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Change History
� Version 1.1: First publicly-available version.

� Version 1.2: Added solutions for new problems (seeProblems, Version 1.2 for list).
Corrected solution to 3.13-1.
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Chapter 2

Electric and Magnetic Fields
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[m0002] [1]

2.2-1

From the problem statement,V = 1:5 V and d = 30 � m, so

jEj �
V
d

= 50 kV/m
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[m0011] [1]

2.4-1

From the problem statement, V = 12 V, � r = 6, and d = 90 � m, so the electric �eld
intensity is

jEj �
V
d

�= 133 kV/m

Subsequently, the electric ux density is

jD j = � r � 0 jEj = 7:08 � C/m 2
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Chapter 3

Transmission Lines

7



[m0027] [1]

3.6-1

(a) The expression for the voltageeV(z) traveling in the + z direction contains the factor
e� z . The propagation constant  = � + j� , where � and � are real-valued constants.
Therefore, the ratio of the voltage at a distancel from some other point on the transmission
line is:

~V(z + l)
~V(z)

=
e�  (z+ l )

e� z
= e� l = e� �l e� j�l

The magnitude of this di�erence is just the �rst factor; i.e., e� �l . We also know that

 =
p

(R0+ j!L 0) (G0+ j!C 0)

At 100 MHz, we �nd  = 0:00850 +j 3:14468 m� 1. Therefore, � = 0:00850 m� 1, and the
voltage after 1 m is

(1 V) exp
�
�

�
0:00850 m� 1

�
(1 m)

�
= 0.9915 V

(b) From part (a) we know the phase of this di�erence is just the phase of the factore� j�l .
Since� = 3:14468 rad/m, the phase ofe� j�l is 179:8� for l = 1 m.

(c) For a radio wave in free space, there should be essentially no attenuation over 1 m, as
long as this 1 m span is located far from the transmitter. Thisis because free space propa-
gation contains no loss mechanisms analogous toR0 or G0 in the transmission line model. At
f = 100 MHz, the wavelength of the radio wave is� = c=f �= 3 m. That means the phase
rotates by 360� in 3 m, which is 120� in 1 m. Note that the wavelength of the radio wave
is signi�cantly longer than the wavelength of the signal in the transmission line.
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[m0027] [2]

3.6-2

The question is whether
eV(z) = V +

0 e� z + V �
0 e+ z

is a solution to the TEM transmission line wave equation

@2

@z2
eV(z) �  2 eV(z) = 0

where V +
0 , V �

0 , and  are complex-valued constants. To determine this, we substitute the
candidate solution into the equation and determine if equality holds. Taking the �rst deriva-
tive of the candidate solution:

@
@z

eV(z) = � V +
0 e� z + V �

0 e+ z

Repeating to get the second derivative:

@2

@z2
eV(z) = +  2V +

0 e� z +  2V �
0 e+ z

Now making the substitutions into the left side of the wave equation:
�
+  2V +

0 e� z +  2V �
0 e+ z

�
�  2

�
V +

0 e� z + V �
0 e+ z

�

= +  2V +
0 e� z +  2V �

0 e+ z �  2V +
0 e� z �  2V �

0 e+ z

= 0

which is the the right hand side of the wave equation, as expected.
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[m0052] [1]

3.7-1

It is true that the real part of the characteristic impedance must be positive.

Here's a mathematical argument: Recall:

Z0 =

s
R0+ j!L 0

G0+ j!C 0

Also note that R0, L0, G0 and C0 must all be positive or zero. Therefore, the numerator
and denominator of the above expression, before taking the square root, must both have
phase in the range 0 to +�= 2. This means the numerator divided by the denominator, again
before taking the square root, must have have phase in the range � �= 2 to + �= 2. Taking
the principal square root reduces the phase by a factor of two, the phase ofZ0 must be in
the range� �= 4 to + �= 4. Subsequently, the real part ofZ0 must be positive.

Here's a physical argument: A positive-valued real-valued component of an impedance rep-
resents the dissipation of power (e.g., resistance) or transfer of power out of a system (e.g.,
to a load). Conversely, a negative-valued real-valued component of an impedance represents
the creation of power or the introduction of power into a system; in other words, an active
device. Since the concept of characteristic impedance applies to transmission lines, and since
transmission lines are passive devices, the real componentof the characteristic impedance
must be positive.
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[m0080] [1]

3.8-1

The physical current:

i (z; t) = (2 A) sin((3 rad/s) t + (4 rad/m) z + 5 rad)

= (2 A) cos((3 rad/s) t + (4 rad/m) z + 5 rad � �= 2)

so
~I (z) =

h
(2 A) ej ((5� �= 2) rad)

i
ej (4 rad/m )z
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[m0080] [2]

3.8-2

Converting to time-domain representation:

v(x; t ) = Re
n

eV(x)ej!t
o

= Re
�

V0e+ j�x ej!t
	

The problems statement impliesV0 is complex-valued. To accomodate this, we de�ne the
magnitude and phase ofV0 as follows:

V0 , jV0j ej�= 3

Then:
v(x; t ) = Re

�
jV0j ej�= 3e+ j�x ej!t

	
= jV0j Re

�
ej (!t + �x + �= 3)

	

Finally, using the identity ej� = cos� + j sin� , we obtain

v(x; t ) = jV0j cos (!t + �x + �= 3)

This wave is traveling in the� x direction.
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[m0080] [3]

3.8-3

The form given in the problem statement is a phasor, describing a wave traving in the
+ � direction. To obtain the time domain form:

v(�; t ) = Re
�

V0e� j�� ej!t
	

= jV0j cos (!t � �� +  )

where , the phase ofV0, is not given. Note

� =
2�
�

�= 62:832 rad/m

Furthermore, we are told that v(� = �= 4; t = 0) is a maximum, so:

jV0j cos
�

� �
�
4

+  
�

= jV0j cos
�

�
�
2

+  
�

is a maximum, which means = + �= 2. Therefore:

v(�; t ) = jV0j cos
�

!t � [62:832 rad/m] � +
�
2

�

The problem statement does not provide su�cient information to determine jV0j or ! .
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[m0080] [4]

3.8-4

Since one end of the transmission line lies at in�nity, we expect a wave traveling in the +z
direction only. (Note for future reference: The same e�ect can be achieved for a �nite-length
line by perfectly matching the transmission line at the end opposite the voltage source).

The general form for the physical (real-valued) voltage wave is

v+ (z; t) =
�
�V +

0

�
� e� �z cos (!t � �z +  ) (3.1)

Examining the problem statement, we determine:�
�V +

0

�
� = 2 mV

v+ (z = 0; t = 0) = � 2 mV�
�V +

0

�
� e� � �(10 m ) = 1 mV

f = 15 MHz (frequency of the source)
Wavelength in the line � = 0:4� 0 where� 0 is wavelength in free space.

Quantities remaining to be determined in Equation 3.1 are: attenuation constant � , angular
frequency! , phase propagation constant� , and wave phase reference .

The attenuation constant may be determined as follows:
�
�V +

0

�
� e� � �(10 m )

�
�V +

0

�
� e� � �(0 m )

=
e� � �(10 m )

1
=

1 mV
2 mV

=
1
2

(3.2)

Therefore
e� � �(10 m ) =

1
2

Solving for � , we obtain � �= 0:0693 m� 1 .

The angular frequency is simply 2�f �= 94.2 Mrad/s �= ! .

The phase propagation constant is determined as follows:

� =
2�
�

=
2�

0:4� 0
=

2�
0:4c

f �= 0:785 rad/m �= � (3.3)

The wave phase reference is determined as follows:

v+ (z = 0; t = 0) =
�
�V +

0

�
� � 1 � cos (0� 0 +  ) = � 2 mV (3.4)

Solving for  , we �nd  = � .

The boxed quantities above comprise the complete solution to part (a).
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The solution to part (b) { the phasor representation { is simply:

eV + (z) =
�
�V +

0

�
� e� �z e� j�z e+ j (3.5)

In this case, we obtain:
eV + (z) = �

�
�V +

0

�
� e� �z e� j�z (3.6)

sinceej� = � 1.
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[m0083] [1]

3.9-1

From the problem statement,Z0 = 72 
, L0 = 0:5 � H/m, f = 80 MHz, and the low-loss
approximations apply. Using the low-loss approximationZ0 �

p
L0=C0:

C0 �
L0

Z 2
0

�= 96:4 pF/m

Subsequently, the phase velocity is

vp �
1

p
L0C0

�= 1:44� 108 m/s

and the phase propagation constant is

� � !
p

L0C0 = 2�f
p

L0C0 �= 3:49 rad/m
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[m0143] [1]

3.10-1

The characteristic impedanceZ0 of coaxial cable, assuming the low-loss assumptions ap-
ply, is

Z0 �
60 

p

� r
ln

b
a

where� r is the relative permittivity of the spacer material, anda and b are the radii of the
inner and outer conductors, respectively. Air has� r � 1 and is lossless to a very good ap-
proximation. We are also told the resistance of the inner andouter conductors is negligible.
Therefore, the low-loss assumptions apply, and we are justi�ed in using the above expression.

One way to reduceZ0 from 90 
 to 62 
 is to replace the air spacer with a material spacer
having

� r =
�

90 

62 


� 2
�= 2:11

Thus, one solution is to replace air with a low-loss materialhaving � r
�= 2:11. Another way

is to reduceb=a. For the 90 
 cable, we determine that

b
a

� exp
�

90 


(60 
) =
p

1

�
�= 4:48

To reduceZ0 to 62 
, we require

b
a

� exp
�

62 


(60 
)
p

1

�
�= 2:81

Thus, a second solution is to keep air as the spacer material but reduceb=ato 2:81.
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[m0143] [2]

3.10-2

Under low-loss conditions, the characteristic impedanceZ0 of a coaxial cable is given by

Z0 �
60 

p

� r
ln

b
a

(3.7)

where � r is the relative permittivity of the spacer material, b is the radius of the outer
conductor, anda is the radius of the inner conductor. Since geometry may not be changed,
ln (b=a) may not change. The only free parameter remaining is� r . Z0 is maximized by
minimizing � r . Since the minimum practical value of� r is � 1 (i.e., air, or a vaccuum), the
optimal new value of� r is 1. This increasesZ0 as follows:

(75 
)

p
2:25
p

1
= 112:5 
 (3.8)
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[m0084] [1]

3.12-1

The voltage reection coe�cient is

� =
ZL � Z0

ZL + Z0
=

500 
 � 75 

500 
 + 75 


�= +0:739

Therefore, the peak voltage of the reected wave at the antenna input is

(0:739) (30 V) �= 22:2 V

The line is lossless, so there is no attenuation of the reected wave along the return trip from
antenna to transmitter. Therefore, the peak voltage of the reected wave at the output of
the transmitter is 22.2 V.
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[m0084] [2]

3.12-2

From the problem statement, eV +
0 has magnitude 7 mV and phase 180� , so eV +

0 = � 7 mV.
Also from the problem statementZ0 = 60 
 and ZL = 20 
. Therefore,

� =
ZL � Z0

ZL + Z0
= � 0:5

Subsequently,eV �
0 = � eV +

0 = +3 :5 mV. Thus, the magnitude of the reected wave is 3.5 mV,
and the phase is 0� .
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[m0084] [3]

3.12-3

The voltage reection coe�cient is

� =
ZL � Z0

ZL + Z0
=

33 
 � 140 

33 
 + 140 


�= � 0:6185

Therefore, the magnitude of the reected voltage wave is

j� (3 V) j �= 1:86 V

and the phase of the reected voltage wave is

170� + 180� ! � 10�
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[m0084] [4]

3.12-4

In general, the voltage reection coe�cient � for a load impedanceZL connected to a trans-
mission line having characteristic impedanceZ0 is

� =
ZL � Z0

ZL + Z0

Solving for ZL , we obtain

ZL = Z0
1 + �
1 � �

For � = 0 , the formula givesZ0, as expected.
For � = +1 , the formula ! 1 , as expected.
For � = � 1, the formula gives 0, as expected.
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[m0086] [1]

3.13-1

(a) The current at a voltage maximum is zero. (b) The voltage at the short circuit ter-
mination is zero. The distance between voltage extrema is�= 4, so�= 4 = 8 cm. The distance
between voltage maxima is�= 2 = 16 cm. Therefore, the distance between the short circuit
and the second voltage maximum is 8 + 16 = 24 cm.
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[m0081] [1]

3.14-1

First note
j� j =

SWR � 1
SWR + 1

So in this case
j� j �

1:2 � 1
1:2 + 1

�= 0:091

Also note:
� =

ZL � Z0

ZL + Z0

where in this caseZ0 = 50 
 and ZL is the input impedance of the ampli�er. Solving forZL

we �nd:
ZL = Z0

1 + �
1 � �

Since the imaginary component ofZ0 is zero, and since the imaginary component ofZL is
negligible, � must be real-valued. Therefore,� 0:091� � � +0:091 and

41:7 
 � ZL � 60:0 


.
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[m0081] [2]

3.14-2

From the problem statement,Z0 = 72 
 and ZL = 60 
. Therefore, the voltage reec-
tion coe�cient is

� =
ZL � Z0

ZL + Z0

�= � 0:091

and the standing wave ratio is

SWR =
1 + j� j
1 � j � j

= 1:2
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[m0081] [3]

3.14-3

From the problem statement,Z0 = 50 
 and ZL = 20 � j 35 
. Therefore, the voltage
reection coe�cient is

� =
ZL � Z0

ZL + Z0

�= � 0:143� j 0:571

and the standing wave ratio is

SWR =
1 + j� j
1 � j � j

�= 3:87
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[m0087] [1]

3.15-1

The input impedance of a lossless line is periodic in length,with period �= 2. Therefore,
the line is exactly 3 periods long, which means the input impedance is equal to the load
impedance 72 +j 42 
 .
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[m0087] [2]

3.15-2

From the problem statement: Z0 = 50 
, ZL = RDUT = 10 
, and l = 10 cm. Also,
the wavelength in the transmission line� = 0:6� 0, where� 0 is the free-space wavelength. As
always, � = 2�=� and � 0 = c=f wherec is the speed of light in free space.

