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Chapter 2

Electric and Magnetic Fields



[m0002] [1]

2.2-1

From the problem statement,V =1:5V andd=30 m, so

iEj % = [50 kv/m




[mo011] [1]

2.4-1

From the problem statement,V = 12V, , =6, and d = 90 m, so the electric eld
intensity is

.V

JEj q = 133 kV/m

Subsequently, the electric ux density is

iDj= : ojEj = |7:08 C/m?




Chapter 3

Transmission Lines



[m0027] [1]

3.6-1

(a) The expression for the voltage? (z) traveling in the + z direction contains the factor
e ?. The propagation constant = + ) , where and are real-valued constants.
Therefore, the ratio of the voltage at a distancé from some other point on the transmission
line is:
v(z+1) e @h
V(2) e’

The magnitude of this di erence is just the rst factor; i.e, e ' . We also know that

—elzelell

P (RO+ jIL 9(GO+ jIC 9

At 100 MHz, we nd = 0:00850 +j3:14468 m*. Therefore, = 0:00850 m?, and the
voltage after 1 mis

(1V) exp  0:00850 m* (1 m) =0.9915V

(b) From part (a) we know the phase of this di erence is just tle phase of the factoe i,
Since = 3:14468 rad/m, the phase ot /' is|1798 |for | =1 m.

(c) For a radio wave in free space, there should be essenyehho attenuation\ over 1 m, as
long as this 1 m span is located far from the transmitter. Thiss because free space propa-
gation contains no loss mechanisms analogousR8or G°in the transmission line model. At

f = 100 MHz, the wavelength of the radio wave is = c=f = 3 m. That means the phase
rotates by 360 in 3 m, which is| 120]in 1 m. Note that the wavelength of the radio wave
is signi cantly longer than the wavelength of the signal in he transmission line.




[m0027] [2]

3.6-2
The question is whether
®(2)=Vye ?+\V,e”?
is a solution to the TEM transmission line wave equation
@
@2
whereVy , V, , and are complex-valued constants. To determine this, we sulistie the

candidate solution into the equation and determine if equiy holds. Taking the rst deriva-
tive of the candidate solution:

Q@

€z 29@=0

Q= viet+ Ve
Repeating to get the second derivative:
@Q;V(Z)=+ NVye 2+ A\, €e’

Now making the substitutions into the left side of the wave eation:
2 2 2
+ Vge 2+ Ve’ Voe 2 +V, e’
— 2 2 2 2
=+ Vye *+ V,€e7? Vye ? V, € ?
=0

which is the the right hand side of the wave equation, as exped.



[m0052] [1]

3.7-1
It is true that the real part of the characteristic impedance must be itive.

Here's a mathematical argument: Recall:
s
_ RO+ jIL O
Z0= Gorjic o

Also note that R% L° G°and C° must all be positive or zero. Therefore, the numerator
and denominator of the above expression, before taking thguare root, must both have
phase in the range 0 to += 2. This means the numerator divided by the denominator, agai
before taking the square root, must have have phase in the g =2 to + =2. Taking
the principal square root reduces the phase by a factor of twithe phase ofZ, must be in
the range =4 to + =4. Subsequently, the real part oZ, must be positive.

Here's a physical argument: A positive-valued real-valuecmponent of an impedance rep-
resents the dissipation of power (e.g., resistance) or trsfier of power out of a system (e.g.,
to a load). Conversely, a negative-valued real-valued compent of an impedance represents
the creation of power or the introduction of power into a sysm; in other words, an active

device. Since the concept of characteristic impedance ajgglto transmission lines, and since
transmission lines are passive devices, the real componehtthe characteristic impedance

must be positive.

10



[m0080] [1]

3.8-1
The physical current:
i(z;t) = (2 A)sin((3 rad/s) t + (4 rad/m) z + 5 rad)

=(2A)cos((3rad/s)t+(4rad/m)z+5rad =2)

So h [
Nz)= (2 A) o (6 =2 rad) 4@ rad/m):

11



[m0080] [2]

3.8-2

Converting to time-domain representation:

n 0
v(x;t)=Re ¥(x)é"' =Re Vpe'l* "

The problems statement impliesVy is complex-valued. To accomodate this, we de ne the
magnitude and phase oV, as follows:

VO! jVOjei=3

Then: _ o _
v(x;t) = Re jVoje~ 3" 1*x gt =jVjRe it x+=3)

Finally, using the identity € =cos + j sin , we obtain

v(x;t) = [jVgjcos(t + x + =3)

This wave is traveling in the x direction.

12



[m0080] [3]

3.8-3

The form given in the problem statement is a phasor, descrilg a wave traving in the
+ direction. To obtain the time domain form:

v(;t)=Re Vee! &% = jVjcos(t + )

where , the phase ofV, is not given. Note

= 2— = 62832 rad/m
Furthermore, we are told thatv( = =4;t =0) is a maximum, So:
jVoj cos —+ = jWjcos =+
J Vo) 4 1 Vo) >

is a maximum, which means =+ =2. Therefore:

v(;t)=|jVjcos It [62832rad/m] + >

The problem statement does not provide su cient information to determinejVyj or ! .

13



[m0080] [4]

3.8-4

Since one end of the transmission line lies at in nity, we exgct a wave traveling in the +z
direction only. (Note for future reference: The same e ect cabe achieved for a nite-length
line by perfectly matching the transmission line at the endmposite the voltage source).

The general form for the physical (real-valued) voltage wavis

vVi(z;t)= Vy e Zcosft z+ ) (3.1)

Examining the problem statement, we determine:
Vy =2mV

vi(z=0;t=0= 2mV

V, e 0m=1mv

f =15 MHz (frequency of the source)

Wavelength in the line =0:4 o where g is wavelength in free space.

Quantities remaining to be determined in Equatio_3]1 are:teenuation constant , angular
frequency! , phase propagation constant , and wave phase reference.

The attenuation constant may be determined as follows:

V+ e (10 m) (10 m) 1 \V 1
0+ = € = m = = (32)
Vy e ©Om 1 2mv. 2
Therefore 1
(10 m) —
e = —
2
Solving for , we obtain| = 0:0693 m1!|
The angular frequency is simply 2 = |94.2 Mrad/s="! |
The phase propagation constant is determined as follows:
2 2 2
= _—_=_ = __1f9f = WA = .
04 5 0de 0:785 rad/m (3.3)
The wave phase reference is determined as follows:
vi(z=0;t=0)= V; 1 cos(0 0+ )= 2mV (3.4)

Solving for ,we nd | = |

The boxed quantities above comprise the complete solutioo part (a).

14



The solution to part (b) { the phasor representation { is simgy:
€ (2)= V5 e elzeg’ (3.5)

In this case, we obtain:

()= V; e ?el” (3.6)

sinced = 1.

15



[m0083] [1]

3.9-1

From the problem statement,Zq =72 , L°=0:5 H/m, f D 80 MHz, and the low-loss
approximations apply. Using the low-loss approximatioZ, LCo=CC

0

o 52 = 96:4 pF/m
0

Subsequently, the phase velocity is

1
Vp, P—— = (144 10 mis
P LaCO

and the phase propagation constant is

p

I LCo=2f P

LACO= |3:49 rad/m

16



[m0143] [1]

3.10-1

The characteristic impedanceZ, of coaxial cable, assuming the low-loss assumptions ap-

ply, is
60 b
Zo 'ﬁ:ln—
; a

where | is the relative permittivity of the spacer material, anda and b are the radii of the
inner and outer conductors, respectively. Air has, 1 and is lossless to a very good ap-
proximation. We are also told the resistance of the inner anduter conductors is negligible.
Therefore, the low-loss assumptions apply, and we are justl in using the above expression.

One way to reduceZy from 90 to 62 is to replace the air spacer with a material spacer
having
90 2
= — =211
' 62
Thus, one solution is to replace air with a low-loss materidlaving , = 2:11 Another way
is to reduceb=a For the 90 cable, we determine that

90
— ———Pp— = 448
a P 60) =1
To reduceZ, to 62 , we require
b 62
- exp —p= =281
a P 60) 1

Thus, a second solution is to keep air as the spacer materialtbreduce b=ato 2:81

17



[m0143] [2]

3.10-2

Under low-loss conditions, the characteristic impedanc&, of a coaxial cable is given by

Zo %O— Ing (3.7)

where , is the relative permittivity of the spacer material, b is the radius of the outer
conductor, anda is the radius of the inner conductor. Since geometry may notelchanged,
In(b=9 may not change. The only free parameter remaining is. Zo is maximized by
minimizing . Since the minimum practical value of , is 1 (i.e., air, or a vaccuum), the
optimal new value of ; is 1. This increase¥, as follows:

Pz

(75 ) 4515 (3.8)

18



[m0084] [1]

3.12-1

The voltage re ection coe cient is

Z. Zy _ 500 75
= = = +0:739
Z +Zy 500 +75

Therefore, the peak voltage of the re ected wave at the ant@@a input is
(0:739) (30 V)= 222 V

The line is lossless, so there is no attenuation of the re ezl wave along the return trip from
antenna to transmitter. Therefore, the peak voltage of theea ected wave at the output of
the transmitter is 22.2 V.

19



[m0084] [2]

3.12-2

From the problem statement,¥; has magnitude 7 mV and phase 180s0®%, = 7 mV.
Also from the problem statementZz, =60 and Z_ =20 . Therefore,
ZL Zo
= = 05
Z + Z

Subsequently,%,

= ¥, =+3:5 mV. Thus, the magnitude of the re ected wave is 3.5 myV
and the phase is O

20



[moos4] [3]

3.12-3

The voltage re ection coe cient is

Z  Zy 33 140
= = = 016185
Z +7Zy 33 +140

Therefore, the magnitude of the re ected voltage wave is

i (3V)j=[186V]

and the phase of the re ected voltage wave is

170 +180 !

21



[mo084] [4]

3.12-4

In general, the voltage re ection coe cient for a load impedanceZ_ connected to a trans-
mission line having characteristic impedancg, is

ZL 2o
Z + Zp

Solving forZ, , we obtain

1+
1

ZL:ZO

For _=0 , the formula givesZ,, as expected.
For =+1 ,the formula!l , as expected.
For = 1, the formula gives 0, as expected.

22



[moos6] [1]

3.13-1

(a) The current at a voltage maximum is_zero (b) The voltage at the short circuit ter-
mination is zero. The distance between voltage extrema is4, so =4 = 8 cm. The distance
between voltage maxima is=2 = 16 cm. Therefore, the distance between the short circuit
and the second voltage maximum is 8 + 16 = 24 cm

23



[m0081] [1]

3.14-1

First note
.. _SWR 1
1= swr+1
So in this case 19 1
i : = 0:091
M 12+
Also note:
VAR
Z.+ Zy

where in this caseZo =50 and Z_ is the input impedance of the ampli er. Solving forZ,
we nd:

1+
Z|_ = Zol
Since the imaginary component o is zero, and since the imaginary component &, is
negligible, must be real-valued. Therefore, 0:091 +0:091 and

417 Z 600

24



[m0081] [2]

3.14-2

From the problem statement,Zg
tion coe cient is

72 and Z, =60 . Therefore, the voltage re ec-

Z  Zy

2 2o [gooq

and the standing wave ratio is

1+ ]

SWR = - j:

25



[moos1] [3]

3.14-3

From the problem statement,Z, = 50 and Z, = 20 35 . Therefore, the voltage

re ection coe cient is ~ ~
L 0 .
= =| 0143 0571
ZL + ZO ‘ J ‘

and the standing wave ratio is

1+] ]

swr= 111 - rze7

26



[m0087] [1]

3.15-1
The input impedance of a lossless line is periodic in lengthith period =2. Therefore,

the line is exactly 3 periods long, which means the input impgance is equal to the load
impedance 72 442 .

27



[m0087] [2]

3.15-2

From the problem statement: Zo = 50 , Z, = Rpyr =10 , and | = 10 cm. Also,
the wavelength in the transmission line = 0:6 o, where g is the free-space wavelength. As
always, =2 = and (= c=f wherec is the speed of light in free space.

Here's the result (see end of this solution for source code):

300 - : o

i
Re(Z)
— Im(2)

200 —

100 —

Z [ohm]

-100 —

200 b L L R S S E S| L L T S S . L L T TR S S S| L L (IR TR SN T 0
106 107 108 100 1010

Freq [Hz]

The answers to parts (b) and (c) depend on one's interpretatn of \signi cance." Two
reasonable interpretations are (1) a qualitative judgmenbased on when the curves seem to
clearly diverge from the nominal (DC, or equivalentlyl = 0) value and (2) a quantitative
judgment based on when the real part is in error by more than 5¢r some other percentage)
and the imaginary part is in error by more than 5% of the real pa Here are the results
using both criteria:

Nominal (I = 0) \ \Qualitative" > 5% error
Reaf Zg 10 100 MHz 6:4 MHz
Imagf Zg 0 10 MHz 3:0 MHz
In both cases it is clear thaterror in the imaginary part is signi cantly degraded at

a lower frequency than the error in the real part, and that bot h are exhibiting
large errors at frequencies greater than 10 MHz .

