
Towards Secure Outsourced Data Services in the Public Cloud

Wenhai Sun

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Application

Wenjing Lou, Chair
Ing-Ray Chen

Y. Thomas Hou
Gang Wang

Yanchao Zhang

June 21, 2018
Falls Church, Virginia

Keywords: Cloud Computing, Privacy-preserving Keyword Search, Verifiable Computation,
Secure Genomic Computation, Secure Data Deduplication, Trusted Hardware

Copyright 2018, Wenhai Sun

Towards Secure Outsourced Data Services in the Public Cloud

Wenhai Sun

(ABSTRACT)

Past few years have witnessed a dramatic shift for IT infrastructures from a self-sustained
model to a centralized and multi-tenant elastic computing paradigm – Cloud Computing,
which significantly reshapes the landscape of existing data utilization services. In truth,
public cloud service providers (CSPs), e.g. Google, Amazon, offer us unprecedented benefits,
such as ubiquitous and flexible access, considerable capital expenditure savings and on-
demand resource allocation. Cloud has become the virtual “brain” as well to support and
propel many important applications and system designs, for example, artificial intelligence,
Internet of Things, and so forth; on the flip side, security and privacy are among the primary
concerns with the adoption of cloud-based data services in that the user loses control of
her/his outsourced data. Encrypting the sensitive user information certainly ensures the
confidentiality. However, encryption places an extra layer of ambiguity and its direct use
may be at odds with the practical requirements and defeat the purpose of cloud computing
technology. We believe that security in nature should not be in contravention of the cloud
outsourcing model. Rather, it is expected to complement the current achievements to further
fuel the wide adoption of the public cloud service. This, in turn, requires us not to decouple
them from the very beginning of the system design.

Drawing the successes and failures from both academia and industry, we attempt to answer
the challenges of realizing efficient and useful secure data services in the public cloud. In
particular, we pay attention to security and privacy in two essential functions of the cloud
“brain”, i.e. data storage and processing. Our first work centers on the secure chunk-based
deduplication of encrypted data for cloud backup and achieves the performance comparable
to the plaintext cloud storage deduplication while effectively mitigating the information
leakage from the low-entropy chunks. On the other hand, we comprehensively study the
promising yet challenging issue of search over encrypted data in the cloud environment,
which allows a user to delegate her/his search task to a CSP server that hosts a collection of
encrypted files while still guaranteeing some measure of query privacy. In order to accomplish
this grand vision, we explore both software-based secure computation research that often
relies on cryptography and concentrates on algorithmic design and theoretical proof, and
trusted execution solutions that depend on hardware-based isolation and trusted computing.
Hopefully, through the lens of our efforts, insights could be furnished into future research in
the related areas.

Towards Secure Outsourced Data Services in the Public Cloud

Wenhai Sun

(GENERAL AUDIENCE ABSTRACT)

Past few years have witnessed a dramatic shift for IT infrastructures from a self-sustained
model to a centralized and multi-tenant elastic computing paradigm – Cloud Computing,
which significantly reshapes the landscape of existing data utilization services. In truth,
public cloud service providers (CSPs), e.g. Google, Amazon, offer us unprecedented ben-
efits, such as ubiquitous and flexible access, considerable capital expenditure savings and
on-demand resource allocation. Cloud has become the virtual “brain” as well to support
and propel many important applications and system designs, for example, artificial intel-
ligence, Internet of Things, and so forth; on the flip side, security and privacy are among
the primary concerns with the adoption of cloud-based data services in that the user loses
control of her/his outsourced data. Encryption definitely provides strong protection to user
sensitive data, but it also disables the direct use of cloud data services and may defeat the
purpose of cloud computing technology. We believe that security in nature should not be
in contravention of the cloud outsourcing model. Rather, it is expected to complement the
current achievements to further fuel the wide adoption of the public cloud service. This,
in turn, requires us not to decouple them from the very beginning of the system design.
Drawing the successes and failures from both academia and industry, we attempt to answer
the challenges of realizing efficient and useful secure data services in the public cloud. In
particular, we pay attention to security and privacy in two essential functions of the cloud
“brain”, i.e. data storage and processing. The first part of this research aims to provide
a privacy-preserving data deduplication scheme with the performance comparable to the
existing cloud backup storage deduplication. In the second part, we attempt to secure the
fundamental information retrieval functions and offer effective solutions in various contexts
of cloud data services.

To the three important women in my life,
my mother Lingxia, my wife Ying, and my daughter Emily.

iv

Acknowledgments

Two Ph.D.s are earned during a period of seven years, which I would never imagine when
I was an undergraduate student at Xidian University back in China. I clearly and vividly
remember how this unbelievable journey started. I will not drive you into my biography,
which I believe is too early for my age, but I would like to express my greatest gratitude to
all the people who work with, help, encourage or inspire me along this journey.

I have received countless help from many people during this dissertation research, but it
would not be possible without the support and mentoring of my advisor, Dr. Wenjing Lou.
She showed me how interesting and rewarding the research could be during my short-term
visit to Virginia Tech. That is why I decided to pursue my second Ph.D. under her guidance.
Not only does she reshape my research, she also reforms my life and the way I am looking
at this world. Words cannot express how grateful I am to her. I am also thankful to Dr.
Y. Thomas Hou. Albeit we do not spend much time working together due to the long
distance, it does not change the fact that you are another role model of mine. Your vision,
determination, execution, insight, and leadership all have been inspiring me throughout my
Ph.D. study. In addition, I would like to thank other committee members, Dr. Ing-Ray
Chen, Dr. Gang Wang, and Dr. Yanchao Zhang, for your full support, invaluable comments
and suggestions. I am also privileged to collaborate with many talented researchers, and
receive tons of help from people around me, including (not exhaustively and no particular
order): Dr. Ning Zhang, Dr. Ming Li, Dr. Shucheng Yu, Dr. Xuefeng Liu, Dr. Ning Cao,
Ruide Zhang, Dr. Bing Wang, Dr. Qiben Yan, Dr. Yao Zheng, Dr. Changlai Du, Yang
Xiao, and Yaxing Chen. Thank you all.

In the end, I am deeply indebted to my family. Mom, I owe you a big thanks for devoting
yourself to taking care of me and protecting me when I was little and sensitive. You have
been supporting and having faith in me all the time. I am hopeful what I have accomplished
makes you proud. Ying, you are the most wonderful girl I have ever met. You are the reason
that I stay optimistic and confident, and keep chasing my dreams even when going through
ups and downs. I am grateful for your sacrifice in every respect. I am fortune that I will
spend the rest of my life with Keaibao. Emily, my daughter, you are smart, joyful and always
kind to people around. You are the best present I have ever had. I am always surprised
by the amazing power within your small body that changes my life silently, positively and
significantly.

v

Funding Acknowledgments

This material is based upon work supported by the U.S. National Science Foundation grants
1217889, 1405747, 1446478 and 1443889.

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Securing Data Services in Cloud Computing 1

1.1.1 Chunk-based Encrypted Cloud Data Deduplication 2

1.1.2 Search over Encrypted Cloud Data 3

1.2 Research Contributions . 5

1.3 Dissertation Organization . 6

2 Secure Chunk-based Deduplication of Encrypted Data for Cloud Backup 7

2.1 Introduction . 7

2.1.1 Knowing the Gap . 7

2.2 Background . 9

2.2.1 Data Deduplication . 9

2.2.2 Convergent Encryption . 10

2.2.3 Blind RSA Signature . 10

2.3 Related Work . 11

2.3.1 Server-aided Encryption Solutions . 11

2.3.2 Serverless Encryption Solutions . 12

2.3.3 Other Security Aspects . 13

vii

2.4 Problem Statement . 13

2.4.1 System Model . 13

2.4.2 Security Model . 14

2.4.3 Design Goals . 14

2.5 Protocol Design . 15

2.5.1 Randomized Oblivious Key Generation 15

2.5.2 Slowing down Online Brute-force Attack 20

2.5.3 Improving Data Restore Speed . 21

2.6 Security Analysis . 21

2.7 Performance Evaluation . 23

2.7.1 Online Key Generation . 23

2.7.2 Deduplication Effectiveness . 24

2.7.3 Fragmentation . 25

2.8 Summary . 26

3 Efficient Verifiable Conjunctive Keyword Search over Large Dynamic En-
crypted Cloud Data 27

3.1 Introduction . 27

3.2 Related Work . 28

3.2.1 Static Search . 28

3.2.2 Dynamic Search . 29

3.2.3 Verifiable Search . 29

3.3 Problem Formulation . 30

3.3.1 Definition of VCKS . 31

3.3.2 Security Definition . 32

3.4 Preliminaries . 34

3.4.1 Bilinear-map Accumulator . 34

3.4.2 Accumulation Tree . 34

3.5 Our Construction . 35

viii

3.5.1 Data Upload . 36

3.5.2 Search . 37

3.5.3 Data Download . 38

3.5.4 Update . 39

3.6 Security Analysis . 41

3.7 Performance Evaluation . 43

3.7.1 Storage Overhead . 44

3.7.2 Search Efficiency . 45

3.7.3 Verification Efficiency . 45

3.8 Summary . 46

4 Enabling Scalable and Efficient Range Query on Encrypted Genomic Data 47

4.1 Introduction . 47

4.1.1 Secure Genome-wide Range Query 47

4.2 Related Work . 48

4.2.1 Cryptographic Range Query . 48

4.2.2 Secure Keyword Search . 49

4.2.3 Privacy-preserving Genomic Study 49

4.3 Background . 50

4.3.1 Biology Preliminaries . 50

4.3.2 Secure GRQ Model . 52

4.3.3 Privacy Threats . 53

4.4 Secure GRQ Construction . 55

4.4.1 Strawman Solution . 55

4.4.2 Our Construction . 57

4.4.3 Improving Search Efficiency . 60

4.5 Security Analysis . 60

4.6 Performance Evaluation . 62

4.6.1 Storage Overhead . 62

ix

4.6.2 Time Efficiency . 63

4.7 Summary . 65

5 Secure Keyword Search Using Trusted Hardware 66

5.1 Introduction . 66

5.2 Background . 68

5.2.1 Privacy Leakage in SE . 68

5.2.2 Inverted Index . 68

5.2.3 Intel SGX . 69

5.3 Problem Formulation . 70

5.3.1 Overview . 70

5.3.2 Adversary Model . 72

5.4 Our Design . 74

5.4.1 Single Keyword Query . 74

5.4.2 Additional Query Function Support 78

5.5 Security Analysis . 80

5.6 Implementation and Evaluation . 81

5.6.1 Implementation . 81

5.6.2 Performance Evaluation . 82

5.6.3 Oblivious Index Access . 83

5.7 Related Work . 85

5.7.1 Search over Encrypted Data . 85

5.7.2 Applications with Secure Hardware 86

5.8 Summary . 86

6 Conclusions 87

Bibliography 89

x

List of Figures

1.1 The studied secure cloud services. 2

2.1 Framework of the proposed scheme. 12

2.2 Em(n) with the increased number n of the master secrets in the system. . . . 17

2.3 Pn(m) with m compromised clients when n = 5, 10, 15, 20. 18

2.4 F1, F2, and F3 are immutable parts identified by content-aware chunking al-
gorithms in two file copies A and B of the same file format. 19

2.5 (a) Latency and (b) Client-side computation overhead for the online key gen-
eration protocol with increased size of backup stream of a client. We invoke
an online protocol instance for each chunk in our basic scheme. 24

2.6 Space savings sr with the increased number of backup storage in the cloud.
Each backup includes snapshots of 54 users’ machines. The comparison is
drawn between the plaintext CBD, and our scheme using 5, 10, and 15 KS
secret keys. 25

2.7 (a) Fragmentation level r and (b) data restore speed 1/r with the increased
number of backups in the cloud. Both fragmentation level and read perfor-
mance are measured by recovering the backup dataset of a randomly selected
user. All the comparisons are drawn between the plaintext CBD, and our
scheme using 5, 10, and 15 KS secret keys. 26

3.1 System model. 30

3.2 Example of an accumulation tree with ε = 0.5. 35

3.3 Illustration for matrix index δ and insertion operation for fn+1. 36

3.4 Search efficiency. (a) For the different size of file collection with the number
of queried keywords t = 2; (b) For the different number of queried keywords
with the number of files n = 2× 105. 43

xi

3.5 Verification efficiency with t = 2. (a) Public verification; (b) Private verification. 45

4.1 Format illustration of a sample short read. (a) The original format in a SAM
file; (b) Simplified read format. 51

4.2 (a) Short read alignment with the reference; (b) Content protection. 52

4.3 Overview of secure GRQ system. 53

4.4 Real-world and ideal-world experiments. 54

4.5 Proposed secure GRQ construction. 56

4.6 Hierarchical GRQ-orientated index structure with a two-phase query process. 59

4.7 Query time for different search strategies with query size 100, 500, 1, 000,
5, 000, 10, 000, 50, 000, 100, 000. The pre-search stage is operated on the
baseline search with d = 21, 845. 64

5.1 Example of an inverted index row. 69

5.2 REARGUARD framework. 71

5.3 Memory trace for keyword match in Step 1: (a) The first keyword match; (b)
The third keyword match. 73

5.4 Memory trace for posting list retrieval in Step 2 for the first three keywords. 74

5.5 Illustration for L0. 77

5.6 Oblivious keyword match in Step 1 during searching over a 5-term index. . . 82

5.7 Oblivious posting list retrieval in Step 2 when searching over a 5-term index. 83

5.8 (a) Search over small-sized index. (b) Scalable search over large-sized index. 84

xii

List of Tables

3.1 Comparison of verifiable search solutions. 29

3.2 Size of encrypted index with n = 1, 000, 000. 44

3.3 Size of encrypted index with m = 2, 000. 44

3.4 Size of accumulation tree with two levels. 44

3.5 Time of generating an accumulation tree with n = 1× 106. 46

4.1 Performance of the proposed secure GRQ scheme without pre-search stage. . 62

4.2 Size of Bloom filter over more than 300 million short reads in pre-search stage. 63

xiii

xiv

Chapter 1

Introduction

We are in a big-data era, which brings us a tremendous amount of information recording
incredible details of our world and life. We wholeheartedly embrace it because of the poten-
tially huge value of this information treasure that is expected to advance the human society
and improve our life quality. On the other hand, storing and processing the data requires
IT practitioners to constantly purchase hardware and software, and provide frequent corre-
sponding personnel training. This has become a significant burden that possibly offsets the
promising benefits. Fortunately, past few years have witnessed a dramatic shift for IT in-
frastructures from a self-sustained model to a centralized and multi-tenant elastic computing
paradigm – Cloud Computing. People are moving their local digital assets and applications
to the large data center operated by a third-party CSP, e.g. Google, Amazon, in order to be
relieved from the cumbersome IT management and enjoy considerable capital expenditure
savings. Besides, cloud also offers other benefits, such as ubiquitous and flexible access,
on-demand resource allocation, which further expedites and contributes to the prevalence of
this data outsourcing model.

1.1 Securing Data Services in Cloud Computing

While cloud has gained momentum and become the “brain” in the present networked infor-
mation ecosystem to support and propel many important applications and system designs,
including business and productivity apps, artificial intelligence, Internet of Things, and so
forth, security and privacy are among the primary concerns when using cloud-based data
services in that the user hands over the control of her/his data to the public cloud that
has not fully won the trust of the general public. Encrypting the sensitive user information
certainly ensures the confidentiality. However, encryption places an extra layer of ambiguity
and its direct use may be at odds with the practical requirements and defeat the purpose
of cloud computing. We believe that security in nature should complement the current

1

2 Chapter 1. Introduction

achievements to further fuel the growth of the public cloud services, which, in turn, requires
us not to decouple them from the very beginning of the system design. The cloud brain,
akin to a human brain, provides two essential functions – data storage and processing. In
this dissertation, we aim to secure these fundamental data services in the challenging public
cloud infrastructure as shown in Figure. 1.1.

Memory --

Cloud Storage
Perception -- Cloud

Data Processing

Secure Cloud Data
Deduplication

Secure Search over
Encrypted Cloud Storage

Figure 1.1: The studied secure cloud services.

1.1.1 Chunk-based Encrypted Cloud Data Deduplication

We first consider the cloud storage an equivalent of the memory function of the human brain.
In order to save storage and/or network bandwidth, current cloud storage providers, such as
Dropbox, Google Drive, exploit the data deduplication technique to effectively identify and
eliminate redundant data. As a result, the system only keeps a single copy of the same files
and makes a reference pointing to the stored copy for other duplicates. Data deduplication
will remove more redundant information when applied to small chunk level than the file level,
and thus often lead to higher storage savings. In Chapter 2, we first investigate the problem
of designing a secure chunk-based deduplication scheme in the enterprise backup storage
setting [112]. Most of the research in the literature focus on realizing file-based encrypted
data deduplication or key/metadata management. Little attention is drawn to the practical
chunk-level deduplication system. In particular, we identify that the information contained in
a small-sized chunk is more susceptible to the brute-force attack compared with the file-based
counterpart. We propose a randomized oblivious key generation mechanism based on the
inner workings of the backup service. In contrast to the current work that compromising one
client would eventually expose all the clients’ storage, our scheme offers a counter-intuitive
property of achieving security against multi-client compromise with minimal deduplication
performance loss. In addition, we enforce a per-backup rate-limiting policy to slow down
the online brute-force attack. We show that the proposed scheme is provably secure in
the malicious model. We calibrate the system design as well by taking into account the
requirements in reality to accomplish a comparable plaintext deduplication performance.

1.1. Securing Data Services in Cloud Computing 3

Our experiment on the real-world dataset shows its efficiency, effectiveness, and practicality.

1.1.2 Search over Encrypted Cloud Data

Perception is another main human brain function closely interacting with the memory. Sim-
ilarly, we also pay a great amount of attention to the secure data processing in the public
cloud. In particular, we comprehensively study the problem of search over encrypted data
(SE), which allows the cloud to offer fundamental information retrieval (IR) service to its
users in a privacy-preserving way. The IR research is relatively mature in plaintext domain,
which is extensively used and embedded in many applications. As a critical building block of
an information processing system, plaintext IR provides a wide range of functions and query
types, which enables its users to effectively retrieve the intended information from a target
dataset. However, its merits of flexibility, efficiency, robustness, and function-diversity will
be significantly diminished in the ciphertext world. Once we exploit cryptography to encrypt
everything and then store them in the cloud, how can we apply existing IR functions later to
the random-looking ciphertext that hide all the semantic details, and expect to receive the
correct result? Even if we use fully homomorphic encryption [46] that generally is deemed
the panacea for computation over encrypted data, you are likely to have a non-negligible
performance hit for the time being. As a matter of fact, there is no silver bullet for SE.
With the ultimate research goal of building efficient and practical SE framework, we propose
three SE schemes centering on different contexts and design aspects by taking advantage of
software and hardware-based approaches. We make contributions to both SE theory and
real-world applications and implementations.

Verifiable Conjunctive Keyword Search

The search result in most SE schemes is returned by a honest-but-curious or semi-trusted
server that executes the protocol faithfully but curiously infers the user information en route.
Under this threat model, we usually consider the query result to be correct. However, there
may exist a malfunctioning server or even a malicious adversary that is able to arbitrarily
deviate from the designated protocol in practice. Therefore, users need a result verification
mechanism to detect the potential misbehavior and rebuild the confidence for the outsourced
search operation. Further, cloud typically hosts a large amount of outsourced data of users
in its storage. The verification complexity should be low enough for practical use. In other
words, it is desired to only depend on the corresponding search operation, regardless of the
file collection size. Otherwise, the users might as well search the data by themselves. In
Chapter 3, we introduce our first SE work to investigate the efficient search result verifica-
tion [109]. We target the common query type – conjunctive keyword search, i.e. searching
for a combination of multiple keywords. In addition, the proposed SE scheme enables users
to freely update the secure index and the corresponding file collection. The presented verifi-
cation mechanism can be either delegated to a public trusted authority (TA) or be executed

4 Chapter 1. Introduction

privately by data users. We formally prove the universally composable (UC) security of our
scheme. Experimental result demonstrates practicality even with a large dataset.

Secure Genome-wide Range Query

We in Chapter 4 deal with a real-world SE application in the context of the promising hu-
man genomic/medical data research [111]. As the cost of full genome sequencing technology
continues to drop, we will soon witness the proliferation of human genomic data in the public
cloud. In order to protect the confidentiality of the sensitive genetic information of individ-
uals, the stored data are preferred to be encrypted. However, as stated early, encryption
severely hinders the use of this valuable information, such as Genome-wide Range Query
(GRQ), in medical/genomic research. The examples of GRQ include that a pharmaceutical
company issues a query on a particular range of the genomic data of a patient in order to
find some DNA fingerprints/biomarkers for personalized medicine. While the problem of
secure range query on outsourced encrypted data has been extensively studied, the current
solutions are far from practical deployment in terms of efficiency and scalability due to the
huge size of the sequencing result. We study the problem of secure GRQ over human raw
aligned genomic data in a third-party cloud. Our solution contains a novel privacy-preserving
range query design based on multi-keyword symmetric searchable encryption (MSSE). The
proposed scheme incurs minimal ciphertext size expansion and computation overhead. We
also present a hierarchical and GRQ-oriented secure index structure tailored for efficient
and large-scale genomic data lookup in the cloud while preserving the query privacy. Our
experiment on real human genomic data shows that a secure GRQ request with the range
size of 100,000 over more than 300 million encrypted short reads takes less than 3 minutes,
which is orders of magnitude faster than the state of the art.

Secure Keyword Search Using Trusted Hardware

We share the belief that heeding only one side will be benighted. Majority of the existing SE
schemes, including our previous work, are software-based solutions built on top of diverse
cryptographic primitives, which result in a rich set of secure search indexes and algorithm
designs. However, each such SE solution can only implement a small subset of IR functions
and often leaks considerable private search information. Recently, the hardware-based secure
computation has emerged as an effective mechanism to securely execute programs in an
untrusted software environment. Our third SE work in Chapter 5 exploits the hardware-
based trusted execution environment (TEE) and explore a software and hardware combined
approach to address the challenging SE problem [113]. For functionality, our design can
support the same spectrum of plaintext IR functions. For security, we present oblivious
keyword search techniques to mitigate the index search trace leakage. We build a prototype
of the system using Intel SGX. We demonstrate that the proposed system provides broad
support for a variety of search functions and achieves computation efficiency comparable to

1.2. Research Contributions 5

plaintext data search with elevated security protection. Hopefully, through the lens of this
effort, insights could be provided into future research in this direction.

1.2 Research Contributions

In this dissertation, we study the protection of user data services in the public cloud envi-
ronment and have made the following major research contributions.

For privacy preservation in the cloud storage deduplication:

• To the best of our knowledge, we are among the first to discuss the challenges of and
solutions to securing chunk-based deduplication of encrypted backup storage as per
the practical performance requirements. We propose a randomized oblivious key gen-
eration algorithm, which can effectively reduce the risk of the information leakage by
being resilient to multiple compromised clients. We also enforce a per-backup rate
limiting policy to slow down the online brute-force attack. Our presented scheme is
provably secure in the malicious model. We show that the efficiency of the online
key generation for frequent insensitive data can be significantly improved by using
the content-aware deduplication technique. The experiment on the real-world dataset
demonstrates a faster data restore speed while retaining an on-par deduplication effec-
tiveness for backup storage compared to the plaintext chunk-based deduplication.

For securing cloud data search function:

• Our first SE work supports conjunctive keyword search, dynamic data update and search
result verification simultaneously. We evaluate the performance of the scheme with a
large real-world dataset and show that it is efficient enough for practical use. The
verification cost merely depends on the corresponding search operation, irrespective of
the size of the searched data collection. Furthermore, the verification mechanism is
flexible in the sense that it can be either delegated to a public trusted authority or be
executed privately by a data user. We also formally prove that our proposed scheme
is UC-secure against a malicious adversary.

• In the second SE research work, we propose a novel secure range query scheme by
designing a multi-keyword symmetric searchable encryption, which may be of inde-
pendent interest. It is suitable for search over the space-consuming raw genomic data
storage. The security of the proposed scheme is derived from the MSSE security against
adaptive chosen-keyword attacks (CKA2) [34]. Our scheme shows the same privacy
guarantees as the current practical solution but with a much better (logarithmic-time)
query efficiency. By plaintext ordering obfuscation and a privacy-preserving re-sorting

6 Chapter 1. Introduction

technique, we present a hierarchical secure index structure, which captures the real-
world situation of genomic data processing in the cloud, featuring a scalable and effi-
cient GRQ search over human raw aligned genomic data. We implement our proposed
scheme on real human sequencing data. The experiment demonstrates the efficiency
and its promising future deployment in a large-scale GRQ scenario.

• We propose secure keyword search using trusted hardware – REARGUARD, an in-
novative approach towards a dynamic secure keyword search scheme that employs the
latest advancement in hardware-based trusted execution – Intel SGX. The proposed
system supports a rich set of IR functions and query types while ensuring the confiden-
tiality and integrity of the query process. Our design is secure against strong attacks
including those from the compromised privileged software and low-level firmware. Our
design mitigates the index search trace leakage from the memory side channel by using
oblivious keyword search functions. This is one of the major concerns about SE in
the cloud where users and adversaries share resources. The system defines and realizes
two leakage profiles to balance security and performance, both exhibiting substantially
reduced index search footprints. We carefully design and implement the popular IR
functions into a fully-functional SGX-compatible prototype. Our experiment with the
real-world dataset reports a performance close to that of plaintext data search with
elevated security protection.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents our work on secure
chunk-based deduplication of encrypted data for cloud backup. Chapter 3 deals with the
efficient verifiable conjunctive keyword search over large dynamic encrypted cloud data. In
Chapter 4, we describe the design and validation of a scalable and efficient range query
scheme over encrypted human raw alignment data. Chapter 5 introduces our novel secure
keyword search scheme based on trusted hardware. Finally, Chapter 6 summarizes the
research achievements and the potential future research directions.

Chapter 2

Secure Chunk-based Deduplication of
Encrypted Data for Cloud Backup

2.1 Introduction

Data deduplication (or dedupe for short) is increasingly adopted by cloud storage providers,
such as Amazon S3, as an effective technique to reduce the storage cost. When the system
detects data redundancy, dedupe process will retain only one copy of the same data and
make a reference pointing to the stored copy for other duplicates. Data confidentiality is
realized by exploiting deterministic encryption, e.g., convergent encryption (CE) [39], in
which the key is generated from the data itself and the same plaintext will always yield
the same key and ciphertext. As a result, we can apply dedupe to the ciphertext without
leaking underlying stored information. However, the existing secure deduplication designs
[10, 39, 40, 72, 90, 103], to some extent, are at odds with the real-world dedupe requirements
in terms of security and performance.

2.1.1 Knowing the Gap

By using different chunking methods, deduplication can be carried out either in the coarse-
grained file level, or fine-grained chunk level. In a nutshell, file-based deduplication (FBD) is
suitable for small or stationary file types, e.g., dll, lib, pdb, etc. Even small changes made in
the file will lead to a completely different copy, thereby resulting in a low dedupe performance.
In contrast, chunk-based deduplication (CBD) is capable of dividing a given data stream
into smaller chunks of fixed or variable lengths (typically from 4KB to 16KB). As such, a
considerable storage saving can be reaped from chunk-level redundancy elimination. In fact,
there is a trend towards large files being the principal consumer of the storage [78]. More and
more real-world storage systems are using CBD as their core deduplication technique [87].

