
Ensemble Modelling of in situ Feature Variables for Printed Electronics  

Manufacturing with in situ Process Control Potential 
 
 

 

Karuniya Mohan 
 

 
Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University  

in partial fulfillment of the requirements for the degree of 
 

 

 

 

Master of Science in 
Industrial and Systems Engineering 

 
 
 
 
 
 

                                         Ran Jin, Chair 

     Blake N. Johnson 

Subash C. Sarin 

 
 

 
 
 
 

 
 

February 15, 2017  

Blacksburg, VA 

 
 
 
 

Keywords: Aerosol Jet® Printing, Microscopic Images, Printed Electronics,  
Process Model, Quality



 

Ensemble Modelling of in situ Feature Variables for Printed Electronics  

Manufacturing with in situ Process Control Potential 

Karuniya Mohan 

ABSTRACT 

Aerosol Jet® Printing (AJP) is a direct-write based additive manufacturing process that is 

capable of printing electronics with fine features and various materials. It eliminates the 

complex masking process in traditional semiconductor manufacturing, thus enables flexible 

electronics design and reduces manufacturing cost. However, the quality control of AJP 

processes is still a challenging problem, primarily due to the lack of understanding of the 

potential root causes of the quality issues. There is a complex interaction among process 

setting variables, in situ feature variables, and quality variables in AJP processes. In this 

research, an ensemble model strategy is proposed to quantify the effect of the process 

setting variables on the in situ feature variables, and the effect of the in situ feature 

variables on quality variables in a two-level hierarchical way. By identifying significant in 

situ feature variables as responses for the process setting variables, as well as predictors for 

product quality in a joint estimation problem, the proposed models have a hierarchical 

variable relationship to enable in situ process control for variation reduction and defect 

mitigation. A real case study is investigated to demonstrate the advantages of the proposed 

method. 
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GENERAL ABSTRACT 

Printed electronics is a promising technique for the future of the electronics manufacturing industry 

due to its potential for producing thin, flexible and low cost electronic devices. For the printing of 

any electronic device, a fundamental step is to print the conductive wires. Aerosol Jet® Printing 

(AJP) is one of the emerging additive manufacturing technologies for printing the conductive wires 

on a variety of substrates. It is a maskless additive manufacturing technique capable of printing 

high resolution wires. However, the quality control of AJP processes is still a challenging problem, 

primarily due to the lack of understanding of the potential root cause factors of the quality issues. 

There is a complex interaction among process setting variables, in situ feature variables, and quality 

variables. More importantly, the selection of the in situ feature variables is typically based on 

engineering domain knowledge and sensor instrumentation capability, rather than based on 

statistical significance of variables. In this research, an ensemble model strategy is proposed to 

quantify the effect of the process setting variables on the in situ feature variables, and the effect of 

the in situ feature variables on quality variables in a two-level hierarchical way. By identifying 

significant in situ feature variables as responses for the process setting variables, as well as 

predictors for product quality in a joint estimation problem, the proposed models have a 

hierarchical variable relationship to enable in situ process control for variation reduction and defect 

mitigation. A real case study is investigated to demonstrate the advantages of the proposed method.
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CHAPTER 1: INTRODUCTION 

1.1 Printed electronics 

Printed electronics is one of the trending additive manufacturing technologies for producing 

electronic components through selective deposition of conductive or semi-conductive inks on 

variety of substrates such as paper, plastics and fabrics [1]. It is used for printing both passive and 

active electronic components, such as the resistors, capacitors, diodes and thin film transistors.  It is 

a disruptive technology, where the electronic features are directly integrated onto the mechanical 

parts resulting in low cost, light weight and flexible products [2]. The advantages of printed 

electronics are high throughput, high resolution, high material utilization efficiency, shorter lead 

time, and low manufacturing complexity. It overcomes the shortcomings of traditional fabrication, 

such as limited choice of substrate materials, adverse environmental impacts and confinement to 

2D and planar processes [3]. The major applications of printed electronics include RFID tags, 

sensors for internet of things, flexible displays, wearable energy harvesting systems, etc. [4].   