Here's source code in Octave (should also work in MATLAB):

28



clear all;

close all;

ZL = 10.0; % [ohm] R_DUT

Z0 = 50.0; % [ohm] characteristic impedance
I =0.1; % [m] length of line

n=0; % counting points

for logf=6:.001:10, % incrementing frequency in log scale f rom 1076 to 10"10 Hz
n=n+1;
f(n) = 10."odgf; % [Hz] frequency
lambda0 = (3.0e+8)/f(n); % [m] free space wavelength
lambda = 0.6*lambda0; % [m] wavelength in line
b = 2*pillambda; % [rad/m] beta = phase propagation constant in cable

Z(n) = ZO*(ZL+j*Z0*tan(b*)))/(Z0+j*ZL*tan(b*)));
end

semilogx(f,real(),'b-"); hold on;
semilogx(f,imag(Z),'r-'); hold off;
legend('Re(2)",'Im(2)");

grid on;

xlabel('Freq [Hz]);

ylabel('Z [ohm]’);

[f* real(Z)' imag(Z)' (real(Z)-10)/10 imag(Z)/10] % use d to answer parts (b) and (c)

29



[m0087] [3]

3.15-3

From the problem statement:Z, =50 and Z =25+ j25 .

(a) Voltage re ection coe cient:

ZL+ Zg :
= 2+]04 3.9
7 7 (3.9)
(b) The input impedance may be calculated using
1+ el2!
Zin = 07 izl (3.10)
where | = (2= )l =2 (I=). The requested plot is shown below. In this gure, \"

indicates| =0 and\ " indicates| =0:45 . (See end of this solution for source code.)

20 —

Im[Z] [ohm]
o
\

20 40 60 80
Re[Z] [ohm]

30

100

120

140



(c) Here are the lengths for which the input impedance is comgikly real-valued:
| = 0:162 | 1309 |
l=0412 ! =191 |

Here's source code in Octave (should also work in MATLAB):

clear all;
close all;

ZL
Z0

25.0+j*25.0; % [ohm]
50.0; % [ohm] characteristic impedance

Gamma = (ZL-Z0)./(ZL+Z0) % voltage reflection coefficient

n=0; % counting points
for 1=0:.001:0.45, % [lambda] incrementing length from 0 to almost lambda/2
n=n+1;
bl = 2*pi*l; % [rad] electrical length
Z(n) = Z0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl ));
end

hl = plot(real(Z),imag(Z));
axis("equal");

grid on;

xlabel('Re[Z] [ohm]’);
ylabel('lm[Z] [ohm]);

1=0.00; % [lambda]

bl = 2*pi*l; % [rad] electrical length

Zp = ZO0*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl))
hold on; h2 = plot(real(Zp),imag(Zp),'ro'); hold off;

1=0.45; % [lambda]

bl = 2*pi*; % [rad] electrical length

Zp = ZO*(1+Gamma*exp(-j*2*bl))/(1-Gamma*exp(-j*2*bl))
hold on; h3 = plot(real(Zp),imag(Zp),'rx’); hold off;

31



[mooss] [1]

3.16-1

In this case, the input impedance is

Zsup = JZocot |
whereZ, =75 , =13 cm, and
L 2f
v, 055
wheref =900 MHz. Therefore, = 343 rad/m, | = 445 rad, and|Zs =

32
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[mooss] [2]

3.16-2

From the problem statement: Zo = 75
Vp = 0:6¢. Note that for a short circuit, in this case:

Zin :+jZotan | :+J300

SO
| = 1:3258 rad
Note
I 2f
= —= = 5236 rad/m
vp 0O6c

sol = 2:53 cm

33

f =1:5 GHz, Z;, = +]300

is desired, and



[m0088] [3]

3.16-3

From the problem statement: f = 5:8 GHz, Z, = 50 , v, = 0:7c, and the capacitor to
be replaced has valu€ = 83 pF. Therefore the desired impedance is

Zc= —— = j0:3306

We choose ad open-circuitddline, as this yields the negative reactance for the shortest
possible lengths. The input impedance of an open-circuitdie is

Zin = |JZocot |

Setting this equal toZ¢ and solving for | :

| = cot 1193390 _ 15640 rad
] 50
Note
! 2f
= —= — = 17354 rad/m
v, 0O7c

so|l = 9:01 mm,|.

34



[m0145] [1]

3.17-1

(a) For a bandpass response centered at 200 MHz, you want thepinn impedance into
the stub, which is attached in parallel to the line, to be an opn circuit at 200 MHz. This is
accomplished using é short-circuited stu\twhich is one quarter wavelength long at 200 MHz.
A wavelength in the transmission line is

_ 067(3 1C mfs)
B 200 MHz

=1:005 m (3.11)

so the stub length is 2512 cm|.

(b) See below:

e LD copns E2TER

— o —— -

T ghons apnarEDd

35



[m0145] [2]

3.17-2

The smallest length for which the imaginary component of thempedance of an open-
circuited stub is positive is slightly greater than = 4. The imaginary part of the impedance
remains positive until the length is slightly less than= 2. In this transmission line,

I
= = i = 89:8 rad/m
vp O7c
wheref =3 GHz. Therefore,
= 2— =7cm

and so the smallest contiguous range of transmission linedgh | is

[1:75 cm<l< 35 cm|

36



[m0145] [3]

3.17-3

For zero response centered df, = 1:3 GHz you want the input impedance into the stub,
which is attached in parallel to the line, to be a short circaiat f = f.. This is accomplished
using an| open-circuited stu¢that is one quarter wavelength long af = f.. A wavelength
in the transmission line is

_06(3 10 m/s)
B 1:3 GHz

so the stub length is 346 cm|. The characteristic impedance is irrelevant.

=13:84 cm (3.12)

37



[m0091] [1]

3.19-1

From the problem statement, we see that the design will corssiof a quarter-wave matching
section followed by a line having a characteristic impedaa@y, = 300 {i.e., equal to the
load impedance { and the total length will bel =5 cm. The characteristic impedance of
the quarter-wave section must b&y, = = ZsZ,, WhereZs is the source output impedance;
thus, we haveZy, = 122:5 . The length |, of the quarter-wave section is=4, where is
the wavelength in the transmission line. For FR4, we have

_ o _ . cf (3 1 m/s)=(1:5 GHz)
R — 9 — G—
feff ACREY 5(45+1)

=12:06 cm

sol;=3:0lcmandl, =1 1;=1:99 cm.

What's left to gure out is the width w of the microstrip lines, which determines the charac-
teristic impedance sincén = 1:6 mm and , = 4:5 are already set. We know thah=w=1=2
gives a characteristic impedance of 50 for FR4, so the widtlef a 50 line is 2h = 3:2 mm.
To get the higher characteristic impedanc&y; = 122:5, w; will have be smaller than
3.2 mm. An approximate but reasonable solution is simply to asme the characteristic
impedance scales withv in the same way (i.e., linearly) as it does in the \wide" f=w 1)
case, so

50
w;  (3:2 mm) 1995 - 1:3 mm
and
wy (3.2 mm)i =0:5 mm
2 300

You could also use the Wheeler (1977) formula or some otheruatjon or reference; how-
ever, the increased accuracy is typically irrelevant in padice due to issues such as the large
variation in ; due to manufacturing issues. So, while it's not wrong to takihat approach,
it's usually not worth the e ort if you are able to instead \scale" from a known design as we
have done above.

So, your sketch should show the source, followed by 3.01 cmlioé which is 1.3 mm wide,
followed by 1.09 cm of line which is 0.5 mm wide, followed by#Hoad, as shown in the gure.

e Bew —
! {

FI PP
4—’\ * " __mA‘(l r
[ % =20
%

y {

(50 L_,,_,_e-"a———~ 199w
300 g

|

'
)
{
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[m0091] [2]

3.19-2

From the problem statement: Z, = 200 , | = =4, andZy = 100 . Since this is a
guarter-wave line,

39



[m0091] [3]

3.19-3

The problem statement implies that each of the stubs is shoedircuited at the end opposite
the main line. For this to be a bandpass lter, the magnitude bthe input impedance looking
into each stub must be very high { nominally in nite { since then the lIter structure would
be in e ect the main line by itself, with no stubs, and would therefore be well-matched at the
Iter input and output. At any higher or lower frequency the magnitude of the stubs' input
impedance can only be less; therefore, the input impedanddtwe Iter would be increasingly
mismatched. This results in bandpass response.

The shortest length for which the magnitude of the input impdance of a short-circuited

transmission line is innite is =4. Therefore, =4 = 3:38 mm and subsequently =
1352 mm in the stub. Therefore, the center frequency is

f= Y- 06 133GR2

40



[m0091] [4]

3.19-4

(a) At 2.4 GHz, the free space wavelength, = c=f = 125 cm. Therefore the wave-
length in the line = 0:67 ¢ = 8375 cm, and subsequently the length of each section is
=4 = 2:094 cm. The impedance looking into each stub is nominally inite at 2.4 GHz;
therefore the stubs should be terminated into short circuitboads. Then, each stub will trans-
form its \load impedance" of 0 into an input impedance of 20! 1  at the frequency at
which it is a quarter-wavelength long. The resulting desigis shown below:

2: 0‘1"‘0«1—

mpwk-
S

(b) First, note that the input impedance of a short-circuited stub isZs, +jZytan | where

Z, is the characteristic impedance (50 in this case)] is the physical length of the stub
(2:094 cmin this case), and =2 = (=2 f= 0:67cin this case). Consulting Figuré_3]1, we
determine that the response at a speci ed frequendy may be calculated using the following
steps:

2f

— A
0:67c (3.13)
Z1  ZikZs (3.14)
1+ el?! Z1 Zo
Z- Zom where , Z.+ 7, (315)
Zin Zyk Zs (3.16)
— 1 where isnow , ——— 3.17
Pn Zin + Zo (3.17)

In the last step, P.=P,, is response as de ned in the problem statement. This express
works under the assumption of no loss within the lter; i.e.all power delivered to the input
is subsequently delivered to the load, and none is dissipdtby the lIter.

41



Figure 3.1: Schematic representation of the Iter with a mathed

Frequency Response [Mag, dB]

T

1
2.5

Freq [GHz]
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(c) MATLAB script follows.

clear all;
close all;

ZL = 50.0; % [ohm] impedance attached to output
Z0 = 50.0; % [ohm] characteristic impedance

| = 0.02094; % [m] section length

c = 3.0e+8; % [m/s]

f list = [1:0.01:3.8]*(1e+9); % [HZz]

n=0; % counting points
for f=f_list,
n=n+1;

beta = 2.0*pi*f/(0.67*C);

Zs = +j*Z0*tan(beta*l);

Z1 = (ZL*Zs)/(ZL+Zs),

Gamma = (Z1-Z0)/(Z1+Z0);

Z2 = Z0*(1+Gamma*exp(-j*2*beta*))/(1-Gamma*exp(-j*2* beta*l));
Zin = (Z2*Zs)/(Z2+Z5s);

Gamma = (Zin-Z0)/(Zin+Z0);

P(n) = 1l-abs(Gamma)"2;

end % for f

plot(f_list/(1.0e+9),10.0*log10(P),'b-");
grid on;

xlabel('Freq [GHz]);

ylabel('Frequency Response [Mag, dB]);
axis([1 3.8 -6 +1));
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3.20-1

Summarizing the problem statementP,, = 5W and P_ = 4:6 W. Therefore,P_=P,, = 0:92.
From this, we may nd the magnitude of the re ection coe cient, | j, using

P o
=10 ]
Pav

We nd j j= 0:283 and

SWRzlj‘}:
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3.20-2

From the problem statement, =0:3+ j0:4 andP,, = 3 W. Therefore,

Pb= 1] j? P, =[2:25W

45



[m0094] [1]

3.23-1

From the problem statement, we havé = 220 MHz, antenna impedanc&Z, =73+ j42 ,
and characteristic impedance&, = 50 for both the transmission line and the stub. The
input impedance looking into a lengthd; of transmission line terminated in impedancé&
is

1+ eli2ds
Zy(dy) = ZoT g i2d: (3.18)
where 7 7
A 0 .
= =0:2719 +] 0:2486 3.19
7 T 7, j (3.19)

The rsttask is to nd the smallest d ; such that the real part ofY;( d ;) = Z, *( d ;) equals
Yo=Z, 1=0:02 1. After a few minutes of trial and error one nds:

Yi( d 1 =1:345 rad) = 0:0200 +j 0:0159 1 (3.20)

(You could also do this with a Smith chart if you are so incling.) The match is accomplished
by attaching a stub having input admittanceY, = j0:0159 1! in parallel with Yy, since
then the combined admittance will beY; + Y, = Yy = Z, ! For a short-circuited stub of
length d, we would want:

Y,= jYocotd,= j0:0159 ! ) d,=0:900 rad (3.21)
For an open-circuited stub of lengthd, we would want:
Y,=+jYotan d,= j0:0159 ' ) d,=2:471rad (3.22)

The short-circuited stub is shorter, so that's the preferm@ solution. All that remains is to
gure out the physical lengths from the electrical lengthsFor this, we need to know . The
phase velocity isv, = 0:67c, so

2 : 2 . 6:8771 rad/m (3.23)

Finally we have the solution:

d,;  1:345rad
"~ 6:877 rad/m

_d,  0900rad =
d; = = 5877 radim - stub length (3.25)

and the stub is| short-circuited.

dp = = distance from antenna terminals to stub  (3.24)
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3.23-2

In terms of the variables used in the book, the problems stateent is indicating that
Y1 =0:0128 j0:0040 *!and that Z;, is real-valued. ThereforeY;, = 1=Z;, is real-valued,
and must be equal to the real part ofy;; i.e., Y, =0:0128 *. Therefore, Zy, = 781 |
which is the answer to part (a).