7

8
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

Most of the existing works focus on secure file-level dedupe. Chunk-level designs [29, 68, 90]
with different research concentration paid little attention to the challenges and practical
requirements of CBD.

1) Low-entropy chunks. Deterministic CE is inherently vulnerable to brute-force attack
for predictable files. For example, given the ciphertext, the adversary is able to enumerate
all the file candidates, encrypt and compare them with the target ciphertext in an offline
manner. Prior works provide solutions by deriving the encryption key from an online third
party, i.e., either an independent key server [10] or other peer clients [72], instead of offline
key generation from data itself. However, an adversary compromising one authorized client
and observing the dedupe process can still launch an online brute-force attack. In general,
the data leakage covers the storage of all clients in the system. A rate-limiting strategy
may be enforced to slow down the attack speed. But such approach is merely effective if
the deduplicated data has enough unpredictability. CBD will amplify the attack efficacy
due to the potentially much lower entropy contained in a small chunk. Albeit it is an open
problem to entirely prevent the brute-force attack, we still need to answer the question: To
what extent, can we reduce the risk of the information leakage with minimal impact on the
underlying deduplication routine?

2) Increased system operation overhead. Besides the inevitable cost of performing
file chunking, directly applying existing schemes to chunk-level deduplication usually incurs
higher latency and computation overhead. This is because the client needs to run the key
generation protocol with other online parties (a key server [10] or peer clients [72]) to produce
a CE key for each chunk of a file instead of one protocol execution for the whole file. Thus,
a natural question is: Can we speed up the key generation while still ensuring an effective
deduplication function?

3) Practical dedupe performance. In addition to the deduplication ratio (or space
reduction percentage, see Section 2.2) that is widely used in measuring the effectiveness of
deduplication [41], there are also other metrics in practice to determine the dedupe system
performance, such as chunk fragmentation level, or data restore speed (see Section 2.2).
Chunk fragmentation is caused by CBD in which data logically belonging to a recent backup
scattered across multiple older backups [61]. A higher chunk fragmentation level typically
adversely affects the system read performance and further increase the data restore cost.
On the contrary, fragmentation is not widespread in file-based deduplication owing to the
sequentially stored files on disk. It is expected that any secure chunk-level dedupe design
should provide a read performance on par with plaintext CBD practice.

Aiming to answer the above challenges, we design a chunk-based deduplication scheme for
encrypted enterprise backup storage in the cloud. The core of the technique is the proposal

2.2. Background 9

of a randomized oblivious key generation (ROKG) protocol, which is simple by its design
but powerful by its efficacy. Specifically, we are inspired by the observation that using
randomized encryption will completely protect the low-entropy chunks albeit it, in turn, will
outright incapacitate the deduplication. Similarly, we attempt to introduce the randomness
into the chunk key generation. This gives us the desired asymmetry between security and
performance, i.e. resilient to multiple compromised clients, compared to existing work, but
only with minimal dedupe performance loss. We confine the proposed security and privacy
preservation design to the enterprise internal network via setting up a key server in order to
stay transparent to and compatible with the existing public cloud backup service. We further
accelerate the key generation for frequent insensitive data by leveraging the content-aware
deduplication. A per-backup rate-limiting strategy is also presented to further slow down
the online brute-force attack without interfering the dedupe procedure. In addition, our
design achieves faster data restore speed and comparable space savings for backup storage
with plaintext CBD.

2.2 Background

2.2.1 Data Deduplication

Similar to data compression that identifies intra-file redundancy, deduplication is used to
eliminate both intra and inter file duplicates. In general, chunk-based dedupe can cap-
ture “smaller” redundancy within files and thus often yields higher deduplication ratio
dr = originial dataset size

stored dataset size
, or the space reduction percentage sr = 1 − 1/dr [41]. In storage

backup scenario, the “original dataset” is an accumulated collection of all the data before
deduplication from previous backup cycles. Further, if dedupe is allowed to be performed
cross users, we usually can expect more space savings. On the other hand, dedupe occurring
on the server side consumes more network bandwidth than the client-side dedupe, but with
less privacy breach risk (see Section 2.4).

Chunking Algorithms

The data stream can be partitioned into fixed-sized chunks, which offers high processing rates
and small computation overhead. However, it suffers from the boundary-shifting problem,
where even a single bit added to the beginning of a file will result in different chunks [87]. A
bit more CPU-intensive variable-sized chunking method can be used to address this problem.
Briefly, this algorithm adopts a fixed-length sliding window to move onwards the data stream
byte by byte. If the fingerprint (typically Rabin’s fingerprint [20]), of the data segment
covered by the window, satisfies a certain condition, this segment is marked as a partition
point. The region between two consecutive partition points constitutes a chunk (see [78, 87]

10
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

for detailed discussion). Variable-sized chunking provides users with more storage savings
and is widely used in practice [87]. In addition, we can apply advanced content-aware
chunking algorithms to identify duplicates on semantic information level [14, 71, 73], given
the knowledge of file type, format, statistics information, etc. It turns out to be useful in
speeding up the online chunk key generation (see Section 2.5.1).

Chunk Fragmentation

A succinct chunk ID is computed by applying a hash function, such as SHA11, over this
chunk. We can determine whether the chunk has already been stored by looking up a key-
value index table that maintains unique chunk IDs and their corresponding chunk storage
locations. To achieve high write performance, each unique chunk is not directly written into
the storage; instead, it is stored into a fixed-sized container (typically 2MB or 4MB) in the
cache and the whole container is flushed to the storage once it is full. To read a chunk from
storage, the entire container storing the chunk is retrieved. Therefore, it is likely that data
restoration needs to read the shared chunks physically dispersed over different containers. A
higher chunk fragmentation means more severe physical dispersion, which ends up with read
performance degradation [61, 70]. We can use the average number r of containers read per
MB to measure the fragmentation level and evaluate the read performance by speed factor
1/r [70].

2.2.2 Convergent Encryption

CE is extensively used in secure dedupe systems [10, 39, 40, 72, 90, 103, 119] as a prominent
instantiation of message-locked encryption (MLE) [2, 11]. More precisely, to encrypt a file f
with CE, we first locally derive the CE key k = h(f), where h is a secure hash function, e.g.,
SHA256. Next, we use any secure symmetric encryption Enc, such as AES128, with secret
key k to obtain the ciphertext c = Enc(k, f). Apparently, the deterministic encryption
process will always generate the same ciphertext c for the same plaintext f and enable
ciphertext deduplication. It is worth noting that CE only provides security guarantees for
unpredictable data and is inherently vulnerable to offline brute-force attack [10, 72]. In this
work, we introduce a server-aided CE in the sense that the secret key is still derived from
the target chunk but with the assistance of a dedicated key server (see Section 2.5).

2.2.3 Blind RSA Signature

In a server-client model, blind signature allows the server to cryptographically sign the
secure hash of a message from the client without disclosing the message content. In a blind

1Note that the security vulnerability of SHA1 is orthogonal to its application here in dedupe setting.

2.3. Related Work 11

RSA signature [27], let {N, e, d} be a valid set of RSA parameters, where the modulus
N is the product of two large primes p and q, ed = 1 mod ϕ(N) and gcd(e, ϕ(N)) = 1.
ϕ(N) = lcm(p− 1, q − 1). Then the public key is (e,N) and the private key is d.

• z ←MessageMask(msg, r): The client prepares a random number r ∈ Zn and a
full domain hash H : {0, 1}∗ → Zn. He masks his original message msg by z =
H(msg)re mod N ;

• θ′ ←Sign(z): The server signs z with the private key and sends the signature θ′ =
zdmod N back to the client;

• θ ←Unmask(θ′): On the client side, the intended signature on msg is derived from

θ = θ′r−1 mod N and can be verified by H(msg)
?
= θe mod N .

In Section 2.5, we will show how to build the ROKG protocol on top of the blind RSA
signature and further improve its efficiency.

2.3 Related Work

In the literature, there are in general two approaches, i.e. server-aided and serverless schemes,
to prevent the direct key derivation from the data by the client.

2.3.1 Server-aided Encryption Solutions

Server-aided solutions (including ours) is more suitable for the enterprise/organization net-
work and transparent to the established deduplication services. Puzio et al. [90] proposed
to use an honest proxy server to encrypt the CE-generated ciphertexts by the client be-
fore uploading them to a storage server. Their scheme claims to provide secure chunk-level
deduplication but it is unclear how to mitigate online brute-force attack in the malicious
model. By the adoption of an identity server, Stanek et al. in [103] presented a secure
file-based deduplication scheme that prevents online brute-force attack from masqueraded
clients. However, only non-private popular files can be deduplicated by using a threshold
encryption. Bellare et al. [10] proposed a server-aided secure dedupe system in the enter-
prise setting. By blind RSA signature, the CE key can be obliviously generated. The offline
brute-force attack is prevented since the compromised storage server cannot access the key
server. However, the online attack is still possible by controlling a legitimate client. As
a result, all the client’s storage can be revealed by the attack. They applied a per-client
file-based rate-limiting method to slow down the online attack.

12
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

 Key Server

Enterprise Environment

Clients

...

Cloud Storage Server

Encrypted

Data Flow

Figure 2.1: Framework of the proposed scheme.

2.3.2 Serverless Encryption Solutions

Duan [40] proposed to replace the role of a key server with clients using a modified Shoup
RSA threshold signature scheme. It is unclear how to enforce any rate-limiting policy to slow
down the brute-force attack. Xu et al. [119] proposed to deduplicate the message ciphertexts
generated by randomized encryption. It only stores the first-uploaded file. For the same file
uploading request, it provides the file encryption key to the user, which in turn is encrypted
by the file. If the user indeed owns the file, he can derive the key and decrypt the file
ciphertext. Brute-force attacks are avoided by assuming that the storage server is honest
and cannot be compromised. In [72], the authors introduced a cross-user deduplication
scheme. For an already stored file, a client executes a password-authenticated key exchange
protocol with online clients who have previously uploaded the same file to obtain the CE key.
Note that this process still needs to be coordinated by the storage server. Similar to [10],
the offline brute-force attack is impossible because the CE key is not self-generated. They
also adopt a per-file rate-limiting strategy to bound how many online protocol instances for
each file can be invoked. Notice that these solutions cannot be directly integrated into the
existing cloud storage services without substantial modification.

Remark 2.1. Besides failing the protection of low-entropy chunks, applying the above-
mentioned schemes to chunk-based deduplication will incur a considerable performance
penalty in key generation and deduplication.

2.4. Problem Statement 13

2.3.3 Other Security Aspects

The cross-user client-side deduplication may introduce side-channel attacks. By uploading
a crafted file to the storage server and observing the deduplication process, the adversary
can learn additional information about the file, e.g. whether it has been uploaded by other
clients, etc. This is more devastating for predictable data. Harnik et al. [56] proposed
a randomized threshold approach to alleviate such side channel attack. To avoid private
data leakage by using a single hash, Halevi et al. [55] proposed a proof-of-ownership (PoW)
framework to verify the ownership of the file that the client is trying to access. Recently,
Li et al. [69] presented a practical attack to reveal the deduplicated ciphertext storage by
frequency analysis due to the deterministic nature of CE/MLE. Along another research line,
the authors in [68] proposed a CE key management scheme that applies deduplication over
encryption keys and distributes the key shares across multiple key servers. Chen et al. in
[29] proposed an MLE scheme also with the focus on key management in the CBD setting.
However, they did not consider the protection of low-entropy chunk and practical dedupe
performance.

2.4 Problem Statement

2.4.1 System Model

There are three entities in our secure client-side cross-user deduplication system, key server
(KS), clients (C’s) and public cloud storage server (SS) as shown in Figure 2.1. We consider
a periodical file backup service provided to C’s in an enterprise network. The key server KS
is set up in charge of client authentication and chunk encryption key generation. Specifically,
a client Cj performs the chunking algorithm on his backup data. KS authenticates Cj upon
request and generates the CE key k for each chunk ch of Cj’s backup data in an oblivious
manner. Then Cj encrypts the data chunks with the associated keys and uploads ciphertexts
to SS2, such as Microsoft Azure Backup. SS stores the deduplicated incoming data stream
in the corresponding containers before writing them into storage. As a result, the entire data
protection phase, including key generation and data encryption, is transparent to SS. SS
only offers a basic and simple interface to its clients as in the plaintext data backup scenario.

2For simplicity, we omit the non-security steps, such as chunk ID generation and index table lookup on
SS.

14
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

2.4.2 Security Model

We focus on protecting the confidentiality of predictable data in this work because we can
achieve semantic security for unpredictable data with CE. KS learns nothing about Cj’s
input chunk during the protocol execution. A compromised SS can launch offline brute-force
attack by enumerating ciphertexts of predictable file candidates and comparing them with
the target ciphertext in an offline manner. Although enterprise network is usually protected
by enforcing rigorous security policies, we assume that it is possible for an external adversary
to compromise a limited number of internal clients. Thus the adversary can perform an online
brute-force attack by further accessing KS.

We first define an ideal functionality Fdedupe of our scheme. The input of Fdedupe:

• The client Cj has an input chunk ch;

• The key server KS’s input is a chosen secret dt;

• The cloud storage server SS has no input.

The output of Fdedupe:

• Cj obtains the chunk key k;

• The output of KS is θ′;

• SS gets the ciphertext c = Enc(k, ch) and learns whether it has been stored.

We will prove our scheme secure in the malicious model if a probabilistic polynomial-time
(PPT) adversary cannot distinguish the real-world execution of the proposed scheme and
an ideal-world protocol that implements the functionality Fdedupe in the presence of a PPT
simulator. In addition, we do not consider side-channel attacks, proof of ownership and
key management in this study. Our system design will complement the current research
[10, 29, 55, 56, 68, 69, 72]. Further, we assume that all the communication channels between
KS, Cj and SS are secure, and cannot be eavesdropped or tampered with by the adversary.

2.4.3 Design Goals

We devise a privacy-preserving chunk-based dedupe system aiming to achieve the following
design goals. Pertaining to security,

• Realize the ideal functionality Fdedupe in the malicious model;

• Prevent offline brute-force attack by SS;

2.5. Protocol Design 15

• Mitigate online brute-force attack by slowing down its speed and providing multi-client
compromise resilience.

In the performance aspect,

• Realize efficient chunk encryption key generation;

• Our design should be comparable with the plaintext CBD with respect to performance,
such as dedupe ratio and data restore speed.

2.5 Protocol Design

In this section, we elaborate on our protocol design and provide discussion on the adopted
techniques.

2.5.1 Randomized Oblivious Key Generation

Chunk encryption key can be generated by running a secure (oblivious) two-party computa-
tion between Cj and KS, so that KS learns nothing on the Cj’s input and algorithm output
while Cj cannot infer KS’s secret. In general, such desired protocol can be realized by any
blind signature scheme. Here we use the widely-adopted blind RSA signature similar to prior
work [10] and further introduce the randomness into the oblivious key generation.

Algorithm Definition

Let the hash functions G : Zn → {0, 1}l and H : {0, 1}∗ → Zn. We define the ROKG
algorithm as follows.

Definition 2.2. (ROKG algorithm) The proposed randomized oblivious key generation for
a total of s clients in the system consists of four fundamental algorithms.

• Setup(λr, λn) → ({PK,MK}): The setup algorithm takes as input the security pa-
rameters λr and λn and outputs n sets of RSA parameters {(Ni, ei, di)|1 ≤ i ≤ n}.
Thus, the public parameters are PK = {(Ni, ei)} and master secrets are MK = {di}.

• ChObf(ch, r, PKi,H)→ z: This chunk obfuscation algorithm takes as input the chunk
data ch, a random number r, the associated PKi = {Ni, ei} and hash function H. It
outputs the obfuscated chunk data z.

16
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

• OKeyGen(MKi, z)→ θ′: This oblivious chunk key generation algorithm takes as input
the associated master secret MKi = di for the client and obfuscated chunk z. It
outputs the corresponding obfuscated chunk key θ′.

• KeyRec(θ′,H,G, PKi, r)→ k or ⊥: This chunk key recovery algorithm takes as input θ′,
hash functions G and H, the associated public parameter PKi and the random number
r. If θ′ is successfully verified, it outputs the chunk encryption key k. Otherwise, it
outputs ⊥.

ROKG Construction

In what follows, we provide the concrete ROKG design.

System setup. At the setup phase, the key server KS calls the Setup algorithm to generate
n pairs of {(PKi,MKi)}. PK is published to all the clients C’s. MK is kept as the master
secrets for the following protocol execution.

Client registration. Each new client Cj in the system needs to be authorized and regis-
tered by KS before he can request the chunk encryption key. Specifically, for the authorized
Cj, KS uniformly at random selects a master secret MKi from MK and stores the tuple
(id(Cj), i) on the user list. The selection i is then returned to Cj.

Chunk data mask. For a chunk data ch, the client Cj calls the algorithm ChObf to
obfuscate ch before sent to KS. In particular, Cj chooses the corresponding PKi = {Ni, ei}
and a random number r. Then he masks the original chunk by z = H(ch)rei mod Ni and
sends z to KS.

Obfuscated chunk key generation. Upon receiving the key generation request from Cj,
the key server prepares the corresponding MKi and PKi by looking up the user list. KS
then calls the OKeyGen algorithm to generate the obfuscated chunk key θ′ = zdimod Ni and
returns it to the client.

Key recovery. The client Cj invokes the algorithm KeyRec to derive the real chunk en-
cryption key k. Specifically, he first unmasks θ′ to θ = θ′r−1 mod Ni. Cj then verifies θ by

H(ch)
?
= θei mod Ni. If θ is valid, he can further recover the chunk encryption key k = G(θ).

The proposed ROKG algorithm hides Cj’s input chunk ch and actual output key k from KS
while protecting KS’s secrets MK from prying eyes of the client.

2.5. Protocol Design 17

20 40 60 80 100 120
n master secrets

20

40

60

80

100

120

E
m

(n
)

ROKG
Intuition

Figure 2.2: Em(n) with the increased number n of the master secrets in the system.

Asymmetry between Security Gain and Dedupability Loss

Intuitively, the security gain grows linearly with the increased number n of master secrets
in the system but the dedupe effectiveness also degrades at the comparable rate. However,
our proposed ROKG scheme brings us a counter-intuitive asymmetry property between the
security gain and deduplication loss due to the characteristics of the accumulated storage
backup. In other words, with the increased n, the growth rate of protection is much larger
than that for dedupe performance loss. In what follows, we elaborate the impact of ROKG
on these two aspects.

Multi-client compromise resilience. In prior work [10, 90, 103], once a legitimate client
is compromised, the entire encrypted storage of all clients can be revealed using online brute-
force attack by taking KS as a key oracle. In contrast, we introduce randomness into the
key generation. Obviously, given any compromised Cj out of s clients in the system, the
adversary can only infer at most s

n
clients’ data on SS (s ≥ n). On the other hand, the

adversary is able to increase his advantage by compromising more clients. In previous works
[10, 72], compromising one client suffices for the whole storage exposure. Here we care about
the equivalent situation of revealing the storage under all n secrets by controlling m clients
and quantify the leakage.

We define our security gain as Em(n), which is the expected number of clients to be com-

18
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

promised for accessing all n secrets. Em(n) can be denoted by n(1 + 1
2

+ · · · + 1
n
) from the

insights of the coupon collector’s problem [37]. By intuition, the growth rate of Em(n) is
expected to be comparable with that of n. However, using ROKG gives us a much faster
increase in Em(n) as shown in Figure 2.2. Therefore, we can choose a relatively small n but
stay resilient to more compromised clients. We also provide the accurate probability Pn(m)
for the case that the adversary compromises m clients in order to infer the storage under
all n master secrets of KS (m ≥ n). In general, there are nm possible ways, in which we
are interested in the number of functions from a set of m elements to a set of n elements.
Such number can be denoted by n!S(m,n). S(m,n) = 1

n!

∑n
j=0(−1)n−j

(
n
j

)
jm is the Sterling

number of the second kind [104]. Therefore, the probability is Pn(m) = n!S(m,n)
nm

. Given a
fixed n, Pn(m) grows as expected by compromising more clients shown in Figure 2.3. It also
exhibits that the whole system becomes more robust under the attack by increasing n.

5 25 45 65 85 105 125 145 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m compromised clients

P

P
5

P
10

P
15

P
20

Figure 2.3: Pn(m) with m compromised clients when n = 5, 10, 15, 20.

In practice, we can tweak the parameter n to accommodate the real network scale. The
number of compromised machines in an enterprise network usually depends on not only
the company’s size but also its security policies/controls. The typical infection percentage
ranges from 0.1% to 18.5% [35]. To demonstrate the effectiveness of our protocol, we take
into account a fairly protected small company of 100 employees with 10% or lower infection
ratio (10 compromised clients). Thus, for n = 5 the adversary will succeed only with the
probability less than 50%. Note that we are free to adopt a larger n to further make Pn(m)
negligible.

2.5. Protocol Design 19

Impact on deduplication. Indeed, the resulted threat isolation comes at the price of
dedupe effectiveness loss. This is two folds. First, we study the case for one backup cycle.
W.l.o.g, the stored data can be represented by x + y under one secret. x is the size of data
that cannot be deduplicated across all the users. y refers to the size of data that have been
deduplicated. We consider the best case that all the users share the same data portion of
y. Thus, x + y is the lower bound of stored data size we can achieve in reality. By using
n secrets in the system, the size of the stored data is x + ny. Compared to the dedupe
ratio dr1 under one key, the dedupe ratio using n keys is drn = x+y

x+ny
· dr1. Obviously, the

performance degradation does not follow the simple linearity, which is also demonstrated by
our experiment (see Section 2.7). If x outsizes y significantly, selecting a small or moderate
n will not introduce an obvious performance penalty. The example may be that the backup
contains data types not naturally suited for deduplication, such as compressed files commonly
seen in the archive storage, the rich media data (e.g. videos, images). Therefore, our scheme
can provide better security guarantee in this situation. Otherwise, non-negligible dedupe
loss is expected for this one-time backup scenario. On the other hand, the periodic backup
service will eventually give rise to a high dedupe performance with our scheme. This is
because the size of the accumulated backup storage is a more dominant factor in the dedupe
ratio computation compared to the orders of magnitude smaller n. Thus, we can take
advantage of this asymmetry to achieve stronger privacy protection with a larger n while
enjoying comparable space savings with the plaintext CBD. This analysis is consistent with
our experiment (see Section 2.7). In addition, our scheme enables better read performance
(see Section 2.5.3).

File A

File B

1F 2F 3F

1F 2F 3F

3A2A1A

1B 2B
3B 4B 5B

5A

Figure 2.4: F1, F2, and F3 are immutable parts identified by content-aware chunking algo-
rithms in two file copies A and B of the same file format.

Efficiency Improvement for Frequent Insensitive Data

We observe that files sharing the similar contents or with the same data type, e.g., .pdf,
.doc, may contain identical data fields. Intuitively, if we extract these immutable parts and
utilize them as a file fingerprint, we can accelerate the key generation significantly. In this
case, we modify the original ROKG protocol for the frequent insensitive data as follows.

The setup and client registration remain the same. Cj first adopts the content-aware dedupli-
cation [14, 71, 73] to identify the common data parts for his files with the same format or data

20
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

type. For instance, in Figure 2.4, given the extracted common data chunks F1, F2, and F3,
we can compute the file format fingerprint hf = H(F1||F2||F3). Instead of running the re-
maining algorithms, i.e. ChObf, OkeyGen, and KeyRec for each chunk, Cj uses the fingerprint
hf as the input to get the file format key kf . Subsequently, Cj produces the chunk key
k = G(kf ||ch) offline for all the chunks ch in the file with the same fingerprint. Therefore,
we have a constant computation and communication overhead for the modified ROKG pro-
tocol. For files containing sensitive information, Cj still needs to run the online protocol per
chunk with KS to stay more resilient to the brute-force attack.

2.5.2 Slowing down Online Brute-force Attack

Online brute-force attack can be launched by compromising a legitimate client and inter-
acting with the key server to obtain the chunk encryption key. Completely preventing such
attack is still an open problem. Using our ROKG design only partially mitigate this issue.
On the other hand, rate-limiting strategy is broadly used to slow down this online attack in
file-based dedupe scenario [10, 72]. We propose to enforce a per-backup rate-limiting policy
in the chunk-based dedupe system, which is inspired by the observed features of storage
backup in practice. Specifically, given the projected backup data size and expected chunk
size, we set a budget

q =
projected backup data size

expected chunk size

for each client to bound the number of requests that are allowed to be processed by KS
during the prescribed time window, e.g. 2:00 – 3:00 AM every Tuesday. Otherwise, KS will
not respond to the client.

This policy is made based on the following observations. First, the enterprise backup work-
loads usually exhibit periodicity, i.e., they follow the scheduled time window and update
cycle. Moreover, it is expected that the content and size of the periodical backup data from
an enterprise user does not change rapidly [78]. For example, a weekly 2GB OS snapshot
of a client’s machine is backed up to the cloud storage with the expected chunk size 8KB.
We can estimate a weekly backup budget q = 250, 000 for each client. We may also set
an additional buffer to tolerate the error and ensure the success of the backup. We assume
that any attempt to use the budget for the attack without actually storing the data, or only
storing a portion below the budget will be detected in a post auditing process. In addition,
our approach is supposed to work with both full and incremental backup (only storing deltas
between files) scenarios. Note that the rate-limiting strategy may not be fully compatible
with the proposed content-aware key generation mechanism because the adversary can cir-
cumvent the online restriction by offline computation. Thus, it is desired to enforce the
policy for sensitive data.

2.6. Security Analysis 21

2.5.3 Improving Data Restore Speed

There are several reasons why we are concerned about read performance even in the backup
storage. First of all, data restore speed is considered critical for crash/corruption recovery,
where higher read speed results in shorter recovery window time. Furthermore, we need to
reconstruct the original data stream (more frequent than user-triggered data retrieval) for
staging the backup data streams to archive storage in light of limited capacity of deduplica-
tion storage [79].

Despite the reduced dedupe ratio, the proposed scheme will naturally enable better read
performance for a user as we allow a duplicate chunk copy under one secret to be kept in
the storage without referring it to an existing copy under another secret in an old container.
As a result, we trade off deduplication for faster user backup restore speed, which happens
to reflect a similar optimization philosophy in plaintext dedupe research [14, 79, 101]. We
can further improve read performance by adopting a reconstruction-aware chunk placement
mechanism to enforce a high spatial locality for chunks. Specifically, the system maintains a
set of dedicated chunk containers cnti,j in the cache for each KS secret di, where 1 ≤ i ≤ n
and j indicates a distinct container for the same key3. We achieve high spatial locality by
storing cnti,j in separate locations of the disk according to i, such as in different partitions.
Therefore, chunks under the same KS secret are stored close to each other. When restoring
a client’s data, read access is only restricted to a limited scope of the disk instead of random
accessing the whole storage.

We argue that the proposed chunk placement will not disclose the additional information
except what has been learned by the adversary. In particular, while improving the read
performance, the adversary may identify clients under the same KS secret by observing
their chunks stored in the same set of containers cntt,j. However, such information leakage is
inevitable in any dedupe system, which the adversary on SS always knows from deduplication
process. Furthermore, we can leverage the encrypted data search techniques to realize the
secure chunk retrieval and verification [109] or combine ORAM to hide the access pattern
[49], which are interesting future research directions.