Here's the result (see end of this solution for source code):

The answers to parts (b) and (c) depend on one's interpretation of \signi�cance." Two
reasonable interpretations are (1) a qualitative judgmentbased on when the curves seem to
clearly diverge from the nominal (DC, or equivalentlyl = 0) value and (2) a quantitative
judgment based on when the real part is in error by more than 5%(or some other percentage)
and the imaginary part is in error by more than 5% of the real part. Here are the results
using both criteria:

Nominal (l = 0) \Qualitative" > 5% error
Realf Zg 10 
 � 100 MHz �= 6:4 MHz
Imagf Zg 0 
 � 10 MHz �= 3:0 MHz

In both cases it is clear thaterror in the imaginary part is signi�cantly degraded at
a lower frequency than the error in the real part, and that bot h are exhibiting
large errors at frequencies greater than � 10 MHz .
Here's source code in Octave (should also work in MATLAB):
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clear all;
close all;

ZL = 10.0; % [ohm] R_DUT
Z0 = 50.0; % [ohm] characteristic impedance
l = 0.1; % [m] length of line

n=0; % counting points
for logf=6:.001:10, % incrementing frequency in log scale f rom 10^6 to 10^10 Hz

n=n+1;

f(n) = 10.^logf; % [Hz] frequency
lambda0 = (3.0e+8)/f(n); % [m] free space wavelength
lambda = 0.6*lambda0; % [m] wavelength in line
b = 2*pi/lambda; % [rad/m] beta = phase propagation constant in cable

Z(n) = Z0*(ZL+j*Z0*tan(b*l))/(Z0+j*ZL*tan(b*l));

end

semilogx(f,real(Z),'b-'); hold on;
semilogx(f,imag(Z),'r-'); hold off;
legend('Re(Z)','Im(Z)');
grid on;
xlabel('Freq [Hz]');
ylabel('Z [ohm]');

[f' real(Z)' imag(Z)' (real(Z)'-10)/10 imag(Z)'/10] % use d to answer parts (b) and (c)
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[m0087] [3]

3.15-3

From the problem statement:Z0 = 50 
 and ZL = 25 + j 25 
.

(a) Voltage reection coe�cient:

� =
ZL + Z0

ZL � Z0
= � 0:2 + j 0:4 (3.9)

(b) The input impedance may be calculated using

Z in = Z0
1 + � e� j 2�l

1 � � e� j 2�l
(3.10)

where �l = (2 �=� ) l = 2� (l=� ). The requested plot is shown below. In this �gure, \� "
indicates l = 0 and \ � " indicates l = 0:45� . (See end of this solution for source code.)
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(c) Here are the lengths for which the input impedance is completely real-valued:
l �= 0:162� ! �= 130:9 

l �= 0:412� ! �= 19:1 


Here's source code in Octave (should also work in MATLAB):
clear all;
close all;

ZL = 25.0+j*25.0; % [ohm]
Z0 = 50.0; % [ohm] characteristic impedance

Gamma = (ZL-Z0)./(ZL+Z0) % voltage reflection coefficient

n=0; % counting points
for l=0:.001:0.45, % [lambda] incrementing length from 0 to almost lambda/2

n=n+1;
bl = 2*pi*l; % [rad] electrical length
Z(n) = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl ));
end

h1 = plot(real(Z),imag(Z));
axis("equal");
grid on;
xlabel('Re[Z] [ohm]');
ylabel('Im[Z] [ohm]');

l=0.00; % [lambda]
bl = 2*pi*l; % [rad] electrical length
Zp = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl)) ;
hold on; h2 = plot(real(Zp),imag(Zp),'ro'); hold off;

l=0.45; % [lambda]
bl = 2*pi*l; % [rad] electrical length
Zp = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl)) ;
hold on; h3 = plot(real(Zp),imag(Zp),'rx'); hold off;
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[m0088] [1]

3.16-1

In this case, the input impedance is

Zstub = � jZ 0 cot �l

whereZ0 = 75 
, l = 13 cm, and

� =
!
vp

=
2�f
0:55c

wheref = 900 MHz. Therefore,� �= 34:3 rad/m, �l �= 4:45 rad, and Zstub
�= � j 19:7 
 .
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[m0088] [2]

3.16-2

From the problem statement: Z0 = 75 
, f = 1:5 GHz, Z in = + j 300 
 is desired, and
vp = 0:6c. Note that for a short circuit, in this case:

Z in = + jZ 0 tan �l = + j 300 


so
�l �= 1:3258 rad

Note

� =
!
vp

=
2�f
0:6c

�= 52:36 rad/m

so l �= 2:53 cm
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[m0088] [3]

3.16-3

From the problem statement: f = 5:8 GHz, Z0 = 50 
, vp = 0:7c, and the capacitor to
be replaced has valueC = 83 pF. Therefore the desired impedance is

ZC = �
j

2�fC
�= � j 0:3306 


We choose an open-circuitedline, as this yields the negative reactance for the shortest
possible lengths. The input impedance of an open-circuitedline is

Z in = � jZ 0 cot �l

Setting this equal toZC and solving for�l :

�l �= cot� 1 � j 0:3306 

� j 50 


�= 1:5642 rad

Note

� =
!
vp

=
2�f
0:7c

�= 173:54 rad/m

so l �= 9:01 mm.
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[m0145] [1]

3.17-1

(a) For a bandpass response centered at 200 MHz, you want the input impedance into
the stub, which is attached in parallel to the line, to be an open circuit at 200 MHz. This is
accomplished using a short-circuited stubwhich is one quarter wavelength long at 200 MHz.
A wavelength in the transmission line is

� =
0:67 (3� 108 m/s)

200 MHz
= 1:005 m (3.11)

so the stub length is 25:12 cm.

(b) See below:
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[m0145] [2]

3.17-2

The smallest length for which the imaginary component of theimpedance of an open-
circuited stub is positive is slightly greater than�= 4. The imaginary part of the impedance
remains positive until the length is slightly less than�= 2. In this transmission line,

� =
!
vp

=
2�f
0:7c

= 89:8 rad/m

wheref = 3 GHz. Therefore,

� =
2�
�

= 7 cm

and so the smallest contiguous range of transmission line length l is

1:75 cm< l < 3:5 cm
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[m0145] [3]

3.17-3

For zero response centered atf c = 1:3 GHz you want the input impedance into the stub,
which is attached in parallel to the line, to be a short circuit at f = f c. This is accomplished
using an open-circuited stubthat is one quarter wavelength long atf = f c. A wavelength
in the transmission line is

� =
0:6 (3 � 108 m/s)

1:3 GHz
= 13:84 cm (3.12)

so the stub length is 3:46 cm. The characteristic impedance is irrelevant.
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[m0091] [1]

3.19-1

From the problem statement, we see that the design will consist of a quarter-wave matching
section followed by a line having a characteristic impedance Z02 = 300 
 { i.e., equal to the
load impedance { and the total length will bel = 5 cm. The characteristic impedance of
the quarter-wave section must beZ01 =

p
ZSZ02, whereZS is the source output impedance;

thus, we haveZ01 = 122:5 
. The length l1 of the quarter-wave section is�= 4, where� is
the wavelength in the transmission line. For FR4, we have

� =
� 0

p
� r;ef f

=
c=f

q
1
2 (� r + 1)

=
(3 � 108 m/s) =(1:5 GHz)

q
1
2 (4:5 + 1)

= 12:06 cm

so l1 = 3:01 cm andl2 = l � l1 = 1:99 cm.

What's left to �gure out is the width w of the microstrip lines, which determines the charac-
teristic impedance sinceh = 1:6 mm and� r = 4:5 are already set. We know thath=w = 1=2
gives a characteristic impedance of 50
 for FR4, so the widthof a 50
 line is 2h = 3:2 mm.
To get the higher characteristic impedanceZ01 = 122:5
, w1 will have be smaller than
3.2 mm. An approximate but reasonable solution is simply to assume the characteristic
impedance scales withw in the same way (i.e., linearly) as it does in the \wide" (h=w � 1)
case, so

w1 � (3:2 mm)
50 


122:5 

= 1:3 mm

and
w2 � (3:2 mm)

50 

300 


= 0:5 mm

You could also use the Wheeler (1977) formula or some other equation or reference; how-
ever, the increased accuracy is typically irrelevant in practice due to issues such as the large
variation in � r due to manufacturing issues. So, while it's not wrong to takethat approach,
it's usually not worth the e�ort if you are able to instead \scale" from a known design as we
have done above.

So, your sketch should show the source, followed by 3.01 cm ofline which is 1.3 mm wide,
followed by 1.09 cm of line which is 0.5 mm wide, followed by the load, as shown in the �gure.
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3.19-2

From the problem statement: ZL = 200 
, l = �= 4, and Z0 = 100 
. Since this is a
quarter-wave line,

Z in =
Z 2

0

ZL
= 50 


.
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3.19-3

The problem statement implies that each of the stubs is short-circuited at the end opposite
the main line. For this to be a bandpass �lter, the magnitude of the input impedance looking
into each stub must be very high { nominally in�nite { since then the �lter structure would
be in e�ect the main line by itself, with no stubs, and would therefore be well-matched at the
�lter input and output. At any higher or lower frequency the magnitude of the stubs' input
impedance can only be less; therefore, the input impedance of the �lter would be increasingly
mismatched. This results in bandpass response.

The shortest length for which the magnitude of the input impedance of a short-circuited
transmission line is in�nite is �= 4. Therefore, �= 4 = 3:38 mm and subsequently� =
13:52 mm in the stub. Therefore, the center frequency is

f =
vp

�
=

0:6c
�

= 13:3 GHz

40



[m0091] [4]

3.19-4

(a) At 2.4 GHz, the free space wavelength� 0 = c=f �= 12:5 cm. Therefore the wave-
length in the line � = 0:67� 0

�= 8:375 cm, and subsequently the length of each section is
�= 4 �= 2:094 cm. The impedance looking into each stub is nominally in�nite at 2.4 GHz;
therefore the stubs should be terminated into short circuitloads. Then, each stub will trans-
form its \load impedance" of 0 into an input impedance of 1=0 ! 1 at the frequency at
which it is a quarter-wavelength long. The resulting designis shown below:

(b) First, note that the input impedance of a short-circuited stub is Zs , + jZ 0 tan �l where
Z0 is the characteristic impedance (50 
 in this case),l is the physical length of the stub
(2:094 cm in this case), and� = 2�=� ( = 2 �f= 0:67c in this case). Consulting Figure 3.1, we
determine that the response at a speci�ed frequencyf may be calculated using the following
steps:

�  
2�f
0:67c

(3.13)

Z1  ZL k Zs (3.14)

Z2  Z0
1 + � e� j 2�l

1 � � e� j 2�l
where � ,

Z1 � Z0

Z1 + Z0
(3.15)

Z in  Z2 k Zs (3.16)
PL

Pin
 1 � j � j2 where � is now ,

Z in � Z0

Z in + Z0
(3.17)

In the last step, PL =Pin is response as de�ned in the problem statement. This expression
works under the assumption of no loss within the �lter; i.e.,all power delivered to the input
is subsequently delivered to the load, and none is dissipated by the �lter.
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Figure 3.1: Schematic representation of the �lter with a matched output terminationj.
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(c) MATLAB script follows.

clear all;
close all;

ZL = 50.0; % [ohm] impedance attached to output
Z0 = 50.0; % [ohm] characteristic impedance
l = 0.02094; % [m] section length

c = 3.0e+8; % [m/s]
f_list = [1:0.01:3.8]*(1e+9); % [Hz]

n=0; % counting points
for f=f_list,

n=n+1;

beta = 2.0*pi*f/(0.67*c);
Zs = +j*Z0*tan(beta*l);
Z1 = (ZL*Zs)/(ZL+Zs);
Gamma = (Z1-Z0)/(Z1+Z0);
Z2 = Z0*(1+Gamma*exp(-j*2*beta*l))/(1-Gamma*exp(-j*2* beta*l));
Zin = (Z2*Zs)/(Z2+Zs);
Gamma = (Zin-Z0)/(Zin+Z0);
P(n) = 1-abs(Gamma)^2;

end % for f

plot(f_list/(1.0e+9),10.0*log10(P),'b-');
grid on;
xlabel('Freq [GHz]');
ylabel('Frequency Response [Mag, dB]');
axis([1 3.8 -6 +1]);
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3.20-1

Summarizing the problem statement:P+
av = 5 W and PL = 4:6 W. Therefore,PL =P+

av = 0:92.
From this, we may �nd the magnitude of the reection coe�cient, j� j, using

PL

P+
av

= 1 � j � j2

We �nd j� j �= 0:283 and

SWR =
1 + j� j
1 � j � j

�= 1:79
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3.20-2

From the problem statement, � = 0 :3 + j 0:4 and P+
av = 3 W. Therefore,

PL =
�
1 � j � j2

�
P+

av = 2:25 W
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3.23-1

From the problem statement, we havef = 220 MHz, antenna impedanceZA = 73 + j 42 
,
and characteristic impedanceZ0 = 50 
 for both the transmission line and the stub. The
input impedance looking into a lengthd1 of transmission line terminated in impedanceZA

is

Z1(�d 1) = Z0
1 + � e� j 2�d 1

1 � � e� j 2�d 1
(3.18)

where
� =

ZA � Z0

ZA + Z0
= 0:2719 + j 0:2486 (3.19)

The �rst task is to �nd the smallest �d 1 such that the real part ofY1(�d 1) = Z � 1
1 (�d 1) equals

Y0 = Z � 1
0 = 0:02 
 � 1. After a few minutes of trial and error one �nds:

Y1(�d 1 = 1:345 rad) = 0:0200 + j 0:0159 
 � 1 (3.20)

(You could also do this with a Smith chart if you are so inclined.) The match is accomplished
by attaching a stub having input admittanceY2 = � j 0:0159 
 � 1 in parallel with Y1, since
then the combined admittance will beY1 + Y2 = Y0 = Z � 1

0 . For a short-circuited stub of
length d2 we would want:

Y2 = � jY0 cot �d 2 = � j 0:0159 
 � 1 ) �d 2 = 0:900 rad (3.21)

For an open-circuited stub of lengthd2 we would want:

Y2 = + jY0 tan �d 2 = � j 0:0159 
 � 1 ) �d 2 = 2:471 rad (3.22)

The short-circuited stub is shorter, so that's the preferred solution. All that remains is to
�gure out the physical lengths from the electrical lengths.For this, we need to know� . The
phase velocity isvp = 0:67c, so

� =
2�
�

=
2�

0:67c=f
= 6:8771 rad/m (3.23)

Finally we have the solution:

d1 =
�d 1

�
=

1:345 rad
6:877 rad/m

= 19:6 cm distance from antenna terminals to stub (3.24)

d2 =
�d 2

�
=

0:900 rad
6:877 rad/m

= 13:1 cm stub length (3.25)

and the stub is short-circuited.
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3.23-2

In terms of the variables used in the book, the problems statement is indicating that
Y1 = 0:0128� j 0:0040 
 � 1 and that Z in is real-valued. Therefore,Yin = 1=Zin is real-valued,
and must be equal to the real part ofY1; i.e., Yin = 0:0128 
 � 1. Therefore, Z in

�= 78:1 
 ,
which is the answer to part (a).