The printing methods used in printed electronics are classified as contact and non-contact 

printing based on the method of ink delivery on the substrate [5]. The contact printing methods, 

such as screen printing, gravure printing, flexography and offset lithography [6], are fast, but they 

suffer from lack of resolution and are not suitable for three dimensional deposition. On the other 

hand, the non-contact based direct-write (DW) techniques allow multi-axis deposition of material 

without the need of mask or coating surface. The resolution of the DW printed structures is in the 

range of microns and sub-microns. This thesis focuses on Aerosol Jet® Printing (AJP), which is 

one of the droplet based DW methods. 
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1.2 Aerosol Jet® Printing 

Aerosol Jet® Printing (AJP) is one of the breakthrough DW techniques that prints fine structures on 

the substrate by concentrating and depositing the ink in the form of aerosol mist [7]. It is a non-

contact, mask-less type of printing process, which is capable of printing homogenously on both 

planar and non-planar substrates through aerodynamic focusing of the aerosol. Fine feature sizes 

less the 10 microns can be achieved [8]. It supports very large range of inks, such as nanoparticles, 

screen-printing pastes, adhesives, polymers and biological materials, to print conductive, semi-

conductive and dielectric patterns on the substrate [9]. It is also compatible with wide variety of 

substrates like polyimide, silicon, glass, FR-4 and aluminum oxide [7]. It offers higher degree of 

freedom of design in a cost efficient way [10]. Owing to its flexibility and high resolution, AJP is 

used in printing lot of applications such as resistors, transistors, strain gauges, flexible displays, 

electrode arrays, interconnects, solar oxide fuel cells, solar cells and antennae [11]. 

 

Figure 1.1: Schematic of an AJP process [12]  

A typical AJP process is shown in Figure 1.1. It involves two modules, one for atomizing 

the liquid ink and the other for focusing and depositing the aerosol droplets. The aerosol droplets 

are generated through the atomization of liquid ink by using an ultrasonic or pneumatic atomizer 

[13]. The size of the generated aerosol droplets are between 1 – 5 microns [14]. AJP supports inks 

with large particle size range and low viscosity. The viscosity range for the pneumatic atomizer is 

0.7 – 1000 mPas and for the ultrasonic atomizer is 0.7 – 10 mPas [15]. It also supports printing of 
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multiple inks together through co-atomization. The aerosol droplets created in the atomizer, are 

carried by the carrier gas to the print head through the flow tube. Nitrogen or compressed dry air is 

used as the carrier gas.  The flow tube is long and it gradually converges at the print head. The flow 

tube can be heated up to 200˚C for drying of the aerosol [16]. During the transport of the aerosol in 

the flow tube, a virtual impactor may be used to increase the aerosol density by removing the 

excess gas flow [17].  An annular flow of sheath gas is introduced at the print head through the 

outer portion of the flow tube to enable the aerodynamic focusing of the aerosol for printing the 

wires with high definition on the planar or 3D substrate [7]. The sheath gas also prevents the nozzle 

clogging. The aerosol exits the nozzle at the rate of 10 to 100 m/s and maintains a nozzle-to-

substrate (stand-off) distance of 1 to 5 mm. This enables the system to print on non-planar surfaces 

as printing is independent of the curvature of the substrate. The printing process is smooth in spite 

of the high nozzle exit velocity. The nozzle sizes can be varied for printing fine features or broader 

lines which enables 3D freedom and flexibility. The substrate is mounted perpendicular to the 

nozzle on a computer controlled plate that moves to generate different geometric patterns with the 

printed wires. During transition, a shutter is used to stop the aerosol jet flow from reaching the 

substrate. Together, the shutter and the computer controlled plate allows creation of complex 

patterns on the substrate [18]. The substrate can be subjected to heat treatment to evaporate the 

solvents in the printed wires. The printed wires are post treated using sintering or curing for the 

enhancement of the strength and integrity of the wires [19]. The process is carried out at 

atmospheric conditions and this eliminates the necessity of clean room as required in conventional 

fabrication process [20].  

1.3 Motivation and objective 

The product quality from AJP processes is influenced by number of factors. The process setting 

variables, such as the printing speed, atomizer power voltage, sheath gas flow rate, aerosol gas flow 
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rate, ink volume and sintering temperature, significantly affect the printing quality, such as the line 

features and the resistance. As the quality of the printed wires depends on several factors, there is a 

need to identify and elaborate them in detail. The below fish bone graph shows all the significant 

variables influencing the quality of the printed wires. 