2.6 Security Analysis

In this section, we show that the presented scheme accomplishes our security goals. As we
discussed, our proposal alleviates the online brute-force attack even when multiple clients
are compromised and we can diminish the attack efficiency by the per-backup rate-limiting
strategy. In what follows, we show that Fdedupe and offline brute-force attack prevention are
achievable as well.

3We need an additional 1-byte field cnt num in the chunk metadata to mark which set of containers this
chunk should go to.

22
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

Theorem 2.3. Our secure chunk-based deduplication protocol computing the ideal function-
ality Fdedupe is secure in the malicious model if the blind RSA signature is secure in the
random oracle model and the hash function G is modeled as a random oracle.

Proof. (Sketch) Assume the blind RSA signature protocol to be an oracle that takes in
parties’ inputs and then sends outputs to them. For simplicity, we only consider one KS
secret in the system, whose security can be easily extended to the multi-secret situation.
Suppose that there is a simulator S for the corrupted parties in the ideal world. S can
access Fdedupe in the ideal world and record message transcript from the protocol execution
in the real world. Therefore, the adversary A cannot distinguish the view IdealA,S(λr)
constructed by S in the ideal world from the view RealA(λr) in the real-world protocol
execution.

• Corrupted Cj: Assume that SS and KS are honest in this case. Simulator S records
the calls Cj makes to the blind RSA signature with the input chunk ch. It invokes the
ideal functionality Fdedupe with the same ch. S also records the output θ from the blind
RSA signature and keeps a list {(θ, k)}. If S receives a θ that appears on the list, it
returns the corresponding k as the chunk key. Otherwise, k is a random number and S
writes it back onto the list. In the end, Fdedupe also outputs a chunk key k∆ for ch and

θ′∆. S may simulate the message transcript as follows. It sets r =
θ′∆
θ

. z∆ is simulated
as reθe and h∆ = θe. If Cj behaves honestly, k is equal to k∆. On the other hand, A
can deviate from the protocol by modifying his inputs and replacing elements that are
sent to S. In this case, θ and k are random numbers in light of the RSA signature and
random oracle G. S can simulate the message transcript similar to the above. The
message transcripts cannot be computationally distinguished by adversary A in the
real and ideal worlds. Thus, IdealA,S(λr) and RealA(λr) are identically distributed.

• Corrupted KS: Assume that Cj and SS are honest. Fdedupe outputs θ′∆ for KS. S
can simulate the incoming message z∆ similarly to the above. KS can deviate from
the designated protocol execution by replacing the signature, which, however, will only
pass the client-side verification with negligible probability given the unforgeability of
blind RSA signature. Thus, A still cannot distinguish IdealA,S(λr) and RealA(λr).

• Corrupted SS: Assume that both Cj and KS are honest. By providing Fdedupe with
the input ch and di, S receives the chunk ciphertext c∆ = Enc(k∆, ch). If ch exists,
the ideal-world c∆ is the same as c in the real world. Otherwise, the chunk key and
ciphertext are random in both the real and ideal worlds. SS can deviate from the
protocol by modifying the ciphertext, which may result in a failed chunk deduplication.
Thus, A cannot distinguish IdealA,S(λr) and RealA(λr).

2.7. Performance Evaluation 23

According to Theorem 2.3, the proposed protocol securely computes the ideal functionality
Fdedupe. In addition, the adversary (in the case of corrupted SS) cannot generate the en-
cryption key from chunk data itself or access KS, thereby preventing the offline brute-force
attack.

2.7 Performance Evaluation

We implement our secure chunk-based deduplication system on the real-world backup storage
from File systems and Storage Lab at Stony Brook University [44]. We focus on the 2013
MacOS Snapshots dataset collected on a Mac OS X Snow Leopard server with 54 users.
There are 249 snapshots (daily backup) in total with the duration of 11 months, and each
snapshot is generated by using variable-sized chunking with an average chunk size of 8KB. To
simulate our enterprise backup setting, we synthesize each individual user’s daily backup by
extracting his files from the snapshot and incorporate data of UID-0 as the base file system.
The total size of the backup storage we considered here before deduplication is roughly
463 TB. We also set the size of the chunk container and LRU cache as 4 MB and 512 MB
respectively. We do not use the relevant optimization technique, such as parallelization. The
corresponding experimental results are an average of 100 trials.

The existing secure chunk-based designs [29, 68, 90], with the different research focus, do
not consider the protection of low-entropy data in the presence of a strong attacker and
the practical deduplication performance, such as fragmentation level. Their performance
should be roughly the same as that of plaintext CBD in terms of dedupe ratio and data
restore speed because they heuristically keep unique chunk copy in the system. We will
not explicitly mention them hereafter and only compare the proposed scheme with plaintext
CBD instead (see Sections 2.7.2 and 2.7.3).

2.7.1 Online Key Generation

We use Python to implement our TCP-based randomized oblivious key generation protocol
between the key server KS and client Cj. The server machine is equipped with a 3.1 GHz
AMD FX 8120 processor and 32GB DDR3 memory. On the same LAN, the client machine
has an Intel i3-2120 processor with 12GB memory. The blind RSA signature is implemented
with RSA1024 and SHA256. CE is instantiated by CTR[AES128].

Latency

We measure the latency incurred by the proposed online protocol, which is defined as the time
between that Cj sends out the request to and receives the response from KS. As shown in

24
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

Figure 2.5(a), the overhead of the basic scheme without optimizing the chunk key generation
is linear in the size of the client’s data. A large size backup data stream produces more
chunks, which will invoke more per-chunk key generation protocol instances. Figure 2.5(a)
also shows that the protocol latency is dramatically reduced and becomes constant if we
resort to the content-aware chunking and only run the protocol to generate the format key
kf . Thus, the latency merely depends on the number of distinct file formats in the backup
stream of the client (supposing all are predictable files), regardless of the size.

50 100 150 200 250
10−3

10−2

10−1

100

101

102

103

104

Backup stream size (MB)

La
te

nc
y

(s
)

 Basic scheme
 1 format key
 5 format keys
10 format keys
15 format keys

(a)

50 100 150 200 250
10−1

100

101

102

103

104

Backup stream size (MB)

T
im

e
co

st
 (

s)

Basic scheme
5 format keys

(b)

Figure 2.5: (a) Latency and (b) Client-side computation overhead for the online key genera-
tion protocol with increased size of backup stream of a client. We invoke an online protocol
instance for each chunk in our basic scheme.

Client-side Cost

We also measure the additional client-side cost due to the ROKG protocol and convergent
encryption. As shown in Figure 2.5(b), the overhead is mainly contingent on the size of the
backup data stream. It is worth noting that this cost still demonstrates the linearity with
the total backup data size even using the proposed efficient key generation algorithm. This
is because client still needs to carry out the offline hashing for each chunk key, and encrypts
them individually. Again, it shows a significant performance advantage by the efficient key
generation protocol.

2.7.2 Deduplication Effectiveness

We develop a deduplication simulator with C code to measure the corresponding dedupe
performance of the proposed scheme and compare our protocol with plaintext CBD.

2.7. Performance Evaluation 25

Adhering to our previous analysis (see Section 2.5.1), for a single backup attempt, for exam-
ple, the 40th backup in Figure 2.6, the dedupe ratio dr5 with 5 KS secrets is about half of
dr1 in the plaintext CBD, which exhibits a non-linear performance loss with n. Figure 2.6
also shows that the space reduction percentage sr is sensitive to the number of backups and
increases as periodic backup service continues. With more backup date added, sr gradually
approaches the plaintext dedupe performance regardless of the number of master secrets
used in the system because the size of the accumulated “original dataset” dominates the
computation for sr. As a result, we can adopt more KS secrets to achieve stronger privacy
protection with a minimal dedupability loss.

40 80 120 160 200 240
0.99

0.992

0.994

0.996

0.998

1

Number of backups

S
pa

ce
 r

ed
uc

tio
n

pe
rc

en
ta

ge

Plaintext CBD
5 keys
10 keys
15 keys

Figure 2.6: Space savings sr with the increased number of backup storage in the cloud.
Each backup includes snapshots of 54 users’ machines. The comparison is drawn between
the plaintext CBD, and our scheme using 5, 10, and 15 KS secret keys.

2.7.3 Fragmentation

We focus on the fragmentation/read performance comparison with plaintext CBD because of
the sequentially written/read files and defragmentation schedule in file-based deduplication.
Although our design shows a slight loss of dedupability so as to achieve the desired security
objectives, the chunk fragmentation level r for user backup is also reduced, thereby the
increased data restore speed shown in Figure 2.7(a) and Figure 2.7(b) respectively.

We neglect the actual low-level data placement on disk (i.e. our high spatial locality design
in Section 2.5.3), and other common optimization techniques (e.g. large container/cache).

26
Chapter 2. Secure Chunk-based Deduplication of Encrypted Data for

Cloud Backup

We use the same simulator to study the impact of fragmentation on a user’s backup data
caused by our security design only. The result, as shown in Figure 2.7(a), again validates
the importance of the fragmentation issue in the chunk-based deduplication that the more
data added to the storage, the more severe the chunk fragmentation level. Figure 2.7(a)
also shows that our design can maintain a lower fragmentation level than plaintext CBD. In
addition, the number of KS secret keys used in the system has a negligible impact on the
chunk fragmentation. Note that we can enjoy substantial fragmentation reduction with the
increased size of backup storage. Figure 2.7(b) accordingly shows that the proposed scheme
achieves better user backup read performance than plaintext CBD. As a result, we can use
more KS secret keys to realize faster restore speed and stronger privacy guarantees at the
same time.

(a) (b)

Figure 2.7: (a) Fragmentation level r and (b) data restore speed 1/r with the increased
number of backups in the cloud. Both fragmentation level and read performance are mea-
sured by recovering the backup dataset of a randomly selected user. All the comparisons are
drawn between the plaintext CBD, and our scheme using 5, 10, and 15 KS secret keys.

2.8 Summary

We in this chapter discuss and address challenges in designing a data deduplication system
at the chunk level. The impact of online brute-force attack can be substantially alleviated by
allowing clients to invoke the proposed randomized oblivious key generation protocol with a
key server and enforcing a per-backup rate-limiting policy. We also exploit the content-aware
deduplication technique to further improve the efficiency of the online key generation. Our
scheme is on par with the plaintext practice in terms of the deduplication performance while
gaining better security guarantees compared to the existing work.

Chapter 3

Efficient Verifiable Conjunctive
Keyword Search over Large Dynamic
Encrypted Cloud Data

3.1 Introduction

While cloud computing provides unparalleled benefits to its users in a “pay-as-you-go” man-
ner, such as on-demand computing resource configuration, ubiquitous and flexible access,
considerable capital expenditure savings, etc., security concern is still the major inhibitor of
cloud adoption for many large companies, organizations and individuals [114]. Encrypting
sensitive data before uploading them to cloud storage, e.g., Google Drive, Dropbox, etc.,
can avoid user privacy breach, but the obfuscated data thwart the cloud to quickly sort out
intended information as per user-selected keywords of interest.

In the literature, encrypted data search is proposed to address the above challenges, but
the majority of these schemes [23, 24, 34, 50, 62, 63, 106] assume that the cloud server is
semi-trusted. In other words, the server will not deviate from the designated protocol and
return erroneous search result. This assumption is usually insufficient in the real world due
to the underlying software/hardware malfunctions, financial incentives (cloud server may
intentionally save computational resources and return false result), or even the existence of
a malicious server controlled by an outside attacker, etc. Therefore, cloud users may desire
a more trustworthy secure search system beyond the semi-trusted model, i.e., they can be
assured of the authenticity of returned search result in a more challenging scenario where
a fully malicious cloud server exists. Furthermore, the result verification cost should be
minimal and affordable to users irrespective of the outsourced large data collection. Oth-
erwise it will not be of practical value considering the dramatically increasing number of
resource-constrained mobile devices.

27

28
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

On the other hand, a preferred verifiable search scheme should be constructed without
sacrificing other critical search functionalities. One of these is conjunctive keyword search
[23, 24, 50, 106], i.e., it allows the cloud server to produce search result containing all the
queried keywords within one search operation. This multi-keyword search capability not only
boosts search efficiency, but also improves the overall user experience. Moreover, a practical
scheme should also work for dynamic data [62, 63, 67, 105], i.e., search can be conducted even
after inserting, deleting, or modifying a file, which is specially appealing to users who would
like to update their files while retaining the encrypted data search functionality without
rebuilding the whole system from scratch.

In this chpater, aiming to provide all the above search functionalities in a challenging ma-
licious model while preserving search privacy, we propose an efficient verifiable conjunctive
keyword search scheme (VCKS) over large dynamic encrypted cloud data. We use the in-
verted index structure [34, 66, 67] to build our secure index and allow data user to delegate
her search task to a cloud server. We exploit the bilinear-map accumulator [6, 36] technique
to construct an authenticated data structure. As such the user can verify the returned search
result either privately by herself or with the assistance of a public TA. The proposed VCKS
scheme also supports file collection update, i.e., insertion, deletion and modification. Finally,
the extensive experimental evaluation shows the efficiency and practicality of our scheme.

3.2 Related Work

Secure search technique has been achieved in both symmetric [23, 24, 34, 50, 62, 63, 106]
and asymmetric [16, 108, 115] settings with a variety of search functionalities investigated
in the literature.

3.2.1 Static Search

In the symmetric setting, Curtmola et al. [34] proposed an efficient secure single-keyword
search scheme, and gave a formal security notion, i.e., security against chosen-keyword attack
(CKA1) and a stronger notion of adaptive security against chosen-keyword attack (CKA2).
To enrich the search functionality, secure multi-keyword search was realized in [24, 50] (con-
junctive keyword search) and [23, 106] (conjunctive and disjunctive keyword search). Fur-
thermore, Sun et al. [106] improved the search efficiency and accuracy using a tree-based
index structure and the cosine similarity measure in the vector space model. In the public
key scenario, Boneh et al. [16] presented the first public key encryption with keyword search
scheme constructed from identity-based encryption. Recently, Sun et al. [108] proposed the
first attribute-based keyword search scheme to realize fine-grained owner-enforced search
authorization. Note that the above schemes only support static data, and are secure against
a semi-trusted server.

3.2. Related Work 29

3.2.2 Dynamic Search

Goh [48] proposed a dynamic secure search scheme but the bloom filter based index may
introduce false positive into the final search result. Chang et al. [26] also presented a
dynamic search solution with linear search time. Kamara et al. [63] proposed a dynamic
version of [34], supporting data insertion and deletion on the outsourced dataset, and proved
it CKA2-secure. Later they accelerated the search process by using parallelization technique
[62]. However, these works will not be secure against a malicious adversary, and users cannot
verify the authenticity of returned search result.

Table 3.1: Comparison of verifiable search solutions.

Scheme Query type Dynamism Verifiability PPE1

[116] single static private no
[74] range dynamic private no
[66] single static private no
[67] single dynamic public/private no
[107] conjunctive2 static private no
[110] conjunctive static private no
[105] single dynamic private no

This work conjunctive dynamic public/private yes
1 PPE = Practical performance evaluation.
2 This work also supports disjunctive keyword search.

3.2.3 Verifiable Search

Wang et al. [116] use the hash chain to verify the single keyword search result. In [74], a
verifiable logarithmic-time search scheme was presented to support range queries. Kurosawa
et al. proposed the first UC-secure verifiable search scheme with single keyword [66] and
extended it to a dynamic version [67] later. For static data, Sun et al. proposed the first veri-
fiable multi-keyword (conjunctive and disjunctive) search with hash and signature techniques
in [107] and later presented a verifiable attribute-based keyword search in [110]. Stefanov et
al. [105] recently gave a dynamic encrypted data search scheme with small search privacy
leakage, which enables result verification for single keyword search. It is worth noting that
most of these search verification mechanisms are heuristic constructions without evaluating
the practical performance, especially for large-scale dataset stored in the cloud. In addition,
no scheme can achieve conjunctive, dynamic, and publicly/privately verifiable search at the
same time as shown in Table 3.1.

30
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

Trusted authority

Data user

Data owner

Cloud server

Figure 3.1: System model.

3.3 Problem Formulation

Our proposed VCKS scheme consists of three main entities: data owner, data user, and cloud
server, as shown in Figure 3.1. Data owner first prepares ciphertexts C = {c1, c2, ..., cn} for
the file collection F = {f1, f2, ..., fn} of size n by using any secure encryption algorithm,
such as AES. She also generates an encrypted index with a pre-defined dictionary W =
{w1, w2, ...wm} containing m keywords and verification related data for these files. Then data
owner uploads all the above information to cloud server. Later she can update the server-
hosted file collection arbitrarily, i.e., file insertion, deletion or modification. Authorized data
users are able to obtain a search token from data owner for multiple keywords of interest and
other auxiliary information via the search control mechanism [34], which is outside the scope
of this work. On receiving the search token from data user, server performs the conjunctive
keyword search over the secure index of C. Our scheme supports both private and public
search result verification as shown in Figure 3.1. For the latter, data user can offload the
computational burden of verification to a public TA. In this case, server returns the result
and its proof to the TA. The TA will send the result to the user if it is valid. Otherwise, it
notifies the user of its rejection.

3.3. Problem Formulation 31

3.3.1 Definition of VCKS

We give the definition of our scheme in the following.

Definition 3.1. (Verifiable conjunctive keyword search). A verifiable conjunctive keyword
search scheme for dynamic data is a tuple (Setup, Enc, GenTree, GenToken, Search, GenProof,
UpdToken, Update, Verify, Dec) of ten polynomial-time algorithms such that:

• (K, s, pub)← Setup(1λ): On input a security parameter λ, this probabilistic algorithm
outputs secret keys K, s, and other public parameters pub.

• (γ, C) ← Enc(K, δ, F): On input a secret key K, an index δ and a set of files F , this
probabilistic algorithm outputs an encrypted index γ, and a set of ciphertexts C.

• T ← GenTree(s, δ, C): On input a secret key s, an index δ and ciphertexts C, this
deterministic algorithm outputs an accumulation tree T (see Section 3.4).

• τQ ← GenToken(K,Q): On inputK and an intended keyword setQ = {wj1 , wj2 , ..., wjt} ⊆
W , this (possibly probabilistic) algorithm outputs a search token τQ.

• C(Q) ← Search(γ, τQ, C): On input an encrypted index γ, a search token τQ and
ciphertexts C, this deterministic algorithm outputs the search result C(Q) for the
file list LQ, where each ciphertext ci contains all the intended keywords in Q and its
identifier i is included in LQ.

• Π← GenProof(C(Q), T, pub): On input a search result C(Q), an accumulation tree T
for the file storage and public parameters pub, this deterministic algorithm outputs a
proof Π.

• τu ← UpdToken(u, fi, d(v)): On input an update operation u ∈ {modify, insert, delete},
a file fi and corresponding digests d(v) for nodes v in T , this (possibly probabilistic)
algorithm outputs an update token τu.

• (γ′, C ′, T ′)← Update(γ, C, T, τu): On input an encrypted index γ, a set of ciphertexts
C, an accumulation tree T and an update token τu, this deterministic algorithm outputs
new γ′, C ′, and T ′.

• (accept, reject) ← Verify(C(Q),Π, d(r), pub): On input a search result C(Q), a proof
Π, a root digest d(r) from data owner, and parameters pub (also the secret key s in the
case of private verification), this deterministic algorithm outputs accept if the search
result is valid; else, it outputs reject.

• f ← Dec(K, c): On input K and a file ciphertext c, this deterministic algorithm outputs
a plaintext file f .

32
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

3.3.2 Security Definition

Privacy

Almost all the existing secure search schemes [23, 34, 50, 62, 63, 66, 67, 105, 106] leak search
pattern, i.e., whether the same keyword was used for search in the past or not, and access
pattern, i.e., after searching keywords in Q, the file list LQ is disclosed. In practice, these
privacy information cannot be preserved efficiently. Thus, we in this work do not aim to
protect them. Similar to [62], we define two stateful leakage functions L1 and L2 to precisely
capture what is being revealed by ciphertext and the tokens: 1) L1(δ, F). On input the index
δ and the file collection F , this function outputs the dictionary size |W|, the file collection
size |F |, the file identifiers i and its size |i|, and the size of each file |fi|. For update, this
function also reveals the identifiers and/or the size of the corresponding files; 2) L2(δ, F,Q).
Given the index δ, the file collection F , and the keyword set Q searched in the past, this
leakage function reveals search and access patterns.

We adapt the privacy definition in [67] to a dynamic conjunctive keyword search setting,
where a semi-trusted server is considered. Note that this security definition is slightly
stronger than CKA2 security defined in [34, 62, 63].

Definition 3.2. (Privacy). For a dynamic conjunctive keyword search scheme as given in
Definition 3.1, we consider the following experiments, where A is a stateful adversary, S is
a stateful simulator, and L1 and L2 are stateful leakage functions.

RealA(λ): The challenger runs Gen(1λ) to generate a key K. A sends a tuple (F, δ) to the
challenger and receives (γ, C) ← Enc(K, δ, F). The adversary makes a polynomial number
of queries by picking q ∈ {Q, (u, i)}. If q = Q is a search query then the adversary receives a
search token τQ ← GenToken(K,Q) from the challenger. If q = (u, i) the adversary receives
from the challenger an update token τu ← UpdToken(u, i). Finally, A outputs a bit b.

IdealA,S(λ): A chooses a tuple (F, δ). Given L1(δ, F), simulator S outputs a tuple (γ, C)
and returns it to A. In the search phase, the adversary makes a polynomial number of
queries by picking q ∈ {Q, (u, i)}. If q = Q is a search query, reveal L2(δ, F,Q) to S and
return τQ generated by S to A. If q = (u, i), S is given the updated output of L2(δ, F, {wj})
and sends τu to A. Finally, A outputs a bit b in this experiment.

We say that our dynamic conjunctive keyword search scheme in Definition 3.1 satisfies privacy
if there exists a PPT simulator S such that for any PPT adversary A, |Pr[RealA(λ) =
1]− Pr[IdealA,S(λ) = 1]| is negligible.

Verifiability

Due to possible data corruption, software/hardware malfunctions, and even the existence of
a malicious server in the system, search result returned to the user may be false or contain

3.3. Problem Formulation 33

errors. The data user should be able to detect such misbehavior to guarantee the validity
of the search operation. Specifically, given a valid search result C(Q) and its proof Π for a
search token τQ , the adversary A wins if she can forge invalid C∗(Q) and Π∗ that will pass
the Verify algorithm. We have the following definition.

Definition 3.3. (Verifiability). A verifiable and dynamic conjunctive keyword search scheme
in Definition 3.1 satisfies verifiability if for any PPT adversary A, the probability of suc-
cessfully forging search result and its proof is negligible for any fixed (F,W , γ) and search
tokens τQ.

UC-Security

The security of a protocol proven in a stand-alone setting is preserved under composition
if it is secure in the universally composable security framework [22]. In the UC framework,
an environment Z exists to produce all the input and read all the output in the system,
and arbitrarily interacts with an adversary A. We say a protocol securely realizes a given
functionality F if for any adversary A, there exists an ideal-world adversary S such that no
Z can tell wether it is interacting with A and parties running the protocol, or with S and
parties that interact with F in the ideal world. We define the ideal functionality F of our
proposed VCKS scheme in what follows.

Definition 3.4. (Ideal functionality F). The adversary S is only given L1(δ, F) and L2(δ, F,Q)
in this ideal world. The ideal functionality F interacts with user (data owner or data user)
P1, server P2 and adversary S, and runs as below:

• On receiving (F, δ) from P1, verify that it is the first upload input from P1. If so, store
(F, δ), and reveal L1(δ, F) to S. Otherwise discard this input.

• On receiving search token τQ from P1, reveal L2(δ, F,Q) to S. If S returns “accept”,
send search result to P1; else, send “reject” to P1.

• On receiving update token τmod from P1, replace corresponding file in F and reveal
L1(δ, F) to S.

• On receiving update token τdel from P1, delete corresponding file in F and reveal
L1(δ, F) to S.

• On receiving update token τin from P1, insert corresponding file to F and reveal L1(δ, F)
to S.

34
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

3.4 Preliminaries

3.4.1 Bilinear-map Accumulator

Bilinear-map accumulator [6, 36] is an efficient data authentication mechanism that provides
a constant-size digest for an arbitrarily large set of inputs, and a constant-size witness for
any element in the set such that it can be used to verify the (non-)membership of the element
in this set. Bilinear-map accumulator can be realized using either symmetric or asymmetric
pairing. For ease of illustration, we adopt the symmetric version in this study.

Let G and GT be two cyclic multiplicative group with the same prime order p. g is a generator
of G. Thus, a bilinear pairing is defined as e : G×G→ GT with the properties of bilinearity,
computability and non-degeneracy. To construct a bilinear-map accumulator, we generate
an accumulation value acc(L) = g

∏
ai∈L

(ai+s) in G for a set L of n elements {a1, a2, ..., an} in
Z∗p, where s ∈ Z∗p is a randomly chosen value and

∏
ai∈L(ai+s) is a characteristic polynomial

for the set L. For any subset L′ ⊆ L, a witness WitL′,L = g
∏
ai∈L−L′

(ai+s) can be produced.
Subsequently, the subset test can be carried out by checking

e(g
∏
ai∈L′

(ai+s),WitL′,L)
?
= e(acc(L), g). (3.1)

Note that only given corresponding elements a and {gsi : 0 ≤ i ≤ q} where q is an upper
bound on n, g

∏
(a+s) can be constructed with polynomial interpolation [89]. The security of

the bilinear-map accumulator is derived from the q-strong bilinear Diffie-Hellman (q-SBDH)
assumption [86].

This data structure can also support update operation. For example, to insert a new element
an+1 into the set L, we can obtain a new set accumulation value acc′(L) = acc(L)(an+1+s),
and acc′(L) = acc(L)(ai+s)

−1
is an updated accumulation value after deleting some element

ai from L.

3.4.2 Accumulation Tree

To support efficient integrity check over multiple sets in one data structure, we extend
bilinear-map accumulator to a collision-resistant accumulation tree [86]. Specifically, sup-
pose there are m sets {L1, ..., Lj, ..., Lm}, for each of which acc(Lj) is computed. By choosing
a constant 0 ≤ ε ≤ 1, a tree T can be generated with l = d1/εe levels and m leaves. Each
leaf node v represents a particular set Lj in the set collection. It stores the accumulation
value acc(Lj) and d(v) = acc(Lj)

(s+j) (this proves that Lj refers to acc(Lj)). Each internal
node v of this constant-height tree T has degree O(mε) and contains the hash d(v) of a set
of its children N(v), where d(v) = g

∏
u∈N(v)(s+h(d(u))) and h : G → Z∗p is a collision-resistant

hash function. Hence, the integrity of the set is protected by its accumulation value and the

3.5. Our Construction 35

accumulation tree protects the integrity of all the accumulation values stored in the leaves.
For instance, Figure 3.2 shows a 2-degree accumulation tree of 2 levels for sets L1, L2, L3

and L4 by selecting ε = 0.5.

Figure 3.2: Example of an accumulation tree with ε = 0.5.

Not only does an accumulation tree support update operation on dynamic data collection,
which is inherent from bilinear-map accumulator, it also can be used to verify set operations,
such as set intersection. More precisely, given t queried sets {Lj1 , Lj2 , ..., Ljt}, the intersection
set I = Lj1 ∩ Lj2 ∩ ... ∩ Ljt should satisfy the following two conditions.

