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An evaluation of a data-driven approach to regional scale surface runoff modelling 

Ruoyu Zhang 

 

(ACADEMIC ABSTRACT) 

Modelling surface runoff can be beneficial to operations within many fields, such as agriculture 

planning, flood and drought risk assessment, and water resource management. In this study, we 

built a data-driven model that can reproduce monthly surface runoff at a 4-km grid network 

covering 13 watersheds in the Chesapeake Bay area. We used a random forest algorithm to build 

the model, where monthly precipitation, temperature, land cover, and topographic data were used 

as predictors, and monthly surface runoff generated by the SWAT hydrological model was used 

as the response. A sub-model was developed for each of 12 monthly surface runoff estimates, 

independent of one another. Accuracy statistics and variable importance measures from the 

random forest algorithm reveal that precipitation was the most important variable to the model, 

but including climatological data from multiple months as predictors significantly improves the 

model performance. Using 3-month climatological, land cover, and DEM derivatives from 40% 

of the 4-km grids as the training dataset, our model successfully predicted surface runoff for the 

remaining 60% of the grids (mean R2 (RMSE) for the 12 monthly models is 0.83 (6.60 mm)). The 

lowest R2 was associated with the model for August, when the surface runoff values are least in a 

year. In all studied watersheds, the highest predictive errors were found within the watershed with 

greatest topographic complexity, for which the model tended to underestimate surface runoff. For 

the other 12 watersheds studied, the data-driven model produced smaller and more spatially 

consistent predictive errors.  
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An evaluation of a data-driven approach to regional scale surface runoff modelling 

Ruoyu Zhang 

 

(PUBLIC ABSTRACT) 

Surface runoff data can be valuable to many fields, such as agriculture planning, water resource 

management, and flood and drought risk assessment. The traditional approach to acquire the 

surface runoff data is by simulating hydrological models. However, running such models always 

requires advanced knowledge to watersheds and computation technologies. In this study, we build 

a statistical model that can reproduce monthly surface runoff at 4-km grid covering 13 watersheds 

in Chesapeake Bay area. This model uses publicly accessible climate, land cover, and topographic 

datasets as predictors, and monthly surface runoff from the SWAT model as the response. We 

develop 12 monthly models for each month, independent to each other. To test whether the model 

can be applied to generalize the surface runoff for the entire study area, we use 40% of grid data 

as the training sample and the remainder as validation. The accuracy statistics, the annual mean 

R2 and RMSE are 0.83 and 6.60 mm, show our model is capable to accurately reproduce monthly 

surface runoff of our study area. The statistics for August model are not as satisfying as other 

months’ models. The possible reason is the surface runoff in August is the lowest among the year, 

thus there is no enough variation for the algorithm to distinguish the minor difference of the 

response in model building process. When applying the model to watersheds in steep terrain 

conditions, we need to pay attention to the results in which the error may be relatively large.    
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Introduction 

Surface runoff information at regional, national, and global scales provides critical 

information for water resources planning, flood and drought risk assessment, and 

pollution mitigation (Beven, 2011). Over the past several decades, modelling surface runoff across 

large geographical scales has received increasing attention. At the global scale, several earth 

system models (e.g., Community Land Model) include a surface runoff component, although it is 

generally accepted that runoff outputs can be highly inaccurate (Döll et al., 2003). Döll reviewed 

several global hydrological models including those developed by Yates (1997), Klepper and Van 

Drecht (1998), Arnell (1999), and Vörösmarty et al. (1998). Almost all operate at coarse spatial 

resolution (> 0.5 degree) and model validation studies reported large disagreements between the 

simulated monthly/annual values and observed discharges (e.g., Meigh et al., 1999). As a key 

component of the global water assessment model WaterGAP 2 (Alcamo et al., 2003), the Global 

Hydrology Model (GHM) estimates daily and long-term runoff at 0.5 degree grid resolution (Döll 

et al., 2003). The GHM essentially calculates the water balance for each grid cell, and the main 

advantage of GHM is its calibration against observed discharge at gauging stations. However, 

similar to many other global models, the coarse spatial resolution of the GHM (i.e., 0.5 degree) 

does not capture the complexity and variability of runoff patterns within each grid cell. It is also 

unclear how GHM accuracies vary for regions with highly heterogeneous land cover, terrain, and 

soil properties.  

