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A Deep Learning Based Pipeline for Image Grading of Diabetic

Retinopathy

Yu Wang

(ABSTRACT)

Diabetic Retinopathy (DR) is one of the principal sources of blindness due to diabetes

mellitus. It can be identified by lesions of the retina, namely microaneurysms, hemorrhages,

and exudates. DR can be effectively prevented or delayed if discovered early enough and well-

managed. Prior image processing studies on diabetic retinopathy typically extract features

manually but are time-consuming and not accurate. We propose a research framework

using advanced retina image processing, deep learning, and a boosting algorithm for high-

performance DR grading. First, we preprocess the retina image datasets to highlight signs

of DR, then employ a convolutional neural network to extract features of retina images, and

finally apply a boosting tree algorithm to make a prediction based on extracted features.

The results of experiments show that our pipeline has excellent performance when grading

diabetic retinopathy images, as evidenced by scores for both the Kaggle dataset and the

IDRiD dataset.



A Deep Learning Based Pipeline for Image Grading of Diabetic

Retinopathy

Yu Wang

(GENERAL AUDIENCE ABSTRACT)

Diabetes is a disease in which insulin can not work very well, that leads to long-term high

blood sugar level. Diabetic Retinopathy (DR), a result of diabetes mellitus, is one of the

leading causes of blindness. It can be identified by lesions on the surface of the retina.

DR can be effectively prevented or delayed if discovered early enough and well-managed.

Prior image processing studies of diabetic retinopathy typically detect features manually,

like retinal lesions, but are time-consuming and not accurate. In this research, we propose a

framework using advanced retina image processing, deep learning, and a boosting decision

tree algorithm for high-performance DR grading. Deep learning is a method that can be

used to extract features of the image. A boosting decision tree is a method widely used

in classification tasks. We preprocess the retina image datasets to highlight signs of DR,

followed by deep learning to extract features of retina images. Then, we apply a boosting

decision tree algorithm to make a prediction based on extracted features. The results of

experiments show that our pipeline has excellent performance when grading the diabetic

retinopathy score for both Kaggle and IDRiD datasets.
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Chapter 1

Introduction

1.1 Motivation

Diabetes mellitus is a chronic, progressive disease caused by inherited or acquired deficiency

in the production of insulin by the pancreas. If blood sugar is not kept in a specific range,

some long-term complications of the eyes, feet, and kidneys can start developing quickly.

According to the WHO (World Health Organization), at the end of 2014, 422 million people

in the world had diabetes – a prevalence of 8.5% among the adult population. Many of

the deaths caused by diabetes (43%) occur under the age of 70 1. However, with a balanced

diet, proper physical activity, immediate medication, and regular screening for complications,

diabetes can be treated, and its consequences avoided.

Diabetic retinopathy is a diabetes complication that affects the eyes, triggered by high blood

sugar levels. It occurs as a result of long-term accumulated harm to the small blood vessels

in the retina and is the leading cause of loss of vision. A sample diabetic retinopathy image

1http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf

1

http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf
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Figure 1.1: Sample Color Retina Image

is shown in Figure 1.1.

People can still live well with diabetes if early diagnosis occurs; the longer a person lives

with undiagnosed and untreated diabetes, the worse the health outcomes are likely to be.

Easy access to automatic diagnostics for diabetes is therefore essential.

Currently, people mainly use handcrafted methods to detect DR. Doctors can recognize

DR by the signs of lesions associated with the abnormalities in blood vessels caused by

diabetes. This method is useful, but it requires many resources. The infrastructure required

for handling DR is usually short in places where the proportion of diabetes is high, and DR

identification is most needed. As the number of people with diabetes continues to grow, the

expertise and equipment needed to alleviate sightless caused by DR will become even more

inadequate.

Computer-aided diagnosis has recently become more and more popular. One important

motivation is the superior performance of deep learning. In many research areas, like the

spotting of lung cancer or brain tumors, deep learning has been used to ascertain the severity
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Figure 1.2: Diabetic Retinopathy Segmentation and Grading Challenge Logo [6]

level from medical images; it has achieved fantastic performance, even competitive with

experienced doctors.

In 2018, grand-challenge.org 2 hosted the Diabetic Retinopathy Segmentation and Grading

Challenge (Prasanna Porwal and Meriaudeau [37]), associated with the IEEE International

Symposium on Biomedical Imaging (ISBI 2018). Over 700 people joined this challenge, and

over 30 teams made submissions. The challenge logo is shown in Figure 1.2.

grand-challenge.org is a platform mainly for grand challenges in the biomedical image analysis

area. It aims to help the research community and industry to develop better algorithms.

Since 2007, 25 biomedical image analysis challenges have been launched.

The proposed pipeline, which aims at capturing distinctive features related to diabetic

retinopathy and making reasonable predictions of the DR severity level, leverages the ad-

vantages of deep learning to extract features. It has earned third place in sub-challenge 2 of

the ISBI 2018 challenges.

1.2 Problem Statement

Diabetic Retinopathy is a clinical diagnosis that affects eyes, represented by the presence

(see Figure 1.3) of several retinal lesions like microaneurysms (MA), hemorrhages (HE), hard

2https://grand-challenge.org/

https://grand-challenge.org/
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Figure 1.3: Lesions of Diabetic Retinopathy [7]

exudates (EX), and soft exudates (SE).

Based on lesions identified, the DR status of a retina can be classified into two phases,

known as NPDR (Non-Proliferative Diabetic Retinopathy) and PDR (Proliferative Diabetic

Retinopathy), as shown in Figure 1.4 a and b.

Therefore, success in the diabetic retinopathy grading task mainly depends on how well

lesions can be extracted. Lesions extraction considers some very small details, like microa-

neurysms, and some larger features, such as exudates, and sometimes even their position

relative to each other on images of the eye.

For ordinary people, those lesions may be very small and hard to detect because of image

noise; thus achieving good results in the grading task would be very difficult. The primary

problem this research tries to address is how to extract features of diabetic retinopathy from

retina images, especially lesions of DR. This problem can be further decomposed into the

following three sub-problems.

First, we try to discover the key features related to the DR grading task. We explore prepro-

cessing methods for retinal images that make the signs of DR more visible. We consider those
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Figure 1.4: NPDR and PDR [8]

preprocessing methods which are commonly used with medical images, especially diabetic

retinopathy detection, including morphological closing, contrast enhancement, etc.

Then, we move one step further to identify how to extract features from preprocessed retinal

images. Particularly, we experiment with deep learning methods to extract features from

retinal images. That is because deep learning can identify higher-level features as its network

goes deeper.

Finally, we try to find which model, or which algorithm, is more suitable to predict diabetic

retinopathy level. We apply a gradient boosting tree algorithm and neural network to train

a model based on the extracted features.

1.3 Hypothesis

The main hypotheses in this research are: First, preprocessing steps are very instrumental

in the DR grading task; they can reduce the noise and highlight the signs of DR. Sec-

ond, our deep learning based approach can extract good features after image preprocessing.
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Specifically, DenseNet can achieve better performance due to stronger connectivity between

neurons. Third, a gradient boosting decision tree algorithm can generate more accurate

results on classifying DR level based on extracted features than neural networks.

In contrast to existing methods of extracting features of diabetic retinopathy, our work

preprocesses the retinal image first, then feeds into a convolutional neural network to train

and identify the features. Deep learning methods can extract higher-level features in a deep

layer, thus capturing what other models would miss.

The use of a gradient boosting tree algorithm in our research is a very new but efficient

method, which aims to help us make better use of features, where those features are well

extracted.