The stub is being used to cancel the imaginary part of;, so Yeup = +j0:0040 ! and
subsequentlyZsu, = j250 |, which is the answer to part (b).
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3.23-3

In terms of the variables used in the book, the problem statesnt indicatesZ, =35 10 ,
Zi, =50 ,and Z, =100 throughout. The voltage re ection coe cient at the in terface
betweenZ, and the primary line is

Z Zy

= Z ¥ Z, = 0473 j0:109 (3.26)

Let Y; be the admittance looking into the primary line:

1 e j211
where 1
Yo, = =0:01 mho (3.28)
Zo

and | ; is the electrical length of the primary line. To match the rebpart of the admittances,
we require Rd Y;g = Re f Y, g where

Yin = =0:02 mho (3.29)

1
Zin
is the input admittance corresponding toZ;,. Therefore the desired value ofl ; is the

solution to _
1 eli2h

Using a numerical trial-and-error search, one ndd ; = 0:362 rad. Now using Equation 3.36:
Y1(11=0:362rad)= 0:0200 j0:0121 mho (3.31)

The necessary shunt susceptance (i.e., the imaginary part @dmittance) is ImfY;g =
+0:0121 mho, since this will cancel the susceptance of the prirpdine when placed in
parallel with the primary line. Now we seek the shortest stubhat has this susceptance. For
an open-circuited stub we would need

+ Yptan | , =+0:0121 mho (3.32)

where | , is the electrical length of the stub. This yieldsl , = 0:8814 rad. For a short-
circuited stub we would need

Yocot | , =+0:0121 mho (3.33)

This yields | , = 0:6893 rad. is positive and length can't be negative, so we need the
next greater value of | , that solves the above equation. Since coj(has period radians,
the desired value is 2522 rad. This is much longer than the result for the open-cinited
stub, so we choose the open circuit result.
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(a) Note
_2 |

I =2 -

Therefore to express electrical length in wavelengths, wenply divide by 2 . Thus, the

solution to the problem is:
Primary line length I; = 0:058
Stub length |, = 0:140

Stub is open-circuited

(b) Note

! 2f
= v_p = e - 48332 rad/m

sincef = 1:5 GHz and the velocity factor is 65%. Therefore

[
[, = — = 75 mm

I
[, = —= =182 mm

(c) Let's de ne i, as the voltage re ection coe cient at the input of the matching structure.
(Note that this is di erent from de ned in previous parts, wh ich is the voltage re ection
coe cient at the output of the matching structure.) Therefore the fraction of powedelivered

(PL) to power incident (P,) is:

PL _ . .2
P~
where
o Zi, 50
" Zn +50
and where ,
1+ elz2hs

Zin :( jZoCOt [ 2) k Zol—e12|1

Be careful: The sweep in frequency appears as a sweep in thiei@af
tion. A plot of the result follows.
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Chapter 5

Electrostatics
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5.1-1
The electric eld due to a point chargeq is

_ q
E(R) = rﬁm

where R is the position-free vector pointing from the charge to the eld point. From the
problem statement,q= 24 nC, , =2, and

R=2+y2+23m

Thus p
R, jRj= 12+22+32= 374 m
R, %: R0:267 +90:534 + 20:802
= ,0=2 8854 10 ¥ F/m
Thus

E(R)=| %206 9412 #6:18 V/m
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5.2-1

From the problem statement,

q=+3nCat r;= 2dand

¢ =+3nCat r, =+ 2d whered=0:5m;

the eld point of interest is r = + *x wherex = +1 :5 m, and
= o= 8854 10 2 F/m.

The electric eld intensity due to two point charges is

1 rrq rr
E(r)= — +
N T T

In this problem:
rori=+2x ( 2d)=+2Rx+ 2d

ir rlj:px2+d2
rorp,=+2%x (+2d)y=+2Rx 2d
jr r2j=px2+d2

Substituting: " 4
1 +Rx + 2d +&x 2d

+
4 (x2 + d2)3=2q (x2 + d2)3=2q

E(+2x) =

where we have made the de nitionq, ¢ = . Note that the 2-directed components
cancel, as expected from the symmetry of the problem. Elinating these components and
simplifying:
plifying q «
E(+&x) =R =
2 o(x2+ )"

Now take a moment to con rm that the solution is dimensionallycorrect and makes physical
sense. Finally, substituting values, we obtain:

E(+%15 m)=|+2(20:;5 V/m)

For a single chargey at the origin to create this eld, we require

G

R
4 0X2

=+ R (20:5 V/m)

which yieldsq = |+5:12 nC|.
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5.3-1

From the problem statement, , = Kr 2 whereK = 2 C/m. From dimensional analysis,
it is clear that this is a volume charge density. We seek the t@ charge Q in a volumetric
regionV bounded by the constant-coordinate surfaces= a andr = bwherea=1 m and

b=2 m. In general, 7
Q= v
\%
In this case, using spherical coordinates:
Z,72 Z, K
Q= — r?sin drd d
r=a =0 =0 [
Factoring into separate integrals:
zZ, Z zZ,
Q=K dr sin d d
r=a =0 =0

Evaluating the integrals:
Q=KIb a2][2]=4K (b a)
This a good point at which to check for dimensional consisten (i.e., correct units).

Using the given values oK, a, and bwe obtainQ = |25.1 C|.
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5.3-2

From the problem statement, the volume charge density is

v0
= . 5.1
Y r2sin ®-1)
forry<r<r ,,wherery=1mandr,=2m;and ;< < ,, where ;= =4 (rad) and

>, =3 =4. Also ,,=1:3 C/m inside these limits, and ,, = 0 outside these limits. LetV
be the region of space wherg, 6 0. Then the total charge Q is

Z
Q= vav (5.2)
2.z z,
— v0 2 i
= ., Tsn resin drd d (5.3)
Z I2 2% 2
= v drd d (5.4)
2.0 Tz, z,
= v dr d d (5.5)
ry 1 =0
= vol(rz r)(2 1(@) (5.6)

Note this result is dimensionally correct. Substituting thevalues established above, we ob-

tain Q = [12.83 C|
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5.4-1

Interpreting the problem statement:
s1, +4 nC/m 2 for sheet in thex = 0 plane. Let the eld from this sheet beE;.
s2, +16 nC/m?2 for sheet in they = 0 plane. Let the eld from this sheet beE,.
s3, +64 nC/m? for sheet in thez = 0 plane. Let the eld from this sheet beEs.
Also, =2 .

The electric eld intensity due to a single sheet of charge Wang charge density s in the
z = 0 plane is worked out in the book. It is:

+2-2
5 SUre

This corresponds to the third sheet of charge above. Sinceethegion of interest isz > O:

Es=+ 24i03
Similarly, |

E;=+ k4i’:

Eo=+ 9‘%;

The total eld is the sum of these three elds. Thus:

E:kil-{- iz+2i3
4 940 4

Substituting values, we obtain:

E = [2(113 V/m) + ¢ (452 V/m) + 2(1807 V/m)

56



[m0104] [2]

5.4-2

From the problem statement, we have electric eld intensityE i, due to line charge density
| =+8 mC/m along the z-axis. Thus,

Eine = AZ—' (5.7)

Also, we have electric eld intensity E¢heer due to surface charge densitys = +12 mC/m 2
in the z = 0 plane. Thus,

Esheet = 22—5 forz>0 (5.8)

The total electric eld is determined by superposition:

Note that this is dimensionally correct. Also from the problenstatement we have = ;|
where (=8:854 10 > F/m and , = 2. Finally:

A 119 MV MV

E= +2 3388  forz>0 (5.10)
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5.5-1

Note F1, = Q,E; whereE, is the electric eld intensity associated withQ,. Thus:
I:12

Q1
E,= —= = [Q -
1 Q2 124 R %2

We can write this in terms of the electric ux density, assummg a isotropic and homogenous
medium:
Q:

4R 2,
Now let's put Q; at the origin, and let S be a sphere of radius centered at the origin.
Then, the left hand side of Gauss' Law is:

I zZ Z, zZ Z,

D ds= f*le 2si ~2
s 0 =0 4a 4 0 oo

Di= E;= le

sin dd =0Q

Because we pufQ; at the origin and de ned S to surround it, Qene = Q1, Which is what we
expect from Gauss' Law. Therefore, Coulomb's Law is a solat to { a special case really
{ of Gauss' Law.

You might be inclined to object on the grounds that Gauss' Lawloesn't say anything about
force or electric eld intensity. This is true! However, eletic eld intensity is de ned by
force; i.e.,E; = F1,=Q, is a de nition for E;, and not derived from something else. Similarly,
D, = E;is adenition for D, and not derived from something else. So, Gauss' Law is as
fundamental as it gets.
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5.5-2

By symmetry, there can be no variation in thez or dimensions. Therefore, our answer
can depend only on . The three regions to consider are inside the inner surfacetbe shell

( < 1 m), inside the shell itself (1 < 3 m), and outside the outer surface of the shell
(> 3m).

The integral form of Gauss' Law is:

Z
D ds= Qencl (5-11)
S

where S is any closed surface. Since we are asked for electric eldemsity, we can use
D = E to obtain: z

1
E dS = _Qencl . (5.12)
S

Note that we use as opposed to o, since the latter infers free space conditions, and we
haven't been told that.

For < 1 m, Qeng = 05 i.e., there is no surface that we can de ne that encloseharge.
Combined with the symmetry argument, we have that E = 0 |in this region.

For 1 < 3 m, Qencg depends on . Combined with the symmetry argument, we have

E( )="E (). Thus, a good choice foSS is a cylinder centered on the axis. This gives us:
ZZ Z+L=2 1Z ZZ Z+L=2

E() "ddz + 0= -

=0 z= L=2 =1 =0 z= L=2

,d d dz (5.13)

where \+0" on the left hand side is the contribution from the onstant-z surfaces (the \end

caps") of the cylinder { zero because the normal to those sades ¢) is perpendicular toE.
Now evaluating:

1

E()2L -

JL(2%2 1md). (5.14)
Finally:

1m?

E()=" 5

> in this region. (5.15)

Assuming  is in C/m?2 and is in F/m, E( ) will be in V/m. However, if you say simply
\1" as opposed to \1 n?" in the above expression, then you must indicate the units of
(being meters) as well. In electromagnetics, a powerful (bunappreciated) technique for
checking your work is to make sure your solution has the rightnits. This is called dimen-
sional analysis You should be able to substitute units for each of the quarites in the above
solution and nd that the result has units of V/m { can you do this?
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For > 3 m, Qeng IS constant at the maximum value (since all the charge has beenclosed),
but E( ) is still a variable function of . Thus, the left hand side of Equation 5.14 remains
the same, but the right hand side is evaluated at = 3 m. This yields:

1 2

E()2L == ,L 8nm?. (5.16)

Thus:

m2

N

E()=" -~ in this region. (5.17)

Suggestion: Try dimensional analysis on this solution. Cayou see why it is important to
say \4 m?" as opposed to just \4"?
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5.5-3

By symmetry, there can be no variation in the or dimensions. Therefore, our answer
can dependonly onr. The three regions to consider are inside the inner surfacetbe shell
(r < 2 m), inside the shell itself (2 r < 4 m), and outside the outer surface of the shell
(r> 4 m).

The integral form of Gauss' Law is:
4
D ds= Qenclosed (5-18)
S

where S is any closed surface. Since we are asked for electric eldemsity, we can use
D = E to obtain: Z

1
E ds= _Qenclosed . (5-19)
S

Note that we use as opposed to o, since the latter infers free space conditions, and we
haven't been told that.

Forr < 2 m, Qenciosed = 0; i.€., there is no surface that we can de ne that enclosefarge.