 

Figure 1.2: A fish bone graph of the AJP process 

Traditional quality control and evaluation approaches are based on modelling the 

relationship between the process setting variables and quality variables. Such a quality control 

method can be performed only after the entire printing process. They cannot be used for in-process 

control [21, 22]. The expensive materials (e.g., silver inks) and time-consuming machine set up 

makes run-to-run control less effective. Recently, the development of sensing techniques facilitates 

data collection online. These sensor data (i.e., in situ feature variables of process and quality) 

reflect the process and product quality condition and affect the final product quality, which can be 

used for the quality assessment [12]. However, these in situ feature variables are usually hard to be 

controlled directly towards better product quality. On the other hand, these in situ feature variables 

can be adjusted by changing the process setting variables. Therefore, it is important to investigate 
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the hierarchical relationships among the process setting variables, in situ feature variables and 

quality variable, with the goal to control product quality online. However, such a problem has not 

been addressed in the literature. 

Motivated by the need for in situ process control, the research objective is to establish the 

hierarchical relationship among the process setting variables, in situ feature variables and the 

quality variable (i.e., the resistance of the printed wires) for the AJP process. In particular, an 

ensemble modelling strategy is used to jointly identify (1) the significant in situ feature variables 

for the quality variable, and (2) the significant controllable process setting variables for these 

significant in situ feature variables. The ensemble modelling strategy was demonstrated in 

classification and regression tree models [23], and modified in manufacturing to integrate different 

data sets and encourage joint variable selection [24]. In this thesis, the  model parameters are 

estimated by using Alternating Direction Method of Multipliers (ADMM) [25] algorithm. 

  

Figure 1.3: Flow of the proposed method 

The ensemble modelling strategy is used to identify both significant predictors and 

responses in hierarchical modelling, which is an important extension beyond the knowledge 

frontier. Note that traditional data-driven manufacturing modelling problem only emphasizes the 

selection of significant predictors to the response variable [26-29]. In this research, the proposed 

models can effectively predict the in situ feature variables, which are also significant predictors for 
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the quality variable. Thus, the proposed modelling strategy is expected to be more suitable for in 

situ process control of the AJP process, because the in situ feature variables are appropriately 

identified. Such a modelling strategy can be also broadly applied to other manufacturing processes 

with in situ feature variables. 

The rest part of the thesis is organized as follows. In Chapter 2, the state of the art of the 

AJP process modelling and quality control is reviewed. The proposed method is described in 

Chapter 3 and a case study for the AJP process is introduced in Chapter 4.  Chapter 5 concludes the 

thesis and includes future work.  
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CHAPTER 2: THE STATE OF THE ART 

 
Most of the research conducted in AJP focused on its applicability. There are limited examples in 

the literature that focused on the quality of the printing process. The research on improving the 

quality includes investigating better ink compositions, identification of significant process setting 

variables and understanding the aerosol physics behind the printing. There are no models found in 

the literature to predict the quality of the printed wires taking into account the hierarchical 

relationship between the process setting variables and the in situ feature variables.  

2.1 Effect of process setting variables 

The quality of the printing process has been investigated in terms of the width, thickness and 

resistance of the printed wires and only the effect of process setting variables on the quality has 

been explored so far. Goth et al. showed that the wire width increases with increase in atomization, 

sheath gas flow rate, sheath pressure, number of passes and it decreases with increasing the 

translating speed. He also claimed that the resistance decreases if the inks are hardened longer and 

hotter [30]. Mahajan et al. revealed that the thickness of the printed wires increases with the 

focusing ratio, i.e., the ratio of the sheath gas flow rate to the carrier gas flow rate, and decreases 

with the speed of the stage [11]. Though these studies facilitates the understanding of the effects of 

process setting variables on the quality, they are qualitative in nature and do not portray the 

quantitative relationship between the process setting variables and the quality of the printed wires. 

Also more investigation is needed to study the influence of the in situ feature variables on the 

quality. 

2.2 Effect of material compositions and post treatments 

Wang et al. used dual materials (polyimide and carbon nanotubes) simultaneously to create a thin 

film and adjusted the conductivity of the film by varying the mixing ratio of the two materials [31]. 
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Navratil et al. showed that the resistance of the printed wires depends on substrate attributes, such 

as the wettability, ink adhesion, thermal expansivity along with the ink properties [15]. Cai et al. 

printed D-band transmission lines on flexible LCP substrate and showed that the resistance of the 

printed lines decreases with increase in sintering temperature [32]. These studies are empirical in 

nature and there is no systematic approach reported to emphasize the combined effect of the 

material compositions or the post treatments with the process setting variables or the in situ feature 

variables to determine the quality. 

