Onsite Remediation of Pharmaceutical and Personal Care Products in Domestic Wastewater using Alternative Systems Including Constructed Wetlands

Chloe Frances Greenberg

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
In
Environmental Engineering

Gregory D. Boardman, Chair
Mark A. Widdowson
Theresa M. Thompson
Richard F. Helm

February 16, 2017
Blacksburg, VA

Keywords: Pharmaceuticals and personal care products (PPCPs), trace organic chemicals (TOCrs), onsite wastewater treatment, septic system, enhanced treatment units, constructed wetlands
Onsite Remediation of Pharmaceutical and Personal Care Products using Alternative Systems
Including Constructed Wetlands

Chloe F. Greenberg

ABSTRACT

Pharmaceuticals, personal care products (PPCPs) and other trace organic contaminants (TOrCs) encompass a diverse group of chemicals that are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of TOrCs in aquatic and terrestrial environments all over the globe, and observed negative effects on impacted biota. The primary source of TOrCs in the environment is domestic wastewater discharges. Centralized wastewater treatment plants present greater risks on a global scale, but on a local scale, onsite treatment systems may have more potent impacts on resources that are invaluable to residents, including groundwater, surface waters, and soils.

The objective of this thesis is to identify and characterize promising treatment technologies for onsite TOrC remediation. Receptors who could be impacted by TOrC discharges are assessed, and applications that may require alternative treatment are identified. The best treatment technologies are recognized as those that protect sensitive environmental receptors, provide permanent removal pathways for as many TOrCs as possible, and are not prohibitively expensive to install or maintain. Findings from a pilot study show increased removal of conventional pollutants and TOrCs in an aerobic treatment unit (ATU), two types of biofilter, and a hybrid constructed wetland, all relative to septic tank effluent. The constructed wetland achieved the highest nutrient removals with TN concentrations below 10 mg/L throughout the study. A system with an ATU and peat biofilters achieved the highest removals of persistent pharmaceuticals carbamazepine and lamotrigine (>85% and >95%, respectively).
Onsite Remediation of Pharmaceutical and Personal Care Products using Alternative Systems
Including Constructed Wetlands

Chloe F. Greenberg

GENERAL AUDIENCE ABSTRACT

Trace organic contaminants (TOrCs) are chemicals found in pharmaceuticals, laundry detergents, shampoo, flame retardants, food preservatives, and many other products used in a typical home, which are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of TOrCs in waters and soils all over the globe, and observed negative effects on the plants and animals that live in those environments. The primary source of TOrCs in the environment is treated wastewater from centralized wastewater treatment plants, which is usually released to rivers, lakes, and other surface waters. People in rural communities also have TOrCs in their wastewater, which is normally treated using a septic system. Water released in the septic field can add TOrCs to septic field soils, groundwater sources, or nearby surface water sources, and from there these chemicals have the potential to impact human health, soil fertility, livestock health, or fish and other living things in surface waters.

The objective of this thesis is to identify and characterize promising treatment technologies that would prevent or limit TOrC impacts to these important resources, which are called “receptors.” Receptors who could be impacted by TOrC discharges are assessed, and the situations in which these treatment technologies would be necessary are identified. The best treatment technologies are recognized as those that protect sensitive environmental receptors, remove as many TOrCs as possible, and are affordable to install or maintain. An experiment was designed to compare the performance of three different technologies that could remove TOrCs from septic tank effluent, including a peat filter and a constructed wetland. The constructed wetland removed the most nitrogen (total nitrogen <10 mg/L throughout the study), and a system with a peat filter removed the greatest amounts of persistent pharmaceuticals carbamazepine and lamotrigine (averaging >85% and >95%, respectively).
Acknowledgements

This study was supported by the American Water Works Association (AWWA) Larson Aquatic Research Support (LARS) scholarship, the Edna Bailey Sussman Fund, the Southeast Rural Community Assistance Project (SERCAP), and the Virginia Tech Charles E. Via, Jr. Department of Civil and Environmental Engineering. Colin Bishop of Anua International and Carl Perry of E-Z Treat Company and their respective companies donated equipment and time, and Anua International funded the internal sampling effort for their system.

Every member of my advisory board was an invaluable addition and I was so privileged to have the opportunity to learn from them. Dr. Thompson broadened my perspective on what a constructed wetland could be and how to think about the remediation of both TorCs and conventional pollutants in a more holistic way. Dr. Widdowson provided conscientious and constructive feedback at every opportunity and managed to revolutionize my mental model of the septic field just in the nick of time. I would guess that Dr. Helm has an email from me for every day I’ve known him, but he has still managed to read and respond to them all, even the ones that amount to small essays. Without Dr. Helm, this project would never have gotten off the ground because the time, effort, intelligence, and experience he contributed to this project were irreplaceable. Dr. Boardman has shaped and guided this project from its start as an amorphous concept to its final transformation into a PDF (the most concrete of all documents). He taught me all the fundamental concepts of wastewater treatment that I know, and how worthwhile the career of a professor can be. I am so proud to join the flock of Boardman group alumni - I unexpectedly met a number of them while completing this project and to a person they are a generous, smart, and practical bunch.

Jody Jervis and Sherry Hildreth performed all of the UPLC-MS/MS analyses for this project. Their quality work and attention to detail were indispensable. Jody was a bottomless cup of joy to work with, and although I usually only visited her when I was at my most haggard, her endearing send-offs always lightened my step, and not just because I was leaving with an empty cooler.

Jody Smiley taught me an awful lot about ion chromatography and TOC analyses. Actually she taught it to me several times over, but with a graciousness and patience that made it easy (perhaps too easy) to forgive myself. It is impossible to overemphasize how much Julie Petruska contributed to this project. I barely knew how to fill a buret when I first started working in the lab, and by the end she had taught me how to save a peristaltic pump from the brink of eBay returns, distinguish a casserole from a crucible, and how to do 8 different types of analyses while avoiding many opportunities for personal injury. She is a wonder of resourcefulness and ingenuity, and I will miss her company.

Dr. Leigh Ann Krometis and Kyle Jacobs provided me with the facilities and wherewithal to run my Colilert tests. John Peterson generously coordinated space for the wetland plant trimmings in drying ovens in the Virginia Tech Forest Resources and Environmental Conservation Department. Yishuang Wang got me through the fall sampling push. I don’t know how I would have done it without her.
Peter Traverse originally conceived of this project, and it is no surprise because he possesses boundless curiosity, creativity, and optimism that I have never seen equaled. He was the perfect counterweight to my gravity-bound logic, which would have stayed firmly planted on the ground without his vision.

The community that hosted the pilot study deserves recognition as the most generous supporter of this project, providing funding; space for the pilot system; staff and volunteer assistance during construction, operation, and deconstruction; and, last but certainly not least, over 40,000 gallons of septic tank effluent. It is remarkable that this small community would be so enthusiastic about understanding its own environmental impacts without any impetus from regulatory agencies. In today’s world, their investment in scientific research is surprising and laudable.

Finally, I have to thank my incredible family who supported me every day, not just in every conceivable emotional way, but also with both skilled and manual labor. Gavin Palmer designed and/or built every piece of the pilot study that worked flawlessly from day one. My mother, Suzanne Foster, was my plant consultant and surprised us all with her flair for wrangling flexible PVC tubing. My father, Robert Greenberg, designed and constructed all site drainage features and provided extensive photo documentation. My grandparents also got in on the action; Beth and Bryan Foster provided pump and bulkhead fitting consultation and much needed dog sitting services. Although Irving and June Greenberg did not get a chance to visit the site, they inspire me every day to work towards deserving all I have been given.
Table of Contents

1 Introduction .. 1

2 Literature Review ..5
 2.1 Introduction .. 5
 2.2 Trace Organic Contaminants (TOrCs) in Domestic, Onsite Wastewater 8
 2.2.1 Impact on Aquatic and Terrestrial Environments .. 11
 2.2.2 Current Knowledge of Human Health Impacts .. 13
 2.2.3 Mechanisms for Trace Organic Contaminant (TOrC) Removal from Wastewater 18
 2.3 Onsite Wastewater Treatment ... 22
 2.3.1 Introduction .. 22
 2.3.2 Conventional Septic Systems .. 24
 2.3.3 Enhanced Treatment Units (ETUs) ... 28
 2.3.4 Constructed Wetlands ... 33
 2.3.5 Comparison of Onsite Treatment Systems ... 47
 2.4 Conclusion ... 50
 2.4.1 Potential Impacts from Release of TOrCs via Onsite Treatment 50
 2.4.2 Options for Alternative Onsite Treatment and Limitations 51
 2.4.3 Qualitative Metrics for Assessing Successful Onsite Remediation 52
 2.4.4 Summary of Knowledge Gaps and Research Needs ... 53

References .. 54

3 Pilot Study .. 62
 3.1 Introduction .. 62
 3.2 Materials and Methods ... 65
 3.2.1 Pilot System Description ... 65
 3.2.2 Experimental Design ... 68
 3.3 Results .. 70
 3.3.1 Data Processing and Statistical Analyses ... 70
 3.3.2 Conventional Pollutants ... 76
 3.3.3 Pharmaceuticals and Personal Care Products (PPCPs) 81
 3.4 Discussion ... 89
C.2 Pilot System Sampling Procedures ... 167
C.3 Pilot System Conventional Pollutant Results .. 167
C.4 Pilot System PPCP Results .. 168
C.5 Evapotranspiration Calculations .. 169
C.6 Statistics Calculations – R Code ... 173
 Nitrogen Calculations ... 173
 ANOVA Calculations – Conventional Pollutants ... 175
 ANOVA Calculations – PPCPs ... 202
 CBZ and LAM Correlations ... 235
C.7 Pilot Study Photos .. 241
 March .. 241
 April .. 246
 May .. 252
 June ... 255
 July .. 263
 September .. 265
Table of Tables

Table 2.1: Hazard quotients calculated for human exposure to observed concentrations of TOrCs in impacted groundwaters ... 15

Table 2.2: Characterization of septic field studies in the literature ... 28

Table 2.3: Conventional pollutant removals - comparison between septic tanks and ETUs....... 29

Table 2.4: Conventional pollutant removals - comparison between ETUs and CWs 36

Table 2.5: Summary of total nitrogen removal rates by Haugstein wetland (Jenssen, 2005) 38

Table 2.6: Seasonal TOrC removal rates in Hijosa-Valsero et al. (2011a)................................. 38

Table 3.1: Pilot system theoretical hydraulic residence times in days 67

Table 3.2: Analysis of consistency and serial autocorrelation of STE samples 72

Table 3.3: Summary of ANOVA preparation .. 74

Table 3.4: Temperature, pH, DO, and alkalinity of effluent and internal samples 77

Table 3.5: Nutrient composition and weights of constructed wetland plants by tank 78

Table 3.6: ANOVA analysis findings for conventional pollutants ... 79

Table 3.7: MET, TOP, and TCS results for effluent samples .. 82

Table 3.8: ANOVA analysis findings for PPCPs .. 84

Table 3.9: Physical and chemical properties of PPCPs ... 89

Table 3.10: Literature review of pharmacokinetics and removal rates 91
Table of Figures

Figure 2.1: Fate map for trace organic contaminants in conventional septic systems 10

Figure 3.1: Pilot system schematic .. 66

Figure 3.2: STE concentrations of ACE, CBZ, and VEN over time ... 73

Figure 3.3: Conventional pollutant concentrations in effluent samples ... 76

Figure 3.4: Conventional pollutants measured in internal wetland samples 81

Figure 3.5: PPCP concentrations in effluent samples ... 82

Figure 3.6: ACE, CBZ, LAM, and LEV concentrations measured in internal wetland samples 85

Figure 3.7: TCS concentrations measured in internal wetland samples .. 86

Figure 3.8: MET, TOP, and VEN concentrations measured in internal wetland samples 86

Figure 3.9: ACE, CBZ, LAM, LEV, and TCS concentrations measured in internal Anua samples 87

Figure 3.10: MET and VEN concentrations measured in internal Anua samples 87

Figure 3.11: ACE, CBZ, LAM, and LEV concentrations in CW4, Anua Well 1, and E-Z Treat effluents .. 88

Figure 3.12: TCS and VEN concentrations in CW4, Anua Well 1, and E-Z Treat effluents 89

Figure 3.13: ACE concentrations in treated effluent over time ... 97

Figure 3.14: CBZ concentrations in treated effluent over time ... 97

Figure 3.15: VEN concentrations in treated effluent over time .. 98

Figure 3.16: CBZ and LAM concentrations in CW6 and Anua effluents over time 101

Figure 3.17: Relationship between CW6 effluent pH CBZ and LAM concentrations 101

Figure 3.18: Relationship between CW4 and CW6 effluent pH and alkalinity 103

Figure 3.19: Correlation between CBZ and LAM removal rates and pH change between CW4 and CW6 .. 105
Appendix Tables and Figures
Table A.2.1: Mass spectrometer MRM parameters
Table A.2.2: UPLC separation conditions
Figure A.2.1: Chromatograph of all standards at 75 ng/mL
Table B.1.1: Volume of bottles to be filled at septic tanks during each sampling event
Table B.1.2: Summary of composite volumes for non-organic analyses
Table B.1.3: Bottles for non-organic analyses storage
Table B.1.4: Summary of composite volumes for organic analyses
Table B.1.5: Bottles for organic analyses
Table B.2.1: Quarterly sampling on-site measurements
Table B.2.2: Quarterly sampling conventional pollutant results
Table B.3.1: Quarterly sampling PPCP results
Table C.1.1: Anua system operation summary
Table C.1.2: E-Z Treat system operation summary
Figure C.1.1: Constructed wetland tank 3 schematic
Table C.1.3: Weekly summary of constructed wetlands inter-tank flow rates and HRTs
Table C.3.1: Pilot system conventional pollutant results
Table C.4.1: Pilot system PPCP results
Table C.5.1: Monthly extraterrestrial radiation values as a function of latitude
Figure C.5.1: Monthly extraterrestrial radiation values at latitude 38.2 degrees
Table C.6.1: Data from nitrogen.csv
Table C.6.2: Data from anova.csv
Table C.6.3: Data from anovaPPCP.csv
Acronyms

2-OH-CBZ 2-hydroxy-CBZ
3-OH-CBZ 3-hydroxy-CBZ
ACE Acetaminophen
ADI Adult daily intake
ANOVA Analysis of variance
AOP Advanced oxidation process
ARG Antibiotic resistance gene
ATU Aerobic treatment unit
BOD Biochemical oxygen demand
CBZ Carbamazepine
CBZ-E CBZ-10,11-epoxide
Cl Chloride
COD Chemical oxygen demand
CS Conventional septic
CW Constructed wetland
CW4 Constructed wetland Tank 4
CW6 Constructed wetland Tank 6
DiOHCBZ trans-10,11-dihydroxy-10,11-dihydro-CBZ
DO Dissolved oxygen
DOC Dissolved organic carbon
DWEL Drinking water equivalency level
EDC Endocrine disrupting compound
ETU Enhanced treatment unit
F Fluoride
FOG Fats, oils, and greases
FWS Free water surface
GAC Granular activated carbon
H₂O₂ Hydrogen peroxide
HRT Hydraulic retention time
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSD</td>
<td>Honest significant difference</td>
</tr>
<tr>
<td>HSSF</td>
<td>Horizontal subsurface flow</td>
</tr>
<tr>
<td>IS</td>
<td>Internal standard</td>
</tr>
<tr>
<td>LAM</td>
<td>Lamotrigine</td>
</tr>
<tr>
<td>LECA</td>
<td>Light expanded clay aggregate</td>
</tr>
<tr>
<td>LEV</td>
<td>Levetiracetam</td>
</tr>
<tr>
<td>LMG-N2-G-TP430</td>
<td>Glucuronide metabolite of lamotrigine</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest observable adverse effect level</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>LWA</td>
<td>Light weight aggregate</td>
</tr>
<tr>
<td>MET</td>
<td>Metformin</td>
</tr>
<tr>
<td>MHD</td>
<td>10,11-dihydro-10-hydroxy-carbamazepine</td>
</tr>
<tr>
<td>MTD</td>
<td>Minimum therapeutic dose</td>
</tr>
<tr>
<td>NAPQI</td>
<td>N-acetyl-p-benzoquinone imine</td>
</tr>
<tr>
<td>NDV</td>
<td>N-desmethyl-venlafaxine</td>
</tr>
<tr>
<td>NH₄</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrite</td>
</tr>
<tr>
<td>NO₃</td>
<td>Nitrate</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No observable adverse effect level</td>
</tr>
<tr>
<td>Nₐ,O-DDM-VEN</td>
<td>N,O-didesmethyl-venlafaxine</td>
</tr>
<tr>
<td>ODV</td>
<td>O-desmethyl-venlafaxine</td>
</tr>
<tr>
<td>OXO-LAM</td>
<td>Synthetic impurity of lamotrigine</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>PO₄</td>
<td>Phosphate</td>
</tr>
<tr>
<td>PPCP</td>
<td>Pharmaceutical and personal care product</td>
</tr>
<tr>
<td>SF</td>
<td>Surface flow</td>
</tr>
<tr>
<td>SO₄</td>
<td>Sulfate</td>
</tr>
<tr>
<td>SSF</td>
<td>Subsurface flow</td>
</tr>
<tr>
<td>STE</td>
<td>Septic tank effluent</td>
</tr>
<tr>
<td>TCS</td>
<td>Triclosan</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>TIN</td>
<td>Total inorganic nitrogen</td>
</tr>
<tr>
<td>TN</td>
<td>Total nitrogen</td>
</tr>
<tr>
<td>TOP</td>
<td>Topiramate</td>
</tr>
<tr>
<td>TOrC</td>
<td>Trace organic contaminant</td>
</tr>
<tr>
<td>TP</td>
<td>Total phosphorus</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>UCB L057</td>
<td>Acid metabolite of levetiracetam</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V₂</td>
<td>Metabolite of venlafaxine</td>
</tr>
<tr>
<td>VEN</td>
<td>Venlafaxine</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile suspended solids</td>
</tr>
<tr>
<td>VSSF</td>
<td>Vertical subsurface flow</td>
</tr>
<tr>
<td>WRF</td>
<td>White rot fungi</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater treatment plant</td>
</tr>
</tbody>
</table>
1 Introduction

Trace organic chemicals (TOrcs) encompass a diverse group of tens of thousands of chemicals that are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of TOrcs in aquatic and terrestrial environments all over the globe (Ternes, 1998; Kolpin et al., 2002; Barnes et al., 2008; Schlusener et al., 2015), and observed negative effects on impacted biota (Writer et al., 2010; Fong and Hoy; 2012).

The primary source of TOrcs in the environment is domestic wastewater discharges, including those of centralized and decentralized origin (Conn et al., 2006; Li et al., 2014). On a global scale, TOrcs discharged in effluents from centralized wastewater treatment plants (WWTPs) can have greater impacts for sensitive environmental receptors because they process such large volumes of wastewater and often discharge directly to surface water resources. However, on a local scale, onsite treatment systems have the potential to impact resources that are invaluable to residents.

TOrcs are extremely difficult, if not impossible, to remove from wastewater by biological treatment alone, and varying levels of many parent compounds and metabolites have been found in effluents from both centralized and decentralized wastewater treatment systems (Rudel et al., 1998; Conn et al., 2006; Joss et al., 2006; Carrara et al., 2008; Writer et al., 2010; Gurke et al., 2015; Phillips et al., 2015). Septic systems, the most commonly used onsite treatment technology in the US, may be particularly ineffectual for TOrc remediation because they provide limited mechanisms for removal during primary treatment (US EPA, 2002). Secondary treatment in subsurface dispersal fields relies on site specific factors including soil conditions and groundwater dilution. While these strategies can provide effective remediation of conventional pollutants, they may be insufficient for TOrcs. Several studies have shown that TOrcs can be found in groundwater, soils, and ecosystems impacted by septic systems (Miller and Meek, 2006; Godfrey et al., 2007; Carrara et al., 2008; Phillips et al., 2015; Subedi et al., 2015). Because onsite treatment systems are often in rural locations, sited close to homes, they may be adjacent to valuable groundwater, surface water, or soil resources, which residents may use for drinking water, food production, and/or recreation. Impacts to aquatic ecosystems may be particularly devastating, even when chemicals are present at levels as low as a couple nanograms per liter (Lange et al., 2001;
Advanced physicochemical treatments, including advanced oxidation processes (AOPs) and membranes, are currently regarded as the most effective means of remediating wastewater-borne TOrCs (Ternes et al., 2002). For most TOrCs, these treatments are able to remove parent compounds as well as bioactive metabolites and metabolites that could be converted back to the parent compound. As such, they have received a lot of attention in the literature and are being employed at various municipal wastewater reuse facilities where TOrC removal is an important goal. However, they also have various disadvantages. First, there are TOrCs that can resist degradation by certain advanced oxidation methods, including metformin which is resistant to oxidation by UV/H₂O₂, and lamotrigine which is resistant to ozonation (De la Cruz et al., 2012; Keen et al., 2014). Other researchers have observed the formation of toxic byproducts by AOPs, particularly in the early stages of oxidation (Dantas et al., 2011). Perhaps their most important limitation is that they are prohibitively expensive and difficult to operate, so that they currently have limited utility in onsite applications. Treatment with UV/H₂O₂ could be considered, but it would not be possible to treat STE directly; an additional treatment step would be required to reduce the concentrations of radical scavengers.

Enhanced treatment units (ETUs) improve the performance of a septic system by adding a treatment step between the septic tank and the septic field. Often, that step involves aeration or contact with some kind of media, like sand or peat. Both aerobic treatment units (ATUs) and media filters are described in detail in the text by Jantrania and Gross (2006) and multiple researchers have considered remediation of PPCPs using these systems (Hinkle et al., 2005; Conn and Siegrist, 2009; Stanford and Weinberg, 2010; Du et al., 2014; Subedi et al., 2015). Design configurations may vary widely between manufactured systems, but they do not include macrophytes and typically have residence times of a few days. Constructed wetlands (CW) have also been used as a secondary treatment step for decentralized treatment or as an alternative to conventional WWTPs (Conn et al., 2006; Conkle et al., 2008; Matamoros et al., 2009; Hijosa-Valsero et al., 2010a; Stanford and Weinberg, 2010). Wetland design can vary widely as well, from flow regime, loading mode (continuous, intermittent), and hydraulic retention time (HRT), to the types of plants and
media included, and the types of microorganisms that are encouraged to grow. Generally, wetlands are classified most broadly by their flow regime, either free water surface (FWS), surface flow (SF), horizontal subsurface flow (HSSF), or vertical subsurface flow (VSSF). Each type is known for promoting different removal mechanisms. The use of CWs for TOC remediation has been reviewed by several researchers (Imfeld et al, 2009; Li et al., 2014; Verlicchi and Zambello, 2014; Carvalho et al., 2014).

Findings from the literature clearly indicate that both CWs and ETUs have a greater capacity for TOC remediation than CS tanks alone (Conn et al, 2006; Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Furthermore, CWs and ETUs that include aeration, either forced or through the passive use of unsaturated filters, have been found to be more effective for the removal of TOCs, particularly endocrine disrupting compounds (EDCs) (Stanford and Weinberg, 2010). However, both CWs and ETUs are more expensive to install and operate, and the advantages of using them when septic fields are operating properly has been questioned (Conn and Siegrist, 2009).

Every application of onsite treatment technology is unique with regard to the relative priority of TOC remediation. For systems that have adequate septic fields, sufficient groundwater dilution, and are physically separated from other onsite systems, farmland, groundwater resources, and surface waters, and/or where residents do not emit large quantities of persistent TOCs, there may be no need to improve TOC remediation. However, researchers are continually finding situations where insufficient treatment leads to concerning concentrations of TOCs in adjacent resources and environments (Swartz et al., 2006; Writer et al., 2010). In these situations, it may be extremely difficult for users to identify alternatives with greater TOC remediation capacity or determine whether the investment is worth making.

This thesis is comprised of two articles that attempt to tackle different issues related to onsite remediation of pharmaceuticals and personal care products (PPCPs), and other TOCs. The first is a literature review which considers potential impacts to the environment and human health from onsite discharges of TOCs, as well as the relative performance and utility of different onsite treatments for TOC remediation. Although there have been many reviews of the environmental fate of TOCs and potential remediation strategies, the “onsite” focus of this review is unique. In
order to assess human and environmental health effects, findings from studies related to centralized WWTP discharges were translated to onsite applications. From there, potential impacts from onsite discharges of TOrCs could be used to develop qualitative metrics for assessing treatment alternatives.

The second article describes a pilot study comparing the PPCP remediation capacity of a hybrid CW and two different ETUs treating real septic tank effluent (STE) over a period of seven months. The site of the project was an 80-person community for intellectually-disabled adults in rural Virginia. The community was interested in alternative onsite treatment options for their wastewater because septic fields on the property are sited over groundwater resources and under agricultural land. Seven pharmaceuticals were chosen for monitoring throughout the study based on relatively high consumption rates in the community: acetaminophen, carbamazepine, lamotrigine, levetiracetam, metformin, topiramate, and venlafaxine. In addition, one personal care product, the antimicrobial triclosan, was also monitored.

A few studies in the literature have compared grab samples from ETUs and CWs processing real septic tank or primary treated effluents (Conn and Siegrist, 2009; Matamoros et al., 2009; Stanford and Weinberg, 2010). One study compared the performance of an ATU that included a settling basin with that of a CW treating STE and the septic tank alone (Du et al., 2014). However, this study is unique in the following respects:

- The ETUs and CW were processing the same STE
- The ETUs and CW were operated and samples collected over a relatively long duration (seven months)
- The consumption rates for most of the monitored PPCPs were known and consistent from day to day
- Mycoremediation of CW effluents was considered
- Some of the monitored PPCPs, including levetiracetam, lamotrigine, metformin, and topiramate, have received little prior attention in the decentralized treatment literature
2 Literature Review

Abstract

This paper reviews issues related to trace organic contaminants (TOrCs) discharged from domestic, onsite wastewater treatment systems. Many environmental fate and impact studies have focused on issues related to centralized wastewater treatment plant (WWTP) discharges. However, onsite discharges may have more pertinent implications for localized environments and human communities. First, the routes that TOrCs may take between domestic use and downstream environments are mapped. Then, findings from impact assessments of direct discharge or agricultural applications of WWTP effluents are translated to subsurface discharges in septic fields. Both environmental and human health impacts are considered. Next, the TOrC remediation capacities of various alternative onsite treatment technologies – including constructed wetlands (CWs), aerated treatment units, and biofilters – are compared to those of conventional septic (CS) systems. Finally, conclusions are drawn about the comparative ability of the different technologies to protect sensitive receptors, as well as their suitability for onsite treatment. The applications of conventional septic systems that are most likely to cause environmental pollution or raise human health risks are identified. Research gaps are indicated, including the effect of pretreatment on septic field performance. A primary focus of the review is to define the problem of onsite TOrC discharges in order to support the logical development of solutions.

Keywords: critical review, trace organic contaminants (TOrCs), pharmaceuticals and personal care products (PPCPs), constructed wetlands, enhanced treatment (units), septic systems

2.1 Introduction

TOrCs encompass a diverse group of tens of thousands of chemicals that are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of TOrCs in aquatic and terrestrial environments all over the globe (Ternes, 1998; Kolpin et al., 2002; Barnes et al., 2008; Schlusener et al., 2015), and observed negative effects on impacted biota (Writer et al., 2010; Fong and Hoy; 2012).
The primary source of TOrCs in the environment is domestic wastewater discharges, including those of centralized and decentralized origin (Conn et al., 2006; Li et al., 2014). Centralized WWTPs typically collect wastewater from a large area and treat it to relatively high standards (at least secondary treatment) before discharging it directly into a surface water source. Decentralized or onsite wastewater treatment refers to the treatment of wastewater from one or a handful of homes, and is the focus of this paper. CS systems are the most commonly used onsite treatment system in the United Stated (US EPA, 2002). CS systems treat wastewater in an anaerobic tank to primary standards followed by subsurface soil application.

TOrCs are extremely difficult, if not impossible, to remove from wastewater by biological treatment alone, and varying levels of many parent compounds and metabolites have been found in effluents from both centralized and decentralized wastewater treatment systems (Rudel et al., 1998; Conn et al., 2006; Joss et al., 2006; Carrara et al., 2008; Writer et al., 2010; Gurke et al., 2015; Phillips et al., 2015). Septic systems, the most commonly used onsite treatment technology in the US, may be particularly ineffectual for TOrC remediation because they provide limited mechanisms for removal during primary treatment (US EPA, 2002). Secondary treatment in subsurface dispersal fields relies on site specific factors including soil conditions and groundwater dilution. While these strategies can provide effective remediation of conventional pollutants, they may be insufficient for TOrCs. Several studies have shown that TOrCs can be found in groundwater, soils, and ecosystems impacted by septic systems (Miller and Meek, 2006; Godfrey et al., 2007; Carrara et al., 2008; Phillips et al., 2015; Subedi et al., 2015). Because onsite treatment systems are often in rural locations, sited close to homes, they may be adjacent to valuable groundwater, surface water, or soil resources. Impacts to aquatic ecosystems may be particularly devastating, even when chemicals are present at levels as low as a couple nanograms per liter (Lange et al., 2001; Fenske et al., 2005; Kidd et al., 2007; Palace et al., 2009; Writer et al., 2010; Fong and Hoy, 2012).

It is important to recognize that each onsite treatment system is unique with regard to the relative priority of TOrC remediation. For systems that have adequate septic fields, sufficient groundwater dilution, and are physically separated from other onsite systems, farmland, groundwater resources, and surface waters, and/or where residents do not emit large quantities of persistent TOrCs, there
may be no need to improve TOrc remediation. However, researchers are continually finding situations where insufficient treatment leads to concerning concentrations of TOrcs in adjacent resources and environments (Swartz et al., 2006; Writer et al., 2010). In these situations, it may be extremely difficult for users to identify alternatives with greater TOrc remediation capacity or determine whether the investment is worth making. They must answer questions, like: What are the potential environmental and human health impacts associated with TOrcs released via onsite treatment systems? Are there alternative treatment systems that provide more effective TOrc remediation than CS, and are there features of these technologies that limit their use in onsite applications?

The goal of this review is to comb the literature for answers to these questions. The considered treatment options will provide secondary treatment to septic tank effluent (STE) and will discharge to a septic field. The review will consider removal mechanisms and knowledge gaps for each system and overview potential drawbacks, including solid waste production and other potential environmental impacts.

There are several reasons why it is difficult to generalize about TOrc remediation strategies:

1. There are a vast number of TOrcs with a wide array of chemical characteristics. A unique pattern of chemicals and concentrations will be present in every wastewater source.

2. In part because of the vast numbers of TOrcs, the chemical interactions between them, their metabolic paths, and the chemical characteristics/toxicity of their metabolites are not well understood.

3. The effectiveness of septic systems, specifically the septic fields, depends on site conditions, including soil composition, depth to groundwater, groundwater flow rates, locations of wells and agricultural areas, and proximity to surface water resources.

Therefore, an additional goal of this review will be to establish qualitative metrics for comparing the successful remediation of TOrcs by onsite wastewater treatment systems.
2.2 Trace Organic Contaminants (TOrCs) in Domestic, Onsite Wastewater

TOrCs found in pharmaceuticals and personal care products (PPCPs) as well as various other consumer products can be conveyed to onsite wastewater systems through many portals, including toilets, sinks, dishwashers, showers, and laundry machines. Some of these chemicals may be modified from their original form by the time they reach the treatment system. For example, pharmaceuticals can be partially or fully metabolized while passing through the human digestive system (Daughton and Ternes, 1999).

When TOrCs are discharged into a septic field, a particular compound’s fate will depend on its chemical attributes and the characteristics of the septic field, including media type, redox conditions, gradient, and climate. In general, more polar compounds could be expected to leach into groundwaters or downstream surface waters (Daughton and Ternes, 1999) while compounds with moderate to high Log \(K_{ow} \) values that are not removed in the septic tank could be expected to remain sorbed in the soil (>2), or to be taken up by plants (1 to <3.5) (Dietz and Schnoor, 2001; Imfeld et al., 2009). Compounds with moderate to high Log \(K_{ow} \) values (≥5), including pharmaceuticals designed to cross the blood-brain barrier, are more likely to pose bioconcentration or bioaccumulation risks for terrestrial biota (Daughton and Ternes, 1999; Arnot and Gobas, 2006).

Significant work has been done on the environmental fate and effects of TOrCs, particularly pharmaceuticals, released from centralized treatment plants to surface waters and soils (Jjemba, 2002; Ferrari et al., 2003; Fenske et al., 2005; Ying et al., 2007; Chen et al., 2013; Carter et al., 2014; Mrozik and Stefanska, 2014). Like biosolids, TOrCs released via septic systems are also applied to terrestrial ecosystems; however, the location of release and the types of chemicals released are different. Biosolids application would be expected to return significantly more compounds with high to moderate Log \(K_{ow} \) values (>2). Reclaimed water irrigation might contain compounds that have lower Log \(K_{ow} \) values, similar to those in STE; however, reclaimed water has undergone primary, secondary, and potentially even tertiary treatment, as well as disinfection. Both biosolids application and reclaimed water irrigation release TOrCs closer to the surface of the soil where removal mechanisms such as aerobic degradation, plant uptake, organic sorption, and photodegradation may be more effective than in a subsurface drain field. Figure 2.1 below
maps the routes that TOrCs may take from the home to environmental receptors and indicates chemical characteristics that determine fate.

The presence of TOrCs in the environment has been described as “pseudo-persistent” – even chemicals that break down rapidly in the environment are always present because they are being emitted consistently (Daughton and Ternes, 1999). However, some TOrCs are persistent in their own right (Howard and Muir, 2011). We must conclude that, if emitted consistently at a higher rate than the rate at which they can be degraded in the natural environment, these TOrCs will accumulate, resulting in higher observed concentrations in the environment. An illustration of this is that organic contaminants which were banned decades ago can still be detected in the environment today (Aitken et al., 2004).

The four primary exposure routes for TOrCs discharged into septic fields to human, plant, and animal receptors are:

1. Leaching into groundwater and subsequent discharge to surface waters with impacts on aquatic life
2. Partitioning to soil pore water and upward movement in soils with impacts on soil fertility and plant health
3. Leaching into groundwater and subsequent direct or indirect (via livestock) consumption by humans
4. Uptake by plants and subsequent direct or indirect consumption by humans

The implications of these four exposure routes will be described in more detail below.
Figure 2.1: Fate map for trace organic contaminants in conventional septic systems
2.2.1 Impact on Aquatic and Terrestrial Environments

The risks of TOrC exposure to aquatic biota is often considered a greater concern than the risks to terrestrial biota, in part because WWTP discharges are often made directly to surface waters (Daughton and Ternes, 1999). As a result, many more investigations have examined toxic and chronic effects of single and combinations of TOrCs on aquatic organisms compared to organisms from other ecosystems. However, there has been some contention in the literature over the severity of aquatic toxicity risks from observed TOrC concentrations in waters receiving WWTP effluent discharges. A paper by Ferrari et al. in 2003 concluded that chronic aquatic toxicity risks from carbamazepine in WWTP effluents were high. The researchers predicted no adverse effect levels (NOAELs) based on acute toxicity tests with carbamazepine, clofibric acid, and diclofenac, and then compared those concentrations to predicted maximum WWTP discharge concentrations. The calculated hazard quotients (effluent concentrations divided by NOAELs) were less than unity for clofibric acid and diclofenac, and approximately 50 for carbamazepine.

A couple years later, a review by Fent et al. (2006) was published which came to the opposite conclusion. The researchers catalogued the known ecotoxicity of a large number of TOrCs and determined that chronic effects were unlikely at environmentally relevant concentrations. They compared chronic lowest observed adverse effect levels (LOAELs) and NOAELs on phytoplankton, benthos, zooplankton, and fish to highest observed treatment plant effluent concentrations. In general, the NOAELs were one to three orders of magnitude higher than the maximum observed concentrations. Propranolol and carbamazepine NOAELs were the same order of magnitude as the highest observed WWTP effluents, however effluents were found to be about one order of magnitude higher than observed surface water concentrations. Although hazard quotients were not calculated in the paper, they would have been less than 0.1 for the considered TOrCs.

Because the Fent et al. (2006) paper was based on chronic toxicity tests and observed WWTP effluents and surface water concentrations, its findings are more reliable than those of Ferrari et al. (2003). However, the review was still limited by the lack of available chronic toxicity data, and its lack of consideration for endocrine disrupting compounds (EDCs). There is growing evidence in the literature that there are serious aquatic toxicity risks from observed environmentally-relevant
concentrations of TOsCs, particularly for EDCs but also for other chemicals. Chronic exposure to synthetic steroid 17-α ethinylestradiol has been found to affect reproductive development and have population-level effects in various fish species including fathead minnows and zebrafish at concentrations on the order of 1 ng/L (Lange et al., 2001; Fenske et al., 2005; Kidd et al., 2007; Palace et al., 2009). Fong and Hoy (2012) found that exposure of freshwater snails to the antidepressants citalopram and venlafaxine caused acute effects on their ability to attach to substrate at concentration magnitudes as low as 0.1 to 10 ng/L. Cleuvers (2003) found that, when exposed to combinations of pharmaceuticals, half maximal effective concentrations were additive in nature for *Lemna minor* and *Daphnia magna*. Although he was working at environmentally-unrealistic concentrations of 10-100 mg/L, his findings have important implications for how toxicity risks are considered for TOsCs in the environment.

Although STEs are not applied directly to groundwater or surface water, TOsCs can be conveyed from the septic field through groundwater to surface water resources, particularly when concentrated septic systems are located near streams or lakes. Standley *et al.* (2008) found combined concentrations of EDCs of up to 10 ng/L in Cape Cod ponds impacted by septic systems and concentrations were correlated with septic system density. Writer *et al.* (2010) observed endocrine disruption in resident fish from several lakes in Minnesota impacted by septic systems and stormwater runoff, and not receiving any WWTP discharges. The concentrations of EDCs affecting the fish were at the nanogram per liter level. Thus, the preponderance of data shows that there is reason to expect toxic effects to aquatic organisms at environmentally relevant TOsC concentrations as a result of decentralized treatment discharges.