Therefore,| E = 0 |in this region.

For 2 < 4 m, Qenciosed depends orr. Combined with the symmetry argument, we have
E(r) = fE(r). Thus, a good choice folS is a sphere centered at the origin. This gives us:

z Z, 1Z 2 Z,
fE(r) frsin dd == vr?sin drd d (5.20)
=0 =0 r=2 =0 =0
Now evaluating:
4r 2E(r) = —V% 3 8m . (5.21)
Finally:
v 8m | .
E(r)=# 3 r = in this region. (5.22)

Assuming  is in units of C/m?® and is in F/m, E( ) will be in V/m. However, if you
say simply \8" as opposed to \8 ni" in the above expression, then younust indicate the
units of r (being meters) as well! In electromagnetics, a powerful (bsadly, unappreci-
ated) technique for checking your work is to make sure your Istion has the right units.
This is called dimensional analysis You should be able to substitute units for each of the
guantities in the above solution and nd that the result has uits of V/m { can you do this?

Also note that you have a second way to check your solution { it ost be equal to the
solution for the rst region for r =2 m. Note that it is.
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For r > 4 m, Qenciosed IS CONstant at the maximum value (since all the charge has hee
enclosed), butE(r) is still a variable function of r. Thus, the left hand side of Equation 5.21
remains the same, but the right hand side is evaluated at= 4 m. This yields:

4y 2E(r) = —V% 56 Nt . (5.23)

Thus:

56 m?
E(r)= ¢ =2
Suggestion: Try dimensional analysis on this solution. Cayou see why it is important
to say \56 m*" as opposed to just \56"? Also, con rm that your answer agreesvith the
Region 2 answer for =4 m.

in this region. (5.24)
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5.5-4

(@) A, B, and C have units of| V/im#, V/Im 3, and V/m?2|, respectively.

(b) According to the integral form of Gauss' Law:
I I
Qencl = D ds= o E ds
S S
Here, S is the surface of the box-shaped region, art$ is the normal to each of the six sides.
This integral is easiest to handle as the sum of integrals oveach side, since theus will be
constant over each of these integrals. Here we go:

V4 Z y=+1 Z z=0 1
E ( ®dydy= A( 1)z°dy dz=+ ZA
X side y=0 z= 1 3
Z Z y=+1 yA z=0 1
 E (+Rdydy-= A (+1) z?> dy dz=+ ZA
+X side y=0 2= 1 3
Z YA x=+1 z z=0
E ( ¢dxdz)= ( B()z)dxdz=0
Yy side x= 1 z= 1
Z Z x=+1 VA z=0
 E (+y¢dxdz)= ( B(+1) z)dxdz=+B
+y side x= 1 z= 1
VA VA X=+1 Z y=+1
E ( 2dxdy)= Cxdxdy=0
Z side x= 1 y=0
Z Z X=+1 Z y=+1
E (+2dxdy)= Cxdxdy=0
+z side x= 1 y=0
So we nd:
1 1 2
Qeni = 0o A +3A+0+B +0+0 = o JA+B

having units of Coulombs if ¢ is in F/m and the dimensions are all in meters. The chances for
units-related confusion is reduced if consider what has aetlly happened in the integration
and say speci cally:

Qencl = 0 ng A+(1m4)B
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5.5-5

The problem is easily solved using Gauss' law in integral for
I

Qenci = D ds (5.25)
S

whereS is any surface which completely surrounds the charg®, is the electric ux density,
and ds is the di erential surface element. The easiest surface ihis case is a sphere of radius
ro, centered on the origin, with
Povrerr P3
ro > J e

= - (5.26)

Note that it is not important for the radius of the sphere to be tose to this number; it is
merely necessary that the radius be greater than this numhetn fact, we shall see below

that the radius doesn't matter at all, as long as it is at leasthis big.

From the problem statement:

3V m
E=+¢ 2 (5.27)
The problem indicates the medium is free space, so the perthiity = , = 8:854
10 2 F/m. Therefore:
3V m
D= oE =f 0 r2 (528)
Now putting this all together:
Zz Z,
Vv .
Qenat = p oS g M frZsin d d (5.29)
=0 =0 7 ZO2
= o3V m) sin d d (5.30)
A Z,
= o(BV m) sin d d (5.312)
=0 =0
= o(BV M(@2)(2) (5.32)

Note this result is dimensionally correct. Substituting thevalues established above, we ob-

ain Qo = 333 pC)
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5.6-1

This is essentially the same problem shown as an example irethook, for which the electric
eld intensity was found to be
E=r_—
2

where here | = 2:1 mC/m and s the distance from thez-axis. The electric ux density
isD = E, so the permittivity doesn't matter. The result is:

Don_l _| 334 Cm
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5.7-1
From Gauss' Law, ,=r D=r (o:E)= o r E. Calculating the divergence:

@ @

— @ 2 3 3
r E= @x (6 VIm)x + @y (2 VImJ)yz + @z (2 VIm “)xy

= (6 V/Im ?)(1) + (2 VIm ®)(2) + (1 VIm 3)(0)
= (6 V/Im ?) + (2 VIm 3z

0=8854 10 F/mand , =4:5, so

=1239:1 pC/m® + (79:7 pC/m*)z
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5.7-2

(@ v=r D= or E. Hereit's easiestto use Cartesian coordinates, for which

_ . @ @ ,@
"~ e ey e:
so we have
_ @ @ ,@ . _
v= 0 k@x-'- 9@y+ z@z [R (2 VIm)sin xcosy $ (2 V/m)cos x siny]

= o 2VIm? cosxcosy 2VI/m? cosxcosy =|[0]

This is an example of aivergence-free eld It seems that there can be an electric eld even
when there is no charge. This means simply that the source ega must lie entirely outside
the region begin considered.

(b) In this case we have

2 2.y

_ @ .
vE oo Xgy 2@2 [R (3 V/Im)cosxy + § (3 V/m)sin xy]

@,
@y
= 3V/m® o[ ysinxy + x cosxy]

which has the expected units of C/r.
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5.7-3

(@) A, B, and C have units of| V/im#, V/Im 3, and V/m?2|, respectively.

(c) According to the di erential form of Gauss' Law, we have fothis problem:

@ 2 @ @ 2
= of E= —(A + —( Byz)+ — = 5 A Bz +
v= 0 0 @)g XZ*) @ yz) @£CX) o Az z+0

This is charge density as a function of position. The enclaseharge is obtained by integrat-
ing over the region of interest:

Z Z x=+1 YA y=+1 Z z=0

Qengl = , dv= o Az? Bz dxdydz
\ x= 1 y=0 z= 1

The integrations overx andy factor out and are equal to 2 and 1 respectively. What's left
¥

Z z=+1 2
Qencl = (2)(1) 0 AZZ Bz dZ = Qencl =0 é m5 A+ (1 m4) B

z= 1

Note that this result agrees with the result obtained using te more direct approach of us-
ing the integral form of Gauss' Law. You should note that the reason the resgltare the
same is not really related to electromagnetics, but ratherwk to the Divergence Theorem
(of mathematics), which relates the behavior of a vector elin a volume to the behavior of
that same vector eld over the enclosing surface.
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5.8-1

The change in the energy of the system resulting from movin@pé¢ particle a small distance

T lis:

w o 1
Power P is energy per time, so the power required to do this is:
w T
P — E —
t a t
where t is the time required for the particle to traverse the distane. Note that in the
limitas t! 0,1 I= tis the velocity v of the particle. Taking the limit and making the
substitution,
P= g v

This is the \instantaneous power" required at timet and, through t, the positionr (t).

Interpreting the problem statement:q= 4 mC,;

E = Ey2, whereEy = 3 V/m; and

r(t) = Racos!t + ¢bsin!t + 2ct, wherea= b=2m, ! = rad/s, and c=4 m/s.
Note

vV, %r(t) = Ral sin!t + ¢b! cos!lt + 2c

Therefore,

P= QgE v= qEc= ( 4mC)(3V/m)(4m/s)= 48 mW |
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5.12-1

Let us arbitrarily assume the charge is aligned along the axis. Then the electric eld
intensity is given by

E()=r5 (5.33)

The potential di erence is:

Vypy = _ E df= Loy =)L In-t. (5.34)
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5.12-2

The electric eld intensity resulting from a single line of uwiform charge density is given
by
E(R)= R—_ . .
(R) >R (5.35)
whereR is the distance between the point of interest and closest mvion the line, R points
from that point on the line to the point of interest, andR = RR.

If we have two such lines of charge, then by superposition weutd write:

E(R):IQ12IRL1+IQ22R'2. (5.36)

where the subscripts \1" and \2" refer to the geometry relatve to the rst and second lines
of charge, respectively. In this problem, the lines of chaggand the point of interest all lie
in the x y (z=0) plane. Since this is the case we may write simply:

E(x: =% ! + ! f =0. 37
(x;y) o 92y orz=0 (5.37)
The potential di erence is:
Z point 2
Vo = _ E d. (5.38)
point 1

Remember that the answer should be the same fany path between the points, so you
might as well choose one that makes the problem simple. Her#e result using one of two
equally-easy paths:
Z X2 Z y2
| | |
+ ¢ Rdx

R R !
2 X 2y, y=y1 2 X1

Voq =
21 2y

ydy (5.39)

+ 9

X=X1

That is, rst move from (2;4) m to (1;4) m along they = y, = 4 m line, and then move
from (1;4) m to (1;1) m along thex = x; =1 m line. Evaluating:

Lo 2 oain 2= Lon Xm0 0331, (5.40)

VA L
2 2 X1 Y1 2 X2 Y2

Here, you can check your results using dimensional analysi¥/if divided by F/m gives C/F
= V). You can also check that the sign is correct: Point 2 is cl@&s to both lines of charge
than point 1, so when the charge is positive, work is being derand the potential di erence
is positive. Said di erently, the potential at point 2 is higher than the potential at point 1.
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5.12-3

The point chargeqg, =+3 C at the origin creates a potential eld

il

VIO= 7

(5.41)
wherer is the distance from the origin. Since the permittivity of tre medium is speci ed to
be twice that of free space, = ¢ =2 (. Thus:

Qv

V(r)= 8 o

(5.42)

The potential di erence V,; at r relative to r; is independent of the path taken between the
points; it depends only on the endpoints. Thus:

Ch Ch 1
Vo=V \V = = R — 5.43
21 (r2) (rq) 8 ot 8 o1 B8 o 2 11 ( )

wherer; = P 3F+( 42=5mandr,=1m. ThereforeV,; = |[+10:8 kV |.

Note that the result does not depend on the value of the charge,(=+2 C) being moved
from ry to r,. This is the whole point in de ning a scalar electric potentl: It describes
energy in the eld independentlyof the charge that experiences it. If necessary, one may
subsequently calculate the energy associated with this muitial di erence as,Vi,.
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5.14-1

To begin, it will be convenient to rst convert ro from Cartesian to spherical coordinates.
Here we go:

q__
ro= X3+ ys+ z5=538cm

0 = arccos (Zo=rg) = 420

o = arctan (yo=Xp) = 56.3

(@)
V(ro) = Vor2cos o =
(b) o 1o
— — _— /\__
E=r1r V= f\@r+ r@ +0 V

The third term in the gradient is zero because/ in this problem does not vary with
Continuing:

@V Al@V A .
= —_ —_—_ = +
E {A@r r@ f2Vor cos Vor sin
So:
E(ro) = | £400+ "180 mV/m
()

1 1
0 __@ r2 ro t -

rZ@r rsin
whereE, andE are thef- and "-directed components oE. The third term in the divergence
is zero becaus& in this problem does not vary with . Note:

v=r D= o E=

@@(E sin )+0

1@ , 1@ , 1 @ 3 1 5
—— IE, = ==— 1 2Vor = ——  2Vor = — Vol = \Y/
Z@r r Z@r ( of COS ) Z@r ol ° COS = 6\Vor“ cos 6V, cos
and

1 @ . @ . . 1 @ . 5 1 .