2.3 Quantitative modelling approaches 

There is limited work found to quantitatively model the aerosol particle dynamics [13, 33, 34] or 

quality-process relationships [12, 31]. Akhatov et al. modelled the aerosol particle flow through the 

micro-capillaries taking into account the Stokes force and the Saffman lift force [33]. Hoey et al. 

showed that it is essential to understand the aerosol fluid particle interactions to improve the 

resolution of the wires and to reduce the overspray [13]. Wang et al. defined a set of quality indices 

using image analysis and studied their effect on the resistance of the printed wires [31]. Sun et al. 

modelled the joint relationship of resistance and overspray with features from microscopic images 

[12]. Li et al. modeled the resistance with the raw image measurements via a spatial variable 

selection method [35]. However, the above studies are not capable to reveal the hierarchical 

relationships among the process setting variables, in situ feature variables, and the product quality 

variable. These models in the literature are not capable for in situ process control, because they 

either do not include in situ feature variables into the model, or the considered variables are not 

controllable.  

In summary, there are several knowledge gaps of the quality control needs in practice, and 

the existing methodology. There are no approaches to jointly characterize the process setting 

variables, the in situ feature variables and the quality variable to hierarchically select the effective   
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in situ feature variables significant to predict the quality variable, and the effective process setting 

variables significant to predict the in situ feature variables. 
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CHAPTER 3: PROPOSED METHODOLOGY 

Denote the process setting variables as  X = (X1,…,Xp)
T

, the in situ feature variables as  Y = 

(Y1,…,Yq)
T
, and the product quality variable as Z. The process setting variables can be adjusted 

during the manufacturing process, thus are treated as controllable variables for in situ process 

control. The in situ feature variables can be generated from basis expansion [36], image analysis 

[31], etc. Denote xi, yi
 and z𝑖 as the i-th sample of X, Y and Z, respectively, X = (X1,…,Xn)

T as the 

realizations of  X, Y = (Y1,…,Yn)
T as the realizations of  Y, and  z  = (z1,…,zn)

T as the realizations 

of Z. Two regression models are used in the hierarchical modeling framework  

 Y𝑖
𝑇=x𝑖

𝑇BY+ ε𝑖
𝑇,         (1) 

 zi = Y𝑖
𝑇
θY + εZi

,   (2) 

where BY = (β
1,Y

,…,β
q,Y

) is a matrix of model coefficients for all q feature variables in Y; θY = 

(θ1,Y,…,θq,Y)
T
 is a vector of model coefficients for Z; and εi ~ N(0, Σ) and εZi

 ~ N(0, σZ
2) are the 

error terms in (1) and (2) that are independent and identically distributed.  

For the ease of later derivations, denote β
Y

 = (β
1,Y

T
,…,β

q,Y

T )
T

,  xi = diag((xi)
T,…,(xi)

T) is q×pq 

matrix and  x = (x1
T,…,xn

T)
T
 is nq×pq matrix. After considering all the n observations, (1) can be 

written as y = xβ
Y

+ ε, where every q rows of ε follow N(0, Σ) and are independent and identically 

distributed. The hierarchical variable relationships for process control are considered by 

introducing the shrinkage factors and corresponding constraints as follows 

 β
Y 

= η∙β
Y

0
, θY = γ

Y
∙θY

0
,   (3) 
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         γ
t,Y

 ≤ ∑ η
j

t×p

j=(t-1)×p+1
, t = 1,…,q,     (4) 

where η = (η
1
T,…, η

q
T)

T
 and γ

Y
 = (γ

1,Y
,…, γ

q,Y
)

T

 are nonnegative shrinkage factors; β
Y

0
 and θY

0
 are 

initial estimations for β
Y

 and θY ; and ∙  represents element-wise multiplication. These initial 

estimations can be estimated by ridge estimators [37]. The introduction of these nonnegative 

shrinkage factors follows the spirit of nonnegative garrote constraint [38], where the variable 

significance can be controlled by these shrinkage factors. If an element of the shrinkage factor 

equals to zero, the corresponding variable is not significant; vice versa. In this paper, these 

shrinkage factors consider the hierarchal variable relationships in (4). When the t-th feature in Y is 

significant for Z (i.e., γ
t,Y

 > 0), (4) forces that there must be at least one significant variable in X 

for the t-th feature in Y. The intuition is that if an in situ feature variable in Y is significant for the 

quality response variable Z, this significant feature in Y can be effectively predicted by some 

controllable variables (i.e., the process setting variables) in X as well. Therefore, one can perform 

the in situ process control based on this hierarchical variable relationship enforced in (4). 