1.4 Thesis Organization

This research explores methods in grading diabetic retinopathy level. The proposed workflow

is developed based on image preprocessing, feature extraction, and model training.

The remainder of this thesis is organized as follows. Chapter 2 reviews the literature in deep

learning in medical image analysis and diabetic retinopathy grading. Chapter 3 introduces

datasets we have used. Chapter 4 explains the whole process of our experiments. Chapter

5 shows the results of experiments. Chapter 6 discusses some advantages and further work

we can do with this workflow. Chapter 7 gives the conclusions.



Chapter 2

Literature Review

This study aims to use deep learning methods to extract DR features from retinal images,

and grade diabetic retinopathy based on severity level. It is related to deep learning, medical

image analysis, diabetic retinopathy grading, and tree-based algorithms, so the four sections

below review some relevant works in those areas.

2.1 Deep Learning

Deep learning, which has been the new research frontier, has gained popularity in many

tasks. The main advantage of many deep learning algorithms is that networks composed of

many layers, can transform input data (e.g., image) to outputs (e.g., binary value, True or

False) while capturing increasingly higher level features. Unlike traditional machine learning

methods, in which the creator of the model has to choose and encode features ahead of time,

deep learning enables the model to automatically learn features that matter. That is very

important because feature engineering typically is the most time-consuming part of machine

learning practice.

7
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In the 1940s-1960s, deep learning was referred to as “cybernetics”, and known as “connec-

tionism” in the 1980s-1990s. The most recent wave of neural network research began with a

break-through in 2006 after Geoffrey Hinton showed that one kind of neural network named

deep belief network is able to be trained efficiently using greedy layer-wise pretraining (Hin-

ton et al. [26]). Many other kinds of deep neural networks also applied the same strategy

later (Bengio et al. [12]; Poultney et al. [36]). Since then, the term “deep learning” became

popular among neural network researchers. Training deeper and deeper neural networks be-

came possible, and researchers began to realize the importance of depth in neural networks

(Bengio et al. [13]; Delalleau and Bengio [19]; Pascanu et al. [35]; Montufar et al. [34]).

One crucial reason deep learning took off, is that the dataset size is continuously increasing.

Figure 2.1 shows the size of datasets used as classification task benchmarks have significantly

increased in size over time.

Figure 2.1: Increasing Dataset Size Over Time [23]

On the other hand, computational resources are easier to get which made models run faster

and faster. Thus, larger and/or deeper models became possible. Due to more advanced

GPUs, faster network connectivity, and better software infrastructure for distributed com-



2.1. Deep Learning 9

puting, many neurons can work together and lead to increased accuracy, complexity, and

huge impact. That is an important observation, because from biology, researchers noticed

that animals become more intelligent when there is stronger neuron connectivity. Figure 2.2

shows the decreased error rate in deep learning over time.

Figure 2.2: Decreasing Error Rate in Deep Learning Over Time [23]

Among deep learning architectures, Convolutional Neural Networks (CNNs) are the state-

of-art architectures for many image analysis tasks. The key operations in CNNs are the

convolution operation, non-linearity transformation, spatial pooling, and feature maps.

Pioneering work on CNNs includes LeNet-5 (LeCun et al. [31]) for hand-written digit recog-

nition. The architecture of LeNet-5 is shown in Figure 2.3. The authors constructed a 5-layer

network, trained on the MNIST digit dataset with 60K training examples. This architecture

was embraced by many banks to recognize hand-written numbers on checks loaded in 32x32

pixel images. Handling higher quality images requires larger and more convolutional layers,

so the constraint in this technique is the availability of computing resources.
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Figure 2.3: Architecture of LeNet-5 [31]

Then, in 2012, AlexNet (Krizhevsky et al. [29]) was invented for image classification. This

framework is fairly similar to LeNet, but it applied Max pooling, ReLu nonlinearity, Dropout

regularization, and composed a larger model (7 hidden layers, 650k units, 60m parame-

ters). Because of the large model size, this architecture can classify higher resolution images

(227*227*3). Figure 2.4 shows the architecture of AlexNet.

Figure 2.4: Architecture of AlexNet [29]

However, both LeNet and AlexNet are very shallow. In the following years, people started

to use far deeper models to capture features, and to apply some similar functions with fewer

parameters. Examples include VGG (Simonyan and Zisserman [44]), ResNet (He et al. [25]),

and DenseNet (Huang et al. [27]). These all achieved superior performance and used less

memory during inference, which enables mobile computing devices to deploy such systems.
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VGG (Figure 2.5) uses smaller filters (3*3 Conv stride 1) and deeper networks (16-19 layers),

compared to AlexNet. It uses a stack of three 3*3 conv (stride 1) layers, which has the

same effective receptive field as one 7*7 conv layer. But it goes deeper, and has more

non-linearities.

Figure 2.5: Architecture of VGG [5]

Then researchers realized that the error increases if we continue stacking deeper layers on a

“plain” convolutional neural network. Figure 2.6 shows that the deeper the model goes, the

worse it performs.
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Figure 2.6: Errors Comparison [25]

So, researchers proposed a hypothesis: deeper models are harder to optimize; this is an

optimization problem.

In order to solve this problem, in ResNet (as introduced in He et al. [25]), the authors

used network layers to fit a residual mapping instead of directly fitting a desired underlying

mapping (Figure 2.7).

Figure 2.7: Residual Learning: a building block [25]

Experimental results showed that ResNet is able to train very deep neural networks (152

layers on ImageNet, 1202 layers on CIFAR), and achieved 1st place in both ILSVRC and

COCO 2015 competitions.

Built upon that, in 2017, Huang et al. [27] proposed DenseNet which uses stronger connec-

tions between layers. It has several compelling advantages:
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• strengthen feature reuse

• enhance feature propagation

• alleviate the vanishing-gradient problem

• greatly reduce the number of parameters

The network architecture and parameters are shown in Figure 2.8 and Figure 2.9 [27].

Figure 2.8: DenseNet Architecture [27]
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Figure 2.9: DenseNet Parameters [27]

In DenseNet, there are direct connections between any two layers with the same feature

map size. This introduces N∗(N+1)
2

connections in an N-layer network, instead of just N

connections. Compare to ResNet, DenseNet uses concatenation to combine features instead

of summation. As is shown in Figure 2.8, the lth layer collects the feature maps from all

previous layers, x0, ..., xl−1 as input (Equation 2.1):

xl = Hl(x0, x1, ..., xl−1) (2.1)

where x0, ..., xl−1 represents the concatenation of the feature maps generated in layers 0, 1, ...,

l-1. H is defined as a blended function of three consecutive operations: BatchNormalization

⇒ ReLU ⇒ Conv(3*3).

The crucial part of CNNs is using down-sampling layers to change the size of feature maps

and reduce parameters. To accelerate down-sampling in DenseNet, the network is divided

into multiple densely connected dense blocks. The layers between blocks are transition
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layers, which are designed to do the convolution and pooling operations. The transition

layers consist of: BatchNormalization ⇒ Conv(1*1) ⇒ AvgPooling(2*2).

2.2 Medical Image Analysis

Imaging is a cornerstone of medicine. Experts rely heavily on medical image to diagnose

diseases to treat patients. Medical image analysis is a science analyzing medical puzzles

and solving medical problems via images, that can be used for diagnosis, segmentation, and

therapeutic purposes. It is based on different imaging modalities and digital image analysis

techniques.