— (E sin ) = — ((Vor sin n)= — Vr sin = —— (2V,r sin
rsin @( sin-) r sin @(( or sin )sin ) rsin @ of SI r sin (2Vor sin - cos )
=2V, cos

Continuing:

v= o 6Vpcos +2Vycos |= 4V, ocCOS

(Good time for a units check...) At the point of interest:

v(ro) =| 131 pC/m?
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5.14-2

From the problem statement,

V(r) = Vor ¥2
whereV,, 4V m'2. So:
E(r)=r V(r)
= f\@@yor 72 + terms that go to zero because2

1 4
= fy, ZIr ¥

° 2
Vo 3=

=+f_r

2

=+f 2V m¥? r 32

- @ —
=2=0

Note that the answer is dimensionally correct (and unambigusly so).
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5.15-1

Poisson's Equation is
rav= 2. (5.44)

The geometry of the problem suggests cartesian coordingtaad symmetry such that@V =@y
@V=@=z0 is implied. Thus, the above equation becomes:

& _ v(x)
WV(X) = : (5.45)
Integrating both sides with respect tox we have
Z
d 1~
&V(x) = - v(X) dx . (5.46)

1

Integrating both sides again with respect tox we have
1 Z X Z X
V(X)= - v(X) dx dx . (5.47)
1 1
The rst chore is to take care of that sequence of integratia We begin with mathematical

restatement of the given volume charge density:

8
30 , 1 X< b
a, b x<0

v(X) = s +a, 0 x +b (5.48)
"0 ,+b<x 1
Integrating once: 8
7 3 0 , 1 x< b
X _ ax+b, b x 0
) v(X)dx = s +ax ab, 0<x +b (5.49)

0 , +b<x 1

If you have a hard time seeing this, consider sketching(x) and then doing the integration
graphically. Integrating the second time:

8
0 1 X< b
z, Z 3 '
X X _ (a=2)x*> abx a¥=2, b x O
. v(x)dx dx = 2 +(a=2)x> abx ab=2, 0<x +b (5.50)
T ar , +bh<x 1
Substituting this into Equation 5.47 we obtain:
Q
5 0 , 1 X< b
_ 17 +(a=2)x*+ abx+ak¥=2, b x O
Vix) = 3 (a=2)x?+ abx+ aP=2, 0<x +b (5.51)
©oar , +b<x 1
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Now check your answer. First, as always, check that is is dim&onally correct. Second,
note that V(x) should be a continuous function o, since integration over any function
(speci cally excluding the impulse or \delta" function) results in a continuous function.

To nd the volume charge densitya in terms of V, we simply evaluate:

Vg = V(x=+b VK= Db = ﬁ o:ﬁ_ (5.52)
and solve fora:
_ Vg
a= 7 | (5.53)
Given the relative permittivity of silicon , 12,b=100 m, andVy =0:4V, we nd

a=4:25 mC/m3|.
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5.15-2

The symmetry of this problem suggests a solution in sphericeoordinates. Laplace's Equa-
tion in spherical coordinates is:

1@ ,@V 1 @ . @V 1 @V
V= D= = o+ = — +t ————— = 54
' r2@r ' @r r2sin @ sin @ r2si’ @32 0 (5.54)
The symmetry of the problem also requires that the potential/ not vary with respect to
or ; in other words:

@V_ @V
- = _—=0. 5.55
@ @ (5.55)
Thus, V is a function ofr only, and Laplace's Equation simpli es to:
1@ ,@ _
2 ar r @y(r) =0 (5.56)

Multiplying through by r? and then integrating with respect tor, we obtain:

2_V =C, 5.57
gy ® (5.57)
where C is an arbitrary constant. Now dividing through byr? and integrating with respect

to r again, we obtain:

V(r) = % + Cy, (5.58)

where C; and C, are constants that can be determined by boundary conditionsApplying
the boundary conditions, we obtain:

V(r=1m)= 1C_rln+ C,=100V, and (5.59)
V(r=3m)= ?)C—rln+C2:20V. (5.60)

A simple way to solve forC; and C, here is simply to subtract the second equation from
the rst equation, which eliminates C,, then solve forC; and use that result to solve forC,.
One ndsC;= 120VmandC, = 20 V. Thus:

120V
V(r):+% 20vV|[,1m r 3m, (5.61)

Note that an answer like W (r) =120=r 20" is dangerously ambiguous, unless you specify
as part of the answethat r must be in meters andv will be in volts.
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[m0067] [3]

5.15-3

The symmetry of this problem suggests a solution in sphericeoordinates. Laplace's Equa-
tion in spherical coordinates is:

1@ @V 1 @ . @V 1 @V
2V - = 2= + i = _ 4+ — = = .62
' r2@r ' @r r2sin @ sin @ r2si’ @32 0 (5.62)
The symmetry of the problem also requires that the potential/ not vary with respect to
or ; in other words:

@V_ @V
—=—2=0. 5.63
@ @ (5.63)
Thus, V is a function ofr only, and Laplace's Equation simpli es to:
1@ ,@ _
2 ar r @y(r) =0 (5.64)

Multiplying through by r? and then integrating with respect tor, we obtain:

Z=V(r)= C, 5.65
gy ® (5.65)
where C is an arbitrary constant. Now dividing through byr? and integrating with respect

to r again, we obtain:

V(r) = % + Cy, (5.66)

whereC; and C, are constants that can be determined by boundary condition©ne bound-
ary condition is obtained from the surface of the sphere:

V(r=2m)= 2C_r1n+ C,=20V (5.67)

The other boundary condition is obtained by noting thatV (r) must go to zero asr ! 1
Thus:
V(r'!l )=0+C,=0 (5.68)

soC,=0and C;= 40Vm.

40V m

V(r)=+ ;

r>2m (5.69)

Note that an answer like \V (r) = 40=r V" is dangerously ambiguous, since the units of the
constant \40" are not clear. (It is OK { albeit tedious { to say \V(r) = 40=r V" if you also
specify thatr is in meters.)
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5.16-1

The symmetry of this problem suggests a solution in cylindral coordinates. Laplace's
Equation in cylindrical coordinates is:

1@ @V N 1@V+@V_
@ @ 2@2? @7
The symmetry of the problem also requires that the potential/ not vary with respect to
or z; in other words:

@V_ @V_ 0

0 (5.70)

= == 5.71
@ @z (5.71)
Thus, V is a function of only, and Laplace's Equation simpli es to:
@ @V
— — =0 5.72
@ @ (5.72)
Integrating both sides with respect to , we obtain:
@@V( )= Cy, (5.73)

where C is an arbitrary constant. Now dividing through by and integrating with respect
to again, we obtain:
V()= Ciln +C;, (5.74)

where C; and C, are constants that can be determined by boundary conditionsApplying
the boundary conditions, we obtain:

V( =0:001 m)=C;In(0:001 m)+C, =50 mV , and (5.75)

V( =0:002 m)=C;In(0:002 m)+C, =20 mV . (5.76)

A simple way to solve forC; and C, here is simply to subtract the second equation from
the rst equation, which eliminates C,; then solve forC; and use that result to solve forC,.
One ndsC;= 433 mVandC,= 2490 mV. Thus:

V()= (433 mV)in im 2490 mV|, 1 mm 2 mm. (5.77)

Note that an answer that does not include \1 m" in the denominatr of the argument of the
\In" function is dangerously ambiguous unless you also spgfcthat must be in meters.
Here is another correct solution, this time with the argumentn units of millimeters:

V()= (433 mV)in +50:0 mV, 1 mm 2 mm. (5.78)

Note that C, depends on the units of in the argument of the logarithm function.
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5.18-1

A good way to get the charge density is to rst nd the electric eld, and then to apply
the boundary condition that relates electric eld to surfa@ charge density on a conducting
surface. The electric eld intensity is, in general:

@V ~1@V @V

@ @ @z
The last two terms are zero because the the answer cannot vamth respectto or z. So
we have:

E=r1 V= (5.79)

h [
@V @
E= A—= "= 433 mV)In — 2490 mV =
@ ‘@ ! T
The relevant boundary condition on the inner conductor is tat the normal component of the
electric ux density D equals the surface charge density. The normal to the innerramuctor
is +”, so we have:

N M . (580)

s=(H#") Dj=zt gm =" Ej =t wm = r 0(433V/m). (5.81)

Since o =8:854 10 2 F/m and , = 2:1, we have that the surface charge density on the
inner conductor is| +804 pC/n¥ |.
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5.18-2

(&) Summarizing the problem statement, we have a sphere ofdias a = 2 m containing
uniformly-distributed charge with volume density , = 3 pC/m 3, and the media is a dielec-
tric with , = 4:5 everywhere. Poisson's Equation is

razv= -2 (5.82)

Note that you could also do this problem by integrating over th charge distribution, and

that's a great check. However, the problem statement requse/ou to use Poisson's Equation.
The symmetry of the problem suggests the use of spherical otioates. Noting that @V =@
and @V =@should be zero due to symmetry, we nd

1@ L@V _

—— = — 5.83
rZ@r @r ( )
It's straightforward to solve for V in this case. Here we go:
@ ,a@V v 2
— - = — 5.84
@' @r r (5:89)
Z@V_ \ 3+
-— = — C 5.85
“ar- 3 1 (5.85)
whereC; is an arbitrary constant. Continuing:
@V Y C1
= = —r + — .
ar 3 r = (5.86)
- V.2 C,
V(r)= 6—r + a + C; (5.87)

where C, and Cz are arbitrary constants. At this point you should con rm this result by
making sure it's a solution to the original equation, and ats by checking units.
Outside the sphere, , = 0. Thus:

B
V(r) = TO+ A, r>a (5.88)

Here we have replaced the constang, and C; with B, and A, respectively. This is to remind
us that the constants may be di erent should we consider theegion inside the sphere (as
we shall soon do). We can determine the value of the constaft by noting that V(r)! 0
asr !'1 , since the total charge is nite and contained within a nite region. Therefore,

A, must be zero, leading to
B
V(r) = T" r>a (5.89)
To determine the value of the constanB, we're going to have to make some kind of con-
nection with V (r) inside the sphere. Inside the sphere:

V(r) = 6—"r2+ %+Ai r a (5.90)
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Here we have replaced the constants, and C; with B; and A; respectively. We can deter-
mine the value of the constantB; by noting that V(r) must be nite asr ! 0, since the
charge density is nite atr = 0. Therefore, B; must be zero, leading to

V(r) = 6—Vr2+Ai r a (5.91)

Now we apply the boundary condition at the surface of the spher Note that there is no
requirement for potential to be continuous (and it wouldn'tdo us any good even if there
were, since we'd be stuck with one equation and two unknownsYhe relevant boundary
condition at r = a is that the normal component of the electric eld should be a@tinuous:
Speci cally,

[Do(r=2a) Di(r=a)] f= 5 (5.92)

whereD, and D; are the electric ux densities outside and inside the sphem@spectively,
and g is the surface charge density. The surface charge densityis zero, since all the charge
is taken into account as the volume charge density,. Also, D = E; therefore, we have

[Eo(r=a) Eij(r=a)] #=0 (5.93)

Next we note E everywhere should be oriented in thé direction due to symmetry. Thus,
we nd:

Eo(r = @ = Ei(r = a) (5.94)
We can nd the electric ux density by taking the gradient of the potential:
e@" . L
E=r V= t= Ir2+A =¢2 :
r @r 6 r i 3 rr a (5.95)
- - @ BO - BO
E=r V= ﬁ@r? —f*r—z r>a (5.96)
Now applying the boundary condition (Equation 5.94):
v Bo
—a= — 5.97
3 2 (5.97)
Solving for B, and substituting the result back into Equation 5.89, we obtia:
3 3
vi=s 2= Y@ 5, (5.98)
3 r ol
(Good time for a units check!) Finally, the answer:
0:201 V
V(r)= oo Vm r>a (5.99)

r

(b) From the previous equation,V (3 m) = 66:9 mV.
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5.18-3

A good way to get the charge density is to rst nd the electric eld, and then to apply
the boundary condition that relates electric eld to surfa@ charge density on a conducting
surface. The electric eld intensity is:

@V Al@V » 1 @V
@r r@ rsin @ °
The last two terms are zero because the the answer cannot vamth respectto or . So
we have: @V @ 120V 120V
m m
E= f—= =~ —— 20V =+fp—F—. 5.101
@r @r r r2 ( )

The relevant boundary condition on the inner conductor is tat the normal component of the
electric ux density D equals the surface charge density. The normal to the innerrauctor
is +f, so we have:

E=r Vv= ¢

(5.100)

s=(*f) Djzaw=Ff  oEjz1 n= 0(120V/m). (5.102)

Since o =8:854 10 ' F/m in free space, we have that the surface charge density ohet
inner conductor is| 1.06 nC/n%|.
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5.22-1

The net charge in the capacitor is_zerdecause the charges on the two plates is equal
and opposite. The charge on the positively-charged plate is

Q. =CV=(20pF) (V)=
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5.23-1

(a) The equivalent circuit is just a] resistorR in parallel with a capacitor\ to which we'll
assign the variableC,. The impedance of the capacitor is j=!C 4. Thus, the magnitude
of the capacitor's impedance decreases with increasingguency. The total impedance is
the parallel combination ofR =200 and C,. The e ective resistance WiIIe/vith
increasing frequency.

(b) This structure looks a lot like a parallel plate capacito. Neglecting fringing elds,
capacitance is estimated as

. 12 . .
c. - HCN _ OrLHW _ (8:854 10 F/m()).ﬁe;gm(o.s mm) 0:3 mm) _ oo

(c) The impedance isR k ( j=!C ). At f = 10 GHz, we have 148 894 , so the

e ective resistance i 148 |.
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5.23-2

From the problem statement:C < 3 pF,d=2 mm, and , = 3:0. Note:

A r OA
C =
d d
whereA is the area in common. So:
Ao (3PP

r o

Therefore, the common area must be 2:26 10 4 m?.

