3.2 was the dramatic reduction in energy

required for the secure intermittent computing solutions at 4 and 8 MHz. Normally, we

would have expected a flat energy consumption relationship as the time required to execute

the operations decreased while the frequency, and energy consumption rate of the processor,

increased. Instead, we determined that the device under test had a significantly higher

static power consumption than dynamic power consumption allowing the reduced operation

time for the higher frequency operations to save more power than the increased frequency

consumed. For example, we found α to be 152.44 and β to be 567.11 for the MSP430FR5994

in our SW-SIC experiments at 8 MHz according to Equation 3.2. Our calculations for α and

60 Chapter 3. The Price of Continuity in Intermittent Systems

23

25

27

29

E
n

er
gy

(µ
J

)

NON-SIC HW-SIC SW-SIC

0.5 1 2 4

24

26

28

210

T
im

e
(k

cy
cl

es
)

0.5 1 2 4

State size (kbytes)

0.5 1 2 4

initialize refresh restore

Figure 3.3: The effect of system state size on the execution time and energy consumption of
the three security functions operating at 8 MHz is reasonable. SW-SIC requires slightly more
resources than HW-SIC and initialize is the cheapest and simplest of the three operations.

3.5. Evaluation and Results 61

β in our HW-SIC tests were less consistent, an effect we attribute to the operation of the AES

co-processor during only portions of the function’s execution.

E = T · (Pdyn + Pstatic)
Pdyn = α · f

Pstatic = β

(3.2)

This relationship did not continue to hold for the 16 MHz cases. Instead, we saw a dramatic

increase in the energy required for our security operations. This increase is primarily tied

to the increased supply voltage required for the board to operate at 16 MHz. At lower

frequencies we were able to successfully power the board with a supply voltage of 3.5 V ;

for successful operation at 16 MHz it was necessary to increase our supply voltage to 4 V

dramatically increasing the power consumption of the testbed.

In addition to the increased power consumption from a higher supply voltage, operation

at 16 MHz introduced the use of FRAM wait-states, limiting the benefit of the increased

operational frequency as cycles were wasted waiting for FRAM operations to complete.

Combined, these two effects conspired to increase the power consumption of the testbed at

16 MHz and highlight a potential design consideration for future intermittent systems that

have similar energy consumption profiles. If the static power consumption of the device

is sufficiently larger than the dynamic power consumption, increased operational frequency

may yield reduced overall power consumption as long as the supply voltage can be kept in

line with lower frequency operation.

The code size overhead of our solution is shown in Table 3.1 and is less interesting than the

energy consumption measurements. The SW-SIC code required the largest space as HW-SIC

was able to omit the software AES functions implemented within the on-board AES module.

Similarly, the reduction in code size between -O3 and -Os optimizations is larger for HW-SIC

62 Chapter 3. The Price of Continuity in Intermittent Systems

Table 3.1: Effect on Code Size, .text (B)

Optimization NON-SIC HW-SIC SW-SIC

-O0 11,936 18,516 35,728
-O3 6,932 14,556 21,432
-Os 6,916 10,716 19,808

as the Chaskey implementation functions did not significantly change in size only reducing

from 4694 B to 4488 B.

Finally, we are able to show that these techniques are feasible on devices that lack a hardware

accelerator if an appropriate lightweight cryptographic primitive is chosen. Chaskey is able

to provide an equivalent level of security guarantee compared to the hardware accelerated

AES based CMAC computation with only 32.73% in additional energy required. This may

prove very useful on previously deployed platforms that may lack an on-board AES module

but still benefit from operations with secure checkpoints.

3.6 Conclusion

This chapter demonstrated a simple protocol to verify the integrity, authenticity, and fresh-

ness of an intermittent system’s checkpoints. Our solution was extensively measured and

compared with a non-secure version of the underlying checkpointing system across a variety

of system configurations to examine their effects on energy consumption, execution time,

and code size. Ultimately, we show that verification of checkpoints is both necessary and

expensive. It is impossible to ignore the security requirements of the real world, but pre-

vious works avoid this complication of the intermittent computing space. We show that

proper protections for application continuity can be implemented, but the current cost is

high and opens the door to future work in improving the energy and performance overhead

BIBLIOGRAPHY 63

of checkpoint verification.