As for terrestrial environments, several researchers have considered impacts on plant health from the presence of antibiotics in the soil, and have had trouble differentiating between the health of the plants and supporting soil microorganisms. These studies considered exposure via biosolids application or wastewater irrigation, and may therefore overestimate the risks posed by septic fields. Jjemba (2002) tested the impact of increasing concentrations of anti-protozoa agents on the health of soybean (Glycine max) plants as well as associated soil protozoa populations. In general, higher concentrations correlated with reduced plant health and protozoa populations. However, very high exposure levels were required to see any impacts – roughly 1 to 10 mg/g soil. On the
other hand, Migliore et al. (2003) observed a continuum between crop plant toxicity and hormesis when exposed to varied levels of the antibiotic enrofloxacin. Impacts on plant growth were solely ascribed to uptake via the roots and subsequent DNA modification by the chemical.

Mixed information was found regarding terrestrial impacts by TOrCs besides antibiotic agents at environmentally-relevant levels. Winker et al. (2010) did not see any phytotoxic effects to ryegrass (Lolium perenne) from carbamazepine (0.06 mg/L) or ibuprofen (0.8 mg/L) exposure via urine fertilization. Eggen et al. (2011) found that metformin significantly inhibited plant growth for various carrot species (D. carota subspecies sativus cultivars Amager, Rothild and Nutri Red) but not for barley (Hordeum vulgare) or turnip rape (Brassica campestris) when present at about 10 mg/kg soil. The significance of growth limitations measured for meadow fescue (Festuca pretense) and wheat (Triticum aestivum) was not clearly indicated. Ying et al. (2007) did not see any inhibition of microbial activity by triclosan or triclocarban at soil concentrations intended to mimic biosolids application to soil. Because exposure concentrations from septic fields are likely to be so much lower than the concentrations used in these studies, phytotoxic or microbial effects are probably unlikely to result from TOrC releases in septic fields. However, Underwood et al. (2011) observed significant impacts to cell growth and nitrate reduction potential when microbes cultured from a pristine groundwater environment were exposed to the antimicrobial sulfamethoxazole. Environmentally-relevant concentrations of only 5 ng/L sulfamethoxazole were enough to reduce nitrate reduction potential by nearly 50%. Sulfamethoxazole is one of the most commonly detected TOrCs in United States groundwaters, and septic systems are believed to be a primary source (Barnes et al., 2008; Segura et al., 2009).

2.2.2 Current Knowledge of Human Health Impacts

Many studies have shown that septic fields can contribute TOrCs to drinking water sources (Rudel et al., 1998; Swartz et al., 2006; Godfrey et al., 2007; Schaider et al., 2011; Schaider et al., 2014; Subedi et al., 2015). It has also been demonstrated that crop plants can take up pharmaceuticals and other TOrCs when biosolids are applied or when they are irrigated with wastewater (Eggen et al., 2011; Karnjanapiboonwong et al., 2011; Shenker et al., 2011). Studies considering TOrC uptake by plants grown over septic fields were not found in the literature, but it is conceivable that wastewater-borne TOrCs could be drawn up towards plant roots via capillary action or by
pressures exerted by the roots themselves. It is also possible that TOrCs could accumulate in animals that consistently consume TOrC-contaminated plants. Therefore, humans can be exposed to TOrCs released via septic systems by consuming contaminated plants, livestock, and/or drinking water.

Most drugs are safe for human consumption at doses that are orders of magnitude higher than those observed in these environmental compartments, and therefore these exposure routes initially seem to be of little concern. Furthermore, there is little concrete evidence in the literature of chronic effects on humans from long term, low level exposure to a combination of TOrCs, although EDCs (including estradiol and nonylphenol) have raised alarm bells for their potential impacts on human fertility (Aitken et al., 2004). The lack of data reflects how difficult it is to collect results on chronic effects with human subjects and to predict the interactions between drug combinations and the human body. However, toxic effects on human embryonic cells have been observed when they were exposed to very low levels of a combination of pharmaceuticals (Pomati et al., 2006). The researchers exposed the cells to 13 pharmaceuticals at nanogram per liter levels and observed 10 to 30% decreases in cell proliferation. It is important to note that the exposure route of the cells in this experiment to the pharmaceuticals (i.e. submersion) may not be realistic, so it is difficult to extrapolate these findings.

Because concrete data is not available, hazard assessments have been used to estimate human health risks from long term, low level exposures to TOrCs in drinking water and plants (Snyder et al., 2008; Prosser and Sibley, 2015). In general, an acceptable daily intake (ADI) value (typical units of mg/kg/day) is calculated by applying uncertainty and/or conversion factors to NOAELs, LOAELs, or minimum therapeutic doses (MTDs). NOAELs and LOAELs are determined based on animal or human toxicity studies. The ADI is defined as the rate at which an average adult can consume a particular chemical for an extended period of time without seeing any adverse health effects. By assuming a constant weight and water consumption rate (70 kg and 2 L per day for adults in the United States), the ADI can be converted to a drinking water equivalency level (DWELs, typical units of μg/L or ng/L). The DWELs can be compared directly to observed drinking water concentrations. A hazard quotient is obtained by dividing the highest observed concentration by the DWEL.
Using maximum groundwater concentrations found in the literature at sites impacted by human or animal wastewater discharges and the procedure in Snyder et al. (2008), hazard quotients were calculated for a handful of TOrCs. Results are shown in Table 2.1 below. Relatively few chemicals could be found both in the referenced studies and in Snyder et al. (2008). However, all hazard quotients were below 1, with the highest value calculated for phenytoin (cancer endpoint) at 0.4. These results confirm that the concentrations of TOrCs in groundwater are not a health risk when chemicals are considered individually.

Table 2.1: Hazard quotients calculated for human exposure to observed concentrations of TOrCs in impacted groundwaters

1 Maximum observed groundwater concentration found in the literature. 2 Values from this source based on tap water concentrations. TOrCs = trace organic contaminants; DWEL = drinking water equivalent levels; EDCs = endocrine disrupting compounds.

<table>
<thead>
<tr>
<th>TOrC</th>
<th>Observed Groundwater Concentration (μg/L)</th>
<th>DWEL (μg/L)</th>
<th>Adult Hazard Quotient</th>
<th>Reference for Groundwater Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWELs based on non-cancer endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-EDCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atenolol</td>
<td>0.0195</td>
<td>93</td>
<td>2E-04</td>
<td>Subedi et al., 2015²</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>0.226</td>
<td>350</td>
<td>6E-04</td>
<td>Phillips et al., 2015</td>
</tr>
<tr>
<td>Diazepam</td>
<td>0.0011</td>
<td>35</td>
<td>3E-05</td>
<td>Phillips et al., 2015</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>0.056</td>
<td>34</td>
<td>2E-03</td>
<td>Barnes et al., 2008</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>0.0012</td>
<td>1,100</td>
<td>1E-06</td>
<td>Schaider et al., 2014</td>
</tr>
<tr>
<td>Meprobamate</td>
<td>0.0054</td>
<td>260</td>
<td>2E-05</td>
<td>Schaider et al., 2014</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>0.690</td>
<td>2,000</td>
<td>3E-04</td>
<td>Phillips et al., 2015</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>0.014</td>
<td>23</td>
<td>6E-04</td>
<td>Schaider et al., 2011</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>0.113</td>
<td>18,000</td>
<td>6E-06</td>
<td>Schaider et al., 2014</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.0007</td>
<td>6,700</td>
<td>1E-07</td>
<td>Schaider et al., 2014</td>
</tr>
<tr>
<td>EDCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>2.550</td>
<td>1,800</td>
<td>1E-03</td>
<td>Barnes et al., 2008</td>
</tr>
<tr>
<td>17β-estradiol</td>
<td>0.045</td>
<td>1.8</td>
<td>3E-02</td>
<td>Swartz et al., 2006</td>
</tr>
<tr>
<td>Estrone</td>
<td>0.120</td>
<td>0.46</td>
<td>3E-01</td>
<td>Swartz et al., 2006</td>
</tr>
<tr>
<td>4-nonylphenol</td>
<td>84.000</td>
<td>1,800</td>
<td>5E-02</td>
<td>Swartz et al., 2006</td>
</tr>
<tr>
<td>DWELs based on cancer endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atenolol</td>
<td>0.0195</td>
<td>70</td>
<td>3E-04</td>
<td>Subedi et al., 2015²</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>0.226</td>
<td>12</td>
<td>2E-02</td>
<td>Phillips et al., 2015</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>0.0012</td>
<td>14</td>
<td>9E-05</td>
<td>Schaider et al., 2014</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>0.690</td>
<td>1.7</td>
<td>4E-01</td>
<td>Phillips et al., 2015</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>0.014</td>
<td>0.19</td>
<td>7E-02</td>
<td>Schaider et al., 2011</td>
</tr>
</tbody>
</table>
The hazard quotient calculations fall into three different categories: risks from non-EDCs based on non-cancer endpoints, risks from EDCs based on non-cancer endpoints, and risks from non-EDCs based on cancer endpoints. The DWELs for some EDCs are remarkably low. Although no groundwater concentrations of 17-α ethinylestradiol could be found in the literature, its DWEL is only 0.0035 µg/L. In the supporting information for the Standford and Weinberg (2010) study, the septic tank effluent concentration of 17-α ethinylestradiol for a girl’s boarding school dormitory is on the order of 0.1 µg/L.

The DWELs based on non-cancer endpoints are calculated using a different method (Snyder et al., 2008). Because the risk of cancer is never considered to be zero, the ADI is conventionally defined as the maximum dose at which the risk of cancer is less than one in one million. For carbamazepine, the ADI for cancer can be converted to a DWEL of 12 µg/L. This value is two orders of magnitude lower than the ADI for non-cancer effects. However, it is important to keep in mind that the cancer risk of one in one million is insignificant compared to the overall lifetime risk of developing cancer for men and women in the United States (42% and 38%, respectively) (ACS, 2016). A risk of one in ten thousand or one in one thousand might be a more appropriate benchmark given these statistics. Therefore, it may be inappropriate to measure hazard quotients based on cancer endpoints on the same scale as those based on non-cancer endpoints.

Many researchers have postulated that risks would be additive for humans consuming small quantities of a large number of drugs (Pomati et al., 2006; Prosser and Sibley, 2015). Risks would increase if those same people were already consuming one or more pharmaceuticals at standard dose levels. When used in combination, drugs can react with each other with adverse effects on human health. An example of this is the interaction of lamotrigine and carbamazepine, two anticonvulsants. Pharmacological studies have found that when patients who were already taking carbamazepine added lamotrigine to their regime, the two drugs reacted and the toxic byproduct carbamazepine-10,11-epoxide was formed. Patients experienced dizziness, nausea, and double-vision, and symptoms stopped when the carbamazepine dose was stopped (Warner et al., 1992).

Because of observations like these, it is recommended that hazard assessments consider summed hazard quotients for all detected chemicals. In Table 2.1 above, hazard quotients were summed for each grouping of chemicals. Although hazard quotients were only calculated for four EDCs, the
sum was 0.3, comparable to the hazard quotient of 0.5 for cancer endpoints of non-EDCs and much larger than the 0.004 for non-cancer endpoints of non-EDCs. Based on this analysis, it is possible that human health risks from EDCs and based on cancer endpoints may be a concern for people, especially sensitive individuals, drinking groundwater that has been impacted by septic system discharges.

A similar assessment can be run for the risks of consuming TOrCs via plants. A review by Prosser and Sibley (2015) estimated hazard quotients ≤0.1 for human exposure to most PPCPs through consumption of plants receiving biosolids or manure amendment, or irrigation with reclaimed wastewater. Exceptions included exposure to carbamazepine and exposure to many PPCPs for young children, or exposure to multiple PPCPs at once. The maximum/median hazard quotients for consumption of plants amended with biosolids, manure, and irrigated with wastewater were 0.48/0.01, 0.08/0.002, and 0.08/0.003, respectively. The calculations assumed a vegetable consumption rate that represents the 95th percentile for US consumers.

Another potential exposure route would be indirect consumption of contaminated plants via livestock, although this issue has received little attention in the literature, particularly for onsite treatment applications (Clarke and Cummins, 2015). Organic compounds with high Log Kow values (≥5) are most likely to present bioaccumulation risks (Arnot and Gobas, 2006), but these compounds are not likely to be taken up through plant roots because of their strong affinity for soil organic matter (Dietz and Schnoor, 2001). Triclosan, with its Log Kow of 4.8, is a good compound to assess the potential risk for bioaccumulation in terrestrial organisms. Triclosan has been detected at concentrations of approximately 50 µg/kg (dry weight) in soils receiving biosolids application for 3 decades (Xia et al., 2010), and has been reported to have an uptake rate of approximately 40 in ryegrass (Lolium perenne), where uptake rate is defined as the ratio between the triclosan concentration in ryegrass and the corresponding concentration in soil (dry weight) (Carter et al., 2014). Based on these observations, the expected concentration of triclosan in ryegrass grown over fields with long term application of biosolids would be 2,000 µg/kg. A cow consuming ryegrass from that field at a rate of 20 lb/d or 10 kg/d would consume approximately 20 mg of triclosan per day. If 1% of that triclosan was retained in the edible portions of the cow, and the cow was slaughtered after 2 years yielding 250 kg of edible meat, that meat would contain
0.5 mg/kg of triclosan, and a human consuming 0.1 kg of beef per day (USDA ERS, 2016) would ingest 0.05 mg of triclosan per day from beef consumption. The ADI for triclosan has been estimated as 0.075 mg/kg-d or 5.6 mg/d (Snyder et al., 2008) so the hazard quotient for consumption of triclosan through this route is approximately 0.01. Given the relatively low number of TOTrCs that are expected to accumulate in plants and bioaccumulate in livestock, the combined hazard quotient for all TOTrCs consumed by this route is not expected to exceed 1 for situations that involve biosolids application.

Because the considered practices involve application of PPCPs directly to the soil surface, they almost certainly overestimate the risks posed by septic fields. However, Prosser and Sibley noted that fields receiving irrigation or soil amendments year after year may present a higher risk since persistent PPCPs would build up in the soil (2015). In onsite treatment systems, septic fields may receive contaminated waste streams for decades. Currently, there is a lack of available data on the expected concentrations of TOTrCs in the root-zone layers of the soils above septic fields. Therefore, it is only possible to say that human health impacts would be unlikely, but conceivable, especially for sensitive individuals and people consuming TOTrCs through other routes at higher rates (e.g. pharmaceuticals).

Some researchers have expressed concern over the potential to generate antibiotic resistance genes (ARGs) and bacteria by exposure to wastewater-borne antibiotics (Daughton and Ternes, 1999; Chander et al., 2005; Zhang et al., 2009). Although onsite treatment systems usually do not receive the same antibiotics continuously, it is possible for ARGs to persist in the environment even after the selective pressure is gone (Salyers and Amabile-Cuevas, 1997). Therefore, it may be possible for onsite treatment systems to contribute ARGs and anti-infective resistance to the wider environment. This pathway has not been considered widely in the literature; hospital and intensive agricultural wastes are thought to be the primary sources of ARGs in the environment (Zhang et al., 2009). The spread of ARGs is a global threat, so the relative contribution ARGs from decentralized, domestic treatment is thought to be negligible.

2.2.3 Mechanisms for Trace Organic Contaminant (TOTrC) Removal from Wastewater

The mechanisms by which TOTrCs can be removed from wastewater include:
1. Chemical degradation
2. Physical separation
3. Microbial degradation
4. Plant uptake
5. Photodegradation
6. Volatilization
7. Sorption

The effectiveness of each is dependent on the chemical characteristics of the particular TOrC or its metabolites, as well as environmental conditions, such as pH, temperature, and redox potential (Kümmerer, 2009). Before delving into the utility of each removal mechanism, it is important to establish what TOrC removal means in the context of onsite wastewater treatment, and to define different degrees of removal.

First, the system boundary must be defined. The goal of an onsite wastewater treatment system should be to remove pollutants within the system boundary so that they cannot have negative effects on the downstream environment. Thus, the system boundary should be defined as the wastewater phase between the septic tank inlet and the edge of the septic field, with limits on the septic field boundary set by the root zone above and the water table below, with no lateral limits. By this definition, a particular chemical is “removed” as long as it does not cross the system boundary.

Second, it is important to distinguish between degrees of removal mechanisms. Other researchers have used the term “primary elimination” to describe the removal of only the parent compound (Kümmerer, 2009). This is a good term to use when describing the approach of an experiment that measures initial and final compound concentration with minimal analysis of metabolites or carbon dioxide production. However, parent compounds that have undergone “primary elimination” during a particular treatment process may be converted back to their original form once they enter the environment, or they may desorb from media within the system boundary if environmental conditions (including temperature, pH, background concentrations) change. Therefore, when discussing the effectiveness of different treatment approaches, it may be more useful to distinguish
between permanent and temporary removal. This idea has been considered by other reviewers, including Imfeld et al. (2009), who referred to “destructive” and “non-destructive” processes.

Permanent removal is achieved when chemicals are removed and are unable to return to the system, regardless of changing environmental conditions. These permanent removal mechanisms include conversion to innocuous species via chemical reaction, microbial degradation, phytodegradation or photodegradation; physical separation; plant uptake if plants are trimmed and removed from the site; and sorption with relatively frequent media replacement. For the purposes of onsite wastewater treatment, volatilization and phytovolatilization could be considered mechanisms of complete removal, since negligible amounts of TOCs can re-enter the system once they have been transferred to air. Imfeld et al. (2009) have reviewed advantages and air quality concerns associated with volatilization and phytovolatilization. Other removal mechanisms, like sorption without media replacement, plant uptake without plant trimming, or incomplete degradation, may provide temporary sinks for TOCs, which can later become a source. For example, some metabolites of parent compounds can easily be converted back to their original form (Ternes, 1998; Conn et al., 2006; Carvalho et al., 2014). In some cases, incomplete degradation may lead to the formation of chemicals that are more toxic than the parent compound, in which case the “removal” mechanism is simultaneously a “production” mechanism (Marco-Urrea et al., 2009).

The permanent removal strategies are certainly preferred, especially those that do not generate a contaminated solid waste stream (as would treatment systems that rely on sorption or plant uptake). This is why advanced physicochemical treatments are being implemented at centralized WWTPs. These processes include advanced oxidation, ozonation, and membranes, and are regarded as the most effective means of remediating wastewater-borne TOCs (Ternes et al., 2002). As such, they have received a lot of attention in the literature and are being employed at various municipal wastewater reuse facilities where TOC removal is an important goal. However, they also have various disadvantages. Perhaps the most important of these is that they are prohibitively expensive and difficult to operate, so that they are currently of limited utility in onsite applications.

Advanced oxidation processes (AOPs) use a highly reactive radical, often a hydroxyl radical, to degrade the target TOC. Ideally, AOPs transform TOCs into biologically inactive or biodegradable products (Keen et al., 2014). Different AOPs generate radicals in different ways,
and include the use of UV/H\textsubscript{2}O\textsubscript{2}, Fenton’s reagent, photo-Fenton, and ozone. AOPs are a very effective removal strategy for TO\textsubscript{R}Cs that otherwise resist biological degradation, like carbamazepine. However, there are some TO\textsubscript{R}Cs that are resistant to degradation by both biological treatment and AOPs, such as the antidiabetic drug, metformin (De la Cruz \textit{et al}., 2012). De la Cruz \textit{et al}.
(2012) found that metformin was the only TO\textsubscript{R}C among 32 examined that could resist degradation when exposed to UV\textsubscript{254} and H\textsubscript{2}O\textsubscript{2} at 50 mg/L for 30 minutes (while TOC was 18.8 mg/L and total iron 1.48 mg/L) following activated sludge treatment. Only 11\% of metformin was removed, as compared with ≥ 99\% (or non-detect) for the other considered TO\textsubscript{R}Cs. When 5 mg/L of iron II was added under the same conditions, 88\% of metformin could be removed, but other TO\textsubscript{R}Cs were removed at lower rates, like triclosan (44\% compared with 100\%). Similarly, Keen \textit{et al}.
(2014) found that lamotrigine was resistant to degradation by ozone, and that only 45\% of the parent molecule could be transformed when exposed to UV light and 10 mg/L H\textsubscript{2}O\textsubscript{2}. Other researchers have observed the formation of toxic byproducts by AOPs, particularly in the early stages of oxidation. For example, Dantas \textit{et al}.
(2011) found that, although propranolol had been completely consumed after an 8-minute exposure to ozone (effective dose of 0.47 mmol/L), more than 60 minutes of exposure time (effective dose greater than 3.5 mmol/L) was required to reduce acute toxicity (measured by Microtox) below the level of the original solution.

Based on the reviewed research, it seems unlikely that advanced physicochemical treatment systems will be available or desirable for onsite wastewater treatment. Treatment with UV/H\textsubscript{2}O\textsubscript{2} could be considered, but it would not be possible to treat STE directly; an additional treatment step would be required to reduce the concentrations of radical scavengers. Therefore, it is only recommended that onsite users consider advanced physicochemical treatment options after other types of alternative treatment have been installed and found insufficient.

Advanced physicochemical treatments aside, the only viable permanent removal mechanisms for onsite wastewater treatment include microbial degradation, photodegradation, sorption, and mechanisms related to plant uptake. The latter two options require relatively frequent media replacement or plant trimming, and generate a contaminated solid waste stream to be managed in some way (solid phase biodegradation via composting or mycoremediation may be considered). Photodegradation and microbial degradation both require a long residence times for persistent
TOrCs, and in these cases temporary removal mechanisms, acting as retention strategies, could be very helpful. Although in most cases sorption makes TOrCs unavailable for microbial degradation, it has been suggested that reversible sorption processes can slow the movement of TOrCs through media once a sorption-desorption equilibrium has been reached (Imfeld et al., 2009).

Dilution is another critically important remediation mechanism, although it does not represent removal. For aquatic organisms and humans, the concentration of a chemical within water dictates the rate of consumption of that chemical, and therefore the toxicity. When TOrCs cross the lower boundary of the septic field into groundwater, they are dissolved in a relatively large body of water compared to original volume of water discharged to the septic field. This dilution may be enough to eliminate toxicity concerns, depending on the flow rate of groundwater below the septic field and the degree of mixing in groundwater between the point of entrance and the receptor. Detailed knowledge of aquifer characteristics may allow for the approximation of the maximum possible concentration of TOrCs in the groundwater, given septic tank effluent concentrations and wastewater discharge rates. This may be a valuable tool for risk assessment at sites where septic fields have not reached steady-state in terms of sorption.

2.3 Onsite Wastewater Treatment

2.3.1 Introduction

Several inherent characteristics of onsite wastewater treatment limit the types of technologies that are appropriate for these applications. First, they almost always serve relatively small populations, from one to a handful of homes. Thus there are no economies of scale – treatment infrastructure, operation, and maintenance must be durable and low cost. Second, wastewater flow rates have high daily variability for smaller populations, so technologies must have hydraulic flexibility, and preferably limit influxes from precipitation, infiltration, and inflow. Third, onsite treatment systems are often sited relatively close to homes, so they must not be unsightly or emit offensive odors. Fourth, although onsite systems can typically occupy a larger area per person equivalent than a centralized system, available space for onsite systems may be limited in terms of size, slope, or soil quality.
Based on these criteria, septic systems, which are the most popular onsite wastewater technology in the US today, score high marks (US EPA, 2002). They require maintenance only every couple of years, and the basic infrastructure can last decades. Appropriately-sized septic tanks can handle hydraulic fluctuations. Finally, they can be buried and go largely unnoticed by residents unless they malfunction.

However, according to US Census data and EPA studies, more than half of US septic systems are over 30 years old, and at least 10% are malfunctioning (US EPA, 2002). Septic systems have strict requirements for the size and quality of land for the septic field, which, if not met, can lead to early failure of the system.

Because treatment systems are often in rural locations, sited close to homes, they may be adjacent to valuable groundwater, surface water, or soil resources, which residents may use for drinking water, food production, and/or recreation. Although generally considered freely available resources, these amenities have a real value to residents and their neighbors. Just as oxygen demand and nutrient pollution can impact these resources, so too can pharmaceuticals and other TOrCs. Therefore, installing and maintaining onsite wastewater treatment systems should be seen as investments with tangible returns.

The effectiveness of septic systems and other onsite treatment technologies are often measured against the performance of conventional WWTPs. Conventional WWTPs were originally designed to treat only the most biodegradable compounds, so they are not well-equipped to degrade persistent TOrCs (Zhang et al., 2015). Still, the removal percentages achieved in conventional treatment plants are considered to be a good benchmark for onsite treatments prior to subsurface soil application. As noted previously, advanced treatment options are not currently realistic for onsite applications, so many add-on treatment units to CS systems therefore use an aerobic biological reactor to mimic the performance of conventional WWTPs (Garcia et al., 2013; Du et al., 2014).
2.3.2 Conventional Septic Systems

2.3.2.1 Overview

Because so many people in the U.S. use onsite wastewater treatment systems – 20% nationwide and as high as 85% in more localized areas – there has been a lot of research into the transport of wastewater-borne contaminants from septic fields into adjacent ground and surface waters (US Census Bureau, 2006). Many of these studies have focused on nitrate because of its health impacts and its utility as an indicator of other contaminants (Hinkle et al., 2005; Verstraeten et al., 2005). Research on transport of organic contaminants has historically been more limited, primarily because it is so difficult to measure contaminants at environmentally-relevant concentrations. Some studies in the literature, including Hinkle et al. (2005) and Conn et al. (2006), used analytical procedures with a minimum reporting limit of 0.5 µg/L or more for some compounds. It is difficult for researchers to quantify effluent concentrations when using such high reporting limits, and comparisons between treatment technologies that are made based on these studies have limited utility.

Despite the analytical limitations, multiple studies have shown that pharmaceuticals and other TOrCs can be detected in soils, groundwaters, and surface waters impacted by septic systems (Rudel et al., 1998; Hinkle et al., 2005; Conn et al., 2006; Swartz et al., 2006; Godfrey et al., 2007; Carrara et al., 2008; Writer et al., 2010; Phillips et al., 2015). Most of the research in the literature has focused on TOrC releases from septic fields in shallow, sandy aquifers (Rudel et al., 1998; Swartz et al., 2006; Godfrey et al., 2007; Phillips et al., 2015). In many ways, these fields could be considered to represent the worst case scenario because STE has a very low residence time in a field that is not conducive to sorption or biological activity, therefore biological degradation would be extremely limited (Standley et al., 2008). On the other hand, the high porosity in sandy soils could be expected to have greater air flow and therefore more oxidized conditions, which could facilitate TOrC degradation (Stanford and Weinberg, 2010).
2.3.2.2 Conventional Pollutants

Septic tanks alone are designed as a “primary treatment” step and their purpose is to remove settleable and floatable solids. They typically remove around 60% of the biochemical oxygen demand (BOD), 80% of total suspended solids (TSS), and 80% of fats, oils, and greases (FOG). However, dissolved pollutants are not removed to a great extent, and nutrient removal rates are not expected to exceed 5% for total nitrogen (TN) or 10% for total phosphorus (TP) (Crites and Tchobanoglous, 1998). The organic nitrogen may be removed via settling or converted to ammonia.

Septic fields are required as a “secondary treatment” step to remove dissolved nutrients and oxygen demand. Ammonia generated in the septic tank can be nitrified in aerobic zones at the top of the septic field, and with potential for limited denitrification in the anoxic zones at lower elevations. Not all nitrate will be converted; a certain amount will make its way into the groundwater where it can impact well water quality and/or adjacent streams. Performance is very site specific, and even CS systems that are not obviously failing can release pathogens, nutrients, and other conventional pollutants into the groundwater (Geary, 2005). Septic system density may have the most potent impacts on the risk of well water contamination by nitrate, bacteria, and viruses (Yates, 1985). The performance of the septic field is also dependent on the septic tank. If tanks are not pumped out frequently enough, built-up solids in the tank can impede settling, resulting in higher suspended solids concentrations in the effluent. This can speed clogging and failure of the septic field (Siegrist, 1987).

2.3.2.3 TOrC Removal Mechanisms

Septic tanks only provide two major mechanisms for TOrC removal: facultative/anaerobic microbial degradation and sorption to settled or floating solids. Many TOrCs cannot be degraded under anaerobic conditions and/or are polar in nature, preferring to stay in the aqueous phase as they move through the septic tank (Conn et al., 2006). Conn et al. (2006) found that less than half of most TOrCs measured were removed in the septic tank, so that TOrC concentrations in septic tank influent and effluent could be expected to have roughly the same order of magnitude.
Various factors can impact the TOrc remediation capacity of septic fields. Perhaps the most important determinant of fate is the chemical attributes of a particular TOrc, including its hydrophobicity, ionic form at environmental pH, volatility, and biodegradability. TOrcs with high hydrophobicity, high volatility, and/or aerobic degradation pathways can be mitigated by the septic field. Conn and Siegrist (2009) found that caffeine was removed below the detection limit (representing 2-log removal) within 60 cm of the application point in sandy loam septic fields. This relatively rapid removal was attributed to the high biodegradability of caffeine, and has been observed by various other researchers (Swartz et al., 2006; Godfrey et al., 2007). Phillips et al. (2015) found that plant and animal derived biochemicals with high Log Kow values (>6) were readily removed in the septic tank and field due to sorption, while more polar TOrc compounds had much lower removal rates in the septic field.

Conditions in septic field plumes, including groundwater flow rate, microbial population and redox conditions can also impact the removal rates of TOrcs (Barber, 1988; Swartz et al., 2006; Carrara et al. 2008). Carrara et al. (2008) measured TOrc concentrations and redox conditions in three septic system plumes in Ontario, Canada and found the highest concentrations of most TOrcs in nitrate-, manganese (IV)-, and iron (III)-reducing zones of the plumes, and fewer in the aerobic, sulfate-reducing, and methanogenic zones. Distribution of individual TOrcs within the zones of the plume varied for each chemical, indicating that the preferred redox conditions for degradation depends on chemical characteristics. Similarly, Swartz et al. (2006) studied releases of TOrcs to groundwater from leach pits on Cape Cod and found that TOrcs were degraded more rapidly on the oxic edges of a septic field plume than they were in the center of the plume. Groundwater flow also impacts the dilution of TOrcs discharged via septic fields, and therefore the effective consumption rate for humans drinking impacted groundwater.

2.3.2.4 Knowledge Gaps

Across the literature, observed removal rates in the septic field have been quite variable. The reason for the inconsistency could be attributed in part to differences in analytical methods and reporting limits, and whether researchers looked for major metabolites. For example, Conn and Siegrist (2009) reported “high removal efficiencies” of TOrcs in a sandy loam septic field. However, the reporting limit for all target compounds was 0.5 μg/L or more – at least 2 orders of
magnitude greater than concentrations which are known to have effects on downstream aquatic environments (Lange et al., 2001; Fenske et al., 2005; Kidd et al., 2007; Palace et al., 2009). Similarly, the findings in Godfrey et al. (2007) indicated that carbamazepine could be removed at rates from 16 to 87% over 2 m of a sandy soil septic field. However, the authors acknowledged that their analytical methods could only be considered a “screening level” and that results should be more accurately quantified using updated methods. Furthermore, the authors were only measuring concentrations of the parent carbamazepine compound, although various metabolites of carbamazepine have been reported at similar or higher levels than carbamazepine in the environment (Writer et al., 2013).

Another cause for inconsistency is the variation in septic field characteristics between studies. Phillips et al. (2015) analyzed the onsite wastewater treatment system for an extended health-care facility. They found that total TOrC concentrations could decrease by as little as one order of magnitude compared with septic tank influent concentrations 50 m downgradient from the septic fields. For carbamazepine, concentrations in groundwater were actually higher than those in septic tank effluents for groundwater samples taken 30 and 50 m downgradient from the septic field. Part of the difference observed between this study and Godfrey et al. (2007) with regard to carbamazepine removal rates could be attributed to differences in aquifer depth. The septic field soil in the Phillips et al. (2015) study was also relatively porous – comprised of silty sand with a “shallow” aquifer (depth from ground surface not provided). However, the aquifer was confined by fractured bedrock at a depth of 3.6 to 7.6 m, unlike the unconfined aquifer in the Godfrey et al. study (2007). It is likely that lower dilution rates in a smaller effective aquifer volume would lead to lower observed removal rates.

In general, there is little conclusive information in the literature regarding septic field performance. The reviewed factors indicate that the remediation capacity of a septic fields is extremely site specific. However, the sites in which TOrCs have been detected in downstream groundwater or surface water resources fall into general categories, as indicated in Table 2.2 below. There were no reports in the literature found for sites that did not fall into one of these categories.
Table 2.2: Characterization of septic field studies in the literature

<table>
<thead>
<tr>
<th>Category</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy/porous soils with shallow aquifers and wells</td>
<td>Rudel et al., 1998; Seiler et al., 1999; Swartz et al., 2006; Godfrey et al., 2007; Phillips et al., 2015</td>
</tr>
<tr>
<td>Adjacent to surface waters</td>
<td>Writer et al., 2010; Subedi et al., 2015</td>
</tr>
<tr>
<td>Densely-located onsite treatment</td>
<td>Rudel et al., 1998; Miller and Meek, 2006; Swartz et al., 2006; Godfrey et al., 2007; Phillips et al., 2015; Subedi et al., 2015</td>
</tr>
<tr>
<td>Unusually high consumption of pharmaceuticals</td>
<td>Phillips et al., 2015</td>
</tr>
</tbody>
</table>

2.3.3 Enhanced Treatment Units (ETUs)

2.3.3.1 Overview

ETUs improve the performance of a septic system by adding a treatment step between the septic tank and the septic field. In this configuration, the ETU acts as the secondary treatment step instead of the septic field. Often, the ETU will support increased microbial degradation processes via aeration or contact with some kind of media filter, like sand or peat. Both aerobic units and media filters (also called biofilters) are described in detail in the text by Jantrania and Gross (2006). Design configurations may vary widely between manufactured systems, but they do not include macrophytes and typically have residence times of a few days.

Compared with CS systems and CWs, there are fewer studies focused on the TOrC-remediation capacity of ETUs, particularly for a given type. Conn and Siegrist (2009) considered TOrC remediation by textile-media biofilters followed by a sandy loam septic field. Garcia et al. (2013) compared the treatment performance of conventional centralized WWTP with that of a septic tank and an aerobic ETU (ATUs) all treating the same influent. The ATU was essentially a miniaturized WWTP which contained chambers for pretreatment, aeration (analogous to activated sludge), and clarification. The two onsite treatments did not incorporate a septic field. Subedi et al. (2015) measured concentrations of TOrCs in tap water, lake water, and STEs for four different ETUs at Skaneateles Lake in New York State.
2.3.3.2 Conventional Pollutants

ETUs supply a much cleaner stream of water to the septic field, so a smaller septic field can be used, or the lifetime of a normal-sized field can be extended (Siegrist, 1987). ETUs can also enhance the removal of nitrogen by providing opportunities for nitrification and denitrification before water is dispersed in the septic field. Significant phosphorus removal is only possible when ETUs supply a media that will sorb phosphorus.

Improved performance has been confirmed in the literature, as indicated in Table 2.3 below. It is important to note that ETUs treat STE, not raw sewage. Removal rates shown in the table below are calculated across the ETU only. In other words, they represent the difference between the ETU influent and the ETU effluent, not the difference between the septic tank influent and the ETU effluent.

Table 2.3: Conventional pollutant removals - comparison between septic tanks and ETUs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Removal Rates (%) or Effluent Concentrations (mg/L)</th>
</tr>
</thead>
</table>
| Conn and Siegrist, 2009
ETU: textile-media biofilter | Septic System: cBOD: 23±35%; 100-350 mg/L\(^1\)
 TN: 48±11%
ETU: cBOD: 90±7%; 5-100 mg/L\(^1\)
 TN: 9±15% |
| Garcia et al., 2013
ETU: aerobic treatment unit | cBOD: 80 mg/L\(^1\)
 TSS: 90 mg/L\(^1\)
 TN: 27±7 mg/L |
| Stanford and Weinberg, 2010
ETU: sand biofilter | TN: 53 mg/L
ETU: TN: 30 mg/L |

1Values were read off a chart and so are approximate. ETUs = enhanced treatment units; cBOD = carbonaceous biochemical oxygen demand; TSS = total suspended solids; TN = total nitrogen.

2.3.3.3 TOrc Removal Mechanisms

ETUs can mitigate TOrcs in a variety of other ways beyond those available in CS tanks and fields. Conn et al. (2006) collected data in a field survey of 30 operational onsite systems in Colorado and found that effluent from ETUs utilizing aerobic treatment in textile-media biofilters had significantly lower median concentrations of 24 TOrcs than their conventional counterparts (p<0.05). They also measured that TOrc loadings to dispersal systems downstream of ATUs were orders of magnitude lower than those downstream of CS tanks. Increased removal rates were
attributed to aerobic biodegradation, sorption, and volatilization, depending on chemical characteristics of the TOrC in question.

Garcia et al. (2013) also found that ATUs significantly improved effluent quality in terms of whole effluent toxicity and concentrations of specific hormones, including 17α-ethinylestradiol and testosterone, relative to septic tanks alone. In fact, the performance of the ATU was not statistically different from that of the modeled conventional WWTP in terms of conventional pollutants or hormone removal rates, although the conventional WWTP outperformed the ATU in terms of *Daphnia magna* toxicity. It should also be noted that the septic tank in the study was not operating to standard regulatory limits, with an effluent CBOD near 80 mg/L and TSS near 90 mg/L. Unfortunately, removal mechanisms were not discussed.