At regional scales, modelling surface runoff has followed two main approaches. The first 

approach emphasizes the so-called semi-distributed modelling framework. One example of 

commonly used semi-distributed models is the Soil and Water Assessment Tool (SWAT) (Arnold 

et al., 1998). Such semi-distributed models describe key physical and hydrological processes, and 



3 

 

use various simplified model specifications compared to those of fully distributed hydrological 

models. The SWAT has been intensively used for catchment-to-regional scale hydrological 

modelling because of its demonstrated performance in numerous applications and because of its 

user-friendly interface integrated within GIS software (Di Luzio et al., 2002; Gassman et al., 2014; 

Jha et al., 2006). Another example of a widely used semi-distributed model is the Variable 

Infiltration Capacity (VIC) model (Liang et al., 1994; Liang et al., 2003). The VIC model has been 

integrated into several water budget and land surface modelling frameworks.  

Instead of focusing on hydrological processes, the second approach of large-scale surface 

runoff modelling relies on available observations to build empirical/statistical relationship between 

input variables of rainfall, temperature, snow and output discharge (e.g., Shamseldin, 1997; Tokar 

& Johnson, 1999). For example, Tokar and Johnson (1999) employed neural network to predict 

daily runoff directly from observed daily precipitation, temperature, and snowmelt. Beven (2011) 

referred to such modelling efforts as a data-based or data-driven approach.  

Semi-distributed models have advantages in model interpretability, especially for 

understanding of the dominant processes and interactions among model inputs (Abbott et al., 1986; 

Devia et al., 2015). However, semi-distributed models can be data demanding and 

computationally-intensive, and thus they can be difficult to implement for large study regions. 

Necessary model inputs of soil properties, water depth, and vegetation characteristics may not be 

readily available (Beven, 2011; Pilgrim et al., 1988). Furthermore, a large number of model 

parameters need to be calibrated – a complicated process that often requires users’ knowledge 

about watershed characteristics (Kim et al., 2014). On the other hand, the data-driven approach 

has been criticized with respect to model interpretability (Dawson & Wilby, 2001), because 

researchers often use neural network, support vector machine, and other nonparametric machine 
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learning algorithms to approximate input-output relationships, ignoring the underlying 

hydrological processes (Beven, 2011), and the data-driven models developed from historical data 

may not hold the ability to predict future responses in a changed climate (e.g., future climate 

scenarios). The data-driven approach does have the appealing feature of predictive accuracy. For 

a given response variable of surface runoff and a set of predictors such as weather data, soil, and 

land use, a typical data-driven modelling effort often involves data splitting for model development, 

using a set of training data, and model validation, using a set of testing data. Model developers 

focus on the selection of approximation algorithm and parameter tuning to achieve the highest 

possible predictive accuracy (Chapelle et al., 2002; Huang et al., 2006). Therefore, it can be argued 

that deep knowledge of watershed characteristics/hydrological processes is not essential, while an 

understanding of data and machine learning algorithms is very important in order to build a high-

accuracy runoff model. Another advantage of the data-driven approach is its capability of 

incorporating various input datasets. The inputs for a data-driven model may include those 

commonly used for semi-distributed models. Additional input data (e.g., soil moisture data from 

remote sensing) can be easily integrated to potentially improve model predictive accuracy. Recent 

studies showed that data-driven modelling and integration of ‘non-traditional’ inputs can advance 

our knowledge of underlying functions and processes (Hochachka et al., 2007; Resler et al., 2014). 

Most previous data-driven studies focused on predicting stream discharge at certain 

observation gauges (e.g., Dawson & Wilby, 1998; Hsu et al., 1995; Tokar & Johnson, 1999). 

Surface runoff values with grid representation are difficult to obtain. In our study, we designed a 

new modelling framework focused on grid-based surface runoff modelling at monthly intervals. 

