Motivation
- Actin filaments, or microfilaments, are long (~ several μm), double-stranded, helical filaments that span the cytoplasm of cells.
- Typical diameter only ~6 nm across, but have a pitch length (distance for one full “twist” of double helix) of ~72 nm.¹
- Important for cell mobility and cell division, but assembly mechanism still not well understood.
- How do we make double-stranded helical structures that mimic microfilaments such that we can study the self-assembly process?

Model to replicate F-actin geometry
- Rigid bent-rod monomers (core sites + attractive sites)
- Vertical bonding builds protofilaments while staggered lateral bonding links helices together
- Protofilaments have 12 monomers (n=12) per pitch; ideal filament/protofilament has at least 1 full pitch
- Bonding interactions only between attractive sites in the same color using soft cosine potential² – varying binding strength A leads to various structures

\[U(\varphi) = -A \left[1 + \cos \left(\frac{\pi \varphi}{\varphi_0} \right) \right] \]

Various self-assembled structures

Self-assembly structural diagram and assembly kinetics
- Double-stranded actin-like filaments are formed when \(A_S \) and \(A_D \) are in the appropriate range (green zone in the structural diagram). Self-assembly mainly proceeds via an addition polymerization scheme: one monomer is added at a time. However, we also find oligomer addition and filament merging, though rarely.

Why are actin filaments double-stranded?

Why do actin filaments seem to have \(A_S > A_D \)?

Various structures are obtained by varying \(A_S \) and \(A_D \).

References

Acknowledgments
This work is supported by the Jeffress Trust Awards Program in Interdisciplinary Research. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.