The stub is being used to cancel the imaginary part ofY1, so Ystub = + j 0:0040 
 � 1 and
subsequentlyZstub = � j 250 
 , which is the answer to part (b).
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3.23-3

In terms of the variables used in the book, the problem statement indicatesZL = 35 � j 10 
,
Z in = 50 
, and Z0 = 100 
 throughout. The voltage reection coe�cient at the in terface
betweenZL and the primary line is

� =
ZL � Z0

ZL + Z0

�= � 0:473� j 0:109 (3.26)

Let Y1 be the admittance looking into the primary line:

Y1 = Y0
1 � � e� j 2�l 1

1 + � e� j 2�l 1
(3.27)

where
Y0 ,

1
Z0

= 0:01 mho (3.28)

and �l 1 is the electrical length of the primary line. To match the real part of the admittances,
we require Ref Y1g = Re f Yin g where

Yin =
1

Z in
= 0:02 mho (3.29)

is the input admittance corresponding toZ in . Therefore the desired value of�l 1 is the
solution to

Re
�

1 � � e� j 2�l 1

1 + � e� j 2�l 1

�
= 2 (3.30)

Using a numerical trial-and-error search, one �nds�l 1
�= 0:362 rad. Now using Equation 3.36:

Y1 (�l 1 = 0:362 rad)�= 0:0200� j 0:0121 mho (3.31)

The necessary shunt susceptance (i.e., the imaginary part of admittance) is � Im f Y1g �=
+0:0121 mho, since this will cancel the susceptance of the primary line when placed in
parallel with the primary line. Now we seek the shortest stub that has this susceptance. For
an open-circuited stub we would need

+ Y0 tan �l 2 = +0 :0121 mho (3.32)

where �l 2 is the electrical length of the stub. This yields�l 2
�= 0:8814 rad. For a short-

circuited stub we would need

� Y0 cot �l 2 = +0 :0121 mho (3.33)

This yields �l 2
�= � 0:6893 rad. � is positive and length can't be negative, so we need the

next greater value of�l 2 that solves the above equation. Since cot(�) has period� radians,
the desired value is 2:4522 rad. This is much longer than the result for the open-circuited
stub, so we choose the open circuit result.
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(a) Note

�l =
2�
�

� l = 2� �
l
�

Therefore to express electrical length in wavelengths, we simply divide by 2� . Thus, the
solution to the problem is:
Primary line length l1 �= 0:058�
Stub length l2 �= 0:140�
Stub is open-circuited.

(b) Note

� =
!
vp

=
2�f
0:65c

�= 48:332 rad/m

sincef = 1:5 GHz and the velocity factor is 65%. Therefore

l1 =
�l 1

�
�= 7:5 mm

l2 =
�l 2

�
�= 18:2 mm

(c) Let's de�ne � in as the voltage reection coe�cient at the input of the matching structure.
(Note that this is di�erent from � de�ned in previous parts, wh ich is the voltage reection
coe�cient at the output of the matching structure.) Therefore the fraction of powerdelivered
(PL ) to power incident (P+

av) is:
PL

P+
av

= 1 � j � in j2 (3.34)

where
� in =

Z in � 50 

Z in + 50 


(3.35)

and where

Z in = ( � jZ 0 cot �l 2) k
�

Z0
1 + � e� j 2�l 1

1 � � e� j 2�l 1

�
(3.36)

Be careful: The sweep in frequency appears as a sweep in the value of � in the above equa-
tion. A plot of the result follows.
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Chapter 5

Electrostatics
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5.1-1

The electric �eld due to a point chargeq is

E(R) = R̂
q

4��R 2

where R is the position-free vector pointing from the charge to the �eld point. From the
problem statement,q = � 24 nC, � r = 2, and

R = x̂ + ŷ2 + ẑ3 m

Thus
R , jR j =

p
12 + 22 + 32 �= 3:74 m

R̂ ,
R
R

�= x̂0:267 + ŷ0:534 + ẑ0:802

� = � r � 0 = 2 � 8:854� 10� 12 F/m

Thus
E(R) �= � x̂2:06� ŷ4:12� ẑ6:18 V/m
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5.2-1

From the problem statement,
q1 = +3 nC at r 1 = � ẑd and
q2 = +3 nC at r 2 = + ẑd whered = 0:5 m;
the �eld point of interest is r = + x̂x wherex = +1 :5 m, and
� = � 0

�= 8:854� 10� 12 F/m.

The electric �eld intensity due to two point charges is

E(r ) =
1

4��

�
r � r 1

jr � r 1j3
q1 +

r � r 2

jr � r 2j3
q2

�

In this problem:
r � r 1 = + x̂x � (� ẑd) = + x̂x + ẑd

jr � r 1j =
p

x2 + d2

r � r 2 = + x̂x � (+ ẑd) = + x̂x � ẑd

jr � r 2j =
p

x2 + d2

Substituting:

E(+ x̂x) =
1

4�� 0

"
+ x̂x + ẑd

(x2 + d2)3=2
q+

+ x̂x � ẑd

(x2 + d2)3=2
q

#

where we have made the de�nitionq , q1 = q2. Note that the ẑ-directed components
cancel, as expected from the symmetry of the problem. Eliminating these components and
simplifying:

E(+ x̂x) = x̂
q

2�� 0

x

(x2 + d2)3=2

Now take a moment to con�rm that the solution is dimensionally-correct and makes physical
sense. Finally, substituting values, we obtain:

E(+ x̂1:5 m) �= + x̂ (20:5 V/m)

For a single chargeq0 at the origin to create this �eld, we require

x̂
q0

4�� 0x2
= + x̂ (20:5 V/m)

which yieldsq0
�= +5:12 nC.
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5.3-1

From the problem statement,� v = Kr � 2 where K = 2 C/m. From dimensional analysis,
it is clear that this is a volume charge density. We seek the total charge Q in a volumetric
region V bounded by the constant-coordinate surfacesr = a and r = b wherea = 1 m and
b= 2 m. In general,

Q =
Z

V
� vdv

In this case, using spherical coordinates:

Q =
Z b

r = a

Z �

� =0

Z 2�

� =0

�
K
r 2

�
�
r 2 sin� dr d� d�

�

Factoring into separate integrals:

Q = K
� Z b

r = a
dr

� � Z �

� =0
sin� d�

� � Z 2�

� =0
d�

�

Evaluating the integrals:

Q = K [b� a] [2] [2� ] = 4�K (b� a)

This a good point at which to check for dimensional consistency (i.e., correct units).

Using the given values ofK , a, and b we obtain Q �= 25.1 C.
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5.3-2

From the problem statement, the volume charge density is

� v =
� v0

r 2 sin�
(5.1)

for r1 < r < r 2, wherer1 = 1 m and r2 = 2 m; and � 1 < � < � 2, where � 1 = �= 4 (rad) and
� 2 = 3�= 4. Also � v0 = 1:3 C/m inside these limits, and� v0 = 0 outside these limits. Let V
be the region of space where� v0 6= 0. Then the total charge Q is

Q =
Z

V
� vdv (5.2)

=
Z r 2

r 1

Z � 2

� 1

Z 2�

� =0

� � v0

r 2 sin�

� �
r 2 sin� dr d� d�

�
(5.3)

= � v0

Z r 2

r 1

Z � 2

� 1

Z 2�

� =0
dr d� d� (5.4)

= � v0

� Z r 2

r 1

dr
� � Z � 2

� 1

d�
� � Z 2�

� =0
d�

�
(5.5)

= � v0 (r2 � r1) ( � 2 � � 1) (2� ) (5.6)

Note this result is dimensionally correct. Substituting thevalues established above, we ob-
tain Q = 12.83 C .
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5.4-1

Interpreting the problem statement:
� s;1 , +4 nC/m 2 for sheet in thex = 0 plane. Let the �eld from this sheet beE1.
� s;2 , +16 nC/m 2 for sheet in they = 0 plane. Let the �eld from this sheet beE2.
� s;3 , +64 nC/m 2 for sheet in thez = 0 plane. Let the �eld from this sheet beE3.
Also, � = 2� 0.

The electric �eld intensity due to a single sheet of charge having charge density� s in the
z = 0 plane is worked out in the book. It is:

+ ẑ
� s

2�
sgnz

This corresponds to the third sheet of charge above. Since the region of interest isz > 0:

E3 = + ẑ
� s;3

4� 0

Similarly,
E1 = + x̂

� s;1

4� 0

E2 = + ŷ
� s;2

4� 0

The total �eld is the sum of these three �elds. Thus:

E = x̂
� s;1

4� 0
+ ŷ

� s;2

4� 0
+ ẑ

� s;3

4� 0

Substituting values, we obtain:

E �= x̂ (113 V/m) + ŷ (452 V/m) + ẑ (1807 V/m)

56



[m0104] [2]

5.4-2

From the problem statement, we have electric �eld intensityE line due to line charge density
� l = +8 mC/m along the z-axis. Thus,

E line = �̂
� l

2���
(5.7)

Also, we have electric �eld intensityEsheet due to surface charge density� s = +12 mC/m 2

in the z = 0 plane. Thus,
Esheet = ẑ

� s

2�
for z > 0 (5.8)

The total electric �eld is determined by superposition:

E = E line + Esheet = �̂
� l

2���
+ ẑ

� s

2�
for z > 0 (5.9)

Note that this is dimensionally correct. Also from the problemstatement we have� = � r � 0

where� 0 = 8:854� 10� 12 F/m and � r = 2. Finally:

E = �̂
71:9 MV

�
+ ẑ

�
338:8

MV
m

�
for z > 0 (5.10)
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5.5-1

Note F12 = Q2E1 whereE1 is the electric �eld intensity associated withQ1. Thus:

E1 =
F12

Q2
= R̂ 12

Q1

4��R 2
12

We can write this in terms of the electric ux density, assuming a isotropic and homogenous
medium:

D 1 = � E1 = R̂ 12
Q1

4�R 2
12

Now let's put Q1 at the origin, and let S be a sphere of radiusa centered at the origin.
Then, the left hand side of Gauss' Law is:

I

S
D � ds =

Z �

� =0

Z 2�

� =0

�
r̂

Q1

4�a 2

�
�
�
r̂ a2 sin� d� d�

�
=

Q1

4�

Z �

� =0

Z 2�

� =0
sin� d� d� = Q1

Because we putQ1 at the origin and de�ned S to surround it, Qencl = Q1, which is what we
expect from Gauss' Law. Therefore, Coulomb's Law is a solution to { a special case really
{ of Gauss' Law.

You might be inclined to object on the grounds that Gauss' Lawdoesn't say anything about
force or electric �eld intensity. This is true! However, electric �eld intensity is de�ned by
force; i.e.,E1 = F12=Q2 is a de�nition for E1, and not derived from something else. Similarly,
D 1 = � E1 is a de�nition for D 1, and not derived from something else. So, Gauss' Law is as
fundamental as it gets.
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5.5-2

By symmetry, there can be no variation in thez or � dimensions. Therefore, our answer
can depend only on� . The three regions to consider are inside the inner surface of the shell
(� < 1 m), inside the shell itself (1� � < 3 m), and outside the outer surface of the shell
(� > 3 m).

The integral form of Gauss' Law is:
Z

S
D � ds = Qencl (5.11)

where S is any closed surface. Since we are asked for electric �eld intensity, we can use
D = � E to obtain: Z

S
E � ds =

1
�
Qencl . (5.12)

Note that we use� as opposed to� 0, since the latter infers free space conditions, and we
haven't been told that.

For � < 1 m, Qencl = 0; i.e., there is no surface that we can de�ne that encloses charge.
Combined with the symmetry argument, we have that E = 0 in this region.

For 1 � � < 3 m, Qencl depends on� . Combined with the symmetry argument, we have
E(� ) = �̂E (� ). Thus, a good choice forS is a cylinder centered on thez axis. This gives us:

Z 2�

� =0

Z + L=2

z= � L=2
�̂E (� ) � �̂ � d� dz + 0 =

1
�

Z �

� =1

Z 2�

� =0

Z + L=2

z= � L=2
� v d� �d� dz (5.13)

where \+0" on the left hand side is the contribution from the constant-z surfaces (the \end
caps") of the cylinder { zero because the normal to those surfaces (̂z) is perpendicular toE.
Now evaluating:

E(� ) 2��L =
1
�

� v �L (� 2 � 1 m2) . (5.14)

Finally:

E(� ) = �̂
� v

2�

�
� �

1 m2

�

�
in this region. (5.15)

Assuming � v is in C/m 3 and � is in F/m, E(� ) will be in V/m. However, if you say simply
\1" as opposed to \1 m2" in the above expression, then you must indicate the units of�
(being meters) as well. In electromagnetics, a powerful (but unappreciated) technique for
checking your work is to make sure your solution has the rightunits. This is calleddimen-
sional analysis. You should be able to substitute units for each of the quantities in the above
solution and �nd that the result has units of V/m { can you do thi s?
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For � > 3 m, Qencl is constant at the maximum value (since all the charge has been enclosed),
but E(� ) is still a variable function of � . Thus, the left hand side of Equation 5.14 remains
the same, but the right hand side is evaluated at� = 3 m. This yields:

E(� ) 2��L =
1
�

� v �L � 8 m2 . (5.16)

Thus:

E(� ) = �̂
� v

�
4 m2

�
in this region. (5.17)

Suggestion: Try dimensional analysis on this solution. Canyou see why it is important to
say \4 m2" as opposed to just \4"?
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5.5-3

By symmetry, there can be no variation in the� or � dimensions. Therefore, our answer
can dependonly on r . The three regions to consider are inside the inner surface of the shell
(r < 2 m), inside the shell itself (2� r < 4 m), and outside the outer surface of the shell
(r > 4 m).

The integral form of Gauss' Law is:
Z

S
D � ds = Qenclosed (5.18)

where S is any closed surface. Since we are asked for electric �eld intensity, we can use
D = � E to obtain: Z

S
E � ds =

1
�
Qenclosed . (5.19)

Note that we use� as opposed to� 0, since the latter infers free space conditions, and we
haven't been told that.

For r < 2 m, Qenclosed = 0; i.e., there is no surface that we can de�ne that encloses charge.
Therefore, E = 0 in this region.

For 2 � � < 4 m, Qenclosed depends onr . Combined with the symmetry argument, we have
E(r ) = r̂E(r ). Thus, a good choice forS is a sphere centered at the origin. This gives us:

Z �

� =0

Z 2�

� =0
r̂ E (r ) � r̂ r 2 sin� d� d� =

1
�

Z r

r =2

Z �

� =0

Z 2�

� =0
� v r 2 sin� dr d� d� (5.20)

Now evaluating:

4�r 2 E(r ) =
� v

�
4�
3

�
r 3 �

�
8 m3

��
. (5.21)

Finally:

E(r ) = r̂
� v

3�

�
r �

8 m3

r 2

�
in this region. (5.22)

Assuming � v is in units of C/m 3 and � is in F/m, E(� ) will be in V/m. However, if you
say simply \8" as opposed to \8 m3" in the above expression, then youmust indicate the
units of r (being meters) as well! In electromagnetics, a powerful (but sadly, unappreci-
ated) technique for checking your work is to make sure your solution has the right units.
This is called dimensional analysis. You should be able to substitute units for each of the
quantities in the above solution and �nd that the result has units of V/m { can you do this?