For a large study region, it is feasible to select a subset of watersheds and implement a semi-

distributed hydrological model (e.g., SWAT) to obtain surface runoff estimation. The resultant 
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surface runoff (i.e., converted to grid representation) can then be used as a response variable to 

develop a data-driven runoff model by incorporating a variety of predictors. Within such a data-

driven modelling approach, we address the following two research objectives: (1) Evaluate a set 

of predictors derived from readily available geospatial datasets and determine best predictors for 

achieving high model accuracy; (2) Examine the spatial generalization capability of the data-

driven model. We expect to see good performance of the data-driven model for areas used for 

training/tuning. However, we are more interested in how the trained data-driven models perform 

for areas not employed in the training.  
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Material and Methods 

Study Area 

Our study area is 44,438 km2 in size and includes 13 8-digit watersheds in the Chesapeake 

Bay area of the eastern United States. The 13 selected watersheds include northwestern Virginia 

and small portions of West Virginia, Maryland, and Pennsylvania (Figure 1). Urban, forest, and 

agricultural land cover comprise 4.9%, 59.1%, and 26.8% of the study area, respectively. The 

Potomac River and its tributaries run across the study area and serves as the main source of 

drinking water for populated regions in Washington D.C. and northern Virginia. Increasing 

population, expanding urban areas, and intense agricultural practices in the Potomac watersheds 

continue to be primary contributing factors for water pollution of Potomac river and threat the 

public health (Pinkney et al., 2001; Yang et al., 2008). Development of watershed simulation 

models for this region is one important task for effective water resource management. A majority 

of selected 8-digit watersheds are located in three U.S. eastern level III ecoregions (Omernik, 

1987): Northern Piedmont, Blue Ridge, and Ridge and Valley ecoregions. The climate, terrain, 

land cover, and soil conditions vary substantially across these three ecoregions, thus the study area 

provides needed variability for examining our data-driving surface runoff models.  

 

Data 

We obtained 30m resolution digital elevation model (DEM) data from the U.S. Geological 

Survey (USGS). Individual DEM tiles were merged to cover the entire study area. Slope values at 

30m resolution were then derived from the DEM layer. Climatological data were acquired from 

the PRISM climate group (http://prism.oregonstate.edu/). The PRISM dataset provides various 
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climatological variables, such as temperature and precipitation, in monthly and daily basis for the 

continental United States from 1981 to present for recent period, and historical past from 1895 to 

1980 (Daly et al., 2000). The spatial resolution of the PRISM data is 4 km by 4 km. Both monthly 

and daily precipitation and temperature data from 2001 to 2015 were downloaded from PRISM 

website. The 2006 National Land Cover Dataset (NLCD 2006) was downloaded from the Multi-

Resolution Land Characteristics (MRLC) Consortium website (www.mrlc.gov). The 30m 

resolution NLCD describes the detailed types of land cover in the United States (Fry et al., 2011; 

Homer et al., 2015). River discharge gauging data are acquired from the United States Geological 

Survey (USGS) stream flow observation.  

 

Surface runoff from SWAT models 

For each 8-digit watershed, we used the SWAT model to estimate monthly surface runoff. 

The SWAT model was initialized using the ArcSWAT 2012 interface. Using 30m DEM and 

1:24,000 stream network data as input, we followed standard SWAT watershed delineation 

procedures to generate watershed sub-basins. The NLCD2006, STATSGO soil database from 

ArcSWAT, and slope values were combined to further divide sub-basins into hydrologic response 

units (HRU). We used PRISM daily precipitation and temperature (max and min) as SWAT 

weather data input, with the location of the weather station set as the center of each 8-digit 

watershed. PRISM precipitation and temperature data covering each 8-digit watershed were 

spatially averaged to represent general weather condition of each sub-basin. Similar approaches 

were used by Fuka et al. (2014) and Kim et al. (2014), although different weather datasets (e.g., 

Climate Forecast System Reanalysis by Fuka et al. 2014) were used as forcing data.  
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The time-period from 2001 to 2002 was used as a "warm up" period for the SWAT model. 