Common modalities for imaging include:

• X-ray

• CT (Computed Tomography)

• MRI (Magnetic Resonance Imaging)

• Ultrasound

X-ray technology is the oldest but most widely used type of medical imaging. The X-rays

work on a wavelength and frequency that are not able to be seen with human eyes, but

are able to be absorbed in different amounts depending on the density of the material, thus

creating a picture of what is going on underneath. They are quick, low cost and relatively

easy for the patient to endure. Nonetheless, some risks are strongly associated with the use

of X-rays due to the radiation, like radiation-induced cancer.
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Figure 2.10: X-ray [2]

Computed Tomography (CT) is a medical imaging technology that uses a quickly rotated

narrow beam of X-rays to produce thorough cross-sectional images of the body. It generates

better clarity compared to traditional X-rays by providing detailed images of blood vessels,

internal organs, and bones inside the body.

Figure 2.11: Computed Tomography (CT) [3]

Magnetic Resonance Imaging (MRI) is another medical imaging method that uses radio

waves and a magnetic field to create detailed images of tissues and organs. It is commonly
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used in examining internal body components to diagnose strokes, tumors, injuries, and brain

functions. A crucial consideration in MRI is that it does not use X-rays and radiation; this

distinguishes it from X-ray or CT scans.

Figure 2.12: Magnetic Resonance Imaging (MRI) [4]

Ultrasound is the safest way of medical imaging and has a wide range of applications. It

applies high-frequency sound waves to generate images of the inside of the body. It is often

used to detect abnormalities in the heart and blood vessels, organs in the pelvis and abdomen,

and pregnancy.



18 Chapter 2. Literature Review

Figure 2.13: Ultrasound [9]

As the imaging modalities develop, the number of medical images grows rapidly, and the

size and dimensionality of these images grow as well. This trend pushes researchers to

improve medical imaging analysis and devise higher quality medical processes. Once it was

possible for a machine to scan and load medical images, people started trying to build

intelligent systems for automated analysis. Between the 1970s and 1990s, medical image

analysis was conducted mainly with sequential application of pixel level preprocessing (e.g.,

region growing, line and edge detector filters) following by mathematical modeling (e.g., line,

ellipse, curve fitting) to build solid rule-based systems that are able to solve specific tasks.

Starting from the end of the 1990s, supervised learning techniques, in which labeled training

data is used to build model-based systems, were becoming increasingly popular in the med-

ical image area, like active shape models (for segmentation), atlas models, and statistical

classifiers. Those machine learning or pattern recognition approaches were very popular.

That was a big shift from human-designed systems to training data based systems from

which features are extracted. Computer-aided systems were able to determine the optimal
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decision boundary in high dimensional feature space. However, extraction of distinctive

features from images still needed to be done by human experts.

Then, researchers started to think about useful ways to let computers extract features by

themselves and become able to optimally represent the data for various problems at hand.

As deep learning techniques took off, especially convolutional network architectures, they

have been applied to analyzing medical images, and have pervaded the whole field of med-

ical image analysis. The main difference between deep learning methods and traditional

machine learning methods is deep learning methods are able to learn discriminative features

automatically, rather than choose and encode features determined ahead of time. Figure

2.14 shows how the different parts of intelligent systems relate to each other. The shaded

boxes indicate components that are able to learn from data directly.
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Figure 2.14: History of Intelligent Systems [23]

Within the brain imaging domain, deep neural networks (DNNs) have several applications.

In [17], the authors introduced a deep learning based manifold learning method to learn the

manifold of 3D brain images. They applied a deep generative model made up of multiple

restricted Boltzmann machines (RBMs) [26] to the ADNI dataset 1, which contains 300 T1-

weighted MRIs of Alzheimer’s disease (AD) and normal subjects. In order to accelerate the

computation process, they applied Convolutional RBMs (convRBMs), a form of RBM that

uses weight-sharing to reduce the number of trainable weights. Results show that it is much

more efficient to train with a resolution of 128*128*128 in practice and be able to extract

brain-related disease features by automatically learning a low-dimensional manifold of brain

1http://adni.loni.usc.edu/

http://adni.loni.usc.edu/
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volumes. According to Suk et al. [47], they used a stacked auto-encoder (SAE) to discover

latent representations from the original biological features; even nonlinear latent features can

be found using SAE. They also applied another method – a combination of sparse regression

models with deep neural networks (as introduced by [48]) – to the ADNI dataset. In [32],

the authors overcame the problem that not all subjects have all modalities by applying 3-D

CNN to predict the missing Positron-emission tomography (PET) patterns from the MRI

images. They trained a 3-D CNN model which is able to capture the nonlinear relationship

between modalities by feeding pairs of volumetric data modalities into the network.

Those DNN based methods had completely taken over many brain image analysis challenges.

In the 2014 and 2015 BRATS (brain tumor segmentation challenges), the 2015 ISLES (is-

chemic stroke lesion segmentation) challenge, and the 2013 MRBRAINS (MR brain image

segmentation challenge), the top teams all used end-to-end CNNs.

Within chest images, many deep learning based applications were applied in detection and

classification of nodules as well. As introduced in [11], the authors built an X-ray image

retrieval system by experimenting on binary features, texture features, and deep learning

(CNN) features. Best results are achieved by using deep learning features in a classification

scheme. According to Wang et al. [50], they proposed using deep feature fusion from the

non-medical training and hand-crafted features to reduce the false positive results in the

lung nodules detection task. Compared to previous methods, their method achieved better

results in sensitivity and specificity (69.3% and 96.2%) at 1.19 false positives per image

on the JSRT (Japanese Society of Radiological Technology) database [43]. And in [51],

researchers invented a cascade architecture of CNN, used for learning the mapping between

the gradients of the chest radiographs and the corresponding bone images. They evaluated

on 504 cases of real two-exposure dual-energy subtraction chest radiographs and were able

to produce high-resolution bone and soft-tissue images.
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Moreover, in recent challenges for nodule detection, top systems all used CNN architectures.

Compared to previous challenges, like ANODE09, where handmade features were used to

extract nodules, deep learning based methods outperformed by a large margin.

Transfer learning in the medical image has also been widely applied, which typically uses

pre-trained networks to work around the specific large datasets for further training. Two

use cases were identified: (1) use a pre-trained model as a fixed feature extractor and (2)

fine-tuning a pre-trained network on medical data. The first one does not need people to

train the network, and the second one allows people to train the network by leveraging the

already existing labeled data of some related task or domain. Both of these methods are

widely applied, according to Litjens et al. [33].

2.3 Diabetic Retinopathy Grading

In the 1990s, detecting DR was a very time-consuming and manual process that required

a trained clinician to examine and evaluate digital color fundus photographs of the retina.

Although some papers, like Klein et al. [28], proposed methods to detect DR, they were

mainly focus on tools, like ophthalmoscopy, non-mydriatic camera, and standard fundus

camera, not on methodology.

Then researchers started to use image classification, pattern recognition, and machine learn-

ing methods in automated DR detection, and made good progress. In 1996, Gardner et al.

[22] constructed a simple backpropagation neural network to recognize features in the reti-

nal images, which achieved better results compared to the ophthalmologist and proved that

recognizing vessels, exudates, and hemorrhages is possible. In 2002, Walter et al. [49] con-

tributed to image analysis for the diagnosis of diabetic retinopathy. They started to use

image enhancement to improve contrast and sharpness and reduce noise, then applied mass
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screening to detect features of the retina. Some morphological operations were also applied

in their experiment. In 2009, Ravishankar et al. [39] applied an optic disk detection pattern

which pinpoints major blood vessels first, then locates the optic disk based on intersections

of blood vessels and color properties. They also used morphological operations to detect

blood features of diabetic retinopathy, like exudates, microaneurysms, and hemorrhages.