Subedi et al. (2015) did not collect enough data to be able to quantitatively calculate TOrC removal rates in ETUs, or to compare performance of different ETUs. However, thanks to the sensitive analytical methods used in the study, they were able to demonstrate that ETUs can release TOrCs to downstream environments. They detected various TOrCs in the lake adjacent to the ETUs (median concentrations of 0.10 to 19.4 ng/L) and in the tap water sourced from the lake or nearby wells (median concentrations of 0.2 to 124 ng/L). Median TOrC concentrations in the lake adjacent to each ETU was one (triclocarban, carbamazepine, caffeine) to two (sulfamethoxazole, bisphenol A) orders of magnitude lower than those in STE. Trimethoprim, triclosan, and ibuprofen were detected in the STE, but were not detected in the lake, representing at least three-log removal for each. Atenolol and oxybenzone had higher median concentrations in the lake than they did in the STE, which could either indicate that some other source was contributing to lake levels (likely for oxybenzone, an active ingredient in sunscreen) or that metabolites were being converted back to the parent compound in the lake. The concentrations of PPCPs in tap water had roughly the same order of magnitude as lake water for all PPCPs detected, including sulfamethoxazole, triclocarban, atenolol, bisphenol A, oxybenzone, and caffeine. The one exception was carbamazepine, which was only detected at 0.10 ng/L in the lake water (at least eight times less than the next lowest concentration measured in the lake water) and was not detected in tap water. Since only parent compounds were monitored, carbamazepine metabolites could have been present at higher concentrations.
2.3.3.4 **Knowledge Gaps**

Conn and Siegrist (2009) and Garcia *et al.* (2013) clearly demonstrated the improved TOrC remediation capacity of septic tanks plus ETUs versus septic tanks alone. But in many ways, the difference in resultant environmental concentrations is the most critical measure of performance. The question is, do septic fields provide the same TOrC removal rate (i.e. percent removal) regardless of influent concentration? In other words, will a lower TOrC concentration going into the septic field result in a lower TOrC concentration in the groundwater?

Unfortunately, only one study could be found in the literature to address this question. Conn and Siegrist (2009) considered subsequent treatment of septic tank and textile-media biofilter effluents in septic fields with sandy loam soils. The researchers could not detect a noticeable difference in septic field effluents between the two pretreatments, indicating that ultimately the ETU did not do more to prevent TOrC release into the environment. Most of the treatment in the septic fields occurred within the first 60 cm of depth, but removals continued through another 120 cm. The authors concluded that the addition of textile-media biofilters or similar technologies would not improve groundwater quality at sites with more than a 120-cm depth of aerobic soil between the septic field distribution lines and the groundwater table.

There are a couple potential explanations for their observations. First, there is some minimum concentration for TOrCs below which no additional removal can be attained by microbial degradation, sorption, or volatilization (the removal mechanisms available in the textile-media biofilter and the septic field). Second, microbial degradation of TOrCs in the STE was enhanced by the higher concentrations of organic matter and nutrients relative to the biofilter effluent, and this allowed for a higher overall mass removal rate in the septic field receiving STE.

The first explanation cannot be eliminated because most of the compounds considered were removed below analytical detection limits. However, the second explanation is probably the better one. In fact, biostimulation of native soil biota by addition of organic matter and nutrients is a common means of remediating soils that are contaminated with organic chemicals.
Although the findings have a strong theoretical explanation, there are a couple reasons why they should be viewed with a degree of skepticism. First, the reporting limit for this study was relatively high, 0.5 µg/L or more, so it may have been impossible to detect differences for some TOrC concentrations between wastewater sources. Second, the researchers used timed dosing to apply wastewater to the septic fields. This practice has been used to improve the performance and longevity of septic fields by promoting aerobic conditions (Hargett et al., 1982). Aerobic microbial degradation is one of the most important removal mechanisms for TOrrCs, and a field with less aerobic conditions may not have performed as well as the field in this study (Swartz et al., 2006; Conn and Siegrist, 2009; Stanford and Weinberg, 2010). Third, the researchers only tested the performance of one type of ETU, and the biofilter they used did not include an anoxic treatment zone for denitrification. As noted by the authors, treatment systems that provide additional treatment strategies, such as cycling of redox conditions, may be more successful at removing TOrrCs than either system considered in this study. Finally, septic field performance is site specific, and the removal obtained in the soils of the studied septic fields may not accurately represent the performance of other septic fields.

However, even if we take the authors’ findings at face value, relying on the septic fields for all TOrrC remediation may be undesirable, particularly in applications where soils are used for agricultural production. Persistent TOrrCs with moderate log K_{ow} values (1 to <4) could accumulate in soils and be taken up by plants. In applications where antibiotics, antimicrobials, or antifungals are used regularly, there is the potential for these chemicals to impact soil health and fertility or to build resistance genes in native microbial populations.

The conclusions that should be drawn from the Conn and Siegrist study (2009) are as follows:

1. ETUs have clear benefits when septic fields do not provide adequate treatment to protect downstream environments because: a) the groundwater table is less than 180 cm from the septic field distribution lines, b) the soil is not sufficiently aerobic, and c) the soil is too porous to retain TOrrCs for remediation.
2. When septic fields do provide adequate treatment, it is only valuable to use ETUs that provide additional treatment mechanisms (including redox cycling to support microbial degradation) beyond those that will occur in the septic field.
3. TOrC degradation rates will decrease when organic matter and nutrient availabilities are limited.

Clearly, it will be important to gain a better understanding of TOrC removal rates in the septic fields downstream of septic tanks and ETUs before any conclusions can be drawn about their relative performance. There is also little data regarding the behavior of TOrCs in media-based ETUs. As in soils, sorption may preclude bioavailability and thus microbial degradation. If degradation does not occur, it is possible that TOrCs could saturate the media, resulting in a spike in effluent concentrations after some duration of use. Each type of media will have unique behavior.

2.3.4 Constructed Wetlands

2.3.4.1 Overview

Studies across the globe have considered the potential of CWs for decentralized TOrC remediation (Matamoros and Bayona, 2006; Matamoros et al., 2009; Hijosa-Valsero et al. 2010a, b; Avila et al., 2013; Verlicchi et al., 2013; Jasper and Sedlak, 2013; Jasper et al., 2013, 2014; Li et al., 2014; Du et al., 2014). Various reviews and comparative studies have found that CWs can be as or more effective than conventional WWTPs at TOrC removal (Hijosa-Valsero et al., 2010a, 2010b; Du et al., 2014; Li et al., 2014; Verlicchi and Zambello, 2014). They are also unarguably cheaper to build and operate. As such, they are considered a viable treatment option for small and/or decentralized communities, or institutions emitting relatively large quantities of pharmaceuticals, as either a secondary treatment step, or a final polishing step (Verlicchi and Zambello, 2014).

2.3.4.2 Types of Wetlands

Wetland design can vary widely, from flow regime, loading mode (continuous, intermittent), and hydraulic retention time (HRT), to the types of plants and media included, and the types of microorganisms that are encouraged to grow. Generally, wetlands are classified most broadly by their flow regime, either free water surface (FWS), surface flow (SF), horizontal subsurface flow (HSSF), or vertical subsurface flow (VSSF). Each type is known for promoting different removal mechanisms. For example, the FWS and SF wetlands allow for photodegradation of pollutants,
whereas subsurface flow (SSF) wetlands provide more opportunities for sorption. VSSF wetlands are commonly used with intermittent flow regimes, which promote aerobic microbial degradation and nitrification (Molle et al., 2005). HSSF typically use continuous flow regimes and support anoxic/anaerobic conditions for denitrification and microbially-mediated reduction reactions.

TOrc removal efficiencies in VSSF wetlands has been evaluated in fewer studies than they have been for FWS, SF, or HSSF wetlands, but they seem to show promise because of their more aerobic conditions, greater space efficiency, and greater resistance to overloading conditions (Matamoros et al., 2007). Matamoros et al. (2007) experimented with a pilot-scale (5 m²) VSSF wetlands using unsaturated flow (4- to 6-hour retention time) and achieved greater or equal removals for all 13 considered PPCPs than in referenced conventional WWTPs. The VSSF wetlands achieved at least 2-log removal for eight of 13 considered PPCPs (including salicylic acid, ibuprofen, and oxybenzone) and 1-log removal for four of the considered PPCPs (including naproxen, diclofenac, and galaxolide). Only 26% removal was achieved for carbamazepine, but this was greater than the cited removals in conventional WWTPs (<10%). A subsequent study by the same research group compared the performance of real onsite wastewater treatment wetlands, including four HSSF and four VSSF wetlands (Matamoros et al., 2009). The onsite VSSF wetlands did not perform as well as the pilot-scale in terms of PPCP removal rates, despite expected lower loading rates. Compared to the HSSF wetlands, removals in the VSSF wetlands were higher for five of 10 considered PPCPs (including ibuprofen, naproxen, and caffeine), lower for four PPCPs (salicylic acid, oxybenzone, ketoprofen and ibuprofen metabolite CA-ibuprofen), and equal for methyl dihydrojasmonate. However, the VSSF wetlands occupied areas that were 270 to 30 times smaller than those of the HSSF wetlands, so they were much more space efficient. The BOD, TSS, and ammonia concentrations were also lower in effluents from the VSSF wetlands.

Hybrid wetlands, which combine different wetland types in series, have also been considered in various studies (Jasper et al., 2013; Hijosa-Valsero et al., 2010a; Avila et al., 2014). As in conventional wastewater treatment, the order of redox conditions in different treatment cells may be used to target destruction of particular pollutants, such as nitrogen. For example, in the French system, intermittently operated VSSF wetlands are used to oxidize organic nitrogen and ammonia to nitrate (Molle et al., 2005). Specific TOrcs may require analogous sequences of
aerobic/anoxic/anaerobic conditions in order to be mineralized. For example, Conn and Siegrist (2009) recommended a sequence of anaerobic/aerobic/anaerobic conditions with organic solids for remediation of nonylphenol and all metabolites. However, these degradation pathways would vary between chemicals and are not well understood for most compounds. Multiple researchers have hypothesized that one of the reasons why CWs are so effective for TOrC removal is due to the presence of microenvironments containing adjacent redox conditions (Imfeld et al., 2009; Verlicchi and Zambello, 2014). Therefore, including macroscopic iterations of redox conditions in the overall design of a CW may: a) support the presence of microenvironments within the wetland, and b) maximize chances that TOrCs will be exposed to a viable degradation pathway.

So far, the potential of hybrid wetlands for TOrC removal has not been clearly demonstrated in the literature. Part of the reason for this is that there are so many potential design configurations for a hybrid wetland. Avila et al. (2014) tested a hybrid VSSF-HSSF-FWS wetland to remove 13 TOrCs using hydraulic loading rates of 60, 130, and 180 mm/d. Removal rates for non-antibiotics were slightly lower than a similar experiment using only VSSF wetlands (Matamoros et al., 2007). However, it is difficult to contrast the studies because different TOrC mass loading rates were used in each – the study by Avila et al. (2014) injected TOrCs to ensure that the chemicals of interest were always present in the influent, and as a result the TOrC loading rates were higher. Also, although the overall system loading rates were similar (60 compared with 70 L m$^{-2}$ day$^{-1}$), the loading to the VSSF wetlands were quite different (130 compared with 70 L m$^{-2}$ day$^{-1}$).

Avila et al. (2014) and Hijosa-Valsero et al. (2010a) both noted that the highest removal percentages were achieved in the first treatment stage, with some exceptions. In the Avila et al. (2014) study, the first stage was an aerobic VSSF filter, and in the Hijosa-Valsero et al. (2010a) study the first stages were anaerobic or facultative ponds, so the redox conditions were strikingly different. However, this trend has been observed in other studies as well, which seems to indicate that degradation kinetics are dependent on influent concentration (Conkle et al., 2008). A review by Verlicchi and Zambello stated that first order kinetics appeared to fit observed degradation of TOrCs in CWs, citing studies by Avila et al. (2013) and Dordio et al. (2010), among others. However, they qualified that first order reaction rates were dependent on influent concentrations. This suggests that a first order reaction rate is not appropriate – the same removal percentage will
not be obtained for a given kinetic constant and reaction time. A second order model, where removal percentages depend on the kinetic constant, the reaction time, and the influent concentration, may be more appropriate. Equations 1 and 2 below represent the first order kinetic model while equations 3 and 4 represent second order kinetics. [TOC] is the concentration of a particular TOrC, \(k_1 \) is the first order kinetic constant, \(k_2 \) is the second order kinetic constant, and the ratio \([\text{TOrC}]:[\text{TOrC}]_0\) is the percent remaining at time t.

\[
\frac{d[\text{TOrC}]}{dt} = -k_1[\text{TOrC}] \quad (1)
\]

\[
\frac{[\text{TOrC}]}{[\text{TOrC}]_0} = \exp(-k_1t) \quad (2)
\]

\[
\frac{d[\text{TOrC}]}{dt} = -k_2[\text{TOrC}]^2 \quad (3)
\]

\[
\frac{[\text{TOrC}]}{[\text{TOrC}]_0} = \frac{1}{1+[\text{TOrC}]_0 k_2 t} \quad (4)
\]

2.3.4.3 Conventional Pollutants

CWs have variable performance in terms of conventional pollutants, depending on the design configuration, but in general perform better than septic fields and at a similar level to ETUs, as shown in Table 2.4 below. High performing wetlands, such as the hybrid wetland installed at the Vidaråsen Camphill community in Norway, have consistently generated effluents with BOD concentrations <20 mg/L (average of 2 mg/L), TSS concentrations <10 mg/L (average of 2.5 mg/L), and TN concentrations <15 mg/L (average of 4.7 mg/L) over an 11-year period (Pandey, 2016).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Removal Rates (%) or Effluent Concentrations (mg/L)</th>
</tr>
</thead>
</table>
| Conn and Siegrist, 2009 | ETU: textile-media biofilter
Ammonia: 59±23%; 5-100 mg/L\(^1\)
cBOD: 90±7%; 5-100 mg/L\(^1\)
CW: HSSF | cBOD: 56%; 80 mg/L\(^1\)
Ammonia: 33%; 50 mg/L |

\(^1\)Values were read off a chart and so are approximate. \(^2\)Median value is provided along with range, in parentheses. ETUs = enhanced treatment units; CW = constructed wetlands; HSSF = horizontal subsurface flow; VSSF = vertical subsurface flow; cBOD = carbonaceous biochemical oxygen demand; TSS = total suspended solids; TN = total nitrogen.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Removal Rates (%) or Effluent Concentrations (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETU</td>
<td>CW</td>
</tr>
<tr>
<td>Du et al., 2014, ETU: aerobic treatment unit</td>
<td>cBOD: 97±2%; 4.8±2 mg/L</td>
</tr>
<tr>
<td></td>
<td>TSS: 95±7%; 6±2 mg/L</td>
</tr>
<tr>
<td></td>
<td>Ammonia: 9±5 mg/L</td>
</tr>
<tr>
<td></td>
<td>cBOD: 96±5%; 7±5 mg/L</td>
</tr>
<tr>
<td></td>
<td>TSS: 96±4%; 4±1 mg/L</td>
</tr>
<tr>
<td></td>
<td>Ammonia: 9±5 mg/L</td>
</tr>
<tr>
<td>Stanford and Weinberg, 2010, ETU: sand biofilter</td>
<td>TN: 30 mg/L</td>
</tr>
<tr>
<td></td>
<td>TN: 0.9-9.9 mg/L</td>
</tr>
<tr>
<td>Matamoros et al., 2009, ETU: sand biofilter</td>
<td>BOD: 96 (96-98) %; 11 (8-13) mg/L²</td>
</tr>
<tr>
<td></td>
<td>TSS: 91 (78-96) %; 10 (7-37) mg/L²</td>
</tr>
<tr>
<td></td>
<td>Ammonia: 80 (46-98) %; 48 (1-116) mg/L²</td>
</tr>
<tr>
<td></td>
<td>HSSF:</td>
</tr>
<tr>
<td></td>
<td>BOD: 98 (96-99)%; 5 (5-12) mg/L²</td>
</tr>
<tr>
<td></td>
<td>TSS: 94 (5-98)%; 8 (2-83) mg/L²</td>
</tr>
<tr>
<td></td>
<td>Ammonia: 62 (33-98)%; 23 (38-74) mg/L²</td>
</tr>
<tr>
<td></td>
<td>VSSF:</td>
</tr>
<tr>
<td></td>
<td>BOD: 99 (75-100)%; 1 (1-11) mg/L²</td>
</tr>
<tr>
<td></td>
<td>TSS: 96 (12-97)%; 7 (0.7-61) mg/L²</td>
</tr>
<tr>
<td></td>
<td>Ammonia: 98 (87-100)%; 0.4 (0.04-27) mg/L²</td>
</tr>
</tbody>
</table>

Temperature, or seasonal effects, warrants some focused discussion because of its implications for onsite treatment. Other factors can be considered during the system design process, but it is impossible to completely protect wetlands from the effects of seasonal variations in onsite applications for most parts of the United States. In the winter, biological activity is slower and plants are inactive, so the two methods for achieving more consistent performance during the winter include: a) maximizing wetland temperatures during the winter, and b) relying on bacteria instead of plants for nutrient removal. Insulation methods using straw or compost have been proposed to prevent SSF wetlands from freezing during the winter in states like Minnesota (Wallace, 2000). In Norway, a vertical biofilter (which can also be insulated in the winter) is first used to aerate the water via unsaturated flow, without relying on plants, and water is subsequently treated in a buried HSSF wetland (Jenssen, 2005). These measures should be sufficient to keep oxygen demand and nitrogen removal rates fairly consistent over colder months. A paper by Jenssen et al (2005) reported that a CW at Haugstein in Norway treating relatively strong wastewaters (influent TN concentrations of 60-130 mg/L) maintained TN removal rates and effluent concentrations throughout the winter, as summarized in Table 2.5 below. Results are based on nine years of monthly averaged data.
Table 2.5: Summary of total nitrogen removal rates by Haugstein wetland (Jenssen, 2005)

<table>
<thead>
<tr>
<th>Time Range</th>
<th>Average Effluent Concentration (mg/L)</th>
<th>Average Removal Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>Winter (October-March)</td>
<td>33</td>
<td>66</td>
</tr>
<tr>
<td>Summer (April-September)</td>
<td>35</td>
<td>69</td>
</tr>
</tbody>
</table>

2.3.4.4 TOC Removal Mechanisms

There are many TOC removal mechanisms at work within a CW, including phytoaccumulation, microbial degradation, sorption, photodegradation, and volatilization, and the overall ability of wetlands to remove TOCs can be enhanced by optimizing system components, including plant species and media (Imfeld et al., 2009; Dordio et al., 2010; Verlicchi and Zambello, 2014). However, the efficiency of each removal mechanism is dependent on factors including redox conditions, pH, temperature, retention time, and loading mode (continuous or intermittent), as well as the particular TOCs present and their initial concentration (Verlicchi and Zambello, 2014).

Like conventional pollutants, TOC removal rates will likely be lower during the winter. Hijosa-Valsero et al. (2011a) found that temperature was one of the most important factors in removal rates for seven of the ten TOCs considered, as shown in Table 2.6 below. The researchers considered HSSF wetlands with continuous and batch loading modes, with two different pretreatment strategies. Only results from planted wetlands are shown (unplanted wetlands performed very poorly). The temperature variation in the study was only between 8 and 23°C (46-73°F) or 3 and 19°C (37-66°F, depending on the system location, but none of the temperature control measures described previously were used. The authors also noted that higher evapotranspirative water losses would make summer removal rates artificially low, exacerbating the difference in performance between seasons.

Table 2.6: Seasonal TOC removal rates in Hijosa-Valsero et al. (2011a)

TOCs = trace organic contaminants.

<table>
<thead>
<tr>
<th>TOC</th>
<th>Maximum Winter Removal (%)</th>
<th>Maximum Summer Removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine</td>
<td>84±7</td>
<td>99±1</td>
</tr>
<tr>
<td>Methyl dihydrojasmonate</td>
<td>63±17</td>
<td>98±1</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>97±4</td>
<td>89±9</td>
</tr>
<tr>
<td>Naproxen</td>
<td>41±16</td>
<td>95±4</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>47±26</td>
<td>99±1</td>
</tr>
</tbody>
</table>
2.3.4.4.1 Microbes

Microbial degradation is a well-recognized removal mechanism for TOrCs in CWs (Imfeld et al., 2009; Li et al., 2014). However, metabolites are rarely analyzed in wetland studies, so degradation pathways are generally poorly understood.

Environmental conditions within the wetlands, particularly redox potential, strongly influence the microbial population composition and the available degradation pathways (Imfeld et al., 2009; Hijosa-Valsero et al., 2010a,b). For example, highly oxidized halogenated organics require low redox potentials to be degraded via reductive dehalogenation, while more reduced species like hormones and ibuprofen can be degraded under a variety of redox conditions (Imfeld et al., 2009; Verlicchi and Zambello, 2014). Researchers have found that most TOrCs degrade more quickly under aerobic conditions, due to the higher energy of molecular oxygen as an electron acceptor (Matamoros et al., 2005; Matamoros and Bayona, 2006; Hijosa-Valsero et al., 2010a). HRT is another important factor in the effectiveness of microbial degradation (Hijosa-Valsero et al., 2010b; Zhang et al., 2015). A review by Li et al. (2014) found that HRTs used in the literature varied from 2 to 15 days, with the lowest HRTs used for VSSF wetlands (1-2 d) and the highest for hybrid wetlands (2-15 d). Finally, pH has important effects for microbial degradation because pH can impact sorption equilibrium, and sorbed TOrCs may not be accessible for microbial degradation (Imfeld et al., 2009; Zhang et al., 2012).

Algae appear to play an important role in some CWs. Hijosa-Valsero et al. (2010b) postulated that suspended algae in FWS wetlands contributed to higher removals of galaxolide and tonalide compared with SF wetlands even though the Log K_{ow} values of those species (5.90 and 5.70, respectively) would suggest sorption as a removal mechanism. It was not clear whether the researchers meant that algae had contributed to removals directly or indirectly. Jasper et al. (2014)
explored the use of a unique shallow wetland cell specifically designed to support a thick periphyton mat fixed to the bottom of the cell, so that photodegradation could occur simultaneously. The active algae population in the mat could raise pH from 8 to 10 and generate supersaturated dissolved oxygen (DO) concentrations over a 2-day retention time. More oxidized species (sulfamethoxazole and trimethoprim) were more efficiently removed when DO levels dropped overnight due to algal respiration, while metaprolol and propranolol were removed more quickly during the day.

2.3.4.4.2 Plants

Plants play an important role in both temporary and permanent removal mechanisms in CWs. For example, The ANOVA analysis performed by Zhang et al. (2015) showed that the presence of plants in a wetland significantly improved removal rates for seven of eight TOrCs considered (including carbamazepine, although the overall regression for carbamazepine was not significant, with \(p = 0.0533 \)). Similarly, Dordio et al. (2010) found significantly higher removals of carbamazepine, clofibric acid, and ibuprofen in planted versus unplanted beds during summer conditions. Under winter conditions, only carbamazepine did not have significantly higher removals in planted wetlands. In studies where significantly higher removal rates could not be demonstrated in planted wetlands, there were clear explanations for why not. For example, Hijosa-Valsero et al. (2011b) found significantly lower removal rates in planted cells for two of 10 antibiotics in SF wetlands, but not in SSF wetlands. This could indicate that the relative contribution of phytodegradation for these two antibiotics made the effect of plants insignificant. As for the SSF wetlands, lower effluent concentrations were observed for most of the antibiotics in the planted wetlands, but only one of the differences was significant due to the low number of samples collected in the study (five) and high variability. The researchers also noted that their research was completed in the fall, when plants are less active. Similarly, Cardinal et al. (2014) did not find a significant difference in removal rates of six TOrCs after a 28-day retention time in planted and unplanted batch systems. In fact, removals were faster for unplanted systems for all TOrCs at some point during the experiment. However, the researchers noted that this was most likely because of the relative contributions of phytodegradation and unintended filamentous algae growth in unplanted, sunlight-penetrable cells.
In older reviews of CW treatment, authors have asserted that plants in CWs systems release oxygen through their roots, and this has a significant impact on the degradation of organic matter in treatment wetlands (Brix, 1997; Sundaravadivel and Vigneswaran, 2001). In more recently published literature, the ability of wetland plants to release oxygen to the rhizosphere is also cited as an important process that speeds microbial degradation of organic matter, as well as TOrCs (Li et al., 2014). There is some evidence of the importance of this mechanism in the literature. For example, Matamoros et al. (2008) considered the mechanism in degradation studies with ibuprofen. The researchers found that hydroxy-ibuprofen was present in greater concentrations that carboxy-ibuprofen in the effluent of a microcosm scale HSSF CW. They posited that the difference was due to higher production rates of hydroxy-ibuprofen, rather than slower biodegradation rates, since hydroxy-ibuprofen is known to be readily biodegradable. Since hydroxy-ibuprofen is produced under aerobic conditions, the researchers concluded that the wetland plant roots must be generating aerobic microsites in the otherwise anaerobic system (effluent DO of 0.05 mg/L).

Despite these reports, a review by Nivala et al. (2013) concluded that plant-mediated oxygen transfer in SSF CWs cannot meet the oxygen demand of primary treated wastewaters. Nivala et al. (2013) did note that oxygen transfer rates by plants can vary based on the plants and other environmental conditions, and the small amounts of oxygen released by the roots may be enough to affect the composition of the microbial community and have other indirect effects on treatment performance. Other functions of plant roots, including releases of exudates and serving as a support media, may have greater impacts on TOrC removal efficiency (Brix et al., 1997). Since BOD concentrations are reduced much more rapidly than most TOrCs by microorganisms, a consistent supply of degradable organic matter would stimulate the microbial community in CWs, and increase opportunities for co-metabolism. The environmental complexity sustained by wetland plants may be more important that any single resource contribution. The wetland rhizosphere has been described as an energy-rich web of nutrient, pH, carbon, and electron acceptor and donor gradients (Imfeld et al., 2009).

Finally, wetland macrophytes have been observed to take up TOrCs through their roots, and other reviews have covered this removal mechanism in wetlands in detail (Carvalho et al., 2014; Li et
Compounds with $\text{Log } K_{ow}$ values between 1 and 3.5 are considered most susceptible to plant uptake (Dietz and Schnoor, 2001). Although TOrCs can be transformed within plants by metabolic processes or phytovolatilized, they may also remain untransformed or not fully mineralized. Most plants cannot degrade a very wide array of chemicals, and most TOrCs that make it into domestic wastewater treatment systems are not volatile (Imfeld et al., 2009). Plant trimmings from CWs must be managed appropriately so that they do not represent a pollutant source in the future (Carvalho et al., 2014).

2.3.4.4.3 Fungi

The ability of white rot fungi (WRF) to degrade TOrCs in wastewater byproducts has been widely reported (Marco-Urrea et al., 2009; Rodriguez-Rodriguez et al., 2010; Jelic et al., 2012; Aydin, 2016). WRF are members of the phyla Basidiomycota and have adapted to live in wood and degrade lignin and even cellulose, some of nature’s most durable organic products, using nonspecific extracellular enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidases as well as intracellular mechanisms. Harms et al. (2011) reviewed the known extracellular and intracellular fungal enzymes responsible for contaminant degradation. Extracellular enzymes generate organic radicals in the presence of molecular oxygen, peroxide, and/or manganese (II) and usually require low pHs (around 5) to be effective. Diverse intracellular cytochrome P450 oxidases are known to be able to degrade contaminants and/or their metabolites which have already been generated by extracellular enzymes (Harms et al., 2011). Marco-Urrea et al. (2009) found that the cytochrome P450 system in T. versicolor was more active in the initial degradation step of carbamazepine and clofibric acid any extracellular enzymes.

Fungi are good candidates for the remediation of TOrCs because they can tolerate inhospitable growing environments (i.e. extreme temperatures, pH); transport water, nutrients, and electron acceptors to the contaminated site; mineralize even highly oxidized pollutants; and operate without depending on contaminants as any type of input (Harms et al., 2011). The greatest challenge in mycoremediation is how to interface fungi with dissolved TOrCs, given that WRF typically grow in wood, require oxygen (although they have only one-third the oxygen requirement of bacteria), and cannot tolerate intense mechanical disturbance (More et al., 2010; Harms et al., 2011). It has been well-documented that WRF can degrade TOrCs and thereby reduce ecotoxicological impacts.
of sterilized sewage sludge in solid phase treatment (Rodriguez-Rodriguez et al., 2010; Aydin, 2016). In solid phase treatment, sewage sludge is combined with a lignocellulosic substrate, with periodic hand-mixing and watering, so that fungi can directly colonize the sewage sludge (Aydin, 2016). Researchers have also tried using a variety of different reactors, including bioslurries and air-pulsed fluidized beds (Rodriguez-Rodriguez et al., 2010; Jelic et al., 2012).

In bioslurry reactors, sludge is combined with water or a growth medium, inoculated, and stirred. The pH of the fluid medium should be kept below 5 to ensure the highest enzyme activity, and pH control is required to maintain these low levels (Rodriguez-Rodriguez et al., 2010). Researchers have observed the formation of mycelial pellets as a result of mixing (Rodriguez-Rodriguez et al., 2010). There is evidence to suggest that WRF can live off of the dissolved organic carbon in the sewage sludge without another source of carbon (Rodriguez-Rodriguez et al., 2010).

In an experiment where the efficiency of bioslurry and solid-state treatments were compared, Rodriguez-Rodriguez et al. (2010) found that naproxen and carbamazepine could be degraded by 47% and 57%, respectively (0.067 mg/g dry solid of each initially) within 24 hours in a bioslurry system, after which degradation levelled off. In a solid state system in the same experiment, naproxen was degraded at the same rate for the first 24 hours (0.077 mg/g dry solid initially), but degradation continued until naproxen could no longer be detected after 72 hours. Carbamazepine degradation did not begin until the second day of solid state treatment, but then degraded to a concentration of 48% after 72 hours of total treatment (0.096 mg/g dry solid initially). The results of this experiment seem to indicate high potential for the bioslurry system, but perhaps higher stability for solid-state.

Removing dissolved TOCs from the wastewater phase may be even more difficult than treating sewage solids. Marco-Urrea et al. (2009) demonstrated the potential for WRF to degrade dissolved pharmaceuticals by combining pelletized *T. versicolor* mycelia with dissolved ibuprofen, clofibric acid, and carbamazepine in an air-saturated growth medium (no additional air provided) for an incubation period of seven days, during which ibuprofen was removed below detected limits, and clofibric acid and carbamazepine were removed by 91% and 58%, respectively.
SSF wetlands are potentially a good application of mycoremediation because they are largely solid-state treatment systems. In a VSSF, woody debris could be spread over the surface of the wetland and inoculated (naturally or intentionally) with WRF. Applied wastewater would trickle through the unsaturated mulch layer where it could be slowed by sorptive interactions with the organic substrate and degraded by fungal enzymes. The wastewater would need to be relatively free of suspended solids to prevent clogging, and fresh woody debris would have to be applied periodically. Perhaps the most promising application of mycoremediation for CWs application would be for remediation of the TOrCs retained in plant trimmings. Plant trimmings could be blended with inoculated woody debris and managed as a compost pile. Care would have to be taken to prevent leaching, but ideally TOrC levels would be significantly reduced to the extent that the wetland plant trimmings could serve as a fertilizer with minimal releases of TOrCs to the environment.

It is worth noting that the TOrC metabolites from WRF degradation should be researched in more detail. Marco-Urrea et al. (2009) observed an accumulation of 1,2-dihydroxy ibuprofen in reactors designed to degrade dissolved pharmaceuticals. This metabolite has not been observed in other bioremediation treatments previously, and was found to be significantly more toxic than the parent compound, as measured by Microtox tests.

2.3.4.4.4 Media

The media in CWs must support biological growth of macrophytes and microorganisms, and can also play a role in TOrC removal via sorption, both to the media itself and to biofilms coating the media (Matamoros et al., 2005; Dordio et al., 2010). Verlicchi and Zambello (2014) reported that CWs in the literature typically use a gravel media with particle size of 8 to 15 mm and porosity of 30 to 40%. Relatively coarse, porous materials are preferable for wetlands because they allow for consistent hydraulic conductivity throughout the wetland, which prevents short-circuiting. However, a balance in particle size must be struck to maximize the surface area for biofilm growth (Dordio and Carvalho, 2013). The gravel media that is typically chosen for wastewater treatment CWs has relatively low affinities for TOrCs, but may provide limited modulation in effluent TOrC concentrations on a seasonal basis (Dordio and Carvalho, 2013).
Additional media types may be included in the wetland to provide a carbon source (e.g. organic soils or compost), or enhance sorption of specific TOrCs (Dordio and Carvalho, 2013; Li et al., 2014). Choice of an appropriate media is complicated by the fact that, in onsite applications, TOrCs are present in extremely low concentrations and in unique combinations of chemicals and environmental conditions (e.g. pH, temperature) that may not be accurately simulated under the laboratory conditions (Dordio and Carvalho, 2013; Verlicchi and Zambello, 2014; Li et al., 2014). It is also important to consider that reliance on sorption as a major removal mechanism in wetlands would mean generating a huge amount of contaminated waste which may have limited and expensive disposal options. Therefore, in small onsite applications, it may be more desirable to choose a durable, low-cost media, like gravel, which supports the other functions of the CWs and promotes TOrC biosorption to support biodegradation as a permanent removal mechanism.

2.3.4.4.5 Photodegradation

Several authors have considered photodegradation as a major removal mechanism in surface waters and CWs (Matamoros et al., 2005; Jasper and Sedlak, 2013; Cardinal et al., 2014). Many TOrCs contain functional groups, such as aromatic rings and amide groups, that can absorb solar radiation or react with other irradiated dissolved species to initiate degradation (Verlicchi and Zambello, 2014). Jasper and Sedlak (2013) modeled the surface area required to achieve 1-log removal of a host of TOrCs commonly found in wastewater in shallow, plant-free, FWS wetlands termed “open-water” cells. Assuming this degree of removal was sufficient, and that environmental conditions were similar to those used in the model, a family of four would require a 46 m² open-water cell, in addition to the space required to nitrify and denitrify the water before and after the open-water cell, respectively. The space requirement is reasonable, but the use of photodegradation requires careful maintenance to prevent: a) growth of plants that would block sunlight, and b) stagnant conditions that would support mosquito populations or other unwanted pests. For these reasons, photodegradation may be an untenable removal strategy for many onsite applications, particularly small ones.
2.3.4.5 Knowledge Gaps

Multiple researchers have remarked that the interplay of removal mechanisms and environmental conditions results in variable and unpredictable performance between wetlands and even within a single wetland (Li et al., 2014; Zhang et al., 2015). It is possible that removals would be predictable if there was a holistic model for CW design. The variability in wetland design parameters and the lack of design data specified in the literature make it difficult to develop such a model based on previous work. Hijosa-Valsero et al. (2011c) attempted to generate multiple regression equation models for removal efficiencies for 10 PPCPs based on data collected from eight 1-m² mesocosm wetlands of different types. The variables considered were temperature, pH, conductivity, DO concentration, redox potential at different locations in the wetland, presence of plants, and the influent concentrations of COD, TSS, volatile suspended solids (VSS), ammonia, and orthophosphate. The resulting equations had R² values over 0.50 for only four of the pollutants (ketoprofen, caffeine, galaxolide, and tonalide), and none of those were greater than 0.70. Given the small size and relative homogeneity of the considered results, the exercise indicated that removal efficiency does not have a linear relationship with the considered parameters. Therefore, although many researchers have considered TOrC removal by CWs, significantly more targeted research will be required before engineers will be able to accurately predict removal rates of specific TOrCs in a particular CW configuration.

As with CS systems and ETUs, metabolites have not been extensively considered, so it is difficult to assess whether permanent or temporary removal has been achieved in most of the reviewed literature. Also, no studies could be found which considered the behavior of wetland effluents in septic fields. However, CWs could be characterized as an enhanced septic field themselves, with additional removal mechanisms such as phytoremediation and potentially photodegradation and mycoremediation. Microbial degradation reactions within the wetland are supplied with a ready source of stimulants from plant exudates during seasons when plants are active, and sorption reactions can occur within the wetland, instead of in agricultural fields. In order to accurately mimic septic field conditions, it is recommended that CWs use HRTs on the order of 20 days. This figure was chosen because the retention time was 22 to 32 days in the first 60 cm of the septic fields tested by Conn and Siegrist (2009), where most microbial degradation took place.
2.3.5 Comparison of Onsite Treatment Systems

Several studies in the literature have compared the TOrC remediation capacity of one or more onsite treatment systems (Hinkle et al., 2005; Conn and Siegrist, 2009; Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Instead of relating performance of different treatment systems between studies, this review will focus on directed comparisons where analytical methods were consistent throughout the study.

Conn and Siegrist (2009) and Hinkle et al. (2005) compared the performance of various types of ETUs (including textile-media and sand biofilters, aerated treatment units, and packed bed filters) with septic tanks. Conn and Siegrist (2009) also considered the performance of HSSF wetlands. However, neither study will be reviewed here. Major findings from Conn and Siegrist (2009) have already been reviewed, and Hinkle et al. (2005) had similarly high reporting limits as well as low detection of TOrCs across the board. Consequently, it is difficult to draw conclusions from either about the comparative effectiveness of different ETUs, wetlands, and their performance relative to CS tanks. Instead, findings from studies with lower reporting limits and higher detection rates will be used.

A comparative study by Matamoros et al. (2009) measured the performance of 13 operating onsite treatment systems in Denmark. The treatment technologies included two compact biofilters (using light weight aggregate, LWA, media), two biological sand filters, five HSSF wetlands, and four VSSF wetlands. LWA has been successfully applied in CWs treatment for enhanced sorption of phosphorus and TOrCs, including carbamazepine (Jenssen et al., 2010; Dordio et al., 2010). One biofilter, one sand filter, and three VSSF wetlands included recirculation. The HRTs for the biofilters (not including the effluent filter), sand filters, and VSSF wetlands were on the order of hours, while the HRT of the HSSF wetlands was on the order of days. The biofilters had the largest normalized space requirement (median of 10.5 m²/PE) as a result of the large underground effluent filter. Without the effluent filter, they had the smallest normalized space requirement (1.5 m²/PE), however results showed that the effluent filter was essential to achieving sufficient BOD and TSS removals. The normalized space requirements for the sand filters, HSSF wetlands, and VSSF wetlands were similar (median of 4.5, 5.9, and 4.0 m²/PE, respectively) with the HSSF occupying
the most space. All of the treatment systems used a sedimentation tanks as pretreatment and discharged directly to surface water.