• Subset: I ⊆ Lj1 ∩ I ⊆ Lj2 ∩ ... ∩ I ⊆ Ljt ;

• Completeness: (Lj1 − I) ∩ (Lj2 − I) ∩ ... ∩ (Ljt − I) = ∅.

To meet the first requirement, the verifier only needs to check Equation 3.1. As for complete-
ness condition, suppose Ajb(s) is the characteristic polynomial of set Ljb − I for 1 ≤ b ≤ t.
We need find another t polynomials Pjb(s) such that

∑t
b=1 Pjb(s)Ajb(s) = 1, which can be

computed efficiently by Euclidean algorithm. Thus we obtain the completeness witnesses
CwitI,Ljb = gPjb (s) accordingly. Given the subset witnesses WitI,Ljb = gAjb (s), we say the
completeness condition is satisfied if the following equation holds:

t∏
b=1

e(CwitI,Ljb ,WitI,Ljb)
?
= e(g, g). (3.2)

3.5 Our Construction

By indexing the dataset using inverted index structure [67], we design our VCKS scheme
with an efficient result verification mechanism that can be realized in both public and private

36
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

settings. The index δ = {aj,i} in our scheme is an m×n matrix as shown in Figure 3.3 such
that if fi contains the keyword wj, then aj,i = 1; otherwise set aj,i = 0. We denote δj as
the jth row of δ. In what follows, we begin to describe our proposed VCKS scheme in terms
of system level operations, i.e., Data Upload, Search, Data Download, Update, where
each operation may contain one or more algorithms in Definition 3.1.

1 1
1 0

01 1

1
0

 m

n

 0 0 0

0
1

1

1

0

0

1

1

Figure 3.3: Illustration for matrix index δ and insertion operation for fn+1.

3.5.1 Data Upload

In this initial operation, the data owner generates a secret key set K = (k1, k2, k3) by calling
the algorithm Setup, where k1 and k2 are keys of a pseudorandom function prfk, and the key
k3 is for the secure symmetric-key encryption algorithm Enc and decryption algorithm Dec
shared with data user. The data owner uses the algorithm Enc to encrypt the file collection
F into a ciphertext set C. She then prepares the secure index γ = {(πϕ(j), δ

′
ϕ(j))1≤j≤m} as

follows:

1. For each keyword wj ∈ W , compute πj = prfk1(wj);

2. Set δ′j equal to the first n bits of δj ⊕ prfk2(wj);

3. Apply a random permutation ϕ on {1, ...,m}.

The Setup algorithm also outputs a secret key s, and public parameters pub = {p,G,GT , g, e, h, g
s,

gs
2
, ..., gs

q}, where q = max{m,n}. Subsequently, the data owner generates an accumulation
tree T for index δ using the algorithm GenTree. For a leaf node v of T pointing to a cipher-
text set C(i)j = {ci|aj,i = 1} associated with δj, compute digest d(v) = acc(C(i)j)

(πj+s) =

3.5. Our Construction 37

g
∏
ci∈C(i)j

(h(i,ci)+s)(πj+s) and store it in this leaf node. Otherwise, let d(v) = g
∏
u∈N(v)(h(d(u))+s).

d(r) is the digest on the root node r of T .

The data owner retains the secret key s and all the node digests d(v) for v ∈ T . Then she
uploads the file ciphertexts C and the secure index γ along with the accumulation tree T to
the cloud server.

3.5.2 Search

For a set Q of t intended keywords {wj1 , ..., wjt} from data user, the data owner calls the algo-
rithm GenToken to obtain the search token τQ = {(αjb = prfk1(wjb), βjb = [prfk2(wjb)]1...n)}
for 1 ≤ b ≤ t, where βjb is the first n bits of prfk2(wjb), and returns it to the user.

After receiving the search token from the data user, the Search algorithm is invoked by the
cloud server. More precisely, it identifies each tuple (πϕ(jb), δ

′
ϕ(jb)

) in the secure index γ if
πϕ(jb) = αjb . Next, the cloud server is able to recover δjb = δ′ϕ(jb)

⊕ βjb for 1 ≤ b ≤ t.

Finally, the search result C(Q) can be derived by performing intersection operation on sets
{δj1 , δj2 , ..., δjt}, where ci ∈ C(Q) contains all t keywords of interest in Q.

The server also prepares the proof Π for (public) result verification with the GenProof algo-
rithm as below:

• Accumulation value acc(C(i)jb) and Πjb for each index row δjb . Let v0, v1, ..., vl be
the path in T from the leaf node v0 associated with acc(C(i)jb) to the root node

vl = r. Set ψz = g
∏
u∈N(vz)\vz−1

(h(d(u))+s)
for z = 1, 2, ..., l. As such, Πjb is defined as

{(d(v0), ψ1), (d(v1), ψ2), ..., (d(vl−1), ψl)};

• Subset witnessWitC(Q),C(i)jb
and completeness witness CWitC(Q),C(i)jb

, for b = 1, 2, ..., t;

• Coefficients σ0, σ1, ..., σρ of the characteristic polynomial for {h(i, ci)}1, where ci ∈
C(Q) and ρ is the size of the search result;

• The root node digest d(r).

The cloud server returns all the encrypted files C(Q) identified in LQ and the proof Π.

1Given the roots of the polynomial, we can compute its coefficients efficiently by polynomial interpolation
[89]. Accumulation value, subset witness and completeness witness can also be constructed by using the
corresponding coefficients and public parameters g, gs, ..., gs

q

.

38
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

3.5.3 Data Download

The data user first verify the search result in either public or private setting.

Input: Search result C(Q), proof Π, root node digest d(r) from data user and system
parameters pub.

Output: “accept” or “reject”.

1 Check d(r) in Π with that from data user, and the correctness of coefficients σ0, σ1, ..., σρ.
If any one fails output “reject”, otherwise continue;

2 for b = 1→ t do

3 Check e(d(v0), g)
?
= e(acc(C(i)jb), g

πjbgs) (3.3);
4 for z = 1→ l − 1 do

5 Check e(d(vz), g)
?
= e(ψz, g

h(d(vz−1))gs) (3.4);
6 end

7 Check e(d(r), g)
?
= e(ψl, g

h(d(vl−1))gs) (3.5);
8 If any one of the Equations 3.3, 3.4 and 3.5 fails, output “reject”, otherwise continue;

9 end
10 Check subset condition by Equation 3.6. If it fails, output “reject”, otherwise continue;
11 Check completeness condition by Equation 3.2. If it fails, output “reject”, otherwise

continue;
12 If none of the above fails, output “accept”;

Algorithm 3.1: Public Search Result Verification

Public verifiability

The data user delegates the verification task to a public TA. In this scenario, the cloud server
returns the search result and its proof to the TA. With only access to public parameters, i.e.,
gs

i
, the TA calls the algorithm Verify to verify the search result as illustrated in Algorithm

3.1. Note that the user also needs to send the latest root node digest d(r) acquired from the
data owner to the TA in order to facilitate the result verification (line 1)2. Given search result
C(Q), the coefficients can be verified efficiently (line 1) [86]. By checking Equations 3.3, 3.4
and 3.5 (line 3, 5 and 7 respectively), we can guarantee that the index row δjb is associated
with the jb

th leaf node of T . To check the subset condition for all the corresponding C(i)jb
in a batch manner (line 10), we make use of the equation below

e(

ρ∏
ι=0

(gs
ι

)σι ,
t∏

b=1

WitC(Q),C(i)jb
)

?
= e(

t∏
b=1

acc(C(i)jb), g), (3.6)

2The data owner can also sign this digest with a time stamp to guarantee the freshness of the search
result, but the TA (or user in the private setting) needs additional cryptographic operations to verify this
signature.

3.5. Our Construction 39

where gs
i

is from the public parameters pub. If the algorithm outputs “accept”, C(Q) is
indeed the search result with respect to the queried keyword set Q. the TA will send it to
the data user. The user then decrypts ci to fi by calling the algorithm Dec. Otherwise, the
TA notifies the user of the rejection.

Input: Search result C(Q), proof Π (exclusive of the coefficients σ0, σ1, ..., σρ), root node
digest d(r) from data owner and system parameters pub.

Output: “accept” or “reject”.

1 Check d(r) in Π with that from data owner. If it fails, output “reject”, otherwise continue;
2 for b = 1→ t do

3 Check e(d(v0), g)
?
= e(acc(C(i)jb), g

(πjb+s)) (3.7);
4 for z = 1→ l − 1 do

5 Check e(d(vz), g)
?
= e(ψz, g

(h(d(vz−1))+s)) (3.8)
6 end

7 Check e(d(r), g)
?
= e(ψl, g

(h(d(vl−1))+s)) (3.9);
8 If any one of the Equations 3.7, 3.8 and 3.9 fails, output “reject”, otherwise continue;

9 end
10 Check subset condition by Equation 3.10. If it fails, output “reject”, otherwise continue;
11 Check completeness condition by Equation 3.2. If it fails, output “reject”, otherwise

continue;
12 If none of the above fails, output “accept”;

Algorithm 3.2: Private Search Result Verification

Private Verifiability

In case the TA is unreachable or does not even exist, we are able to achieve more compu-
tationally efficient private search verification by giving the secret key s to legitimate users
as shown in Algorithm 3.2. The cloud server directly returns the result and its proof to the
user. The proof Π does not include the coefficients σ0, σ1, ..., σρ. Note that with secret key s,
Equations 3.7, 3.8, 3.9 and 3.10 can be computed more efficiently than their counterparts in
the public Verify algorithm. The subset condition can be verified by the following equation:

e(g
∏
ci∈C(Q)(h(i,ci)+s),

t∏
b=1

WitC(Q),C(i)jb
)

?
= e(

t∏
b=1

acc(C(i)jb), g). (3.10)

3.5.4 Update

In a dynamic cloud storage, the data owner is able to modify, insert or delete files arbitrarily.

40
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

Modification

This update operation only results in a modified version f ′i of the original file fi and has
the file identifier i unchanged. Suppose that f ′i has the same keywords with fi. Hence,
the data owner does not need to update the secure index. By the algorithm UpdToken, the
data owner acquires the update token τmod = (i, c′i, {d′(v)}). c′i is the ciphertext of f ′i and
{d′(v)} is the modified digest set computed as follows. For the path v0, v1, ..., vl from a leaf
node v0 containing c′i to root node vl = r, update d′(v0) = d(v0)(h(i,ci)+s)

−1(h(i,c′i)+s) and set
d′(vz) = d(vz)

(h(d(vz−1))+s)−1(h(d′(vz−1))+s) for z = 1, ..., l. On receiving this update request
from the owner, the cloud server updates the ciphertext set and accumulation tree.

Deletion

To delete a file fi from the storage, the data owner adopts the UpdToken algorithm to generate
an update token τdel = (i, {d′(v)}). The deletion operation is analogue to file modification
except that for each leaf node containing ci, set corresponding d′(v0) = d(v0)(h(i,ci)+s)

−1
.

Finally the server uses the Update algorithm to delete the original ciphertext ci, and produce
a new accumulation tree T ′.

Insertion

To insert a new file fn+1 into current file collection, the algorithm UpdToken generates a new
(n+1)th column cln+1 for the matrix index δ as shown in Figure 3.3. For 1 ≤ j ≤ m, aj,n+1 = 1
if the file contains keyword wj; let aj,n+1 = 0 otherwise. Then cln+1 is obfuscated to cl′n+1 by
aj,n+1⊕ [prfk2(wj)]n+1 and apply the random permutation ϕ to cl′n+1, where [prfk2(wj)]n+1 is
the (n+1)th bit of prfk2(wj). The owner encrypts fn+1 to cn+1 by Enc. With the related new
leaf node digests d′(v0) = d(v0)(h(n+1,cn+1)+s), an updated digest set {d′(v)} can be computed.
The corresponding update token τin is a tuple (n + 1, cn+1, cl

′
n+1, {d′(v)}), which allows the

cloud server to update the file collection, the secure index and accumulation tree by calling
the Update algorithm.

Remark 3.5. Data owner may keep a set of succinct file stubs h(i, ci) after Data Upload
operation for update efficiency. The storage overhead is negligible compared with the size of
F . Otherwise, she need sign them and interact with server every time the Update algorithm
is triggered. In the private setting, data user with secret key s and file digest information
from data owner can also update the file collection. This is a desirable feature in the case
that the outsourced dataset is allowed to be written by multiple group users.

3.6. Security Analysis 41

3.6 Security Analysis

In this section, we analyze the security properties of our proposed scheme and show that it
achieves the defined security goals. We first prove that our VCKS scheme satisfies privacy in
Definition 3.2 with a semi-trusted server (adversary). After incorporating the verifiability in
Definition 3.3, our final scheme achieves the stronger notion of security, namely UC-security
against a malicious adversary (see Section 3.3.2).

Theorem 3.6. The VCKS scheme satisfies privacy in Definition 3.2.

Proof. Let A and S be an adversary and a simulator in IdealA,S(λ) in Definition 3.2, re-
spectively. Given the leakage function L1(δ, F), S outputs (γ′, C ′) as follows. It simulates
the encrypted file ci = Enck1(0|fi|) for i = 1, ..., n, where k1 is randomly selected for the CPA-
secure encryption algorithm Enc, and |fi| is revealed by L1. To simulate the secure index
γ = {(πϕ(j), δ

′
ϕ(j))} for j = 1, ...,m, S sets πj as a random number and chooses δj ∈ {0, 1}n

at random. S then applies a random permutation ϕ on {1, ...,m} and sends (C ′, γ′) to A.

Adversary A can make a polynomial number of queries by picking q ∈ {Q, (u, i)}. If q is a
search query for a keyword set Q of t conjunctive keywords {wjb}b=1,...,t, the leakage function
L2(δ, F,Q) reveals LQ to S. Given this, for b = 1, ..., t S can generate ajb,i = 1 if i ∈ LQ;
otherwise, set ajb,i = 0. Then S sets αjb = πϕ(jb)

and computes βjb = δ′ϕ(jb)
⊕ (ajb,1, ..., ajb,n).

She returns τ ′Q = {(αjb , βjb)} to A. If q = (u, i) is an update query: 1) u = modify. Given

|f ′i | from leakage function, S simulates c′i = Enck1(0|f
′
i |). Then S sends τ ′mod = (i, c′i) to A; 2)

u = delete. S returns τ ′del = i to A; 3) u = insert. With |fn+1| from L1(δ, F), S computes
cn+1 = Enck1(0|fn+1|). Choose cl′n+1 ∈ {0, 1}m and apply the random permutation ϕ on it.
Then S sends τ ′in = (n+ 1, cn+1, cl

′
n+1) to A.

The adversary A cannot distinguish C ′ from C in experiment RealA(λ) since Enc is CPA-
secure. Due to the pseudorandom function prf used in RealA(λ) A cannot distinguish
γ′ from γ either. Likewise, A cannot tell the differences between {τ ′Q, τ ′mod, τ ′del, τ ′in} in
IdealA,S(λ) and {τQ, τmod, τdel, τin} in RealA(λ) because of the CPA-secure Enc, pseudo-
random function prf and random permutation ϕ. Thus, A cannot distinguish RealA(λ)
and IdealA,S(λ).

Next, we prove the VCKS scheme secure against a malicious adversary.

Theorem 3.7. The proposed VCKS scheme satisfies privacy in Definition 3.2 and verifia-
bility in Definition 3.3.

Proof. (Sketch) Similar to the proof of Theorem 1, we can prove privacy property. Therefore
we only prove verifiability.

42
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

Suppose the adversary A can break verifiability with non-negligible probability for any fixed
(F,W , γ) and search tokens τQ. A can produce (C∗(Q),Π∗) 6= (C(Q),Π) but the public Verify
algorithm outputs accept. C(Q) and Π are valid search result and its proof respectively.

We will show that the probability of the above situation is negligible given the collision-
resistant hash function h and the security of the accumulation tree proved in [86].

C∗(Q) = C(Q) and Π∗ 6= Π. If only d∗(r) 6= d(r), the Verify algorithm will definitely output
reject. If the coefficients in Π∗ are computed incorrectly, the coefficient validity check will
fail with high probability. If either the accumulation value or the related Πj is incorrect, one
of the Equations 3.3, 3.4 and 3.5 will not hold with non-negligible probability. Otherwise,
the subset condition by Equation 3.6 or the completeness condition by Equation 3.2 will fail.

C∗(Q) 6= C(Q) and Π∗ = Π. In this case, the probability that Verify outputs accept is
negligible because given the coefficients in Π∗ equal to those in Π and different search results,
the coefficient validity check will succeed only with negligible probability. Even if it passes
this check, it will not satisfy the subset condition by Equation 3.6 or the completeness
condition by Equation 3.2.

C∗(Q) 6= C(Q) and Π∗ 6= Π. If d∗(r) 6= d(r), the Verify algorithm will output reject. If the
integrity of the accumulation tree and the corresponding accumulation values is verified, and
the coefficients in Π∗ are computed correctly, C∗(Q) will not satisfy the subset condition by
Equation 3.6 or the completeness condition by Equation 3.2.

For the private Verify algorithm, we are also able to prove the verifiability property analogue
to the above proof.

In what follows, we prove the UC-security of our scheme.

Theorem 3.8. The VCKS scheme is UC-secure if it satisfies privacy in Definition 3.2 and
verifiability in Definition 3.3.

Proof. (Sketch) If no parties are compromised by the adversary A in our protocol, for each
keyword set Q, the user (P1) outputs the correct search result C(Q). Thus the environment
Z cannot distinguish the real world from the ideal world since it only interacts with P1.

If P1 is corrupted by A, then A can send the communication pattern of P1 to Z. In the ideal
world, an adversary S can run A internally by playing the role of server (P2). All messages
between Z and A are forwarded by S. Z cannot distinguish the real world from the ideal
world since it will not interact with P2 and S can play the role of P2 faithfully.

If A corrupts P2 and P2 breaks verifiability in Definition 3.3 with negligible probability,
the ideal world adversary S can run A internally by playing the role of P1. All messages
between Z and A are forwarded by S. As such, S acts as same as the simulator in the
Definition 3.2 and the ideal functionality F will reveal L1 and L2 to S. From the proof
of the Theorem 3.6, we can see that the inputs to A are distinguishable from those in the

3.7. Performance Evaluation 43

real world. In other words, A in the ideal world behaves as same as in the real world. On
the other hand, Z cannot distinguish the outputs of the user in the real world and in the
ideal world from the proof of the Theorem 3.7. For a search query, if A returns the valid
ciphertext of the search result and its proof, the user will output correct plaintext of the
search result in the real world, and in the deal world, S will return “accept” to F and F will
send correct plaintext of the search result to P1; otherwise, the user will output “reject”, and
Z will receive “reject” in the real world, and in the ideal world, S will return “reject” to F ,
F will send “reject” to P1 and Z will receive “reject” from P1. For all the update queries,
i.e., modify, delete and insert, the user receives nothing from A. Therefore, she can always
update the corresponding authentication information correctly and outputs nothing. Thus,
Z cannot distinguish the real world from the ideal world.

2 4 6 8 10
0

1

2

3

4

Number of files n (×105)

S
ea

rc
h

tim
e

(m
s)

(a)

5 10 15 20 25 30
0

5

10

15

20

Number of intended keywords

S
ea

rc
h

tim
e

(m
s)

(b)

Figure 3.4: Search efficiency. (a) For the different size of file collection with the number of
queried keywords t = 2; (b) For the different number of queried keywords with the number
of files n = 2× 105.

3.7 Performance Evaluation

In this section, we evaluate the performance of our proposed VCKS scheme with real-world
dataset, i.e., the Enron Email Dataset [32], which consists of about half million files. To
demonstrate the efficiency and effectiveness of the VCKS, we extend the size of this dataset
to one million by inserting duplicates but with different file identifiers. For simplicity, we
set a two-level accumulation tree with ε = 0.5. We conduct the experiment using C and
the Pairing-Based Cryptography (PBC) Library [102] on a Linux server with Intel Core i7
Processor 2.4GHz. We adopt the type A elliptic curve of 160-bit group order to realize
the symmetric version of our proposed scheme, which provides 1024-bit discrete log security

44
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

equivalently. Our scheme can also be implemented by any other secure asymmetric pairing
technique. The experimental result is an average of 10 trials.

3.7.1 Storage Overhead

Server side

The cloud server only stores the file ciphertexts C, the secure index γ and the accumulation
tree T after the Setup operation by data owner. The storage overhead of C varies a lot for
different file encryption method. Thus, we do not consider it here. For the size of γ, it is
mainly determined by file collection size n and dictionary size m. As shown in Table 3.2,
if there are one million files in the collection, the size of γ is linear to m. On the other
hand, if m is fixed, the size of index is proportional to n as shown in Table 3.3. Our search
verification scheme is storage-efficient, because Table 3.4 shows that the storage overhead of
T with the fixed number of levels is only up to m, regardless of the dataset size n, and a
minimal storage space suffices to host this tree structure.

Table 3.2: Size of encrypted index with n = 1, 000, 000.

m 1,000 2,000 3,000 4,000 5,000
Size of γ (MB) 125.03 250.06 375.10 500.13 625.16

Table 3.3: Size of encrypted index with m = 2, 000.

n (×105) 2 4 6 8 10
Size of γ (MB) 50.06 100.06 150.06 200.06 250.06

Table 3.4: Size of accumulation tree with two levels.

m 1,000 2,000 3,000 4,000 5,000
Size of T (KB) 66.1 103.9 195.6 260.1 324.6

Client side

The data owner and data users are all clients of the secure search system. In the public
scenario, apart from the secret key s, data owner keeps the root node digest d(r) after
the accumulation tree generation phase and later sends it to users for search verification
propose. She also retains the hash values h(i, ci) for all the files in C to efficiently update
the file collection. In the private setting, data owner sends users s, d(r) and h(i, ci) to enable

3.7. Performance Evaluation 45

efficient Update and private verification operations. The main storage overhead on the client
side is to host all the hash values h(i, ci). We implement the hash function with SHA-256.
Thus, for one million files, the size of their hash values are merely 32 MB.

3.7.2 Search Efficiency

The main computational cost for search process is to do the set intersection on t binary
index vectors of size n with complexity O(tn). We apply the bitwise AND operation to the
queried keyword vectors {δjb} for b = 1, ..., t. As shown in Figure 3.4(a), given the same two
queried keywords, time cost for search is linear to file collection size n. In Figure 3.4(b), it
shows that search is more time-consuming with the increased number of intended keywords.
Experiment shows that our proposed VCKS scheme enables very fast conjunctive keyword
search even with considerably large file collection. With a more powerful cloud server in
practice, we expect that the search operation can be more efficient.

2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

Number of files n (×105)

T
im

e
fo

r
pu

bl
ic

 v
er

ifi
ca

tio
n

(s
)

Kurosawa et al.
VCKS

(a)

2 4 6 8 10
10

−2

10
−1

10
0

10
1

Number of files n (×105)

T
im

e
fo

r
pr

iv
at

e
ve

rif
ic

at
io

n
(s

)

Kurosawa et al.
VCKS

(b)

Figure 3.5: Verification efficiency with t = 2. (a) Public verification; (b) Private verification.

3.7.3 Verification Efficiency

We evaluate the performance of the proposed verification mechanism in terms of the accu-
mulation tree generation time, and result verification time in the public and private scenario.

46
Chapter 3. Efficient Verifiable Conjunctive Keyword Search over Large

Dynamic Encrypted Cloud Data

Accumulation Tree Generation

Constructing the accumulation tree involves sum, multiplication and exponentiation opera-
tions in group G, and hash operation. Table 3.5 shows that with the dataset containing one
million files, tree generation time is proportional to the dictionary size m. Notice that this
computational burden on the data owner is a one-time cost. After the accumulation tree
along with the encrypted index and dataset ciphertext is outsourced to the cloud server, the
following operations, i.e., update and search verification, can be executed efficiently. Thus,
the overall efficiency is totally acceptable in practice.

Table 3.5: Time of generating an accumulation tree with n = 1× 106.

m 1,000 2,000 3,000 4,000 5,000
Time (s) 618.95 1,237.89 1,856.84 2,475.78 3,094.73

Search Result Verification

Kurosawa et al. [67] designed a verification scheme for single keyword search by using RSA
accumulator [12, 21], which also supports public and private verifiability. However, the
verification complexity there is linear in the problem size O(tn). To compared with our
work, we adapt their scheme to be capable of conjunctive keyword search verification, i.e.,
after verifying each intended single keyword search, user will conduct conjunctive keyword
search locally by index vector intersection. As shown in Figure 3.5(a) and Figure 3.5(b), our
scheme can be orders of magnitude faster than theirs in both public and private settings.
Moreover, the verification time is almost constant irrespective of n. In fact, the verification
complexity of our scheme is O(t + ρ), only decided by the related search operation, where
ρ is number of files in the final search result. Therefore, our scheme is more suitable and
practical for conjunctive keyword search over a large number of files stored in the cloud.

3.8 Summary

In a more challenging malicious model, we propose an efficient verifiable conjunctive keyword
search scheme over large dynamic encrypted cloud data. Our scheme allows file update, i.e.,
users can insert, delete or modify a file without affecting the effective conjunctive keyword
search operation. Furthermore, the verification cost is only contingent on the related search
operation, regardless of the file collection size. Experimental result with a large real-world
dataset shows the efficiency and practicality of our scheme. We also prove that the proposed
scheme is UC-secure against a malicious adversary.

Chapter 4

Enabling Scalable and Efficient Range
Query on Encrypted Genomic Data

4.1 Introduction

We are on the cusp of a new era in genomic research. Full genome sequencing (FGS) is
conducted to comprehensively decode an organism’s genetic make-up. It allows us to gain
an unprecedented level of understanding on the biological inner workings. Medical/genomic
researchers can now predict disease susceptibilities and drug responses base on a person’s
genome. Over the past decade, the cost for sequencing the genome of a person has been
substantially reduced from $100 million or so in 2001 to roughly $1, 000 in 2015 [80]. The
promising future of personalized medicine is now within reach due to the sequencing cost
reduction. On the other hand, one of the questions we need to answer is how one can
effectively and efficiently handle the data proliferation as a result of FGS [121]. A large
volume of genomic data from patients becomes a challenge for medical facilities. Public cloud,
such as Google Genomics, DNAnexus, etc., may provide us with an economical solution for
storage, but it also exposes users to the pitfall of privacy breach [98]. Due to the “highly-
sensitive” nature of genomic data, such data loss can lead to severe consequences.

4.1.1 Secure Genome-wide Range Query

The human genome is composed of sequences of nucleotides. The process of human genome
sequencing records segments of these sequences as short reads. Each short read contains
genetic information of a biological property of an individual. Short reads are aligned to the
human reference genome to determine its relative position in the chromosome. In medical
research, scientists and medical professionals obtain short reads within a specific range in the
chromosome to study the genetic attributes of an individual. This search is often referred

47

48
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

to as Genome-wide Range Query. It retrieves all the short reads of interest within the
queried range that is defined by a lower and upper position in the entire genome. Usually,
such study is supervised or regulated by a Trusted Authority, such as National Institutes
of Health (NIH), Food and Drug Administration (FDA). GRQ has been widely adopted in
many applications in real world. For instance, a pharmaceutical company hopes to issue
a query on a particular range of genomic data of a patient in order to find some DNA
fingerprints/biomarkers for personalized medicine. In this case, the company needs to obtain
approval on such query from the FDA first [9, 43]. For another example, an authorized
physician can request a range of your genome for certain genetic tests that may indicate
your potential response to a drug before he makes a clinical decision. With the low-cost
DNA sequencing for the masses, Genome-wide Range Query given in the above examples
is expected to be extensively used on top of the genomic data storage in many healthcare-
related services and genomic research [7, 82].