Also note that you have a second way to check your solution { it must be equal to the
solution for the �rst region for r = 2 m. Note that it is.
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For r > 4 m, Qenclosed is constant at the maximum value (since all the charge has been
enclosed), butE(r ) is still a variable function of r . Thus, the left hand side of Equation 5.21
remains the same, but the right hand side is evaluated atr = 4 m. This yields:

4�r 2 E(r ) =
� v

�
4�
3

�
56 m3

�
. (5.23)

Thus:

E(r ) = r̂
� v

3�
56 m3

r 2
in this region. (5.24)

Suggestion: Try dimensional analysis on this solution. Canyou see why it is important
to say \56 m3" as opposed to just \56"? Also, con�rm that your answer agreeswith the
Region 2 answer forr = 4 m.
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5.5-4

(a) A, B , and C have units of V/m4, V/m 3, and V/m 2 , respectively.

(b) According to the integral form of Gauss' Law:

Qencl =
I

S
D � ds = � 0

I

S
E � ds

Here,S is the surface of the box-shaped region, andds is the normal to each of the six sides.
This integral is easiest to handle as the sum of integrals over each side, since thends will be
constant over each of these integrals. Here we go:

Z

� x side
E � (� x̂ dy dz) = �

Z y=+1

y=0

Z z=0

z= � 1
A (� 1) z2 dy dz = +

1
3

A

Z

+ x side
E � (+ x̂ dy dz) =

Z y=+1

y=0

Z z=0

z= � 1
A (+1) z2 dy dz = +

1
3

A

Z

� y side
E � (� ŷ dx dz) = �

Z x=+1

x= � 1

Z z=0

z= � 1
(� B (0) z) dx dz = 0

Z

+ y side
E � (+ ŷ dx dz) =

Z x=+1

x= � 1

Z z=0

z= � 1
(� B (+1) z) dx dz = + B

Z

� z side
E � (� ẑ dx dy) = �

Z x=+1

x= � 1

Z y=+1

y=0
Cx dx dy = 0

Z

+ z side
E � (+ ẑ dx dy) =

Z x=+1

x= � 1

Z y=+1

y=0
Cx dx dy = 0

So we �nd:

Qencl = � 0

�
1
3

A +
1
3

A + 0 + B + 0 + 0
�

= � 0

�
2
3

A + B
�

having units of Coulombs if� 0 is in F/m and the dimensions are all in meters. The chances for
units-related confusion is reduced if consider what has actually happened in the integration
and say speci�cally:

Qencl = � 0

��
2
3

m5

�
A + (1 m 4) B

�
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5.5-5

The problem is easily solved using Gauss' law in integral form:

Qencl =
I

S
D � ds (5.25)

whereS is any surface which completely surrounds the charge,D is the electric ux density,
and ds is the di�erential surface element. The easiest surface in this case is a sphere of radius
r0, centered on the origin, with

r0 >

p
12 + 12 + 12

2
=

p
3

2
(5.26)

Note that it is not important for the radius of the sphere to be close to this number; it is
merely necessary that the radius be greater than this number. In fact, we shall see below
that the radius doesn't matter at all, as long as it is at leastthis big.

From the problem statement:

E = r̂
3 V � m

r 2
(5.27)

The problem indicates the medium is free space, so the permittivity � = � 0 = 8:854�
10� 12 F/m. Therefore:

D = � 0E = r̂ � 0
3 V � m

r 2
(5.28)

Now putting this all together:

Qencl =
Z �

� =0

Z 2�

� =0

�
r̂ � 0

3 V � m
r 2

0

�
�
�
r̂ r 2

0 sin� d� d�
�

(5.29)

= � 0 (3 V � m)
Z �

� =0

Z 2�

� =0
sin� d� d� (5.30)

= � 0 (3 V � m)
� Z �

� =0
sin� d�

� � Z 2�

� =0
d�

�
(5.31)

= � 0 (3 V � m) (2) (2� ) (5.32)

Note this result is dimensionally correct. Substituting thevalues established above, we ob-
tain Qencl = 333.8 pC .
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5.6-1

This is essentially the same problem shown as an example in the book, for which the electric
�eld intensity was found to be

E = �̂
� l

2���

where here� l = � 2:1 mC/m and � is the distance from thez-axis. The electric ux density
is D = � E, so the permittivity doesn't matter. The result is:

D = �̂
� l

2��
�= � �̂

334 � C/m
�
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5.7-1

From Gauss' Law,� v = r � D = r � (� 0� r E) = � 0� r r � E. Calculating the divergence:

r � E =
@

@x

�
(6 V/m 2)x

�
+

@
@y

�
(2 V/m 3)yz

�
+

@
@z

�
(1 V/m 3)xy

�

= (6 V/m 2)(1) + (2 V/m 3)(z) + (1 V/m 3)(0)

= (6 V/m 2) + (2 V/m 3)z

� 0
�= 8:854� 10� 12 F/m and � r = 4:5, so

� v = 239:1 pC/m3 + (79:7 pC/m4)z
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5.7-2

(a) � v = r � D = � 0r � E. Here it's easiest to use Cartesian coordinates, for which

r = x̂
@
@x

+ ŷ
@
@y

+ ẑ
@
@z

so we have

� v = � 0

�
x̂

@
@x

+ ŷ
@
@y

+ ẑ
@
@z

�
� [x̂ (2 V/m) sin x cosy � ŷ (2 V/m) cos x siny]

= � 0
��

2 V/m 2�
cosx cosy �

�
2 V/m 2�

cosx cosy
�

= 0

This is an example of adivergence-free �eld. It seems that there can be an electric �eld even
when there is no charge. This means simply that the source charge must lie entirely outside
the region begin considered.

(b) In this case we have

� v = � 0

�
x̂

@
@x

+ ŷ
@
@y

+ ẑ
@
@z

�
� [x̂ (3 V/m) cos xy + ŷ (3 V/m) sin xy]

=
�
3 V/m 3�

� 0 [� y sinxy + x cosxy]

which has the expected units of C/m3.

67



[m0045] [3]

5.7-3

(a) A, B , and C have units of V/m4, V/m 3, and V/m 2 , respectively.

(c) According to the di�erential form of Gauss' Law, we have for this problem:

� v = � 0r � E = � 0

�
@

@x
(Axz 2) +

@
@y

(� Byz) +
@
@z

(Cx)
�

= � 0
�
Az2 � Bz + 0

�
.

This is charge density as a function of position. The enclosed charge is obtained by integrat-
ing over the region of interest:

Qencl =
Z

V
� v dv =

Z x=+1

x= � 1

Z y=+1

y=0

Z z=0

z= � 1
� 0

�
Az2 � Bz

�
dx dy dz

The integrations overx and y factor out and are equal to 2 and 1 respectively. What's left
is:

Qencl = (2)(1) � 0

Z z=+1

z= � 1

�
Az2 � Bz

�
dz = Qencl = � 0

��
2
3

m5

�
A + (1 m 4) B

�

Note that this result agrees with the result obtained using the more direct approach of us-
ing the integral form of Gauss' Law. You should note that the reason the results are the
same is not really related to electromagnetics, but rather due to the Divergence Theorem
(of mathematics), which relates the behavior of a vector �eld in a volume to the behavior of
that same vector �eld over the enclosing surface.
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5.8-1

The change in the energy of the system resulting from moving the particle a small distance
l̂ � l is:

� W � � qE � l̂ � l

Power P is energy per time, so the power required to do this is:

P �
� W
� t

� � qE �
l̂ � l
� t

where � t is the time required for the particle to traverse the distance. Note that in the
limit as � t ! 0, l̂ � l=� t is the velocity v of the particle. Taking the limit and making the
substitution,

P = � qE � v

This is the \instantaneous power" required at timet and, through t, the position r (t).

Interpreting the problem statement: q = � 4 mC;
E = E0ẑ, whereE0 = 3 V/m; and
r (t) = x̂acos!t + ŷbsin!t + ẑct, wherea = b= 2 m, ! = � rad/s, and c = 4 m/s.
Note

v ,
d
dt

r (t) = � x̂a! sin!t + ŷb! cos!t + ẑc

Therefore,

P = � qE � v = � qE0c = � (� 4 mC) (3 V/m) (4 m/s) = 48 mW
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5.12-1

Let us arbitrarily assume the charge is aligned along thez axis. Then the electric �eld
intensity is given by

E(� ) = �̂
� l

2���
. (5.33)

The potential di�erence is:

V21 = �
Z point 2

point 1
E � d̂l = �

Z � 2

� 1

�̂
� l

2���
� �̂d� =

� l

2��
ln

� 1

� 2
. (5.34)
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5.12-2

The electric �eld intensity resulting from a single line of uniform charge density is given
by

E(R) = R̂
� l

2��R
. (5.35)

whereR is the distance between the point of interest and closest point on the line, R̂ points
from that point on the line to the point of interest, and R = R̂R.

If we have two such lines of charge, then by superposition we could write:

E(R) = R̂ 1
� l

2��R 1
+ R̂ 2

� l

2��R 2
. (5.36)

where the subscripts \1" and \2" refer to the geometry relative to the �rst and second lines
of charge, respectively. In this problem, the lines of charge and the point of interest all lie
in the x � y (z = 0) plane. Since this is the case we may write simply:

E(x; y) = x̂
� l

2��x
+ ŷ

� l

2��y
for z = 0. (5.37)

The potential di�erence is:

V21 = �
Z point 2

point 1
E � dl . (5.38)

Remember that the answer should be the same forany path between the points, so you
might as well choose one that makes the problem simple. Here'sthe result using one of two
equally-easy paths:

V21 = �
Z x2

x= x1

�
x̂

� l

2��x
+ ŷ

� l

2��y 2

�
� x̂dx �

Z y2

y= y1

�
x̂

� l

2��x 1
+ ŷ

� l

2��y

�
� ŷdy (5.39)

That is, �rst move from (2 ; 4) m to (1; 4) m along the y = y2 = 4 m line, and then move
from (1; 4) m to (1; 1) m along thex = x1 = 1 m line. Evaluating:

V21 = �
� l

2��

�
ln

�
x2

x1

�
+ ln

�
y2

y1

��
= +

� l

2��

�
ln

�
x1

x2

�
+ ln

�
y1

y2

��
= 0:331

� l

�
. (5.40)

Here, you can check your results using dimensional analysis (C/m divided by F/m gives C/F
= V). You can also check that the sign is correct: Point 2 is closer to both lines of charge
than point 1, so when the charge is positive, work is being done and the potential di�erence
is positive. Said di�erently, the potential at point 2 is higher than the potential at point 1.
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5.12-3

The point chargeq1 = +3 � C at the origin creates a potential �eld

V(r ) =
q1

4��r
(5.41)

wherer is the distance from the origin. Since the permittivity of the medium is speci�ed to
be twice that of free space,� = � r � 0 = 2� 0. Thus:

V(r ) =
q1

8�� 0r
(5.42)

The potential di�erence V21 at r 2 relative to r 1 is independent of the path taken between the
points; it depends only on the endpoints. Thus:

V21 = V(r 2) � V(r 1) =
q1

8�� 0r2
�

q1

8�� 0r1
=

q1

8�� 0

�
1
r2

�
1
r1

�
(5.43)

wherer1 =
p

32 + ( � 4)2 = 5 m and r2 = 1 m. Therefore V21
�= +10:8 kV .

Note that the result does not depend on the value of the charge (q2 = +2 � C) being moved
from r 1 to r 2. This is the whole point in de�ning a scalar electric potential: It describes
energy in the �eld independentlyof the charge that experiences it. If necessary, one may
subsequently calculate the energy associated with this potential di�erence asq2V12.
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5.14-1

To begin, it will be convenient to �rst convert r 0 from Cartesian to spherical coordinates.
Here we go:

r0 =
q

x2
0 + y2

0 + z2
0

�= 5:38 cm

� 0 = arccos (z0=r0) �= 42:0�

� 0 = arctan ( y0=x0) �= 56:3�

(a)
V(r 0) = V0r 2

0 cos� 0
�= 10:8 mV

(b)

E = �r V = �
�

r̂
@
@r

+ �̂
1
r

@
@�

+ 0
�

V

The third term in the gradient is zero becauseV in this problem does not vary with � .
Continuing:

E = � r̂
@V
@r

� �̂
1
r

@V
@�

= � r̂2V0r cos� + �̂V0r sin�

So:
E(r 0) �= � r̂ 400 + �̂ 180 mV/m

(c)

� v = r � D = � 0r � E = � 0

�
1
r 2

@
@r

�
r 2Er

�
+

1
r sin�

@
@�

(E � sin� ) + 0
�

whereEr and E � are ther̂ - and �̂ -directed components ofE. The third term in the divergence
is zero becauseE in this problem does not vary with� . Note:

1
r 2

@
@r

�
r 2Er

�
=

1
r 2

@
@r

�
r 2 (� 2V0r cos� )

�
=

1
r 2

@
@r

�
� 2V0r 3 cos�

�
=

1
r 2

�
� 6V0r 2 cos�

�
= � 6V0 cos�

and

1
r sin�

@
@�

(E � sin� ) =
1

r sin�
@
@�

((V0r sin� ) sin � ) =
1

r sin�
@
@�

�
V0r sin2 �

�
=

1
r sin�

(2V0r sin� cos� )

= 2V0 cos�

Continuing:
� v = � 0 [� 6V0 cos� + 2V0 cos� ] = � 4V0� 0 cos�

(Good time for a units check...) At the point of interest:

� v(r 0) �= � 131 pC/m3
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5.14-2

From the problem statement,
V(r ) = V0r � 1=2

whereV0 , 4 V � m1=2. So:
E(r ) = �r V(r )

= � r̂
@
@r

V0r � 1=2 + terms that go to zero because@
@� = @

@� = 0

= � r̂V0

�
�

1
2

r � 3=2

�

= + r̂
V0

2
r � 3=2

= + r̂
�
2 V � m1=2

�
r � 3=2

Note that the answer is dimensionally correct (and unambiguously so).
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5.15-1

Poisson's Equation is
r 2V = �

� v

�
. (5.44)

The geometry of the problem suggests cartesian coordinates, and symmetry such that@V=@y=
@V=@z= 0 is implied. Thus, the above equation becomes:

d2

dx2
V(x) = �

� v(x)
�

. (5.45)

Integrating both sides with respect tox we have

d
dx

V(x) = �
1
�

Z x

�1
� v(x) dx . (5.46)

Integrating both sides again with respect tox we have

V(x) = �
1
�

Z x

�1

� Z x

�1
� v(x) dx

�
dx . (5.47)

The �rst chore is to take care of that sequence of integrations. We begin with mathematical
restatement of the given volume charge density:

� v(x) =

8
>><

>>:

0 , � 1 � x < � b
� a , � b � x < 0
+ a , 0 � x � + b
0 , + b < x � �1

(5.48)

Integrating once:

Z x

�1
� v(x)dx =

8
>><

>>:

0 , � 1 � x < � b
� a(x + b) , � b � x � 0
+ ax � ab , 0 < x � + b
0 , + b < x � �1

(5.49)

If you have a hard time seeing this, consider sketching� v(x) and then doing the integration
graphically. Integrating the second time:

Z x

�1

� Z x

�1
� v(x)dx

�
dx =

8
>><

>>:

0 , � 1 � x < � b
� (a=2)x2 � abx� ab2=2 , � b � x � 0
+( a=2)x2 � abx� ab2=2 , 0< x � + b
� ab2 , + b < x � �1

(5.50)

Substituting this into Equation 5.47 we obtain:

V(x) =
1
�

8
>><

>>:

0 , � 1 � x < � b
+( a=2)x2 + abx+ ab2=2 , � b � x � 0
� (a=2)x2 + abx+ ab2=2 , 0< x � + b
ab2 , + b < x � �1

(5.51)
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Now check your answer. First, as always, check that is is dimensionally correct. Second,
note that V(x) should be a continuous function ofx, since integration over any function
(speci�cally excluding the impulse or \delta" function) results in a continuous function.