Removal of conventional pollutants was effective for each of the considered systems, and most of the 13 TOrCs considered had removal rates exceeding 80%. No statistical differences in performance could be identified, but the authors concluded that the VSSF wetland consistently performed the best. Unfortunately, this conclusion comes with significant caveats. First, the three most recalcitrant compounds – carbamazepine, diclofenac, and ketoprofen – were not detected in the influent to any of the VSSF wetlands or biofilters. Only the influent to the HSSF wetlands contained all of the recalcitrant compounds, and carbamazepine, diclofenac, and ketoprofen exhibited 38, 21, and 90% removals, respectively. The removal rate of ketoprofen was extremely high relative to other studies in the literature. The sand filters were able to achieve 82% removal for diclofenac, but ketoprofen and carbamazepine were not detected in the sand filter influent. The other major limitation of the study was that all samples were gathered in either May or July, when wetlands would be performing at their peak. Perhaps the most valuable finding from the study was that the operating onsite treatment systems performed as well or better than more controlled pilot studies.

Stanford and Weinberg (2010) performed a similar study of five operating onsite treatment systems which focused on removal of EDCs and estrogenic activity. Three of the systems (systems 1-3) included a vegetated aerobic sand filter or wetland, and two of those also included an anaerobic wetland (systems 1 and 3). The fourth system used a spray irrigation sand filter (aerobic), and the fifth system was CS tank. Estradiol equivalency could be reduced to or below 0.5 ng/L, representing a 2- to 3-log removal rate, in the systems that included aerobic units (systems 1-4). Conversely, estradiol equivalency actually increased from 93 to 140 ng/L in the CS system due to conversion between metabolic forms. The vegetated aerobic units achieved nonylphenol removal rates of 1 to 3-log, so that effluent concentrations in most cases were below the 10 µg/L levels known to have chronic effects on aquatic organisms (Balch and Metcalfe, 2006). Conversely, the CS system had very low removals of nonylphenol with effluent concentrations of 310 to 320 µg/L. The spray irrigation sand filter had effluent nonylphenol concentrations of 20 to 32 µg/L, representing 1-log removal. Although these concentrations were higher than those observed from
vegetated systems (systems 1-3), no statistical significance can be inferred due to the small sample size of the study.

Stanford and Weinberg (2010) primarily attributed high removals of nonylphenols and estrogens to aerobic biodegradation, since removals in initial anaerobic treatment units were so small compared with removals in subsequent aerobic tanks. Since estrogens have relatively high Log K_{ow} values (>3.5), they could be transported into effluent streams by organic colloids, but the researchers believed they could differentiate removal by degradation from sorption because both aerobic and anaerobic treatment units removed solids. However, the data shows that the systems with aerated units had lower effluent TOC concentrations and turbidity than the CS system (<10 mg/L and <20 NTU compared with about 40 mg/L and 50 NTU). Therefore, it is difficult to differentiate between microbial degradation and sorption mechanisms, especially given the small data samples in this study.

Regardless of the removal mechanism, it is clear from the Stanford and Weinberg study (2010) that aerobic treatment is highly effective for the removal of EDCs and estradiol equivalency. Additionally, the removal of solids in ATUs prevents transport of sorbed EDCs into the septic field, as well as hydraulic failure of the field which could lead to uncontrolled environmental releases (Siegrist, 1987).

Du et al. (2014) used the same experimental set-up as Garcia et al. (2013) except that STE was routed to a SSF wetland. The flow configuration of the CW was not specified. The researchers were able to compare the performance of a WWTP with that of a CS tank, a CS tank plus wetland, and an ATU, all treating the same influent. Septic fields were not included in the experimental set-up. The WWTP had a retention time of approximately six hours and each of the other treatment systems had a retention time of about two days, so the septic tank plus wetland system had a total retention time of about four days.

Despite the shorter retention time, the WWTP performed the best of the three systems, followed by the wetland, followed by the ATU. The CS tank had the worst performance for all measured TOrCs for both sampling periods. The researchers collected samples in October (mean temperature of 18.3°C) and January (mean temperature of 10.8°C), and surprisingly the wetland performed
better during the colder sampling period. The researchers did not comment on removal mechanisms; however, the longer retention time of the tank plus wetland system may have contributed. The WWTP had the best removal rates for the most hydrophobic compounds: diclofenac (log $K_{\text{ow}} = 4.5$), gemfibrozil (log $K_{\text{ow}} = 4.3$), and diltiazem (log $K_{\text{ow}} = 4.7$).

2.4 Conclusion

2.4.1 Potential Impacts from Release of TOrCs via Onsite Treatment

Based on environmental fate and toxicity studies, it seems that the most serious potential impacts from onsite treatment systems are for aquatic macro- and microorganisms in surface and ground waters. Impacts to plants and terrestrial microorganisms living above septic fields have not been observed at environmentally-relevant concentrations resulting from biosolids application, and therefore are not expected to result from subsurface dispersal in septic fields.

Onsite TOrC releases have the potential to leach into groundwater, be taken up by plants, or bioaccumulate in livestock located near septic fields, and it is possible for humans to consume TOrCs via these pathways. Based on an analysis of TOrC concentrations observed in groundwaters impacted by onsite wastewater systems, it is possible that human health risks could result from consuming EDCs and carcinogens that have leached into groundwaters from via onsite treatment systems. However, it is unlikely that consuming contaminated plants grown over septic fields, or livestock raised on plants growing above septic fields, would have significant impacts to human health (Prosser and Sibley, 2015).

Both humans and environmental receptors are likely to be more sensitive to TOrCs present in the aqueous phase. As a result, onsite wastewater treatment systems should prioritize the prevention of TOrC releases to groundwater and surface water resources. Discharges to soils should be minimized when TOrC travel times or redox conditions through the septic field do not allow for sufficient remediation to protect downstream groundwater and surface water resources (Standley et al., 2008). In cases where anti-infectives are regularly used, septic field distribution lines are close to the soil surface, and/or agricultural applications, it would be prudent to minimize TOrC discharges to the soil.
Based on findings in the literature in which groundwater contamination by TOrCs has been identified, it is likely that sites with one or more of the following characteristics are susceptible to contamination of ground and surface water resources:

- Sandy or porous soils
- Shallow aquifers and wells
- Location in area of dense onsite treatment systems
- Unusually high pharmaceutical consumption rates

Sites with these characteristics should consider whether alternative treatment strategies are necessary for TOrC remediation. If existing CS systems do not contribute to elevated concentrations of TOrCs in adjacent surface waters, are not located on or near agricultural land, and are not present at concentrations that pose health risks for humans consuming groundwater and plants on the property, then there is no need to consider alternative treatment strategies. Unfortunately, it is expensive and analytically challenging to determine whether TOrCs are having environmental effects. Nitrate and chloride can be used as indicators of wastewater contamination in groundwater wells, but they do not directly indicate the presence of TOrCs (Hinkle et al., 2005; Verstraeten et al., 2005). Furthermore, results of TOrC analyses can be misleading if they do not consider metabolites, or if reporting levels are too high. Detailed knowledge of aquifer characteristics and expected dilution ratios may allow for the approximation of the maximum possible concentration of TOrCs in the groundwater, given pharmaceutical consumption and wastewater discharge rates. This may be a valuable tool for risk assessment at sites where septic fields have not reached steady-state in terms of sorption.

2.4.2 Options for Alternative Onsite Treatment and Limitations

Findings from the literature clearly indicate that both wetlands and ETUs have a greater capacity for TOrC remediation than CS tanks alone (Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Furthermore, wetlands and ETUs that include aeration, either forced or through the passive use of unsaturated filters, have been found to be more effective for the removal of TOrCs, particularly EDCs (Stanford and Weinberg, 2010). Because aerobic treatments often produce water with lower suspended solids concentrations, it is difficult to determine whether
higher removal rates are a result of faster microbial degradation or reduced transport of colloid-sorbed TOrCs (Conn et al., 2006; Stanford and Weinberg, 2010). Either way, treatment systems that generate effluents with lower concentrations of oxygen demand and solids are less likely to speed hydraulic failure of receiving septic fields, thereby reducing the occurrence of uncontrolled environmental releases (Siegrist, 1987).

All of the reviewed comparison studies indicated slightly better performance in vegetated systems relative to ETUs, but statistical significance was not demonstrated in any of them (Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Because wetlands can provide phytodegradation and plant uptake removal mechanisms, as well as redox cycling and biostimulation for microbial degradation, they could be expected to achieve higher removal rates than ETUs during seasons when plants are active. None of the comparison studies considered SF or FWS wetlands, although these types of wetlands could allow for permanent removal via photodegradation, which would enhance the performance of wetlands compared to ETUs.

Before choosing an alternative treatment system, consideration must be made regarding byproduct generation for the considered alternative treatment systems. ATUs generate a sludge that must be disposed of periodically. While this could be considered an additional expense to the treatment system owner, it is not expected to be significantly more troublesome than managing CS tank waste. Other ETUs which rely more on sorption processes, such as LWA or peat biofilters, may generate additional TOrC-contaminated solids. Wetlands will also generate contaminated plant trimmings, often on a yearly basis. If not for TOrCs, these streams could be considered valuable sources of nutrients and organic matter (Jenssen, 2010). Disposal options would depend on the loads and environmental toxicity of TOrCs. Solid-phase composting or mycoremediation could be considered as a viable remediation strategy.

2.4.3 Qualitative Metrics for Assessing Successful Onsite Remediation

Because of the limits on infrastructure costs and available land, it will not be possible to completely remove all TOrCs using onsite wastewater treatment systems. However, the aim of such systems should be to minimize release of TOrCs with wide varieties of chemical properties, and to prevent accumulation of potentially persistent TOrCs in the natural environment. Septic fields are typically
considered part of the CS system, which implies that a properly-functioning septic field and its discharges do not have significant negative effects on the surrounding environment. Based on the proven accessibility of TOrCs released in the septic field to downstream environments, as well as demonstrated impacts to aquatic organisms at environmentally-relevant concentrations, one could make the argument that, in some cases, wastewater treatment in subsurface drain fields constitutes environmental release of TOrCs. In these cases, septic fields should not be considered part of the treatment process when it comes to TOrC remediation.

Since CS tanks only provide opportunities for anaerobic or facultative degradation and limited sorption to largely organic solids, additional treatment units should provide different removal mechanisms, including aerobic degradation, photodegradation, or enhanced sorption to organic and inorganic solids. When adequate septic fields are available, additional treatment units should provide removal mechanisms beyond those available in the septic field, including redox cycling to support microbial degradation (Conn and Siegrist, 2009). It may also be valuable to provide a confined, solid-state matrix, analogous to the septic field but physically separated from downstream environments, to prevent TOrC accumulation in soils and impacts to terrestrial environments, especially in agricultural applications.

Treatment units that provide permanent removal of TOrCs and potentially bioactive byproducts should be valued more highly than those that only provide temporary removal mechanisms. However, it is also undesirable for treatments to generate large, concentrated waste streams that will be costly or difficult to dispose of, or that will represent a new source of TOrCs in the environment. Thus ideal sorption would not irreversibly bind TOrCs, but instead slow their movement through the treatment unit to allow time for degradation into innocuous byproducts. Of course, the inherent limitations to onsite wastewater treatment must also be considered when choosing onsite systems. Therefore, advanced treatment options like advanced oxidation or reverse osmosis may not be economically feasible and would require enhanced treatment of STEs.

2.4.4 Summary of Knowledge Gaps and Research Needs

There are some limitations to the findings on TOrC removal capacities of different treatment technologies which should be noted. First, only one study could be found which considered the
net impact of additional treatment units at sites with adequate septic fields (Conn and Siegrist, 2009). Second, metabolites and their environmental implications are not often known and are rarely measured. This makes it very difficult to understand whether TOrCs have been temporarily or permanently removed, or whether more toxic byproducts have been generated during the treatment process. Third, most studies use removal rates (or percent removal) as a relative measure of success for TOrC remediation, when final concentrations are ultimately more important in terms of environmental effects. In addition, studies have indicated that removal rates are a function of initial concentration. For example, in hybrid wetlands, the highest removal rates are often seen in the first cell, regardless of its configuration (Conkle et al., 2008; Hijosa-Valsero et al., 2010a; Ávila et al., 2014). This would suggest that first order degradation is not a good kinetic model for TOrC remediation.

Because metabolites and metabolic processes are rarely understood, and because it is often difficult to detect and quantify all of the potentially toxic chemicals in a wastewater matrix, it may be more valuable to compare treatment systems using biological assays of effluent water, as in Garcia et al. (2013). Effluent water chemistry, as measured by conventional pollutants and endocrine active compound concentrations, was not significantly different between WWTP and ATU treatments. However, the whole effluent toxicity, as measured by Daphnia magna reproductive responses, was slightly higher for the ATU effluent. These results suggest that simply measuring water contaminant concentrations can yield misleading results.

References

Miller, K. J.; Meek, J. *Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (PPCPs), and Microbial Indicators of Fecal Contamination*; Montana Bureau of Mines and Geology Open-File Report 532; Montana Department of Environmental Quality, March 2006.

Schaider, L.; Ackerman, J.; Rudel, R.; Dunagan, S.; Brody, J. Emerging Contaminants in Cape Cod Private Drinking Water Wells; Silent Spring Institute, 2011.

3 Pilot Study

Abstract

Three pilot-scale treatment systems processing septic tank effluent from a house with high pharmaceutical usage were operated for a period of seven months. The treated effluent from each system was compared via ANOVA analyses based on removals of conventional pollutants as well as one analgesic (acetaminophen), four anticonvulsants (carbamazepine, lamotrigine, levetiracetam, topiramate), one antidepressant (venlafaxine), one antidiabetic (metformin), and one antimicrobial (triclosan). The pilot-scale systems included a constructed wetland with a mycoremediation filter and two proprietary treatment systems, including an aerobic styrene media biofilter (E-Z Treat) and an aerobic treatment unit followed by peat biofilters (Anua). All treated effluents contained biochemical oxygen demand and total suspended solids concentrations below 10 mg/L. The constructed wetland had the best nutrient removal with total nitrogen concentrations below 10 mg/L throughout the study. The mycoremediation filters and Anua systems exhibited excellent removals of all monitored PPCPs including 100.0% for acetaminophen, >80% for carbamazepine, >95% for lamotrigine, 99.8% for levetiracetam, >73.5% for metformin, >93.5% for triclosan, and >99.0% for venlafaxine. Only parent compounds were monitored in this study, but removal of metabolites was considered via a literature review.

Keywords: pharmaceuticals and personal care products (PPCPs), acetaminophen, carbamazepine, lamotrigine, levetiracetam, metformin, topiramate, triclosan, constructed wetlands, enhanced treatment units (ETUs), septic systems

3.1 Introduction

Pharmaceuticals and personal care products (PPCPs) encompass a diverse group of chemicals that are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of PPCPs in aquatic and terrestrial environments all over the globe (Ternes, 1998; Kolpin et al., 2002; Barnes et al., 2008; Schlusener et al., 2015), and observed negative effects on impacted biota (Writer et al., 2010).
The primary source of PPCPs in the environment is domestic wastewater discharges, including those of centralized and decentralized origin (Conn et al., 2006; Li et al., 2014). On a global scale, TO-residues discharged in effluents from centralized wastewater treatment plants (WWTPs) can have greater impacts for sensitive environmental receptors because they process such large volumes of wastewater and often discharge directly to surface water resources. However, on a local scale, onsite treatment systems may present more potent impacts to valuable groundwater, surface water, or soil resources, which residents may use for drinking water, food production, and/or recreation.

Conventional septic (CS) systems are the most commonly used onsite treatment systems in the U.S. (US EPA, 2002). They treat wastewater to primary standards in an anaerobic tank, followed by secondary treatment via subsurface soil application in a septic field. Unfortunately, they provide limited mechanisms for PPCP removal during primary treatment; Conn et al. (2006) found that less than half of most PPCPs measured were removed in the septic tank. Septic fields are typically considered part of the CS system, which implies that a properly-functioning septic field and its discharges do not have significant negative effects on the surrounding environment. Yet multiple studies have shown that PPCPs released in the septic field can be detected in adjacent ground and surface water resources (Godfrey et al., 2007; Phillips et al., 2015; Subedi et al., 2015). Since impacts of PPCPs at environmentally-relevant concentrations have been thoroughly documented, one could make the argument that, in some cases, wastewater treatment in subsurface drain fields constitutes environmental release of PPCPs (Lange et al., 2001; Fenske et al., 2005; Kidd et al., 2007; Palace et al., 2009).

Enhanced treatment units (ETUs) improve the performance of a septic system by adding a treatment step between the septic tank and the septic field. Often, that step involves aeration or contact with some kind of media, like sand or peat. Both aerobic treatment units (ATUs) and media filters are described in detail in the text by Jantrania and Gross (2006) and multiple researchers have considered remediation of PPCPs using these systems (Hinkle et al., 2005; Conn and Siegrist, 2009; Stanford and Weinberg, 2010; Du et al., 2014; Subedi et al., 2015). Design configurations may vary widely between manufactured systems, but they do not include macrophytes and typically have residence times of a few days. Constructed wetlands (CW) have also been used as a secondary treatment step for decentralized treatment or as an alternative to conventional WWTPs.
(Conkle et al., 2008; Conn and Siegrist, 2009; Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Wetland design can vary widely as well, from flow regime, loading mode (continuous, intermittent), and hydraulic retention time (HRT), to the types of plants and media included, and the types of microorganisms that are encouraged to grow. Generally, wetlands are classified most broadly by their flow regime, either free water surface (FWS), surface flow (SF), horizontal subsurface flow (HSSF), or vertical subsurface flow (VSSF). Each type is known for promoting different removal mechanisms. The use of CWs for the remediation of PPCPs and other trace organic contaminants has been reviewed by several researchers (Imfeld et al, 2009; Carvalho et al., 2014; Li et al., 2014; Verlicchi and Zambello, 2014).

Findings from the literature clearly indicate that both wetlands and ETUs have a greater capacity for PPCP remediation than CS tanks alone (Matamoros et al., 2009; Conn and Siegrist, 2009; Stanford and Weinberg, 2010; Du et al., 2014). Furthermore, CWs and ETUs that include aeration, either forced or through the passive use of unsaturated filters, have been found to be more effective for the removal of TOrCs, particularly endocrine disrupting compounds (EDCs) (Stanford and Weinberg, 2010). In this study, the PPCP remediation capacities of a hybrid constructed wetland and two different ETUs were compared as they treated real STE over a period of seven months. The site of the project was an 80-person community for intellectually-disabled adults in rural Virginia. The community was interested in considering alternative onsite treatment options for their wastewater because septic fields on the property are sited over groundwater resources and under agricultural land. Eight PPCPs were chosen for monitoring throughout the study based on relatively high consumption rates in the community: acetaminophen (ACE), carbamazepine (CBZ), lamotrigine (LAM), levetiracetam (LEV), metformin (MET), topiramate (TOP), triclosan (TCS), and venlafaxine (VEN).

A few studies in the literature have compared grab samples from ETUs and CWs processing real septic tank or primary treated effluents (Conn and Siegrist, 2009; Matamoros et al., 2009; Stanford and Weinberg, 2010). One study compared the performance of an ATU that included a settling basin with that of a CW treating STE and the septic tank alone (Du et al., 2014). However, this study is unique in the following respects:

- The ETUs and CW were processing the same STE
• The ETUs and CW were operated and samples collected over a relatively long duration (seven months, ten sampling events)
• The consumption rates for most of the monitored PPCPs were known and consistent from day to day
• Mycoremediation of CW effluents was considered
• Some of the monitored PPCPs, including LEV, LAM, MET, and TOP, have received little prior attention in the decentralized treatment literature

3.2 Materials and Methods

3.2.1 Pilot System Description

A schematic of the pilot system, which was located outdoors at a small community in rural Virginia, is shown in Figure 3.1. A brief description of the system follows and a more detailed explanation is provided in Appendix C. All three treatment systems were fed domestic STE from a single house with nine residents and had at least a one-month start-up period (2.5 months for the CW). The nine residents of the house consume 500 mg ACE, 1,200 mg CBZ, 500 mg LAM, 1,500 LEV, and 75 mg VEN (combined) on a daily basis. The estimated average daily wastewater generation rate from the house is 700 gpd. In the community as a whole, residents consume >500 mg ACE, 3,600 mg CBZ, 800 mg LAM, 3,500 mg LEV, 1,500 mg MET, 300 mg TOP, and 300 mg VEN (combined) daily and generate an estimated average 6,000 gpd of wastewater. Daily use of TCS is unknown. Data collected from quarterly sampling of the five of the community’s largest septic systems are included in Appendix B.

The Anua treatment system included an ATU with a settling chamber, aerated attached growth filter, and clarifier, followed by two peat filters in series, with a recycle line to return effluent from the first peat filter to the ATU. Well Basin 2 was filled with seashells to add alkalinity and promote denitrification. Both Anua Well Basins had submerged pumps which dosed the peat filters once approximately every 6 hours. The E-Z Treat system sprayed a batch of water from the holding tank onto an unsaturated, styrene bead biofilter every 15 minutes. The hybrid CW was comprised of four variable-sized tanks (1-4) with different wetland plants, media, and flow regimes, followed by two tanks (5-6) which were unplanted and filled with fungi-inoculated wood chips and mulch.
for mycoremediation. The flow regimes of the first four tanks were VSSF (half unsaturated), HSSF, VSSF/FWS hybrid, VSSF (one-third unsaturated). Tanks 3 and 4 had a two-inch layer of inoculated mulch on the surface of the gravel. Most of the CW system was gravity fed, with the exception of the pumped line between Tanks 2 and 3.

Figure 3.1: Pilot system schematic

All treatment units were placed at grade, with the exception of the Anua Well Basin 2, which was buried with the top of the basin at grade, and the E-Z Treat filter, which was elevated approximately 3 ft off the ground to allow for gravity drainage through the holding tank. For each system, water was pumped from a 2-inch PVC pipe pump casing in the septic tank using peristaltic
pumps (Pump 1, 3, and 4). The casing was perforated (1/2-inch holes) to collect water from the lower one-third to one-half of the septic tank. STE was pumped into Tank 1 for the CW system, the holding tank for the E-Z Treat system, and the ATU settling chamber for the Anua system.

Only the CW was open to the air, and therefore subject to precipitation and evapotranspirative losses. Weather data were collected by a Weather Underground station at Mount Fair Farm (KVACROZE8), which is 2.1 miles (3.4 km) away and at an elevation 220 ft (67 m) lower than the pilot system. Weather at the site was slightly different than that measured at the weather station, but the recorded data are still an excellent approximation of conditions at the site. The weather data (temperature, wind speed, relative humidity, and cloud cover) were used to calculate evapotranspiration rates at the pilot system site using the Penman Monteith equation, as described in Appendix C. Calculated evapotranspiration rates were high throughout the sampling period, with an average rate of 0.18 in or 9.1 gpd. Therefore, except on weeks with significant rain events, the effluent flow rates from the wetland were lower than the influent flow rates, artificially concentrating the effluent pollutant concentration. Negligible evapotranspirative losses were assumed for the mycoremediation tanks based on observation. Even during the hottest days of the summer, moisture was retained below a thick, dry crust of wood chips formed on the top of each tank.

Flow rates in the system were measured manually throughout the sampling period. Theoretical hydraulic residence times (HRTs) were calculated by dividing the effective Anua and E-Z Treat system volumes by their average flow rates. The residence time in the Anua peat modules was determined by a manufacturer study. Flow rates and HRTs were calculated for each tank in the CW on a weekly basis using influent flow rates; empty, saturated tank volumes; precipitation data; and evapotranspiration calculations, as explained in Appendix C. Table 3.1 below shows the average theoretical HRTs for each system over the sampling period.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Anua</th>
<th>E-Z Treat</th>
<th>CW Tanks 1-4</th>
<th>CW Tanks 5-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 18 – Aug 22</td>
<td>9.8</td>
<td>5.5</td>
<td>23.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Aug 23 – Oct 3</td>
<td>10.3</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 4 – Nov 16</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Experimental Design

3.2.2.1 Sampling Strategy

Grab samples were collected at the locations indicated in Figure 3.1. It should be noted that STE samples were collected at the influent to the CW system throughout the experiment. It was expected that samples collected at this location would represent influent samples to each system because water traveled through the same length of pipe to get to each system; however, some of the results suggest otherwise (see subsection 3.4.2). Samples were collected at each of the effluent sampling locations over the course of the sampling period (June 19 – November 16; August 7 – November 16 for the E-Z Treat system). On four sampling dates, additional grab samples were collected at the CW internal sampling locations, and on six sampling dates, additional grab samples were collected at the Anua internal sampling locations. All wetland samples were collected from sampling ports on the drainage end of tanks or from the influent piping and were gravity fed, with the exception of Tank 2 effluent and Tank 3 influent. All ETU samples were collected from sampling ports while system pumps were running (every 15 minutes for E-Z Treat tanks or approximately every 6 hours from the Anua system). All samples for PPCP analyses were collected and stored in 1-L or 250-mL amber glass bottles with Teflon® liners, cleaned for organic analysis. Samples for conventional analyses were collected and stored in high density polyethylene (HDPE) bottles. After collection, PPCP samples were placed in a cooler to protect them from sunlight.

3.2.2.2 Conventional Pollutants

Temperature, dissolved oxygen (DO), and pH were measured in the field after collection using an Oakton 5+ pH meter and an Oakton DO 6+ meter for temperature and DO concentration. Samples were transported on ice to the lab and stored at ≤6°C. Samples for conventional analyses, including alkalinity (2320 B), biochemical oxygen demand (BOD, 5210 B), total suspended solids (TSS, 2540 D), and ammonium (NH₄, 4500-NH₃ B, C) were collected and analyzed per Standard Methods within three days (APHA, 1998). Chloride, fluoride (F), nitrate (NO₃), nitrite (NO₂), phosphate (PO₄), and sulfate (SO₄) were measured via ion chromatography (Dionex ICS-1600) within 48 hours. Data were analyzed using the Dionex workstation with Chromeleon SE software (Version 7.0). Chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP)
were measured using Hach kits (COD HR and LR with USEPA Reactor Digestion Method 8000; TN HR with Persulfate Digestion Method 10072; TP HR with Molybdovanadate Method with Acid Persulfate Digestion Method 10127) within 48 hours if unpreserved or within two weeks if preserved. At least one duplicate was run for each test in a sampling set (excluding field measurements).

3.2.2.3 Pharmaceuticals and Personal Care Products (PPCPs)

3.2.2.3.1 General

All plastic containers were rinsed with glass-distilled ethanol (95% v/v) and dried before use. Unless indicated otherwise, all solvents and vials used were LC-MS grade. Labeled standards were purchased from two sources: Cerilliant Laboratories and CDN Isotopes. The Cerrilliant standards (acetaminophen-D₄, carbamazepine-D₁₀, lamotrigine-¹³C-¹⁵N₄, levetiracetam-D₆, topiramate-D₁₂ and venlafaxine-D₆) were purchased at known concentrations (Cerilliant Certified Spiking Solutions). These solutions were aliquoted into primary standard vials, freeze-dried to dryness, and stored at -80 °C until use. CDN standard metformin-D₆ was purchased as a solid, dissolved in known concentrations, and processed to dryness as was done for the Cerilliant standards. TCS was purchased from Sigma-Aldrich at the highest purity available.

3.2.2.3.2 Sample Preparation

All samples were processed within a week of collection. Solutions were centrifuged (3600 x g, 10 min, Avanti J-E Centrifuge, Beckman-Coulter) to remove solids and then passed sequentially through filter paper (Whatman Qualitative 5, 70 mm) and a 0.45 μm nitrocellulose filter (Millipore MF membrane) to remove small particulates and microbes. Two aliquots (30 mL) for each sample were freeze-dried in centrifuge tubes (50 mL). The freeze-dried extracts were reconstituted with LC-MS grade methanol (300 μL), then centrifuged (12,000 x g, 5 min). An aliquot (190 μL) was transferred to clean tube, frozen in liquid nitrogen and dried on a high-vacuum line. The dried extract was reconstituted with 300 μL of 0.1% formic acid:acetonitrile (9:1, v/v) which contained all labeled internal standards (ISs) at concentrations of 10 ng/mL. The sonicated samples were then centrifuged (12,000 x g, 5 min) and transferred to LC-MS vials for analysis.
3.2.2.3 Sample Analysis

Analyses were performed in duplicate using UPLC (H-Class, Waters) interfaced with an autosampler and a triple quadrupole mass spectrometer (Xevo TQ-S, Waters). The mass spectrometer was operated in multiple reaction monitoring mode (MRM) with parameters determined by direct infusion (see Appendix A). A gradient separation was performed on a reversed-phase column (BEH C18 1.7μm, Waters) maintained at 35°C. Solvent A was water and solvent B was acetonitrile, with both solvents containing formic acid (0.1% v/v). A 15-minute separation at a flow rate of 200 μL/min began with 0.5 minutes of elution with 95% A. Next, the proportion of A was decreased to 5% over 7.5 minutes, ending at the 8-minute time point. Elution with 5% A continued for 0.5 minutes, followed by a rapid linear gradient to 95% A over 0.5 minutes, ending at the 9-minute time point. The 95% A solvent ratio was held for 6 minutes, until a total of 15 minutes had elapsed. Calibration curves and statistical analyses were performed by TargetLynx software (Waters) and transferred to Excel for further processing and analysis.

3.2.2.4 Plant Nutrient Analyses

CW plants were cut on November 2nd and analyzed for total dry mass (dried at 60°C until constant weight was obtained) and nutrient composition. Nutrient analyses were performed by A&L Eastern Laboratory in Richmond, VA using a microwave digestion with nitric and hydrochloric acid, followed by analysis via ion chromatography (Method 3051A). Nitrogen was analyzed via LECO combustion analysis.

3.3 Results

3.3.1 Data Processing and Statistical Analyses

Because effluent flow rates from the CW were lower than influent flow rates for almost the entire sampling period, CW4 and 6 (CW4 and CW6, respectively) pollutant concentrations were artificially high compared to Anua and E-Z Treat effluents. Using effluent flow rates estimated for the week of or before each sampling event based on evapotranspiration data, an adjustment factor was calculated by dividing the effluent flow rate by the influent flow rate (25.0 gpd throughout the sampling period). Values ranged from 0.48 to 1.0 for CW4 and from 0.48 to 1.2 for CW6.
TN was only measured directly on two sampling dates, so TN had to be estimated on other sampling dates. Total inorganic nitrogen (TIN) could be calculated for each sample as the sum of NH$_4$, NO$_3$, and NO$_2$. For treated samples, organic nitrogen concentrations were expected to be negligible based on the low effluent TSS concentrations. To test this theory, TN concentrations were estimated for all sampling dates on which TSS was measured by assuming that all suspended solids were microbial biomass (a conservative assumption) with stoichiometry C$_5$H$_7$O$_2$N (Grady et al., 2011). The hypothesis that the estimated TN and measured TIN values were equal was rejected ($p<0.05$) by constructing a paired data set of differences between estimated TN and measured TIN and finding that the confidence interval did not include zero (see Appendix C for R code). However, the average difference was 0.48 mg N/L, which is less than the standard deviation (SD) of all TIN concentrations for all treated systems except CW6, and less than 5% of the average TIN concentration for all treated systems except CW4 and CW6. Therefore, it is reasonable to say that the organic nitrogen fraction is negligible in treated effluents from the Anua and E-Z Treat systems. Because the average TIN of the wetland effluents was lower, the organic nitrogen fraction could not be neglected.

Next, estimated TN values for all treated systems and the STE were compared to TN values measured using Hach kits, and the two were found to be statistically equivalent ($p>0.05$). Therefore, the method of estimating TN values based on TSS and TIN was deemed acceptable and used to estimate TN values when TSS measurements were available, but Hach TN measurements were not. Using this method, the percent (average ± SD) of NH$_4$-N comprising TN was found to be 87.3±5.7% in STE samples.

Parametric and non-parametric analysis of variance (ANOVA) tests were performed at 95% confidence levels using R software to statistically differentiate between the performance of each treatment system for each pollutant. ANOVA tests were run on removal rates calculated relative to the average STE concentration as follows:

$$RR_{i,j} = 1 - \frac{C_{i,j}}{C_{i,STE}}$$
RR_{i,j} is the removal rate for pollutant i from treatment system j; C_{i,j} is the effluent concentration for pollutant i from treatment system j; and \(\bar{c}_{i,STE} \) is the average concentration of pollutant i in the STE. Samples below the limit of detection for NH\(_4\) were set to 0.005 mg N/L and PPCP samples below the limit of quantification (LOQ) were set to half of the value of the LOQ prior to analysis (0.5 \(\mu \)g/L for TCS and 0.015 \(\mu \)g/L for all other PPCPs). See Appendix C for the R code.

The use of this method assumes that STE samples were relatively consistent and independent of temporal changes. The assumption was checked by measuring RSDs for each STE parameter and performing the Durbin-Watson test for serial autocorrelation. Results are shown in Table 3.2 below. As reflected by the RSDs, variability was much higher in general for the monitored PPCPs, especially ACE, TOP, TRI, and VEN. The first sampling event was eliminated from statistical analyses for all PPCPs because the PPCP concentrations in the STE on the first sampling date were three to 15 times greater than the average concentration on all other dates. This could reflect evolution of microbial degradation capability for the biology living inside the pipes between the septic tank and the treatment systems. This issue will be discussed further in subsection 3.4.2 below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RSD</th>
<th>Durbin-Watson Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>16.6%</td>
<td>P=0.166</td>
</tr>
<tr>
<td>Biochemical oxygen demand</td>
<td>21.9%</td>
<td>P=0.558</td>
</tr>
<tr>
<td>Chemical oxygen demand</td>
<td>26.3%</td>
<td>P=0.798</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>64.7%</td>
<td>P=0.436</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>15.7%</td>
<td>P=0.498</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>32.3%</td>
<td>P=0.422</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>80.4%</td>
<td>P=0.056</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>38.0%</td>
<td>P=0.254</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>14.8%</td>
<td>P=0.576</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>24.7%</td>
<td>P=0.16</td>
</tr>
<tr>
<td>Metformin</td>
<td>60.5%</td>
<td>P=0.972</td>
</tr>
<tr>
<td>Topiramate</td>
<td>98.2%</td>
<td>P=0.836</td>
</tr>
<tr>
<td>Triclosan</td>
<td>107.6%</td>
<td>P=0.542</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>110.0%</td>
<td>P=0.176</td>
</tr>
</tbody>
</table>
After the first sampling event was removed, the STE concentrations for most of the PPCPs did not have any apparent trends when graphed over time, indicating that a steady state was reached by the second sampling date. However, STE concentrations continued to decrease over time for ACE, CBZ, and VEN, as shown in Figure 3.2 below. Note that the first sampling date is not eliminated in the figure. For these data sets, ANOVA analyses were run on both unpaired (described above) and paired removal rate data sets. For the paired data sets, percent removals were calculated based on the treated effluent concentrations and the STE concentration collected on the same day, instead of an average STE concentration. The approach was meant to eliminate trends in effluent concentrations caused by varying influent concentrations. It would not have been valid to use this approach if STE concentrations had not decreased consistently over time, since the HRTs were on the order of days and different for each treatment system.

![Figure 3.2: STE concentrations of ACE, CBZ, and VEN over time](image)

Figure 3.2: STE concentrations of ACE, CBZ, and VEN over time

STE concentrations from samples 1-10. STE = septic tank effluent; ACE = acetaminophen; CBZ = carbamazepine; VEN = venlafaxine.

Before using the ANOVA test, it was necessary to prove that the treated effluent concentrations were not serially correlated. This was done using the Durbin-Watson test for serial autocorrelation. The following data sets were correlated: CW6 COD, CW4 LAM, E-Z Treat MET, Anua TOP, and E-Z Treat TCS. For CW4 LAM, E-Z Treat MET, and Anua TOP sequential sampling results were composited until results were no longer serially correlated. CW6 could not be composited in any
way to remove serial correlation for COD. When E-Z Treat TCS was composited, the data became more highly correlated, but this was probably because almost all of the data points were below the LOQ. Therefore, the original data set was used despite failing the Durbin-Watson test.

Next, the distribution of the data set was evaluated using the Shapiro-Wilk test of normality. Non-parametric tests were used when not all of the system effluents were normal for a given parameter. Equality of variances was verified for parametric data sets using the Bartlett test for homogeneity of variances. Equality of means was checked using the standard ANOVA test for parametric sets with equal variance, the one-way test for parametric sets with unequal variance, or the Kruskal-Wallis rank sum test for non-parametric tests. As a multiple comparison check, the parametric Tukey Honest Significant Differences (HSD) test and the non-parametric Kruskal-Wallace multiple comparison test were used. Then, confidence intervals were constructed for the groupings with the lowest percent removals to check whether those systems performed significantly better than the septic tank. Table 3.3 below summarizes the tests used. Results of the multiple comparison test will be discussed in the Results section.