Intuitively, existing secure range query techniques, e.g., order-preserving symmetric encryp-
tion (OPSE) [15], predicate encryption (PE) [74, 96], etc., may be the promising building
blocks for a secure GRQ realization. However, directly applying them to an enormous
amount of genomic data will cause privacy and efficiency concerns. In general, genomic
data is range-sensitive because given specific query range information, the adversary can
easily figure out the underlying genetic test. In order to facilitate efficient query, possible
solutions [15, 74] in the literature may outright leak data ordering information which can
be employed to compromise the range privacy. On the other hand, näıve use of current raw
genomic data structure for multiprocessing will result in a significant scalability issue in the
cloud [84, 118]. Direct adoption of the “heavy” cryptographic tools or an ill-designed index
structure for the cloud deployment will even worsen the situation by introducing prohibitive
performance penalty. In this work, our several key observations enable a novel solution to
the efficient and scalable secure GRQ design. We first observe that the current secure range
query solutions, when used in the context of GRQ, suffer from either slow search process [96],
or compromised security guarantees [15, 17, 74], i.e. fully revealing ordering information, so
as to achieve efficient query, let alone their scalability constraint. Straightforward as this
order-comparison method is, it also gives the adversary a distinct advantage in the range
identification with a reference genome.

4.2 Related Work

4.2.1 Cryptographic Range Query

Boldyreva et al. proposed an order-preserving symmetric encryption [15] that allows the
ordering of the numerical plaintexts to be preserved in their encrypted forms. As a result,
range query can be realized by ciphertext comparison. Apart from the practical security
concerns [83], due to its order-revealing property, OPSE is not an appropriate building block

4.2. Related Work 49

for GRQ, which enables the adversary to determine the query range information trivially.
Boneh et al. proposed an order-revealing symmetric functional encryption scheme [17],
which is still inefficient for practical use due to the computationally expensive multilinear
map operations. It also suffers from the order privacy breach as OPSE in the GRQ scenario.

Predicate encryption is another promising cryptographic primitive for GRQ. The decryption
will succeed should the ciphertext fall into the queried range. In the public key setting,
Shi et al. [97] proposed a PE scheme for multidimensional range query with linear search
complexity. Note that the major inhibitor for the adoption of asymmetric PE in practice
is the predicate privacy breach [96], i.e., an adversary can generate a ciphertext with the
public key and then launch a brute-force attack to infer the encrypted query. Thus, people
resort to the symmetric PE schemes [74, 96] to provide better search privacy at the price of
significant usability deterioration in the case of GRQ (the strawman solution in Section 4.4.1).
We may adopt a logarithmic-time B+-tree based PE scheme proposed in [74]. However, for
any ordered tree-based PE schemes, regardless of asymmetric or symmetric, the ordering
information of the encrypted data will be directly disclosed. As a result, we can only achieve
linear search when applying PE to GRQ at present.

4.2.2 Secure Keyword Search

Secure keyword search can be realized by either symmetric [34, 107, 109] or asymmetric
[16, 110] cryptography. Curtmola et al. [34] proposed a searchable symmetric encryption
(SSE) for single keyword search, and gave a formal security notion, i.e., CKA1 and a stronger
and adaptive notion of CKA2. Sun et al. [109] proposed a UC-secure verifiable conjunctive
keyword search scheme over dynamic encrypted cloud data in the malicious model. The
verification cost only depends on search operation irrespective of the dataset size. In the
public key scenario, Boneh et al. [16] presented a public key encryption with keyword search
(PEKS) derived from identity-based encryption. In [110], the authors presented a verifiable
attribute-based keyword search scheme, where only authorized users can obtain the intended
search result.

4.2.3 Privacy-preserving Genomic Study

In the literature, privacy-preserving genomic data research has been extensively investigated
to realize a variety of functionalities by the adoption of either secure multi-party computation
(SMC) or secure outsourced computation techniques.

By using honey encryption, Huang et al. [58] proposed a secure outsourced genomic data
storage scheme against the dictionary attack, where each decryption by the adversary even
with an incorrect secret key will yield a valid-looking plaintext. Baldi et al. [9] presented
a framework that aims for several important applications, such as paternity test, personal-

50
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

ized medicine and genetic compatibility test by the generic secure two-party computation
techniques. In [117], the authors presented an efficient secure edit distance approximation
method, which is used to look for patients with similar genomic pattern (disease). Chen et
al. [30] proposed a hybrid cloud-based scheme to delegate the partial read mapping task to
the public cloud in a privacy-preserving manner.

There are few works towards secure and efficient solutions to the GRQ problem in the
literature. The authors in [7] proposed a protocol that incorporates stream cipher, position
scrambling and OPSE to store and retrieve the private raw genomic data. At the same
time, the authors also expressed their concerns that this OPSE-based framework may not
be secure for most practical applications [82], especially given a recent attack on OPSE [83].
Further, its practical efficiency is not satisfactory compared to ours.

4.3 Background

4.3.1 Biology Preliminaries

Genome

Genome represents the entirety of an organism’s hereditary information, consisting of two
long complementary polymer chains of four simple units called nucleotides, represented by
letters A, C, G and T, which combine to form the double-stranded deoxyribonucleic acid
(DNA) molecules in humans. There are approximately 3 billion nucleotides in 23 chromo-
somes of a human genome.

Single Nucleotide Polymorphisms

Single nucleotide polymorphisms (SNPs) are the most common form of DNA variation oc-
curring when a single nucleotide (A, C, G, or T) in the genome differs between members of
the same species or paired chromosomes of an individual. SNPs often correspond to how
humans develop diseases and respond to pathogens, chemicals, drugs, vaccines and other
agents. Thus, they are usually adopted as fingerprints in a variety of genetic tests and
genomic research.

Raw Aligned Genomic Data

Raw aligned genomic data for an individual is the aligned output of a DNA sequencer, com-
prised of millions of short reads, covering the entire genome of that person and subsequently

4.3. Background 51

aligned by using a reference genome. Each short read corresponds to a sequence of nu-
cleotides within a DNA molecule. The position of a short read with respect to the reference
genome is determined by the approximate match on the reference genome [82].

19:20389:F:275+18M2D19M 147 1 17919 0
18M2D19M = 17644 -314
GTAGTACCAACTGTAAGTCCTTATCTTCATACTTTGT
;44999;499<8<8<<<8<<><<<<><7<;<<<>><<
XT:A:R NM:i:2 SM:i:0 AM:i:0 X0:i:4
X1:i:0 XM:i:0 XO:i:1 XG:i:2
MD:Z:18^CA19

POS

CIGAR

CONTENT

RNAME

1 17919 18M2D19M GTAGTACCAACTGTAAGTCCTT
ATCTTCATACTTTGT

(a)

(b)

Figure 4.1: Format illustration of a sample short read. (a) The original format in a SAM
file; (b) Simplified read format.

The raw alignment data can be stored in a sequence alignment/map (SAM) file, a BAM
file (the binary version of SAM), or in a compressed CRAM file. Only SAM file is human
readable albeit all the three formats contain the same alignment information [93] (We use
SAM file for ease of illustration purpose only, but the proposed scheme is also applicable
to BAM file). The format of a short read in a SAM file encompasses several data fields as
shown in Figure 4.1(a), three of which are considered privacy-sensitive.

The first is the position information PI=(RNAME,POS). RNAME is the name of the chro-
mosome where this short read resides, and POS is the position of where this read maps to
the reference chromosome. For example, the POS of the read in Figure 4.2(a) relative to the
reference is 5. As such, a genome-wide range query can be issued based on the positions PI
of the intended short reads. For instance, with the range query [(3, 100), (3, 150)], all the
short reads, residing in between POS = 100 and POS = 150 of the reference chromosome 3,
will be retrieved. The second sensitive field is the Concise Idiosyncratic Gapped Alignment
Report (CIGAR) string, a sequence of nucleotide length and the associated operation, used
to indicate which nucleotides align with the reference with letter M, are deleted from the
reference with D, and are insertions not in the reference I (please refer to [93] for detailed
exposition). Thus, the CIGAR string of the aligned read in Figure 4.2(a) is 3M1I3M1D5M.
The CONTENT field consists of sensitive nucleotide information, e.g., SNPs. On the other

52
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

hand, the rest of a short read are deemed non-private fields for a person. Hence, we skip
the discussion of these fields hereafter and only focus on the simplified privacy-sensitive read
format as shown in Figure 4.1(b).

RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Reference: C C A T A C T G A A C T G A C T A A C

Read: A C T A G A A T G G C T

After Masking: T A G A T G

Out-of-query-range

nucleotides

Out-of-query-range

nucleotides

(a)

(b)

Sensitive SNP

Figure 4.2: (a) Short read alignment with the reference; (b) Content protection.

4.3.2 Secure GRQ Model

As shown in Figure 4.3, a typical real-world secure GRQ system consists of four entities, data
contributor (DC), medical unit (MU), trusted authority (TA), and Genobank. Specifically,
DC can be a patient who submits his biospecimen to a certified institution for full genome
sequencing. Then his raw genomic data are generated and uploaded to TA for data prepro-
cessing before outsourced to the public Genobank. Subsequently, TA anonymizes the data,
e.g., it will erase the identity information linked to a particular patient. The anonymized
data will be used to generate a secure index and then encrypted, which are sent by TA to
Genobank in the end.

MUs including biomedical researchers, physicians, pharmaceuticals, etc., may ask for a par-
ticular range of the alignment data of a patient for further genetic tests (processing GRQ for
multiple patients may follow the same procedure as in the single patient situation). In this
case, a GRQ request is sent to TA, which contains the identities of MU and the queried pa-
tient, intended genome range and query purpose (what kind of genetic test to be conducted
later). It is worth noting that the role of TA has been established in the plaintext GRQ before
our design and can be played by government agencies, like NIH, FDA, etc., to perform the
authentication/authorization to MU and its query. Upon authentication, a private GRQ
request is produced, and TA submits it to Genobank on behalf of MU.

Genobank runs the secure GRQ search algorithm with the private GRQ query over the
stored secure indexes. The corresponding encrypted alignment data is then retrieved and
sent back to TA. In the end, TA decrypts the data, masks the sensitive information based
on the genomic privacy policy, and returns result to MU. As with previous works [7, 30],
we assume that TA as the only authoritative party in the system is anticipated to have
sufficient computation resources (e.g., dedicated server, private cloud, etc.), or can delegate
the computation to other certified institutions. Furthermore, all the communication channels

4.3. Background 53

in the system are assumed to be secure. The discussion on the corresponding genomic data
de-identification [92] and user authorization in the search phase [34, 108] is outside the scope
of this study.

Trusted Authority

(e.g. NIH, FDA)

Sequencing

procedure

Patient A

Patient B

.

.

.

.

.

.

Medical Units

Biomedical researchers

Physicians

Biospecimen

Biospecimen

Pharmaceuticals

Genobank

(e.g. Google

Genomics)

Data de-

identification

& Encryption

Data decryption

& Privacy protection

Authentication

& Secure query

processing

Raw alignment

data uploading

Encrypted data

outsourcing

Plaintext

result

Ciphertext

result

Private GRQ

request

Encrypted data

storage

Secure GRQ

search algorithm

Data retrieval

Data Contributors

GRQ request

Figure 4.3: Overview of secure GRQ system.

4.3.3 Privacy Threats

We assume that DC is honest and not expected to be involved in the potential genetic tests
[7]. TA is the key enabler entity in the system and acts as a private key manager/holder,
standing between the user and Genobank. It conceals the identity of MU so that the semi-
honest Genobank cannot infer the underlying genetic test through such side information.

We assume that MU will not collude with Genobank to gain unauthorized access privileges.
For MU, as shown in Figure 4.2(b), we try to protect

1. Out-of-query-range privacy : We need to hide the out-of-query-range genomic informa-
tion in the short reads of the result;

2. Sensitive SNPs protection: It requires the protection of sensitive SNP information
within the queried range from MU, because these SNPs may happen to be indicators
of other potential diseases irrelevant to the required genetic test For example, MU
may need part of F5 gene in chromosome 1 of a patient to learn his potential risk for
stroke. However, the SNP rs6025 within the requested range is also a well-known DNA
fingerprint for the disease of venous thromboembolism [42] irrelevant to the required
genetic test.

Almost all the secure range search constructions [7, 17, 74, 96] leak access pattern, i.e., after
searching in the dataset, the encrypted result is disclosed, and search pattern, i.e., whether

54
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

the range was queried before, if the underlying query generation is deterministic. We do
not aim to protect them due to the incurred expensive computation or/and communication
overheads[81].

We define two stateful leakage functions L1 and L2 to precisely capture what is being revealed
by the ciphertext and the query:

• L1(IND,F). On input of the index IND and the genomic data file F containing
millions of short reads SR, this function outputs the number of short reads in F , and
the size of each short read |SR|;

• L2(IND,F ,Q). Besides IND and F , this function also takes as input the query set
Q searched in the past, and reveals search and access pattern.

We first adapt the CKA2 security in [34] for an MSSE scheme that serves the core construc-
tion for our GRQ protocol in Figure 4.5. Then we will reduce the security of the GRQ design
to that of the MSSE (Section 4.5). Specifically, we aim to ensure the confidentiality of a
short read and its position information relative to the reference genome during the query
phase.

− Real-world Experiment RealA(λ):
In the setup phase, the challenger runs Setup(1λ) to generate a key set K.
A sends a tuple (IND,F) to the challenger. He receives F̄ ← Enc(F , K) and secure index
structure (¯INDT , {Ts})← IndGen(IND, K).
In the search phase, for i = 1, . . . , q,

• A chooses a keyword set Qi and sends it to the challenger.

• The challenger returns an MSSE query Q̄i ← QueryGen(Qi, K) to A.

Finally, A outputs a bit b.

− Ideal-world Experiment IdealA,S(λ):
A chooses a tuple (IND,F). Given L1(IND,F), S outputs a tuple (¯INDT , {Ts}, F̄) and
returns it to A.
In the search phase, for i = 1, . . . , q,

• A chooses a keyword set Qi.

• Given L2(IND,F ,Qi), S returns Q̄i to A.

Finally, A outputs a bit b′ in this experiment.

Figure 4.4: Real-world and ideal-world experiments.

4.4. Secure GRQ Construction 55

Definition 4.1. (CKA2 security for MSSE) We consider two experiments in a real world
and an ideal world respectively in Figure 4.4, where A is a stateful adversary, S is a stateful
simulator, and L1 and L2 are stateful leakage functions described above.

We say that the proposed MSSE scheme is CKA2 secure if for all PPT adversary A, there
exists a PPT simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ neg(λ).

4.4 Secure GRQ Construction

In this section, we first see how a conventional symmetric PE-based strawman solution fails
the design goals (Section 4.4.1). Then we present our efficient and scalable secure GRQ
scheme (Section 4.4.2) based on a novel hierarchical index structure and improve the search
efficiency by filtering out the irrelevant query terms in a pre-search stage (Section 4.4.3).

4.4.1 Strawman Solution

PE has been adopted widely to achieve secure range query on outsourced encrypted data
[74, 96], where only the ciphertext within the range of interest can be decrypted. Hence,
seemingly we can design a secure GRQ scheme by trivially using symmetric PE for better
predicate privacy [96]. However, when PE is applied to an enormous volume of data, such
as human genome, efficiency and scalability become the primary concerns. For example, by
using symmetric inner-product predicate-only encryption [74, 96], the encrypted index size
for a single short read is proportional to the position domain size N = 3× 109, which leads
to a significant ciphertext size expansion. Besides, the computation cost for encryption,
token generation, and single read query operation are all proportional to N as well. Note
that the dominant computation in the query phase is the composite-order pairing operation.
Therefore, the service provider is not likely to favor such expensive computation approach.
When Θ(N) pairing operations are required to search merely one short read, the scheme
becomes unrealistic in a pay-as-you-go manner, even if the computation can be delegated to
a more powerful cloud.

Last but not the least, the best search complexity we could achieve for this strawman solution
is linear search so as to protect the query privacy, since using any sorted tree structure, e.g.
B+-tree [74], will outright leak the ordering of ciphertexts in the tree. Then the adversary
can estimate the queried range relative to the reference genome, which may disclose the
underlying genetic test.

Observations. We observe that the straightforward order-comparison methods used for
the generic range query on encrypted data [15, 17] or logarithmic-time search over order-

56
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

Setup
K ← Setup(1λ). On input of a security parameter λ, this probabilistic algorithm outputs a
secret key set K = (k1, k2).

Data Upload
F̄ ← Enc(F , K). To encrypt a short read SRi in F , TA generates a random nonce ri, and
then acquires the encrypted read ¯SRi from the first li bits of SRb

i ⊕ hk2(ri). ⊕ denotes the
bit-wise XOR operation. In the end, all the short read ciphertexts Ci = { ¯SRi, ri} for this
patient are stored in a secure genomic data file F̄ .
(¯INDT , {Ts}) ← IndGen(IND, K). Let IND = {PIi}1≤i≤n1 be an ordered index set for
all the short reads in F . Then TA first generates an obfuscated index set ¯IND = {h(i)}
with h(i) = hk1(PIi). Next, ¯IND is sorted to an ordered set as per the value of h(i), which
is further split into d partitions with equal length q such that dq = n1. In addition, for
each partition s = 1, ..., d, an ordered index table Ts is produced with q tuples in the form
of {h((s − 1)q + z), off(s−1)q+z}, 1 ≤ z ≤ q. off(s−1)q+z is the offset used to pinpoint the
corresponding short read ciphertext. On the other hand, in each partition s, TA uses the
highest ordering value {h(sq), pts} to represent this partition range. pts points to the index
table Ts. As such all the tuples for the d partitions constitutes a sorted range index ¯INDT
for d index tables. Finally, TA uploads F̄ along with the secure index structure ¯INDT and
{Ts}1≤s≤d to Genobank.

Secure GRQ Search
Q̄ ← QueryGen(Q, K). On receiving a GRQ request with the range [L,U] from an authorized
MU, TA re-defines the query range [L,U] to [L′, U ′] where L′ = L − a, U ′ = U + a and a
is a random number greater than the size of the longest short read. Then he generates a
query set, Q = {PIi} for L′ ≤ PIi ≤ U ′ and further the scrambled (encrypted) query set Q̄
using pseudorandom function hk1 and a random permutation. TA submits Q̄ to Genobank
on behalf of MU.
LQ̄ ← Search(Q̄, ¯INDT , {Ts}, F̄). Upon receipt of Q̄, Genobank performs a binary search
with each term in Q̄ on the sorted range index ¯INDT which leads the query process to
the relevant second-level index tables. Subsequently, Genobank conducts the binary search
again on each related table Ts to retrieve the intended short read ciphertexts from F̄ , puts
them in the result list LQ̄.

Data Download
SR ← Dec(C, K). TA decrypts each encrypted short read C = { ¯SR, r} in LQ̄ by ¯SR ⊕
hk2(r) and checks whether PI of each plaintext SR falls in the range of interest [L′, U ′]. TA
also deletes the out-of-query-range nucleotides and the within-range sensitive SNPs in the
CONTENT field as per the range [L,U], and modifies the CIGAR string accordingly. Finally,
TA returns the sanitized search result to MU.

Figure 4.5: Proposed secure GRQ construction.

4.4. Secure GRQ Construction 57

revealed sorted data structure [74] will not apply to the range-sensitive GRQ service. To
break such linkability, it requires us to look for a novel alternative approach, in contrast to
the “off-the-shelf” methods, to protect the range information while realizing efficient query.

4.4.2 Our Construction

We propose a secure GRQ solution using a lightweight MSSE construction in Figure 4.5. It
utilizes a scalable and efficient secure index structure, which offers not only genomic privacy
preservation but also a logarithmic-time search complexity.

Suppose there are total n nucleotides in the reference genome and n1 short reads in a patient’s
genomic data file F . Thus, the universal position domain P contains n distinct PI. Let a
short read SRi = {PIi,CIGARi,CONTENTi}, i = 1, ..., n1. Let SRb

i be the li-bit long binary
form of SRi.

Definition 4.2. (Ordered Set) We say S = (s1, s2, ...sN) of size N is an ordered set if its
numerical terms are sorted by an ascending order such that s1 < s2 < ... < sN .

Definition 4.3. (Scrambled Set) For an ordered set S = (s1, s2, ...sN), applying a pseudo-
random function hk with secret key k and a random permutation σ to S yields a scrambled
(encrypted) set S̄ = {hk(sσ(1)), hk(sσ(2)), ..., hk(sσ(N))}.

Efficient Data Protection

Typically, storing the raw alignment data for a patient is significantly space-consuming, e.g.,
even with the compressed data format CRAM, the file size can be easily over 20 GB. The
underlying data encryption is expected to be efficient in both storage and computation. As
shown in Figure 4.5, the short read is XORed with a pseudorandom bit string produced
from a random nonce. Subsequently, a collection of the encrypted short reads along with the
corresponding random numbers and other encrypted auxiliary information in the original
SAM/BAM file are all stored in one secure genomic data file F̄ . This design is consistent
with the real-world situation, where a single SAM/BAM file is used to store all the raw
alignment data of a person. Another key observation behind this design is that storing
each encrypted short read as an individual file can have an adverse impact on the system
because hundreds of millions of small files present in the file system can degrade the cloud
performance [118]. Moreover, the query process depends on the file storage lookup, which is
often not specialized for range query problem.

It is worth noting that TA does not directly send the queried short reads back to MU
after decryption. Instead, he re-writes part of the result to prevent MU learning additional
information beyond the requested. To protect the out-of-query-range privacy and sensitive
SNPs within the range (Section 4.3.3), TA modifies the CONTENT and the associated CIGAR

58
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

string of the corresponding short read. For example, in Figure 4.2(b), the CIGAR string is
changed from 3M1I3M1D5M to 1M1I1M1D1M1D2M in accordance with the privacy policy.

Input: Preloaded sorted range index ¯INDT for d partitions with equal length q, in-disk
table indexes {Ts}1≤s≤d, secure genomic data file F̄ , and scrambled GRQ query set
Q̄ = {hk1(PIi)} for L′ ≤ PIi ≤ U ′.

Output: GRQ query result LQ̄.

1 Let LQ̄ = ∅; . Phase 1 query
2 for j = 1→ U ′ − L′ + 1 do
3 Perform a binary search with each element in Q̄ over ¯INDT in memory;
4 Pinpoint the second-level index Ts in disk with the corresponding pointer pts in the

partition range;
5 Load Ts into memory;
6 . Phase 2 query
7 Perform a binary search with hk1(PIi) over Ts in memory;
8 Find out the file offset in Ts of the intended encrypted short read and use it to retrieve

the short read from F̄ in disk;
9 Put the result in LQ̄;

10 end
11 return LQ̄;

Algorithm 4.1: Two-phase Query Algorithm.

Secure GRQ Request Processing

Upon receipt of the original GRQ request from DC, TA needs to transform the query to a
secure version. Specifically, TA generates a random number a, greater than the number of
nucleotides in the longest short read in the SAM file. He then derives a new query range
[L′, U ′] from the original [L,U] as in Figure 4.5 in the sense that a short read with its position
in [L′, L− 1] may also contain the nucleotides in [L,U]. To preserve the symmetry property,
TA also modifies U to U + a. Then the query set size is U ′−L′+ 1. In the case of the query
approaching the end of the genome, TA renders a an appropriate value that may be smaller
than the maximum short read length. Finally, the queried range can be represented by an
ordered set Q and later turned into a scrambled set Q̄ as the secure query set.

Scalable GRQ-oriented Index Structure in the Cloud

In order to enable large-scale privacy-preserving genomic research, it is imperative to store
data in an efficient and scalable data structure. However, the current de facto genomic
data organization is SAM/BAM file specification [93]. The binary BAM file is more data-
processing friendly, but also has been criticized for its lack of scalability in a multiprocessing
environment due to the use of a centralized header [84].

4.4. Secure GRQ Construction 59

Our GRQ-oriented index structure involves a two-level design, focusing on efficiently retriev-
ing the intended short reads from the secure genomic data file. As shown in Figure 4.6,
a primary index ¯INDT is devised and resides in the memory as the initial coarse-grained
search phase. The benefit of this design is that it is not necessary to load the large index
set ¯IND for a patient’s entire raw alignment data into memory. Instead, a succinct index
representation ¯INDT is used to quickly pinpoint the relevant index range, which is orga-
nized as a secondary index table {Ts}1≤s≤d, kept in the disk storage. To avoid the small-file
problem in the cloud [118], these second-level index tables can be stored in a file and fetched
by the pointers in ¯INDT . Ts stores the exact mapping from each secure index to the file
offset of the encrypted short read in F̄ . Due to the saved space from ¯INDT , it is possible
to load larger index tables into memory on demand after Phase 1 search over ¯INDT so as
to enable fine-grained Phase 2 search. As our proposed index structure are sorted by the
secure index values, any efficient logarithmic-time search algorithm can be applied here. It is
also worth noting that with the in-memory primary index, it is possible to enable large-scale
concurrent lookups compared to the file-based indexing scheme currently used by BAM file.
The pseudo code of the efficient two-phase query algorithm is shown in Algorithm 4.1.

Phase 1

 01 01 1

Secure query set
Bloom filter

Sorted

index tablesIn-memory storage

ℎ𝑡′ ,𝑞

ℎ𝑡′ ,𝑞+1 𝑜𝑓𝑓𝑡 ′ ,𝑞+1

Sorted range index

ℎ𝑡′ ,𝑞+2

ℎ𝑡′ ,2𝑞

𝑜𝑓𝑓𝑡 ′ ,𝑞+2

𝑜𝑓𝑓𝑡 ′ ,2𝑞

𝑝𝑡1 ℎ𝑡′ ,2𝑞 𝑝𝑡2 ℎ𝑡′ ,𝑑𝑞 𝑝𝑡𝑑

In-disk storage

𝑇2

𝐶"

Secure genomic

data file

Phase 2

BF

𝐶′

𝑇𝑠

On-demand loading

On-demand loading

Figure 4.6: Hierarchical GRQ-orientated index structure with a two-phase query process.

Observations. The computation complexity of the proposed secure GRQ search is Θ(mlg(n1)).
The secure query set size m is possible to be as large as the size of the position domain P ,
which means a considerable number of terms in Q̄ will not have a match in the following
search process, thereby wasting the computation resources in practice. Should we pre-screen
the query term before throwing it to the search process, a significant amount of time may
be saved in a long run.

60
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

4.4.3 Improving Search Efficiency

Based on the above observations, we propose a pre-search stage to examine the existence of
the query term to boost search efficiency as shown in Figure 4.6. More precisely, we adopt
Bloom filter [13] on top of the existing secure index structure to provide efficient membership
test. The Bloom filter is generated from the obfuscated index set ¯IND with controlled false
positive rate (FPR). By executing the membership test for terms in Q̄ prior to the two-phase
query process, we can narrow Q̄ down to a likely smaller query set Q̄BF taken as the input
of the subsequent secure search algorithm.

Remark 4.4. Bloom filter will only introduce false positive but not false negative. This is
desirable since no terms indeed belonging to the result will fail the membership test. Then
we always have a complete search result. Furthermore, the false positive will not appear in
the final GRQ result because such error can be rectified in the following exact-match search
process. Notably, the membership test does not disclose the location of the short read in
F̄ . Linearly searching the entire file is prohibitively expensive. We still need to rely on our
efficient search algorithm over the proposed genomic index structure to retrieve the short
reads of interest.