In recent years, with the improvement in medical image quality and quantity, also with

the development of deep learning and computational infrastructure, many works in retina

related areas achieved good performance; they all used simple CNNs for color fundus imaging

analysis. In 2016, Fu et al. [20, 21] applied a multi-scale and multi-level CNN with a side

output layer to learn a rich hierarchical representation, and utilized a Conditional Random

Field (CRF) to model the long-range interactions between pixels, then combined CNN with

CRF layer into an integrated deep network called DeepVessel, to segment the blood vessel. In

the same year, Abràmoff et al. [10] created a hybrid system using CNNs as a high performing

lesion detector.

In 2015, Kaggle held a diabetic retinopathy detection competition; they provided around

35,000 color fundus retina images for training, and around 53,000 for testing. The top

teams, like Graham [24], all used end-to-end CNN models and achieved good performance.

2.4 Tree-based Algorithms

Tree-based algorithms are treated as one of the most widely used supervised learning meth-

ods and can be used for both regression and classification problems. They partition the

space and identify some representative centroids. Unlike linear methods, where classification

boundaries are determined by using hyperplanes, tree algorithms always use a hierarchical

way of partitioning the space.
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In 1984, Breiman et al. [16] created Classification and Regression Tree (CART). It applied

a greedy splitting strategy, recursively splitting the input space. Like in a sequence of

questions, the answer to the current question determines what the next question is. The

results of those questions is a tree-shaped structure. Figure 2.15 shows a simple example of

CART on the Titanic problem 2.

Figure 2.15: A Tree Structure on “Titanic”

The main components in CART are:

• Splitting rule: based on the value of one feature at each node

• Stopping rule: to terminate a branch

• Prediction: each leaf node has to have a prediction

• Greedy manner: choose the very best split point at each time

The splitting rule is based on the greedy manner: always choose the best split point at

2https://www.kaggle.com/c/titanic

https://www.kaggle.com/c/titanic
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each time. For stopping rule, it uses a minimum count on the number of training instances

assigned to each leaf node. If the count is less than some threshold, then the split is not

allowed, and the node is treated as a final leaf node.

For regression modeling, the cost function is designed to minimize the sum squared error (as

shown in Equation 2.2).

loss =
∑

(y − yprediction)2 (2.2)

The depth of the tree is very important for this algorithm. If the tree is very deep, that

might cause overfitting; however, if the tree is very shallow, it might not be able to capture

the features from the data. So, the strategy here is to grow a large tree first, and stop

growing only when reaching the maximum number of nodes. After that, use “cost-complexity

pruning” (as introduced in Ripley [41]).

For classification modeling, the Gini index is used as loss function (shown in Equation 2.3).

The Gini index is a measure of the homogeneity (or “purity”) of the nodes. If all data points

at one node belong to the same class then this node is considered “pure”. So, by minimizing

the Gini index the decision tree finds the features that separate the data best.

Gini− Index =
∑

(pi ∗ (1− pi)) (2.3)

The splits in the CART are mainly binary splits because multiway splits decompose the

data too quickly. That might lead to insufficient data for the next level since multiple binary

splits can replace a multiway split; hence the binary split is preferred.

Then Quinlan [38] proposed the C4.5 and C5.0 algorithms. They apply a different pruning

technique, error-based pruning, and use Shannon Entropy (shown in Equation 2.4) to pick
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features with the greatest information gain as nodes.

Cross− Entropy = −
∑

pilogpi (2.4)

The problem for single-tree algorithms is high-variance and overfitting the training data, so

many advanced methods were invented.

The bagging method was exploited by Breiman [14]; the authors proposed to produce

“bagged” classification trees. The key idea is averaging over the results from a large number

of bootstrap trees. This method can generalize easily to a wide variety of classifiers beyond

classification trees.

Then, the authors went ahead and proposed the Random Forest algorithm [15]. It is very

similar to bagging, but it uses a random sample of predictors before each node is split. For

example, if there are fifty predictors, the bagging method would choose a random ten as

candidates for constructing the best split. Repeat this process for each node until the tree

is large enough. And as in bagging, do not prune.

It achieved excellent performance because it solved a big problem in tree-based algorithms:

high variance. The trees in Random Forest are more independent due to the combination

of bootstrap samples and random draws of predictors. It is also able to reduce bias because

there are a large number of predictors that can be considered, so more information might be

brought in to reduce bias.

Boosting algorithms, like bagging, are another good approach in improving prediction results

for a variety of machine learning methods. They apply a sequential approach: first, use sub-

sets of the original data to produce a series of weakly performing models, then “boost” their

performance by combining them using a particular cost function (majority vote). Boosting
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is a strong classifier, using a combination of week classifiers ht(x):

f(x) =
T∑
t=1

αtht(x) (2.5)

Each tree in a boosting algorithm is grown based on previously grown trees. Instead of using

a single decision tree to learn from the data, which may lead to overfitting, the boosting

algorithm learns slowly. Give one decision tree, the new decision tree is fitted to the residual

of the previous model. Then, add this new decision tree to the fitted model to update. By

this way, we can slowly improve in the places where the single model does not perform well.
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Datasets

Table 3.1: Diabetic Retinopathy (DR) Severity Scale

Disease Severity Level Findings
Grade 0: No apparent retinopathy No visible sign of abnormalities
Grade 1: Mild NPDR Presence of microaneurysms only
Grade 2: Moderate NPDR More than just microaneurysms

but less than Severe NPDR
Grade 3: Severe NPDR Any of the following:

• >20 intraretinal hemorrhages
• Venous bleeding
• Intraretinal microvascular abnormalities
• No signs of PDR

Grade 4: PDR Either or both of the following:
• Neovascularization
• Vitreous/pre-tinal hemorrhage

According to severity levels, diabetic retinopathy can be classified into five level, from NPDR

to PDR (shown in Table 3.1). NPDR is the early stage of the disease where symptoms will

be mild or non-existent. Blood vessels in the retina are weakened in NPDR. Fine bulges in

the blood vessels called microaneurysms may leak fluid into the retina. This kind of leakage

may lead to swelling of the macula. PDR is the more advanced type of the disease. At

28
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this stage, circulation problems deprive the retina of oxygen. As a result, new and fragile

blood vessels begin to grow in the retina and into the vitreous, the gel-like fluid that fills the

back of the eye. The new blood vessels may leak blood into the vitreous, and cause cloudy

vision 1.

Figure 3.1 shows some (sub)types of diabetic retinopathy 2.

Figure 3.1: Types of Diabetic Retinopathy

In our experiments, we use data from 3 sources.

The first source is from sub-challenge 2 3 of the ISBI 2018 challenges 4. Retina image data

1https://www.aoa.org/patients-and-public/eye-and-vision-problems/

glossary-of-eye-and-vision-conditions/diabetic-retinopathy
2https://openi.nlm.nih.gov/detailedresult.php?img=PMC3284208_opth-6-269f3&query=&it=

xg&req=4&qimg=0.775042001524893499a&npos=1
3https://idrid.grand-challenge.org/grading/
4http://biomedicalimaging.org/2018/challenges/

https://www.aoa.org/patients-and-public/eye-and-vision-problems/glossary-of-eye-and-vision-conditions/diabetic-retinopathy
https://www.aoa.org/patients-and-public/eye-and-vision-problems/glossary-of-eye-and-vision-conditions/diabetic-retinopathy
https://openi.nlm.nih.gov/detailedresult.php?img=PMC3284208_opth-6-269f3&query=&it=xg&req=4&qimg=0.775042001524893499a&npos=1
https://openi.nlm.nih.gov/detailedresult.php?img=PMC3284208_opth-6-269f3&query=&it=xg&req=4&qimg=0.775042001524893499a&npos=1
https://idrid.grand-challenge.org/grading/
http://biomedicalimaging.org/2018/challenges/
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from the IDRiD (Indian Diabetic Retinopathy Image Dataset) database was provided, which

is the first database representative of an Indian population. Each retina image is labeled by

severity level. Initially, 80% of the data (training data) with the ground truth was released on

January 20, 2018; then the remaining 20% (test data) was provided on the day of challenge

workshop (April 4, 2018). See Table 3.2 regarding the released data.