Table 3.3: Summary of ANOVA preparation
BOD = biochemical oxygen demand; COD = chemical oxygen demand; TSS = total suspended solids; NH₄ = ammonia-N; TN = total nitrogen; ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; MET = metformin; TOP = topiramate; TCS = triclosan; VEN = venlafaxine; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Serial Correlation</th>
<th>Equality of Variance and Means</th>
<th>Multiple Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>Parametric – normal</td>
<td>No serial correlation</td>
<td>Bartlett test – variances equal</td>
<td>Tukey HSD</td>
</tr>
<tr>
<td>BOD</td>
<td>Non-parametric – CW4 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallis – means not equal</td>
<td>Kruskal Wallace multiple comparison</td>
</tr>
<tr>
<td>COD</td>
<td>Parametric – normal</td>
<td>CW6 serially correlated – use original data</td>
<td>Bartlett test – variances not equal One-way test -</td>
<td>Tukey HSD</td>
</tr>
<tr>
<td>TSS</td>
<td>Parametric – normal</td>
<td>No serial correlation</td>
<td>Bartlett test – variances not equal One-way – means equal</td>
<td>N/A</td>
</tr>
<tr>
<td>NH₄</td>
<td>Non-parametric – CW4, CW6 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallis – means not equal</td>
<td>Kruskal Wallace multiple comparison</td>
</tr>
<tr>
<td>Parameter</td>
<td>Distribution</td>
<td>Serial Correlation</td>
<td>Equality of Variance and Means</td>
<td>Multiple Comparison</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>TIN</td>
<td>Non-parametric – CW4 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>TN</td>
<td>Parametric – normal</td>
<td>No serial correlation</td>
<td>Bartlett test – variances not equal One-way test – means not equal</td>
<td>Tukey HSD</td>
</tr>
<tr>
<td>ACE</td>
<td>Non-parametric – Anua, CW4, CW6 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>ACE – paired</td>
<td>Non-parametric – Anua, CW6 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>CBZ</td>
<td>Parametric – normal</td>
<td>No serial correlation</td>
<td>Bartlett test – variances equal AOV – means not equal</td>
<td>Tukey HSD</td>
</tr>
<tr>
<td>CBZ – paired</td>
<td>Non-parametric – CW6 not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>LAM</td>
<td>Non-parametric – Anua not normal</td>
<td>CW4 serially correlated – use composited data</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>LEV</td>
<td>Non-parametric – Anua, CW4, CW6 not normal</td>
<td>Anua (pre-8/22) serially correlated – use composited data</td>
<td>Kruskal-Wallace – means not equal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>MET</td>
<td>Non-parametric – none normal</td>
<td>E-Z Treat serially correlated – use composited data</td>
<td>Kruskal-Wallace – means equal</td>
<td>N/A</td>
</tr>
<tr>
<td>TOP</td>
<td>Non-parametric – none normal</td>
<td>Anua serially correlated – use composited data</td>
<td>Kruskal-Wallace – means equal</td>
<td>N/A</td>
</tr>
<tr>
<td>TCS</td>
<td>Non-parametric – Anua, CW4, CW6 not normal</td>
<td>E-Z Treat serially correlated – use original data</td>
<td>Kruskal-Wallace – means equal</td>
<td>N/A</td>
</tr>
<tr>
<td>VEN</td>
<td>Non-parametric – none normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means unequal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
<tr>
<td>VEN – paired</td>
<td>Non-parametric – Anua not normal</td>
<td>No serial correlation</td>
<td>Kruskal-Wallace – means unequal</td>
<td>Kruskal-Wallace multiple comparison</td>
</tr>
</tbody>
</table>
3.3.2 Conventional Pollutants

Conventional pollutant parameters are summarized in Figure 3.3 and Table 3.4 for each of the treatment systems. On August 22nd, after six sampling events were completed, new pumps were installed for the Anua and E-Z Treat systems which had more consistent performance (less variation), but lower average flow rates. The drop in BOD loading had an obvious deleterious effect on denitrification processes in the Anua system. Dog food was added to the Anua ATU on October 3rd, and as a result, effluent TIN concentrations fell below 20 mg/L again on the last sampling event. Figure 3.3 summarizes all of the sampling results from the Anua system as well as the results from before August 22nd separately to illustrate the differences in performance when only the first half of the data set is considered. In addition, for parameters where there was sufficient data, ANOVA analyses were performed including the full set of Anua data and the Anua results prior to the pump replacement.

Figure 3.3: Conventional pollutant concentrations in effluent samples
Columns represent mean concentration and error bars represent 95% confidence intervals. Mean concentrations are calculated over the full sampling range for each treatment system unless otherwise noted. BOD = biochemical oxygen demand; TSS = total suspended solids; NH4 = ammonia-N; TIN = total inorganic nitrogen; TN = total nitrogen; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.
Table 3.4: Temperature, pH, DO, and alkalinity of effluent and internal samples
DO = dissolved oxygen; SD = standard deviation; n = number of sampling points used to calculate mean.

<table>
<thead>
<tr>
<th>Collection Point</th>
<th>Temp (°C)</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>Alkalinity (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>n</td>
<td>Mean</td>
</tr>
<tr>
<td>Anua System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well Basin 1 Effluent</td>
<td>26.8</td>
<td>7.7</td>
<td>6</td>
<td>7.08</td>
</tr>
<tr>
<td>Well Basin 2 Effluent</td>
<td>25.9</td>
<td>7.7</td>
<td>6</td>
<td>7.32</td>
</tr>
<tr>
<td>Anua Effluent</td>
<td>25.6</td>
<td>5.1</td>
<td>10</td>
<td>6.23</td>
</tr>
<tr>
<td>E-Z Treat Effluent</td>
<td>25.9</td>
<td>5.7</td>
<td>10</td>
<td>6.94</td>
</tr>
<tr>
<td>Constructed Wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank 1 Effluent</td>
<td>20.0</td>
<td>4.7</td>
<td>4</td>
<td>6.93</td>
</tr>
<tr>
<td>Tank 2 Influent</td>
<td>21.0</td>
<td>5.2</td>
<td>4</td>
<td>7.00</td>
</tr>
<tr>
<td>Tank 2 Effluent</td>
<td>19.1</td>
<td>0.1</td>
<td>2</td>
<td>6.96</td>
</tr>
<tr>
<td>Tank 3 Influent</td>
<td>19.3</td>
<td>0.9</td>
<td>3</td>
<td>7.22</td>
</tr>
<tr>
<td>Tank 3 Effluent</td>
<td>22.5</td>
<td>9.2</td>
<td>2</td>
<td>7.71</td>
</tr>
<tr>
<td>Tank 4 Influent</td>
<td>23.5</td>
<td>8.9</td>
<td>2</td>
<td>8.06</td>
</tr>
<tr>
<td>CW4 (Tank 4 Effluent)</td>
<td>24.3</td>
<td>6.0</td>
<td>9</td>
<td>7.40</td>
</tr>
<tr>
<td>CW6 (Tank 6 Effluent)</td>
<td>24.3</td>
<td>5.3</td>
<td>10</td>
<td>6.30</td>
</tr>
<tr>
<td>Septic Tank Effluent</td>
<td>25.2</td>
<td>4.6</td>
<td>10</td>
<td>6.79</td>
</tr>
</tbody>
</table>

BOD and TSS concentrations were consistently under 10 mg/L for all treatments beyond the septic tank, with the exception of CW6. BOD, COD, and TSS concentrations increased from CW4 to CW6 throughout the sampling period, likely as a result of the wood chip media in Tanks 5 and 6. The high COD to BOD ratios (5.3 to 7.9) indicate that the organic matter in the Tank 6 was relatively stable, which would be typical of woody debris. The Anua system also had high effluent COD with even higher COD to BOD ratios (20 to 64), indicating stable organic matter. Peat particles were observed in filter waste produced during TSS analyses confirmed these findings.

The Anua and E-Z Treat systems consistently nitrified STEs, generating NH₄ concentrations below 2 mg-N/L throughout the study. The E-Z Treat system relied on septic field treatment for denitrification due to the lack of an anoxic zone downstream from the biofilter. The Anua system was able to sustain denitrification in the clarifier zone of the ATU and in the peat filters prior to August 22nd. The CW consistently achieved nitrification and denitrification, however NH₄ concentrations spiked from below 1 to above 7 mg N/L on the last sampling date. The wetland
plants were cut back on November 2nd and the first frost occurred on November 13th. Either or both of these factors could have been responsible for the change in effluent nutrient concentrations.

The CW plants were analyzed for nitrogen content by tank and the nutrient contents of the plants were found to decrease through the wetland, as indicated in Table 3.5 below. Assuming a constant flow rate of 25.0 gpd into the CW prior to flow measurement began on April 2nd, and an average influent TN concentration of 37 mg N/L (the average STE TN concentration during the sampling period), the total load of nitrogen to the CW when the plants were cut was 1.5 kg. Thus the nitrogen removed via plant uptake was approximately 10\% of the total load delivered. Similarly, the average TP of the STE was 4.1 mg P/L (see Appendix C) so the total load of phosphorus to the CW was 83 g and 40\% of that was taken up by plants. Crites and Tchobanoglous (1998) suggest a phosphorus uptake rate of 0.5 lb/ac-d for wetland plants, and the uptake rate seen in this wetland was only 0.17 lb/ac-d, which indicates that the plants may have been phosphorus-limited. Plants in Tank 4 began to die back in the late summer, followed by the plants in Tank 3 in early fall. This could have been an indication of nutrient shortage. Plants in Tanks 1 and 2 stayed green until they were cut in November.

Table 3.5: Nutrient composition and weights of constructed wetland plants by tank

<table>
<thead>
<tr>
<th>Tank</th>
<th>Dry Weight (kg)</th>
<th>Percent Composition (%)</th>
<th>Mass Composition (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>3.37</td>
<td>1.68</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>2.67</td>
<td>1.36</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>1.47</td>
<td>1.14</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.70</td>
<td>0.92</td>
<td>0.16</td>
</tr>
<tr>
<td>Total</td>
<td>8.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6 summarizes the findings from the ANOVA analyses. The CW4 was the only treatment system in the highest performing group for all analyzed pollutants. Considering only Anua data from before August 22nd, the Anua system was also in the highest group for all analyzed pollutants. The Anua, E-Z Treat, and CW4 systems had the highest oxygen demand removal rates, while the CW4 and 6 systems had the highest nitrogen removal rates. Performance between systems could not be differentiated for TSS so this parameter is not shown in the table.
In order to determine whether each system performed significantly better than the septic tank for a given parameter, 95% confidence intervals were calculated around the removal rates for each system. When the lower confidence limit (LCL) was greater than zero, this indicated that the system performed significantly better than the septic tank. When the upper confidence limit (UCL) was less than zero, this indicated that the treatment system effectively added pollutants to the STE. When zero was included in the confidence interval, this indicated that the system did not perform significantly differently than the septic tank. Confidence intervals were calculated using bootstrapping for nonparametric data sets (see Appendix C for R code).

Aside from alkalinity, all of the compared removal rates from the E-Z Treat, CW4, and CW6 systems were significantly greater than zero, indicating improved performance relative to the septic tank. The confidence intervals on alkalinity removal included zero for CW4 and was entirely negative for CW6, indicating that these systems had no significant change in alkalinity, and increased alkalinity, respectively. The Anua system did not have significant TN removal rates when data from the entire sampling period were considered. There were only two TN measurements for the Anua system before August 22nd, so a separate ANOVA test could not be run. However, the confidence interval for the removal rates based on those two data points did not include zero. Analyses were run for both the entire Anua data set and only the Anua data from before August 22nd for COD, NH₄, and TIN. There were not enough Anua data points pre-August 22nd to run the analyses for the other parameters. Use of the abridged Anua data set only changed groupings for NH₄.

Table 3.6: ANOVA analysis findings for conventional pollutants

ANOVA tests compared data from full sampling ranges of each system unless otherwise noted. Removal rates for TIN were calculated relative to average TN concentrations of septic tank effluent. CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6; BOD = biochemical oxygen demand; COD = chemical oxygen demand; NH₄ = ammonia-N; TIN = total inorganic nitrogen; TN = total nitrogen.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Significantly Distinct Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anua</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>A</td>
</tr>
<tr>
<td>BOD</td>
<td>A</td>
</tr>
<tr>
<td>COD</td>
<td>B</td>
</tr>
<tr>
<td>COD – Anua samples 1-6</td>
<td>AB</td>
</tr>
<tr>
<td>NH₄</td>
<td>AB</td>
</tr>
<tr>
<td>NH₄ – Anua samples 1-6</td>
<td>AB</td>
</tr>
<tr>
<td>TIN</td>
<td>B</td>
</tr>
<tr>
<td>Parameter</td>
<td>Significantly Distinct Systems</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>TIN – Anua samples 1-6</td>
<td>Anua</td>
</tr>
<tr>
<td>TN</td>
<td>AB</td>
</tr>
</tbody>
</table>

Throughout the sampling period, microbial growth was observed in the flexible PVC tubing between the CW Tanks. Additional samples were taken throughout the wetland cells to quantify the effects of the biofilms and each tank on overall CW performance. Table 3.4 shows that pH and DO generally increased across the biofilms, which could indicate the presence of algae in the PVC tubing. However, almost all of the tubing was buried under a thick layer of grass and it is unclear how algae would grow under such dark conditions.

Figure 3.4 illustrates the change in conventional pollutant concentrations across the wetland as measured by collecting samples at internal sampling locations on four dates. Error bars represent SDs. Not all locations were sampled on all four dates, and error bars are not shown when data was collected on only one date. STE TN concentrations are shown instead of STE TIN concentrations. In all cases, NH₄ and TIN concentrations drop only slightly or increase across the biofilm (i.e. from a tank effluent to the influent of the next tank) indicating that nitrogen removals primarily occurred in the CW Tanks themselves. Based on the limited data set, the largest COD declines seem to occur in Tank 1, while the largest nitrogen declines occur in Tank 2. COD removals are negligible in Tanks 3 and 4, but these Tanks are important for NH₄ removal, particularly during later sampling events.
Figure 3.4: Conventional pollutants measured in internal wetland samples
Columns represent mean concentration and error bars represent standard deviations. Error bars are not shown when data was collected on only one date. STE TN concentrations are shown instead of STE TIN concentrations. COD = chemical oxygen demand; NH4 = ammonia-N; TIN = total inorganic nitrogen; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

3.3.3 Pharmaceuticals and Personal Care Products (PPCPs)

Measured PPCP concentrations are summarized in Figure 3.5 for each of the treatment systems. The columns in the figure represent median values and the error bars represent the range. Results for MET, TOP, and TCS are shown in Table 3.7. Most of the MET and TOP measurements were below the LOQ. A labeled IS was not available for TCS so TCS measurements are only valid as a relative value.

It should be noted that because no metabolites were monitored, the calculated removal rates represent removal of the parent compound only. Removal of metabolites will be considered by analyzing the literature in section 3.4 below.

The entire range of removal rates was above 75% for ACE, LEV, and TCS in all treatment systems, and for VEN in all treatment systems except E-Z Treat. Median removal rates for CBZ varied widely, from -10.9% for E-Z Treat to 87.3% for the Anua system over the entire sampling period and 96.4% for the Anua system prior to August 22nd. Median removals for LAM had a similar range: from -13.8% for E-Z Treat to 99.8% for the Anua system (both sampling ranges).
Figure 3.5: PPCP concentrations in effluent samples
Columns represent median concentration and error bars represent range. Median concentrations are taken from the full sampling range for each treatment system unless otherwise noted. PPCP = pharmaceuticals and personal care products; ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiractam; VEN = venlafaxine; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

Table 3.7: MET, TOP, and TCS results for effluent samples
Median concentrations are taken from the full sampling range for each treatment system unless otherwise noted. n = the number of samples used to determine the mean; LOQ = 0.03 µg/L for MET and TOP. MET = metformin; TOP = topiramate; TCS = triclosan; n = number of samples; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6; LOQ = limit of quantification.

<table>
<thead>
<tr>
<th>System</th>
<th>Concentration (µg/L)</th>
<th>Removal Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Min</td>
</tr>
<tr>
<td>MET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anua</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>Anua - Samples 1-6</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>E-Z Treat</td>
<td>0.032</td>
<td><LOQ</td>
</tr>
<tr>
<td>CW4</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>CW6</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>STE</td>
<td>0.096</td>
<td>0.052</td>
</tr>
<tr>
<td>TOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anua</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>Anua - Samples 1-6</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>E-Z Treat</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>CW4</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>CW6</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>STE</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>System</td>
<td>Concentration (µg/L)</td>
<td>Removal Rate (%)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>Min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anua</td>
<td>>93.5</td>
<td>83.9</td>
</tr>
<tr>
<td>Anua - Samples 1-6</td>
<td>90.5</td>
<td>83.9</td>
</tr>
<tr>
<td>E-Z Treat</td>
<td>>93.5</td>
<td>88.7</td>
</tr>
<tr>
<td>CW4</td>
<td>>93.5</td>
<td>81.1</td>
</tr>
<tr>
<td>CW6</td>
<td>>93.5</td>
<td>86.2</td>
</tr>
<tr>
<td>STE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.6 summarizes the findings from the ANOVA analyses. Anua and CW6 were in the highest performing group for all analyzed PPCPs. Average effluent concentrations were lower for the Anua samples collected prior to August 22nd for all monitored PPCPs except TCS; however, no significant differences could be proved between the abridged and complete data sets.

As described in subsection 3.3.1, paired data sets were used to run ANOVA analyses for PPCPs whose STE concentrations decreased consistently over time. The use of paired data for ACE, CBZ, and VEN generated very similar results to the unpaired data. There were two differences. First, all removal rates, but particularly those of the E-Z Treat system, were pushed down by use of the paired data. Second, groupings changed for CBZ; less distinction could be made using the paired data versus the unpaired data, although order was preserved. The likely reason for the second observation is that the paired data sets were not normally distributed, so the more conservative, nonparametric Kruskal-Wallace rank sum test had to be used.

MET, TOP, and TCS are not shown in the table because there no significant differences between system for these compounds. For ACE, LEV, TCS, and paired VEN data, all treatment systems performed significantly better than the septic tank. This was determined using the same confidence interval method as for conventional pollutants. The following treatment systems did not perform significantly better than the septic tank:

- CBZ: E-Z Treat confidence interval included zero
- CBZ – paired data: E-Z Treat confidence interval below zero
- LAM: E-Z Treat confidence interval below zero
- MET: Anua and E-Z Treat confidence intervals below zero
- TOP: All confidence intervals included zero
- VEN: E-Z Treat confidence interval included zero
- VEN – paired data: E-Z Treat confidence interval below zero

Table 3.8: ANOVA analysis findings for PPCPs
ANOVA tests compared data from full sampling ranges of each system unless otherwise noted. For paired data sets, removal rates were calculated based on septic tank effluent concentrations collected on the same sampling date, otherwise removal rates were calculated based on average septic tank effluent concentrations. PPCPs = pharmaceuticals and personal care products; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6; ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; VEN = venlafaxine.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Significantly Distinct Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anua</td>
</tr>
<tr>
<td>ACE</td>
<td>AB</td>
</tr>
<tr>
<td>ACE – paired</td>
<td>AB</td>
</tr>
<tr>
<td>CBZ</td>
<td>A</td>
</tr>
<tr>
<td>CBZ – paired</td>
<td>A</td>
</tr>
<tr>
<td>CBZ – paired, Anua samples 1-6</td>
<td>A</td>
</tr>
<tr>
<td>LAM</td>
<td>A</td>
</tr>
<tr>
<td>LEV</td>
<td>A</td>
</tr>
<tr>
<td>VEN</td>
<td>A</td>
</tr>
<tr>
<td>VEN – paired</td>
<td>A</td>
</tr>
</tbody>
</table>

Internal wetland samples were analyzed for PPCPs on 1 to 3 sampling dates to assess the contribution of the biofilms and each wetland tank to PPCP removal. Results can be seen in Figure 3.6, Figure 3.7, and Figure 3.8 below. As in Figure 3.5, the columns represent the median concentration and the error bars represent the observed range. ACE and TCS were primarily removed in Tank 1 while LEV and VEN were primarily removed in Tanks 2 and 3. This suggests that ACE and TCS are more readily biodegradable and degradable under anoxic conditions, while LEV and VEN require aerobic conditions to degrade. It also appears that LEV metabolites may have been converted back to the parent compound within Tank 3. CBZ and LAM had negligible removals until they reached the CW mycoremediation Tanks 5 and 6. This suggests they are less biodegradable and were only removed by fungal degradation or sorption. It is difficult to draw any conclusions about MET or TOP due to low levels in the STEs, but MET appeared to be largely removed by the time it passed through Tank 2.
Figure 3.6: ACE, CBZ, LAM, and LEV concentrations measured in internal wetland samples
Columns represent median concentration and error bars represent range. ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; DO = dissolved oxygen; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.
Figure 3.7 TCS concentrations measured in internal wetland samples
Columns represent median concentration and error bars represent range. The maximum observed STE concentration of 53 µg/L is not shown for TCS. TCS = triclosan; DO = dissolved oxygen; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

Figure 3.8: MET, TOP, and VEN concentrations measured in internal wetland samples
Columns represent median concentration and error bars represent range. The maximum observed STE concentration of 9.6 µg/L is not shown for MET. MET = metformin; TOP = topiramate; VEN = venlafaxine; DO = dissolved oxygen; STE = septic tank effluent; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

Internal samples for the Anua system also yielded interesting results, as shown in Figure 3.9 and Figure 3.10 below. Again, columns represent the median concentration and the error bars represent the observed concentration range. ACE, LEV, MET, and TCS were removed in the ATU, while
CBZ, LAM, and VEN were removed in the peat filters. A greater proportion of LAM and VEN appear to be removed in the first peat filter than for CBZ.

Figure 3.9: ACE, CBZ, LAM, LEV, and TCS concentrations measured in internal Anua samples
Columns represent median concentration and error bars represent range. ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; TCS = triclosan; DO = dissolved oxygen; STE = septic tank effluent.

Figure 3.10: MET and VEN concentrations measured in internal Anua samples
Columns represent median concentration and error bars represent range. MET = metformin; VEN = venlafaxine; DO = dissolved oxygen; STE = septic tank effluent.
It is also instructive to compare the performance of the treatment units in which sorption was not the primary removal mechanism. As shown in Figure 3.11 and Figure 3.12 below, the CW4 effluent had noticeably lower concentrations of CBZ, LAM, LEV, and VEN than the Anua ATU or E-Z Treat system. Additional removal mechanisms in the CW4 tanks included plant uptake, phytodegradation, and enhanced microbial degradation as a result of redox cycling and a longer HRT. There were some limited opportunities for photodegradation in the small pond in CW Tank 3 and in clear waterfalls (designed for aeration) at the influents to Tanks 2 and 3. However, sorption could have been a significant removal mechanism for the first four CW tanks as well given the low surface loading of the system and the mulch layers on the surface of Tanks 3 and 4.

![Figure 3.11: ACE, CBZ, LAM, and LEV concentrations in CW4, Anua Well 1, and E-Z Treat effluents](image)

Columns represent median concentration and error bars represent range. ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; CW4 = effluent from constructed wetland tank 4.
3.4 Discussion

3.4.1 Literature Overview

Table 3.9 and Table 3.10 below summarize findings from the literature and online sources regarding physical and chemical properties of the monitored PPCPs, as well as known pharmacokinetic data and removals in different treatment systems. These data were used to inform the discussion of removal mechanisms, which follows in subsection 3.4.3.

Table 3.9: Physical and chemical properties of PPCPs
Experimental or estimated properties sourced from PubChem or ChemSpider unless otherwise labeled. PPCPs = pharmaceuticals and personal care products; pKa = acid dissociation constant; Log Kow = logarithm of the octanol-water partition coefficient; Log Koc = logarithm of the soil organic carbon-water partition coefficient; ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; MET = metformin; TOP = topiramate; TCS = triclosan; VEN = venlafaxine.

<table>
<thead>
<tr>
<th>PPCP, Type</th>
<th>pKa</th>
<th>Water Solubility (mg/L)</th>
<th>Vapor Pressure (mm Hg)</th>
<th>Log Kow</th>
<th>Log Koc</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE, analgesic</td>
<td>9.38</td>
<td>14,000</td>
<td>6.29E-05</td>
<td>0.46</td>
<td>1.79</td>
</tr>
<tr>
<td>CBZ, anticonvulsant</td>
<td>13.9</td>
<td>17.7</td>
<td>1.84E-07</td>
<td>2.45</td>
<td>3.59</td>
</tr>
<tr>
<td>LAM, anticonvulsant</td>
<td>5.7</td>
<td>170</td>
<td>9.4E-09</td>
<td>0.99</td>
<td>3.13</td>
</tr>
<tr>
<td>PPCP, Type</td>
<td>pK<sub>a</sub></td>
<td>Water Solubility (mg/L)</td>
<td>Vapor Pressure (mm Hg)</td>
<td>Log K<sub>ow</sub></td>
<td>Log K<sub>oc</sub></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>LEV, anticonvulsant</td>
<td>1.04E+06</td>
<td>3.5E-06</td>
<td>-0.49</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>MET, antidiabetic (Scheurer et al., 2009)</td>
<td>10.2, 12.4</td>
<td>1.00E+06</td>
<td>0.0119</td>
<td>-1.4</td>
<td>2.15</td>
</tr>
<tr>
<td>TOP, anticonvulsant</td>
<td>9,800</td>
<td>7.0E-08</td>
<td>-0.33</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>TCS, antimicrobial</td>
<td>7.9</td>
<td>10</td>
<td>4.6E-06</td>
<td>4.8</td>
<td>4.27</td>
</tr>
<tr>
<td>VEN, antidepressant</td>
<td>10.09</td>
<td>267</td>
<td>2.46E-07</td>
<td>3.28</td>
<td>3.17</td>
</tr>
</tbody>
</table>
Table 3.10: Literature review of pharmacokinetics and removal rates

WWTPs = wastewater treatment plants; ETUs = enhanced treatment units; CWs = constructed wetlands; ACE = acetaminophen; CBZ = carbamazepine; LAM = lamotrigine; LEV = levetiracetam; MET = metformin; TOP = topiramate; TCS = triclosan; VEN = venlafaxine; ATU = aerobic treatment unit; HSSF = horizontal subsurface flow; VSSF = vertical subsurface flow; SF = surface flow; LECA = lightweight expanded clay aggregate; DOC = dissolved organic carbon; GAC = granular activated carbon.

<table>
<thead>
<tr>
<th>PPCP, Type</th>
<th>Pharmacokinetics & Major Species in WWTPs</th>
<th>Observed Removal Rates</th>
</tr>
</thead>
</table>
| ACE analgesic | Pharmacokinetics: <5% excreted unchanged
Major metabolites: glucuronide (52-57%), sulfate (30-44%)
Other metabolites: N-acetyl-p-benzoquinone imine (NAPQI)-glutathione (5-10%)
<a>www.pharmagkb.org/pathway

Major Species in WWTPs: ACE | Removal to below detection limits in WWTP (De la Cruz et al., 2012)
>99% removal in WWTP (Du et al., 2014)
>99% removal in ATU (Du et al., 2014)
>95% removal in SSF wetlands (Avila et al., 2013)
>99% removal in hybrid wetlands (Avila et al., 2014)
>99% removal in septic tank + wetland (unspecified type) (Du et al., 2014)
>99% removal in hybrid wetlands (Conkle et al., 2008)
>99% removal in SSF wetlands (Avila et al., 2013)
>95% removal in ATU (Du et al., 2014)
>99% removal in hybrid wetlands (Avila et al., 2014)
>99% removal in septic tank + wetland (unspecified type) (Du et al., 2014)
>99% removal in hybrid wetlands (Conkle et al., 2008)
>5-log removal between septic tank and groundwater (Phillips et al., 2015)
Removal from 20 µg/L to below detection between septic tank and groundwater (Godfrey et al., 2007)
28-65% removal in septic tank alone (Du et al., 2014) }
<table>
<thead>
<tr>
<th>PPCP, Type</th>
<th>Pharmacokinetics & Major Species in WWTPs</th>
<th>Observed Removal Rates</th>
</tr>
</thead>
</table>
| CBZ, anti-convulsant| *Pharmacokinetics:* <5% excreted unchanged/as pharmacologically active CBZ-10,11-epoxide (CBZ-E)
Major metabolite: trans-10,11-dihydroxy-10,11-dihydro-CBZ (DiOHCBZ)
Other metabolites: 2-hydroxy-CBZ (2-OH-CBZ); 3-hydroxy-CBZ (3-OH-CBZ); N-glucuronide
(Eichelbaum et al., 1985)
Major Species in WWTPs: CBZ, DiOHCBZ, 10,11-dihydro-10-hydroxy-CBZ (MHD)
(Kaiser et al., 2014; Gurke et al., 2015) | **WWTPs**
Insignificant removal of CBZ in biological WWTP (Hollender et al., 2009)
Negligible removal of CBZ in biological WWTP with chemical P removal (Gurke et al., 2015)
Negligible removal of CBZ in biological WWTP (Joss et al., 2006)
3-6% removal in WWTP (Du et al., 2014) | **ETUs**
6-8% removal in ATU (Du et al., 2014) | **CWs**
50% removal of CBZ in lagoon wetland (Conkle et al., 2008)
6-17% removal in septic tank + wetland (unspecifed type) (Du et al., 2014)
0-25% removal of CBZ; 5-28% removal of DiOHCBZ; 28-93% removal of MHD; 0-88% removal of 2- and 3-OH-CBZ in SSF and 2 pond wetlands (Ruhmland et al., 2015)
27-28% removal of CBZ in continuous, planted HSSF wetlands; 20-26% removal in VSSF wetlands; 0-58% removal in hybrid wetlands; 0-50% removal in SF wetlands (multiple studies, reported in Li et al., 2014) | **Septic Systems**
10% increase in CBZ seen between septic tank and groundwater (Phillips et al., 2015)
6-7% removal in septic tank (Du et al., 2014) | **Other**
95% removal by LECA with initial concentration of 1 mg/L (Dordio et al., 2009)
CBZ effectively removed via activated carbon adsorption (Yu et al., 2008)
>99% removal via post-treatment ozonation with ~0.6 g O₃ g⁻¹ DOC (Hollender et al., 2009)
Removal to below detection limits via exposure to UV₂₅₄ and H₂O₂ at 50 mg/L for 30 minutes (De la Cruz et al., 2012) |
<table>
<thead>
<tr>
<th>PPCP, Type</th>
<th>Pharmacokinetics & Major Species in WWTPs</th>
<th>Observed Removal Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAM, anti-convulsant</td>
<td>Pharmacokinetics: <10% excreted unchanged in urine; <2% excreted unchanged in feces Major metabolites: N-2 glucuronide (70%) (Garnett, 1997) Major Species in WWTPs: LAM, OXO-LAM (synthetic impurity), LMG-N2-G-TP430 (Zonja et al., 2016)</td>
<td>Concentrations of LAM and OXO-LAM increase in WWTP (Zonja et al., 2016) Limited removal via post-treatment ozonation with ~0.6 g O₃ g⁻¹ DOC (Hollender et al., 2009) Not removed via UV or O₃ disinfection applications, but sensitive to advanced oxidation with hydroxyl radicals (Keen et al., 2014)</td>
</tr>
<tr>
<td>LEV, anti-convulsant</td>
<td>Pharmacokinetics: 66% excreted unchanged in urine Major metabolites: acid metabolite UCB L057 (24%) Minor metabolites: 2 metabolites (~2%) (Patsalos et al., 2000; Radtke, 2001) Major Species in WWTPs: LEV</td>
<td>98% removal in biological WWTP with chemical P removal (Gurke et al., 2015) Limited removal via post-treatment ozonation with ~0.6 g O₃ g⁻¹ DOC (Hollender et al., 2009)</td>
</tr>
<tr>
<td>PPCP, Type</td>
<td>Pharmacokinetics & Major Species in WWTPs</td>
<td>Observed Removal Rates</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>MET, antidiabetic</td>
<td>Pharmacokinetics: Excrete unchanged in urine (Graham et al., 2011)</td>
<td>79-91% removal of MET in WWTP (Scheurer et al., 2009)</td>
</tr>
<tr>
<td></td>
<td>Major species in WWTPs: MET, guanylurea (Trautwein and Kummerer, 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>3-log removal of MET seen between septic tank and groundwater (Phillips et al., 2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11% removal via exposure to UV254 and H2O2 at 50 mg/L for 30 minutes (De la Cruz et al., 2012)</td>
</tr>
<tr>
<td>TOP, anti-convulsant</td>
<td>Pharmacokinetics: >80% excreted unchanged in urine (Garnett, 2000)</td>
<td><1-log removal in biological WWTP with chemical P removal (Gurke et al., 2015)</td>
</tr>
<tr>
<td></td>
<td>Major species in WWTPs: TOP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPCP, Type</th>
<th>Pharmacokinetics & Major Species in WWTPs</th>
<th>Observed Removal Rates</th>
</tr>
</thead>
</table>
| TCS, anti-microbial | Pharmacokinetics: N/A
Major species in WWTPs: TCS | 98.5% removal in conventional activated sludge, including 80-90% mineralization to CO₂ or incorporation by biomass and <5% sorption to settled solids (Federle, 2002)
>90% removal in hybrid wetlands (Avila et al., 2014)
7-48% removal in hybrid wetlands (48)
>1-log removal seen between septic tank and groundwater (Phillips et al., 2015)
Removal to below detection limits via exposure to UV254 and H₂O₂ at 50 mg/L for 10 minutes (De la Cruz et al., 2012) |
| VEN, anti-depressant | Pharmacokinetics: 5% excreted unchanged in urine
Major metabolites: O-desmethyl-VEN (ODV) (30%), VEN-glucuronide (25%), N,O-desmethyl-VEN (N,O-DDM-VEN) (10%)
Minor metabolites: N,O-desmethyl-VEN-glucuronide, N-desmethyl-venlafaxine (NDV) (Howell et al., 1993)
Major species in WWTPs: VEN, ODV, V2 [C₁₇H₂₃NO⁺] (Boix et al., 2016) | Negligible removal of VEN and 30% increase in ODV in biological WWTP with chemical P removal (Gurke et al., 2015)
37-56% removal of VEN and 29-41% removal of ODV by conventional activated sludge treatment (Rua-Gomez et al., 2012)
25-81% removal of VEN; 9-83% removal of ODV; 13-72% removal of NDV; 6-75% removal of N,O-DDM-VEN in SSF and 2 pond wetlands (Ruhmland et al., 2015)
>2-log removal of VEN seen between septic tank and groundwater (Phillips et al., 2015)
Effective removal via post-treatment ozonation with ~0.6 g O₃ g⁻¹ DOC (Hollender et al., 2009)
>80% removal VEN and >95% removal ODV via ozonation;
>70% removal VEN and >92% removal ODV via GAC columns (Rua-Gomez et al., 2012) |
3.4.2 Removal in Septic Tank and Influent Piping

STE samples were collected at the influent pipe to the CW Tank 1. It was expected that samples collected at this location would represent influent samples to each system because water traveled through the same length of pipe to get to each system; however, some of the results suggest otherwise. The PPCP concentrations in the STE on the first sampling date were three to 15 times greater than the average concentration on all other dates. This could reflect evolution of microbial degradation capability for the biology living inside the pipes between the septic tank and the treatment systems. For most of the PPCPs, STE concentrations showed no trends over times after the first sampling date was removed. However, ACE, CBZ, and VEN concentrations continued to decrease in the STE during the first couple months of operation, as shown in Figure 3.2. The CW had been receiving STE for much longer than the E-Z Treat, and especially the Anua systems prior to sampling (2.5 months instead of 1.75 and 1, respectively). Therefore, if significant PPCP degradation was occurring in the piping between the septic tank and the treatment systems, the Anua and E-Z Treat systems could have been receiving higher loadings of PPCPs than the CW. This should be taken into consideration when looking at the results.

Figure 3.13, Figure 3.14, and Figure 3.15 plot the ACE, CBZ, and VEN concentrations, respectively, for the treated effluents over time and demonstrate that there were no obvious downward trends for the Anua or CW effluent concentrations. However, E-Z Treat concentrations decreased with time for all three PPCPs, as well as for MET and TCS (not shown). The trend of decreasing effluent concentrations could be a result of microbial adaption to degrade those PPCPs either in the E-Z Treat influent or within the E-Z Treat module itself. In either case, there is reason to expect that the E-Z Treat performance would improve over time. The Anua Well 1 effluent, reflecting the performance of the Anua ATU, also had decreasing PPCP concentrations over time for CBZ, MET, TCS, and VEN, although no decreasing trends were seen for the Anua system effluent. These observations suggest that the treatments relying on microbial degradation may show adaptation to wastewater-borne PPCPs and increased removal rates over time. For CBZ concentrations in the Anua ATU effluents, the trends were apparent even after 6 months of operation.
Figure 3.13: ACE concentrations in treated effluent over time
ACE = acetaminophen; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

Figure 3.14: CBZ concentrations in treated effluent over time
CBZ = carbamazepine; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.
Figure 3.15: VEN concentrations in treated effluent over time
VEN = venlafaxine; CW4 = effluent from constructed wetland tank 4; CW6 = effluent from constructed wetland tank 6.

3.4.3 Removal Mechanisms in Treatment Systems

3.4.3.1 Acetaminophen (ACE) and Triclosan (TCS)

There is a significant body of research suggesting that both ACE and TCS are readily degraded and even mineralized in wastewater treatment (Federle, 2002; Godfrey et al., 2007; Conkle et al., 2008; Avila et al., 2013; Avila et al., 2014; Du et al., 2014; Phillips et al., 2015). ACE can be degraded under both aerobic and anaerobic conditions, while TCS reportedly requires aerobic conditions for degradation (McAvoy, 2002; Avila et al., 2013; Du et al., 2014). The results of this study were somewhat consistent with previous findings. ACE had median removal rates of 99% or more in the Anua ATU and the aerobic E-Z Treat biofilter, as well as the CW Tank 1, which had an influent and effluent DO below 1 mg/L. TCS had removals over 90% for the aerobic treatment units of Anua and E-Z Treat. Despite low oxygen availability in CW Tank 1, 82% removal of TCS were achieved. Overall removals in the CW increased to 89% and >94% at the effluent of Tanks 2 and 3, respectively.
3.4.3.2 Levetiracetam (LEV)

The research on removal of LEV in wastewater treatment is limited, but suggests that at least the parent compound is removed by conventional wastewater treatment (Gurke et al., 2015). It is unknown whether any LEV metabolites persist through wastewater treatment. The Anua and both CW effluents showed removal rates of >99% for this compound, while E-Z Treat removals ranged from 75 to 91%. The Anua ATU alone achieved 98% removal of LEV, but within the CW, only 11% removal was achieved in Tank 1 compared with overall removals of 60% and 98% in the Tank 2 and 3 effluents, respectively. The findings suggest that LEV requires aerobic conditions to be significantly degraded.