SWAT calibration was performed through the Generalized Likelihood Uncertainty Estimation 

(GLUE) algorithm (Beven & Binley, 1992) – an algorithm available through the SWAT-CUP 

software package. The use of spatially averaged precipitation and temperature data as SWAT input 

led us to focus on monthly model calibration and subsequent analysis. We calibrated monthly 

stream flow against the USGS stream flow observation data for each selected watershed. The 

stream flow calibration for SWAT was based upon years 2003 to 2008; the validation period was 

2009 to 2015. Following Kim et al. (2014, 2017), we included a number of SWAT model 

parameters for model calibration. The Nash and Sutcliffe model efficiency coefficient (NSE) were 

used as a goodness-of-fit measure. From SWAT model outputs, we focused on surface runoff at 

the sub-basin level for each watershed, which provides sufficient spatial detail for water yield 

evaluation.   

 

Grid representation and input-output data for data-driven model  

For our data-driven runoff simulation model, we preferred a regular grid representation to 

organize the input-output data. Among the key input data, the PRISM weather data have relatively 

coarser spatial resolution (4 km) compared to land cover and DEM data (30 m). Therefore, we 

chose 4-km resolution as the finest analytical unit for our data-driven model. We overlaid the 4-

km PRISM grid on top of the study area and removed those located at the edges of study region. 

The remaining total number of 4km grids is 2,101. For each PRISM grid, we calculated the percent 

coverage of forest, agricultural land, and urban classes using NLCD2006 as reference. 

Additionally, we calculated mean elevation, standard deviation of elevation, and standard 
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deviation of slope. The monthly PRISM precipitation and temperature data, percent land cover 

class, and various DEM-derived statistics were used as input data for our data-driven runoff 

simulation model (Table 1).  

The outputs of the data-driven model were monthly surface runoff values at 4km spatial 

resolution. The original SWAT runoff values were reported for sub-basins with irregular sizes and 

shapes. Generally, the size of a sub-basin is larger than the size of the 4-km grid. We overlaid 4km 

PRISM grids on top of sub-basins and calculated area-weighted monthly surface runoff for each 

4km grid as the response variable for the data-driven model.  

 

Data-driven Model  

Our data-driven model can be represented using the following input-output approximation: 

𝑦" = 	𝑓(𝑋") 

where yi is the surface runoff at ith 4km grid, Xi is a vector of predictors, and f is the 

approximation algorithm. Using this algorithm, monthly models were developed independently of 

one another. Of the input variables in X that were introduced in the previous section, we assumed 

that the land cover and topographic variables were temporally static during the study period. 

Climatological variables were dynamic in both spatial and temporal domains. For each monthly 

model, the array of input variables tested included monthly climatological data of the current 

month, and to determine whether including prior climatological data can improve the model, up to 

four months’ climatological data prior to the current month were also tested as the inputs 

respectively. For example, to model the surface runoff of May, we could include the current month 

(May) and four previous months’ climatological data (January, February, March, and April) as 
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climatological predictors. We named the above example as 5-month May model because a total of 

five months’ climatological data were included. Accordingly, the array of predictors of a 3-month 

May model would include climatological data from May, April, and March.  

In this study, we used the Random Forest algorithm as our input-output approximation 

algorithm. Random Forest is one of the machine learning algorithms that are widely applied in 

many fields of study. The Random Forest is developed from classification and regression decision 

trees and uses a large number of decision trees (i.e., an ensemble approach) to make final 

predictions (Breiman, 2001). The Random Forest is easy to implement, but its performance is 

among the best in various machine learning algorithms (Adamowski et al. 2012; Shortridge et al., 

2016).  

Within this Random Forest based modelling framework, we were particularly interested in 

how model performance varies through the months of the year. In the initial experiment, we 

divided the 2,101 4km grids into 40%-60% training and testing datasets for each month. The 

randomly selected 40% training data points were used to train the Random Forest algorithm and 

the remaining 60% of testing points were used to assess the performance of each monthly model. 

We used Root-Mean-Square Error (RMSE) and R-squared (R2) statistics to measure model 

performance.  