In summary, the ensemble modeling strategy to jointly estimate the two models in (1) and (2) 

can be solved by minimizing the following optimization problem 

     min ─2L(Y, z | X, β
Y

, θY, Σ, σZ)            (5) 

   s.t.    γ
t,Y

 ≤ ∑ η
j

t×p

j=(t-1)×p+1
,  t = 1,…,q,            (6) 

  ∑ η
j

p×q

j=1 + ∑ γ
t,Y

q

t=1 ≤ M,            (7) 
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 γ
t,Y

 ≥ 0, η
j
 ≥ 0, ∀t, ∀j,  

where L(Y, z | X, β
Y

, θY, Σ, σZ) is the joint log likelihood function defined in the Appendix. The 

constraint (6) is used to enforce the hierarchical variable relationship for in situ process control, 

and the constraint (7) is used to control the overall model complexity through a tuning parameter M. 

The tuning parameter can be selected using cross validation (CV) [39]. To effectively solve the 

problem in (5), ADMM algorithm was adapted, and Algorithm 1 (shown in Table 3.1) was 

developed for solving (5) in augmented Lagrangian form. ADMM is an effective method for large 

scale optimization problems [25]. In Algorithm 1, sk  is a q×1  vector of the slack variables 

corresponding to the constraint (6); l
k
 is a slack variable corresponding to the constraint (7), which 

is a scalar value; μ
1
k is a q×1 vector of dual variables for the constraint (6); μ

2
k is a dual variable for 

the constraint (7), which is a scalar value; β
Y

0
 is the initial estimator of β

Y
 = (β

1,Y

T
,…, β

q,Y

T )
T

 using 

ridge regression; B0 = diag ((β
1,Y

0 )
T

,…, (β
q,Y

0 )
T

) ;  [(B0)
T
,…,(B0)

T
]

T

 is replicating B0 row-wise n 

times, then N = (x∙ [(B0)
T
,…,(B0)

T
]

T

) ; similarly, θY
0

 is the initial estimator of θY = (θ1,Y,…, 

θq,Y)
T

 using ridge regression; [θY
0

,…,θY
0 ]

T
 is replicating θY

0
 row-wise n  times, then G = 

(Y∙[θY
0

,…,θY
0 ]

T
);  diag (Σk-1

,…, Σk-1
) is a nq×nq matrix with Σk-1

 on each diagonal element of a 

n×n matrix; ρ is the augmented Lagrangian parameter controlling the speed of converge;  vi = 

xi∙B
0; wk+1 = (z ─ Gγ

Y
k+1);  max() chooses the larger value for each element in two vectors, which 

have the same dimension; ∙ represents element-wise multiplication; Io×o is an identity matrix in o×o 
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dimension; 1r×o  is either a vector or matrix filled with r×o of 1 and I = 

[
 
 
 
1p×1 0p×1

0p×1 1p×1

⋯ 0p×1

⋯ 0p×1

⋮ ⋮
0p×1 0p×1

⋱ ⋮
⋯ 1p×1]

 
 
 

 

which is a (p×q)×q matrix.  

Table 3.1: Flashing Direction Method of Multipliers (ADMM) algorithm for parameter estimation 

Algorithm 1. 