3.4.3.3 Carbamazepine (CBZ) and Lamotrigine (LAM)

CBZ is notoriously difficult to remove from wastewater except by sorption and advanced oxidation processes; however, there is a relatively large body of research available for this chemical (Joss et al., 2006; Yu et al., 2008; Dordio et al., 2009; Hollender et al., 2009; De la Cruz et al., 2012; Du et al., 2014). CBZ metabolites like trans-10,11-dihydroxy-10,11-dihydro-CBZ (DiOHCBZ) and 10,11-dihydro-10-hydroxy CBZ (MHD) are likely to be present in raw and treated wastewater at similar, if not higher, concentrations as the parent compound. Many other metabolites may be generated in the wastewater treatment process, and most of them have been found to have similar microbial toxicity as the parent compound (Kaiser et al., 2014). Although LAM has received less attention in the literature, it has been shown to be just as persistent as CBZ, if not more so, given its resistance to degradation via ozonation and UV light (Hollender et al., 2009; Keen et al., 2014; Zonja et al., 2016). LAM metabolites found in WWTPs are likely generated from the primary human metabolite, N-2 glucuronide, and not from the parent compound (Zonja et al., 2016).

In this study, CBZ was found to resist removal in the E-Z Treat biofilter (-11%), Anua ATU (-1.5%), and CW between Tanks 1 and 4 (41%). Like, CBZ, LAM resisted removal in the E-Z Treat biofilter (-14%), Anua ATU (-4%), and CW between Tanks 1 and 4 (55%). However, much higher removal rates were seen for the Anua peat filters (99.8% overall) and the CW mycoremediation Tanks 5 and 6 (96% overall). Both compounds have been shown to be very susceptible to sorption, so the observed removal in these organic-rich tanks is not surprising (Yu et al., 2008; Dordio et
al., 2009; Paz et al., 2016). The relatively high removals seen in CW4 could have been as a result of sorption to the thin mulch layers on the surface of Tanks 3 and 4. Although the pH and point of net zero charge (PNZC) is not known for the peat used in this study, peats typically have low pHs and net negative charge at neutral pH (Delicato, 1996). The pH and PNZC of the wood chip/mulch media in the mycoremediation tanks is not known, but the pH of wood chips is generally low (less than 6) with lower values observed as moisture content increases (Sitholé, 2005).

CBZ is uncharged at neutral pH ranges (pKₐ = 13.9), but its structure is highly polarizable so the chemical likely has extensive van der Waals interactions with charged surfaces (Dordio et al., 2009). LAM has a pKₐ of 5.7, so the fraction of positively charged LAM in solution would increase as the solution pH decreased. It has been suggested that the presence of a triazine ring and amino groups on its structure would allow for hydrogen-bonding with functional groups on soil organic matter (Paz et al., 2016). Although LAM has a relatively low Log Kₐow value (0.99), the ability to form hydrogen bonds with functional groups on soil organic matter increases its sorptive ability relative to other compounds with similar Log Kₐow values. Paz et al. (2016) found that LAM and CBZ were strongly sorbed by soils and that sorption increased with soil organic matter content. CBZ metabolites CBZ-E and DiOHCBZ had weaker interactions with soil, which was predicted based on their lower Log Kₐow values compared with CBZ (1.97 and 0.81, respectively).

There were also some notable trends for the effluent concentrations of CBZ and LAM which further support sorption as a removal mechanism in the CW mycoremediation tanks and the Anua peat filters. First, effluent concentrations of CBZ and LAM increased with time in the effluents from both systems even as they decreased in the STE and E-Z Treat effluents. See Figure 3.16 below. Significant linear correlations with positive slopes were found for CW4 with CBZ and LAM and for the Anua system with CBZ only (p<0.1). This could indicate that sorption capacity was being reduced as the media adsorbed greater quantities of PPCPs and other wastewater constituents. Alternatively, the sorption patterns could have been tracking pH trends, as pH increased for both systems on the last two sampling dates. Since pH affects surface charge on media and ionization states of dissolved chemicals, it can influence the degree of sorption. In addition, CBZ and LAM concentrations in the CW6 effluent, but not the Anua effluent, showed a strong correlation with pH (p<0.01). See Figure 3.17 below. Note that unadjusted concentration
values were used for CW6 effluents because sorption behavior would be affected by the actual dissolved concentration in the tank, not the mass loading. The implications of this pH correlation will be discussed with respect to mycoremediation, below.

![Graph showing CBZ and LAM concentrations in CW6 and Anua effluents over time](image1)

Figure 3.16: CBZ and LAM concentrations in CW6 and Anua effluents over time
CBZ = carbamazepine; LAM = lamotrigine; CW6 = effluent from constructed wetland tank 6.

![Graph showing relationship between CW6 effluent pH and CBZ and LAM concentrations](image2)

Figure 3.17: Relationship between CW6 effluent pH and CBZ and LAM concentrations
CBZ = carbamazepine; LAM = lamotrigine; CW6 = effluent from constructed wetland tank 6.

It is also possible that fungal degradation played a role in removal of CBZ and LAM in the mycoremediation tanks. The literature on this removal mechanism will be reviewed in greater
detail below, along with observations of fungal activity during the course of the study. However, it should be noted that no clear indication of mycoremediation exists due to lack of monitoring data on fungal metabolites or enzymes and the lack of an appropriate control trial.

The ability of white rot fungi (WRF) to degrade TOCs in wastewater byproducts has been widely reported (Marco-Urrea et al., 2009; Rodriguez-Rodriguez et al., 2010; Jelic et al., 2012; Aydin, 2016). WRF are members of the phyla Basidiomycota and have adapted to live in wood and degrade lignin and even cellulose, some of nature’s most durable organic products, using nonspecific extracellular enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidases as well as intracellular mechanisms. Harms et al. (2011) reviewed the known extracellular and intracellular fungal enzymes responsible for contaminant degradation. Extracellular enzymes generate organic radicals in the presence of molecular oxygen, peroxide, and/or manganese (II) and usually require low pHs (around 5) to be effective. Diverse intracellular cytochrome P450 oxidases are known to be able to degrade contaminants and/or their metabolites which have already been generated by extracellular enzymes (Harms et al., 2011). Marco-Urrea et al. (2009) found that the cytochrome P450 system in Trametes versicolor was more active in the initial degradation step of carbamazepine and clofibric acid any extracellular enzymes.

Multiple studies have shown that CBZ can be degraded by mycoremediation (Marco-Urrea et al., 2009; Rodriguez-Rodriguez et al., 2010; Jelic et al., 2012). This might be expected given the sensitivity of CBZ to advanced oxidation processes (Hollender et al., 2009; De la Cruz et al., 2012). Although no studies could be found demonstrating LAM degradation by fungi, LAM is somewhat sensitive to hydroxyl radicals, so theoretically it could be degraded under biological advanced oxidation processes (Keen et al., 2014). Keen et al. (2014) found that 40% of LAM could be removed via UV-H$_2$O$_2$ advanced oxidation with 10 mg/L H$_2$O$_2$ and 500 mJ/cm2 with a low-pressure UV lamp, representing a hydroxyl radical reaction rate of 2.1 x 109 M$^{-1}$ s$^{-1}$. The reaction rate for CBZ is estimated to be four times faster, at 8.02 x 109 M$^{-1}$ s$^{-1}$ (Wols and Hofman-Caris, 2012).

CW Tanks 5 and 6 were originally inoculated with local strains of two different WRF species: T. versicolor and Pleurotus ostreatus. However, the dominant mushrooms within the tanks evolved to other species in July and August, including Coprinus comatus, which is a WRF species believed
to prefer colonizing woody media that has already been degraded by more aggressive WRF (such as *T. versicolor* and *P. ostreatus*) or brown rot fungi (Oliver et al., 2010). Fungal blooms were observed in the mycoremediation tanks between May and August, but no later. Very small amounts of mycelium were observed in the first 3 inches of the tanks in the fall. CW Tanks 3 and 4 were covered with a thin layer of mulch inoculated with *P. ostreatus*, and similar patterns of blooms were seen in these tanks, but not after July.

Oxalic, formic, and citric acids have been identified as fungal metabolites, and each of these organic acids would increase alkalinity by buffering solutions at the titration endpoint for alkalinity determination (pKₐs of 4.27, 3.75, and 4.76) (Gadd, 1999; Schilling, 2006; Harms et al., 2011). Figure 3.18 shows the relationship between the effluent pH and alkalinities of CW Tanks 4 and 6. It is possible that the increased alkalinity and decreased pH of CW6 relative to CW4 indicates the presence of fungal metabolites such as these organic acids. It should also be noted that the CW4 and CW6 effluent pHs were highly correlated (p<0.05), and this could reflect mirrored fungal activity in CW Tanks 3 and 4 and Tanks 5 and 6.

![Figure 3.18: Relationship between CW4 and CW6 effluent pH and alkalinity](image)

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>CW4 pH</th>
<th>CW6 pH</th>
<th>CW4 Alkalinity</th>
<th>CW6 Alkalinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/4/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/24/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/13/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/2/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/22/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/12/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/1/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/21/2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A significant correlation was also found between the change in pH and the removal rate (%) of both CBZ and LAM between CW Tanks 4 and 6 (p<0.1). See Figure 3.19 below. It was already
demonstrated that the CW6 effluent pH was significantly correlated with effluent CBZ and LAM concentrations (see Figure 3.17). However, the change in pH between CW Tanks 4 and 6 could be an indicator of fungal activity, and increased removal rates between Tanks 4 and 6 could indicate increased removal by mycoremediation. Unadjusted concentration values were used because the ratio of estimated CW Tank 5 influent to Tank 6 effluent flows were close to 1 throughout the sampling period. The slopes of the linear correlations were found to be significant (p<0.1) for each compound and were equal to 5.5% CBZ removal per pH unit and 3.0% LAM removal pH unit. Since CBZ is more sensitive to hydroxyl radicals, it is logical that the slope should be steeper for CBZ than for LAM (Wols and Hofman-Caris, 2012; Keen et al., 2014). Intercepts were not significant for either compound. R code is included in Appendix C.

Analogous correlations were not found for Anua Well 1 and the Anua effluent. Although the peat does not serve as a perfect control for fungi-inoculated wood chips, this observation has some value since both materials have high organic matter content and are expected to have similar pHs.

To conclude, the following observations are potential indications of fungal activity:

1. Observation of inky caps, which usually can only survive on woody debris that has already been significantly degraded by more aggressive mushrooms
2. Increased alkalinity and reduced pH in CW6 relative to CW4
3. CW6 effluent pHs showing a negative correlation with alkalinity, and
4. Significant correlation between pH change and effluent removal rates of CBZ and LAM between CW Tanks 4 and 6.
3.4.3.4 Metformin (MET) and Topiramate (TOP)

Both MET and TOP were detected at very low concentrations in the STE, making it difficult to assess the performance of any of the treatment systems with regard to their removals. MET was detected in all STE samples but always at concentrations less than 0.150 µg/L, while TOP was only detected in two samples. Low concentrations were expected because none of the residents in the house serving the septic tank consume these pharmaceuticals regularly. The presence of these chemicals in the septic tank therefore indicated contribution by visitors.

MET is readily removed in WWTPs, however removal is expected to represent conversion to guanylurea, which is persistent and polar (Scheurer et al., 2009; Trautwein and Kummerer, 2011; Scheurer et al., 2012). Although researchers have found both MET and guanylurea to be partially removed by chlorination and ozonation (byproducts not assessed), the most effective remediation strategy found was riverbank filtration or artificial groundwater recharge (Scheurer et al., 2012). Metabolites were not investigated in the filtrate. Researchers postulated that removal during this treatment process was via biological degradation, since MET and guanylurea were not
significantly sorbed to any of three soils tested. However, both MET and guanylurea are cations at neutral pH and have the ability to form hydrogen bonds with functional groups on organic matter, so both could be subject to sorption via net negatively charged peat.

There has been very little research into TOP behavior in WWTPs in the literature. TOP is largely unchanged during human metabolism and it is likely that glucuronide metabolites are converted back to the parent compound in WWTPs via hydrolysis, as has been observed for other pharmaceuticals (Zonja et al., 2016). Gurke et al. (2015) found less than 1-log removal of the compound in a biological WWTP with chemical phosphorus removal, however the researchers did not look for metabolites.

3.4.3.5 Venlafaxine (VEN)

Studies of VEN and metabolites in WWTP samples indicate that ODV is typically present at much higher concentrations than VEN – up to six times as high as the corresponding ODV concentration (Gasser et al., 2012; Boix et al., 2016). Gasser et al. (2012) found that VEN was converted stoichiometrically to ODV under anaerobic conditions, and that ODV was not substantially degraded further under these conditions. Under aerobic conditions, ODV was the primary degradation product of VEN and vice versa, but a mass balance was not obtained. It is possible that a VEN metabolite, V2, found by Boix et al. (2016) in 30 of 30 WWTP influents (in which VEN and ODV were also detected), was the missing metabolite in the Gasser et al. (2012) study.

Based on the reviewed research it can be inferred that the total mass loading of VEN and all metabolites was likely much higher than what was measured in the current study, because VEN was probably converted to ODV under the anaerobic conditions in the piping between the septic tank and the treatment systems. The removals of VEN seen in CW Tank 2 could have represented conversion to metabolites ODV or V2. The increase in VEN concentration seen in the Anua ATU could have been conversion of ODV to VEN, with the removals seen in the peat filters representing conversion back to a metabolite or removal via sorption. Both VEN and ODV have relatively high Log K_{ow} values (3.20 and 2.72, respectively) so sorption would be a viable removal mechanism for either compound.
3.5 Summary and Conclusions

In this study, the performance of three alternative onsite treatment systems was compared as they treated STE over the course of seven months. The treatment systems included a hybrid CW (CW4, HRT = 23 days) with mycoremediation filters (CW6, HRT = 6 days), an ATU with peat fiber biofilters (Anua, HRT = 10-15 days), and a styrene bead biofilter (E-Z Treat, HRT = 5-6 days).

As determined by ANOVA analyses, the CW4 was the only treatment system in the highest performing group for all analyzed conventional pollutants. The Anua system was also in the highest group for all conventional pollutants when ANOVA analyses were performed using an abridged data set collected prior to operational changes in August. The Anua, E-Z Treat, and CW4 systems had the highest removal rates for oxygen demand, while the CW4 and CW6 systems had the highest removal rates for nitrogen. BOD and TSS concentrations were consistently under 10 mg/L for all treatments beyond the septic tank, with the exception of CW6 as a result of its wood chip media. Average NH₄ concentrations were below 0.5 mg N/L for Anua, CW4, and CW6, and below 2 mg N/L for E-Z Treat.

The Anua system experienced an operational disruption in late August after its feed pumps were changed and BOD loading dropped. After the change, denitrification ceased and BOD increased slightly but performance remained consistent in terms of TSS and NH₄ removal. The system recommenced denitrification by the last sampling date in November. The CW consistently nitrified and denitrified throughout the sampling period with average TN of 2 mg N/L for both CW4 and CW6. The CW4 TN concentration jumped to 7 mg N/L on the last sampling date in November, indicating that a drop in nitrogen removals could be expected over the winter. The E-Z Treat system was not equipped for denitrification but achieved nitrification consistently throughout the sampling period.

Performance was also compared with regard to removal of eight PPCPs. Removal of metabolites was not monitored. Per ANOVA analyses, Anua and CW6 were in the highest performing group for all analyzed PPCPs. Average effluent concentrations were lower for the Anua samples collected prior to the operational disruption in all cases except for TCS, however no significant differences could be proved between the abridged and complete data sets.
The entire range of removal rates was above 75% for ACE, LEV, and TCS in all treatment systems, and for VEN in all treatment systems except for E-Z Treat. Median removal rates for CBZ varied widely from -10.9% for E-Z Treat to 87.3% for the Anua system over the entire sampling period and 96.4% for the Anua system prior to August 22nd. Median removals for LAM had a similar range, from -13.8% for E-Z Treat to 99.8% for the Anua system (both sampling ranges). Both MET and TOP were detected at very low concentrations in the STE, making it difficult to assess the performance of any of the treatment systems with regard to their removals. MET was detected in all STE samples but always at concentrations less than 0.150 µg/L, while TOP was only detected in two samples. This was expected because none of the residents in the house serving the septic tank consume these pharmaceuticals regularly. MET had average removal rates above 70% for all treatment systems; however, Anua and E-Z Treat removals could not be significantly distinguished from zero.

Although it was in the lowest performing group for all PPCPs where performance could be significantly differentiated, E-Z Treat system showed improved removal over time for ACE, CBZ, MET, TCS, and VEN. The observed trends could have been a result of microbial adaption to degrade those PPCPs either in the E-Z Treat influent piping or within the E-Z Treat module itself. For either case, there is reason to expect that the E-Z Treat performance would have improved over time. The Anua Well 1 effluent, reflecting the performance of the Anua ATU, also had decreasing PPCP concentrations over time for CBZ, MET, TCS, and VEN, although analogous trends were not seen for the Anua effluent. These observations suggest that treatments relying on microbial degradation may have increased removal rates the longer they are operated. For CBZ concentrations in the Anua ATU effluents, the trends were apparent even after 6 months of operation.

Removal mechanisms for each PPCP could be inferred based on where each was removed. Internal sampling of the CW and the Anua system made this exercise possible. ACE was removed at average rates > 99% in all systems and was well-removed in both the first tank of the CW (average effluent DO below 1 mg/L) and the ATU of the Anua system (average effluent DO above 7 mg/L), indicating removal under anaerobic/anoxic as well as aerobic conditions. TCS was removed by over 90% for the aerobic biological units of Anua and E-Z Treat. Despite low oxygen availability
in CW Tank 1, 82% removal of TCS were achieved. Overall removals in the CW increased to 89% and >94% at the effluent of Tanks 2 and 3 (average effluent DO above 6 mg/L), respectively. Results for ACE and TCS reflected findings from other studies in the literature, although TCS showed surprisingly high removal rates under low oxygen conditions (McAvoy, 2002; Avila et al., 2013; Du et al., 2014). LEV appeared to be degraded only under aerobic conditions, achieving 98% removal in the Anua ATU, compared with 11% removal in CW Tank 1. This was consistent with other findings the literature, but unfortunately, no studies considering LEV metabolites from wastewater treatment could be found (Gurke et al., 2015).

CBZ and LAM were primarily removed in the CW mycoremediation tanks and the Anua peat filters. Expected removal mechanisms include sorption for both treatment systems and potentially fungal degradation for the CW mycoremediation tanks. Due to lack of monitoring data on fungal metabolites or enzymes and the lack of an appropriate control trial, it is not possible to definitively prove fungal degradation as a removal mechanism. However, patterns of pH and alkalinity changes between CW4 and CW6, observed fungal species succession, as well as a significant correlation between CBZ and LAM removal rates with pH change between these two tanks suggest fungal degradation as a mechanism.

The limited measurements of MET and TOP from the study make it difficult to theorize about removal mechanisms. However, it is likely that all MET removals represented generation of its persistent metabolite, guanylurea, although sorptive removal in the CW mycoremediation tanks or Anua peat filters is also possible (Scheurer et al., 2009; Trautwein and Kummerer, 2011; Scheurer et al., 2012). VEN removals were observed mainly in the CW Tank 2 and the Anua peat filters; however, findings from the literature suggest that observed removals represent conversion to similarly persistent compounds (Gasser et al., 2012; Gurke et al., 2015; Boix et al., 2016).

The results from this study indicate that the Anua and CW treatment systems show promise for onsite remediation of PPCPs. Although it is likely that PPCP remediation capacity of the E-Z Treat system would improve with time, it is doubtful that this system would be able to achieve the high removal rates seen in the other two systems, particularly for persistent PPCPs CBZ and LAM. However, the E-Z Treat system may be a good secondary treatment system to install for communities considering advanced tertiary treatment like advanced oxidation or activated carbon
filtration, because of its consistent performance, aerobic treatment for EDC removal, low effluent BOD and TSS concentrations, and lack of solid waste production. If recirculation through an anoxic zone was included in this treatment option, denitrification and potentially even enhanced PPCP removal could be achieved.

It would be extremely useful to conduct additional experiments with these two systems in which:

- The Anua system received a higher and more consistent organic matter loading
- Effluent from CW mycoremediation tanks was polished in gravel media wetland filter to remove high BOD (for example, move the CW Tank 4 from this study after the mycoremediation tanks)
- The CW was operated through the winter to quantify the effect of lower temperatures of PPCP and nitrogen removals
- Fungal activity was quantified by monitoring effluents or tank contents for fungal metabolites

Finally, before considering implementation of either the Anua peat fiber biofilters or the CW, disposal options must be considered for solid waste products generated during treatment, including peat for the Anua system and plant trimmings and wood chip media for the CW. It would be valuable to measure whether there is any degradation of sorbed PPCPs in either media over time.

3.6 Acknowledgements

This study was supported by the American Water Works Association (AWWA) Larson Aquatic Research Support (LARS) scholarship, the Edna Bailey Sussman Fund, the Southeast Rural Community Assistance Project (SERCAP), and the Virginia Tech Charles E. Via, Jr. Department of Civil and Environmental Engineering. Anua International and E-Z Treat Company donated equipment and time, and Anua International funded the internal sampling effort for their system. The community that hosted the pilot study deserves recognition as the most generous supporter of this project, providing funding; space for the pilot system; staff and volunteer assistance during construction, operation, and deconstruction; and, last but certainly not least, over 40,000 gallons of septic tank effluent.

4 Conclusions

This report consisted of two articles. Findings from both articles indicated that it will not be possible to completely degrade or even remove all TOrCs using onsite wastewater treatment systems because of the limits on infrastructure costs and available land. However, the aim of such systems should be to minimize release of TOrCs with wide varieties of chemical properties, and to prevent accumulation of potentially persistent TOrCs in the natural environment.

It is important to note that alternative treatment may be unnecessary in many onsite applications. The TOrC remediation capacity of septic fields is not well understood, likely because it relies on highly site-specific factors, including soil composition, soil porosity, groundwater depth, aquifer characteristics, and surface water proximity. Based on findings in the literature in which groundwater contamination by TOrCs has been identified, it is likely that sites with one or more of the following characteristics are susceptible to contamination of ground and surface water resources:

- Sandy or porous soils
- Shallow aquifers and wells
- Location in area of dense onsite treatment systems
- Unusually high pharmaceutical consumption rates

Sites with these characteristics should consider whether alternative treatment strategies are necessary for TOrC remediation. However, one study in the literature has called into question the utility of certain alternative treatment options at sites with moderately-drained septic field soils and groundwater tables more than 180 cm (6 ft) below septic field distribution lines (Conn and Siegrist, 2009). Alternative treatment is unnecessary at sites that have large enough groundwater flow rates to sufficiently dilute TOrCs transported through the septic field before they reach drinking water wells. For aquatic organisms and humans, the concentration of a chemical within water dictates the rate of consumption of that chemical, and therefore the toxicity. When TOrCs cross the lower boundary of the septic field into groundwater, they are dissolved in a relatively large body of water compared to original volume of water discharged to the septic field. This dilution may be enough to eliminate toxicity concerns, depending on the flow rate of groundwater.
below the septic field and the degree of mixing in groundwater between the point of entrance and the receptor. Detailed knowledge of aquifer characteristics may allow for the approximation of the maximum possible concentration of TOrCs in the groundwater, given septic tank effluent concentrations and wastewater discharge rates. This may be a valuable tool for risk assessment at sites where septic fields have not reached steady-state in terms of sorption.

Since CS tanks only provide opportunities for anaerobic or facultative degradation and limited sorption to largely organic solids, additional treatment units should provide different removal mechanisms, including aerobic degradation, photodegradation, or enhanced sorption to organic and inorganic solids. When adequate septic fields are available, additional treatment units should provide removal mechanisms beyond those available in the septic field, including redox cycling to support microbial degradation (Conn and Siegrist, 2009). It may also be valuable to provide a confined, solid-state matrix, analogous to the septic field but physically separated from downstream environments, to prevent TOrC accumulation in soils and impacts to terrestrial environments, especially in agricultural applications.

Treatment units that provide permanent removal of TOrCs and potentially bioactive byproducts should be valued more highly than those that only provide temporary removal mechanisms. However, it is also undesirable for treatments to generate large, concentrated waste streams that will be costly or difficult to dispose of, or that will represent a new source of TOrCs in the environment. Thus ideal sorption would not irreversibly bind TOrCs, but instead slow their movement through the treatment unit to allow time for degradation into innocuous byproducts. Of course, the inherent limitations to onsite wastewater treatment must also be considered when choosing onsite systems. Therefore, advanced treatment options like advanced oxidation or reverse osmosis may not be economically feasible and would require enhanced treatment of STEs.

Findings from the literature clearly indicate that both wetlands and ETUs have a greater capacity for TOrC remediation than CS tanks alone (Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Furthermore, wetlands and ETUs that include aeration, either forced or through the passive use of unsaturated filters, have been found to be more effective for the removal of TOrCs, particularly EDCs (Stanford and Weinberg, 2010).
All of the reviewed comparison studies indicated slightly better performance in vegetated systems relative to ETUs, but statistical significance was not demonstrated in any of them (Matamoros et al., 2009; Stanford and Weinberg, 2010; Du et al., 2014). Similar conclusions were drawn in the pilot study described in Chapter 3. The considered treatment systems included a hybrid constructed wetland (CW4, HRT = 23 days) with mycoremediation post-treatment (CW6, HRT = 6 days), an ATU with peat biofilter post-treatment (Anua, HRT = 10-15 days), and a styrene bead biofilter (E-Z Treat, HRT = 5-6 days). No metabolites were monitored in the study, so removal rates do not necessarily represent permanent removal. As determined by ANOVA analyses, Anua and CW6 were in the highest performing group for all analyzed PPCPs. These systems exhibited excellent removal rates, including 100.0% for ACE, 99.8% for LEV, >73.5% for MET, >93.5% for TCS, and >99.0% for VEN (all reported values represent medians; MET, TCS, and VEN were removed below detection). Removals for CBZ and LAM were particularly notable: > 80% for CBZ and > 95% for LAM. It is believed these removals were primarily due to sorption in the Anua peat filters and the CW mycoremediation tanks. Due to lack of monitoring data on fungal metabolites or enzymes and the lack of an appropriate control trial, it is not possible to definitively prove fungal degradation as a removal mechanism. However, patterns of pH and alkalinity changes between CW4 and CW6, observed fungal species succession, as well as a significant correlation between CBZ and LAM removal rates with pH change between these two tanks suggest fungal degradation as a mechanism.

All of the treatment systems had excellent performance with regards to conventional pollutants. As determined by ANOVA analyses, the CW4 produced the best quality effluent in terms of BOD, COD, NH₄, TIN, and TN. The Anua, E-Z Treat, and CW4 systems had the highest removal rates for oxygen demand, while the CW4 and CW6 systems had the highest removal rates for nitrogen. BOD and TSS concentrations were consistently under 10 mg/L for all treatments beyond the septic tank, with the exception of CW6 as a result of its wood chip media. Average NH₄ concentrations were below 0.5 mg N/L for Anua, CW4, and CW6 and below 2 mg N/L for E-Z Treat.

The results from this study indicate that the Anua and CW treatment systems show promise for onsite remediation of PPCPs. They meet many of the qualitative metrics established in the first article of this report, providing a confined solid state matrix to prevent accumulation in the
terrestrial environment, as well as redox cycling and opportunities for enhanced aerobic degradation relative to the septic field. Although it is likely that PPCP remediation capacity of the E-Z Treat system would improve with time, it is extremely doubtful that this system would be able to achieve the high removal rates seen in the other two systems, particularly for persistent PPCPs CBZ and LAM. However, the E-Z Treat system may be a good secondary treatment system for communities considering advanced tertiary treatment like advanced oxidation or activated carbon filtration, because of its consistent performance, aerobic treatment for EDC removal, low effluent BOD and TSS concentrations, and lack of solid waste production. If recirculation through an anoxic zone was included in this treatment option, denitrification and potentially even enhanced PPCP removal could be achieved.

It would be extremely useful to conduct additional experiments with these two systems in which:

- The Anua system received a higher and more consistent organic matter loading
- Effluent from CW mycoremediation tanks was polished in gravel media wetland filter to remove high BOD (for example, move the CW Tank 4 from this study after the mycoremediation tanks)
- The CW was operated through the winter to quantify the effect of lower temperatures of PPCP and nitrogen removals
- Fungal activity was quantified by monitoring effluents or tank contents for fungal metabolites

Finally, before considering implementation of either the Anua peat fiber biofilters or the CW, disposal options must be considered for solid waste products generated during treatment, including peat for the Anua system and plant trimmings and wood chip media for the CW. It would be valuable to measure whether there is any degradation of sorbed PPCPs in either media over time.
References

Hijosa-Valsero, M.; Matamoros, V.; Pedescoll, A.; Martín-Villacorta, J.; Bécares, E.; García, J.; Bayona, J. M. Evaluation of primary treatment and loading regimes in the removal of

Miller, K. J.; Meek, J. *Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (PPCPs), and Microbial Indicators of Fecal Contamination*; Montana

including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Res. 2015, 72, 28-39.

Appendix A: Analytical Methods

A.1 Conventional Pollutants

Alkalinity

Use Standard Method 2320 Titration Method for alkalinity analysis. Samples should be refrigerated at or below 6°C and analyzed within 24 hours of collection. At least one sample should be analyzed in duplicate for each sampling event. Use a sample volume of 50 or 100 mL and titrate with 0.02 N standardized sulfuric acid.

Be aware that soaps, oily matter, suspended solids, or precipitates may coat the pH electrode so more time should be allowed for the electrode to come to equilibrium with the sample after each acid addition.

Apparatus

1. pH meter with glass electrode that can be read to the nearest 0.05 pH unit.
 a. Oakton 5+ pH meter
2. Magnetic stirrer
3. Buret
4. Watch glasses
5. Hot plate

Reagents

1. Sodium carbonate solution, approximately 0.05 N (do not keep longer than 1 week) made up using a known weight of solid sodium carbonate.
2. Standardized sulfuric acid, approximately 0.02 N.

Procedure

1. Standardize the sulfuric acid against 10.00 mL (measured using a volumetric pipet) of the sodium carbonate solution. Titrate to a pH of about 5. Lift out electrodes, rinse into the same beaker, and boil gently for 3 to 5 minutes under a watch glass cover. Cool to room temperature, rinse cover glass into beaker, and finish titrating to pH 4.30. Calculate the
normality of the sulfuric acid using the formula below and find the average of at least
duplicate trials. Do this at least once every 4 months of using the same acid, or at least
when the acid is first made up and just before it runs out.

\[\text{Normality, eq/L} = \frac{g \text{ Na}_2\text{CO}_3 \text{ dissolved in 1 L} \times mL \text{ Na}_2\text{CO}_3 \text{ solution used}}{53.00 \times mL \text{ of standard acid}} \]

2. Rinse electrodes and titration vessel well with distilled water before using. Adjust sample
to room temperature and measure desired volume using a graduated cylinder.

3. Titrate to the end-point pH of 4.3 to 5.0, depending on the alkalinity of the sample, per
equation in the calculation section below. Between pH 4.3 and 5.0, make smaller additions
of acid. As the end point is approached, make smaller additions of acid and take careful
notes. Stop the titration once the sample pH has dropped below 4.3.

Calculations

Determine the end point pH iteratively using the equations for the end-point pH (derived based on
Table 2320:1 in APHA, 1998) and the alkalinity shown below.

\[\text{End Point pH} = \log \left(7.27 \times 10^{-11} \times Alk^2 + 1.19 \times 10^{-7} \times Alk + 8.79 \times 10^{-6} \right) \]

\[\text{Alkalinity, mg CaCO}_3/L = \frac{mL \text{ of standard acid} \times \text{ acid normality} \times 50,000}{mL \text{ sample}} \]

Biochemical Oxygen Demand, 5-Day

Use the Standard Method 5210 5-Day BOD Test. From Crites and Tchobanoglous, 1998, the
typical range for BOD$_5$ in STE is 150 – 250 mg/L. Based on practice samples, the STE is expected
to have a BOD$_5$ of 100 – 150 mg/L. The high and low dilution rates should ensure a DO change
of at least 1 mg/L and a minimum final DO concentration of 1 mg/L during the BOD$_5$ analyses.
Use the following formula:

\[\text{BOD}_5 = \frac{D_1 - D_2}{P} \]
where D_1 is the initial DO concentration, D_2 is the final DO concentration, and P is the dilution factor (or mL of sample required per 300 mL total sample size). Assume that D_1 will be 7.8 mg/L based on practice sampling runs. For STE samples, use dilution levels of 0.020 and 0.040 (or 6.0 and 12.0 mL sample sizes, respectively). For treated effluent samples, use dilution levels of 0.03 and 0.20 (or 10.0 and 60.0 mL sample sizes). Three replicates from each dilution level should be used. At least three blanks should be used for each round of sampling.

Samples should be stored at or below 6 °C. If it is not possible to initiate the BOD$_5$ tests within 6-12 hours of collection, note the duration of storage with the results. In no case should tests be initiated more than 24 hours after collection. Samples and dilution water should be allowed to warm to room temperature before beginning the analysis.

Apparatus

1. 300 mL incubation bottles having a ground-glass stopper and a flared mouth. Clean bottles with a detergent, rinse thoroughly, and drain before use.
2. Air incubator thermostatically controlled at 20±1 °C.
3. Dissolved oxygen analyzer
 a. YSI model 57 DO analyzer and 5905 BOD probe

Reagents

Prepare reagents in advance but discard them if there is any sign of precipitation or biological growth in the stock bottles.

1. Phosphate buffer solution
2. Magnesium sulfate solution, calcium chloride solution, ferric chloride solution
3. Distilled dilution water

Procedure

1. Measure out an appropriate volume of dilution water and place it in the incubator at least 48 hours before running the test so that its temperature is 20±3 °C before making up the BOD bottles. Protect water quality by using clean glassware, tubing, and bottles. Do not aerate dilution water as this can cause supersaturation.
2. Run a dilution water blank with all samples to ensure the cleanliness of incubation bottles and quality of source water. The DO uptake should not be more than 0.2 mg/L and preferably not more than 0.1 mg/L. Discard all dilution water having a DO uptake greater than 0.2 mg/L.

3. Using a graduated pipet or cylinder, measure three replicates of each dilution level into numbered, 300-mL BOD bottles. For dilutions greater than 1:100, make a primary dilution in a graduated cylinder before making final dilution in the bottle. Fill the reservoir with water and position the plastic cap on the bottle.

4. Add 1 mL each of phosphate buffer, magnesium sulfate, calcium chloride, and ferric chloride solutions per liter of dilution water to the dilution water bottle using a graduated pipet. Swirl to mix the dilution water.

5. Calibrate the DO analyzer. Be sure to apply the 0.93 correction for high elevation.

6. For each set of three replicates, add dilution water to the brim and then measure the initial DO of each before adding dilution water to the next set of replicates. After recording the initial DO of each, insert the bottle stoppers, fill the wells, and attach the plastic cap. Ensure there are no air bubbles in the bottles. Then record the time of completion for those three replicates.

7. Repeat step 6 for each group of three replicates. Rinse DO electrode between determinations to prevent cross-contamination of samples.

8. Place all BOD bottles in the incubator set to 20 °C and store for 5 days.

9. After 5 days, measure the DO in each BOD bottle in the same order as was used to measure the initial DO. Record the final DO reading. Discard any samples with air bubbles in the BOD bottles.

Calculations

For each test bottle meeting the 1.0-mg/L minimum DO depletion and the 1.0-mg/L residual DO, calculate BOD$_5$ using the equation at the beginning of this section. If these conditions are not met, record the BOD$_5$ but note the discrepancy.
Total Suspended Solids

Use Standard Method 2540D Total Suspended Solids Dried at 103-105 °C Method for TSS analysis. The sample size should be limited to that yielding between 2.5 and 200 mg residue. Per Crites and Tchobanoglous, 1998, residential STE is expected to have between 40 and 140 mg/L TSS, so use a 50 or 100 mL sample size for STEs. Use as large a sample size as possible (100 to 300 mL) for treated effluent samples.

Samples should be stored in glass bottles if possible. If this is not possible, any adhesion of solids to bottle walls should be noted. Samples should be refrigerated at or below 6 °C and analyzed within 24 hours of collection.

Duplicates of all samples should be analyzed. For samples high in dissolved solids thoroughly wash the filter to ensure removal of dissolved material.

Apparatus

1. Drying oven for operation at 103 – 105 °C
2. Analytical balance capable of weighing to 0.1 mg
3. Magnetic stirrer with TFE stirring bar
4. Glass-fiber filter disks without organic binder
5. Filtration apparatus suitable for the filter disk selected
6. Suction flask
7. Aluminum weighing dishes

Procedure

1. Insert disk with wrinkled side up in filtration apparatus. Apply vacuum and wash disk with three successive 20-mL portions of reagent-grade water. Continue suction to remove all traces of water, turn vacuum off, and discard washings. Remove filter from filtration apparatus and transfer to an inert aluminum weighing dish. Dry in an oven at 103 to 105 °C for 1 hour. Repeat cycle of during or igniting, cooling, and weighing until a constant weight is obtained or until weight change is less than 4% of the previous weighing or 0.5
mg, whichever is less. Store in drying oven until needed. Record final weight of filter +
aluminum weighing dish.

2. Choose sample volume to yield between 2.5 and 200 mg dried residue. If volume filtered
fails to meet minimum yield, increase sample volume up to 1 L. If complete filtration takes
more than 10 minutes, increase filter diameter or decrease sample volume.

3. Assemble filtering apparatus and filter and begin suction. Wet filter with a small volume
of reagent-grade water to seat it. Measure out sample volume using a graduated cylinder,
pour onto filter, and apply suction. Wash filter with three successive 10 mL volumes of
reagent grade water, allowing complete drainage between washings, and continue suction
for about 3 minutes after filtration is complete. Samples with high dissolved solids may
require additional washings.

4. Carefully remove filter from filtration apparatus and transfer to an aluminum weighing dish
as support. Dry for at least 1 hour at 103 to 105 °C in an oven, cool to balance temperature,
and weigh. Repeat the cycle of drying, cooling, desiccating, and weighing until a constant
weight is obtained or until the weight change is less than 4% of the previous weight or 0.5
mg, whichever is less. Analyze at least 10% of all samples in duplicate. Duplicate
determinations should agree within 5% of their average weight.