86



[m0070] [3]

5.23-3

(@) Given (z) = o(az+ b) is permittivity, the units of a must be| 1/m| and b must be

[unitless|.

(b) This problem is really quite similar to the derivation presented in the book. As in that
derivation, electric ux density between the plates is

D 2. (5.103)

where . is the charge density on the positively-charged plate & = d. The electric ux
density is unchanged in this problem because electric ux és not depend on the material
in which it exists (unlike the electric eld intensity, E). When it comes time to compute the
potential across the plates, we nd:

z
v= E d (5.104)

z°, 5
- 2 (dy (5.105)

Zz=0 (Z)

d o
. s St (2dz 5.106
- jaz+ (2d2) ( )
d

_ s dz (5.107)

0 g, az+Db

You can solve the integral, or just look it up in a table of intgrals. Continuing:

!
d

v =S 3|njaz+ b (5.108)

0 a 0

= s;+§(lnjad+ B Injb) (5.109)
0
o+ 1 ad+ b

= ST 11
a n b (5.110)
s+ 1 ad

=3 "In —+1 111
an bt (5.111)

We can dispense with the absolute value operator above sirtbe argument is always non-
negative. Finally:
Q+ s;+A

V' ( s+=0)(1=8)In(ad=b+ 1)

C, (5.112)

which simpli es to:

a
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(c) Units check: o has units of F/m, A has units of n¥, and a has units of 1/m. The \In"
factor in the denominator is unitless. Thus we nd thatC has units of F, as expected.

(d) Recall that (z) = o(az+ b). If the permittivity is uniform, then a must be zero.
Subsequentlyb must be the relative permittivity, ,. Equation 5.113 becomes:

C Al a

e vy (5.114)

Note we have to be careful because both numerator and denonioraare going to zero.
Applying L'Hopital's Rule, we take the derivative with respet to a of the numerator and

denominator:
a 1

: o .
lll!mo In(ad=, +1) - |;I!’T‘IO (d=,)=(ad=, +1) d (5.115)
Substituting this result into Equation 5.114, we obtain:
A
AST g 11
C oAg=7 (5.116)

which is the expected result (i.e., the one we had already aexd for uniform permittivity).
(e) In terms of the variables establishedA = 400 m?, d = 0:5 mm, b =2, and a =

(10 2)=d=16000 m *. (You should check that this choice of and b gives you =2 ; at
z=0and =10 g atz=d.) Equation 5.113 becomes:

a
oA e " 352 pF (5.117)
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5.24-1

From the problem statement,C°= 30 pF/m and , = 2:25 for polyethylene. The capacitance
of the original coaxial cable is
0_ 2 s
In (b=

where ¢ = | o for the spacer material andb=ais the ratio of the radius of the outer
conductor to that of the inner conductor. The capacitance ad coaxial cable that is identical
except polyethylene is replaced with air { = o) is:

2 o
CO
"W In(b=9
Comparing the two equations, we observe:
CO
Ccl, = — = (133 pF/m
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5.24-2

From the problem statement,a = 1 mm, b=3 mm, s = o, andV = +1:5 kV mea-
sured at the outer conductor relative to the inner conductor The capacitance of this cable
is

2
0_ o _
C= (1 beg = 50 pF/m

The outer conductor is positively-charged, and the line cihge density on this conductor is

;= CW = [+76:0 nC/m

The circumference of the outer conductor is B, so the surface charge density is

| = |+4:03 C/m?
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5.25-1

From the problem statement,C =4:7 mF andV = 16 V. The energy stored is

1
W, = écv2 = 1602 mJ
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5.25-2

From the problem statement,C = 3:5 pF,d = 0:1 mm, , = 10, and V = 3 V. For an
ideal parallel plate capacitor, A
T d
where = | ¢ is the spacer permittivity and A is the plate area. In the present problem,
we nd:
A=S9_305 1062

or
The volume of the capacitor is

Ad= 395 10 °m?

The energy in the capacitor is

1

W, = ch2 =15:75 pJ
Therefore, the energy density is
We _ 3
ad - 398 mJ/m
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Chapter 6

Steady Current and Conductivity
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6.4-1

(a) ResistanceRge per unit length | of the steel-only wire:

R® . = Rsteel = L = ! =31:8 /'m
steel I seel @2 (100 10F S/m)  (0:1 mm)
(b) Resistance per unit length of gold clad having outer rads b:
1
RO =
gold gold (b2 aZ)
The total resistance per unit lengthRY ., = 10 /m is the parallel combination:
1 1 1 1
= + = + Id b2 az
R?otal Rgteel RE])old F\)gteel %
Solving forb:
S
b= 1 1 + a? =0:10263 mm
= 50 Do Id =V
Rtootal Rgteel % gold

So the required thickness of gold i a, which is| 263 m|
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6.4-2

In the transmission line equivalent circuit RSG°C°LY model, R%is a series resistance. Also,
any current applied to either conductor must return on the dber conductor. Therefore, we
have

R°= R + Ry (6.1)

where R{. is the resistance per length of the inner conductor ang?, is the resistance per
length of the outer conductor. Note

1
RO = 6.2
IC icAic ( )

where | is the inner conductor conductivity andA;. is the cross-sectional area of the inner
conductor. Thus,R% =0:164 /m. Also

1
OCAOC

Roc = (6.3)

where .= i (from the problem statement) andA,. is the cross-sectional area of the outer
conductor, through which the current ows. Note:

A= b3 b3 (6.4)

where by and b, are the radii of the inner and outer surfaces, respectivelgf the outer
conductor. From the problem statement we have

b= 1 0705 b= 0:1809 cm (6.5)
b= 1+ 0:705 b= 0:1901 cm (6.6)

(Check: the mean ofo, and b, is (b, + b,) =2 = b, as expected.) SA . = 1:081 10 ¢ m?,
and subsequentlyRS, =0.0406 /m. Finally, we obtain R°= R + R%. = 0:205 /m.
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[mo071] [3]

6.4-3

If the voltage drop is to be reduced by a factor of 2, then the sestance must be decreased
by a factor of 2. The DC resistance of a wire ik A wherel is length, is conductivity,
and A is cross-sectional area. The use of the term \diameter" imk the wire has circular
cross section, so the original wire has =  (Do=2)* and

|
(Do=2)?

e}

For this to be reduced by a factor of two, the new diameter mudie

NI
O
o
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6.4-4

The DC resistance of such a resistor B = I= A where A is cross-sectional area. In this
case, we may write
| I 4
R= — = 5 = 5
A (D:Z) D

where D is diameter. Note that D should increase by a factor o? 2 in order to reduceR
by a factor of two. Thus,D becomes= 1:41 mm
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6.5-1

The conductance per unit length is

0_— 2 S
In(b=9

where ¢ is the spacer conductivity, anda and b are the radii of the inner and outer
conductors, respectively. From the book, RG-59 hass; = 59 10 ° S/m and exhibits
G%= 200 S/m normally. From the appendix \Conductivity of Some Comma Materials,"

s 5 S/m. The worst case is that spacer assumes the much highenduactivity of seawater,
in which case:

5S/m
O| — 3
G"! (200 S/m) 9 1059 17:0 S/m
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6.5-2

Let the ground plane be atz = 0, and let the trace be atz = h. From the problem
statement, the currentl is positive when owing into the trace and from the ground plae.

(a) Under the condition that W h we assume that most of the current in the transmission
line ows directly from the trace to ground plane in the 2 direction, and that the fraction
of current that does not satisfy this condition (i.e., the cuent close to the edges of the
trace) is negligible. Thus, we are justi ed in assuming thewrent density is approximately
uniform throughout the region directly underneath the trae. Therefore the magnitude of
the current density is approximately total current! divided by trace areaW |, wherel is the
length of the trace. Under this same approximation, the magtide of the current density
is assumed to be zero beyond the trace. Summarizing:
{

21=W|I; directly underneath trace; and

J . (6.7)
0; otherwise.
wherel is the length of the trace.
(b) The electric eld intensity is given by Ohm's law:
E- i 21=WI g; dwectlyI underneath trace; and (6.8)
s 0; otherwise.
Subsequently:
Z
V= E d (6.9)
C
z, |
2 2 A1
i Wi . (2d2) (6.10)

Note the start point is z = 0, since this is the negative terminal with respect to a cuent
source driving the transmission line. Similarly the end pot is z = h, since this is the
positive terminal with respect to a current source driving lhe transmission line. Continuing:

|Zh

Vv
Wl S z=0

dz (6.11)

The integral is equal toh. Thus:

Ih

This is the potential measured at the trace relative to the ptential at the ground plane.

Vv

(6.12)
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(c) ConductanceG is determined as follows:

I Wi
G, v H ° (6.13)
Conductance per unit length isG°, G=l, so
G° Wh S (6.14)

(d) Since the trace and ground plane are speci ed to be perfgcconducting, R°= 0 and the
only physical mechanisms to consider ai8®, L° and C% At DC, There is no contribution
from LO since it is in series with the trace, and there is no contribign from C° since it
connects trace to ground plane. Thereforg , V=I =1=G. From Equation 6.13 we obtain:

h
WI ¢

7 (6.15)
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6.6-1

From the problem statement:
Length | =1:2 cm,
radiusa=1:6 mm,
J is uniform (constant) in the resistor,
E = 2Eo:p ~“whereEy, 3V m ¥ and
P=5W.
Let be the conductivity of the material comprising the resistar Then

z

P= jEjdv
\%

whereV is the volume representing the resistor.

We cannot assume the material comprising the resistor is hageneous, So, whatlo we
know about ? Recall Ohm's Law,J = E. SinceE is proportional to 1=" ~ and J is inde-

pendent of , must have the form = 4" ~where g is a constant having units of Sn 372,
Continuing, 7
E 2
P = (o) P2 v = oEZ  TPdv
\% \%
Let us assume the ends of the resistor are at=0 and z = |. Then:
Z a YA 2 YA |
P= oE§ 2[d (d )dz
=0 =0 z=0
Z a YA 2 Z |
= oE2 1= d dz
=0 =0 z=0
— 2 2 3=2
= oBd Za” (2)()
Solving for g:
— 3P 3=2
0= —4a3=2|E§ = 173 kS m

and subsequently,

= | 173ks m 32 P~
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Chapter 7

Magnetostatics
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[m0115] [1]

7.1-1

Divergence of the electric eld:
r D=, ,so

where has units of F/m and , has units of C/m®.
Curl of the electric eld:

r E=0

Divergence of the magnetic eld:
r B=0 ,so

r H=0
Curl of the magnetic eld:

r H=1J
Noting J = E:

r H= E

where has units of S/m
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[M0047] [1]

7.3-1

The di erential form of Gauss' Law for magnetism requires

r B=0
According the reported measurement:

@ @ ,@

r B= R—+9—+2~

@x "@y @z

kBon =2Bgx

Therefore, the measurement is plausible only Bq is zera
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[m0119] [1]

7.5-1

The magnetic ux density (not the same as magnetic ux!) in this case is given by

B()= AZL'. (7.1)

The magnetic ux is simply B integrated over the area of the loop (i.e., ux divided by ara,
times area, is ux):

Z Z 23 cm Z 30 cm I
= B ds= "9 ddz (7.2)
S =3 cm z=0 2

Where S is the area enclosed by the loop, and the absolute valueszoflon't matter due to
symmetry, SO you can pick anyz's you want as long as you cover 30 cm in the direction.
Evaluating:

ZZ3cmd Z300m

ol _ ol 23 _ 5
= 3 L . dz = > In 3 (30cm)=3 Tm (7.3)

Solving forl we have

2 23 1 Tm?
= 3 Tm? In == :3m) =24
3 4 10 7 H/m N3 (0:3 m) >

(7.4)

To get to units of A, the traditional units of current, recall that inductance (H) is de ned
as magnetic ux (T m?) divided by current (A), so we're already there! Thus, we have

1=245A]
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7.5-2

The magnetic ux density (not the same as magnetic ux!) is given by

B()= "

(7.5)

The magnetic ux is simply B integrated over the area of the loop (i.e., ux divided by ara,

times area, is ux):

Z Z 0:02 m Z 0:10 m I
- B ds= N9 N odz
S =0:01m z=0 2
Evaluating:
Z Z
_ LI 0:02 m d_ 0:10 m dZ
2 =0:01 m z=0

(4 10 THIM)3 A) 002 o )
= > In 001 (0:20 m) =41:6 nT m

Note that this may also be written as 41.6 nWh since 1 Wb = 1 T/m?2,
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[m0119] [3]

7.5-3

Ampere's Law is 7
H dl = |enc| (7.9)
C
whereCis any path which encloses the current. A convenient path isigt a constantz circle
with radius a: Z,
H “ad =1 (7.10)
=0
Also,H = B= ¢, so 7
2
Joa "ad =1 (7.11)
=0
Thus:

| =2 a2Jy=[20:0 mA]. (7.12)
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[m0119] [4]

7.5-4

Apply the right hand rule. When the thumb of the right hand poirts in the ¢ direc-
tion, the curled ngers of the right hand point in the |Eg direction at (+1;+1;0) m.
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[m0119] [5]

7.5-5

The measurements are explained by a wire aligned along thhexis, with current owing
in the ¢ direction. This can be con rmed using the right-hand rule { point the thumb of
your right hand in the direction of the current, and the curlel ngers of your right hand
point in the direction of the magnetic eld.
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[M0120] [1]

7.6-1

From the problem statement, we have that Coil 1 ha®N; = 100 and I, = 2 A. Coail 2
hasN; = 300 and I, = 4 A, and is wound in the opposite direction. Both coils have
|=10cmand = 4. For Coil 1 we have

Nilp
|

B.=01 o

where b points in the direction of B inside the coil. For Coil 2 we have

NI
B,= B¢ 72

The total eld B = B, + B>, so:

N1l N>l . .
6, (B1+ By = 0?—1 0 TZ = |—OJN1|1 Naloj = [126 mT
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[m0049] [1]

7.7-1
The magnetic eld in either a straight coil or a toroidal coil is proportional to current.