Step 1. Initialize η0, γ
Y
0 , Σ0, σZ

0 , s0, l
0
, μ

1
0, μ

2
0, 

Step 2. Repeat 

ηk+1  = max(0, (2NT (diag (Σk-1
,…, Σk-1

)) N + ρIIT+ ρ1(pq)×(pq))
-1

 

(2NT (diag (Σk-1
,…, Σk-1

)) y ─ Iμ
1
k + ρIγ

Y
k  + ρIsk─ μ

2
1(p×q)×1 

─ ρ1q×1
T

γ
Y
k 1(pq)×1─ ρl

k
1(pq)×1 + ρM1(pq)×1)), 

γ
Y
k+1 = max(0, (2 (σZ

k 2
)

-1

GTG + ρIq×q + ρ1q×q)
-1

(2 (σZ
k 2

)
-1

GTz  

+ μ
1
k + ρ1q×qITηk+1 ─ μ

2
k1q×1─ ρ1q×11(p×q)×1

T
ηk+1 

─ ρl
k
1q×1 + ρM1q×1 ─ ρIq×qsk)), 

Σk+1 = (
∑ (Yi─ viη

k+1)(Yi ─ viη
k+1)

Tn
i=1

n
)

T

, 

σZ
k+12

 = 
wk+1T

wk+1

n
, 

sk+1 = max(0,
μ1

k + ρIT
ηk+1 ─ ργ

Y
k+1

ρ
), 
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l
k+1

 = max (0,
─ μ2

k + ρM ─ ρ1(p×q)×1
T

ηk+1 ─ ρ1q×1
T

 γ
Y
k+1

ρ
), 

μ
1
k+1 = μ

1
k + ρ(ITηk+1  ─ γ

Y
k+1  ─ sk+1), 

μ
2
k+1 = μ

2
k + ρ(1q×1

T
γ

Y
k+1 + 1(p×q)×1

T
ηk+1 + l

k+1
 ─ M), 

Until convergence or maximum number of iterations reached. 

Step 3. Return η and γ
Y

. 
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CHAPTER 4: CASE STUDY 

4.1 Experiment details 

Design of experiments is planned and carried out to collect data. In this experiment, five factors are 

chosen and studied at five different levels. The details and range of the DOE factors used are 

summarized in the below table. An Optomec® AJP system is used to print the wires on a glass 

substrate. The experiment is conducted in room temperature at 22˚C. Commercially available 

UTDAg Conductive Silver Nanoinks® (UT Dots, Inc.) is used as the ink with a concentration of 60 

wt% nanoparticle in hydrocarbon solvent owing to its high conductivity and high expansion 

coefficient. An ultrasonic atomizer is used for generating the aerosol. Nitrogen is used as the carrier 

gas and the sheath gas. The length of the printed wires is 10 mm and the width is 0.5 mm. Once 

printing is complete, the silver wires are sintered in a heat chamber oven at a temperature of 220°C 

for 60 minutes. Some combinations of DOE factors yields non-conducting lines and are removed 

from the data set in the data pre-processing steps as outliers. 35 silver wires are printed. The 

resistance of the wires is measured using FLUKE-117 digital multimeter. The details of the 

experiments can be found in Sun et al. [12]. 

Table 4.1: Details and range of the DOE factors 

DOE Factors Meanings Range 

Atomizer Power Voltage (V) The voltage input to the atomizer 30 – 50 V 

Carrier Gas Flow Rate (sccm) 
The flow rate of the carrier gas carrying the 

aerosol droplets 
12 – 17 sccm 

Sheath Gas Flow Rate (sccm) 
The flow rate of the sheath gas to collimate 

the aerosol flow 
80 – 120 sccm 

Ink Volume (ml) The volume of the ink input to the atomizer 0.5 – 2 ml 

Process Speed (mm/s) The speed of the print head 2 – 10 mm/s 

 

4.2 Measurement of the in situ feature variables  

 

The Leica DM6000 optical microscope is used to measure the surface images of the wires. The 

microscopic images have the potential to be collected online, thus the in situ feature variables are 
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extracted from the images as Y. In other manufacturing applications, a pool of potential in situ 

feature variables can be identified by the capability of sensors in manufacturing. Each wire is 

divided into ten equally spaced segments, and 96 in situ feature variables are extracted from the 

image analysis of each segment resulting in total of 960 in situ feature variables per wire [12]. In 

order to reduce the large dimensionality, the 960 in situ feature variables are pre-processed by 

using High-dimensional Ordinary Least-squares Projection (HOLP) screening [40]. 20 in situ 

feature variables that are strongly correlated to the product quality are identified and evaluated 

using the proposed ensemble modelling strategy. Here, 20 variables are selected because a higher 

number of in situ feature variables will lead to convergence issue. More details are provided in 

Section 4.4. The index of the selected in situ feature variables are Y56, Y57, Y175, Y315, Y635, 

Y717, Y719, Y721, Y722, Y725, Y726, Y730, Y762, Y837, Y839, Y870, Y873, Y878 and Y880. 