Calculations

\[
mg\ TSS = \frac{(weight\ of\ filter + dried\ residue,\ mg - weight\ of\ filter,\ mg) \times 1,000}{weight\ of\ filter,\ mg}
\]

Ammonia

Use Standard Method 4500-NH₃ B for preliminary distillation and 4500-NH₃ C for titration. Use
a 100-mL sample for each replicate.

If the pH of the composite sample is greater than 8, then a drop of acid should be added to the
ammonia sample prior to storage. Samples should be refrigerated at or below 6 °C, or frozen if
unacidified. Ammonia analyses should be completed within 72 hours of sampling. At least one
sample should be analyzed in duplicate for each sampling event.
Apparatus

1. Distillation apparatus
2. 250-mL flask and 100-mL beaker for each sample
3. pH meter with glass electrode that can be read to the nearest 0.05 pH unit.
 a. Oakton 5+ pH meter
4. Magnetic stirrer
5. Buret

Reagents

1. Nanopure water (ammonia free)
2. Borate buffer solution
3. Sodium hydroxide 1 N
4. Mixed indicator solution
5. Indicating boric acid solution
6. Standard sulfuric acid titrant 0.02 N

Procedure

1. Rinse glassware for ammonia analysis with nanopure water just before use. Carry a blank (nanopure water) through all steps of the procedure and apply the necessary correction to the results.
2. Rinse distillation equipment with nanopure water before running the blanks and samples to minimize contamination.
3. Transfer 100 mL of sample/standard/blank into a 250-mL distillation flask. Add 5 mL borate buffer solution and adjust to pH 9.5 with 1 N NaOH drop-wise and using a pH meter. **USE GOGGLES WHEN WORKING WITH SODIUM HYDROXIDE.**
4. Transfer sample flask to distillation apparatus. Using a graduated cylinder, measure 10 mL indicating boric acid solution and pour into a 100 mL beaker. Position the beaker beneath the condenser so that the condenser tip is below the surface of the indicating boric acid trapping solution.
5. Turn the burner on and adjust to the highest setting. Stop the distillation after about 60 mL of condensate has been collected in the boric acid beaker. Turn the burner off and lower the beaker so that the tip of the condenser is no longer below the surface of the liquid. Catch the last condensate drips in the beaker. TURN OFF THE COOLING WATER.

6. Titrate ammonia in distillate with standard 0.02 N H$_2$SO$_4$ titrant to pH 4.30.

Calculation

\[
\frac{\text{mg NH}_3 - N}{L} = \frac{(\text{vol. H}_2\text{SO}_4 \text{ for sample, mL} - \text{vol. H}_2\text{SO}_4 \text{ for blank, mL}) \times \text{acid normality, N} \times 14,000}{\text{mL sample}}
\]

Major Ions

Use Standard Method 4110B for Ion Chromatography to determine the concentrations of fluoride, chloride, nitrate, nitrite, phosphate, and sulfate. 5 mL samples are required to perform this analysis.

Samples for ion chromatography should be stored at or below 6 °C in polyethylene plastic or glass and analyzed within 48 hours. Use standards and two replicates for quality control.

Apparatus

1. Ion chromatograph
 a. Dionex ICS-1600 with conductivity detector, column heater and ASDV autosampler

Reagents

2. Nanopure water for blanks
3. Eluent solution of 0.0017 M NaHCO$_3$-0.0018 Na$_2$CO$_3$
4. Regenerant solution of 0.025 N H$_2$SO$_4$
5. Standard anion solutions

Procedure

1. Follow instructions for use with the ion chromatograph.
2. Run blanks using nanopure water, plus a range of standards. Filter samples using 0.45 μm syringe filters.

3. Analyze data using Dionex workstation with Chromleon SE software (Version 7.0).

Total Kjeldahl Nitrogen

Use Standard Method 4500-N$_{org}$ B to digest and distill sample, followed by Standard Method 4500-NH$_3$ C for titration. Per Crites and Tchobanoglous, 1998, the TKN concentration for residential STE is expected to be 50-90 mg N/L. Use a 10 mL sample size.

After compositing the sample, acidify to pH 1.5 to 2.0 with concentrated H$_2$SO$_4$ and store at or below 4 °C in a glass container. Samples should be analyzed within two weeks, or one week if possible.

Run two to three replicates of the analyses along with a laboratory blank.

Apparatus

1. Digestion apparatus – 100-mL Kjeldahl flasks and a heating devise adjusted so that 250 mL water at an initial temperature of 25 °C can be heated to a rolling boil in approximately 5 min. A heating devise meeting this specification should provide the temperature range of 375 to 385 °C for effective digestion.

2. Distillation apparatus and apparatus for ammonia determination (see Ammonia Apparatus section above)

Reagents

Prepare all reagents and dilutions in ammonia-free water.

1. Digestion reagent

2. Sodium hydroxide-sodium thiosulfate reagent

3. Mixed indicator solution, indicating boric acid solution, and standard sulfuric acid titrant (see Ammonia Reagents section above)
Procedure

1. Carry a blank through all steps of the procedure and apply the necessary correction to the results.

2. Place 10 mL of sample in a Kjeldahl digestion flask. Add boiling chips to the flask. This will help the samples boil evenly. Boiling chips should not be reused.

3. Pipet 10 mL of digestion solution into the flask. Use splash goggles. Mix the contents of the flask by swirling. Position the flask on the digestion rack. Turn the burner to a low setting to boil off the water.

4. When the sample volume has been reduced to less than 5 mL, copious white fumes will appear in the flask. The boiling point of the mixture will increase to above 350 °C. Turn the heat to a higher setting and begin the digestion. The flask must be heated at the highest setting for a minimum of 30 minutes.

5. When the flask has cooled, carefully transfer the contents to a distillation flask using several aliquots of ammonia-free water. The final volume should be approximately 100 mL.

6. Carefully pour 10 mL of sodium hydroxide/sodium thiosulfate solution into the distillation flask. Use splash goggles. Rinse the glass joint with a few milliliters of water to keep the glass from fusing.

7. Swirl the flask and position it on the distillation unit. Turn the heat setting to high. The tip of the condenser should be below the surface of 20 mL of indicating boric acid in the trapping beaker. Make sure that the cooling water is flowing at a moderate rate.

8. Continue distillation until about 60 mL of condensate has been collected. Disengage the trapping solution from the condenser. Turn off the cooling water.

9. Titrate the entire volume of trapping solution to pH 4.30 using standardized 0.02 N H₂SO₄.

Calculation

See ammonia calculation section.
Chemical Oxygen Demand

Use the Hach USEPA Reactor Digestion Method 8000 for high range (HR) COD concentrations of 20 to 1,500 mg/L, or low range (LR) concentrations of 3 – 150 mg/L. Per Crites and Tchobanoglous, 1998, the typical range for COD in STE is 250 – 500 mg/L. The required sample volume for the Hach test is 2.0 mL.

To preserve samples for later analysis, adjust the sample pH to less than 2 with concentrated sulfuric acid (approximately 2 mL per liter). Keep the preserved samples at or below 6 °C for a maximum of 28 days, or preferably one week. At least one sample should be analyzed in duplicate for each sampling event.

Note that Hach COD kits contain mercury and must be disposed of carefully.

Apparatus

1. Hach COD digestion reagent vials
2. Hach DRB200 Reactor
3. Light shield or adapter
4. Test tube rack
5. Hach Spectrophotometer, model DR 2800

Procedure

1. Run one blank with each set of samples. If measuring samples using two different ranges, make one blank for each COD range.

2. Set the DRB200 Reactor power to on. Preheat to 150 °C. Refer to the DRB200 User Manual for selecting pre-programmed temperature applications.

3. To prepare the samples, remove the cap from a vial for the selected COD range. Hold the vial at an angle of 45 degrees. Use a clean pipet to add 2.0 mL of sample to the vial. To prepare the blank, remove the cap from another vial of the selected COD range. Hold the vial at an angle of 45 degrees. Use a clean pipet to add 2.0 mL of deionized water to the vial. Close the vials tightly. Rinse the vials with water and wipe with a clean paper towel.
Hold the vials by the cap over a sink. Invert gently several times to mix. The vials get very hot during mixing.

4. Put the vials in the preheated DRB200 reactor and close the lid, then heat the vials for 2 hours. After 2 hours, set the reactor power to off. Let the vials cool in the reactor for approximately 20 minutes to 120 °C or less. Invert each vial several times while it is still warm, and then put the vials in a tube rack to cool them to room temperature.

5. On the spectrophotometer, start program 435 COD HR. Clean the blank sample cell and insert it into the cell holder. Push ZERO. The display should show 0 or 0.0 mg/L COD. Then clean the prepared sample cell. Insert the prepared sample into the cell holder and push READ. Results will be shown in mg/L COD.

Total Phosphorus

Use Hach Molybdovanadate Method with Acid Persulfate Digestion Method 10127 to analyze for total phosphorus. Per Crites and Tchobanoglous, 1998, total phosphorus in residential STE is expected to be between 12 and 20 mg P/L. Use a 5 mL sample size if using the high rate Hach kit.

Samples for TP analysis should be stored in plastic or glass bottles rinsed with HCl (followed by distilled water) and never washed with phosphate detergent. Analyze samples immediately after collection or preserve the sample for up to 28 days by adjusting the pH to 2 or less with concentrated H₂SO₄ and storing at 6 °C. Preserved tests should be completed within 28 days of sampling – preferably 7 days. At least one sample should be analyzed in duplicate for each sampling event.

Apparatus

1. Hach Total High Range Phosphorus Test N’ Tube™ Reagent Set
2. Hach DRB200 Reactor
3. Light Shield
4. Test tube rack
5. Hach DR2800 Spectrophotometer

Procedure
1. Turn on the digestor. Heat to 150 °C.

2. Select the test on the DR2800 spectrophotometer. Install the light shield in cell compartment #2.

3. Add 5.0 mL of sample or distilled water to a TP vial. Use one blank for every set of tests.

4. Use a funnel to add the contents of one potassium persulfate powder pillow to each vial. Cap tightly and shake to dissolve.

5. Insert the vials in the digestor and close the protective cover. Start the timer on the spectrophotometer and a 30-minute heating period will begin. After the timer expires, carefully remove the hot vials from the reactor. Insert them in a test tube rack and to cool to room temperature.

6. Add 2.0 mL of 1.54 N sodium hydroxide to each vial. Cap and invert to mix.

7. Use a polyethylene dropper to add 0.5 mL of molybdovanadate reagent to each vial. Cap and invert to mix.

8. Start the next timer on the spectrophotometer and a 7-minute reaction period will begin. Read the sample within seven to nine minutes after adding the molybdovanate reagent. Before inserting vials into the spectrophotometer, wipe them with a damp towel and then a dry one to remove smudges.

9. When the timer expires, insert the blank into the 16-mm cell holder. Press zero. Then insert the prepared samples into the 16-mm cell holder one at a time. Press read and record the measurements, which are in mg/L PO$_4^{3-}$.

Total Nitrogen

Use Hach Persulfate Digestion Method 10072 to analyze for total nitrogen. Use a 0.5 mL sample size if using the high rate Hach kit.

Analyze samples immediately after collection or preserve the sample for up to 28 days by adjusting the pH to 2 or less with concentrated H$_2$SO$_4$ and storing at 6 °C. Preserved tests should be
completed within 28 days of sampling – preferably 7 days. At least one sample should be analyzed in duplicate for each sampling event.

Apparatus

1. Hach Total High Range Nitrogen Test N’ Tube™ Reagent Set
2. Oven capable of heating to 105°C
3. Light Shield
4. Test tube rack
5. Hach DR2800 Spectrophotometer

Procedure

1. Turn on the oven. Heat to 105°C.
2. Use a funnel to add the contents of one Total Nitrogen Persulfate Reagent Powder Pillow to each of two HR Total Nitrogen Hydroxide Digestion Reagent vials. Make sure to clean any reagent that gets on the lip of the vials or on the vial threads.
3. Add 0.5 mL of sample or distilled water to a TN vial. Use one blank for every set of tests.
4. Put the caps on all vials. Shake vigorously for at least 30 seconds to mix. Undissolved powder will not affect the accuracy of the test.
5. Put the vials in the oven. Leave the vials in the oven for exactly 30 minutes.
6. At 30 minutes, remove the vials from the reactor and let the vials cool to room temperature.
7. Add the contents of one TN Reagent A Powder Pillow to each vial.
8. Put the caps on both vials. Shake for 30 seconds.
9. Start the instrument timer. A 3-minute reaction time starts.
10. After the time expires, remove the caps from the vials. Add one TN Reagent B Powder Pillow to each vial.
11. Put the caps on all vials. Shake vigorously for 15 seconds to mix. The reagent will not dissolve completely. Undissolved powder will not affect the accuracy of the test. The solution will start to turn yellow. Wait 2 minutes.
12. When the time expires, use a pipet to put 2 mL of each digested, treated prepared sample (including the blank) into one TN Reagent C vial.

13. Put the caps on the vials. Invert 10 times to mix. Use slow, deliberate inversions for complete recovery. The vials will be warm to the touch. Wait 5 minutes.

14. When the timer expires, insert the blank into the 16-mm cell holder. Press zero. Then insert the prepared samples into the 16-mm cell holder one at a time. Press read and record the measurements, which are in mg/L N.

Total Coliforms and E. Coli

Use the IDEXX Colilert Quanti-Tray/2000 trays with snap pack reagents. Use a 10-4-mL sample size for STE samples and a 50-, 10-, or 1-mL sample size for treated effluents.

Analyze samples within 24 hours of collection. Run all samples in duplicates at least.

Apparatus

2. Quanti-Tray sealer and rubber support.
3. Colilert snap packs
4. Shrinkbanded dilution vessels

Procedure

1. For each sample, measure the appropriate volume into a dilution vessel and add sterile water to the mark.

2. Add the contents of one snap pack to each dilution vessel. Shake well to dissolve the powdered reagent.

3. Pour the contents of the dilution vessel into a tray and seal using a Quanti-Tray sealer and rubber support.

4. Incubate the tray at 35°C for 24 hours. After 24 hours, count the number of yellow cells and the number of cells that fluoresce under a UV lamp. Use the IDEXX MPN Generator software to estimate the Total Coliform and E. Coli concentrations indicated by the test.
A.2 PPCPs

The table below specifies mass spectrometer multiple reaction monitoring (MRM) parameters. All data acquisition was in positive ion mode except triclosan, which required negative ion mode. For triclosan, poor fragmentation led to quantification via isotope monitoring in MS1 mode. An example of all standards at 75 ng/mL is shown in Figure A.2.1.

<table>
<thead>
<tr>
<th>PPCP</th>
<th>Parent ion (m/z)</th>
<th>Fragment ion (m/z)</th>
<th>Dwell (secs)</th>
<th>Cone Voltage (V)</th>
<th>Collision Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin (Scan time: 0.0-2.0 min, 568 scans)</td>
<td>129.94</td>
<td>60.06</td>
<td>0.025</td>
<td>22.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>129.94</td>
<td>71.11</td>
<td>0.025</td>
<td>22.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>135.99</td>
<td>60.15</td>
<td>0.025</td>
<td>22.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>135.99</td>
<td>77.13</td>
<td>0.025</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Acetaminophen (Scan time: 2.0-4.2 min, 596 scans)</td>
<td>151.97</td>
<td>92.86</td>
<td>0.025</td>
<td>26.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>151.97</td>
<td>110.02</td>
<td>0.025</td>
<td>26.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>155.98</td>
<td>96.83</td>
<td>0.025</td>
<td>28.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>155.98</td>
<td>114.12</td>
<td>0.025</td>
<td>28.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Levetiracetam (Scan time: 6.5-8.0 min, 293 scans)</td>
<td>171.01</td>
<td>126.11</td>
<td>0.025</td>
<td>14.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>171.01</td>
<td>154.05</td>
<td>0.025</td>
<td>14.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>177.03</td>
<td>132.12</td>
<td>0.025</td>
<td>12.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>177.03</td>
<td>160.14</td>
<td>0.025</td>
<td>12.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Carbamazepine (Scan time: 5.0-6.5 min, 293 scans)</td>
<td>237.00</td>
<td>178.96</td>
<td>0.025</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>237.00</td>
<td>194.05</td>
<td>0.025</td>
<td>30.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>247.06</td>
<td>187.00</td>
<td>0.025</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>247.06</td>
<td>204.16</td>
<td>0.025</td>
<td>32.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Lamotrigine (Scan time: 5.0-6.0 min, 183 scans)</td>
<td>255.91</td>
<td>144.96</td>
<td>0.025</td>
<td>44.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>255.91</td>
<td>211.01</td>
<td>0.025</td>
<td>44.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>260.89</td>
<td>144.98</td>
<td>0.025</td>
<td>38.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>260.89</td>
<td>213.91</td>
<td>0.025</td>
<td>38.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Venlafaxine (Scan time: 5.5-6.5 min, 146 scans)</td>
<td>278.17</td>
<td>58.17</td>
<td>0.025</td>
<td>24.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>278.17</td>
<td>260.18</td>
<td>0.025</td>
<td>24.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>284.15</td>
<td>64.23</td>
<td>0.025</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>284.15</td>
<td>121.11</td>
<td>0.025</td>
<td>22.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Topiramate (Scan time: 5.5-6.5 min, 227 scans)</td>
<td>340.07</td>
<td>264.01</td>
<td>0.025</td>
<td>24.0</td>
<td>8.0</td>
</tr>
<tr>
<td>PPCP</td>
<td>Parent ion (m/z)</td>
<td>Fragment ion (m/z)</td>
<td>Dwell (secs)</td>
<td>Cone Voltage (V)</td>
<td>Collision Energy</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>362.07</td>
<td>321.00</td>
<td>0.025</td>
<td>34.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Labeled IS</td>
<td>352.08</td>
<td>270.05</td>
<td>0.025</td>
<td>24.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Triclosan¹ (Scan time: 8.0-15.0 min, 2745 scans, negative ion mode)

<table>
<thead>
<tr>
<th>PPCP</th>
<th>Parent ion (m/z)</th>
<th>Fragment ion (m/z)</th>
<th>Dwell (secs)</th>
<th>Cone Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nat. Isotope</td>
<td>286.92</td>
<td></td>
<td>0.025</td>
<td>16.0</td>
</tr>
<tr>
<td>Nat. Isotope</td>
<td>288.92</td>
<td></td>
<td>0.025</td>
<td>18.0</td>
</tr>
</tbody>
</table>

¹No labeled internal standard available.

UPLC Details
Column Type: ACQUITY UPLC BEH C18 1.7µm (reversed-phase)
Column Serial Number: 02123231415770
Autosampler Temperature: 10.0
Column Temperature: 35.0
Minimum System Pressure: 2237.0 psi
Maximum System Pressure: 4364.0 psi
Average System Pressure: 3827.0 psi

UPLC Separation Conditions
Solvent A: Water + 0.1% formic acid
Solvent B: Acetonitrile + 0.1% formic acid

Table A.2.2 UPLC separation conditions

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Flow Rate (mL/min)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.200</td>
<td>95.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.50</td>
<td>0.200</td>
<td>95.0</td>
<td>5.0</td>
</tr>
<tr>
<td>8.00</td>
<td>0.200</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>8.50</td>
<td>0.200</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>9.00</td>
<td>0.200</td>
<td>95.0</td>
<td>5.0</td>
</tr>
<tr>
<td>15.00</td>
<td>0.200</td>
<td>95.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Figure A.2.1: Chromatograph of all standards at 75 ng/mL.
Appendix B: Quarterly Sampling Data

B.1 Sampling Procedures and Compositing Ratios

1. Calibrate the field probes before starting to collect samples, and as needed during the process. Rinse probes with distilled water between measurements.

2. Collect wastewater from each of the septic tanks at approximately 11:00 am and again at approximately 3:00 pm. At each sampling time, two samples will be collected from each tank – one for non-organic analyses and another for organic analyses. Use a siphon pump to collect the samples. Insert the suction tubing just below the scum layer at the top of the septic tank. Pump sample through the siphon pump before collecting a sample.

3. The samples should be stored in appropriately-cleaned bottles. Table B.1 below shows how much sample should be collected for non-organic and organic analysis at each collection time. Non-organic analysis bottles should be filled to the brim to minimize headspace. Also at each sampling time, a field blank should be made from distilled water for one non-organic analysis and one organic analysis bottle as indicated in Table B.1.1 below.

<table>
<thead>
<tr>
<th>Septic Tank</th>
<th>Average Day Percent of Flow</th>
<th>Non-Organic Analysis Sample Bottles to be Filled</th>
<th>Organic Analysis Sample Bottles to be Filled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurel</td>
<td>30%</td>
<td>1 x 1000-mL</td>
<td>1 x 1-L</td>
</tr>
<tr>
<td>Dogwood</td>
<td>20%</td>
<td>1 x 500-mL</td>
<td>1 x 1-L</td>
</tr>
<tr>
<td>Sunflower</td>
<td>20%</td>
<td>1 x 500-mL</td>
<td>1 x 1-L</td>
</tr>
<tr>
<td>Amity</td>
<td>20%</td>
<td>1 x 500-mL</td>
<td>1 x 1-L</td>
</tr>
<tr>
<td>Community Center</td>
<td>10%</td>
<td>1 x 250-mL</td>
<td>1 x 1-L</td>
</tr>
<tr>
<td>Blank</td>
<td>N/A</td>
<td>1 x 250-mL</td>
<td>1 x 1-L</td>
</tr>
</tbody>
</table>

4. Immediately after collecting from each septic tank, measure and record the pH, temperature, and dissolved oxygen in each septic tank non-organic analysis sample using the field probes. After making the measurements, store the samples in a cooler and ensure they are protected from sunlight.

5. After collecting samples from all septic fields, combine the non-organic analysis samples volumetrically in a 2-L jug as indicated in Table B.1.2 below. Invert the samples to ensure that solids are well distributed, and then quickly pour the desired volume into a 1000-mL
or 250-mL graduated cylinder before the solids re-settle. Pour approximately 2 mL more than the desired volume into the cylinder, and then use a pipet to remove sample until the exact volume is obtained. Rinse the cylinders with distilled water between uses. The organic analysis samples will not be composited until returning to the lab.

Table B.1.2: Summary of composite volumes for non-organic analyses

<table>
<thead>
<tr>
<th>Septic Tank</th>
<th>Average Day Percent of Flow</th>
<th>Volume for 2 L Composite Sample (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurel</td>
<td>30%</td>
<td>600.0</td>
</tr>
<tr>
<td>Dogwood</td>
<td>20%</td>
<td>400.0</td>
</tr>
<tr>
<td>Sunflower</td>
<td>20%</td>
<td>400.0</td>
</tr>
<tr>
<td>Amity</td>
<td>20%</td>
<td>400.0</td>
</tr>
<tr>
<td>Community Center</td>
<td>10%</td>
<td>200.0</td>
</tr>
</tbody>
</table>

6. Mix the composite for 1 minute by inversion. Then, distribute the combined samples among the different storage vessels using the graduated cylinders as indicated in Table B.1.3 below. Use the same procedure as described in step 4 above. Note that the jugs used for compositing can be used to store the largest bottle type.

Table B.1.3: Bottles for non-organic analyses storage

<table>
<thead>
<tr>
<th>Bottle Type</th>
<th>Tests</th>
<th>Volume (L)</th>
<th>Preservation at Site</th>
<th>Preservation in Lab</th>
<th>No. Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>Alkalinity</td>
<td>0.600</td>
<td>Refrigerate at or below 6°C. Fill bottles completely and cap tightly.</td>
<td>Analyze within 24 hours.</td>
<td>1 x 500-mL</td>
</tr>
<tr>
<td>HDPE</td>
<td>Ammonia</td>
<td>0.300</td>
<td>Add dilute H\textsubscript{2}SO\textsubscript{4} if composite pH is over 8 to reduce it to approx. 7. Fill bottles completely and cap tightly. Refrigerate at or below 6°C.</td>
<td>Analyze within 72 hours. Continue to refrigerate at or below 6°C or freeze if unacidified.</td>
<td>1 x 500-mL</td>
</tr>
<tr>
<td>HDPE</td>
<td>TKN</td>
<td>0.075</td>
<td>Distribute into 1 x 100-mL glass bottle, acidify to pH 1.5-2.0 with approx. 0.2-mL concentrated H\textsubscript{2}SO\textsubscript{4} and store at or below 6°C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>COD</td>
<td>0.006</td>
<td>Refrigerate at or below 6°C.</td>
<td></td>
<td>1 x 2-L</td>
</tr>
<tr>
<td>HDPE</td>
<td>TP</td>
<td>0.015</td>
<td>Distribute into 1 x 50-mL glass bottle rinsed with HCl, acidify to pH 1.5-2.0 with approx. 0.2-mL concentrated H\textsubscript{2}SO\textsubscript{4} and store at or below 4 °C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>TSS</td>
<td>0.300</td>
<td>Analyze within 24 hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>Major Ions</td>
<td>0.015</td>
<td>Analyze within 48 hours.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Transport samples to the lab in coolers with ice packs. Immediately after returning to the lab, preserve the TKN, COD, and TP samples as indicated in Table B.1.3 above. Then, composite the samples for organic analyses as indicated in Table B.1.4 below using appropriately cleaned glassware. Separate TOC samples into 40-mL borosilicate glass bottles. Put 15-20 mL of sample from each organic analyses field blank into a 40-mL borosilicate glass bottle as well. Preserve them as indicated in Table B.1.5. Then, set up the BOD tests. If time allows, perform the alkalinity analyses as well.

Table B.1.4: Summary of composite volumes for organic analyses

<table>
<thead>
<tr>
<th>Septic Tank</th>
<th>Average Day Percent of Flow</th>
<th>Volume for 1-L Composite Sample (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurel</td>
<td>30%</td>
<td>300</td>
</tr>
<tr>
<td>Dogwood</td>
<td>20%</td>
<td>200</td>
</tr>
<tr>
<td>Sunflower</td>
<td>20%</td>
<td>200</td>
</tr>
<tr>
<td>Amity</td>
<td>20%</td>
<td>200</td>
</tr>
<tr>
<td>Community Center</td>
<td>10%</td>
<td>100</td>
</tr>
</tbody>
</table>

Table B.1.5: Bottles for organic analyses

<table>
<thead>
<tr>
<th>Bottle Type</th>
<th>Tests</th>
<th>Volume (L)</th>
<th>Preservation in Lab</th>
<th>No. Bottles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borosilicate Glass, Amber, Treated for TOC</td>
<td>TOC</td>
<td>0.050</td>
<td>Acidify to pH 4.0 or less with HCl and store at or below 6°C. Refrigerate until analysis is completed.</td>
<td>2 x 40 mL</td>
</tr>
<tr>
<td>Glass, Amber, Treated for TOCrs</td>
<td>TOCrs</td>
<td>2.000</td>
<td>Refrigerate at or below 6°C until analysis is completed.</td>
<td>2 x 1 L</td>
</tr>
</tbody>
</table>

B.2 Quarterly Sampling Conventional Pollutant Results

Table B.2.1: Quarterly sampling on-site measurements

<table>
<thead>
<tr>
<th>Sampling Date</th>
<th>House</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02_20_16 AM</td>
<td>Dogwood</td>
<td>6.93</td>
<td>1.39</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.74</td>
<td>0.96</td>
<td>17.1</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.53</td>
<td>1.24</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.95</td>
<td>0.90</td>
<td>20.3</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>7.04</td>
<td>2.28</td>
<td>12.0</td>
</tr>
<tr>
<td>02_20_16 PM</td>
<td>Dogwood</td>
<td>6.34</td>
<td>1.27</td>
<td>14.7</td>
</tr>
<tr>
<td>Sampling Date</td>
<td>House</td>
<td>pH</td>
<td>DO (mg/L)</td>
<td>Temp (°C)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>05_19_16 AM</td>
<td>Sunflower</td>
<td>6.24</td>
<td>1.00</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.08</td>
<td>1.13</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.56</td>
<td>1.54</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>6.45</td>
<td>1.00</td>
<td>13.7</td>
</tr>
<tr>
<td>05_19_16 PM</td>
<td>Dogwood</td>
<td>7.00</td>
<td>1.27</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.58</td>
<td>1.88</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.47</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.55</td>
<td>1.10</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>6.94</td>
<td>3.78</td>
<td>19.5</td>
</tr>
<tr>
<td>08_12_16 AM</td>
<td>Dogwood</td>
<td>6.26</td>
<td>2.34</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.57</td>
<td>2.02</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.42</td>
<td>1.67</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.65</td>
<td>1.00</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>6.84</td>
<td>1.41</td>
<td>29.7</td>
</tr>
<tr>
<td>08_12_16 PM</td>
<td>Dogwood</td>
<td>5.71</td>
<td>0.97</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.05</td>
<td>1.10</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.01</td>
<td>1.25</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.58</td>
<td>0.70</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>6.94</td>
<td>0.76</td>
<td>27.7</td>
</tr>
<tr>
<td>10_16_16 AM</td>
<td>Dogwood</td>
<td>6.96</td>
<td>0.77</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.67</td>
<td>1.43</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.30</td>
<td>3.10</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.77</td>
<td>1.27</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>7.15</td>
<td>1.33</td>
<td>22.0</td>
</tr>
<tr>
<td>10_16_16 PM</td>
<td>Dogwood</td>
<td>6.91</td>
<td>0.69</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Sunflower</td>
<td>6.62</td>
<td>0.78</td>
<td>23.7</td>
</tr>
<tr>
<td>Sampling Date</td>
<td>House</td>
<td>pH</td>
<td>DO (mg/L)</td>
<td>Temp (°C)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Laurel</td>
<td>6.34</td>
<td>3.77</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Amity</td>
<td>6.65</td>
<td>1.08</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>Community Center</td>
<td>7.10</td>
<td>1.33</td>
<td>23.0</td>
</tr>
</tbody>
</table>
Table B.2.2: Quarterly sampling conventional pollutant results

<table>
<thead>
<tr>
<th>Sample</th>
<th>DOT W Time</th>
<th>Alkalinity (mg CaCO3/L)</th>
<th>TSS (mg/L)</th>
<th>BOD (mg/L)</th>
<th>COD (mg/L)</th>
<th>TOC (mg/L)</th>
<th>Ammonia (mg N/L)</th>
<th>NO3⁻ (mg N/L)</th>
<th>NO2⁻ (mg N/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg SD</td>
</tr>
<tr>
<td>Quarterly #1</td>
<td>02.20.16</td>
<td>Sat AM</td>
<td>206 5</td>
<td>125 4</td>
<td>150 6</td>
<td>434 20</td>
<td>75.53 0.24</td>
<td>29.70 1.00</td>
<td>nd N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat PM</td>
<td>204 0</td>
<td>212 7</td>
<td>173 2</td>
<td>517 11</td>
<td>62.90 0.54</td>
<td>31.00 0.60</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Quarterly #2</td>
<td>05.19.16</td>
<td>Thurs AM</td>
<td>294.7 2.4</td>
<td>270 10</td>
<td>>280 N/A</td>
<td>1515 153</td>
<td>52.19 0.91</td>
<td>44.53 0.21</td>
<td>0.32 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs PM</td>
<td>274.9 8.2</td>
<td>290 0</td>
<td>197 6</td>
<td>645 20</td>
<td>56.97 1.77</td>
<td>41.90 2.07</td>
<td>0.32 0.01</td>
</tr>
<tr>
<td>Quarterly #3</td>
<td>08.12.16</td>
<td>Fri AM</td>
<td>202.5 1.1</td>
<td>83 7</td>
<td>148 5</td>
<td>389 16</td>
<td>63.38 0.37</td>
<td>30.32 0.28</td>
<td>0.58 N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fri PM</td>
<td>217.4 2.1</td>
<td>444 N/A</td>
<td>251 13</td>
<td>870 25</td>
<td>57.94 0.98</td>
<td>30.87 1.13</td>
<td>0.58 0.01</td>
</tr>
<tr>
<td>Quarterly #4</td>
<td>10.16.16</td>
<td>Sun AM</td>
<td>N/A N/A</td>
<td>120 10</td>
<td>114 34</td>
<td>240 4</td>
<td>25.1 0.8</td>
<td>0.11 0.00</td>
<td>0.10 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sun PM</td>
<td>179.6 N/A</td>
<td>190 10</td>
<td>143 19</td>
<td>350 4</td>
<td>25.5 0.5</td>
<td>0.14 0.00</td>
<td>0.05 0.01</td>
</tr>
</tbody>
</table>

- **No duplicates in sampling set**
- **Value above analytical test range**
- **RSD > 10%**
- **RSD ≥ 100%**
Table B.2.2: Quarterly Sampling Conventional Pollutant Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>DOT W Time</th>
<th>TKN (mg N/L)</th>
<th>TIN (mg N/L)</th>
<th>PO_{4}^{3-} (mg P/L)</th>
<th>TP (mg P/L)</th>
<th>SO_{4}^{2-} (mg/L)</th>
<th>Cl^- (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
</tr>
<tr>
<td>Quarterly #1</td>
<td>Sat AM</td>
<td>41.1 N/A</td>
<td>29.70 1.00</td>
<td>3.31 0.09</td>
<td>5.04 0.16</td>
<td>6.49 0.00</td>
<td>27.65 0.32</td>
</tr>
<tr>
<td>02_20_16</td>
<td>Sat PM</td>
<td>40.2 0.2</td>
<td>31.00 0.60</td>
<td>3.02 0.01</td>
<td>5.77 0.09</td>
<td>7.23 0.07</td>
<td>24.17 0.09</td>
</tr>
<tr>
<td>Quarterly #2</td>
<td>Thurs AM</td>
<td>55.2 7.2</td>
<td>45.21 0.21</td>
<td>5.53 0.75</td>
<td>14.8 0.2</td>
<td>11.35 0.58</td>
<td>32.02 0.01</td>
</tr>
<tr>
<td>05_19_16</td>
<td>Thurs PM</td>
<td>51.2 1.5</td>
<td>42.58 2.07</td>
<td>5.50 0.87</td>
<td>8.77 0.09</td>
<td>11.15 0.29</td>
<td>31.54 0.64</td>
</tr>
<tr>
<td>Quarterly #3</td>
<td>Fri AM</td>
<td>38.9 0.8</td>
<td>31.00 0.28</td>
<td>4.01 0.04</td>
<td>6.99 0.05</td>
<td>24.54 0.36</td>
<td></td>
</tr>
<tr>
<td>08_12_16</td>
<td>Fri PM</td>
<td>49.9 0.3</td>
<td>31.52 1.13</td>
<td>4.55 0.03</td>
<td>1.54 0.05</td>
<td>24.94 0.04</td>
<td></td>
</tr>
<tr>
<td>Quarterly #4</td>
<td>Sun AM</td>
<td>29.2 1.6</td>
<td>25.3 0.8</td>
<td>3.46 0.02</td>
<td>3.98 0.05</td>
<td>4.72 0.02</td>
<td>17.84 0.01</td>
</tr>
<tr>
<td>10_16_16</td>
<td>Sun PM</td>
<td>33.1 0.2</td>
<td>25.7 0.5</td>
<td>3.97 0.00</td>
<td>4.79 0.05</td>
<td>3.85 0.04</td>
<td>18.02 0.02</td>
</tr>
</tbody>
</table>
B.3 Quarterly Sampling PPCP Results

Table B.3.1: Quarterly sampling PPCP results

<table>
<thead>
<tr>
<th>Sample</th>
<th>DOTW</th>
<th>Time</th>
<th>Concentration (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACE</td>
</tr>
<tr>
<td>Quarterly #1</td>
<td>02.20.16</td>
<td>Sat AM</td>
<td>203.621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat PM</td>
<td>159.637</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat Field Blank</td>
<td><LOQ</td>
</tr>
<tr>
<td>Quarterly #2</td>
<td>05.19.16</td>
<td>Thurs AM</td>
<td>56.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs PM</td>
<td>64.180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs Field Blank</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fri Field Blank</td>
<td>0.221</td>
</tr>
<tr>
<td>Quarterly #4</td>
<td>10.16.16</td>
<td>Sun AM</td>
<td>36.173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sun PM</td>
<td>32.783</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sun Field Blank</td>
<td><LOQ</td>
</tr>
</tbody>
</table>
Appendix C: Pilot System Data

C. 1 Pilot System Set-up

Anua System

Water from the septic tank was pumped into the 890 gallon ATU where it underwent treatment in a settling chamber, submerged attached growth filter, and clarifier. The filter was aerated by a compressor housed within the unit. After moving through the filter, the water drained into Well Basin 1, and was then pumped into Peat Filter 1, an unsaturated peat biofilter. After moving through the peat, the water drained into Well Basin 2, which was filled with bivalve shells to add alkalinity to the water, allowing for enhanced nitrogen removal. From Well Basin 2, half of the influent water was recycled to the ATU during the time period from installation to October 3rd, when the recycle line was shut off. Water that was not recycled from Well Basin 2 was pumped to Peat Filter 2, which was identical to Filter 1. After draining out of Peat Filter 1, water was drained out of the system to the septic field via the septic distribution box.

The Anua system was installed on May 16th-May 18th and started receiving STE within the week. A bag of dog food was added immediately following installation to jump start the system, and then again on October 3rd after effluent TN concentrations spiked. Baking powder was also added to the system on October 3rd to counteract a drop in alkalinity. The following table shows the feed pumps used, average flow rates, and theoretical HRTs throughout the experimental period for the Anua system.