Bibliography

[1] Joseph Birr-Pixton. Cifra: Cryptographic primitive collection. https://github.com/

ctz/cifra, 2017.

[2] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brun-

thaler, and Mathias Payer. Control-flow integrity: Precision, security, and performance.

ACM Comput. Surv., 50(1):16:1–16:33, April 2017.

[3] Siddhartha Chhabra and Yan Solihin. i-nvmm: a secure non-volatile main memory

system with incremental encryption. In 38th International Symposium on Computer

Architecture (ISCA 2011), June 4-8, 2011, San Jose, CA, USA, pages 177–188, 2011.

[4] L. Davi, M. Hanreich, D. Paul, A. R. Sadeghi, P. Koeberl, D. Sullivan, O. Arias,

and Y. Jin. Hafix: Hardware-assisted flow integrity extension. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2015.

[5] Daniel Dinu, Alex Biryukov, Johann Großschädl, Dmitry Khovratovich, Yann Le Corre,

and Léo Perrin. Felics–fair evaluation of lightweight cryptographic systems. In NIST

Workshop on Lightweight Cryptography, 2015.

[6] M J Dworkin. Recommendation for block cipher modes of operation: The CMAC mode

for authentication. Technical report, 2016.

[7] Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. SMART:

Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. In NDSS

2012, 19th Annual Network and Distributed System Security Symposium, February 5-8,

San Diego, USA, San Diego, UNITED STATES, 02 2012.

https://github.com/ctz/cifra
https://github.com/ctz/cifra

64 BIBLIOGRAPHY

[8] Z. Ghodsi, S. Garg, and R. Karri. Optimal checkpointing for secure intermittently-

powered iot devices. In 2017 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pages 376–383, Nov 2017.

[9] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw

approach for enabling computations across power cycles in transiently powered comput-

ers. In 2014 27th International Conference on VLSI Design and 2014 13th International

Conference on Embedded Systems, pages 330–335, Jan 2014.

[10] S. Kannan, N. Karimi, O. Sinanoglu, and R. Karri. Security vulnerabilities of emerging

nonvolatile main memories and countermeasures. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 34(1):2–15, Jan 2015.

[11] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution

model for intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’15, pages 575–585, New

York, NY, USA, 2015. ACM. DINO.

[12] Nicky Mouha. Chaskey: a mac algorithm for microcontrollers – status update and

proposal of chaskey-12 –. Cryptology ePrint Archive, Report 2015/1182, 2015. https:

//eprint.iacr.org/2015/1182.

[13] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel,

and Ingrid Verbauwhede. Chaskey: An efficient mac algorithm for 32-bit microcon-

trollers. Cryptology ePrint Archive, Report 2014/386, 2014. https://eprint.iacr.

org/2014/386.

[14] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Soft-

bound: Highly compatible and complete spatial memory safety for c. In Proceedings

https://eprint.iacr.org/2015/1182
https://eprint.iacr.org/2015/1182
https://eprint.iacr.org/2014/386
https://eprint.iacr.org/2014/386

BIBLIOGRAPHY 65

of the 30th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’09, pages 245–258, New York, NY, USA, 2009. ACM.

[15] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,

Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank Piessens. Sancus:

Low-cost trustworthy extensible networked devices with a zero-software trusted comput-

ing base. In Proceedings of the 22Nd USENIX Conference on Security, SEC’13, pages

479–494, Berkeley, CA, USA, 2013. USENIX Association.

[16] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani Srivas-

tava. Design considerations for solar energy harvesting wireless embedded systems. In

Proceedings of the 4th International Symposium on Information Processing in Sensor

Networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[17] Texas Instruments. MSP430 FRAM Quality and Reliability, 2012. Revised May 2014.

[18] Texas Instruments. MSP MCU FRAM Utilities, 2017.

[19] Texas Instruments. MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and

MSP430FR69xx Family User’s Guide, 2017.

[20] Texas Instruments. MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers,

2017.