Table 3.2: Proportion of Images Per Grade in IDRiD

Diabetic Retinopathy (No. of Images)
Severity Level Total Number Training Set Testing Set

Grade 0 168 134 34
Grade 1 25 20 05
Grade 2 168 136 32
Grade 3 93 74 19
Grade 4 62 136 13

The second source is from the Kaggle website; there are 35,126 high-resolution color retina

images taken under diverse imaging conditions that were released in the 2015 diabetic

retinopathy detection competition (https://www.kaggle.com/c/diabetic-retinopathy-detection).

Images of a left and a right eye are provided for every patient. Images are labeled with a

patient ID as well as either left or right (e.g., 1 left.jpeg means the left eye of patient with

ID 1). The quantity and proportions are shown in Table 3.3.

Table 3.3: Proportion of Images Per Grade in Kaggle

Severity Level Training Set Percentage
Grade 0 25810 73.48%
Grade 1 2443 6.96%
Grade 2 5292 15.07%
Grade 3 873 2.48%
Grade 4 708 2.01%

For the last source, we use the DRIVE (Digital Retinal Images for Vessel Extraction)

database from its website (https://www.isi.uu.nl/Research/Databases/DRIVE/), which was

established to enable comparative studies on segmentation of blood vessels in retinal images
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Figure 3.2: DRIVE Data Sample Image

(refer to Staal et al. [46] for details). The images in the DRIVE database were obtained

from a diabetic retinopathy screening program in the Netherlands. Each image has been

JPEG compressed. The screening population consisted of 400 diabetic patients, 25-90 years

of age. 40 photographs have been randomly selected, 33 of them do not show any trace of

diabetic retinopathy and 7 of them show signs of mild early diabetic retinopathy. Examples

are shown in Figure 3.2.
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Methodology

This chapter is our methodology part: how we have conducted the whole experiment.

4.1 Pipeline Overview

The whole pipeline for our experiment is illustrated in Figure 4.1

Figure 4.1: Pipeline

First, we input color retina images and use various methods to preprocess images. Then,

we resize and augment images. After that, we apply DenseNet 121 to pre-train a model on

the dataset. We do not directly use the output from DenseNet 121; instead, for each image,

50 times augmentations are applied and fed into the pre-trained model, forward all the way

32
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to the last second fully connected layer. We then get outputs from that layer and calculate

the mean vector and standard deviation vector as features for that image. Finally, we use

extracted features to train and test on a Light GBM model and a 5-layer neural network

model, respectively.

4.2 Data Preprocessing

In the medical image area, researchers applying similar network architectures may have

different results. That is because feature engineering and expert knowledge available in an

image are often overlooked by people. In this research experiment, many image preprocessing

methods have been applied.

We first apply standardization, to have zero mean and unit norm. Basically, our raw image

has three channels, and in each channel, pixel values range from 0 to 255. Our goal is to

squash the range of values for all the pixels in the three channels to a small range. Using

Equation 4.1 below can transform each image to have zero mean and unit variance:

xnew =
x− µ
σ
∼ N(0, 1) (4.1)

(µ represents the mean, and σ represents the standard deviation).

The reasons we conduct standardization are as follows:

1. Make training less sensitive to the scale of features: because our data are collected from

different cameras, and under different conditions, so the scale of values in image channels is

different. In that case, a very large distance from one variable may dominate the response

variable in high dimensional space. But unit variance can help us ensure proportional con-

tributions from all features.
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2. Consistency for comparing results across models: providing the same scaling to compare

among methods.

3. Make optimization well-conditioned: We use stochastic gradient descent to optimize

during training, and the speed of convergence depends on the scaling of features (or more

specifically, the eigenvalues of XTX). Normalization makes the problem better conditioned,

improving the convergence rate of gradient descent.

Then, we also apply a brightness-preserve operation. The preservation of mean brightness

of the input image is essential for medical image analysis, so a morphological closing oper-

ation and contrast enhancement technique are employed. According to Lachure et al. [30],

exudates and microaneurysms in the retina are easier to detect after applying morphological

operations, like closing. The morphological closing operation, essentially, is obtained by the

dilation of an image followed by an erosion operation. It is efficient in closing small holes

on the objects. Examples are shown in Figure 4.2 1. The left one is the original image, and

the right one is the image after the morphological closing operation. Contrast enhancement,

basically, is using the difference in visual properties to make an object distinguishable from

other objects and the background. It is able to preserve the mean brightness satisfactorily

and also produce better quality images. As a result, according to Datta et al. [18], it indeed

improves the overall MA detection. An example of contrast is shown in Figure 4.3. The left

one is the original image, and the right one is the image after contrast enhancement.

1https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html

https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html
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Figure 4.2: Morphological Closing Example

Figure 4.3: Image Contrast Enhancement Example

According to Reimers et al. [40], evaluating DR severity from a simulated red-free (green)

channel is comparable to using color images – perhaps slightly more sensitive for some

lesions. And according to Sinthanayothin et al. [45], the color band chosen for recognition of

hemorrhages and microaneurysms (HMA) was green as it contained more information and

greater contrast for red features. We thus extract the green channel only for each image,

which not only makes it easier to observe lesions in retina image but also reduces storage

space by 2/3.

Since the original images are fairly large (say, 4000*25000 pixels on average), in order to

make data suitable for deep learning training and also reduce computation, all input images
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are resized to 256*256. Figure 4.4 shows the original image, brightness-preserved image, and

green only image.

Figure 4.4: Original, Bright Preserved and Green Only Image

Segmentation also has been tried in the preprocessing. Diabetic retinopathy can induce

blood vessels in the retina to leak fluid, distorting eyesight. In its most mature stage, new

abnormal blood vessels expand (increase in number) on the surface of the retina, which can

lead to scarring and cell loss in the retina. So, the shape of blood vessels also is an indicator of

DR. The DRIVE dataset is used to segment blood vessels from retina images. Because this is

a binary classification task – the neural network predicts if each pixel in the fundus image is

either a vessel or not – we apply sequential approaches. First, we apply gray-scale conversion

for each image. Then, standardization has been performed to have zero mean and unit norm.

In order to avoid the over-brightness problem, adaptive histogram equalization is used. But

images may be divided into small blocks and histograms may restrict to a small region (unless

there is noise); if noise is there, it will be enlarged. To alleviate this problem, contrast limiting

is applied. After that, sub-images of the preprocessed full image are randomly selected; each

patch’s size is 48*48. 200,000 patches are randomly selected: 10,000 patches from each of 20

DRIVE datasets. Sample input images are shown in Figure 4.5, and sample input masks are

shown in Figure 4.6. 10% of them are selected as validation, and 90% are selected as training.