To �nd the volume charge densitya in terms of V, we simply evaluate:

Vd = V(x = + b) � V(x = � b) =
ab2

�
� 0 =

ab2

�
. (5.52)

and solve fora:

a =
�Vd

b2
. (5.53)

Given the relative permittivity of silicon � r � 12, b = 100 � m, and Vd = 0:4 V, we �nd

a = 4:25 mC/m3 .
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5.15-2

The symmetry of this problem suggests a solution in spherical coordinates. Laplace's Equa-
tion in spherical coordinates is:

r 2V =
1
r 2

@
@r

�
r 2 @V

@r

�
+

1
r 2 sin�

@
@�

�
sin�

@V
@�

�
+

1
r 2 sin2 �

@2V
@�2

= 0 (5.54)

The symmetry of the problem also requires that the potentialV not vary with respect to �
or � ; in other words:

@V
@�

=
@V
@�

= 0 . (5.55)

Thus, V is a function of r only, and Laplace's Equation simpli�es to:

1
r 2

@
@r

�
r 2 @

@r
V(r )

�
= 0 (5.56)

Multiplying through by r 2 and then integrating with respect tor , we obtain:

r 2 @
@r

V(r ) = C , (5.57)

whereC is an arbitrary constant. Now dividing through by r 2 and integrating with respect
to r again, we obtain:

V(r ) = �
C1

r
+ C2 , (5.58)

whereC1 and C2 are constants that can be determined by boundary conditions. Applying
the boundary conditions, we obtain:

V(r = 1 m) = �
C1

1 m
+ C2 = 100 V , and (5.59)

V(r = 3 m) = �
C1

3 m
+ C2 = 20 V . (5.60)

A simple way to solve forC1 and C2 here is simply to subtract the second equation from
the �rst equation, which eliminates C2, then solve forC1 and use that result to solve forC2.
One �nds C1 = � 120 V�m and C2 = � 20 V. Thus:

V(r ) = +
120 V� m

r
� 20 V , 1 m � r � 3 m. (5.61)

Note that an answer like \V(r ) = 120=r � 20" is dangerously ambiguous, unless you specify
as part of the answerthat r must be in meters andV will be in volts.
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5.15-3

The symmetry of this problem suggests a solution in spherical coordinates. Laplace's Equa-
tion in spherical coordinates is:

r 2V =
1
r 2

@
@r

�
r 2 @V

@r

�
+

1
r 2 sin�

@
@�

�
sin�

@V
@�

�
+

1
r 2 sin2 �

@2V
@�2

= 0 (5.62)

The symmetry of the problem also requires that the potentialV not vary with respect to �
or � ; in other words:

@V
@�

=
@V
@�

= 0 . (5.63)

Thus, V is a function of r only, and Laplace's Equation simpli�es to:

1
r 2

@
@r

�
r 2 @

@r
V(r )

�
= 0 (5.64)

Multiplying through by r 2 and then integrating with respect tor , we obtain:

r 2 @
@r

V(r ) = C , (5.65)

whereC is an arbitrary constant. Now dividing through by r 2 and integrating with respect
to r again, we obtain:

V(r ) = �
C1

r
+ C2 , (5.66)

whereC1 and C2 are constants that can be determined by boundary conditions. One bound-
ary condition is obtained from the surface of the sphere:

V(r = 2 m) = �
C1

2 m
+ C2 = 20 V (5.67)

The other boundary condition is obtained by noting thatV(r ) must go to zero asr ! 1 .
Thus:

V(r ! 1 ) = 0 + C2 = 0 (5.68)

so C2 = 0 and C1 = � 40 V�m.

V(r ) = +
40 V � m

r
r > 2 m (5.69)

Note that an answer like \V(r ) = 40=r V" is dangerously ambiguous, since the units of the
constant \40" are not clear. (It is OK { albeit tedious { to say \ V(r ) = 40=r V" if you also
specify that r is in meters.)
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5.16-1

The symmetry of this problem suggests a solution in cylindrical coordinates. Laplace's
Equation in cylindrical coordinates is:

r 2V =
1
�

@
@�

�
�

@V
@�

�
+

1
� 2

@2V
@�2

+
@2V
@z2

= 0 (5.70)

The symmetry of the problem also requires that the potentialV not vary with respect to �
or z; in other words:

@V
@�

=
@V
@z

= 0 . (5.71)

Thus, V is a function of � only, and Laplace's Equation simpli�es to:

@
@�

�
�

@V
@�

�
= 0 (5.72)

Integrating both sides with respect to� , we obtain:

�
@
@�

V(� ) = C1 , (5.73)

whereC is an arbitrary constant. Now dividing through by � and integrating with respect
to � again, we obtain:

V(� ) = C1 ln � + C2 , (5.74)

whereC1 and C2 are constants that can be determined by boundary conditions. Applying
the boundary conditions, we obtain:

V(� = 0:001 m) = C1 ln (0:001 m) + C2 = 50 mV , and (5.75)

V(� = 0:002 m) = C1 ln (0:002 m) + C2 = 20 mV . (5.76)

A simple way to solve forC1 and C2 here is simply to subtract the second equation from
the �rst equation, which eliminates C2; then solve forC1 and use that result to solve forC2.
One �nds C1 = � 43:3 mV and C2 = � 249:0 mV. Thus:

V(� ) = � (43:3 mV) ln
� �

1 m

�
� 249:0 mV , 1 mm � � � 2 mm. (5.77)

Note that an answer that does not include \1 m" in the denominator of the argument of the
\ln" function is dangerously ambiguous unless you also specify that � must be in meters.
Here is another correct solution, this time with the argumentin units of millimeters:

V(� ) = � (43:3 mV) ln
� �

1 mm

�
+ 50:0 mV , 1 mm � � � 2 mm. (5.78)

Note that C2 depends on the units of� in the argument of the logarithm function.
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5.18-1

A good way to get the charge density is to �rst �nd the electric �eld, and then to apply
the boundary condition that relates electric �eld to surface charge density on a conducting
surface. The electric �eld intensity is, in general:

E = �r V = � �̂
@V
@�

� �̂
1
�

@V
@�

� ẑ
@V
@z

. (5.79)

The last two terms are zero because the the answer cannot varywith respect to � or z. So
we have:

E = � �̂
@V
@�

= � �̂
@
@�

h
� (43:3 mV) ln

� �
1 m

�
� 249:0 mV

i
= �̂

43:3 mV
�

. (5.80)

The relevant boundary condition on the inner conductor is that the normal component of the
electric ux density D equals the surface charge density. The normal to the inner conductor
is + �̂ , so we have:

� s = (+ �̂ ) � D j � =1 mm = �̂ � � Ej � =1 mm = � r � 0 (43:3 V/m) . (5.81)

Since� 0 = 8:854� 10� 12 F/m and � r = 2:1, we have that the surface charge density on the
inner conductor is +804 pC/m2 .
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[m0021] [2]

5.18-2

(a) Summarizing the problem statement, we have a sphere of radius a = 2 m containing
uniformly-distributed charge with volume density� v = 3 pC/m 3, and the media is a dielec-
tric with � r = 4:5 everywhere. Poisson's Equation is

r 2V = �
� v

�
(5.82)

Note that you could also do this problem by integrating over the charge distribution, and
that's a great check. However, the problem statement requires you to use Poisson's Equation.
The symmetry of the problem suggests the use of spherical coordinates. Noting that @V=@�
and @V=@�should be zero due to symmetry, we �nd

1
r 2

@
@r

�
r 2 @V

@r

�
= �

� v

�
(5.83)

It's straightforward to solve for V in this case. Here we go:

@
@r

�
r 2 @V

@r

�
= �

� v

�
r 2 (5.84)

r 2 @V
@r

= �
� v

3�
r 3 + C1 (5.85)

whereC1 is an arbitrary constant. Continuing:

@V
@r

= �
� v

3�
r +

C1

r 2
(5.86)

V(r ) = �
� v

6�
r 2 +

C2

r
+ C3 (5.87)

where C2 and C3 are arbitrary constants. At this point you should con�rm this result by
making sure it's a solution to the original equation, and also by checking units.

Outside the sphere,� v = 0. Thus:

V(r ) =
Bo

r
+ Ao r > a (5.88)

Here we have replaced the constantsC2 andC3 with Bo andAo respectively. This is to remind
us that the constants may be di�erent should we consider the region inside the sphere (as
we shall soon do). We can determine the value of the constantAo by noting that V(r ) ! 0
as r ! 1 , since the total charge is �nite and contained within a �nite region. Therefore,
Ao must be zero, leading to

V(r ) =
Bo

r
r > a (5.89)

To determine the value of the constantBo we're going to have to make some kind of con-
nection with V(r ) inside the sphere. Inside the sphere:

V(r ) = �
� v

6�
r 2 +

B i

r
+ A i r � a (5.90)
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Here we have replaced the constantsC2 and C3 with B i and A i respectively. We can deter-
mine the value of the constantB i by noting that V(r ) must be �nite as r ! 0, since the
charge density is �nite at r = 0. Therefore, B i must be zero, leading to

V(r ) = �
� v

6�
r 2 + A i r � a (5.91)

Now we apply the boundary condition at the surface of the sphere. Note that there is no
requirement for potential to be continuous (and it wouldn'tdo us any good even if there
were, since we'd be stuck with one equation and two unknowns). The relevant boundary
condition at r = a is that the normal component of the electric �eld should be continuous:
Speci�cally,

[D o(r = a) � D i (r = a)] � r̂ = � s (5.92)

where D o and D i are the electric ux densities outside and inside the sphererespectively,
and � s is the surface charge density. The surface charge density� s is zero, since all the charge
is taken into account as the volume charge density� v. Also, D = � E; therefore, we have

[Eo(r = a) � E i (r = a)] � r̂ = 0 (5.93)

Next we note E everywhere should be oriented in thêr direction due to symmetry. Thus,
we �nd:

Eo(r = a) = E i (r = a) (5.94)

We can �nd the electric ux density by taking the gradient of the potential:

E = �r V = � r̂
@
@r

h
�

� v

6�
r 2 + A i

i
= r̂

� v

3�
r r � a (5.95)

E = �r V = � r̂
@
@r

�
Bo

r

�
= r̂

Bo

r 2
r > a (5.96)

Now applying the boundary condition (Equation 5.94):

� v

3�
a =

Bo

a2
(5.97)

Solving for Bo and substituting the result back into Equation 5.89, we obtain:

V(r ) =
� va3

3�r
=

� va3

3� r � 0r
r > a (5.98)

(Good time for a units check!) Finally, the answer:

V(r ) =
0:201 V�m

r
r > a (5.99)

(b) From the previous equation,V(3 m) = 66:9 mV.
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[m0021] [3]

5.18-3

A good way to get the charge density is to �rst �nd the electric �eld, and then to apply
the boundary condition that relates electric �eld to surface charge density on a conducting
surface. The electric �eld intensity is:

E = �r V = � r̂
@V
@r

� �̂
1
r

@V
@�

� �̂
1

r sin�
@V
@�

. (5.100)

The last two terms are zero because the the answer cannot varywith respect to � or � . So
we have:

E = � r̂
@V
@r

= � r̂
@
@r

�
120 V� m

r
� 20 V

�
= + r̂

120 V� m
r 2

. (5.101)

The relevant boundary condition on the inner conductor is that the normal component of the
electric ux density D equals the surface charge density. The normal to the inner conductor
is + r̂ , so we have:

� s = (+ r̂ ) � D jr =1 m = r̂ � � 0Ejr =1 m = � 0 (120 V/m) . (5.102)

Since� 0 = 8:854� 10� 12 F/m in free space, we have that the surface charge density on the
inner conductor is 1.06 nC/m2 .
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[m0112] [1]

5.22-1

The net charge in the capacitor is zerobecause the charges on the two plates is equal
and opposite. The charge on the positively-charged plate is

Q+ = CV = (20 pF) (3 V) = +60 pC
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[m0070] [1]

5.23-1

(a) The equivalent circuit is just a resistorR in parallel with a capacitor to which we'll
assign the variableCx . The impedance of the capacitor is� j=!C x . Thus, the magnitude
of the capacitor's impedance decreases with increasing frequency. The total impedance is
the parallel combination ofR = 200 
 and Cx . The e�ective resistance will decreasewith
increasing frequency.

(b) This structure looks a lot like a parallel plate capacitor. Neglecting fringing �elds,
capacitance is estimated as

Cx =
�HW

L
=

� 0� r HW
L

=
(8:854� 10� 12 F/m) � 37� (0:3 mm) (0:3 mm)

0:6 mm
= 49:1 fF

(c) The impedance isR k (� j=!C x ). At f = 10 GHz, we have 144:8 � j 89:4 
, so the
e�ective resistance is 144:8 
 .
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[m0070] [2]

5.23-2

From the problem statement:C < 3 pF, d = 2 mm, and � r = 3:0. Note:

C �
�A
d

=
� r � 0A

d

whereA is the area in common. So:

A <
(3 pF) d

� r � 0

Therefore, the common area must be< 2:26� 10� 4 m2.
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[m0070] [3]

5.23-3

(a) Given � (z) = � 0 (az + b) is permittivity, the units of a must be 1/m and b must be

unitless.