Current is proportional to the conductivity of the wire forming the coil. Therefore, doubling
the conductivity will double the magnetic eld strength.
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[mo121] [1]

7.8-1

(a) Positive V corresponds to current owing in the +2 direction along the trace. The
direction of the associated magnetic eld can be determinagsing the following \right hand

rule:" Orient the thumb of your right hand in the reference diection of current ow in the

trace, and observe the direction in which the curled ngersfoour right hand point. We see
that deep inside the transmission line, the direction i.

(b) The integral form of Ampere's law is:
I

H dl = Iencl (7.13)
C
The only \hard" requirement on Cis that it enclose some of the relevant current. The most
convenient choice forICis shown below:

Here are the considerations leading to this choice:

The indicated direction of C is consistent with the expected direction of the magnetic
eld, as determined in part (a).

We choose a path that lies in plane of constartt, since this minimizes the number
of varying parameters required to describe the path. The ptese choice ofz is not
important as long as it is as far from either end of the transmsion line, where we
would expect fringing elds to become potentially importan

Segment A is a line of constany which lies entirely within the transmission line (i.e.,
betweeny = 0 and y = h), and is required since we need some portion 6fto be
coincident with the location where we wish to determine theeld.
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Segment C is chosen to lie along a line of constanat 1 . This is convenient because we
expect the magnetic eld go to zero as the distance from thisnite structure increases
to in nity.

Segments B and D are chosen to lie along lines of constargo as to connect Segments A
and C using paths that can be described in the minimum numbef garying parameters:
For these segments, the only variation is along We choosex = W=2 andx =+ W=2
since this closes pathC with the shortest total path length that encloses all of the
current of interest. Choosing a path wider than the trace wdd result in integration
over a region where more eld lines are signi cantly curved.

(c) Continuing Witlh the left sige of Equatzion 7.13 usZing the athzdetermined in part (b):

H d= H d+ H d+ H dl+ H di
C ZA B C D

H d+0+0+0 (7.14)
A
The integral over Segment C is exactly zero becaukke= 0 along this segment, as explained
in part (b). The integral over Segments B and D is approximalg zero becauseH dl 0O
along these segments. Along Segment A, we hade= + RH (X;y). Also, leng = V=R Thus
Equation 7.13 reduces to:

[+RH(X;y)] [+Rdx]
A

(7.15)

< o<

H(xy) W (7.16)

Equation 7.16 indicates that the magnetic eld along Segmem does not depend onx or
y; at least given the assumptions made to this point. ThereferH (x;y) is considered a
constant. Thus we nd that

\Y e o
H kvﬁ deep inside the transmission ling (7.17)

(d) The magnetic ux density B = H. Since the spacer material is non-magnetic, 0
Thus:

V o L
B kvﬁ deep inside the transmission ling (7.18)

(e) The di erential form of Gauss' law for magnetism issx B = 0. Divergence is essentially
the rst derivative with respect to position. From Equation 7.18, we see thaB is constant (at
least approximately) with position. Therefore Equation 718 is consistent with the di erential
form of Gauss' law for magnetism. The di erential form of Ampee's law isr H=J.
In the dielectric spacer,J = 0. Curl is also essentially the rst derivative with respet to
position. Thus, Equation 7.18 is consistent with the di eratial form of Ampere's law.

(f) Using Equation 7.18:

4 10 7HM)(+5mV) _
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[m0123] [1]

7.12-1

The inductance of a linear inductor depends only on geometgnd materials; therefore,

the inductance remaing 1 Hi
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[mo124] [1]

7.13-1

If the loops are close together, then presumably the magnetiux through each wind-
ing is equal. Thus,

L, —
I

whereN is number of linkages, which is this case is the number of winds. Thus,

L [Ll

N 2
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[m0124] [2]

7.13-2

From the problem statement:
length | =5 cm,

radiusa=5=2 = 2:5 mm,
number of windingsN = 300, and
relative permeability , = 200.

Since | a and the winding density N=I is large, we may us the \long straight coil"
expression
N 2A
I

L (ro)Nz(az)_
I =888 m

In the present problem:

where =4 10 7 H/m.
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7.15-1

Since

We have r r

| = Z\CVG = 24,72mm|:|] = [292 mA
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[mo127] [2]

7.15-2

The energy initially stored in the inductor is

Wm=%LI2=6nJ

The energy stored in the capacitor after the transfer is

1
W, = écv2:6 nJ

soV = [173 V]
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Chapter 8
Time-Varying Fields
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[m0055] [1]

8.3-1

Faraday's Law says that the potential (or \emf") induced in the coil is
d
Vemi = N— ('t

where Z
(t)= B ds
S
and whereB (t) is the magnetic ux density and S is the surface de ned by the cross-section
of the coil. When the magnetic ux is not varying with time, | the potential is zerq, So this
is the answer to parts (a) and (c).

While the magnetic eld is being reduced, a non-zero poterdti is possible. Since the magnetic
eld is spatially-uniform and parallel to the axis of the col, the above integral simplies to

()= B() A

where B (t) is the scalar magnetic ux density andA is the cross-sectional area of the coil.
We do not know precisely howB varies with time (i.e., linearly with time? exponential
decay? etc.), so we cannot take a formal derivative. We canwever estimate the derivative:

_ B(to+200ms) A B(tg) A
t 200 ms

wheret, is the time at which the magnitude of the magnetic eld begingo decrease. We
also note

d
a(t)

B(to))= : oH(to)= 2 100 4 10 "H/m (20:0 mA/m)=5:03 mT

and B (to + 200 ms) = 1:01 mT. SinceA = 200 cn? = 0:020 n¥, we may now calculate

Vemj N — =[20:1mV

This is the answer to part (b). In some sense, this is the avaya emf generated in the coil
over the 200 ms period of interest; however, more precisdlyis is merely the best estimate
of the instantaneous emf generated during that time, giverhe limited information about
the time dependence of the magnetic eld over that time.
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[m0055] [2]

8.3-2

Faraday's Law says that the emf induced in a this loop is

d
Vemf - a( t)

(since a loop has\N =1 turn) where
Z
= B ds
S

Let us de ne Ve to be across the resistor, with the \+" terminal on the right Sde and the
\ " terminal on the left side! Then:

Z +L=2 Z Yo+ w

= [2 Bo €] [+2 dx dy]
x= L=2 y=yo

whereyy is the location of the left side of the loop. Thens:
Z +1=2 # Z Yo+ w BoL
= By dx Vdy = e[ 1]
x= L=2 y=Yo a

Next we're going to want to take the time derivative of . Howeve, to do that properly
we need to make sure we identify everything in the above expseon for that has a time
dependence. Only, depends on time. To make this clear, let us writ§g = ut + b, which
places the left side of the loop ay = bat time t = 0. Now we may write:

BoL
( t) - ; gaut eab [eaw 1]
so? g
Vemf (t) = a ( t) = BOI—LIeaUt eab [1 eaw]

The problem statement asks us to assess the situation wheretleft side of the loop is at
y = 0:5 m, so we chooseé= 0 and b= 0:5 m (since we said earlieyy = ut + b). Also from
the problem statement,u= 250 m/s. Thus:

Veme (t =0) = % (t=0)= BoLue®[1 €"]= 7:60A
Finally, the current is simply this divided by R, which is 3:04 A. Because we chose the \+"

terminal to be on the right, the referencedirection for current must be counter-clockwise
(i.e., this is the necessary direction for positive currento dissipate positive power in the

INot the only way to do it! This choice is arbitrary. Choosing the opposite reference polarity should give
you the exact same answer as long as you follow through corrty

20nce you complete this integration, it's a good time for a unts check!

30nce you complete this di erentiation, it's a good time for a units check!
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resistor, or alternatively you may think of this as being thenecessary reference direction for
the loop to behave as a power source). We have found that thermnt is negative with
respect to this reference direction; therefore, the indudecurrent is| 3.04 A, cIockwis¢

You can check to make sure you got the correct current direo by using Lenz's Law. If
the current is owing clockwise, then the induced magnetic eld in the loop is in the 2
direction. The impressed magnetic ux is increasing, sincéhe loop area is constant and
the magnetic eld in the loop increases in the £ direction as the loop slides to the left.
Therefore, the induced current is acting to oppose the chamgn the impressed magnetic
ux, as is required by Lenz's Law.
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[m0055] [3]

8.3-3

(a) Let's stick with the Sl system of units. Since \1" in the eyression forB appears
to be unitless,Bo must have units of| T (or Wh/m?2, if you prefer)|. Sincet is in s and \1"

appears to be unitlessk must have units of| 1/s. Sincea has units of m and equals/t, v

must have units off m/s|.

(b) Here's Faraday's Law:

Vy(t)= N % (8.1)
whereN =1 since it is a loop (not a coil), and the magnetic ux is
Z Z z
= B ds= [2Bo(1+ kt)] [ 2ds]= Bg(1+ kt) ds (8.2)
S S S

Note that dsis in the 2 direction. This is from the right-hand rule (of calculus), n which
your thump is along the loop (not the gap) pointing along the olection from the\ " terminal

to the \+" terminal. Since S represents the surface de ned by the loop (actuallsiny surface
de ned by the loop, but we'll keep it simple...), we have

= Bo(l+kt) a? (8.3)

Substituting a = vt and expanding into two terms we get

= Bov?i? Bokv?? (8.4)
So Faraday's Law says:
Vy(t) = 2Bg v %t + 3Bok v t? (8.5)
which is more compactly written as:
Vy(t) = Bov ? 2t +3kt? (8.6)

Good time for a units check: Can you con rm that the result is @nensionally correct?

(c) The rst problem is to determine the motional and transfamer emf, so we should be
clear on what we mean by these termsMotional emf is the contribution to the total emf
which is associated with changes in the size, shape, or ot&ion of the surface through
which the magnetic eld lines are linked. Transformer emf is the contribution to the total
emf which is associated with changes in the magnetic eld.

With that in mind, let's consider an incorrect solution: You can't setv = 0 and call the
result (in this case, zero) the transformer emf. This is wranbecause iV were equal to zero
for some radiusa > 0, then the calculated emf would be potentially non-zero bause the
magnetic eld is still time-varying.

However, itis true that setting k = 0 yields the motional emf (you can verify this for
yourself after reading through this solution), although tlis is pretty hard to justify, especially
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since we just saw that arbitrarily setting constants to zeras dangerous. So, if you go that
approach you must be able to explain why this is reasonable.
With all this in mind, here are three reasonable ways to get ahition:

1. You could calculate the motional emf and transformer emfsing Faraday's Law, but in
two separate steps; that is, work out the emf for a static loofto get the transformer
emf) and then for a static eld (to get the motional emf).

2. You could calculate motional emf from magnetostatics @., assume a static magnetic
eld), then subtract this result from your answer for part (b) to get the transformer
emf.

3. The approach followed below, which is probably best sindedeals directly with the
concepts of time-varying loop size vs. time-varying magriet eld.