Then we feed those as input into our U-Net model (Ronneberger et al. [42]). Rectifier Linear

Unit (ReLU) is used as an activation function after each convolutional layer, and a dropout

of 0.2 is used between two consecutive convolutional layers; cross-entropy and stochastic
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Figure 4.5: Sample U-Net Input Image

gradient descent have been applied for optimization. Our u-net structure is shown in Figure

4.7.

For computational resources, 2 GeForce GTX 1070 GPUs are used for u-net training; the

whole process requires around 15 hours. Results are shown in Table 4.1 and an example

segmentation result is shown in Figure 4.8.

Table 4.1: Blood Vessels Segmentation Results on DRIVE dataset

Metrics Score
Accuracy 0.9560
Sensitivity 0.7671
Specificity 0.9835
Precision 0.8717
AUROC 0.9790

F1 score (F-measure) 0.8160
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Figure 4.6: Sample U-Net Input Mask

Figure 4.8: Original - Ground Truth - Prediction

Because there is no mask image in the Kaggle and IDRiD datasets, so we have not in-

cluded it in our pipeline. Nevertheless, this is a very good method for retinal blood vessel

segmentation.



4.2. Data Preprocessing 39

Figure 4.7: U-Net Architecture
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4.3 Data Augmentation

After preprocessing, image datasets are computationally more feasible to allow many trans-

formations. To make the model more robust, not overfitting, data augmentation methods

have been applied to train the model. The main reason we augment the training set is to in-

crease the number of training examples and make the pipeline more robust. Like with many

other medical image databases – due to different medical facility conditions, like different

models and types of cameras, or different racial groups – image quality or visual appearance

may be affected. Examples are shown in Figure 4.9; most of the images like the leftmost

image are very normal, but some images like the middle image are too bright, while some im-

ages like the right image are too dark. Hence, the following augmentations (transformations)

are applied in our experiments:

• Cropping images to 224*224

• Flipping

• Shearing

• Rotating images by [0, 360] degrees

• Zooming (equal cropping on x and y dimensions)

Figure 4.9: Different Image Quality
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4.4 Benchmark

We applied deep learning as a method to predict diabetic retinopathy severity level from

color retina images. Specifically, we construct a CNN model based on the DenseNet 121

architecture. DenseNet yields the state of the art in many image classification tasks. So

we apply DenseNet 121 in our experiment as benchmark method. 121 is calculated by

5+(6+12+24+16)*2, where 5 is Conv+Pooling+3Transition, and 6,12,24,16 is for each dense

block, and we multiply by 2 because each block has 2 layers (1*1 conv and 3*3 conv).

As controlled experiments, we use VGG19 and ResNet101 architectures, to test which CNN

architecture works best in the DR grading task.

Retina images are fed into this network to pre-train the model; we apply cross-entropy as loss

function and stochastic gradient descent as optimization; we stop training after 200 epochs.

An important problem in our experiment is that the distribution among the levels in the

dataset is highly imbalanced. For example, grade0 describes 73.48 percent of the images,

while grade3 and grade4 each have around 2 percent.

In order to alleviate the problem, where the model prefers to predict image level according

to the higher proportion level in the training set, a crucial strategy we apply here is, during

training, to resample the weights of loss that yields balanced classes. Accordingly, we use

1.3609 for grade 0, 14.3782 for grade 1, 6.6375 for grade 2, 40.2359 for grade 3, and 49.6129

for grade 4. In this case, images in small proportion are able to get heavier loss weights

during training, and all classes are balanced. See in Table 4.2.
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Table 4.2: Weights of Loss for Each Level

Severity Level(A) Training Set(B) Percentage(C) Loss Weight(D) C * D

Grade 0 25810 73.48% 1.3609 0.9989

Grade 1 2443 6.96% 14.3782 1.0007

Grade 2 5292 15.07% 6.6375 1.0002

Grade 3 873 2.48% 40.2359 0.9978

Grade 4 708 2.01% 49.6129 0.9972

We conduct our first experiment on the Kaggle dataset only. To make sure the training

set and test set have the same distribution, we select 80% of the images of each level for

training, and test on the other 20%. The result of this experiment is used as the benchmark

on Kaggle dataset.

In our second experiment, we use the whole Kaggle dataset for training first. Then we also

split 80% of the IDRiD dataset for fine-tuning and another 20% is used for testing. Also, we

make sure that training set and test set have the same distribution. The same loss function

and optimization are used, and we stop it after 50 epochs when tuning. We set the learning

rate of this DenseNet 121 to 0.0005, and it decreases by 0.1 every 30 epochs, which is very

low because we observe that a large rate can lead to poor convergence in our experiments.

The result of this experiment is used as the benchmark on IDRiD dataset.

4.5 Feature Extraction

Feature extraction is the key and time-consuming part of the workflow. Previously, the

feature engineering method was in domination. Recently, deep learning techniques have

started to demonstrate superior performance on extracting features, much better than hand-
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crafted feature detectors.

Many CNNs has been shown to be good feature extractors because hierarchical convolutional

layers inside are able to provide high-level features and patterns. In our experiments, we use

the DenseNet 121 model, trained on the Kaggle and IDRiD datasets, to extract features.

Specifically, we use the last second fully connected layer of our model to extract features. In

order to make extracted features more stable, we apply 50 random augmentations for each

image to get 50 outputs from the last second fully connected layer (size of 50*1024), then

the mean vector and standard deviation vector are calculated (size of 2*1024), and provided

as features.

4.6 Feature Blending

We experiment on several algorithms with extracted features, including a gradient boosting

decision tree algorithm and neural network.

Decision tree algorithms in machine learning have demonstrated amazing performance when

features are well extracted. For example, the Xgboost algorithm has achieved top perfor-

mance in many Kaggle competitions. In our experiment, we also apply a gradient boosting

decision tree algorithm: Light Gradient Boosting Decision Tree (Light GBM).

Light GBM is a relatively new algorithm, built based on decision tree algorithms, and it

is used mainly for classification, ranking, and other machine learning tasks 2. It differs

from other tree algorithms in many ways. First, Light GBM grows tree leaf-wise, while

other algorithms grow tree level-wise. It will choose the leaf with max delta loss to grow.

Figure 4.10 and Figure 4.11 3 show the difference between Light GBM and other boosting

2https://github.com/Microsoft/LightGBM
3https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst

https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst
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algorithms.

Figure 4.10: How LightGBM works

Figure 4.11: How other boosting algorithm works

Leaf-wise splits can lead to increase in complexity and finally may cause overfitting when

the dataset is small, but “max depth” is the parameter we can set to limit depth of tree and

avoid overfitting.

Compared to Xgboost, Light GBM outperforms in many aspects:

• Fast training speed and higher efficiency: Light GBM buckets continuous feature

values into discrete bins to accelerate the training procedure

• Low memory usage: it replaces continuous values using discrete bins to reduce memory

usage

• Higher accuracy: it can produce much more complex trees by following a leaf-wise

split approach, which is the main reason for achieving higher accuracy

• Parallel learning: it supports both feature parallel and data parallel
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• GPU support: makes training even faster

• Deals with large-scale data

• Corporate support

For hyperparameters in the Light GBM algorithm, we apply random search. For random

search, essentially, we need to initialize some random values for each hyperparameter, then

randomly select values for hyperparameters, several times. From the final results, we compare

and choose the best group of parameters for our model in our final prediction tasks.

In our experiment, we use extracted features, whose dimension is 2048, as input, and feed

into our Light GBM model; randomly select hyperparameters and train 7 times; and select

the best group of parameters. We choose multi logloss as loss function, GBDT (gradient

boosting decision tree) and DART (Dropouts meet Multiple Additive Regression Trees) as

the random choice of boosting types. The output of Light GBM is the severity level of a

retina image.