These in situ feature variables represent the image features of the printed wires such as the 

quantiles of the normalized white pixels per row and per column, their corresponding standard 

deviation, intensity distribution and absolute mean for each row and column of the first order 

derivative of the line segment.  

4.3 Benchmark Models 

 

The proposed ensemble modelling framework is compared with three benchmark models. In 

benchmark model 1 (BM1), the process setting variables X are used to model the resistance Z 

directly. This model does not use any in situ feature variables and cannot be used in the in situ 

process control. In benchmark model 2 (BM2), both the process setting variables X and the in situ 

feature variables Y are used as predictors to model the resistance Z. This model considers in situ 

feature variables and can be used for the feedforward process control. However, the resistance Z 

cannot be obtained until the end of the manufacturing process. Thus, the model cannot provide 
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online feedback for variation reduction. BM2 is suitable for prediction only when the relationship 

between the process setting variables and the in situ feature variables is known. In a control 

problem, one cannot directly use BM2 because the in situ feature variables still need to be 

predicted by control settings. On the other hand, when their relationship is unknown or when there 

are huge variations in the process, it is essential to enforce the hierarchical constraint (4) for 

quantifying the relationship between the process setting variables and the in situ feature variables. 

In benchmark model 3 (BM3), the process setting variables X are used to model the in situ feature 

variable Y first, then the predicted in situ feature variables Ŷ are used to predict the resistance Z 

afterwards. It is expected, that both BM1 and BM2 may yield good prediction performance for Z, 

as their model estimation do not involve predicting the extra set of variables in Y, and have fewer 

constraints in optimization. On the contrary, BM3 approach estimates both the models (1) and (2), 

without considering the constraint (4) to enforce the hierarchical variable relationship. Specifically, 

Lasso penalty [27] is used for variable selection of BM 1-3.  

4.4 Results and discussion 

The proposed ensemble model is evaluated using the case study data and compared with the 

benchmark models. The prediction performance is evaluated using 5-fold CV [39]. The CV Root 

Mean Square Error (RMSE) and the corresponding standard error (S.E.) over 5-fold CV are shown 

in Figure 4.1. The significant process setting variables and in situ feature variables are compared in 

Figure 4.2. 

In Figure 4.1, it is evident that the prediction performance of BM 2 is the best when 

compared with those of other models. This is mainly because BM 2 considers both the process 

setting variables and the in situ feature variables together in modelling. BM 3 has the worst 

prediction performance. One possible reason is the prediction errors are accumulated in BM 3 
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without considering the joint estimation constraints to enhance the variable selection. Though the 

benchmark modelling approaches (BM1 and BM2) are effective in terms of prediction, they cannot 

be used for in situ process control. The proposed ensemble model has comparable prediction 

performance with BM2 and can be used for the in situ process control. 

 

Figure 4.1: Model prediction performance with 20 in situ feature variables  

(RMSE: Root Mean Squared Error, S.E: Standard Error) 

 

Figure 4.2: Variable selection results with 20 in situ feature variables 

(The colors indicate the magnitudes of model coefficients.) 
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Figure 4.3: Selection of process setting variables for the significant in situ feature variables 

(a) BM3 and (b) the proposed ensemble model (The color black indicates the significance of 

variables.) 

In Figure 4.2, the significant process setting variables and the in situ feature variables 

selected from the benchmark models and the proposed model during 5-fold CV are shown. In 

Figure 4.3, the selection of the process setting variables for the significant in situ feature variables 

in BM3 and the proposed model are shown. From Figure 4.3 (a), it is evident that, there are no 

process setting variables selected for the significant in situ feature variables Y56, Y325 and Y837 

in BM3. Therefore, it is impossible to control these in situ feature variables, though they are 

significant to the product quality. Without the constraint (4), most of the in situ feature variables 

will have some process setting variables as significant predictors. This implies that the assumption 

of the herichical variable relationship enforeced by constraint (4) is appropriate. Alternatively, from 

Figure 4.3 (b), the proposed model has at least three significant process setting variables for every 

significant in situ feature variable selected to predict the quality variable. Thus, the proposed model 
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paves way for altering the in situ feature variables by adjusting the corresponding significant 

process setting variables. 