Here we go: g g 7 g 7
Vy(t) = FraRT . B ds= da S[QB(t)] [ 2ds] (8.7)
whereB(t) Bg(1 + kt); i.e., the scalar component of the magnetic eld. Continuig:
Z
Vy(t) =+ d B(t) ds =+ E[B(t)A(t)] (8.8)
dt S dt

where A(t) a?(t); i.e., the area of the loop. The value in setting the problenap this
way is that we now have the magnetic eld and the loop area sefpuas distinct, identi able
factors in the solution. Now we di erentiate using the chain ule:

Vy(t) = %B(t) A(t) + B(t) %A(t) (8.9)

Now we see clearly that the rst term is the transformer emf andhe second term is the
motional emf. Let's label thesevy' (t) and V" respectively. Now:

Vy' (t) = %B(t) A(t)= Bok a? (8.10)
Vi (t) = B(t) %A(t) = B(t) 2a v (8.11)

Note that now we get the \expected" result when we sek = 0 and then v = 0. Also note
that transformer emf depends on loo@rea, and motional emf depends on looperimeter {
you might have suspected this based on other problems you kagncountered.

OK, now we're ready to wrap up. To nd out when the contributions of the transformer
emf and motional emf are equal, we set the above expressiogsat and solve for timet = teq.
Here we go:

Bok a?=B(teg) 2a V (8.12)
Noting that a= vt and B(t) = By (1 + kt):
Bok V725, = Bo(1+ kteg) 2V °teq (8.13)
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Solving the above expression we nd thate; = 2=k (good time for a units check, by the
way). Negative times don't really make sense in the problem ¢dw can the loop have zero
radius and before that negative radius?), so the transformemf and motional emf are never
equal fork > 0O (i.e., magnetic eld magnitude increasing). Howeverg, = +2 =jkj when
k < 0. So, the answer to the problem is:

att= 2=k, and only if the magnitude of the magnetic eld isdecreasing
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[m0056] [1]

8.4-1

The measured voltage is the \transformer emf" induced by thenagnetic ux through the
loop. According to Faraday's Law, we have in general that:

Z

d d
Vo= N— = N-—- B ds
emf dt dt o
Here, the number of turnsN, is 1;ds is perpendicular to the loop in the direction determined
by the Stoke's Law convention (i.e., according to the refenee polarity chosen forVgm9),
and B can be written as
B = bB(t) = bBysin(2ft + )

whereb is simply a unit vector indicating the direction ofB. We knowb is a constant with
respect to position becaus® was speci ed to be auniform magnetic eld. Thus, we have
for any particular orientation of the loop dk:

Z

Vemf= Bo %sin(th + ) b ds
S

Vems is maximized wherb and ds point either in the same direction, or in exactly opposite

directions. In this case, the magnitude of the quantity in tle rightmost square brackets is
simply the area of the loop A, which here is 00314 nt according to the problem statement.
For this orientation, we have:

Vem = Bo[2f cos(2ft + )]A.

The above quantity is maximized when cos( + ) = 1, which corresponds to thepeak
magnitude of Vg y,s, Which is one-half of the peak-to-peak magnitude. Thus:

Bo2fA =0:5 20 mV,y , thus:

05 002V,
Bo = PP = [507 nT].
7 2 (100 10® HZz)(0:0314 m}) 507 nT|
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8.4-2

The induced potential is

@
N —=
@t
where is the magnetic ux through the loop. Since the magnett eld is spatially uniform
and the loop (in each case) is xed, we may express the ux in ghfollowing simple form:

V= (8.14)

= ABjpcos(t + ) (8.15)

where A is the area of the loop,By is a constant having units of Wh/n? (resulting from
the dot product of the magnetic ux density and the normal to the loop), and! and
are the angular frequency and phase, respectively, of thessoidally-varying ux. It is not
necessary to knovBg, ! , or , as we shall see in a moment. Returning to the Equation 8.14,
we see

V =+ NABy! sin('t + ) (8.16)

Therefore thepeak potential is simply NAB g! . So here's the situation:

Vp(lf) N@A@B,!
O NOAOLB,!
Vo NOAD B!

(8.17)

where the superscripts indicate before (i.e., one turn cutar loop) vs. after (i.e., two-turn
square loop). Thus,Vp(l? =15V and we seekvp(kz) Since neitherBy nor ! change between
the two scenarios, we have:
VP N@A®
15V NOA®

(8.18)

Solving foer(lf), we nd:

VO =15y 2 02M° _eesy (8.19)
pk - -_— h .

1 (0:1 my
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8.5-1

In the original scenario:

V, \\P3

— = p_

Vi Ny
wherep= 1 depending on the relative orientation of the windingsp(= 1 for the example
shown in the book). LetV,) be the new potential on the secondary coil. From Faraday's
Law:

Vy= Nz@t 9

where 9 is the magnetic ux through the secondary coil after the mod¢ation. Note

0o_ _2
27 2

since the secondary coil now intersects only half the ux itid previously. Subsequently,

0 1
2 p2
Now: 1 @ 1N @ 1N
VO= poNp= 1= pia? Ni— 1 =pz-2
2 p2 2@,[1 p2N1 1@,[1 p2N1 1

From the problem statement,N; = 200 and N, = 300. Alsop= 1 for the example shown
in the book. Therefore,

3
v, = L

with the sign depending on the relative orientations of theail windings.
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8.5-2

The transformer is an application of Faraday's law, which igtrinsic to the Maxwell-Faraday
Equation:

@

r E= —B
@t
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8.7-1

From the problem statement:
Bo =2 T,

A= (2m?)=4 m?

the peak value ofVr is 5V, and
Vr(t =0) = 0 and increasing.

Since the loop is rotating in a static uniform magnetic eldVy must be sinusoidally-varying.
A general form for this variation is

Vr(t) = ABo! cos(t + )

where! =2 f is the angular frequency of rotation and is an as-yet unknown phase o set.
However, it is known that
Vr(t=0)= ABg! cos()=0

so must be either =2 or 3=2. SinceVs is increasing att =0, must be 3=2.

Furthermore, we know the peak value of/. In the context of the general form, we nd:
Vr = ABy! =5V at maximum

and therefore,! = 0:199 rad/s.

Putting this all together:

Vr(t) = | (5 V)cos [0:199 rad/s]t + 37
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[m0030] [2]

8.7-2

Assigning symbols to quantities identi ed in the problem steement: Bo =2 T, A =4 m?,
and Vr.« =5 V. Recall:

Vr =2 f gABoD A1) (8.20)
wheref is the frequency of rotation,b is the direction of the magnetic eld, and 4t) is a

unit vector that lies in the x y planeand in the plane of the loop, rotating with the loop.
Note the maximum magnitude of6 /(t) is simply 1. Thus:

Vik =2 f 0ABo=5V (8.21)
Solving forf:
5V
= = ; 22
fo > @am 20 995 mHz (8.22)
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8.9-1
From the problem statement, the electric eld intensity is
E=¢ 3Vm 's? t?

(The fact that this is electric eld intensity can be con rmed using dimensional analysis.)
The displacement current density in free space is

@ _ @&
@t °@t

pPA

- 1g2 ¢ . 252 t = .
=¢o6VmM-~ s t=9¢ 531pCm~*-s~t=|¢ 53.1mzs

t
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Chapter 9

Plane Wave Propagation in Lossless
Media
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9.1-1

The general, time-domain, di erential form of Ampere's Laws:

@
r H=J+—
@t
The relationship between these quantities and the phasorpeesentation of the same quan-
tities is: n o
H=Re KRe&"
n o
J=Re 8§¢"  and
n o
D =Re B&" ;
Now substituting these quantities into Ampere's Law we have:
h n o n_o@hn_oi
r Re Be" =Re 8" + ot Re Bé"

The order of the \Re" operator and any linear real-valued operator can be exchgad (see
the textbook section on phasors for a proof of this). Takingdwantage of this in the rst
and last terms, we obtain:
n h o n o @h o
Re r Be" =Re 8" +Re ot Be"

Note that the curl (\r ") operator operates only on position, and not on time. Thuswe
may rewrite the rst term as shown below:

nh ) n o @h i
Re r KB &' =Re §" +Re @te'”

Note also that partial derivative in the last term operates oly on time, whereasB, being a
phasor, is independent of time. Therefore, the partial dertive operates only on the factor
e , and we have:

nh i o n o n 0
Re r B &' =Re 8" +Re jle 1"

Comparing terms above, we nd that the phasor expression of Apere's Law that we seek
is:
r B=8+j1 B.
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9.1-2
The expression worked out in the book is
r E= jI B

B is a ux density, so we useB = H to obtain:
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9.2-1

Here are Maxwell's Equations for source-free regions in tesnof E and & (only) in dif-
ferential form:

r B=0 (9.1)
r EB= j| B (9.2)
r B=0 (9.3)
r B=+j E (9.4)

The equation we seek must yield solutions fd® which satisfy at least the last three of the
above four equations. We begin by taking the curl of EquatioB8.4:

r r 8/ =r +jl B =+jl r B (9.5)
On the right, we can substitute forr B using Equation 9.2:
+jl r B =+]j! it 8@ =+12 8 (9.6)
On the left, we invoke the vector identity
rr A=r(r A)r 2A (9.7)

to obtain
rr B=r r B r 28=7r °8 (9.8)

where we have used Equation 9.3 to eliminate the B term. Substituting back into
Equation 9.5 and rearranging terms we have

r’ee+12 B=0 (9.9)
Now substituting =! P—.
r’@+ 28 =0 (9.10)

This is the homogeneous wave equation fét.
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9.2-2

The wave equation forE is
r’ée+ °2B=0
Also, we know that
90 _ =2rad _
“1m~ 1m 2
which may also be expressed simply as2 m 1. So

rad/m

r’e+ 2467m? B=0
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9.4-1
2E = 0. In cylindrical coordinates, E = "E +

(a) The wave equation forE is r 2E +
" + 2[E,. The Laplacian operator in cylindrical coordinates is

.1@ @ 10, 06
2 2

T e o
Thus, we have for the three components @&:
10 8 18, @p. o
}@@ @@E +%%I§ +@%l§+ ’E =0
:—L@@ @@EZ + %%EZ+ @%EZ+ ’E, =0

(b) If E has no component in the or direction, thenE = E
one equation: g g

1@ @ 1

@ e Te et &0
and z, then @,=@ = @E,=@z 0, so the second and third terms in

If E is uniform in
the above equation are zero. This leaves us with:

le @ 2. —
@@EZ+F§ZO
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9.4-2

First note that ® cos + ¢ sin is a unit vector; i.e.,

q
jRcos + ¢sin j= cog +sin? =1 (9.11)

Next, recall that E H is in the direction of propagation, which in this problem is £.
Therefore the direction ofH is2 E. (If this is not clear, think of E, H, and direction of
propagation forming a cartesian coordinate system witk analogous to®, A analogous to
¥, and direction of propagation analogous t&.) Thus the direction of H is

2 (Rcos + ¢sin )= Rsin + $cos (9.12)
and this is a unit vector sincef cos + ¢ sin is a unit vector which is perpendicular to2.

The magnitude ofH is JEj=, where in this case isp 0=0 = 377 . Therefore the mag-
nitude of H is (2 V/m) = g = 5:31 nA/m.

Putting this all together, the magnitude and direction of the associated magnetic eld is:

( R®sin + ¢ cos )5:31 nA/m (9.13)
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9.5-1

(a) There are several ways to gure this out. One way is to stann phasor represenation,
in which the eld is:
éEoei (ax+ by+ cz)

wherea =1 rad/m, b= 2 rad/m, and c= 3 rad/m. Note:
éEoé (ax+by+cz) — éE0e+jax e+jbye+jcz

To see what's going on here, consider a simpler version of @il@ove equation, where the last
two terms are omitted:
eEoe+jaX

In this case, the answer we are looking for would He= %, and in fact we also see that
the wavenumber = a; i.e., 1 rad/m. Similarly, if we had just

éEoe+jby

then the answer would bek = ¢, with = b= 2 rad/m. From this we can infer that a
vector (not necessarily aunit vector) that points in the direction of propagation in this ase
¥

k= a& by c2

Thus, the corresponding unit vector is

k _ ar b 2
ki T (a2+( bZ+( o?

Giving:

K=| 026® 0534 0802

(b) In the above analysis, we ndjkj = 3:74 rad/m. Following the reasoning above, this is
simply the wavenumber . Thus, the wavelength is:

2—: 1:68 m|.

(c) Since this is free space, and since we know the phase wyom free space isc =
3.0 1 m/s, we also know the frequency, which is= = [179 MHz |.
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9.5-2

From the problem statement, the direction of propagatiork = 2 and H points in the
+¢ direction. From the plane wave relationships:

E= R H

Therefore,E pointsinthe ( R) ¢ = direction.
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9.5-3

From the problem statement,jEj =3 V/m and | = 2. Since plastics are non-magnetic:

r—

_ 0 _ 0
- = Pp=
r

r o

where o= 3767 . Therefore,

iHj= B JBIP— s A
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9.7-1

The spatial power density is

3w 3w 5
Save = TnZ - 10 6 2 =3 MW/m
SinceS, e = jEj2:2 , and since = o= 3767 in free space:

. P
JEj = 2 ¢Save = [47:5 kV/m
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