[21] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,

and K. E. Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201–2227,

Dec 2010.

[22] Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware

support or programmer intervention. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16), pages 17–32, GA, 2016. USENIX Association.

Chapter 4

Conclusions

This thesis explored the security of intermittent devices in two different conditions: an

abundance of harvested energy and periods of insufficient energy. Both conditions present

unique opportunities and challenges for enabling secure operations.

Through the use of excess energy to precompute cryptographic operations this thesis has

shown it is possible to dramatically reduce the runtime cost of cryptographic operations

on intermittent devices. The employment of a coupon system may enable the use of much

stronger security measures, more powerful cryptographic primitives, than would otherwise be

available on an intermittent device. Metrics were proposed for evaluating the cryptographic

operations considered for precomputation and a case study was performed to demonstrate

the effectiveness of precomputation in reducing the runtime energy cost of both true random

number generation and AES-CTR one-time pad generation. Taken together this may serve

as a base for future intermittent devices capable of stronger cryptographic operations.

When insufficient energy exists to continuously operate an embedded device, intermittent

operation via checkpoints may serve as a solution. This thesis explored the energy cost of

ensuring the authenticity and integrity of such system checkpoints across a variety of sys-

tem configurations. No previous works have considered the security implications of system

checkpoints for intermittent devices nor the potential energy overhead incurred when pre-

venting an adversary from tampering with the stored system state. A simple protocol was

implemented to ensure that stored checkpoints are robust against tamper by an adversary

66

BIBLIOGRAPHY 67

with access to the intermittent device’s NVM and the energy overhead was measured for

both hardware supported and software only cryptographic primitives. These overhead val-

ues were then presented with the baseline, non-secure, energy costs for intermittent operation

to demonstrate the large cost incurred when securing intermittent device checkpoints.

Future work may successfully explore methods in reducing the energy cost for securing

intermittent operations, perhaps through the use of precomputation during periods of excess

energy, and ultimately enable a more secure paradigm for energy harvested devices.

Bibliography

[1] Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost

standard signatures in wireless sensor networks: a case for reviving pre-computation

techniques? In Proceedings of NDSS 2013, 2013.

[2] Aydin Aysu and Patrick Schaumont. Precomputation methods for faster and greener

post-quantum cryptography on emerging embedded platforms. Cryptology ePrint

Archive, Report 2015/288, 2015. http://eprint.iacr.org/2015/288.

[3] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L. Benini.

Hibernus: Sustaining computation during intermittent supply for energy-harvesting sys-

tems. IEEE Embedded Systems Letters, 7(1):15–18, March 2015. ISSN 1943-0663. doi:

10.1109/LES.2014.2371494.

[4] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-Hashimi,

G. V. Merrett, and L. Benini. Hibernus++: A self-calibrating and adaptive system for

transiently-powered embedded devices. IEEE Transactions on Computer-Aided Design

http://eprint.iacr.org/2015/288

68 BIBLIOGRAPHY

of Integrated Circuits and Systems, 35(12):1968–1980, 2016. ISSN 0278-0070. doi:

10.1109/TCAD.2016.2547919.

[5] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding up discrete log

and factoring based schemes via precomputations, pages 221–235. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 1998. ISBN 978-3-540-69795-4. doi: 10.1007/BFb0054129.

URL https://doi.org/10.1007/BFb0054129.

[6] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David B. Wilson. Fast

Exponentiation with Precomputation, pages 200–207. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1993. ISBN 978-3-540-47555-2. doi: 10.1007/3-540-47555-9 18. URL

https://doi.org/10.1007/3-540-47555-9_18.

[7] H. Jayakumar, A. Raha, and V. Raghunathan. Quickrecall: A low overhead hw/sw

approach for enabling computations across power cycles in transiently powered comput-

ers. In 2014 27th International Conference on VLSI Design and 2014 13th International

Conference on Embedded Systems, pages 330–335, Jan 2014. doi: 10.1109/VLSID.2014.

63.

[8] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

[9] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution

model for intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’15, pages 575–585, New

York, NY, USA, 2015. ACM. ISBN 978-1-4503-3468-6. doi: 10.1145/2737924.2737978.