4.5 Security Analysis

In this section, we show that our proposed secure GRQ scheme will achieve the defined
security goals.

Theorem 4.5. (Privacy against MU) The proposed secure GRQ scheme satisfies the out-
of-query-range privacy and sensitive SNPs protection requirement for MU.

Proof. (sketch) To prevent MU from acquiring the out-of-request information from the query
result, TA re-writes the corresponding fields of the short read results before returning them
to MU. More precisely, he modifies the CONTENT field to delete the irrelevant sensitive
SNPs and truncate the short read as per the query range [L,U]. TA also produces a new
CIGAR string accordingly. In the end, the out-of-query-range privacy and sensitive SNPs
can be well protected against MU.

The centerpiece of the proposed secure GRQ design is an MSSE construction in the sense
that we may deem position information PI of each short read a unique keyword. Intuitively,
the confidentiality of a short read and its position information are ensured if the underlying
MSSE scheme is CKA2 secure. Therefore, the security offered by our scheme reduces to that
of the MSSE protocol.

4.5. Security Analysis 61

Lemma 4.6. (CKA2 security for MSSE) The proposed MSSE scheme achieves CKA2 secu-
rity [34], in the random oracle model defined in Definition 4.1.

Proof. Let A and S be an adversary and a simulator in IdealA,S(λ) in Definition 4.1,
respectively. Assume that each SR in F has a unique PI. Given the leakage function
L1(IND,F), S outputs (F̄ ′, ¯IND′T , {T ′s}) as follows. It simulates each encrypted short
read C ′i = Enc(k2, 0

|SRi|) in F̄ ′ for i = 1, ..., n1, where k2 is randomly selected for the CPA-
secure encryption algorithm Enc, and |SRi| is revealed by L1. To simulate the secure index
structure ¯IND′T and {T ′s}, S first sets h′(i) for each SRi in F a random number, and then
generates ¯IND′T and {T ′s} accordingly. The Bloom filter can also be simulated by using
random numbers instead of cryptographic hashing.

Adversary A can make polynomial number of queries by picking a keyword set Q of t
continuous position information PI for t ≥ 2. The leakage function L2(IND,F ,Q) discloses
LQ̄ to S. Given this, S can simulate Q̄′ by including h′(i) for the short reads in LQ̄ and
assigning the remaining in Q̄ random numbers if t > |LQ̄|.

Adversary A cannot distinguish F̄ ′ from F̄ in experiment RealA(λ) since Enc is CPA-secure.
Due to the pseudorandom function hk and cryptographic hash function, A cannot distinguish
(¯IND′T , {T ′s}) and (¯INDT , {Ts}), and the Bloom filters. Likewise, A cannot discern Q̄′
and Q̄. Thus, A cannot distinguish IdealA,S(λ) and RealA(λ).

Theorem 4.7. (Security for the GRQ scheme) The proposed secure GRQ scheme enjoys the
same security guarantees as the underlying MSSE construction, i.e., Biobank is not able to
learn any information about the content of the short reads and position information in the
query and secure index during the search phase.

Proof. (Sketch) This is inherited from the proof of Lemma 4.6, by which our secure GRQ
scheme achieves the CKA2 security for MSSE. In other words, the adversary cannot deduce
the content of an encrypted genomic file F̄ , and the position information of the short reads
from the secure index and query in the random oracle model.

Impact of access pattern leakage. Indeed, to provide a practical GRQ solution, we
need to accept some measure of leakage. Thus, one of our design goals is to achieve an
acceptable balance between performance and leakage. Given that access pattern is disclosed
after the query, we find that limited partial ordering information will be revealed to the
adversary, which also applies to almost all the secure range query constructions, regard-
less of the underlying primitives, i.e. PE [74, 96] (the strawman scheme), OPSE [7], etc.
Specifically, the ascending or descending data order will be inevitably exposed if a moti-
vated adversary observes sufficient query results, but still he cannot determine which order
is correct. For instance, consider 3-record dataset (a, b, c). Having observed two range query
results (b, a) and (c, b), adversary can figure out the possible data orders, either (a, b, c) or
(c, b, a). We should note that, albeit it is trivial to perform such attack on a relatively small

62
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

dataset, it is unlikely that the query results would spread over the whole genome, instead of
sporadic genetic hotspots in light of our very constrained knowledge on human genome at
present. Compared to existing solutions, our secure GRQ scheme, as an initial attempt, en-
joys logarithmic-time query process, and is considerably scalable and suitable for real-world
cloud environment, with equivalent or better security guarantees. We may adopt “heavy”
cryptographic tools on top of our protocol, such as Oblivious RAM [49], for mitigation but
at the price of sacrificing the practical usability and efficiency [81].

4.6 Performance Evaluation

In this section, we implement the proposed secure GRQ scheme using real human raw align-
ment data in an approximately 32 GB CRAM file [1]. After decompression, the BAM file is
about 44 GB, which contains more than 300 million short reads with the average read length
of 100 nucleotides. We use JAVA and shell scripts on a Linux server with a 3.1 GHz AMD
FX 8120 processor and 32 GB DDR3 memory. The server runs on a WD100ZFAEX hard
disk with 1 TB storage and 64 MB disk cache. We use SHA256 to construct the Bloom filter
in the pre-search stage. The experimental result is an average of 10 trials.

4.6.1 Storage Overhead

Ciphertext Expansion

We measure the storage overhead on Genobank for the encrypted raw alignment data of a
patient and its secure index structure. Note that the bit-wise XOR encryption in our scheme
introduces no ciphertext expansion even for the huge-sized genomic data. In practice, the
encryption could be instantiated by CRT[AES]. Besides, an additional 1.26 GB storage burden
comes from the 4-byte nonce for each short read in the dataset.

Table 4.1: Performance of the proposed secure GRQ scheme without pre-search stage.

d q
Index (MB) Indexing

time
(s)

Loading
time
(s)

Query time (s) with different range size

¯INDT Ts 100 500 1,000 5,000 10,000 50,000 100,000

21,845 14,388 1 0.66 546 0.21 0.91 3.98 7.87 38.6 75.46 385.33 761.78

16,384 19,184 0.75 0.88 778 0.18 1.44 7.99 11.86 59.41 105.47 583.87 1,017.5

10,922 28,776 0.5 1.32 790 0.14 1.96 9.94 17.16 83.65 161.12 803.78 1,568.62

5,461 57,553 0.25 2.63 758 0.11 3.71 16.1 32.09 165.88 318.1 1,636.79 3,223.33

2,184 143,884 0.1 6.59 817 0.09 8.57 39.8 79.66 401.47 805.16 3,895.04 9,071.23

1,092 287,769 0.05 13.17 1,099 0.07 16.62 79.16 159.48 791.59 1,656.91 7,947.97 18,046.59

4.6. Performance Evaluation 63

Scalability

The strawman construction will consume prohibitive space, i.e. 700 GB or so for each short
read index since the ciphertext size is linear to the whole genome length, thereby crippling its
usability in practice. For real-world implementation, it is straightforward to load the entire
secure index ¯IND into cloud memory, which requires roughly 14 GB with our scheme. It is
significantly smaller than the strawman solution but still not practical for processing multiple
GRQ queries concurrently even with the cloud. On the contrary, using our hierarchical
secure index design, the cloud memory consumption for the primary index ¯INDT is orders
of magnitude smaller than both the strawman and heuristic implementation. As shown in
Table 4.1, suppose that storing ¯INDT in memory for each patient costs 1 MB, and we can use
up to all the 32 GB server memory, which allows hosting more than 300 thousand patients’
primary indexes in the memory simultaneously and demonstrates the significant scalability
of our scheme. The total size of the second-level table indexes {Ts}1≤s≤d is comparable to
the secure index ¯IND in the heuristic implementation but stored in the disk and loaded
into memory on demand. Moreover, as shown in Table 4.2, we can effectively reduce the size
of the query by spending an additional storage space for the Bloom filter and eliminating
the candidate query terms that fail the membership test, and therefore speed up the query
operation.

Table 4.2: Size of Bloom filter over more than 300 million short reads in pre-search stage.

FPR 2.5% 6% 12% 25% 50%
Size (MB) 287.7 219.4 165.4 108.1 54.1

4.6.2 Time Efficiency

Encryption and Decryption

It takes less than 4 minutes for TA to encrypt more than 300 million short reads. This
overhead is one-time and can be further amortized by parallelization. Decryption will be
much faster since the query result usually is a much smaller subset of the whole genome.

Index Generation

This procedure also imposes a one-time cost to TA. The computation overhead varies with
the patient’s genomic data size and index construction parameter d. We use Linux shell
script to perform several data preprocessing tasks, including extracting positions of short
reads in the BAM file, generating their secure representation as well as sorting them in the
index. It takes 36 minutes to preprocess the raw genomic data. As shown in Table 4.1, for
larger partition number d, less time is required to generate the secure index. This variation is

64
Chapter 4. Enabling Scalable and Efficient Range Query on Encrypted

Genomic Data

due to the use of object serializer in our Java code. The larger d is, the smaller each second-
level in-disk index table is, thus requiring less memory maneuvering in JVM and resulting
in the gain in processing speed. For the implementation of our scheme that does not make
use of the object serializer function, we expect the performance penalty of a smaller d to
diminish. On the other hand, generating Bloom filter in the pre-search stage needs nearly
constant time, roughly 20 minutes, for different FPR, because the number of short reads to
index for a person is constant.

1 200 400 600 800 1000
10−1

100

101

102

103

Query Size (×102)

Q
ue

ry
 ti

m
e

(s
)

Without BF
FPR=50%
FPR=25%
FPR=12%
FPR=6%
FPR=2.5%

Figure 4.7: Query time for different search strategies with query size 100, 500, 1, 000, 5, 000,
10, 000, 50, 000, 100, 000. The pre-search stage is operated on the baseline search with
d = 21, 845.

Query Efficiency

Table 4.1 shows that query is more efficient with an increased d value. Larger d implies
bigger first-level index, and thus a longer initial loading time. On the other hand, since
the loading time for the primary index is less than 1 second, we believe that the load time
penalty is not significant. After this one-time loading, ¯INDT resides in memory to facilitate
expediting the query process. Moreover, a larger d triggers a more fine-grained first-level
search. As a result, the on-demand secondary index loading is much faster due to its reduced
size. We randomly select a GRQ query with different range size. The query time in Table 4.1
shows a linearity with the increased range size. We can see that our GRQ scheme is still
efficient enough for practical use even with a large query range. In contrast, query time

4.7. Summary 65

for the PE-based strawman solution is prohibitively expensive. Using the state-of-the-art
benchmark for the costly composite-order pairing operation [123], it will take more than one
year to search only one short read index. Notably, the OPSE-based GRQ scheme [7] reports
a 4.5 second query time with a small 100 query range size. Lastly, we can also use Bloom
filter in a pre-search stage to further ameliorate query efficiency. As shown in Figure 4.7,
query time is significantly reduced by using the Bloom filter with a small FPR.

4.7 Summary

Genome-wide range query is one of the fundamental and critical components in genomic
research, medical and healthcare services. In this work, we are among the first to propose
a scalable, privacy-preserving GRQ scheme in the cloud environment, featuring an efficient
hierarchical index structure. By presenting a novel MSSE-based secure range query scheme,
our solution also enjoys storage and computation efficiency without sacrificing security guar-
antees. The implementation with real human raw alignment data shows its superiority over
the existing solutions.

Chapter 5

Secure Keyword Search Using
Trusted Hardware

5.1 Introduction

Nearly two decades has passed since Song et al.’s seminal work on the first encrypted data
search scheme [100]. This demonstrated that the fascinating concept of retrieving infor-
mation from encrypted data can be accomplished using cryptography. Since then, SE has
received a growing interest from both academia [16, 18, 24, 34, 38, 62, 63, 66, 105] and
industry [31, 99]. Recently, the importance of this technique has been highlighted due to
the advent of cloud computing, where there is a strong desire to protect users’ sensitive
information from prying eyes while providing fundamental data services.

There are two main research directions in achieving the grand vision of search over encrypted
data. One is software-based secure computation research, which often relies on cryptography
and focuses on algorithmic design and theoretical proof. The other is the trusted execution
solutions that depend on hardware isolation and trusted computing. The conventional SE
is realized using software-based solutions. Albeit there are extensive investigations along
this research line, current SE realization is not satisfactory in two aspects. First is the
obvious query function gap between SE and the plaintext IR technology. This is because
efficient practical SE solutions are built on top of a variety of crypto primitives, such as
property-preserving encryption [15], functional encryption [16], and searchable symmetric
encryption [34], and each crypto tool only supports a specific class of query types by incor-
porating different index structures and search algorithms. In addition, existing realistic SE
solutions have many security limitations. In the symmetric setting, the most secure SSE
we can achieve is under the L1 leakage profile [25], which at least reveals the index search
trace, including search pattern and access pattern (see Section 5.2). Unfortunately, the once
considered “inconsequential” information disclosure has not been well studied and already

66

5.1. Introduction 67

led to many devastating attacks in practice [25, 59, 124]. Besides the above information
leakage, public-key based schemes are inherently vulnerable to predicate privacy breach [96],
i.e. an adversary can generate ciphertexts with the public key and infer the queried keywords
during the search process.

On the other hand, hardware-based trusted execution environment has recently emerged as
an effective security mechanism in achieving trustworthy execution of applications [3, 85, 94].
These systems adopt trusted hardware, such as Trusted Platform Module (TPM) [52], Intel
Trusted Execution Technology (TXT) [51], ARM TrustZone [5], Intel Software Guard Ex-
tensions (SGX) [57, 77] and a small size of firmware as the trusted computing base (TCB).
This TCB provides not only the root of trust but also the necessary system isolation for
the environment. While it might appear that one can simply migrate the state-of-the-art IR
techniques into the TEE to enable the same spectrum of query functions with enhanced secu-
rity, there are several challenges that require careful design considerations to take advantage
of the technology.

While the hardware-based secure execution, such as Intel SGX, can provide confidentiality
and integrity of the application inside the TEE, information side channel is often not pro-
tected [19, 120]. The threat is greatly amplified when users share resources with adversaries,
yet resource sharing is the basis of cloud computing. Recently, both control channel [120] and
cache channel [19] have been demonstrated to leak execution information on the Intel SGX
platform. Thus, direct adoption of TEE for secure search applications [8, 45] can lead to the
disclosure of the index search trace. Another challenge lies in the programming environment.
In order to defend against the untrusted operating system, each library function potentially
needs to be redesigned to harden the defense against attacks, such as Iago attack [28]. At
the time of writing, there are a limited number of library functions available in the enclave,
the TEE of Intel SGX. None of the IR software we studied can be directly adopted as an
enclave library due to missing libraries from the version 1.6 of the Intel SGX SDK.

In this work, we tackle the fundamental yet challenging problem of search over encrypted
data. We propose REARGUARD, built on TEEs such as Intel SGX [57, 77] and AMD Mem-
ory Encryption [64] to perform search computation completely within the isolated memory
even if the privileged software is untrusted. Such hardware-enforced isolation provides the
confidentiality and integrity of both data and computation, which is essential in cloud com-
puting. Furthermore, REARGUARD enables IR functions comparable to plaintext data
search. Our scheme is also a departure from the pure software-based approach whose com-
putation overhead largely depends on the underlying cryptographic primitives.

Current practical designs of software-based SE have the leakage profile that reveals at least
the index search trace. REARGUARD can achieve better information protection and sig-
nificantly improve the security of SE by mitigating such leakage. We define and realize
two new leakage profiles, L+

0 and L0, in the dynamic SE scenario supporting index update.
In the L+

0 model, we completely hide the index search trace and only reveal minimal in-
formation at the setup as prior work. In the weaker notion L0, we allow some reasonable

68 Chapter 5. Secure Keyword Search Using Trusted Hardware

leakage for a more efficient query. We identify several query-dependent operations in the
search algorithms and adapt them to keyword-oblivious executions to satisfy the defined
security requirements. We prototype REARGUARD with 4,000 lines of code (LOC). Con-
siderable efforts are made to ensure that the implementation meets the security requirement
while at the same time offering the desired query functions. REARGUARD provides search
functionality and performance comparable to the plaintext data search.

5.2 Background

This section provides background information on current SE leakage, inverted index struc-
ture, and Intel SGX.

5.2.1 Privacy Leakage in SE

Among many cryptographic primitives for SE constructions, searchable symmetric encryp-
tion [34, 63, 105] is the most publicized and investigated in the literature for its “well”
balanced privacy and efficiency tradeoff. SSE exploits deterministic encryption for efficient
keyword match but its protection of keyword privacy is weak. Cash et al. defined four leak-
age profiles, i.e. L4, L3, L2 and L1, for SSE in the static setting to characterize the amount
of information leakage [25]. Specifically, L4 schemes reveal the number of words, their orders
and occurrence counts in a document. Examples include some commercial products, such
as Skyhigh Network [99] and CipherCloud [31]. L3 profile reveals all the above information
except occurrence counts of each keyword. L2-SSE schemes only disclose the keyword num-
ber in a document. L1 reveals the same information as L2 but only for keywords that have
been searched. Additionally, all the leakage profiles also imply the revelation of index search
trace, including keyword search pattern, i.e. whether a query is repeated, and access pattern,
i.e. pointers to encrypted files that satisfy the query. The majority of SSE adhere to L2 or
L1 leakage. Such information disclosure also leads to forward privacy breach in the dynamic
setting [18, 105]. This allows the adversary to learn whether the newly added document
contains the keyword that has been queried before.

The consequence of the above leakage has not been well studied. Many attacks against SSE
have emerged to exploit the leakage to partially or even fully recover the query and dataset
information [25, 59, 124]. Unfortunately, these attacks are inevitable under the current
security definition of SSE. Further, public-key based constructions are inherently vulnerable
to predicate privacy leakage [96]. Namely, an adversary can generate ciphertexts with the
public key and infer the query during the search process.

5.2.2 Inverted Index

Inverted index is widely adopted in modern search engines and current SSE design [34, 63, 66].
It enables sublinear search complexity (w.r.t. the number of files in the dataset), as well as

5.2. Background 69

computer | 13645:15;22005:1573,1579;26698:6352; |0.0333,0.0075,0.0018|1288.7500

Term Posting list

docID: Pos; TF IDF

Figure 5.1: Example of an inverted index row.

rich query functions1 in the dynamic setting, such as Boolean query, phrase query, ranked
retrieval, spelling correction. It is generated by applying the standard indexing techniques to
the target dataset [76], e.g. tokenization, stemming, stop words elimination, linguistic anal-
ysis, etc. In particular, this data structure contains N index rows vertically, where N equals
the number of the extracted keywords (or terms, we use them interchangeably hereafter)
from the dataset. Horizontally, it is divided into two major parts: a) the vocabulary (or
dictionary) that includes all the extracted keywords, and b) the keyword-associated posting
lists. Each list as shown in Figure 5.1 is composed of all the identifiers docID2 of the docu-
ments containing the keyword, term position Pos in the corresponding documents, and other
statistics, e.g. term frequency (TF) and inverse document frequency (IDF), etc. In general,
a query is performed over the index by matching the target keywords (Step 1), retrieving
the associated posting lists (Step 2) and evaluating query functions via information from the
acquired lists (Step 3). Note that in Step 1, we can either linearly scan the vocabulary or
use the hash table with constant search cost. The observed leakage (see Section 5.4) exists
in both cases. For simplicity, here we choose to traverse the vocabulary for keyword match.

5.2.3 Intel SGX

SGX is the latest Intel’s instruction extensions that aim to offer integrity and confidentiality
guarantees to security-sensitive computation conducted on the commodity computer. The
privileged software and low-level firmware, such as OS kernel, virtual machine hypervisor,
and system management mode, are all assumed to be potentially malicious in the adversary
model of SGX [57, 77]. This is because the TCB of SGX, compared to its predecessors,
e.g., TPM [52], Intel TXT [51], only contains the CPU and several privileged enclaves. This
significantly reduces the attack surface and provides strong security guarantees. The memory
region reserved for the enclave, called enclave page cache (EPC), can only be accessed when
CPU enters the special enclave mode, which enforces additional hardware checks on every
external EPC page access request. The EPC memory is encrypted and authenticated by SGX
Memory Encryption Engine (MEE) [33, 53], part of the memory controller within the CPU
package. Enclave can save the encrypted computation result onto the untrusted persistent

1Most SSE works only support simplified versions of inverted index for extremely constrained query types,
such as single keyword search.

2They can be pointers/URLs to the documents.

70 Chapter 5. Secure Keyword Search Using Trusted Hardware

storage by using symmetric authenticated encryption, such as GCM[AES]. The encryption
key is derived from the hard-coded root sealing key unknown to Intel. The ciphertext can
be loaded back and decrypted later by the same enclave that encrypts it [4, 33]. In addition,
SGX also provides the remote attestation function to convince users of the integrity of the
established enclave before setting up the secure channel and provisioning their secrets [4, 60].

Besides physical attacks, SGX is also vulnerable to rollback attack [33], Iago attack [28] and
side-channel attacks, including cache timing, power analysis, etc. SGX cannot defend against
DoS attack as the underlying resource allocation is still controlled by the privileged system
software. When applying these attacks to an SGX-based search, the adversary can interrupt
the search process or/and infer the search privacy by breaking the SGX protection. This is
out of scope of this study. Further, memory trace leakage has been confirmed at both page
[120] and cache line level [19]. The leakage will disclose index search trace to the adversary
in SE. We aim to mitigate such information disclosure in this work.

5.3 Problem Formulation

5.3.1 Overview

Three entities, data owner, data user and SGX-enabled server are involved in the sys-
tem as shown in Figure 5.2. Data owner possesses a collection of n documents (we use
“document” or “file” to refer to any text content records, such as text files, web pages),
DB = {D1, D2, ..., Dn}, which in turn contain m keywords W = {w1, w2, ..., wm}. Then he
generates an inverted index I for DB. Consistent with SSE [24, 34] we decouple the storage
of the dataset from the storage of its index3. We assume that the code of query algorithms
and associated parameters are public and have been preloaded into the enclave that is set
up by the server. Next, the data owner authenticates himself to the server and launches
remote attestation to check the integrity of the code and static data in the enclave. Then he
establishes a secure channel and sends an owner-generated secret key sko to the enclave. The
data owner also generates index ciphertext Ĩ under sko, for instance using GCM[AES], and
pass it to the server. Later he, under the same sko

4, can issue an encrypted index update
request τupd to add or delete a document.

By going through a similar procedure, an authorized data user i verifies the enclave that
hosts the search code by remote attestation. This guarantees the integrity of the execution
of the search program and correctness of the query result. The user also shares his secret
key skui with the enclave and uploads the query ciphertext τs under skui to the server.

On the server side, search process begins with enclave loading and decrypting index Ĩ and

3This is a common practice. For example, Google is only responsible for index searching and maintaining,
not hosting the actual web contents.

4A different secret key can be generated for each interaction with the server.

5.3. Problem Formulation 71

Kernel space
Compromised

privileged codes

User space

Data

owner

Data

users

Enclave

Search Application

Remote attestation

& Key provision

Secure function call

& Encrypted data transfer
SGX-enabled

Server

Untrusted

host

program

Figure 5.2: REARGUARD framework.

query τs with the corresponding keys. The query is executed over the plaintext index inside
the enclave. The ciphertext ˜res of the result documents id using skui is sent back to user
i. Another advantage of our design over SSE is that it naturally supports the more realistic
multi-user setting because each user is able to search by his own secret key shared with the
enclave.

Definition 5.1. (REARGUARD) Our secure keyword search scheme using trusted hardware
is a tuple of three protocols executed between the data owner, data users and the SGX-enable
server as follows:

• (sko, Ĩ)← Setup(1λ, I): On input a security parameter λ and an inverted index I for
a dataset, it for the data owner outputs a secret key sko that will be shared with the
verified enclave on the server and the encrypted index structure Ĩ that will be stored
on the server.

• (˜res, τs, skui) ← Search(1λ, Q, Ĩ, sko): On input the security parameter λ, it outputs
for the user i a secret key skui that will be shared with the attested enclave on the
server. Using skui , it encrypts a query Q on some keywords w into ciphertext τs, which
is sent to the server. On input τs, Ĩ, sko, skui , it outputs the search result ciphertext
˜res under skui for the user.

• (Ĩ∆, τupd)← Update(1λ, upd, Ĩ, sko): On input an index update request upd = {add
/delete, w, id} (perform addition or deletion of the file id over the posting list of keyword
w) and the owner’s secret key sko, it outputs an update token τupd. On input τupd, Ĩ,
sko, it produces an updated index Ĩ∆.

72 Chapter 5. Secure Keyword Search Using Trusted Hardware

5.3.2 Adversary Model

We identify several keyword-dependent query operations and propose oblivious index access
techniques to ensure that the adversary who observes a sequence of memory accesses toward
the index, including the addresses and encrypted contents, has an indistinguishable view
on index search (update) operations from the exhibited memory traces given two search
(update) queries. Our security assumption is consistent with SGX except that we extend
the side-channel attacks to comprise any attacks using information not derived directly from
index access, such as target dataset statistics (e.g. posting list length, keyword frequency,
etc.), context information (e.g. trending words, communication volume), and knowledge
of linguistics. We do not intend to defend against them in this work. We also aim to
achieve query unlinkability, i.e. the adversary cannot distinguish search tokens only by their
appearances even for the same keywords, which is not supported by most SSE. In what
follows, we first define two leakage profiles, L+

0 and L0 and then give our security definition.

Definition 5.2. (L+
0 – Complete index access trace hiding) It reveals the initial index size at

the setup phase, deterministic index search trace and update pattern of the same operation
(add or delete) for any keyword.

Definition 5.3. (L0 – Partial index access trace hiding) This profile reveals the initial index
size at the setup phase, deterministic index search trace and update pattern of the same
operation for keywords in the same group (see Section 5.4).

Similar to SSE, we do not consider index access operation types, i.e. search or update, to
be sensitive information, albeit they can be further protected at extra cost [49].

Security Definition

We define the security of our scheme based on the simulation model of the secure compu-
tation [105]. In particular, it requires that a real-world protocol execution ΠF using the
secure hardware functions be able to simulate an ideal-world functionality F , such that an
environment Z, who produces all the input and reads all the output in the system, cannot
distinguish these two worlds. We define the experiments RealΠF ,A,Z(λ) and IdealF ,A,S,Z(λ)
in real and ideal worlds respectively as follows based on both leakage profiles L+

0 and L0.

• RealΠF ,A,Z(λ): In the setup phase, an environment Z instructs the data owner by
sending him a “setup” message to perform the Setup protocol with the real-world
adversary A. In each time step, Z specifies a search query Q for the user or an update
request upd = {add/delete, w, id} for the data owner. The user (owner) executes Search
(Update) protocol. Z observes the protocol output for each search (update) operation,
which is either a protocol abortion ⊥, search result, or update success. Finally, it
outputs a bit b.

5.3. Problem Formulation 73

• IdealF ,A,S,Z(λ): In the setup phase, an environment Z sends the data owner a message
“setup”. Then the owner forwards this message to an ideal functionality F , which
notifies an ideal-world adversary S of the leakage L+

0 (L0). In each time step, Z
specifies a search query Q for the user or an update request upd = {add/delete, w, id}
for data owner. The user (owner) submits Q (upd) to F . Then S is notified of the
leakage L+

0 (L0) associated with the search (update) operation by F . S sends F either
“continue” or “abort”. F outputs either search result, update success, or ⊥, which is
observed by the environment Z. Finally, Z outputs a bit b′.