We further examined how model performance varies when different numbers of training 

sample points are used in Random Forest training. Specifically, we randomly selected data from 

5% to 80% of grids as the training sample and the remaining as validation. The amount of data 

required to train the model can determine whether the data-driven model has the capability of 

spatial generalization. For example, if the use of a small percentage (e.g., <50%) of training data 
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points leads to reasonable predictive accuracy, we could conclude that our model is capable of 

spatial generalization.  
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Results 

Surface runoff from SWAT models 

For all 13 8-digit watersheds, monthly SWAT stream discharge outputs were validated for 

the period 2009-2015. The NSE measure ranged from 0.56 to 0.77, suggesting acceptable model 

performance (Moriasi et al., 2007). To illustrate general spatial pattern of surface runoff across the 

study area, we present mean monthly runoff for all sub-basins, 2003-2015 (Figure 2). The sub-

basins with highest surface runoff (e.g., > 28 mm) are mainly located in the North Branch Potomac 

watershed and the Middle Potomac-Anacostia-Occoquan watershed. There are more steep valleys 

in the North Branch Potomac watershed and more urban areas in the Middle-Anacostia-Occoquan 

watershed, so it was expected to have a larger surface runoff amount from a similar amount of 

precipitation.  

 

Data-driven model – input data selection and statistics 

For each of the 12 monthly models, we started with a training versus validation distribution 

of grid cells of 40% as training data to build the Random Forest and 60% as validation data to 

assess model performance. Initially, we only included climatological data for the current month, 

land cover data, and various DEM derivatives as predictors. N-month (N is up to 5) models were 

sequentially developed by incorporating multiple months’ climatological data. Table 2 shows R2 

and RMSE statistics for the validation datasets when considering data for various lengths of time 

(months) prior to the month of modelled runoff. The mean R2 (RMSE) value from the 12 1-month 

models was 0.664 (9.5 mm). Among all of the 1-month models, those for March and August had 

the lowest R2 (0.498 and 0.384 respectively), while models for the remaining months had 
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considerably higher values (around 0.7). As precipitation and temperature data from the months 

prior to the modelled month were added, the results considerably improved over those generated 

by the 1-month model (Table 2). The overall trend was that mean R2 (RMSE) increased (decreased) 

as prior climatological data were included. The mean R2 (RMSE) for the monthly models reached 

0.862 (6.1 mm) when we used 5-month data as predictors.  

The 3-month, 4-month and 5-month models clearly outperformed the 1-month and 2-month 

models. Further, the 3-month models performed comparably to the 4-month and 5-month models, 

except for August (Table 2). Therefore, it seems that to simulate the surface runoff for most months, 

the data-driven model only needs 3-month of climatological, topographic and land cover data as 

predictors. Though using 5-month climatological data generated better results for August, the 

model performance was still not as good as other months. Overall, our results suggested that 

multiple months’ climatological data are essential to model performance. The random forest 

algorithm also reveals the relative importance of each predictor (Breiman, 2001; Ishwaran et al., 

2008), and for all 1-month to 5-month models, the most important predictor was always 

precipitation for the current month.  

We examined the relationship between the size of the training data population and the 

model performance using cross-validation method. Figure 3 shows R2 and RMSE values for model 

performance when using a range of training/validation data sample sizes. The general trends for 

the 1- to 5-month models were similar – the R2 (RMSE) increased (decreased) with greater training 

sample size. When the same amount of training data were selected, the 3-, 4- and 5-month models 

outperformed the 1- and 2-month models, and the 3-month models performed similarly to 4- and 

5-month models. When using only 40% of the grid data to train the models, model performance 

was encouraging (mean R2 > 0.8 and mean RMSE < 7mm for the 3-month model). 
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To examine whether the predictive errors had characteristic spatial patterns, we computed 

the mean seasonal absolute prediction error  for each 4km grid – the Random Forest-predicted and 

SWAT-generated monthly surface runoff values were compared for years from 2003 to 2015 (Dec 