URL http://doi.acm.org/10.1145/2737924.2737978. DINO.

[10] Benjamin Ransford and Brandon Lucia. Nonvolatile memory is a broken time ma-

chine. In Proceedings of the Workshop on Memory Systems Performance and Correct-

https://doi.org/10.1007/BFb0054129
https://doi.org/10.1007/3-540-47555-9_18
https://www.iacr.org/authors/tikz/
http://doi.acm.org/10.1145/2737924.2737978

BIBLIOGRAPHY 69

ness, MSPC ’14, pages 5:1–5:3, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-

2917-0. doi: 10.1145/2618128.2618136. URL http://doi.acm.org/10.1145/2618128.

2618136.

[11] Benjamin Ransford, Shane Clark, Mastooreh Salajegheh, and Kevin Fu. Getting

things done on computational rfids with energy-aware checkpointing and voltage-aware

scheduling. In Proceedings of the 2008 Conference on Power Aware Computing and Sys-

tems, HotPower’08, pages 5–5, Berkeley, CA, USA, 2008. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1855610.1855615.

[12] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-

running computation on rfid-scale devices. SIGARCH Comput. Archit. News, 39(1):

159–170, March 2011. ISSN 0163-5964. doi: 10.1145/1961295.1950386. URL http:

//doi.acm.org/10.1145/1961295.1950386.

[13] Farhan Simjee and Pai H. Chou. Everlast: Long-life, supercapacitor-operated wireless

sensor node. In Proceedings of the 2006 International Symposium on Low Power Elec-

tronics and Design, ISLPED ’06, pages 197–202, New York, NY, USA, 2006. ACM.

ISBN 1-59593-462-6. doi: 10.1145/1165573.1165619. URL http://doi.acm.org/10.

1145/1165573.1165619.

[14] Charles Suslowicz, Archanaa S. Krishnan, and Patrick Schaumont. Optimizing cryp-

tography in energy harvesting applications. In Proceedings of the 2017 Workshop on

Attacks and Solutions in Hardware Security - ASHES 2017. ACM Press, 2017. doi:

10.1145/3139324.3139329. URL https://doi.org/10.1145/3139324.3139329.

[15] MSP MCU FRAM Utilities. Texas Instruments, 2017.

[16] Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware

support or programmer intervention. In 12th USENIX Symposium on Operating Sys-

http://doi.acm.org/10.1145/2618128.2618136
http://doi.acm.org/10.1145/2618128.2618136
http://dl.acm.org/citation.cfm?id=1855610.1855615
http://doi.acm.org/10.1145/1961295.1950386
http://doi.acm.org/10.1145/1961295.1950386
http://doi.acm.org/10.1145/1165573.1165619
http://doi.acm.org/10.1145/1165573.1165619
https://doi.org/10.1145/3139324.3139329

70 BIBLIOGRAPHY

tems Design and Implementation (OSDI 16), pages 17–32, GA, 2016. USENIX Associ-

ation. ISBN 978-1-931971-33-1. URL https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/vanderwoude.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Precomputation
	Secure Intermittent Operation
	Contributions
	Attribution

	Optimizing Cryptography in Energy Harvesting Applications
	Abstract
	Introduction
	Contributions

	Background
	Energy Harvested System Operations
	Previous Work in Precomputation
	Scaling Within the Internet of Things
	Threat Model

	Precomputation, Energy Harvested Devices, and Cryptography
	Intermittent Computing and Cryptography
	Coupons and the Precomputation of Algorithms
	Metrics for Comparison
	Conversion of Energy to Data via Precomputation
	Effect of Precomputation on Security

	Case Studies
	Experimental setup
	AES counter mode
	Hardware Random Number Generator

	Future Work
	Conclusion
	Bibliography

	The Price of Continuity in Intermittent Systems
	Abstract
	Introduction
	Contributions

	Approach
	A Secure Protocol
	Implementation

	Measurement Platform and Test Structure
	Platform
	Testbed

	Evaluation and Results
	Experimental Results
	Analysis

	Conclusion
	Bibliography

	Conclusions
	Bibliography