(b) This problem is really quite similar to the derivation presented in the book. As in that
derivation, electric ux density between the plates is

D � � ẑ� s;+ (5.103)

where � s;+ is the charge density on the positively-charged plate atz = d. The electric ux
density is unchanged in this problem because electric ux does not depend on the material
in which it exists (unlike the electric �eld intensity, E). When it comes time to compute the
potential across the plates, we �nd:

V = �
Z

C
E � dl (5.104)

= �
Z d

z=0

�
D

� (z)

�
� (ẑdz) (5.105)

= �
Z d

z=0

�
� ẑ

� s;+

� 0 jaz + bj

�
� (ẑdz) (5.106)

=
� s;+

� 0

Z d

z=0

dz
az + b

(5.107)

You can solve the integral, or just look it up in a table of integrals. Continuing:

V =
� s;+

� 0

 
1
a

ln jaz + bj

�
�
�
�

d

0

!

(5.108)

=
� s;+

� 0

1
a

(ln jad+ bj � ln jbj) (5.109)

=
� s;+

� 0

1
a

ln
�

ad+ b
b

�
(5.110)

=
� s;+

� 0

1
a

ln
�

ad
b

+ 1
�

(5.111)

We can dispense with the absolute value operator above sincethe argument is always non-
negative. Finally:

C ,
Q+

V
�

� s;+ A
(� s;+ =�0) (1=a) ln (ad=b+ 1)

(5.112)

which simpli�es to:

C � � 0A
a

ln (ad=b+ 1)
(5.113)
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(c) Units check: � 0 has units of F/m, A has units of m2, and a has units of 1/m. The \ln"
factor in the denominator is unitless. Thus we �nd thatC has units of F, as expected.

(d) Recall that � (z) = � 0 (az + b). If the permittivity is uniform, then a must be zero.
Subsequentlyb must be the relative permittivity, � r . Equation 5.113 becomes:

C � � 0A lim
a! 0

a
ln (ad=�r + 1)

(5.114)

Note we have to be careful because both numerator and denominator are going to zero.
Applying L'Hopital's Rule, we take the derivative with respect to a of the numerator and
denominator:

lim
a! 0

a
ln (ad=�r + 1)

= lim
a! 0

1
(d=�r ) =(ad=�r + 1)

=
� r

d
(5.115)

Substituting this result into Equation 5.114, we obtain:

C � � 0A
� r

d
=

�A
d

(5.116)

which is the expected result (i.e., the one we had already derived for uniform permittivity).

(e) In terms of the variables established,A = 400 � m2, d = 0:5 mm, b = 2, and a =
(10 � 2)=d= 16000 m� 1. (You should check that this choice ofa and b gives you� = 2� 0 at
z = 0 and � = 10� 0 at z = d.) Equation 5.113 becomes:

C � � 0A
a

ln (5)
�= 35:2 pF (5.117)
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[m0113] [1]

5.24-1

From the problem statement,C0 = 30 pF/m and � r = 2:25 for polyethylene. The capacitance
of the original coaxial cable is

C0 =
2�� s

ln (b=a)

where � s = � r � 0 for the spacer material andb=a is the ratio of the radius of the outer
conductor to that of the inner conductor. The capacitance ofa coaxial cable that is identical
except polyethylene is replaced with air (� s = � 0) is:

C0
new =

2�� 0

ln (b=a)

Comparing the two equations, we observe:

C0
new =

C0

� r

�= 13:3 pF/m
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[m0113] [2]

5.24-2

From the problem statement, a = 1 mm, b = 3 mm, � s = � 0, and V = +1 :5 kV mea-
sured at the outer conductor relative to the inner conductor. The capacitance of this cable
is

C0 =
2�� 0

ln (b=a)
�= 50:6 pF/m

The outer conductor is positively-charged, and the line charge density on this conductor is

� l = C0V �= +76:0 nC/m

The circumference of the outer conductor is 2�b , so the surface charge density is

� s =
� l

2�b
= +4 :03 � C/m 2
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[m0114] [1]

5.25-1

From the problem statement,C = 4:7 mF and V = 16 V. The energy stored is

We =
1
2

CV2 �= 602 mJ
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[m0114] [2]

5.25-2

From the problem statement,C = 3:5 pF, d = 0:1 mm, � r = 10, and V = 3 V. For an
ideal parallel plate capacitor,

C =
�A
d

where � = � r � 0 is the spacer permittivity and A is the plate area. In the present problem,
we �nd:

A =
Cd
� 0� r

�= 3:95� 10� 6 m2

The volume of the capacitor is

Ad �= 3:95� 10� 10 m3

The energy in the capacitor is

We =
1
2

CV2 = 15:75 pJ

Therefore, the energy density is

We

Ad
�= 39:8 mJ/m 3
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Chapter 6

Steady Current and Conductivity
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[m0071] [1]

6.4-1

(a) ResistanceRsteel per unit length l of the steel-only wire:

R0
steel =

Rsteel

l
=

1
� steel � �a 2

=
1

(1:00� 106 S/m) � � (0:1 mm)2
= 31:8 
/m

(b) Resistance per unit length of gold clad having outer radius b:

R0
gold =

1
� gold � � (b2 � a2)

The total resistance per unit lengthR0
total = 10 
/m is the parallel combination:

1
R0

total

=
1

R0
steel

+
1

R0
gold

=
1

R0
steel

+ � gold � �
�
b2 � a2

�

Solving for b:

b=

s �
1

R0
total

�
1

R0
steel

+ � gold � �a 2

�
1

� gold � �
= 0:10263 mm

So the required thickness of gold isb� a, which is 2:63 � m .
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[m0071] [2]

6.4-2

In the transmission line equivalent circuit (R0,G0,C0,L0) model, R0 is a series resistance. Also,
any current applied to either conductor must return on the other conductor. Therefore, we
have

R0 = R0
ic + R0

oc (6.1)

where R0
ic is the resistance per length of the inner conductor andR0

oc is the resistance per
length of the outer conductor. Note

R0
ic =

1
� icA ic

(6.2)

where� ic is the inner conductor conductivity andA ic is the cross-sectional area of the inner
conductor. Thus,R0

ic = 0:164 
/m. Also

R0
oc =

1
� ocAoc

(6.3)

where� oc = � ic (from the problem statement) andAoc is the cross-sectional area of the outer
conductor, through which the current ows. Note:

Aoc = �b 2
2 � �b 2

1 (6.4)

where b1 and b2 are the radii of the inner and outer surfaces, respectively,of the outer
conductor. From the problem statement we have

b1 =
�

1 �
0:05

2

�
b �= 0:1809 cm (6.5)

b2 =
�

1 +
0:05

2

�
b �= 0:1901 cm (6.6)

(Check: the mean ofb1 and b2 is (b1 + b2) =2 = b, as expected.) SoAoc
�= 1:081� 10� 6 m2,

and subsequently,R0
oc

�= 0.0406 
/m. Finally, we obtain R0 = R0
ic + R0

oc
�= 0:205 
/m.
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[m0071] [3]

6.4-3

If the voltage drop is to be reduced by a factor of 2, then the resistance must be decreased
by a factor of 2. The DC resistance of a wire isl=�A where l is length, � is conductivity,
and A is cross-sectional area. The use of the term \diameter" implies the wire has circular
cross section, so the original wire hasA = � (D0=2)2 and

R =
l

�� (D0=2)2

For this to be reduced by a factor of two, the new diameter mustbe
p

2 � D0 .
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[m0071] [4]

6.4-4

The DC resistance of such a resistor isR = l=�A where A is cross-sectional area. In this
case, we may write

R =
l

�A
=

l

�� (D=2)2 =
4l

��D 2

where D is diameter. Note that D should increase by a factor of
p

2 in order to reduceR
by a factor of two. Thus, D becomes�= 1:41 mm.
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[m0105] [1]

6.5-1

The conductance per unit length is

G0 =
2�� s

ln (b=a)

where � s is the spacer conductivity, anda and b are the radii of the inner and outer
conductors, respectively. From the book, RG-59 has� s

�= 5:9 � 10� 5 S/m and exhibits
G0 �= 200 � S/m normally. From the appendix \Conductivity of Some Common Materials,"
� s � 5 S/m. The worst case is that spacer assumes the much higher conductivity of seawater,
in which case:

G0 ! (200 � S/m)
5 S/m

5:9 � 10� 5 S/m
�= 17:0 S/m
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[m0105] [2]

6.5-2

Let the ground plane be atz = 0, and let the trace be at z = h. From the problem
statement, the currentI is positive when owing into the trace and from the ground plane.

(a) Under the condition that W � h we assume that most of the current in the transmission
line ows directly from the trace to ground plane in the� ẑ direction, and that the fraction
of current that does not satisfy this condition (i.e., the current close to the edges of the
trace) is negligible. Thus, we are justi�ed in assuming the current density is approximately
uniform throughout the region directly underneath the trace. Therefore the magnitude of
the current density is approximately total current I divided by trace areaWl, wherel is the
length of the trace. Under this same approximation, the magnitude of the current density
is assumed to be zero beyond the trace. Summarizing:

J �

(
� ẑI=W l; directly underneath trace; and

0; otherwise.
(6.7)

wherel is the length of the trace.

(b) The electric �eld intensity is given by Ohm's law:

E =
J
� s

�

(
� ẑI=W l� s; directly underneath trace; and

0; otherwise.
(6.8)

Subsequently:

V = �
Z

C
E � dl (6.9)

� �
Z h

z=0

�
� ẑ

I
W l� s

�
� (ẑdz) (6.10)

Note the start point is z = 0, since this is the negative terminal with respect to a current
source driving the transmission line. Similarly the end point is z = h, since this is the
positive terminal with respect to a current source driving the transmission line. Continuing:

V �
I

W l� s

Z h

z=0
dz (6.11)

The integral is equal toh. Thus:

V �
Ih

Wl� s
(6.12)

This is the potential measured at the trace relative to the potential at the ground plane.
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(c) ConductanceG is determined as follows:

G ,
I
V

�
W l� s

h
(6.13)

Conductance per unit length isG0 , G=l, so

G0 �
W � s

h
(6.14)

(d) Since the trace and ground plane are speci�ed to be perfectly conducting, R0 = 0 and the
only physical mechanisms to consider areG0, L0, and C0. At DC, There is no contribution
from L0 since it is in series with the trace, and there is no contribution from C0 since it
connects trace to ground plane. ThereforeZ , V=I = 1=G. From Equation 6.13 we obtain:

Z �
h

Wl� s
(6.15)
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[m0106] [1]

6.6-1

From the problem statement:
Length l = 1:2 cm,
radius a = 1:6 mm,
J is uniform (constant) in the resistor,
E = ẑE0=

p
� whereE0 , 3 V � m� 1=2, and

P = 5 W.
Let � be the conductivity of the material comprising the resistor. Then

P =
Z

V
� jEj2 dv

whereV is the volume representing the resistor.

We cannot assume the material comprising the resistor is homogeneous. So, whatdo we
know about � ? Recall Ohm's Law,J = � E. SinceE is proportional to 1=

p
� and J is inde-

pendent of� , � must have the form� = � 0
p

� where� 0 is a constant having units of S�m� 3=2.

Continuing,

P =
Z

V
(� 0

p
� )

�
E0
p

�

� 2

dv = � 0E 2
0

Z

V
� � 1=2dv

Let us assume the ends of the resistor are atz = 0 and z = l. Then:

P = � 0E 2
0

Z a

� =0

Z 2�

� =0

Z l

z=0
� � 1=2 [d� (�d� ) dz]

= � 0E 2
0

� Z a

� =0
� +1 =2d�

� � Z 2�

� =0
d�

� � Z l

z=0
dz

�

= � 0E 2
0

�
2
3

a3=2

�
(2� ) ( l)

Solving for � 0:

� 0 =
3P

4�a 3=2lE 2
0

�= 173 kS� m� 3=2

and subsequently,

� �=
�
173 kS� m� 3=2

� p
�
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Chapter 7

Magnetostatics
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[m0115] [1]

7.1-1

Divergence of the electric �eld:
r � D = � v , so

r � � E = � v

where� has units of F/m and � v has units of C/m3.
Curl of the electric �eld:

r � E = 0

Divergence of the magnetic �eld:
r � B = 0 , so

r � H = 0

Curl of the magnetic �eld:
r � H = J

Noting J = � E:
r � H = � E

where� has units of S/m.
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[m0047] [1]

7.3-1

The di�erential form of Gauss' Law for magnetism requires

r � B = 0

According the reported measurement:

r � B =
�

x̂
@
@x

+ ŷ
@
@y

+ ẑ
@
@z

�
� x̂B0x2 = 2B0x

Therefore, the measurement is plausible only ifB0 is zero.
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[m0119] [1]

7.5-1

The magnetic ux density (not the same as magnetic ux!) in this case is given by

B(� ) = �̂
� 0I
2��

. (7.1)

The magnetic ux is simply B integrated over the area of the loop (i.e., ux divided by area,
times area, is ux):

� =
Z

S
B � ds =

Z 23 cm

� =3 cm

Z 30 cm

z=0
�̂

� 0I
2��

� �̂ d� dz (7.2)

Where S is the area enclosed by the loop, and the absolute values ofz don't matter due to
symmetry, so you can pick anyz's you want as long as you cover 30 cm in thez direction.
Evaluating:

� =
� 0I
2�

� Z 23 cm

� =3 cm

d�
�

� � Z 30 cm

z=0
dz

�
=

� 0I
2�

�
ln

23
3

�
(30 cm) = 3 � T�m2 (7.3)

Solving for I we have

I =
�
3 � T�m2

�
�

2�
4� � 10� 7 H/m

� �
ln

23
3

� � 1

(0:3 m)� 1 = 24:5
T�m2

H
(7.4)

To get to units of A, the traditional units of current, recall that inductance (H) is de�ned
as magnetic ux (T�m2) divided by current (A), so we're already there! Thus, we have
I = 24.5 A .
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[m0119] [2]

7.5-2

The magnetic ux density (not the same as magnetic ux!) is given by

B(� ) = �̂
� 0I
2��

. (7.5)

The magnetic ux is simply B integrated over the area of the loop (i.e., ux divided by area,
times area, is ux):

� =
Z

S
B � ds =

Z 0:02 m

� =0 :01 m

Z 0:10 m

z=0
�̂

� 0I
2��

� �̂ d� dz (7.6)

Evaluating:

� =
� 0I
2�

� Z 0:02 m

� =0 :01 m

d�
�

� � Z 0:10 m

z=0
dz

�
(7.7)

=
(4� � 10� 7 H/m)(3 A)

2�

�
ln

0:02
0:01

�
(0:10 m) = 41:6 nT�m2 (7.8)

Note that this may also be written as 41.6 nWb, since 1 Wb = 1 T/m2.
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[m0119] [3]