– Feb as winter, Mar – May as spring, Jun – Aug as summer, and Sep – Nov as fall). For simplicity, 

we focused on results from the 3-month model trained by 40% of the 4km grids. Figure 4 shows 

the distribution of time-domain RMSE for the study area, the mean value of error for each gird is 

acquired from the absolute errors from 10 random iterations. The general trend was that the 

absolute error was small for grids in the center of each 8-digit watershed and increased near the 

margin. Comparing these results to the mean surface runoff generated by the SWAT model (Figure 

2), areas with large absolute error were associated with areas with large surface runoff. Particularly 

in winter and spring, there was a cluster of high-error grids in the northwest of our study area (i.e., 

North Branch Potomac watershed). One possible reason was that this watershed’s terrain and 

climate conditions were significantly different from those of other watersheds. Thus, we think that 

our model should be applied for areas with similar climate and ecological conditions, and applying 

our model to areas having significant variation of terrain and climate properties may not be ideal.    
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Discussion 

The data-driven modelling framework, combined with machine learning algorithms such 

as random forest, are now widely applied in many fields. In hydrological research, there is an 

increasing number of applications of machine learning models to predict the rainfall-runoff process, 

and the statistical results are generally satisfying (Smith & Eli, 1995; Sudheer et al., 2002). Such 

models are capable of approximating the underlying relationships in the rainfall-runoff process, 

which can be an efficient alternative to physical-based, distributed hydrological models. In 

addition, they are relatively easy to implement and quite adaptive when a large number of 

predictors are involved and relations among predictors are complex. The biggest concern with 

distributed hydrological models is that the calibration process can be time-consuming, especially 

when a relatively large study area is of interest (e.g., 13 8-digit watersheds for our study). The 

machine learning model can provide a relatively simple and reliable approach to supplement the 

traditionally intricate hydrological models.  

With climatological, land and topographic variables, and SWAT simulations of surface 

runoff, our study demonstrated that a data-driven model could achieve high predictive accuracy 

(e.g., R2 > 0.8) using limited training data points. The most accurate monthly models (February, 

April, September) were associated with R2 values near 0.9. The model for August yielded the 

lowest R2 value (0.69). We checked the variable importance values within the random forest 

algorithm and found that, for the 3-month August model, August precipitation was the most 

important predictor but not significant compared to other months. Figure 5 shows relative variable 

importance values for the 3-month February and August models. We calculated the relative 

variable importance by normalizing the variable importance values with the variable that has the 
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greatest importance in the model. For the February model, the importance of February precipitation 

weighted 61% among all predictors, while, for August model, the importance of August 

precipitation was only 38%. This indicates that the surface runoff mechanism in August is not as 

precipitation-dominant as that of February. Additionally, the mean surface runoff in August, 6.46 

mm, was the lowest among the 12 months and the variation of surface runoff is small. February 

had the highest annual mean surface runoff (28.06 mm), which provided enough variation for the 

random forest algorithm to train the data, and their models had higher R2 than others. Though the 

August model is incapable to perform as accurate as other monthly models, the importance of the 

August model is less significant because the August surface runoff contributes least to the annual 

surface runoff. As forest and agriculture land are dominant in our study area, predictors explaining 

complex forest ecosystem functions and intense irrigation in agricultural activities possibly need 

to be included in the August model.  

Therefore, we concluded that the accuracy of our model to retrieve the surface runoff was 

not satisfying enough when the variation of runoff was small. To further improve the monthly 

models, future study could include more geospatial information, such as soil moisture, soil 

infiltration rate, and leaf area index, as predictors. Additionally, other machine learning algorithms, 

such as neural network and support vector machine, need to be evaluated for predictive 

performance comparison (e.g., Shao & Lunetta, 2012). We also note that the use of 4- or 5-month 

models may take longer time in model training, although computing effort is not a significant 

concern under now commonly used high performance parallel computing environment.  
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Conclusions 