As a comparison with Light GBM, we construct a five-layer fully connected neural network,

with details shown in Figure 4.12.

Figure 4.12: Five-layer Network
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For each retinal image, we extract features from DenseNet 121 (dimension is 2048) and

feed into this 5-layer neural network. For hidden layers, dimensions are 512, 256, 128, and

64, respectively. Leasky ReLU (0.01) has been applied as activation function (as shown in

Equation 4.2), with Adam optimizer (where the learning rate is 0.0001).

f(x) =

 x (if x > 0)

0.01x (otherwise)
(4.2)

The output of this network is the probability of each of the five levels, so the prediction is

chosen as the level with the highest probability.
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Results

5.1 Metrics

In our experiments, we use accuracy, quadratic weighted kappa score, precision, recall, and

F1 score to evaluate the performance of our model.

The accuracy metric is required by the Grand-Challenge, which is defined in Equation 5.1:

Accuracy(y, ŷ) =
1

nsamples

n−1∑
i=0

1 (ŷi = yi) (5.1)

The quadratic weight kappa metric is a measurement which evaluates inter-rater agreement

for qualitative (categorical) items. It is generally treated as a more robust measure than

simple percent agreement calculation, as it takes into account the possibility of the agreement

occurring by chance 1. Its value usually is between 0 and 1, where 0 means random agreement

1https://en.wikipedia.org/wiki/Cohen%27s_kappa
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and 1 means complete agreement between raters 2. Only when there is less agreement

between the raters than expected by chance, will this metric go below 0 [1].

We also report performance on the widely used metrics, namely precision, recall, and F1

score, defined in equations 5.2, 5.3, and 5.4, respectively.

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 =
2 ∗ TP

2 ∗ TP + FN + FP
(5.4)

(TP represents True Positive; TN represents True Negative; FP represents False Positive;

FN represents False Negative.)

5.2 Results

We conduct two experiments on the Kaggle and IDRiD datasets. In order to prove our

pipeline works for general retina images, we first test on the Kaggle dataset. Then, we also

fine-tune the model from the first experiment on the IDRiD dataset, to prove our pipeline

is able to grade the IDRiD dataset.

2https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation

https://www.kaggle.com/c/diabetic-retinopathy-detection#evaluation
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5.2.1 Results on Kaggle Dataset

In the first experiment, we randomly select 80% of the images at each level in the Kaggle

training data to train the CNN, and the remaining 20% as the test set. We first conduct

an experiment without any image preprocessing on DenseNet 121, VGG 19, and the ResNet

101 architecture. The experiment results are shown in Table 5.1.

Table 5.1: Controlled Experiment on Kaggle Dataset

Experiment Accuracy Kappa Score

VGG 19 0.35 0.49

ResNet 101 0.32 0.44

DenseNet 121 0.38 0.54

Because the DenseNet architecture has superior performance compared to the other archi-

tectures, we conduct further experiments based on DenseNet: we compare the influence from

different pre-processing and post-processing methods based on DenseNet. The experiment

results are shown in Table 5.2.
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Table 5.2: Experiment Reults on Kaggle Dataset

Experiment Accuracy Kappa Score

DenseNet 121 (Benchmark) 0.38 0.54

Green-channel-only DenseNet 121 0.54 0.72

Bright-preserved DenseNet 121 0.60 0.77

5-layer NN + DenseNet 121 0.50 0.70

5-layer NN + Green-channel-only DenseNet 121 0.60 0.80

5-layer NN + Bright-preserved DenseNet 121 0.63 0.84

LightGBM + DenseNet 121 0.49 0.71

LightGBM + Green-channel-only DenseNet 121 0.61 0.82

LightGBM + Bright-preserved DenseNet 121 0.65 0.84

We compare our best model, which uses Light GBM on features which were obtained from

DenseNet trained on the bright-preserved image, with the benchmark, considering precision,

recall, and F1-score. Results are shown in Table 5.3.

Table 5.3: Classification Report on Kaggle dataset

DR Level
Precision Recall F1 Score

Benchmark Best Model Benchmark Best Model Benchmark Best Model
0 0.88 0.92 0.99 0.96 0.93 0.94
1 0.56 0.70 0.23 0.31 0.32 0.43
2 0.08 0.64 0.17 0.54 0.10 0.58
3 0.35 0.67 0.10 0.76 0.15 0.71
4 0.20 0.72 0.19 0.74 0.19 0.73
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5.2.2 Results on IDRiD Dataset

We conduct the second experiment by using the whole Kaggle dataset for training and

randomly select 80% of each grade in the IDRiD dataset for fine-tuning. The remaining 20%

are used to test the model performance. We also conduct a controlled experiment on the

VGG19, ResNet101, DenseNet121 architectures. Experiment results are shown in Table 5.4.

Table 5.4: Controlled Experiment on IDRiD Dataset

Experiment Accuracy Kappa Score

Fine-tuned VGG 19 0.43 0.56

Fine-tuned ResNet 101 0.44 0.60

Fine-tuned DenseNet 121 0.49 0.69

On the IDRiD dataset, DenseNet is still the best architecture for this pipeline, so we also

compare the influence from different pre-processing and post-processing methods based on

DenseNet. The experiment results are shown in Table 5.5.

Table 5.5: Experiment Reults on IDRiD Dataset

Experiment Accuracy Kappa Score
Fine-tuned DenseNet 121 (Benchmark) 0.49 0.69

Green-channel-only Fine-tuned DenseNet 121 0.56 0.76
Bright-preserved Fine-tuned DenseNet 121 0.58 0.79

5-layer NN + Fine-tuned DenseNet 121 0.55 0.76
5-layer NN + Green-channel-only Fine-tuned DenseNet 121 0.59 0.78

5-layer NN + Bright-preserved Fine-tuned DenseNet 121 0.64 0.83
LightGBM + Fine-tuned DenseNet 121 0.55 0.77

LightGBM + Green-channel-only Fine-tuned DenseNet 121 0.62 0.81
LightGBM + Bright-preserved Fine-tuned DenseNet 121 0.66 0.84

We also compare our best model, where we use Light GBM after features that are obtained

from the fine-tuned DenseNet trained on the bright-preserved image, with the benchmark,

considering in precision, recall, and F1-score. Results are shown in Table 5.6.
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Table 5.6: Classification Report on IDRiD dataset

DR Level
Precision Recall F1 Score

Benchmark Best Model Benchmark Best Model Benchmark Best Model
0 0.93 0.92 0.99 0.95 0.95 0.93
1 1.00 0.67 0.17 0.40 0.29 0.50
2 0.10 0.62 0.36 0.71 0.16 0.66
3 0.26 0.36 0.33 0.28 0.29 0.31
4 0.16 0.42 0.15 0.42 0.15 0.46

5.2.3 Computational Resources

For computational resources, we use 4 GeForce GTX 1070 GPUs, each loaded with 16G

memory, spending 4 days in total to train the DenseNet 121 model and extract features.

This process can be accelerated if we use green channel only images as input.