Definition 5.4. (Semi-honest/malicious security) We say that a protocol ΠF simulates the
ideal functionality F in the semi-honest/malicious model, if for PPT semi-honest/malicious
real-world adversaryA, there exists an ideal-world simulator S, such that for all non-uniform,
polynomial-time Z,

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealF ,A,S,Z(λ) = 1]| ≤ neg(λ).

Our security definition covers both the semi-honest adversary who faithfully follows the
prescribed protocol and the malicious adversary that arbitrarily deviates from the protocol.
Privacy of the scheme is guaranteed because S is only given the leakage L+

0 or L0 during the
simulation. The definition also captures the correctness as data user or owner in the ideal
world receives either the expected result or a protocol abortion.

Time

A
dd

re
ss

index
preprocessing break

hit

(a)

Time

A
dd

re
ss

index
preprocessing

break
miss

hit

(b)

Figure 5.3: Memory trace for keyword match in Step 1: (a) The first keyword match; (b)
The third keyword match.

74 Chapter 5. Secure Keyword Search Using Trusted Hardware

5.4 Our Design

This section provides concrete design for REARGUARD, especially focusing on the Search
and Update phases. We first deal with the fundamental single keyword query, which is
extensively studied in SSE. Then we describe the dynamic setting and consider the scalability
issue with SGX. In the end, we discuss extensions to other common query functions, such as
spelling correction, Boolean query, phrase query, proximity query, range query and similarity-
based rank retrieval.

Time

A
dd

re
ss

For w
1

For w
2

For w
3

preprocessing

posting list
retrieval

Figure 5.4: Memory trace for posting list retrieval in Step 2 for the first three keywords.

5.4.1 Single Keyword Query

Index Search Trace Leakage

The successful execution of a single keyword query over an inverted index returns file IDs
within the posting list of the intended keyword. We identify two keyword-dependent opera-
tions in the single keyword search algorithm in Algorithm 5.1. The first sensitive operation
is to search for the intended keyword w in the vocabulary of the index in Step 1 (see Sec-
tion 5.2). If and only if the condition is met (line 3), the corresponding code block in Step 2
will be executed to further retrieve the posting list of this keyword (line 4) and then termi-
nate the index search (line 5). We also experimentally verify the existence of the leakage for
different keywords using Intel Pin framework [75] in Figure 5.3. Memory traces for different
keyword matching in Step 1 are easily distinguished in Figure 5.3 (a) (b). If the first keyword
is intended as in Figure 5.3 (a), the match hit can be observed followed by a break operation.
In the case of the third keyword being the interest in Figure 5.3 (b), we will first observe

5.4. Our Design 75

Input: Query keyword w and inverted index I including m keywords, where Ri is the ith
index row. Define the data structure Rindex for Ri, where Rindex.term is the
term for this row and Rindex.plist is the corresponding posting list with data
structure Plist.

Output: Query result res.

1 res = ∅
2 for i = 1→ m do
3 if Ri.term == w then // Keyword-dependent condition evaluation

4 res = Ri.plist // Keyword-dependent posting list retrieval

5 break

6 end

7 end
8 return res

Algorithm 5.1: Pseudocode for single keyword query.

two misses, then the match hit and the break in the end5. In Step 2 of posting list retrieval,
we can also differentiate the index search patterns for different keywords effortlessly in Fig-
ure 5.4. The leakage may still exist at different granularities even using SGX[19, 120]. As
a result, hiding memory traces of these two query-dependent operations plays a critical role
in our design.

Oblivious Keyword Search Primitives

In a nutshell, we implement oblivious keyword search primitives to obfuscate the memory
traces during index access. The main idea is similar to the techniques used in [85, 91] but we
tailor them for the purpose of secure keyword search. Specifically, we realize the oblivious
data transfer by X86 CMOVZ instruction, which moves the source operand to the destination
operand if the condition code is true. When both source and destination operands are put
in registers, this data transfer turns out to be oblivious and leaks no information about the
branch selection. Likewise, we are able to use CPU registers as private storage to conceal the
search footprints. For an oblivious read, we first load contents into registers and then merely
select the data of interest. On the other hand, an oblivious write operation is carried out
as follows. It first obliviously read the content. Should the data be intended, the updated
content will be stored; otherwise, the original data will be written back. Since SGX uses
randomized encryption to protect every write operation by MEE, the adversary cannot infer
the data content. Moreover, we observe that the index search process consists of a sequence
of read operations and that we only need to write the index at the update phase. Note that
it is unnecessary to further obfuscate search and update operations similar to SSE, while

5The miss may not be observable if we use a hash table, but we can still capture the leakage by the
address of the hit.

76 Chapter 5. Secure Keyword Search Using Trusted Hardware

1 OMatch(Rindex* rind, Term qterm, Plist* tmp){
2 Plist* match;
3 asm volatile (
4 “mov %3, %0;”
5 “cmp %1, %2;”
6 “cmovz %4, %0;”
7 : “=r” (match)
8 : “r” (rind→ term), “r” (qterm), “r” (tmp), “r” (rind→ plist)
9 : “cc”

10);
11 return match;
12 }

Algorithm 5.2: OMatch() wrapper.

this can be done readily by additional dummy writes after oblivious reads.

Oblivious keyword match. We design an OMatch() function as shown in Algorithm 5.2
to hide the trace from keyword match by using the aforementioned oblivious data transfer
primitive. In particular, we store both the query and keyword in the vocabulary in separate
registers (line 8) and then compare them (line 5). If there is a match, the pointer to the
posting list of the queried keyword will be returned; otherwise, it will return a default dummy
address (line 6).

Oblivious posting list retrieval. Another oblivious function ORetrieval() is also adopted
in order to hide the index search trace for retrieving the posting list in Step 2. A posting
list will be obliviously retrieved only when its address matches that returned by OMatch();
otherwise, ORetrieval() function will return a dummy list. In addition, we can further improve
the efficiency of array reading by the vector register AVX2 instead of element-wise read using
a general purpose register.

Put All Together

We will show the concrete design for leakage profiles L+
0 and L0 respectively using the

proposed oblivious search functions.

L+
0 construction. The main idea behind the construction for L+

0 leakage profile is to
display the deterministic index search trace for each query. Specifically, we first use OMatch()
to scan the entire vocabulary and obliviously match the queried keyword. Then ORetrieval()
function is executed to obtain the posting list of the intended keyword after touching every
index row. We further obliviously pad the retrieved list for every query to the predefined
length l, l ≥ MaxLength(plists), so as to further obscure the attacker’s view. Despite the

5.4. Our Design 77

complexity O(N), our hardware-based scheme is efficient in practice because of the fast
protocol execution between the CPU registers and DRAM of the server.

L0 construction. Our intention of creating L0 profile is to speed up the search process by
tolerating extra information leakage compared to L+

0 but still to achieve better security than
SSE. We first randomly divide the keyword universe W into groups and scan the index until
the group including the intended keyword has been searched, as shown in Figure 5.5. Next,
the posting list of interest is obliviously retrieved from the group. This construction results
in a faster query process than L+

0 . Efficiency can be further improved by using additional
constant-overhead data structures, such as hash table, Bloom filter, to allow direct search
over the target group. We also pad the result list from group i to a preset length lgi , which is
not shorter than the longest list in the group. This L0 design reveals which part of the index
is being queried. However, the adversary cannot differentiate two queries for the same group
through the disclosed aggregated group search pattern. L+

0 can be considered a special case
of L0 with only one group – the entire index. We provide the detailed discussion on the
implication of group size in Section 5.5.

T1 1 2 5 7 8 11
T2 4 6 7
T3 3 6 8 9
T4 1 3
T5 2 3 6 7 12
T6 3 8 9

Group 1

Group 2 Different group search pattern

Vocabulary Posting lists

Q1=T2, res=(4, 6, 7, x, x, x)
Q2=T3, res=(3, 6, 8, 9, x, x)

Q3=T6, res=(3, 8, 9, x, x, x)

Same group search pattern

Step 1
Step 2

Figure 5.5: Illustration for L0.

Update

In the dynamic setting, the data owner is able to update the index by adding (deleting) a file
to (from) the posting list of some keyword. We can leverage oblivious write operation to blur
the view on the update. In particular, depending on the leakage profile, we first obliviously
search over the index and obtain the intended posting list. For file addition, we insert the
new file and its metadata to the retrieved list. Then we obliviously write the updated list
back to the index, which increments the length of all the posting lists in the group for L0

or in the entire index for L+
0 . Deleting a file for a keyword follows the similar procedure by

replacing the target with a dummy file. In this case, the length of index rows is unchanged.

78 Chapter 5. Secure Keyword Search Using Trusted Hardware

The type of update operation, add or delete, is also revealed to the server by observing the
size of the updated index. Albeit we do not consider the leakage sensitive, we can foil it by
intentionally writing a dummy file to the corresponding lists for the deletion operation.

The proposed approach may cause gradually increased index storage over time. To address
this issue, the data owner downloads the index after a predefined number of update opera-
tions. He then refreshes the index by deleting the dummy files and randomly shuffles index
rows. He also regroups the index for L0 before encrypting and uploading it to the server. As
a result, the adversary only observes an aggregated update pattern. The view can be further
obfuscated by randomly cleaning a portion of dummy files in the index.

Scalability

The problem with the straightforward implementation of REARGUARD is that the EPC
memory is constrained by current SGX specification, i.e. 128MB in total. Our experiment
shows only about 95MB available for code and data. This scalability problem affects all
applications built on Intel SGX at present. In the wake of indexing a large dataset, the
index size is likely to exceed the limitation. We circumvent this pressing issue by splitting
the original large index into small partitions at the setup. These partition indexes when
sitting outside enclave are protected by authenticated encryption, and loaded into enclave
on demand. For L+

0 , all partitions are sequentially loaded and searched inside the enclave.
For L0, we adopt a hierarchical index structure for efficient on-demand loading. Specifically,
we put a small first-level index (e.g. using hash table, Bloom filter) into the enclave and use
it to quickly pinpoint the second-level index partition in the main memory containing the
target group. Then the enclave loads and obliviously searches over the partition. We are
also able to achieve faster search by dividing the original index as per the groups. As such,
only the intended group index is fetched by the in-enclave primary index.

5.4.2 Additional Query Function Support

Besides the single keyword query, plaintext IR compasses a variety of functions. Due to
the page limit, we briefly describe how to incorporate some popular functions into REAR-
GUARD design.

Spelling Correction

Spelling correction has a wide implementation in modern search engines to provide users with
correct search results even in the presence of misspellings in the query. It proceeds by first
computing the distance between the dictionary terms and the erroneous user input. Then
it selects the keyword as query by some predefined value or let the user choose by providing

5.4. Our Design 79

him with spelling suggestions. Usually, the proximity is measured by edit distance (ED),
k-gram overlap, or context information [76]. For example, given query caa, the suggested
keywords within dictionary may include cab, cat, car, etc., with ED = 1. Note that we
can incorporate this popular function into REARGUARD by modifying OMatch() function.
Specifically, instead of exact keyword match, it checks whether the keyword being accessed
is within the predefined distance to the user input. If it is true, this keyword is obliviously
selected as the correct query. Alternatively, we can obviously constitute a candidate set as
well that contains all the keywords within the range and let the user choose the best answer.
In this case, it incurs additional overhead for the interaction.

Boolean Query

The Boolean query is another fundamental query type used in database and free text search.
The query is formed by concatenating multiple keywords with logical operations, for ex-
ample, (computer OR network) AND security AND (NOT wireless) and the result
is expected to contain keywords {computer, security} or {network, security} but not
wireless. Boolean query can be evaluated by performing set operations, i.e. intersection,
union, and difference, in Step 3 based on the obliviously retrieved posting lists. In this
phase, related data manipulation does not touch the index in this case. Thus, the index
search trace will still be hidden. In addition, we may further enhance the security and curb
the side information leakage by carrying out oblivious set operations that can be derived
from the proposed oblivious data transfer primitives.

Range Query

A range query is extensively used in both database and free text search settings to match
the records with queried terms within a certain range. We can either adopt a tree-based
index, such as B-tree, k-d tree, in the enclave with equivalent security level of SSE [45],
or transform the range query to a Boolean query [38, 111] so as to achieve L0/L+

0 security.
With the latter, we do not need to alter our base index structure and seamlessly support
this query type.

Other Query Functions in Step 3

We observe that many query functions are carried out in Step 3, the post index access phase.
For example,

• Proximity and phrase queries are common query types. They can be treated as
special cases of Boolean search with AND operations [76]. In phrase query, all the
matched documents should contain a particular sequence of keywords while proximity

80 Chapter 5. Secure Keyword Search Using Trusted Hardware

query constrains the result by specifying the allowed distances between queried key-
words. We leverage the physical position information of the queried keywords in the
retrieved posting lists to measure the distance, e.g. the number of intermediate words
or characters, in both query types. Thus, akin to Boolean query, we are able to make
these Step-3 query types search trace leakage free.

• Similarity-based rank retrieval is an advanced IR technique to rank result files by
their relevance to the query using statistics of the dataset, for instance, the “TF ×
IDF” weight in the cosine measure of the vector space model [106]. We can calculate
the similarity score after the posting lists are obliviously retrieved from the index.

5.5 Security Analysis

In this section, we prove the security of REARGUARD for single keyword search. The proofs
for other query functions are similar due to the same protection methods.

Theorem 5.5. REARGUARD under L+
0 is secure against the semi-honest adversary under

Definition 5.4 if the underlying SGX primitives are trusted and encryption is CPA-secure.

Proof. (Sketch). In the setup phase, S can output an index I ′ with randomly generated
index rows as per L+

0 . Then it simulates the encrypted index Ĩ ′ = Encsko(I ′), where sko is
randomly selected for the CPA-secure encryption Enc.

In the search phase, according to L+
0 , S randomly selects a keyword w′ from I ′ as query Q′.

τ ′s can be simulated by Encsku(Q′), where sku is randomly produced.

In the update phase, simulator S outputs upd′ = {op, w′, id′} based on the leakage function
L+

0 . Specifically, op is either add or delete as per the revealed update pattern. w′ is randomly
chosen from I ′. id′ is also randomly selected accordingly. Then S sets τ ′upd = Encsko(upd

′).

As a result, the environment Z in Definition 5.4 cannot distinguish Ĩ ′, τ ′s and τ ′upd from

Ĩ, τs and τupd in the experiment RealΠF ,A,Z(λ) respectively due to the trusted execution
environment enforced by SGX and CPA-secure Enc.

Theorem 5.6. REARGUARD under L0 is secure against the semi-honest adversary under
Definition 5.4 if the underlying SGX primitives are trusted and encryption is CPA-secure.

Proof. (Sketch). The proof for L0 construction is similar to that in the L+
0 model except

that

• For search, S randomly selects a keyword w′ in the revealed group from L0.

• For update, w′ is randomly chosen from the revealed group given the group access
pattern leakage by L0.

5.6. Implementation and Evaluation 81

Thus Z cannot distinguish Ĩ ′, τ ′s and τ ′upd from Ĩ, τs and τupd in the experiment RealΠF ,A,Z(λ)
respectively, due to the secure hardware and CPA-secure encryption.

In addition, we are also able to realize the security against the malicious adversary by proving
the verifiability of the scheme. In general, this can be done through the remote attestation
of SGX and replacing the CPA-secure encryption by authenticated encryption. Our design
implies forward privacy (see Section 5.2) as well by hiding the memory trace of index update
operation. Moreover, REARGUARD also achieves query unlinkability by using semantically
secure encryption for the search and update token generation.

Privacy implication of group size in L0. Attacks on SSE rely on precisely disclosed
keyword search and access patterns during the index search phase [25, 124] to uniquely
identify the queried keyword and speculate the plaintext dataset information. However, L0

only leaks the aggregated group search/update pattern, including the number of keywords
and length of their associated posting lists in the group. The adversary only knows if the
queries are from the same group. The probability of precise keyword-query linkage is 1/n for
an n-term group. Only given this, the adversary has no advantage in compromising query
privacy except for random guessing as we have already proved. Therefore, regardless of the
group size, the probability of revealing a query is exactly 1/|W|, as same as L+

0 . On the
other hand, the adversary may exploit side information, e.g. the lengths of posting lists,
context, communication volume, etc., to facilitate query identification. These side-channel
attacks are hard to defend even with fully homomorphic encryption [46] and oblivious RAM
(ORAM) [49]. The group size makes no differences in this situation.

5.6 Implementation and Evaluation

5.6.1 Implementation

In order for Intel SGX to offer its strong security guarantees, libraries included in the enclave
has to be carefully designed to defend against potential malicious attacks [28]. At the time of
writing, SGX SDK (v1.6) supports only C/C++. Many popular search software packages in
other programming languages, such as the JAVA-based Lucene, cannot be directly adapted in
the programming environment. Further, SGX uses a customized version of C/C++ standard
library that only provides a limited subset of functions compared to the standard C library
for security reasons. Therefore, even applications written in C/C++ such as Clucene cannot
be directly migrated. We developed our own implementation of the search functions under
the SGX development environment. To further alleviate index search trace leakage, privacy-
sensitive operations are written using the memory-trace oblivious primitives. We built a
prototype of REARGUARD with about 4,000 LOC using Intel SGX SDK v1.6 on Intel
NUC, running Ubuntu 14.04 TLS. The NUC is powered by Intel i7-6770HQ Skylake CPU

82 Chapter 5. Secure Keyword Search Using Trusted Hardware

with 6MB cache at 2.6 GHz and 8GB DRAM. According to the vendor specification, the
read and write speed of the 256GB SSD is 560 MB/s and 400 MB/s respectively. The AES
encryption and decryption are implemented with Intel AES-NI instruction. This prototype
supports common key query types and functions, i.e. spelling correction, Boolean query,
proximity query, phrase query, range query (by converting to Boolean query) and similarity-
based ranking.

Time

A
dd

re
ss

Oblivious 1st term match

Oblivious 3rd term match

preprocessing OMatch()

Figure 5.6: Oblivious keyword match in Step 1 during searching over a 5-term index.

5.6.2 Performance Evaluation

The objective of our evaluation is to measure the performance of the proposed system with
elevated security protection. Existing SE work supports only a subset of the query functions
we implemented. Plaintext and SGX-only searches are used as the baselines and compared to
the proposed schemes in both L0 and L+

0 leakage models. For plaintext search, we evaluate
its performance over the index entirely hosted in the main memory. SGX-only search is
conducted using SGX protection but without oblivious operations, which can be generally
deemed an L1-SE scheme similar to [45]. Furthermore, we are interested in evaluating
the scalability of the proposed system when handling a large-sized index that cannot be
completely loaded into the EPC memory.

The experiments are conducted with a real-world dataset – Enron Email Dataset [32], which
contains about half million files and has been extensively employed to evaluate SE schemes
[24, 63]. We extracted about 258, 000 keywords and generated a 175MB inverted index after
standard term stemming and stop word elimination. We use 80-keyword groups in L0. The
performance was measured over AND Boolean query, similarity-based ranking, and spelling

5.6. Implementation and Evaluation 83

correction (with default ed = 1) at the same time in all cases to demonstrate the efficiency
and enriched query functions. We selected queries uniformly from the keyword universe.
The experimental result is an average of 1,000 trials. For simplicity, we do not consider
the optimization by advanced IR techniques, such as skip pointers for AND Boolean query
and index compression, which are compatible with our scheme as we use the same index
structure.

5.6.3 Oblivious Index Access

We first experimentally measure the effectiveness of the proposed oblivious keyword search
functions. Figure 5.6 shows a unified view on index access in Step 1 by using OMatch()
function regardless of the queried keywords in the vocabulary. This is applicable to both
leakage profiles L+

0 and L0 with intended keywords in the same group. In L0, search process
by using ORetrieval() function in Step 2 exhibits, in Figure 5.7, the same index access pattern
as long as the queried keywords are from the same group and distinct group search patterns
otherwise. L+

0 construction is expected to show an indistinguishable view on the posting list
retrieval due to the deterministic index search pattern.

Time

A
dd

re
ss

w
1
 in G

1

w
2
 in G

1

w
3
 in G

2 ORetrieval()

preprocessing

Figure 5.7: Oblivious posting list retrieval in Step 2 when searching over a 5-term index.

Search over Small-sized Index

We first measure the efficiency of searching over a small-sized index entirely residing inside
the enclave. In our experiment, we only have less than 40MB EPC memory available. We

84 Chapter 5. Secure Keyword Search Using Trusted Hardware

randomly select a portion of the original index for all cases. The size of this index is about
35MB consisting of 50, 000 keywords approximately. It is shown in Figure 5.8 (a) that time
efficiency for all the cases is proportional to the number of keywords in the Boolean queries.
We find that search inside enclave is very efficient and only costs about 0.62% additional
time for encryption/decryption operations, context switching, etc., compared to plaintext
search. On the other hand, REARGUARD are slightly slower than plaintext case due to
the proposed oblivious index access functions. Although the L+

0 design brings an O(N)
theoretical complexity, our experiment shows that only 1.16× overhead of plaintext search
is incurred. The L0 construction is faster than L+

0 as expected and displays a 6% efficiency
loss versus plaintext case. Note that 6 or fewer keywords in a query accounts for more than
96% cases in reality [65], therefore the experimental result in Figure 5.8 is a representative
for the practical use.

1 2 3 4 5 6
Number of keywords

140

150

160

170

180

190

T
im

e
(m

s)

Plaintext
SGX only

L
0
+

L
0

(a)

1 2 3 4 5 6
Number of keywords

0

200

400

600

800

1000

1200

T
im

e
(m

s)

Plaintext
SGX only

L
0
+

L
0
-1

L
0
-2

(b)

Figure 5.8: (a) Search over small-sized index. (b) Scalable search over large-sized index.

Search over Large-sized Index

For the index with size exceeding the available enclave memory, we divide it into partitions.
We set up 5 partition indexes, each about 35MB, in our experiment. Plaintext search is
still conducted over the original index in the main memory. The SGX-only search continues
loading the index partitions until the match is found. Compared to the plaintext query, the
SGX-only case in Figure 5.8 (b) shows an average 1.12× efficiency loss due to index loading,
encryption/decryption, and context switching. We sequentially load and search over all
the partitions for L+

0 , which is only about 1.45× slower than the plaintext case. Although
plaintext search time can further speed up by optimizing the index structure, such as using
our hierarchical index design, the absolute time cost of L+

0 is still reasonable considering its
strong security assurance. In addition to the overhead caused by SGX, the oblivious index

5.7. Related Work 85

access is the most time-consuming operation.

We split L0 into two sub-cases. In L0-1, we exploit a Bloom filter as the first-level index for
each second-level index partition. We construct five Bloom filter indexes with all the false
positive rate equal to 10−20, which merely consume about 3.03MB EPC memory in total.
When a hit is found in the Bloom filter index, we only load and search over the corresponding
partition. In L0-2, we build the Bloom filter for each group index with the same false positive
rate as in L0-1. The total size of the generated first-level index is about 3.3MB. Only the
target group index is loaded and searched in the enclave in this case. In Figure 5.8 (b), both
cases show nearly constant query time. L0-1 is slightly slower than L0-2 mainly owing to
the relatively large index used there. Because we adopt a hierarchical index structure to
allow search over smaller indexes, the two L0 cases are faster than their competitors. The
plaintext and SGX-only search are expected to be more efficient than L0 with the similar
index design.

Index Update

Updating index needs extra oblivious write operations compared to the search. Two update
query types – add and delete – on the same index introduce almost the same cost. For
an update query toward a group index in L0, the experiment shows about 1.09× slowdown
versus its counterpart search operation while L+

0 introduces 1.1× time cost of the small-sized
index search and 1.08× time cost of the large-sized index search.

5.7 Related Work

5.7.1 Search over Encrypted Data

Curtmola et al. [34] proposed the first searchable symmetric encryption scheme in the static
setting. It gave two security definitions, i.e. CKA1 and CKA2, where the index search trace
leakage is accepted for an efficient query. Kamara et al. [63] proposed a dynamic version of
[34], supporting file insertion and deletion, but leaking forward privacy during the update. A
forward-private SE was first explicitly considered in [105], where an ORAM-related technique
was used to alleviate the privacy leakage but incurred non-negligible overhead. Later on,
Bost [18] presented a more efficient forward-private SSE using trapdoor permutations. Boneh
et al. [16] built the first public key encryption with keyword search from IBE. All the above
SE works only support single keyword query. Recently, the secure Boolean query has been
studied in the literature [24] but it still leaks index search trace. Another line of work focus
on realizing secure range query. Many cryptographic primitives can be used as building
blocks for efficient range query, such as order-preserving encryption [15], order-revealing
encryption [17], predicate encryption [96], garbled RAMs [47]. Sun et al. [111] solved this

86 Chapter 5. Secure Keyword Search Using Trusted Hardware

problem by reducing a range query to a secure multi-keyword search in the genomic study
scenario. Similar idea is also adopted in [38]. Recently a concurrent work by Fuhry et al.
[45] was proposed to realize secure range query on an SGX-enabled server. However, the
security is still consistent with current software-based SSE. Their scheme cannot be easily
extended to support other IR functions either. In [8], a private database query scheme was
proposed also using secure hardware. But it did not provide formal security analysis and
their TCB is much larger than ours. Therefore, current SE only covers a small subset of
plaintext query functions and cannot provide security guarantees beyond L1 leakage while
maintaining efficiency.

5.7.2 Applications with Secure Hardware

Recent years has seen increasing interest in building applications on top of secure hardware.
Santos et al. [94] proposed a trusted language runtime using ARM TrustZone framework
to protect the confidentiality and integrity of .NET mobile applications. In IoT setting,
Ambrosin et al. [3] exploited secure hardware component to enable an asymmetric-key based
swarm attestation protocol on IoT devices. There are recent efforts on harnessing Intel SGX
to achieve security and privacy preservation for various applications. VC3 [95] was designed
to realize the verifiable and confidential execution of MapReduce jobs in an untrusted cloud
environment by using SGX. In [54], authors demonstrated the possibility of securely and
efficiently evaluating functions in an SGX-backed trusted execution environment. Zhang
et al. [122] proposed an authenticated data feed system based on SGX, which acted as a
trustworthy proxy between HTTPS-enabled servers and smart contracts. Ohrimenko et al.
[85] studied the problem of multi-party machine learning on an SGX-enabled server. Besides
the confidentiality, they also considered the data-dependent memory trace leakage pertaining
to the related machine learning algorithms.

5.8 Summary

In this work, we propose REARGUARD, the first secure keyword search scheme based
on the off-the-shelf trusted hardware to achieve query functions comparable to plaintext
IR while ensuring the confidentiality and integrity of the query process. We define two
new privacy leakage profiles for SE and present corresponding constructions, which reveal
much fewer search footprints than the state-of-the-art software-based solutions. We present
approaches beyond the capability of the underlying hardware primitive by designing effective
oblivious keyword search functions. Our implementation with the real-world dataset shows
its practicality and efficiency.