Summary 

Random forest and other machine learning models are recognized as powerful tools to 

approximate complex and non-linear relations between predictors and response. We used the 

random forest algorithm to build a data-driven model to estimate monthly surface runoff on a 4 

km resolution for 13 watersheds in the Chesapeake Bay area of the eastern United States. The 

model was driven by 4 km resolution monthly precipitation, monthly temperature, DEM, slope, 

and land cover data as predictors, and monthly SWAT model-generated surface runoff as the 

response variable. Within the data-driven modelling framework, we found that it was important to 

include multiple months (i.e., current month and 2 months prior to the current month) of 

climatological data as model input. For our study area, the accuracies of 3-month models yielded 

very good results that were not considerably improved upon by extending the climatological data 

to prior than three months. The 12 monthly 3-month models produced a mean R2 (RMSE) value 

of 0.83 (6.60 mm) when 40% of the grids across the study region were randomly selected as the 

training sample. Model performance could be further improved by using more training samples, 

but this risks creating models that are overly trained to the data for the region rather than more 

robust models that are transferable spatially. The spatial distribution of predictive errors suggested 

that such a data-driven model can be applied to a large study area with similar terrain, land use, 

and climate conditions. However, spatial generalization of the data-driven model to areas with 

significantly different ecohydrological conditions (e.g., across ecoregions) may need to be applied 

with caution.  
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Limitations and Future Works 

Currently, our surface runoff model demonstrated good spatial generalization capability by 

using 40% grid data as the training set and the remaining grid data points as validation. This 

suggests that our model can potentially be extended to the surrounding watersheds with similar 

climate, topographic and land conditions. However, we have not examined whether our model is 

capable of temporal generalization. It is not clear whether our model could predict future runoff 

scenarios using recent or historical data as input. The temporal generalization capability can be 

assessed using a cross-validation approach. For example, for a specific subbasin or grid, we can 

use the data from 2003 to 2010 to build the surface runoff model and then evaluate the model 

performance for years from 2011 to 2015. Such cross-validation procedures may be repeated by 

randomly selecting training time periods (and validation time periods) to further assess the model 

robustness. In the process of temporal runoff modeling, additional climate variables (e.g., 

temperature variations, rainfall intensity and duration within each month) may need to be 

considered as model inputs to improve the performance. Overall, the temporal generalization is 

probably more important than spatial generalization, especially in studies where future climate 

projections are considered for predicting water yield and quality. For a future study, we will fully 

explore both the model’s spatial and temporal generalization capacity using various input variables. 

A model with robust spatial-temporal generalization can be a cost-effective tool supporting water 

resource managers’ tasks in water resource regulation and planning.  

Our surface runoff model operates at the monthly scale at present, thus it can be beneficial 

to agencies and water resource managers who are interested in analyzing the long-term surface 

runoff patterns. For applications in flash flood prediction and monitoring, a daily scale runoff 

model is needed. Limited by the fact that there is a lack of daily observation or reliable simulation, 
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we could not develop a data-driven surface runoff model at the daily scale. Initially, we considered 

using the daily surface runoff from SWAT model as our response variable for a potential daily 

model. However, SWAT model was not designed for the event-based purpose and the accuracy of 

daily surface runoff simulation from the SWAT model may not be trusted. Additional ‘event-based’ 

hydrological models may need to be examined to derive high quality surface runoff data at daily 

scale.  

For our surface runoff model, the number of predictors can be large as we apply the 4-

month or 5-month approach to build the model. The overfitting and collinearity should be taking 

into our consideration. Based on the results of our model, we did not observe the decrease (increase) 

of R2 (RMSE) as we include more predictors (e.g., 1-month to 5-month model) using 40% grid 

data as training sample, though the statistics are saturated starting from 3-month models. We thus 

do not think the overfitting should be a major concern in this study area. However, when the same 

approach is applied to a different study area and the inconsistency of statistics is observed, it is 

necessary to further investigate the impacts from overfitting. Generally, collinearity of the input 

variables is not a major issue for a predictive model. As long as a predictor improves model 

prediction (evaluated through cross-validation), we could include the specific predictor. However, 

collinearity does affect model interpretation because it makes more difficult for the users in 

assessing individual predictor’s impacts.  

The data-driven model is always criticized by its neglecting of physical processes in many fields. 