 

Figure 4.4: Model prediction performance with 50 in situ feature variables 

(RMSE: Root Mean Squared Error, S.E: Standard Error) 

 

   Figure 4.5: Variable selection results with 50 in situ feature variables  

     (The colors indicate the magnitudes of model coefficients.) 

The proposed ensemble model sets the foundation to implement the in situ process control 

because the relationships between the process setting variables and the in situ feature variables, and 
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between the in situ feature variables and the quality variables have been identified. The idea of 

controlling the process through modeling is effective only when the in situ feature variables are 

significant for product quality prediction, and can be predicted by the process setting variables.  

When the dimension of the in situ feature variables is high, the computation becomes more 

complex. For example, the modelling performance is also investigated when there are 50 in situ 

feature variables. The prediction performance and the variable selection for the benchmark models 

with 50 in situ feature variables are shown in the Figure 4.4 and Figure 4.5 respectively. The 

proposed ensemble model did not converge due to matrix singularity issues caused by the 

autocorrelation and cross-correlation of the in situ feature variables. This issue will be addressed in 

the future work. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

AJP is an important technique to print flexible electronics. The models to characterize the 

relationship between the process setting variables and the product quality variables may not be 

effective to quantify the in situ process variability. Furthermore, there is a lack of modelling 

approaches to determine the product quality via jointly modelling the relationships between the 

process setting variables and the in situ feature variables, and the in situ feature variables and the 

quality variable. In this research, an ensemble model strategy based on joint estimation is proposed 

to characterize the hierarchical relationship among the process setting variables, the in situ feature 

variables and the product quality. Three benchmark regression models and an ensemble model are 

constructed based on a real data set in an AJP process. The variable selection is carried out for each 

of the four models and their corresponding prediction performances are compared. The proposed 

ensemble model has comparable prediction performance to the best benchmark model. In addition, 

the significant in situ feature variables for quality prediction in the proposed model will also be 

enforced to have relationships with process setting variables. Such a variable relationship has the 

potential for feedforward and feedback in situ process control, since the product quality is linked to 

these process setting variables through the in situ feature variables. 

In the future work, the modelling methodology will be improved by handling a large 

number of in situ feature variables. One possible way is to integrate dimensional reduction 

techniques such as functional principle component analysis [41]. Moreover, the in situ feature 

variables may be highly autocorrelated. As a result, in situ feature variables will have similar effect 

to predict the product quality. This autocorrelation can be used in the modeling. Finally, the 

established variable relationships from the ensemble model will be used for the in situ process 

control. 
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APPENDIX 

Detailed derivations of the ADMM algorithm for proposed ensemble model are provided [42]. The 

objective function in (5) is expressed in the negative log-likelihood form as 

─ 
1

2
(nlog|Σ| + nlog(σZ

2)) ─ 
1

2
((y ─ xβ

Y
)

T
diag(Σ-1,…, Σ-1)(y ─ xβ

Y
)) 

─ 
1

2
((σZ

2 )
-1
(z ─ YθY)T(z ─ YθY)). 

By introducing the non-negative slack variables, the constraints (6) and (7) become 

 γ
t,Y

 + st  = ∑ η
j

t×p

j=(t ─ 1)×p+1 ,  t = 1,…,q,     

 1q×1
T

γ
Y

 + 1(p×q)×1
T

η + l = M,     

 γ
t,Y

 ≥ 0, η
j
 ≥ 0, ∀t, ∀j.     

One can write the above constraints in vector and matrix form 

  γ
Y

 + s ─ ITη =  0q×1,  

 1q×1
T

γ
Y

 + 1(p×q)×1
T

η + l = M,     

 η ≥ 0(p×q)×1, γ
Y 

≥ 0q×1, s ≥ 0q×1, l ≥ 0,     

The objective function in (5) can be expressed using augmented Lagrangian form as,  

min nlog|Σ| + nlog(σZ
2) + ((y ─ xβ

Y
)

T
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Y
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s.t.   η ≥ 0(p×q)×1,  γ
Y

 ≥ 0q×1,  s ≥ 0q×1,  l ≥ 0. 

For the ease of derivation, the above objective can be converted into 

min nlog|Σ| + nlog(σZ
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Taking partial derivative of (A1) with respect to η, γ
Y

, Σ, σZ
2 , s, l and setting the corresponding 

equation to 0, the algorithm outlined in Algorithm 1 is obtained. 
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