7.5-3

Ampere's Law is Z

C
H � dl = I encl (7.9)

whereC is any path which encloses the current. A convenient path is just a constant-z circle
with radius a: Z 2�

� =0
H � �̂ a d� = I (7.10)

Also, H = B=� 0, so Z 2�

� =0
�̂J 0a � �̂ a d� = I (7.11)

Thus:
I = 2�a 2J0 = 20:0 mA . (7.12)
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7.5-4

Apply the right hand rule. When the thumb of the right hand points in the � ŷ direc-
tion, the curled �ngers of the right hand point in the +ẑ direction at (+1 ; +1; 0) m.
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7.5-5

The measurements are explained by a wire aligned along they-axis, with current owing
in the � ŷ direction. This can be con�rmed using the right-hand rule { point the thumb of
your right hand in the direction of the current, and the curled �ngers of your right hand
point in the direction of the magnetic �eld.
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7.6-1

From the problem statement, we have that Coil 1 hasN1 = 100 and I 1 = 2 A. Coil 2
has N1 = 300 and I 2 = 4 A, and is wound in the opposite direction. Both coils have
l = 10 cm and � = � 0. For Coil 1 we have

B 1 = b̂1� 0
N1I 1

l

whereb̂1 points in the direction of B 1 inside the coil. For Coil 2 we have

B 2 = � b̂1� 0
N2I 2

l

The total �eld B = B 1 + B 2, so:

�
�
� b̂1 � (B 1 + B 2)

�
�
� =

�
�
�
� � 0

N1I 1

l
� � 0

N2I 2

l

�
�
�
� =

� 0

l
jN1I 1 � N2I 2j �= 12:6 mT
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7.7-1

The magnetic �eld in either a straight coil or a toroidal coil is proportional to current.
Current is proportional to the conductivity of the wire forming the coil. Therefore, doubling
the conductivity will double the magnetic �eld strength.
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7.8-1

(a) Positive V corresponds to current owing in the +̂z direction along the trace. The
direction of the associated magnetic �eld can be determinedusing the following \right hand
rule:" Orient the thumb of your right hand in the reference direction of current ow in the
trace, and observe the direction in which the curled �ngers of your right hand point. We see
that deep inside the transmission line, the direction is +̂x .

(b) The integral form of Ampere's law is:
I

C
H � dl = I encl (7.13)

The only \hard" requirement on C is that it enclose some of the relevant current. The most
convenient choice forC is shown below:

Here are the considerations leading to this choice:

� The indicated direction ofC is consistent with the expected direction of the magnetic
�eld, as determined in part (a).

� We choose a path that lies in plane of constantz, since this minimizes the number
of varying parameters required to describe the path. The precise choice ofz is not
important as long as it is as far from either end of the transmission line, where we
would expect fringing �elds to become potentially important.

� Segment A is a line of constanty which lies entirely within the transmission line (i.e.,
betweeny = 0 and y = h), and is required since we need some portion ofC to be
coincident with the location where we wish to determine the �eld.
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� Segment C is chosen to lie along a line of constanty at 1 . This is convenient because we
expect the magnetic �eld go to zero as the distance from this �nite structure increases
to in�nity.

� Segments B and D are chosen to lie along lines of constantx so as to connect Segments A
and C using paths that can be described in the minimum number of varying parameters:
For these segments, the only variation is alongy. We choosex = � W=2 andx = + W=2
since this closes pathC with the shortest total path length that encloses all of the
current of interest. Choosing a path wider than the trace would result in integration
over a region where more �eld lines are signi�cantly curved.

(c) Continuing with the left side of Equation 7.13 using the path determined in part (b):
I

C
H � dl =

Z

A
H � dl +

Z

B
H � dl +

Z

C
H � dl +

Z

D
H � dl

�
Z

A
H � dl + 0 + 0 + 0 (7.14)

The integral over Segment C is exactly zero becauseH = 0 along this segment, as explained
in part (b). The integral over Segments B and D is approximately zero becauseH � dl � 0
along these segments. Along Segment A, we haveH = + x̂H (x; y). Also, I encl = V=R. Thus
Equation 7.13 reduces to:

Z

A
[+ x̂H (x; y)] � [+ x̂dx] �

V
R

(7.15)

H (x; y) � W �
V
R

(7.16)

Equation 7.16 indicates that the magnetic �eld along Segment A does not depend onx or
y; at least given the assumptions made to this point. Therefore H (x; y) is considered a
constant. Thus we �nd that

H � x̂
V

WR
deep inside the transmission line (7.17)

(d) The magnetic ux density B = � H . Since the spacer material is non-magnetic,� � � 0.
Thus:

B � x̂
� 0V
WR

deep inside the transmission line (7.18)

(e) The di�erential form of Gauss' law for magnetism isr � B = 0. Divergence is essentially
the �rst derivative with respect to position. From Equation 7.18, we see thatB is constant (at
least approximately) with position. Therefore Equation 7.18 is consistent with the di�erential
form of Gauss' law for magnetism. The di�erential form of Ampere's law is r � H = J.
In the dielectric spacer,J = 0. Curl is also essentially the �rst derivative with respect to
position. Thus, Equation 7.18 is consistent with the di�erential form of Ampere's law.
(f) Using Equation 7.18:

B � x̂
(4� � 10� 7 H/m) (+5 mV)

(6 mm) (50 
)
�= x̂20:9 nT (7.19)
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7.12-1

The inductance of a linear inductor depends only on geometryand materials; therefore,
the inductance remains 1 H.
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7.13-1

If the loops are close together, then presumably the magnetic ux � through each wind-
ing is equal. Thus,

L ,
N �
I

whereN is number of linkages, which is this case is the number of windings. Thus,

� =
LI
N

=
LI
2
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7.13-2

From the problem statement:
length l = 5 cm,
radius a = 5=2 = 2:5 mm,
number of windingsN = 300, and
relative permeability � r = 200.

Since l � a and the winding density N=l is large, we may us the \long straight coil"
expression

L �
�N 2A

l
In the present problem:

L �
(� r � 0) N 2 (�a 2)

l
�= 8:88 mH

where� 0 = 4� � 10� 7 H/m.
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7.15-1

Since
We =

1
2

LI 2

We have

I =

r
2We

L
=

r
2 � 2 mJ
47 mH

�= 292 mA
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7.15-2

The energy initially stored in the inductor is

Wm =
1
2

LI 2 = 6 nJ

The energy stored in the capacitor after the transfer is

We =
1
2

CV2 = 6 nJ

so V = 1.73 V .
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Chapter 8

Time-Varying Fields
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8.3-1

Faraday's Law says that the potential (or \emf") induced in the coil is

Vemf = � N
d
dt

�( t)

where
�( t) =

Z

S
B � ds

and whereB(t) is the magnetic ux density and S is the surface de�ned by the cross-section
of the coil. When the magnetic ux is not varying with time, the potential is zero, so this
is the answer to parts (a) and (c).

While the magnetic �eld is being reduced, a non-zero potential is possible. Since the magnetic
�eld is spatially-uniform and parallel to the axis of the coil, the above integral simplies to

�( t) = B(t) � A

whereB(t) is the scalar magnetic ux density andA is the cross-sectional area of the coil.
We do not know precisely howB varies with time (i.e., linearly with time? exponential
decay? etc.), so we cannot take a formal derivative. We can however estimate the derivative:

d
dt

�( t) �
��
� t

=
B(t0 + 200 ms) � A � B(t0) � A

200 ms

where t0 is the time at which the magnitude of the magnetic �eld beginsto decrease. We
also note

B(t0) = � r � 0H (t0) =
�
2 � 105

�
�
�
4� � 10� 7 H/m

�
� (20:0 mA/m) = 5 :03 mT

and B(t0 + 200 ms) = 1:01 mT. SinceA = 200 cm2 = 0:020 m2, we may now calculate

jVemf j � N

�
�
�
�
��
� t

�
�
�
� = 20:1 mV

This is the answer to part (b). In some sense, this is the average emf generated in the coil
over the 200 ms period of interest; however, more precisely,this is merely the best estimate
of the instantaneous emf generated during that time, given the limited information about
the time dependence of the magnetic �eld over that time.
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8.3-2

Faraday's Law says that the emf induced in a this loop is

Vemf = �
d
dt

�( t)

(since a loop hasN = 1 turn) where

� =
Z

S
B � ds

Let us de�ne Vemf to be across the resistor, with the \+" terminal on the right side and the
\ � " terminal on the left side.1 Then:

� =
Z + L=2

x= � L=2

Z y0+ w

y= y0

[ẑ B0 eay ] � [+ ẑ dx dy]

wherey0 is the location of the left side of the loop. Then:2

� = B0

" Z + L=2

x= � L=2
dx

# � Z y0+ w

y= y0

eaydy
�

=
B0L

a
eay0 [eaw � 1]

Next we're going to want to take the time derivative of �. However, to do that properly
we need to make sure we identify everything in the above expression for � that has a time
dependence. Onlyy0 depends on time. To make this clear, let us writey0 = ut + b, which
places the left side of the loop aty = b at time t = 0. Now we may write:

�( t) =
B0L

a
eaut eab [eaw � 1]

so:3

Vemf (t) = �
d
dt

�( t) = B0Lueaut eab [1 � eaw ]

The problem statement asks us to assess the situation when the left side of the loop is at
y = 0:5 m, so we chooset = 0 and b = 0:5 m (since we said earliery0 = ut + b). Also from
the problem statement,u = � 250 m/s. Thus:

Vemf (t = 0) = �
d
dt

�( t = 0) = B0Lueab [1 � eaw ] = � 7:60 A

Finally, the current is simply this divided by R, which is � 3:04 A. Because we chose the \+"
terminal to be on the right, the referencedirection for current must be counter-clockwise
(i.e., this is the necessary direction for positive currentto dissipate positive power in the

1Not the only way to do it! This choice is arbitrary. Choosing t he opposite reference polarity should give
you the exact same answer as long as you follow through correctly.

2Once you complete this integration, it's a good time for a units check!
3Once you complete this di�erentiation, it's a good time for a units check!
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resistor, or alternatively you may think of this as being thenecessary reference direction for
the loop to behave as a power source). We have found that the current is negative with
respect to this reference direction; therefore, the induced current is 3.04 A, clockwise.

You can check to make sure you got the correct current direction by using Lenz's Law. If
the current is owing clockwise, then the induced magnetic �eld in the loop is in the � ẑ
direction. The impressed magnetic ux is increasing, sincethe loop area is constant and
the magnetic �eld in the loop increases in the +̂z direction as the loop slides to the left.
Therefore, the induced current is acting to oppose the change in the impressed magnetic
ux, as is required by Lenz's Law.
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8.3-3

(a) Let's stick with the SI system of units. Since \1" in the expression forB appears
to be unitless,B0 must have units of T (or Wb/m2, if you prefer) . Sincet is in s and \1"

appears to be unitless,k must have units of 1/s. Sincea has units of m and equalsvt, v

must have units of m/s.

(b) Here's Faraday's Law:

Vg(t) = � N
d
dt

� (8.1)

whereN = 1 since it is a loop (not a coil), and the magnetic ux is

� =
Z

S
B � ds =

Z

S
[ẑB0 (1 + kt)] � [� ẑds] = � B0 (1 + kt)

Z

S
ds (8.2)

Note that ds is in the � ẑ direction. This is from the right-hand rule (of calculus), in which
your thump is along the loop (not the gap) pointing along the direction from the \ � " terminal
to the \+" terminal. Since S represents the surface de�ned by the loop (actuallyany surface
de�ned by the loop, but we'll keep it simple...), we have

� = � B0 (1 + kt)
�
�a 2

�
(8.3)

Substituting a = vt and expanding into two terms we get

� = � B0�v 2t2 � B0k�v 2t3 (8.4)

So Faraday's Law says:
Vg(t) = 2 B0�v 2t + 3B0k�v 2t2 (8.5)

which is more compactly written as:

Vg(t) = B0�v 2
�
2t + 3kt2

�
(8.6)

Good time for a units check: Can you con�rm that the result is dimensionally correct?

(c) The �rst problem is to determine the motional and transformer emf, so we should be
clear on what we mean by these terms.Motional emf is the contribution to the total emf
which is associated with changes in the size, shape, or orientation of the surface through
which the magnetic �eld lines are linked.Transformer emf is the contribution to the total
emf which is associated with changes in the magnetic �eld.

With that in mind, let's consider an incorrect solution: You can't set v = 0 and call the
result (in this case, zero) the transformer emf. This is wrong because ifv were equal to zero
for some radiusa > 0, then the calculated emf would be potentially non-zero because the
magnetic �eld is still time-varying.

However, it is true that setting k = 0 yields the motional emf (you can verify this for
yourself after reading through this solution), although this is pretty hard to justify, especially
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since we just saw that arbitrarily setting constants to zerois dangerous. So, if you go that
approach you must be able to explain why this is reasonable.

With all this in mind, here are three reasonable ways to get a solution:

1. You could calculate the motional emf and transformer emf using Faraday's Law, but in
two separate steps; that is, work out the emf for a static loop(to get the transformer
emf) and then for a static �eld (to get the motional emf).

2. You could calculate motional emf from magnetostatics (i.e., assume a static magnetic
�eld), then subtract this result from your answer for part (b) to get the transformer
emf.

3. The approach followed below, which is probably best sinceit deals directly with the
concepts of time-varying loop size vs. time-varying magnetic �eld.

Here we go:

Vg(t) = �
d
dt

� = �
d
dt

Z

S
B � ds = �

d
dt

Z

S
[ẑB (t)] � [� ẑds] (8.7)

whereB(t) � B0(1 + kt); i.e., the scalar component of the magnetic �eld. Continuing:

Vg(t) = +
d
dt

�
B (t)

Z

S
ds

�
= +

d
dt

[B (t)A(t)] (8.8)

where A(t) � �a 2(t); i.e., the area of the loop. The value in setting the problemup this
way is that we now have the magnetic �eld and the loop area set up as distinct, identi�able
factors in the solution. Now we di�erentiate using the chain rule:

Vg(t) =
�

d
dt

B(t)
�

A(t) + B(t)
�

d
dt

A(t)
�

(8.9)

Now we see clearly that the �rst term is the transformer emf andthe second term is the
motional emf. Let's label theseV tr

g (t) and V m
g respectively. Now:

V tr
g (t) =

�
d
dt

B(t)
�

A(t) = B0k � �a 2 (8.10)

V m
g (t) = B(t)

�
d
dt

A(t)
�

= B(t) � 2�a � v (8.11)

Note that now we get the \expected" result when we setk = 0 and then v = 0. Also note
that transformer emf depends on looparea, and motional emf depends on loopperimeter {
you might have suspected this based on other problems you have encountered.