Though our model has acceptable accuracy statistics, our model does not explain the exact 

relationship between rainfall and runoff, nor the connections between precipitation and other 

variables. In addition, since the initial objective of building the model is to keep it simple and user-

friendly, we only used climate and some land data as the input variables. The data of soil property, 
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which are considered as one of the most important components in the runoff generation mechanism, 

such as the infiltration and soil water capacity, are not included as predictors in the model. To 

further explore the relationship between predictors and the response and the interactions among 

predictors, we need to conduct thorough analysis of variable importance statistics. For example, 

we can detect how the variable importance of individual predictor changes when we include 

additional variables, such as soil property data, into the model. Such changes can potentially reveal 

the roles the new variables play within the rainfall-runoff modeling framework. The interpretation 

of variable importance and their changes could potentially generate meaningful physical 

explanations. 
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Table 1.  Summary of primary input data (predictors) for the data-driven model 

Data Spatial Resolution Temporal Information 
NLCD 

 

30 m 2006 
         Forest, urban, and agriculture (%)   
DEM 30 m - 
          Mean and standard deviation of elevation   
          Standard deviation of slope   
PRISM precipitation (monthly) 4 km 2003 – 2015 
PRISM maximum temperature (monthly) 4 km 2003 – 2015 
PRISM minimum temperature (monthly) 4 km 2003 – 2015 
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Table 2.  Statistics for monthly runoff generated by the data-driven models using 1 to 5 

months of climatological data (RMSE in mm). 

 

  

 1 Month  2 Month  3 Month  4 Month  5 Month 

Month R2 RMSE  R2 RMSE  R2 RMSE  R2 RMSE  R2 RMSE 

Jan 0.675 10.9  0.796 8.9  0.864 7.0  0.886 6.5  0.879 6.7 

Feb 0.770 11.4  0.870 8.8  0.908 7.4  0.906 7.3  0.904 7.4 

Mar 0.498 16.9  0.772 12.0  0.848 9.6  0.839 10.3  0.871 8.8 

Apr 0.796 6.4  0.867 5.2  0.893 4.7  0.890 4.7  0.903 4.4 

May 0.709 10.3  0.826 8.0  0.868 7.0  0.879 6.7  0.887 6.3 

Jun 0.669 8.6  0.800 7.0  0.822 6.5  0.845 6.1  0.861 5.7 

Jul 0.522 7.4  0.638 6.6  0.747 5.7  0.779 5.3  0.832 4.7 

Aug 0.384 5.8  0.514 5.2  0.585 4.8  0.643 4.5  0.690 4.3 

Sep 0.792 11.3  0.851 9.5  0.875 8.9  0.879 8.7  0.896 7.9 

Oct 0.722 9.5  0.841 6.6  0.851 6.2  0.862 5.9  0.878 5.8 

Nov 0.718 5.1  0.819 4.0  0.844 3.8  0.860 3.6  0.863 3.6 

Dec 0.715 11.1  0.824 9.0  0.870 7.6  0.888 7.3  0.874 7.4 

 Mean 0.664 9.5  0.785 7.6  0.831 6.6  0.846 6.4  0.862 6.1 
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Figure 1. The study area includes 13 8-digit watersheds in the Chesapeake Bay area 

encompassing portions of the states of Maryland (MD), Pennsylvania (PA), Virginia (VA), and 

West Virginia (WV). 

  



24 

 

 

Figure 2.  Mean monthly surface runoff generated by the SWAT model at the sub-basin level for 

each of the 13 8-digit watersheds. Two watersheds with the highest surface runoff are 

highlighted. 
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Figure 3. Mean R2 and RMSE (mm) values for 12 monthly models for varying percentages of 

data used for training, with the remainder used for validation. 
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Figure 4. Absolute Mean Seasonal Error (mm at monthly level) from the 12 monthly models 

across 13 watersheds studied at 4km grid network. A commonly used season separation is used: 

Dec – Feb as winter, Mar – May as spring, Jun – Aug as summer, and Sep – Nov as fall. 
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Figure 5. Top 5 important predictors in February (highest R2) and August (lowest R2) and their 

relative importance to all predictors. We normalized every predictor’s variable importance values 

by dividing the most important predictor’s importance value to get the relative importance. 
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