5.2.4 Achievement

This deep learning based pipeline (described in Figure 4.1) achieved third place in the ISBI

2018 Diabetic Retinopathy Segmentation and Grading Challenge. Our group has three mem-

bers: Jeff Wu, from Cleerly Inc.; Ting Zhou, from University at Buffalo; and the author of this

thesis, who led the effort discussed herein. We participated in two sub-challenges (Diabetic

Retinopathy grading and Diabetic Macular Edema grading) of the Diabetic Retinopathy

Segmentation and Grading Challenge. Jeff mainly focus on providing computational re-

sources, environment configuration, and training DenseNet 121 with the author. Ting Zhou

mainly focus on the whole DME prediction and he also contributed on finding image prepro-

cessing methods. The author mainly contributed to the whole DR prediction, including data

collection, data preprocessing (e.g., contrast enhancement, green channel extraction), blood

vessels segmentation, DenseNet 121 training, Light GBM training and random search on

Light GBM. For the DR grading challenge, Table 5.7 shows the detailed effort by members
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of the group.

Table 5.7: Detailed Effort

Work Assignee
Data Information Collection Yu

Data Download Yu
Image Morphological Closing Operation Ting

Image Contrast Enhancement Yu
Image Green Channel Extraction Yu

Blood Vessel Segmentation Yu
U-Net Training Yu

Data Augmentation Yu
DenseNet 121 Training Wu &Yu

Environment Delopment Wu
Feature Extraction Yu

Light GBM Training Yu
Random Search Optimization Yu

5-Layer Neural Network Training Yu
Computational Resources Providing Wu



Chapter 6

Discussion

In this research, we propose a deep learning based pipeline for image grading of diabetic

retinopathy. Results outperform the baseline method by a large margin. From our study,

we observe the following.

First, preprocessing is commonly used in the medical image area, and is very important for

feature extraction in diabetic retinopathy. Medical images have often deteriorated with high

noise due to various interference sources in the measurement processes of the imaging and

data acquisition systems. Improvement in appearance and visual quality of the images may

assist in the interpretation of medical images, and may also affect the diagnostic decision.

Preprocessing retina image can help us suppress unwanted (non-object) information and

enhance wanted (object) information. Preprocessing retina images makes feature extraction

easier and achieves better performance. From the experiment results in Chapter 5, we can

observe that preprocessing has a huge impact on DR detection. In our experiment results

on the IDRiD dataset, with preprocessing, our model can achieve 0.66 in accuracy and 0.84

in quadratic weighted kappa score; without much preprocessing, we can only achieve 0.55

in accuracy and 0.77 in quadratic weighted kappa score. In our experiment results on the
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Kaggle dataset, with preprocessing, our model can achieve 0.65 in accuracy and 0.84 in

quadratic weighted kappa score; without much preprocessing, our model can only achieve

0.49 in accuracy and 0.71 in quadratic weighted kappa score. In all our experiments, we

clearly see a boost in performance with the preprocessing techniques.

When we compare experiment results on the IDRiD dataset with the Kaggle dataset, we

find that in the Kaggle dataset, preprocessing work is even more important. That can

be mainly explained by the relative order-of-magnitude difference between the Kaggle and

IDRiD datasets in quantity. Additionally, the Kaggle dataset exhibits more diversity. In

contrast, the IDRiD dataset contains images that are mostly collected under similar condi-

tions.

Second, like other CNNs, DenseNet 121 is a good feature extractor, and works well espe-

cially for our pipeline. In the deeper layer of DenseNetn 121, it can provide us with a higher

level of features of input images, which enable us to capture features related to DR. In our

experiments, DenseNet 121 as the benchmark achieves 0.69 quadratic weighted kappa score

for the IDRiD dataset, and 0.54 in Kaggle dataset, which is much better than other CNN

architectures. Also, from our experiments, with some important preprocessing steps like

brightness preserve and green channel extraction, DenseNet 121 can achieve even better per-

formance than those without preprocessing. That means DenseNet 121 itself can learn some

features, but with some expert knowledge about retinal images (as implemented through

preprocessing), it is able to learn better features.

Third, lesions in the green channel are well represented. From our experiment, extracting

only the green channel of a retina image after bright preserve in the diabetic retinopathy

grading task still can achieve good performance. However, it may lose some information we

need to detect diabetic retinopathy. In our experiment results, extracting only the green

channel hurts the performance a little comparing to those keep all the channels. The results
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between experiments (i.e., extracting green channel vs. using all of the channels) shows the

information entropy that we may have lost.

Finally, the boosting decision tree algorithm works better in which features are well extracted

than the 5-layer neural network, because it trains fast and gets better results. In all of our

experiments, Light GBM gives better results as compared to the neural network. On the

other hand, the neural network may be overfitting in small datasets. When training on the

IDRiD dataset, there is a big difference with Light GBM. However, with the dataset becoming

large, it is able to achieve performance comparable with Light GBM. When training on the

Kaggle dataset, it generates a much better result, even a similar kappa score with Light

GBM.



Chapter 7

Conclusions and Future Work

7.1 Summary

In this research, we build an integrated pipeline to automatically grade diabetic retinopathy.

We use a dataset from the Kaggle diabetic retinopathy competition and the IDRiD database.

First, we preprocess the image data to make it efficient to train, including contrast enhance-

ment, standardization, and morphological closing operation. Then we augment the data

with various transformations.

After that, we feed data into the DenseNet 121 architecture, which is the state-of-art archi-

tecture in many image classification tasks, to train a model as a benchmark. A resampling

method is applied to alleviate problems caused by imbalanced data. For each image, fea-

tures are extracted by randomly augmenting images 50 times, then extracting the outputs

from the last second fully connected layer. The mean vector and standard deviation vec-

tor are calculated as features for each image. Then we apply a 5-layer neural network and

LightGBM to train the model based on extracted features. Results show that our integrated
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workflow outperforms the baseline method by a large margin in not only the IDRiD dataset

but also the Kaggle dataset. This pipeline achieved third place in the ISBI 2018 Diabetic

Retinopathy Grading challenge on April 4, 2018 in Washington, D.C.

7.2 Conclusions

In this work, we propose a novel deep learning based pipeline for grading diabetic retinopathy.

Previous work in diabetic retinopathy detection and grading work mainly relies on expert

knowledge and hand-made features.

As main contributions of this study, we propose a novel and efficiently integrated pipeline

composed of the following steps:

• Retina image preprocessing

• Deep learning based feature extraction

• Light GBM and 5-layer neural network

Data preprocessing methods, like standardization, morphological closing operation, and con-

trast enhancement, are very useful to highlight the lesions of the retina and enable making

retina images efficient for training. Compared to other pipelines without preprocessing work,

those pipelines with preprocessing work achieved much better performance. Preprocessing

considerably reduced noise in the retina image.

DenseNet as the state-of-art image classification architecture is a good fit for our pipeline.

It uses hierarchical convolutional layers to describe some kinds of visual patterns and is able

to strengthen feature propagation, and encourage feature reuse. Thus it achieves better

performance compared to other CNN architectures on both the Kaggle dataset and the
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IDRiD dataset.

Light GBM is a well optimized boosting decision tree and is able to learn the model from

features to predict DR severity level. It uses a leaf-wise optimization strategy and is able to

generate more complex trees to predict more accurate scores. A 5-layer neural network also

works well when training and test sets are large enough.

We believe this whole pipeline is able to help people in real life to detect diabetic retinopathy,

thus effectively preventing or delaying DR.

7.3 Future Work

We believe this pipeline can be further improved, when:

• More expert knowledge in DR can be applied.

• More image preprocessing methods can be applied.

• More labels on the retinal image can be used, like lesions segmentation labels.

In the future, we plan to learn more expert knowledge in DR, apply various image prepro-

cessing methods, and get other labels or hire experts to manually label lesions for retina

images. In that way, we believe we can extract better features, thus providing better results

for people, and prevent or delay DR.
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