Chapter 6

Conclusions

With the advent of cloud computing that is based on service-oriented architecture and vir-
tualization technology, an unprecedented elastic computation model has been unfolded to
us. We have seen more and more mission-critical applications along with a huge amount
of potentially sensitive data from business, research and our day-to-day life migrating to
the centralized servers, which inevitably leads to a powerful yet not fully-trustworthy public
cloud in the pivotal position of the entire IT infrastructure. As this cloud brain governs var-
ious aspects of our society, a natural concern about its security and privacy has arisen. We
target our research in this dissertation at this challenging public cloud environment, study
and attempt to secure two fundamental cloud services – data deduplication in cloud storage
and information retrieval in different applications and contexts. We, in this dissertation
research, explore both software-based cryptographic approaches and hardware-based trusted
computing technology, and strive to comprehensively exhibit the current landscape of the
related problem solving in hopes of providing insights to the future research in this area.

Future Research Directions Besides the studied problems in this dissertation, there are
other emerging applications and cloud-based architecture designs, which may need different
considerations and demands for security and privacy. In what follows, we briefly introduce
some interesting and important issues.

• Cloud data confidentiality and integrity can be achieved by using software/hardware-
based solutions similar to those in this dissertation. However, different applications
may require additional security/privacy considerations. For example, unlike the pass-
word or PIN-based authentication, user biometric data cannot be easily revoked or
replaced, because they are permanently associated with the user. Once the immutable
user bio-features are stolen from the server, all the applications using them as user
identity in the biometrics-based authentication immediately expose to the compromise
risk. Therefore, we must come up with new approaches to stay resilient to the breach

87

88 Chapter 6. Conclusions

and be able to safely revoke the bio-features of the user and reuse them for different
applications later. Moreover,unlinkability is desired in the sense that the applications
with the registered same set of user biometrics cannot be linked and boil down to the
same user identity.

• Similar to the motivation of REARGUARD, we lack a unified generic solution to
support a wide spectrum of cloud services. The respective enabling techniques in
the literature inevitably cause inconsistency in the system and incur a noteworthy
performance hit. TEEs may be an appealing option, but the scalability, heterogeneity,
and usability make their application to secure generic computation tasks in different
platforms an extremely challenging problem. There are continuing efforts to bridge
the discrepancy, such as Google Asylo [88], but much more research is needed in this
direction to explore other possibilities.

• We through the research of REARGUARDshow that the disclosure of the memory trace
of the computation during the secure data service may reveal significant user privacy.
This kind of side-channel threats are real (e.g. Meltdown and Spectre vulnerabilities in
Intel CPU) and could be catastrophic. Therefore, early awareness and a much-deeper
integration of oblivious system operations are desired instead of a separate remedial
design that is likely to adversely impact the service performance.

• Another crucial function of the cloud brain, which we do not touch in this dissertation,
is the reaction to the input data stimuli. This scenario is well modeled and demon-
strated by cloud-based IoT systems. Data are constantly gleaned by IoT devices from
the ambient environment and sent to the backend cloud for data processing and de-
cision making. Accordingly, the cloud issues the control commands to the end IoT
actuator devices to physically change the state of the environment or users, such as
open the door, operate the medical device (e.g. insulin pumps). This setting obviously
necessitates additional requirements in addition to the confidentiality and integrity at
the data storage and processing phases. Specifically, we should have an accountable,
auditable and verifiable cloud that is compliant with the service agreement and friendly
to misbehavior detection, auditing, and forensics.

Bibliography

[1] 1000 Genome Project. ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/

HG00097/alignment/, accessed in October 2015.

[2] Mart́ın Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and Gil Segev.
Message-locked encryption for lock-dependent messages. In Advances in Cryptology–
CRYPTO 2013, pages 374–391. Springer, 2013.

[3] Moreno Ambrosin, Mauro Conti, Ahmad Ibrahim, Gregory Neven, Ahmad-Reza
Sadeghi, and Matthias Schunter. SANA: Secure and scalable aggregate network at-
testation. In Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security, pages 731–742. ACM, 2016.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology
for cpu based attestation and sealing. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, volume 13, 2013.

[5] ARM Security Technology. Building a secure system using TrustZone technology (white
paper). ARM Limited, 2009.

[6] Man Ho Au, Patrick P Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumu-
lators for ddh groups and their application to attribute-based anonymous credential
systems. In Cryptographers’ Track at the RSA Conference, pages 295–308. Springer,
2009.

[7] Erman Ayday, Jean Louis Raisaro, Urs Hengartner, Adam Molyneaux, and Jean-
Pierre Hubaux. Privacy-preserving processing of raw genomic data. In Data Privacy
Management and Autonomous Spontaneous Security, pages 133–147. Springer, 2014.

[8] Sumeet Bajaj and Radu Sion. TrustedDB: A trusted hardware-based database with
privacy and data confidentiality. IEEE Transactions on Knowledge and Data Engi-
neering, 26(3):752–765, 2014.

[9] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering GATTACA: Efficient and secure testing of fully-sequenced human genomes.

89

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/HG00097/alignment/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/HG00097/alignment/

90 BIBLIOGRAPHY

In Proceedings of the 18th ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 691–702. ACM, 2011.

[10] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. DupLESS: Server-aided
encryption for deduplicated storage. In Proceedings of the 22nd USENIX Security
Symposium, pages 179–194. USENIX Association, 2013.

[11] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption
and secure deduplication. In Advances in Cryptology–EUROCRYP 2013, pages 296–
312. Springer, 2013.

[12] Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alterna-
tive to digital signatures. In Workshop on the Theory and Application of of Crypto-
graphic Techniques, pages 274–285. Springer, 1993.

[13] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[14] Deepak R Bobbarjung, Suresh Jagannathan, and Cezary Dubnicki. Improving du-
plicate elimination in storage systems. ACM Transactions on Storage, 2(4):424–448,
2006.

[15] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam Oneill. Order-
preserving symmetric encryption. In Advances in Cryptology–EUROCRYPT 2009,
pages 224–241. Springer, 2009.

[16] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public
key encryption with keyword search. In Advances in Cryptology–EUROCRYPT 2004,
pages 506–522. Springer, 2004.

[17] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zim-
merman. Semantically secure order-revealing encryption: Multi-input functional en-
cryption without obfuscation. In Advances in Cryptology–EUROCRYPT 2015, pages
563–594. Springer, 2015.

[18] Raphael Bost. Σoϕoς: Forward secure searchable encryption. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages
1143–1154, 2016.

[19] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Cap-
kun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are
practical. arXiv preprint arXiv:1702.07521, 2017.

[20] Andrei Z Broder. Some applications of rabins fingerprinting method. In Sequences II,
pages 143–152. Springer, 1993.

BIBLIOGRAPHY 91

[21] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Advances in Cryptology–CRYPTO
2002, volume 2442, pages 61–76. Springer, 2002.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

[23] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. IEEE Transactions on Parallel and
Distributed Systems, 25(1):222–233, 2014.

[24] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu,
and Michael Steiner. Highly-scalable searchable symmetric encryption with support for
boolean queries. In Advances in Cryptology–CRYPTO 2013, pages 353–373. Springer,
2013.

[25] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pages 668–679. ACM, 2015.

[26] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. In Proceedings of the 3rd International Conference on Applied
Cryptography and Network Security, volume 5, pages 442–455. Springer, 2005.

[27] David Chaum. Blind signatures for untraceable payments. In Advances in Cryptology–
CRYPTO, pages 199–203. Springer, 1983.

[28] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call API is
a bad untrusted rpc interface. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
253–264. ACM, 2013.

[29] Rongmao Chen, Yi Mu, Guomin Yang, and Fuchun Guo. BL-MLE: block-level
message-locked encryption for secure large file deduplication. IEEE Transactions on
Information Forensics and Security, 10(12):2643–2652, 2015.

[30] Yangyi Chen, Bo Peng, XiaoFeng Wang, and Haixu Tang. Large-scale privacy-
preserving mapping of human genomic sequences on hybrid clouds. In Proceedings
of Network and Distributed System Security. Internet Society, 2012.

[31] CipherCloud. Cloud data encryption. http://www.ciphercloud.com/technologies/
encryption/, 2017.

[32] W. William Cohen. Enron email dataset. https://www.cs.cmu.edu/~enron/, 2017.

http://www.ciphercloud.com/technologies/encryption/
http://www.ciphercloud.com/technologies/encryption/
https://www.cs.cmu.edu/~enron/

92 BIBLIOGRAPHY

[33] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptology ePrint
Archive, 2016:086, 2016.

[34] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: Improved definitions and efficient constructions. In Proceedings of
the 13th ACM SIGSAC Conference on Computer and Communications Security, pages
79–88. ACM, 2006.

[35] Damballa. State of infection report – Q2 2014. http://landing.damballa.com/

state-infections-report-q2-2014.html, 2014.

[36] Ivan Damg̊ard and Nikos Triandopoulos. Supporting non-membership proofs with
bilinear-map accumulators. IACR Cryptology ePrint Archive, 2008:538, 2008.

[37] Brian Dawkins. Siobhan’s problem: the coupon collector revisited. The American
Statistician, 45(1):76–82, 1991.

[38] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligian-
nakis, and Minos Garofalakis. Practical private range search revisited. In Proceedings
of the 2016 International Conference on Management of Data, pages 185–198. ACM,
2016.

[39] John R Douceur, Atul Adya, William J Bolosky, P Simon, and Marvin Theimer. Re-
claiming space from duplicate files in a serverless distributed file system. In Proceedings
of the 22nd International Conference on Distributed Computing Systems, pages 617–
624. IEEE, 2002.

[40] Yitao Duan. Distributed key generation for encrypted deduplication: Achieving the
strongest privacy. In Proceedings of the ACM Workshop on Cloud Computing Security,
pages 57–68. ACM, 2014.

[41] Mike Dutch. Understanding data deduplication ratios. In SNIA Data Management
Forum, page 7, 2008.

[42] Eupedia. http://www.eupedia.com/genetics/medical_dna_test.shtml, accessed
in October 2015.

[43] FDA. Biomarker qualification program. http://www.fda.gov/Drugs/

DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/

ucm284076.htm, accessed in October 2015.

[44] FSL. Traces and snapshots public archive. http://tracer.filesystems.org, 2012.

[45] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. Hardidx: Practical and secure index with sgx. In Proceed-
ings of IFIP Annual Conference on Data and Applications Security and Privacy, pages
386–408. Springer, 2017.

http://landing.damballa.com/state-infections-report-q2-2014.html
http://landing.damballa.com/state-infections-report-q2-2014.html
http://www.eupedia.com/genetics/medical_dna_test.shtml
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm
http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm
http://tracer.filesystems.org

BIBLIOGRAPHY 93

[46] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

[47] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Advances in Cryptology–EUROCRYPT 2014, pages
405–422. Springer, 2014.

[48] Eu-Jin Goh et al. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.

[49] Oded Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In Proceedings of the 19th annual ACM symposium on Theory of computing,
pages 182–194. ACM, 1987.

[50] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive keyword search
over encrypted data. In Proceedings of the 2nd International Conference on Applied
Cryptography and Network Security, volume 4, pages 31–45. Springer, 2004.

[51] David Grawrock. Dynamics of a Trusted Platform: A building block approach. Intel
Press, 2009.

[52] Trusted Computing Group. TPM main specification.
http://www.trustedcomputinggroup.org/tpm-main-specification/, 2016.

[53] Shay Gueron. A memory encryption engine suitable for general purpose processors.
IACR Cryptology ePrint Archive, 2016:204, 2016.

[54] Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler, and Patrick
Traynor. Using Intel software guard extensions for efficient two-party secure func-
tion evaluation. In Proceedings of the 2016 International Conference on Financial
Cryptography and Data Security, pages 302–318. Springer, 2016.

[55] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of
ownership in remote storage systems. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 491–500. ACM, 2011.

[56] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side channels in cloud
services: Deduplication in cloud storage. IEEE Security & Privacy, 8(6):40–47, 2010.

[57] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using innovative instructions to create trustworthy software solutions.
In Proceedings of the 2nd International Workshop on Hardware and Architectural Sup-
port for Security and Privacy, page 11. ACM, 2013.

[58] Zhicong Huang, Erman Ayday, Jacques Fellay, Jean-Pierre Hubaux, and Ari Juels.
GenoGuard: Protecting genomic data against brute-force attacks. In Proceedings of
IEEE Symposium on Security and Privacy, pages 447–462. IEEE, 2015.

http://www.trustedcomputinggroup.org/tpm-main-specification/

94 BIBLIOGRAPHY

[59] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In Proceed-
ings of Network and Distributed System Security, volume 20, page 12. Internet Society,
2012.

[60] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel SGX: EPID provisioning and attestation ser-
vices. https://software.intel.com/en-us/blogs/2016/03/09/

intel-sgx-epid-provisioning-and-attestation-services, 2016.

[61] Michal Kaczmarczyk, Marcin Barczynski, Wojciech Kilian, and Cezary Dubnicki. Re-
ducing impact of data fragmentation caused by in-line deduplication. In Proceedings
of the 5th Annual International Systems and Storage Conference, page 15. ACM, 2012.

[62] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable sym-
metric encryption. In Proceedings of Financial Cryptography, pages 258–274. Springer,
2013.

[63] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In Proceedings of the 2012 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 965–976. ACM, 2012.

[64] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryp-
tion. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/

AMD_Memory_Encryption_Whitepaper_v7-Public.pdf, 2016.

[65] KeywordDiscovery. Keyword and search engines statistics. https://www.

keyworddiscovery.com/keyword-stats.html?date=2017-04-01, 2017.

[66] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In
Proceedings of Financial Cryptography, volume 7397, pages 285–298. Springer, 2012.

[67] Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents verifiably in search-
able symmetric encryption. In Proceedings of International Conference on Cryptology
and Network Security, pages 309–328. Springer, 2013.

[68] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick PC Lee, and Wenjing Lou.
Secure deduplication with efficient and reliable convergent key management. IEEE
transactions on Parallel and Distributed Systems, 25(6):1615–1625, 2014.

[69] Jingwei Li, Chuan Qin, Patrick PC Lee, and Xiaosong Zhang. Information leakage in
encrypted deduplication via frequency analysis. In Proceedings of The 47th IEEE/I-
FIP International Conference on Dependable Systems and Networks, pages 2110–2118.
IEEE, 2017.

https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://www.keyworddiscovery.com/keyword-stats.html?date=2017-04-01
https://www.keyworddiscovery.com/keyword-stats.html?date=2017-04-01

BIBLIOGRAPHY 95

[70] Mark Lillibridge, Kave Eshghi, and Deepavali Bhagwat. Improving restore speed for
backup systems that use inline chunk-based deduplication. In Proceedings of the 11th
USENIX Conference on File and Storage Technologies, pages 183–198. USENIX Asso-
ciation, 2013.

[71] Chuanyi Liu, Yingping Lu, Chunhui Shi, Guanlin Lu, David HC Du, and Dong-Sheng
Wang. ADMAD: Application-driven metadata aware de-duplication archival storage
system. In Proceedings of the 5th IEEE International Workshop on Storage Network
Architecture and Parallel I/Os, pages 29–35. IEEE, 2008.

[72] Jian Liu, N Asokan, and Benny Pinkas. Secure deduplication of encrypted data without
additional independent servers. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 874–885. ACM, 2015.

[73] Guanlin Lu, Yu Jin, and David HC Du. Frequency based chunking for data de-
duplication. In Proceedings of 2010 IEEE International Symposium on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication Systems, pages 287–296. IEEE,
2010.

[74] Yanbin Lu. Privacy-preserving logarithmic-time search on encrypted data in cloud. In
Proceedings of Network and Distributed System Security. Internet Society, 2012.

[75] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 190–200. ACM, 2005.

[76] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[77] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software
model for isolated execution. In Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy, page 10. ACM, 2013.

[78] Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM
Transactions on Storage (TOS), 7(4):14, 2012.

[79] Young Jin Nam, Dongchul Park, and David HC Du. Assuring demanded read perfor-
mance of data deduplication storage with backup datasets. In Proceedings of IEEE the
20th International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, pages 201–208. IEEE, 2012.

[80] National Human Genome Research Institute. http://www.genome.gov/

sequencingcosts/, accessed in October 2015.

http://www.genome.gov/sequencingcosts/
http://www.genome.gov/sequencingcosts/

96 BIBLIOGRAPHY

[81] Muhammad Naveed. The fallacy of composition of oblivious ram and searchable en-
cryption. IACR Cryptology ePrint Archive, 2015:668, 2015.

[82] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter,
Jean-Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic
era. ACM Computing Surveys, 48(1):6, 2015.

[83] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on
property-preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 644–655. ACM, 2015.

[84] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemelä, Eija Korpelainen,
and Keijo Heljanko. Hadoop-BAM: directly manipulating next generation sequencing
data in the cloud. Bioinformatics, 28(6):876–877, 2012.

[85] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian Nowozin,
Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted
processors. In Proceedings of the 2016 USENIX Security Symposium, pages 619–636.
USENIX Association, 2016.

[86] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal
verification of operations on dynamic sets. In Advances in Cryptology–CRYPTO 2011,
pages 91–110. Springer, 2011.

[87] João Paulo and José Pereira. A survey and classification of storage deduplication
systems. ACM Computing Surveys, 47(1):11, 2014.

[88] Nelly Porter, Jason Garms, and Sergey Simakov. Introduc-
ing Asylo: An open-source framework for confidential com-
puting. https://cloudplatform.googleblog.com/2018/05/

Introducing-Asylo-an-open-source-framework-for-confidential-computing.

html, 2018.

[89] Franco P Preparata and Dilip V Sarwate. Computational complexity of fourier trans-
forms over finite fields. Mathematics of Computation, 31(139):740–751, 1977.

[90] Pasquale Puzio, Refik Molva, Melek Onen, and Sergio Loureiro. ClouDedup: Secure
deduplication with encrypted data for cloud storage. In Proceedings of IEEE the 5th In-
ternational Conference on Cloud Computing Technology and Science, volume 1, pages
363–370. IEEE, 2013.

[91] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels
through obfuscated execution. In Proceedings of the 2015 USENIX Security Sympo-
sium, pages 431–446. USENIX Association, 2015.

https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-open-source-framework-for-confidential-computing.html
https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-open-source-framework-for-confidential-computing.html
https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-open-source-framework-for-confidential-computing.html

BIBLIOGRAPHY 97

[92] Dan M Roden, Jill M Pulley, Melissa A Basford, Gordon R Bernard, Ellen W Clayton,
Jeffrey R Balser, and Dan R Masys. Development of a large-scale de-identified DNA
biobank to enable personalized medicine. Clinical Pharmacology & Therapeutics, 84
(3):362–369, 2008.

[93] SAMTools. Sequcence alignment/map format specification. https://samtools.

github.io/hts-specs/SAMv1.pdf, accessed in September 2015.

[94] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using ARM TrustZone
to build a trusted language runtime for mobile applications. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 67–80. ACM, 2014.

[95] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data analytics in the
cloud using SGX. In Proceedings of IEEE Symposium on Security and Privacy, pages
38–54. IEEE, 2015.

[96] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.
In Proceedings of Theory of Cryptography Conference, pages 457–473. Springer, 2009.

[97] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig. Multi-
dimensional range query over encrypted data. In Proceedings of IEEE Symposium on
Security and Privacy, pages 350–364. IEEE, 2007.

[98] Suyash S Shringarpure and Carlos D Bustamante. Privacy risks from genomic data-
sharing beacons. The American Journal of Human Genetics, 97(5):631–646, 2015.

[99] SkyhighNetworks. Skyhigh for salesforce. https://www.skyhighnetworks.com/

product/salesforce-encryption/, 2017.

[100] Dawn Song, David Wagner, and Adrian Perrig. Practical techniques for searches on
encrypted data. In Proceedings of IEEE Symposium on Security and Privacy, pages
44–55. IEEE, 2000.

[101] Kiran Srinivasan, Timothy Bisson, Garth R Goodson, and Kaladhar Voruganti. iD-
edup: Latency-aware, inline data deduplication for primary storage. In Proceedings of
the 10th USENIX conference on File and Storage Technologies, pages 1–4. USENIX
Association, 2012.

[102] Standord University. Pairing-based cryptography libray. http://crypto.stanford.

edu/pbc/, accessed in May 2014.

[103] Jan Stanek, Alessandro Sorniotti, Elli Androulaki, and Lukas Kencl. A secure data
deduplication scheme for cloud storage. In Proceedings of International Conference on
Financial Cryptography and Data Security, pages 99–118. Springer, 2014.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://www.skyhighnetworks.com/product/salesforce-encryption/
https://www.skyhighnetworks.com/product/salesforce-encryption/
http://crypto.stanford.edu/pbc/
http://crypto.stanford.edu/pbc/

98 BIBLIOGRAPHY

[104] Richard P Stanley. What is enumerative combinatorics? In Enumerative Combina-
torics, pages 1–63. Springer, 1986.

[105] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic search-
able encryption with small leakage. In Proceedings of Network and Distributed System
Security, volume 14, pages 23–26. Internet Society, 2014.

[106] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou, and Hui
Li. Privacy-preserving multi-keyword text search in the cloud supporting similarity-
based ranking. In Proceedings of ACM Asia Conference on Computer and Communi-
cations Security, pages 71–82. ACM, 2013.

[107] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y Thomas Hou, and Hui
Li. Verifiable privacy-preserving multi-keyword text search in the cloud supporting
similarity-based ranking. IEEE Transactions on Parallel and Distributed Systems, 25
(11):3025–3035, 2014.

[108] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y Thomas Hou, and Hui Li. Protecting
your right: Attribute-based keyword search with fine-grained owner-enforced search
authorization in the cloud. In Proceedings of IEEE Conference on Computer Commu-
nications, pages 226–234. IEEE, 2014.

[109] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y Thomas Hou, and Hui Li. Catch you if you
lie to me: Efficient verifiable conjunctive keyword search over large dynamic encrypted
cloud data. In Proceedings of IEEE Conference on Computer Communications, pages
2110–2118. IEEE, 2015.

[110] Wenhai Sun, Shucheng Yu, Wenjing Lou, Y Thomas Hou, and Hui Li. Protecting
your right: verifiable attribute-based keyword search with fine-grained owner-enforced
search authorization in the cloud. IEEE Transactions on Parallel and Distributed
Systems, 27(4):1187–1198, 2016.

[111] Wenhai Sun, Ning Zhang, Wenjing Lou, and Y Thomas Hou. When gene meets cloud:
Enabling scalable and efficient range query on encrypted genomic data. In Proceedings
of IEEE Conference on Computer Communications, pages 1–9. IEEE, 2017.

[112] Wenhai Sun, Ning Zhang, Wenjing Lou, and Y Thomas Hou. Tapping the potential:
Secure chunk-based deduplication of encrypted data for cloud backup. In Proceedings
of IEEE Conference on Communications and Network Security. IEEE, 2018.

[113] Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y Thomas Hou. Rearguard: Secure key-
word search using trusted hardware. In Proceedings of IEEE Conference on Computer
Communications, pages 801–809. IEEE, 2018.

BIBLIOGRAPHY 99

[114] Jaikumar Vijayan. Cloud security concerns are overblown, experts say.
http://www.computerworld.com/s/article/9246632/Cloud_security_concerns_

are_overblown_experts_say, 2014.

[115] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. Maple: scalable
multi-dimensional range search over encrypted cloud data with tree-based index. In
Proceedings of the 9th ACM symposium on Information, computer and communications
security, pages 111–122. ACM, 2014.

[116] Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Enabling secure and efficient
ranked keyword search over outsourced cloud data. IEEE Transactions on parallel and
distributed systems, 23(8):1467–1479, 2012.

[117] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue
Bu. Efficient genome-wide, privacy-preserving similar patient query based on private
edit distance. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 492–503. ACM, 2015.

[118] Tom White. The small files problem. http://blog.cloudera.com/blog/2009/02/

the-small-files-problem/, accessed in November 2015.

[119] Jia Xu, Ee-Chien Chang, and Jianying Zhou. Weak leakage-resilient client-side dedu-
plication of encrypted data in cloud storage. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, pages 195–206.
ACM, 2013.

[120] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In Proceedings of IEEE
Symposium on Security and Privacy, pages 640–656. IEEE, 2015.

[121] Lauren J. Young. Genomic data growing faster than twitter and
youtube. https://spectrum.ieee.org/tech-talk/biomedical/diagnostics/

the-human-os-is-at-the-top-of-big-data, accessed in October 2015.

[122] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security, pages 270–282. ACM, 2016.

[123] Ye Zhang, Chun Jason Xue, Duncan S Wong, Nikos Mamoulis, and Siu Ming Yiu.
Acceleration of composite order bilinear pairing on graphics hardware. In Proceedings
of International Conference on Information and Communications Security, pages 341–
348. Springer, 2012.

[124] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable encryption. In Proceed-
ings of the 2016 USENIX Security Symposium, pages 707–720. USENIX Association,
2016.

http://www.computerworld.com/s/article/9246632/Cloud_security_concerns_are_overblown_experts_say
http://www.computerworld.com/s/article/9246632/Cloud_security_concerns_are_overblown_experts_say
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
https://spectrum.ieee.org/tech-talk/biomedical/diagnostics/the-human-os-is-at-the-top-of-big-data
https://spectrum.ieee.org/tech-talk/biomedical/diagnostics/the-human-os-is-at-the-top-of-big-data

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	Funding Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Securing Data Services in Cloud Computing
	Chunk-based Encrypted Cloud Data Deduplication
	Search over Encrypted Cloud Data

	Research Contributions
	Dissertation Organization

	Secure Chunk-based Deduplication of Encrypted Data for Cloud Backup
	Introduction
	Knowing the Gap

	Background
	Data Deduplication
	Convergent Encryption
	Blind RSA Signature

	Related Work
	Server-aided Encryption Solutions
	Serverless Encryption Solutions
	Other Security Aspects

	Problem Statement
	System Model
	Security Model
	Design Goals

	Protocol Design
	Randomized Oblivious Key Generation
	Slowing down Online Brute-force Attack
	Improving Data Restore Speed

	Security Analysis
	Performance Evaluation
	Online Key Generation
	Deduplication Effectiveness
	Fragmentation

	Summary

	Efficient Verifiable Conjunctive Keyword Search over Large Dynamic Encrypted Cloud Data
	Introduction
	Related Work
	Static Search
	Dynamic Search
	Verifiable Search

	Problem Formulation
	Definition of VCKS
	Security Definition

	Preliminaries
	Bilinear-map Accumulator
	Accumulation Tree

	Our Construction
	Data Upload
	Search
	Data Download
	Update

	Security Analysis
	Performance Evaluation
	Storage Overhead
	Search Efficiency
	Verification Efficiency

	Summary

	Enabling Scalable and Efficient Range Query on Encrypted Genomic Data
	Introduction
	Secure Genome-wide Range Query

	Related Work
	Cryptographic Range Query
	Secure Keyword Search
	Privacy-preserving Genomic Study

	Background
	Biology Preliminaries
	Secure GRQ Model
	Privacy Threats

	Secure GRQ Construction
	Strawman Solution
	Our Construction
	Improving Search Efficiency

	Security Analysis
	Performance Evaluation
	Storage Overhead
	Time Efficiency

	Summary

	Secure Keyword Search Using Trusted Hardware
	Introduction
	Background
	Privacy Leakage in SE
	Inverted Index
	Intel SGX

	Problem Formulation
	Overview
	Adversary Model

	Our Design
	Single Keyword Query
	Additional Query Function Support

	Security Analysis
	Implementation and Evaluation
	Implementation
	Performance Evaluation
	Oblivious Index Access

	Related Work
	Search over Encrypted Data
	Applications with Secure Hardware

	Summary

	Conclusions
	Bibliography