OK, now we're ready to wrap up. To �nd out when the contributions of the transformer
emf and motional emf are equal, we set the above expressions equal and solve for timet = teq.
Here we go:

B0k � �a 2 = B(teq) � 2�a � v (8.12)

Noting that a = vt and B(t) = B0 (1 + kt):

B0k � �v 2t2
eq = B0 (1 + kteq) � 2�v 2teq (8.13)
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Solving the above expression we �nd thatteq = � 2=k (good time for a units check, by the
way). Negative times don't really make sense in the problem (how can the loop have zero
radius and before that negative radius?), so the transformer emf and motional emf are never
equal for k > 0 (i.e., magnetic �eld magnitude increasing). However,teq = +2 =jkj when
k < 0. So, the answer to the problem is:
at t = � 2=k, and only if the magnitude of the magnetic �eld isdecreasing.
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8.4-1

The measured voltage is the \transformer emf" induced by themagnetic ux through the
loop. According to Faraday's Law, we have in general that:

Vemf = � N
d
dt

� = � N
d
dt

Z

S
B � ds

Here, the number of turns,N , is 1;ds is perpendicular to the loop in the direction determined
by the Stoke's Law convention (i.e., according to the reference polarity chosen forVemf),
and B can be written as

B = b̂B(t) = b̂B0 sin(2�f t + � )

whereb̂ is simply a unit vector indicating the direction ofB . We know b̂ is a constant with
respect to position becauseB was speci�ed to be auniform magnetic �eld. Thus, we have
for any particular orientation of the loop ds:

Vemf = � B0

�
d
dt

sin(2�f t + � )
� �

b̂ �
Z

S
ds

�
.

�
�Vemf

�
� is maximized whenb and ds point either in the same direction, or in exactly opposite

directions. In this case, the magnitude of the quantity in the rightmost square brackets is
simply the area of the loop,A, which here is 0:0314 m2 according to the problem statement.
For this orientation, we have:

�
�Vemf

�
� = B0 [2�f cos(2�f t + � )] A .

The above quantity is maximized when cos(2�f t + � ) = 1, which corresponds to thepeak
magnitude ofVemf, which is one-half of the peak-to-peak magnitude. Thus:

B02�fA = 0:5 � 20 mVpp , thus:

B0 =
0:5 � 0:02 Vpp

2� (100� 103 Hz)(0:0314 m2)
= 507 nT .
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8.4-2

The induced potential is

V = � N
@
@t

� (8.14)

where � is the magnetic ux through the loop. Since the magnetic �eld is spatially uniform
and the loop (in each case) is �xed, we may express the ux in the following simple form:

� = AB 0 cos (!t +  ) (8.15)

where A is the area of the loop,B0 is a constant having units of Wb/m2 (resulting from
the dot product of the magnetic ux density and the normal to the loop), and ! and  
are the angular frequency and phase, respectively, of the sinusoidally-varying ux. It is not
necessary to knowB0, ! , or  , as we shall see in a moment. Returning to the Equation 8.14,
we see

V = + NAB 0! sin (!t +  ) (8.16)

Therefore thepeak potential is simply NAB 0! . So here's the situation:

V (2)
pk

V (1)
pk

=
N (2) A (2) B0!
N (1) A (1) B0!

(8.17)

where the superscripts indicate before (i.e., one turn circular loop) vs. after (i.e., two-turn
square loop). Thus,V (1)

pk = 15 V and we seekV (2)
pk Since neitherB0 nor ! change between

the two scenarios, we have:
V (2)

pk

15 V
=

N (2) A (2)

N (1) A (1)
(8.18)

Solving for V (2)
pk , we �nd:

V (2)
pk = 15 V

2 � (0:2 m)2

1 � � (0:1 m)2
�= 38:2 V (8.19)
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8.5-1

In the original scenario:
V2

V1
= p

N2

N1

wherep = � 1 depending on the relative orientation of the windings (p = � 1 for the example
shown in the book). LetV 0

2 be the new potential on the secondary coil. From Faraday's
Law:

V 0
2 = N2

@
@t

� 0
2

where � 0
2 is the magnetic ux through the secondary coil after the modi�cation. Note

� 0
2 =

� 2

2

since the secondary coil now intersects only half the ux it did previously. Subsequently,

� 0
2 = p

� 1

2

Now:

V 0
2 = p

1
2

N2
@
@t

� 1 = p
1
2

N2

N1

�
N1

@
@t

� 1

�
= p

1
2

N2

N1
V1

From the problem statement,N1 = 200 and N2 = 300. Also p = � 1 for the example shown
in the book. Therefore,

V 0
2 = �

3
4

V1

with the sign depending on the relative orientations of the coil windings.
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8.5-2

The transformer is an application of Faraday's law, which isintrinsic to the Maxwell-Faraday
Equation:

r � E = �
@
@t

B
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8.7-1

From the problem statement:
B0 = 2 T,
A = � (2 m2) = 4 � m2,
the peak value ofVT is 5 V, and
VT (t = 0) = 0 and increasing.

Since the loop is rotating in a static uniform magnetic �eld,VT must be sinusoidally-varying.
A general form for this variation is

VT (t) = AB 0! cos (!t +  )

where! = 2�f is the angular frequency of rotation and is an as-yet unknown phase o�set.
However, it is known that

VT (t = 0) = AB 0! cos( ) = 0

so  must be either�= 2 or 3�= 2. SinceVT is increasing att = 0,  must be 3�= 2.

Furthermore, we know the peak value ofVT . In the context of the general form, we �nd:

VT = AB 0! = 5 V at maximum

and therefore,! �= 0:199 rad/s.

Putting this all together:

VT (t) �= (5 V) cos
�

[0:199 rad/s]t +
3�
2

�
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8.7-2

Assigning symbols to quantities identi�ed in the problem statement: B0 = 2 T, A = 4 m2,
and VT;pk = 5 V. Recall:

VT = 2�f 0AB 0b̂ � �̂ (t) (8.20)

where f 0 is the frequency of rotation,b̂ is the direction of the magnetic �eld, and ^� (t) is a
unit vector that lies in the x � y plane and in the plane of the loop, rotating with the loop.
Note the maximum magnitude ofb̂ � �̂ (t) is simply 1. Thus:

VT;pk = 2�f 0AB 0 = 5 V (8.21)

Solving for f 0:

f 0 =
5 V

2� � (4 m2) � (2 T)
�= 99:5 mHz (8.22)
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8.9-1

From the problem statement, the electric �eld intensity is

E = ŷ
�
3 V m� 1 s� 2

�
t2

(The fact that this is electric �eld intensity can be con�rmed using dimensional analysis.)
The displacement current density in free space is

@D
@t

= � 0
@E
@t

= ŷ � 0
�
6 V m� 1 s� 2

�
t �= ŷ

�
53:1 pC m� 2 s� 2

�
t = ŷ

�
53:1

pA
m2 s

�
t
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Chapter 9

Plane Wave Propagation in Lossless
Media
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9.1-1

The general, time-domain, di�erential form of Ampere's Law is:

r � H = J +
@D
@t

The relationship between these quantities and the phasor representation of the same quan-
tities is:

H = Re
n

eH ej!t
o

,

J = Re
n

eJej!t
o

, and

D = Re
n

eD ej!t
o

;

Now substituting these quantities into Ampere's Law we have:

r �
h
Re

n
eH ej!t

oi
= Re

n
eJej!t

o
+

@
@t

h
Re

n
eD ej!t

oi

The order of the \Re" operator and any linear real-valued operator can be exchanged (see
the textbook section on phasors for a proof of this). Taking advantage of this in the �rst
and last terms, we obtain:

Re
n

r �
h

eH ej!t
io

= Re
n

eJej!t
o

+ Re
�

@
@t

h
eD ej!t

i �

Note that the curl (\ r� ") operator operates only on position, and not on time. Thus,we
may rewrite the �rst term as shown below:

Re
nh

r � eH
i

ej!t
o

= Re
n

eJej!t
o

+ Re
�

@
@t

h
eD ej!t

i �

Note also that partial derivative in the last term operates only on time, whereaseD , being a
phasor, is independent of time. Therefore, the partial derivative operates only on the factor
ej!t , and we have:

Re
nh

r � eH
i

ej!t
o

= Re
n

eJej!t
o

+ Re
n

eD � j!e j!t
o

.

Comparing terms above, we �nd that the phasor expression of Ampere's Law that we seek
is:

r � eH = eJ + j! eD .
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9.1-2

The expression worked out in the book is

r � eE = � j! eB

B is a ux density, so we useB = � H to obtain:

r � eE = � j!� eH
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9.2-1

Here are Maxwell's Equations for source-free regions in terms of eE and eH (only) in dif-
ferential form:

r � eE = 0 (9.1)

r � eE = � j!� eH (9.2)

r � eH = 0 (9.3)

r � eH = + j!� eE (9.4)

The equation we seek must yield solutions foreH which satisfy at least the last three of the
above four equations. We begin by taking the curl of Equation9.4:

r �
�

r � eH
�

= r �
�

+ j!� eE
�

= + j!�
�

r � eE
�

(9.5)

On the right, we can substitute forr � eE using Equation 9.2:

+ j!�
�

r � eE
�

= + j!�
�

� j!� eH
�

= + ! 2�� eH (9.6)

On the left, we invoke the vector identity

r � r � A = r (r � A ) � r 2A (9.7)

to obtain
r � r � eH = r

�
r � eH

�
� r 2 eH = �r 2 eH (9.8)

where we have used Equation 9.3 to eliminate ther � eH term. Substituting back into
Equation 9.5 and rearranging terms we have

r 2 eH + ! 2�� eH = 0 (9.9)

Now substituting � = !
p

�� :
r 2 eH + � 2 eH = 0 (9.10)

This is the homogeneous wave equation foreH .
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9.2-2

The wave equation foreE is
r 2 eE + � 2 eE = 0

Also, we know that

� =
90�

1 m
=

�= 2 rad
1 m

=
�
2

rad/m

which may also be expressed simply as�= 2 m� 1. So

r 2 eE +
�
2:467 m� 2

� eE �= 0
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9.4-1

(a) The wave equation for eE is r 2 eE + � 2 eE = 0. In cylindrical coordinates, eE = �̂ eE � +
�̂ eE � + ẑ eEz. The Laplacian operator in cylindrical coordinates is:

r 2 =
1
�

@
@�

�
�

@
@�

�
+

1
� 2

@2

@�2
+

@2

@z2

Thus, we have for the three components ofeE:

1
�

@
@�

�
�

@
@�

eE �

�
+

1
� 2

@2

@�2
eE � +

@2

@z2
eE � + � 2 eE � = 0

1
�

@
@�

�
�

@
@�

eE �

�
+

1
� 2

@2

@�2
eE � +

@2

@z2
eE � + � 2 eE � = 0

1
�

@
@�

�
�

@
@�

eEz

�
+

1
� 2

@2

@�2
eEz +

@2

@z2
eEz + � 2 eEz = 0

(b) If eE has no component in the� or � direction, then eE � = eE � = 0 and we are down to
one equation:

1
�

@
@�

�
�

@
@�

eEz

�
+

1
� 2

@2

@�2
eEz +

@2

@z2
eEz + � 2 eEz = 0

If E is uniform in � and z, then @eEz=@�= @eEz=@z= 0, so the second and third terms in
the above equation are zero. This leaves us with:

1
�

@
@�

�
�

@
@�

eEz

�
+ � 2 eEz = 0
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9.4-2

First note that x̂ cos� + ŷ sin� is a unit vector; i.e.,

jx̂ cos� + ŷ sin� j =
q

cos2 � + sin2 � = 1 (9.11)

Next, recall that E � H is in the direction of propagation, which in this problem is +̂z.
Therefore the direction ofH is ẑ � E. (If this is not clear, think of E, H , and direction of
propagation forming a cartesian coordinate system witĥE analogous tox̂, Ĥ analogous to
ŷ , and direction of propagation analogous tôz.) Thus the direction of H is

ẑ � (x̂ cos� + ŷ sin� ) = � x̂ sin� + ŷ cos� (9.12)

and this is a unit vector sincex̂ cos� + ŷ sin� is a unit vector which is perpendicular tôz.

The magnitude ofH is jEj =� , where� in this case is
p

� 0=�0 �= 377 
. Therefore the mag-
nitude of H is (2 � V/m) =� 0

�= 5:31 nA/m.

Putting this all together, the magnitude and direction of the associated magnetic �eld is:

(� x̂ sin� + ŷ cos� ) 5:31 nA/m (9.13)
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9.5-1

(a) There are several ways to �gure this out. One way is to start in phasor represenation,
in which the �eld is:

êE0ej (ax+ by+ cz)

wherea = 1 rad/m, b= 2 rad/m, and c = 3 rad/m. Note:

êE0ej (ax+ by+ cz) = êE0e+ jax e+ jby e+ jcz

To see what's going on here, consider a simpler version of theabove equation, where the last
two terms are omitted:

êE0e+ jax

In this case, the answer we are looking for would bêk = � x̂ , and in fact we also see that
the wavenumber� = a; i.e., 1 rad/m. Similarly, if we had just

êE0e+ jby

then the answer would bêk = � ŷ , with � = b = 2 rad/m. From this we can infer that a
vector (not necessarily aunit vector) that points in the direction of propagation in this case
is:

k = � ax̂ � bŷ � cẑ

Thus, the corresponding unit vector is

k̂ =
k
jkj

=
� ax̂ � bŷ � cẑ

p
(� a)2 + ( � b)2 + ( � c)2

Giving:
k̂ = � 0:267̂x � 0:534̂y � 0:802̂z

(b) In the above analysis, we �ndjkj = 3:74 rad/m. Following the reasoning above, this is
simply the wavenumber� . Thus, the wavelength is:

� =
2�
�

= 1:68 m .

(c) Since this is free space, and since we know the phase velocity in free space isc =
3:0 � 108 m/s, we also know the frequency, which isc=� = 179 MHz .
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9.5-2

From the problem statement, the direction of propagation̂k = � x̂ and H points in the
+ ŷ direction. From the plane wave relationships:

E = � � k̂ � H

Therefore,E points in the � (� x̂ ) � ŷ = + ẑ direction.
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9.5-3

From the problem statement,jEj = 3 V/m and � r = 2. Since plastics are non-magnetic:

� =
r

� 0

� r � 0
=

� 0p
� r

where� 0
�= 376:7 
. Therefore,

jH j =
jEj
�

=
jEj
� 0

p
� r

�= 11:3 mA/m
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9.7-1

The spatial power density is

Save =
3 W

1 mm2
=

3 W
10� 6 m2

= 3 MW/m 2

SinceSave = jEj2 =2� , and since� = � 0
�= 376:7 
 in free space:

jEj =
p

2� 0Save
�= 47:5 kV/m
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