Table C.1.1: Anua system operation summary

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Pump</th>
<th>Recycle?</th>
<th>Flow Rate (gpd)</th>
<th>Theor. HRT (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flow Rate (gpd)</td>
<td>Flow Rate (gpd)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>SD</td>
</tr>
<tr>
<td>6/18 – 8/22</td>
<td>Cole Parmer Economy Drive</td>
<td>Yes</td>
<td>77.8</td>
<td>16.0</td>
</tr>
<tr>
<td>8/23 – 10/3</td>
<td>Dolphin Mec-O-Matic</td>
<td>Yes</td>
<td>72.7</td>
<td>2.9</td>
</tr>
<tr>
<td>10/4 – 11/16</td>
<td>Dolphin Mec-O-Matic</td>
<td>No</td>
<td>69.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>
E-Z Treat System

Water from the septic tank was pumped into the 550 gallon E-Z Treat holding tank. Every 15 minutes, water from the holding tank was pumped to the elevated filter module, where it was sprayed at high pressure onto a biofilter with styrene bead media. After draining through the filter, a small amount of water was recycled to the holding tank and the rest was drained out of the system to the septic field via the septic distribution box.

The E-Z Treat system was installed on May 11th and started receiving STE during the week of May 18-24. From installation to just before the fourth sampling date (July 17th), the effluent piping from the E-Z Treat system was configured such that water sat stagnant in the effluent pipes, promoting bacterial growth. After the piping was reconfigured, COD and BOD measurements dropped. The following table shows the feed pumps used, average flow rates, and theoretical HRTs throughout the experimental period for the E-Z Treat system.

Table C.1.2 E-Z Treat system operation summary

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Pump</th>
<th>Flow Rate (gpd)</th>
<th>Theor. HRT (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/18 – 8/22</td>
<td>Cole Parmer Economy Drive</td>
<td>99.7</td>
<td>11.9</td>
</tr>
<tr>
<td>8/23 – 11/16</td>
<td>Dolphin Mec-O-Matic</td>
<td>94.6</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Constructed Wetland System

The constructed wetland was a series of six tanks, each with a unique combination of flow pattern, media, and biology. A pump transported Tank 2 effluent to Tank 3, otherwise water flowed by gravity through the wetland. The first four tanks were wetland cells, and the last two were mycofilters. The first four tanks were primarily comprised of granitic gravel (with feldspar, quartz, and biotite mica), with 3/8- to 1/2-inch particle size and 44% porosity. Collection piping at the bottom of all six tanks was buried in approximately 4 inches of 1- to 1 1/2-inch particle sized gravel of the same composition and 42% porosity. Each tank is described in more detail below.

- Tank 1: Cylindrical tank, 290-gallon volume, 6-foot diameter, 2-foot height. Wastewater moved vertically through this planted gravel filter. Influent was added intermittently (five
minutes on, five minutes off) and the water depth was kept 10 inches below the surface. Plants in this tank included *Elymus virginicus* (Virginia wildrye), *Juncus effuses* (common rush), *Panicum virgatum* (switchgrass), and *Scirpus cyperinus* (woolgrass).

- **Tank 2:** *Cylindrical tank, 290-gallon volume, 6-foot diameter, 2-foot height.* Water entered this tank after falling through an 18-inch waterfall constructed from recycled plastic bottles and bamboo supports. Baffles prevented water from short-circuiting the tank. The water elevation was approximately two inches below the surface. Plants in this tank included *Carex crinita* (fringed sedge), *Iris versicolor* (blue flag), and *Pontederia cordata* (pickerelweed).

- **Tank 3:** *Rectangular tank, 270-gallon volume, approximately 3-foot by 3.5-foot, 2.5 height.* There was another waterfall at the inlet to this tank. Incoming water was distributed around the perimeter of the tank, which had a planted gravel media covered with approximately two inches of mulch. After flowing downward around the perimeter, water flowed upward into an open water surface in the center of the tank, inside a ring of stacked and cemented chimney stones. Water exited through a PVC pipe at the surface of the water. Plants included *Sagittaria latifolia* (duck potato) and *Juncus effusus*.

![Figure C.1.1: Constructed wetland tank 3 schematic](image)

- **Tank 4:** *Rectangular tank, 270-gallon volume, approximately 3-foot by 3.5-foot, 2.5 height.* Water flowed vertically through this tank as in the first tank, but the water was only three
inches below the surface. Like Tank #3, this tank had a planted gravel media covered with two inches of mulch. Plants in this tank included \textit{Sagittaria latifolia} and \textit{Juncus effusus}.

-
 \textbf{Tank 5: Cylindrical tank, 290-gallon volume, 6-foot diameter, 2-foot height.} Water flows vertically through this tank, which had an unplanted mulch/compost media originally inoculated with \textit{Trametes versicolor} (turkey tail) mushrooms. Three mechanisms aerated the water in this tank: a waterfall at the influent, water depth 10 inches below the surface, and vertical perforated PVC pipes that allowed air to access lower levels of the filter. This tank was covered with a shade cloth in mid-May to protect it from direct sunlight.

-
 \textbf{Tank 6: Elliptical tank, 130-gallon volume, approximately 3-foot by 4.5-foot, 2-foot height.} This tank was just like Tank #5 except that it was originally inoculated with \textit{Pleurotus ostreatus} (oyster) mushrooms and there was no waterfall at the influent. The effluent from Tank #6 was drained to the septic field via the septic distribution box. This tank was covered with a shade cloth in mid-May to protect it from direct sunlight.

The wetland plants were planted on March 13th into a small pocket of compost within the gravel bed media. The wetland tanks were filled with well water and covered with translucent tarps. The mycofilters were inoculated on March 26th. The wetland began receiving STE at an unquantified rate (approximately 25 gpd) on April 3rd, and the tarps were removed at that time. There was one late freeze after the tarps were removed. None of the plants seemed to be harmed by the freeze except for the \textit{Pontederia cordata}. After dying back for about a month, they recovered as well.

The inoculated mushrooms in Tanks 5 and 6 bloomed several times during the months of May and June. In July and August, blooms of other species of mushrooms were sited in Tank 6 and in the thin mulch layers on Tanks 3 and 4. After August, no more blooms were sited, and very little mycelium could be found by digging into the tanks. Despite the shade clothes, it may have been too hot and dry for the mushrooms to prosper.

Grasses sprouted in Tanks 1 and 2, particularly 2, over the course of the summer, but they were not cut back. On November 2nd, all of the wetland plants (including the weeds) were trimmed, dried, weighed, and analyzed for nutrient composition and PPCPs. Results from these analyses are shown in sections C.2 and C.3 below.
The flow rate into the wetland were consistent throughout the sampling period – the time-weighted average flow rate was 25.0 gpd with a standard deviation of 0.3 gpd. The peristaltic pumps used for the wetlands were Dolphin Mec-O-Matics.

Since the CW was open to the atmosphere, precipitation and evapotranspiration rates had to be accounted for in order to accurately estimate HRTs. Evapotranspiration dates were calculated as described in section C.5 based on weather data from a local weather station (see section C.5). Daily precipitation rates were included in the weather data. Change in tank volume was calculated using a mass balance approach:

\[
\frac{dV}{dt} = Q_{in} - Q_{out} + A_p \cdot P - A_{ET} \cdot ET_c
\]

Where V is the tank volume, \(Q_{in}\) is the influent flow rate [L\(^3\)/T], \(Q_{out}\) is the effluent flow rate [L\(^3\)/T], \(P\) is the precipitation rate [L/T], \(ET\) is the evapotranspiration rate [L/T], and \(A\) is the area subject to precipitation and evapotranspiration [L\(^2\)].

On a daily basis, the volumes of the tanks changed due to restricted effluent flow rates. On a weekly basis, however, the system approached steady state, with no change in tank volume over time. Therefore, a weekly time frame was used to estimate HRTs in each tank. Weekly precipitation and evapotranspiration were calculated as follows:

\[
P_{wk} = \sum_{i}^{i+6} P_d
\]

\[
ET_{c, wk} = \sum_{i}^{i+6} ET_{c, d}
\]

Where the subscript d indicates a rate in units of in/day and the subscript wk indicates a rate in units of in/week. Then for each tank, starting with Tank 1, effluent flow rates and HRTs were calculated using the following equations:

\[
Q_{out, i} = Q_{in, i} + A_p, i \cdot P_{wk} - A_{ET, i} \cdot ET_{c, wk}
\]
\[HRT_i = \frac{V_i}{Q_{out,i}} \]

Where the subscript \(i \) represents the tank number. Once \(Q_{out,1} \) is calculated, \(Q_{in,2} \) is set equal to \(Q_{out,1} \) and the process repeats. The HRT for Tanks 1 through \(j \) is calculated by summing \(HRT_1 \) through \(HRT_j \). The table below shows the calculation procedure for flow rates and HRT for each tank. Unplanted Tanks 5 and 6 were assumed to have negligible evapotranspiration rates.
Table C.1.3: Weekly summary of constructed wetlands inter-tank flow rates and HRTs

<table>
<thead>
<tr>
<th>Week</th>
<th>Pwk</th>
<th>Et,c,wk</th>
<th>Tank 1</th>
<th>Tank 2</th>
<th>Tank 3</th>
<th>Tank 4</th>
<th>HRT Tank 1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A (sf) (gpw)</td>
<td>A (sf) (gpw)</td>
<td>A (sf) (gpw)</td>
<td>A (sf) (gpw)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qin (gal)</td>
<td>Qout (gal)</td>
<td>Qin (gal)</td>
<td>Qout (gal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HRT (d)</td>
<td>HRT (d)</td>
<td>HRT (d)</td>
<td>HRT (d)</td>
<td></td>
</tr>
<tr>
<td>6/1</td>
<td>6/7</td>
<td>1.07</td>
<td>175 172 3.48</td>
<td>172 169 6.72</td>
<td>169 168 4.30</td>
<td>168 166 4.59</td>
<td>19.1</td>
</tr>
<tr>
<td>6/8</td>
<td>6/14</td>
<td>0.00</td>
<td>175 143 4.18</td>
<td>143 111 10.18</td>
<td>111 99 7.25</td>
<td>99 88 8.71</td>
<td>30.3</td>
</tr>
<tr>
<td>6/15</td>
<td>6/21</td>
<td>1.93</td>
<td>175 186 3.22</td>
<td>186 197 5.75</td>
<td>197 201 3.58</td>
<td>201 205 3.72</td>
<td>16.3</td>
</tr>
<tr>
<td>6/22</td>
<td>6/28</td>
<td>0.77</td>
<td>175 164 3.64</td>
<td>164 154 7.36</td>
<td>154 150 4.81</td>
<td>150 146 5.22</td>
<td>21.0</td>
</tr>
<tr>
<td>6/29</td>
<td>7/5</td>
<td>0.68</td>
<td>175 161 3.71</td>
<td>161 147 7.70</td>
<td>147 142 5.08</td>
<td>142 137 5.58</td>
<td>22.1</td>
</tr>
<tr>
<td>7/6</td>
<td>7/12</td>
<td>0.22</td>
<td>175 141 4.25</td>
<td>141 107 10.62</td>
<td>107 94 7.67</td>
<td>94 81 9.39</td>
<td>31.9</td>
</tr>
<tr>
<td>7/13</td>
<td>7/19</td>
<td>0.20</td>
<td>175 138 4.33</td>
<td>138 102 11.17</td>
<td>102 88 8.22</td>
<td>88 74 10.32</td>
<td>34.0</td>
</tr>
<tr>
<td>7/20</td>
<td>7/26</td>
<td>0.00</td>
<td>175 133 4.50</td>
<td>133 91 12.46</td>
<td>91 75 9.58</td>
<td>75 60 12.82</td>
<td>39.4</td>
</tr>
<tr>
<td>7/27</td>
<td>8/2</td>
<td>2.51</td>
<td>175 192 3.12</td>
<td>192 208 5.45</td>
<td>208 214 3.36</td>
<td>214 221 3.46</td>
<td>15.4</td>
</tr>
<tr>
<td>8/3</td>
<td>8/9</td>
<td>1.11</td>
<td>175 175 3.42</td>
<td>175 175 6.47</td>
<td>175 175 4.11</td>
<td>175 175 4.35</td>
<td>18.4</td>
</tr>
<tr>
<td>8/10</td>
<td>8/16</td>
<td>0.57</td>
<td>175 148 4.05</td>
<td>148 120 9.43</td>
<td>120 110 6.56</td>
<td>110 100 7.66</td>
<td>27.7</td>
</tr>
<tr>
<td>8/17</td>
<td>8/23</td>
<td>0.43</td>
<td>175 153 3.92</td>
<td>153 130 8.71</td>
<td>130 122 5.92</td>
<td>122 113 6.73</td>
<td>25.3</td>
</tr>
<tr>
<td>8/24</td>
<td>8/30</td>
<td>0.01</td>
<td>175 142 4.22</td>
<td>142 109 10.44</td>
<td>109 96 7.50</td>
<td>96 84 9.12</td>
<td>31.3</td>
</tr>
<tr>
<td>8/31</td>
<td>9/6</td>
<td>0.11</td>
<td>175 148 4.03</td>
<td>148 122 9.30</td>
<td>122 112 6.44</td>
<td>112 102 7.48</td>
<td>27.3</td>
</tr>
<tr>
<td>9/7</td>
<td>9/13</td>
<td>0.37</td>
<td>175 150 3.98</td>
<td>150 126 9.03</td>
<td>126 116 6.20</td>
<td>116 107 7.13</td>
<td>26.3</td>
</tr>
<tr>
<td>9/14</td>
<td>9/20</td>
<td>0.57</td>
<td>175 163 3.67</td>
<td>163 152 7.48</td>
<td>152 147 4.90</td>
<td>147 143 5.34</td>
<td>21.4</td>
</tr>
<tr>
<td>9/21</td>
<td>9/27</td>
<td>0.40</td>
<td>175 162 3.69</td>
<td>162 149 7.60</td>
<td>149 144 5.00</td>
<td>144 139 5.47</td>
<td>21.8</td>
</tr>
<tr>
<td>9/28</td>
<td>10/4</td>
<td>2.27</td>
<td>175 208 2.88</td>
<td>208 241 4.70</td>
<td>241 254 2.84</td>
<td>254 266 2.87</td>
<td>13.3</td>
</tr>
<tr>
<td>10/5</td>
<td>10/11</td>
<td>0.66</td>
<td>175 179 3.34</td>
<td>179 183 6.20</td>
<td>183 184 3.91</td>
<td>184 186 4.11</td>
<td>17.6</td>
</tr>
<tr>
<td>10/12</td>
<td>10/18</td>
<td>0.00</td>
<td>175 164 3.65</td>
<td>164 153 7.39</td>
<td>153 149 4.83</td>
<td>149 145 5.25</td>
<td>21.1</td>
</tr>
<tr>
<td>10/19</td>
<td>10/25</td>
<td>0.03</td>
<td>175 163 3.67</td>
<td>163 151 7.51</td>
<td>151 147 4.92</td>
<td>147 142 5.37</td>
<td>21.5</td>
</tr>
<tr>
<td>10/26</td>
<td>11/1</td>
<td>0.01</td>
<td>175 165 3.62</td>
<td>165 156 7.29</td>
<td>156 152 4.74</td>
<td>152 148 5.14</td>
<td>20.8</td>
</tr>
<tr>
<td>11/2</td>
<td>11/8</td>
<td>0.04</td>
<td>175 167 3.59</td>
<td>167 159 7.15</td>
<td>159 156 4.63</td>
<td>156 153 5.00</td>
<td>20.4</td>
</tr>
<tr>
<td>11/9</td>
<td>11/15</td>
<td>0.16</td>
<td>175 171 3.50</td>
<td>171 167 6.79</td>
<td>167 165 4.36</td>
<td>165 164 4.66</td>
<td>19.3</td>
</tr>
<tr>
<td>11/16</td>
<td>11/22</td>
<td>0.00</td>
<td>175 167 3.58</td>
<td>167 159 7.12</td>
<td>159 156 4.61</td>
<td>156 153 4.97</td>
<td>20.3</td>
</tr>
<tr>
<td>11/23</td>
<td>11/30</td>
<td>1.29</td>
<td>175 192 3.56</td>
<td>192 209 6.19</td>
<td>209 216 3.82</td>
<td>216 222 3.92</td>
<td>17.5</td>
</tr>
</tbody>
</table>

| | | | Average 23.1 | SD 6.3 | | | |

Note: HRT = Hydraulic Retention Time (day)
Table C.1.3: Weekly summary of constructed wetlands inter-tank flow rates and HRTs

<table>
<thead>
<tr>
<th>Week</th>
<th>(P_{wk}) (in/wk)</th>
<th>(E_{t, wk})</th>
<th>(Q_{in}) (gwp)</th>
<th>(Q_{out}) (gwp)</th>
<th>(HRT) (d)</th>
<th>(V) (gal)</th>
<th>(A) (sf)</th>
<th>(HRT) Tank 1-6 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1</td>
<td>6/7</td>
<td>1.07</td>
<td>1.23</td>
<td>166</td>
<td>187</td>
<td>2.91</td>
<td>31.2</td>
<td></td>
</tr>
<tr>
<td>6/8</td>
<td>6/14</td>
<td>0.00</td>
<td>1.63</td>
<td>88</td>
<td>88</td>
<td>6.21</td>
<td>77.7</td>
<td></td>
</tr>
<tr>
<td>6/15</td>
<td>6/21</td>
<td>1.93</td>
<td>1.36</td>
<td>205</td>
<td>243</td>
<td>2.24</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>6/22</td>
<td>6/28</td>
<td>0.77</td>
<td>1.31</td>
<td>146</td>
<td>161</td>
<td>3.38</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>6/29</td>
<td>7/5</td>
<td>0.68</td>
<td>1.39</td>
<td>137</td>
<td>150</td>
<td>3.62</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>7/6</td>
<td>7/12</td>
<td>0.22</td>
<td>1.97</td>
<td>81</td>
<td>85</td>
<td>6.36</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>7/13</td>
<td>7/19</td>
<td>0.20</td>
<td>2.09</td>
<td>74</td>
<td>78</td>
<td>6.98</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>7/20</td>
<td>7/26</td>
<td>0.00</td>
<td>2.16</td>
<td>60</td>
<td>60</td>
<td>9.13</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7/27</td>
<td>8/2</td>
<td>2.51</td>
<td>1.66</td>
<td>221</td>
<td>270</td>
<td>2.02</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>8/3</td>
<td>8/9</td>
<td>1.11</td>
<td>1.11</td>
<td>175</td>
<td>197</td>
<td>2.76</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>8/10</td>
<td>8/16</td>
<td>0.57</td>
<td>1.98</td>
<td>100</td>
<td>111</td>
<td>4.91</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8/17</td>
<td>8/23</td>
<td>0.43</td>
<td>1.58</td>
<td>113</td>
<td>122</td>
<td>4.47</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>8/24</td>
<td>8/30</td>
<td>0.01</td>
<td>1.72</td>
<td>84</td>
<td>84</td>
<td>6.49</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>8/31</td>
<td>9/6</td>
<td>0.11</td>
<td>1.48</td>
<td>102</td>
<td>104</td>
<td>5.22</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>9/7</td>
<td>9/13</td>
<td>0.37</td>
<td>1.64</td>
<td>107</td>
<td>114</td>
<td>4.76</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>9/14</td>
<td>9/20</td>
<td>0.57</td>
<td>1.18</td>
<td>143</td>
<td>154</td>
<td>3.53</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>9/21</td>
<td>9/27</td>
<td>0.40</td>
<td>1.07</td>
<td>139</td>
<td>147</td>
<td>3.69</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>9/28</td>
<td>10/4</td>
<td>2.27</td>
<td>0.57</td>
<td>266</td>
<td>310</td>
<td>1.75</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>10/5</td>
<td>10/11</td>
<td>0.66</td>
<td>0.46</td>
<td>186</td>
<td>199</td>
<td>2.74</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>10/12</td>
<td>10/18</td>
<td>0.00</td>
<td>0.56</td>
<td>145</td>
<td>145</td>
<td>3.74</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>10/19</td>
<td>10/25</td>
<td>0.03</td>
<td>0.64</td>
<td>142</td>
<td>143</td>
<td>3.81</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>10/26</td>
<td>11/1</td>
<td>0.01</td>
<td>0.51</td>
<td>148</td>
<td>149</td>
<td>3.66</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>11/8</td>
<td>0.04</td>
<td>0.46</td>
<td>153</td>
<td>153</td>
<td>3.55</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>11/9</td>
<td>11/15</td>
<td>0.16</td>
<td>0.37</td>
<td>164</td>
<td>167</td>
<td>3.26</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>11/16</td>
<td>11/22</td>
<td>0.00</td>
<td>0.40</td>
<td>153</td>
<td>153</td>
<td>3.54</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>11/23</td>
<td>11/30</td>
<td>1.29</td>
<td>0.41</td>
<td>222</td>
<td>247</td>
<td>2.51</td>
<td>222</td>
<td></td>
</tr>
</tbody>
</table>

Average

| | | | | | | | | 29.0 |
| | SD | | | | | | | 8.8 |

<table>
<thead>
<tr>
<th>Tank 5</th>
<th>A (sf)</th>
<th>V (gal)</th>
<th>HRT (d)</th>
<th>Tank 6</th>
<th>A (sf)</th>
<th>V (gal)</th>
<th>HRT (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.2</td>
<td>77.7</td>
<td></td>
<td></td>
<td>13.8</td>
<td>34.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V (gal)</th>
<th>A (sf)</th>
<th>HRT (d)</th>
<th>Tank 1-6 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.2 Pilot System Sampling Procedures

1. Calibrate the field probes before starting to collect samples, and as needed during the process. Rinse probes with distilled water between measurements.

2. Collect treated samples from all four effluent sampling points, as well as biofilm sampling points as needed. At each sampling point, two samples will be collected – one for conventional pollutant analyses and another for PPCP analyses. The samples should be stored in appropriately-cleaned bottles. The volume of conventional pollutant sampling bottles will depend on the analyses to be run. Also at each sampling time, a field blank should be made from distilled water for one conventional pollutant and one PPCP analysis bottle.

3. Immediately after collecting from each sampling point, measure and record the pH, temperature, and dissolved oxygen in each septic tank conventional pollutant analysis sample using the field probes. After making the measurements, store the samples in a cooler and ensure they are protected from sunlight.

4. Next, pour samples from the conventional pollutant sampling bottles into glass 50-mL bottles and preserve by adding concentrated H₂SO₄ dropwise to reduce the pH below 2.0.

5. Transport samples to the lab in coolers with ice packs and refrigerate at or below 6°C. Set up BOD₅ tests.

C.3 Pilot System Conventional Pollutant Results
Table C.3.1 Pilot system conventional pollutant results

<table>
<thead>
<tr>
<th>Sample</th>
<th>DOTW</th>
<th>System</th>
<th>Temp (°C)</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>Alkalinity (mg CaCO₃/L)</th>
<th>Oxygen Demand (mg/L)</th>
<th>COD (mg/L)</th>
<th>TSS (mg/L)</th>
<th>NH₄</th>
<th>NO₂⁻</th>
<th>NO₃⁻</th>
<th>TIN</th>
<th>TN</th>
<th>Nitrogen (mg N/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>SD</td>
<td>Avg</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg</td>
<td>Avg</td>
<td>Avg</td>
<td>Avg</td>
<td>Avg</td>
<td>Avg</td>
</tr>
<tr>
<td>#1</td>
<td>06_19_16</td>
<td>Sat Aua</td>
<td>25.5</td>
<td>5.20</td>
<td>6.64</td>
<td>91 1</td>
<td>0.1 0.2</td>
<td>10.64 0.21</td>
<td>0.06 0.00</td>
<td>10.8 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>06_19_16</td>
<td>Sat EZ Treat</td>
<td>26.0</td>
<td>7.22</td>
<td>7.38</td>
<td>47 4</td>
<td>5.63 0.05</td>
<td>14.83 0.12</td>
<td>1.97 0.02</td>
<td>22.43 0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>06_19_16</td>
<td>Sat Wetland 6</td>
<td>26.5</td>
<td>6.37</td>
<td>1.66</td>
<td>204 1</td>
<td>0.1 0.06</td>
<td>nd N/A</td>
<td>0.06 N/A</td>
<td>0.37 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>06_19_16</td>
<td>Sat Septic Tank</td>
<td>26.7</td>
<td>6.66</td>
<td>0.40</td>
<td>316 7</td>
<td>nd N/A</td>
<td>0.31 N/A</td>
<td>nd N/A</td>
<td>0.37 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>06_29_16</td>
<td>Wed Aua</td>
<td>27.9</td>
<td>6.03</td>
<td>5.70</td>
<td>16 1</td>
<td>79 3</td>
<td>31.87 0.42</td>
<td>0.43 0.05</td>
<td>0.10 0.00</td>
<td>32.39 0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>06_29_16</td>
<td>Wed EZ Treat</td>
<td>27.8</td>
<td>7.14</td>
<td>6.80</td>
<td>56.8</td>
<td>0.6</td>
<td>0.2</td>
<td>0.0</td>
<td>10.8 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>06_29_16</td>
<td>Wed Wetland 4</td>
<td>28.4</td>
<td>7.18</td>
<td>9.81</td>
<td>267.5</td>
<td>0.3</td>
<td>34</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>06_29_16</td>
<td>Wed Wetland 6</td>
<td>25.4</td>
<td>6.39</td>
<td>1.67</td>
<td>328.6</td>
<td>1.9</td>
<td>204 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>06_29_16</td>
<td>Wed Septic Tank</td>
<td>27.6</td>
<td>6.48</td>
<td>0.66</td>
<td>212.1</td>
<td>0.2</td>
<td>291 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>07_07_16</td>
<td>Thurs Aua</td>
<td>25.8</td>
<td>5.93</td>
<td>6.09</td>
<td>30</td>
<td>0</td>
<td>7.45 0.32</td>
<td>0.06 0.01</td>
<td>7.5 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>07_07_16</td>
<td>Thurs EZ Treat</td>
<td>31.8</td>
<td>6.91</td>
<td>6.32</td>
<td>21</td>
<td>1</td>
<td>19.79 0.14</td>
<td>1.61 0.04</td>
<td>26.21 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>07_07_16</td>
<td>Thurs Wetland 4</td>
<td>26.5</td>
<td>6.92</td>
<td>2.16</td>
<td>0.2</td>
<td>0.65 0.00</td>
<td>nd N/A</td>
<td>0.65 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>07_07_16</td>
<td>Thurs Wetland 6</td>
<td>26.3</td>
<td>6.24</td>
<td>1.62</td>
<td>0.06</td>
<td>nd N/A</td>
<td>0.65 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>07_07_16</td>
<td>Thurs Septic Tank</td>
<td>26.4</td>
<td>6.45</td>
<td>0.82</td>
<td>0.1</td>
<td>0.65 0.00</td>
<td>0.22 0.03</td>
<td>1.28 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>07_17_16</td>
<td>Sun Aua</td>
<td>31.0</td>
<td>5.89</td>
<td>5.46</td>
<td>105</td>
<td>1</td>
<td>5.67 0.03</td>
<td>0.06 0.01</td>
<td>5.76 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>07_17_16</td>
<td>Sun EZ Treat</td>
<td>30.3</td>
<td>6.56</td>
<td>6.56</td>
<td>57</td>
<td>0</td>
<td>20.72 0.08</td>
<td>2.31 0.03</td>
<td>26.94 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>07_17_16</td>
<td>Sun Wetland 4</td>
<td>28.2</td>
<td>6.88</td>
<td>2.15</td>
<td>0.04</td>
<td>0.04 N/A</td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>07_17_16</td>
<td>Sun Wetland 6</td>
<td>28.0</td>
<td>5.98</td>
<td>1.13</td>
<td>190</td>
<td>1</td>
<td>0.08 0.11</td>
<td>0.31 0.00</td>
<td>0.31 0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>07_17_16</td>
<td>Sun Septic Tank</td>
<td>28.4</td>
<td>6.28</td>
<td>1.28</td>
<td>335</td>
<td>1</td>
<td>33.71 0.53</td>
<td>0.11 0.03</td>
<td>34.14 0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Aua</td>
<td>28.3</td>
<td>6.40</td>
<td>5.68</td>
<td>63.3</td>
<td>0.0</td>
<td>0.2 0.1</td>
<td>10.23 0.10</td>
<td>0.07 0.01</td>
<td>10.5 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Aua Well 1</td>
<td>30.7</td>
<td>7.48</td>
<td>6.57</td>
<td>59.8</td>
<td>0.0</td>
<td>0.3 0.1</td>
<td>15.81 0.15</td>
<td>0.08 0.02</td>
<td>16.2 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Aua Well 2</td>
<td>29.5</td>
<td>7.30</td>
<td>2.75</td>
<td>87.7</td>
<td>0.2</td>
<td>0.1 0.0</td>
<td>12.24 0.10</td>
<td>nd N/A</td>
<td>12.4 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun EZ Treat</td>
<td>28.5</td>
<td>7.14</td>
<td>6.72</td>
<td>33.8</td>
<td>0.2</td>
<td>0.74 0.11</td>
<td>23.57 0.29</td>
<td>0.43 0.00</td>
<td>24.74 0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Wetland 4</td>
<td>26.9</td>
<td>7.08</td>
<td>1.34</td>
<td>240.3</td>
<td>0.1</td>
<td>0.02 0.02</td>
<td>N/A N/A</td>
<td>0.02 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Wetland 6</td>
<td>26.9</td>
<td>6.41</td>
<td>1.21</td>
<td>241.7</td>
<td>0.5</td>
<td>0.03 0.04</td>
<td>N/A N/A</td>
<td>0.03 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>08_07_16</td>
<td>Sun Septic Tank</td>
<td>27.2</td>
<td>7.19</td>
<td>0.39</td>
<td>284.9</td>
<td>0.2</td>
<td>29.56 0.53</td>
<td>nd N/A</td>
<td>0.11 0.00</td>
<td>29.67 0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Aua</td>
<td>30.8</td>
<td>6.40</td>
<td>5.80</td>
<td>66 1</td>
<td>0.0</td>
<td>0.04 0.04</td>
<td>6.91 0.56</td>
<td>0.08 0.00</td>
<td>7.03 0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Aua Well 1</td>
<td>33.4</td>
<td>7.62</td>
<td>6.38</td>
<td>0.0</td>
<td>0.3 0.1</td>
<td>15.81 0.15</td>
<td>0.08 0.02</td>
<td>16.2 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Aua Well 2</td>
<td>32.7</td>
<td>7.33</td>
<td>1.82</td>
<td>0.0</td>
<td>0.81 0.11</td>
<td>11.51 0.02</td>
<td>0.12 0.02</td>
<td>12.45 0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues EZ Treat</td>
<td>30.2</td>
<td>7.13</td>
<td>6.37</td>
<td>0.0</td>
<td>1.3 0.1</td>
<td>20.09 0.52</td>
<td>0.71 0.00</td>
<td>22.1 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Wetland 4</td>
<td>30.0</td>
<td>7.10</td>
<td>3.03</td>
<td>0.0</td>
<td>0.1 0.1</td>
<td>0.23 N/A</td>
<td>0.6 N/A</td>
<td>0.4 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Wetland 6</td>
<td>29.9</td>
<td>6.28</td>
<td>1.72</td>
<td>0.0</td>
<td>nd N/A</td>
<td>0.24 N/A</td>
<td>0.07 0.01</td>
<td>0.31 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>08_16_16</td>
<td>Tues Septic Tank</td>
<td>29.4</td>
<td>6.80</td>
<td>0.57</td>
<td>173.2</td>
<td>1.0</td>
<td>72.2 11.9</td>
<td>189 5</td>
<td>22.0 0.5</td>
<td>nd N/A</td>
<td>22.1 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample DOTW</td>
<td>System</td>
<td>Phosphorous (mg P/L)</td>
<td>Other Ions (mg/L)</td>
<td>Total Col (MPN/100 mL)</td>
<td>E Coli (MPN/100 mL)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{PO}_4^{3-})</td>
<td>(\text{SO}_4^{2-})</td>
<td>(\text{Cl}^-)</td>
<td>Geo Mean</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Avg SD</td>
<td>Geo Mean</td>
<td></td>
</tr>
<tr>
<td>Sample #1</td>
<td>06_19_16</td>
<td></td>
</tr>
<tr>
<td>Sat Anua</td>
<td></td>
<td>7.26 0.09</td>
<td>6.03 N/A</td>
<td>24.73 0.37</td>
<td>27.67 0.79</td>
<td></td>
</tr>
<tr>
<td>Sat EZ Treat</td>
<td></td>
<td>3.82 0.06</td>
<td>2.6 N/A</td>
<td>20.74 0.01</td>
<td>23.59 0.22</td>
<td></td>
</tr>
<tr>
<td>Sat Wetland 6</td>
<td></td>
<td>0.47 0.06</td>
<td>nd N/A</td>
<td>3.83 0.12</td>
<td>19.55 0.68</td>
<td></td>
</tr>
<tr>
<td>Wed Wetland 4</td>
<td></td>
<td>nd N/A</td>
<td>nd N/A</td>
<td>nd N/A</td>
<td>11.89 11.53</td>
<td></td>
</tr>
<tr>
<td>Wed Septic Tank</td>
<td></td>
<td>3.88 0.04</td>
<td>3.85 N/A</td>
<td>10.28 1.05</td>
<td>24.13 0.37</td>
<td></td>
</tr>
<tr>
<td>Sample #2</td>
<td>06_29_16</td>
<td></td>
</tr>
<tr>
<td>Thurs Anua</td>
<td></td>
<td>5.96 0.15</td>
<td>25.54 0.85</td>
<td>23.56 0.75</td>
<td></td>
</tr>
<tr>
<td>Thurs EZ Treat</td>
<td></td>
<td>4.42 0.08</td>
<td>23.89 0.29</td>
<td>23.28 0.70</td>
<td></td>
</tr>
<tr>
<td>Thurs Wetland 4</td>
<td></td>
<td>0.41 0.08</td>
<td>3.33 0.13</td>
<td>15.71 1.11</td>
<td></td>
</tr>
<tr>
<td>Thurs Wetland 6</td>
<td></td>
<td>0.43 0.11</td>
<td>nd N/A</td>
<td>16.03 0.77</td>
<td></td>
</tr>
<tr>
<td>Thurs Septic Tank</td>
<td></td>
<td>4.47 0.04</td>
<td>14.50 0.08</td>
<td>26.67 0.27</td>
<td></td>
</tr>
<tr>
<td>Sample #3</td>
<td>07_07_16</td>
<td></td>
</tr>
<tr>
<td>Thurs Tank 1 Eff</td>
<td></td>
<td>3.58 0.01</td>
<td>12.72 0.14</td>
<td>20.81 0.27</td>
<td></td>
</tr>
<tr>
<td>Thurs Tank 2 Inf</td>
<td></td>
<td>3.10 0.03</td>
<td>17.83 0.09</td>
<td>20.55 0.20</td>
<td></td>
</tr>
<tr>
<td>Thurs Tank 3 Eff</td>
<td></td>
<td>0.99 0.06</td>
<td>6.81 0.04</td>
<td>15.93 0.17</td>
<td></td>
</tr>
<tr>
<td>Thurs Tank 4 Inf</td>
<td></td>
<td>0.59 0.06</td>
<td>6.11 0.16</td>
<td>15.67 0.30</td>
<td></td>
</tr>
<tr>
<td>Sample #3B</td>
<td>07_07_16</td>
<td></td>
</tr>
<tr>
<td>Sun Anua</td>
<td></td>
<td>5.15 0.11</td>
<td>25.73 0.34</td>
<td>24.41 0.30</td>
<td>432.4 14.1</td>
<td></td>
</tr>
<tr>
<td>Sun EZ Treat</td>
<td></td>
<td>4.87 0.04</td>
<td>27.18 0.02</td>
<td>25.08 0.42</td>
<td>18552.8 134.0</td>
<td></td>
</tr>
<tr>
<td>Sun Wetland 4</td>
<td></td>
<td>0.05 0.02</td>
<td>5.37 0.03</td>
<td>16.62 0.20</td>
<td>72720.5 <10.0</td>
<td></td>
</tr>
<tr>
<td>Sun Wetland 6</td>
<td></td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>16.22 0.07</td>
<td>9850.3 <10.0</td>
<td></td>
</tr>
<tr>
<td>Sun Septic Tank</td>
<td></td>
<td>3.86 0.05</td>
<td>3.18 0.02</td>
<td>27.85 0.85</td>
<td>3256692.8 57236.4</td>
<td></td>
</tr>
<tr>
<td>Sample #4</td>
<td>07_17_16</td>
<td></td>
</tr>
<tr>
<td>Sun Anua</td>
<td></td>
<td>3.44 0.03</td>
<td>29.70 0.10</td>
<td>20.34 0.10</td>
<td></td>
</tr>
<tr>
<td>Sun Anua Well 1</td>
<td></td>
<td>4.39 0.11</td>
<td>31.38 0.16</td>
<td>22.18 0.06</td>
<td></td>
</tr>
<tr>
<td>Sun Anua Well 2</td>
<td></td>
<td>3.60 0.05</td>
<td>29.88 0.04</td>
<td>19.77 0.01</td>
<td></td>
</tr>
<tr>
<td>Sun EZ Treat</td>
<td></td>
<td>3.26 0.02</td>
<td>27.90 0.29</td>
<td>20.18 0.14</td>
<td></td>
</tr>
<tr>
<td>Sun Wetland 4</td>
<td></td>
<td>0.10 0.01</td>
<td>5.84 0.09</td>
<td>13.32 0.06</td>
<td></td>
</tr>
<tr>
<td>Sun Wetland 6</td>
<td></td>
<td>N/A N/A</td>
<td>N/A N/A</td>
<td>10.08 1.61</td>
<td></td>
</tr>
<tr>
<td>Sun Septic Tank</td>
<td></td>
<td>2.97 0.03</td>
<td>8.85 0.04</td>
<td>25.62 0.05</td>
<td></td>
</tr>
<tr>
<td>Sample #5</td>
<td>08_07_16</td>
<td></td>
</tr>
<tr>
<td>Fri EZ Treat</td>
<td></td>
<td>3.68 0.01</td>
<td>26.54 0.09</td>
<td>19.27 0.16</td>
<td></td>
</tr>
<tr>
<td>Tues Anua</td>
<td></td>
<td>2.99 0.18</td>
<td>28.81 2.04</td>
<td>18.53 1.35</td>
<td></td>
</tr>
<tr>
<td>Tues Anua Well 1</td>
<td></td>
<td>4.51 0.07</td>
<td>30.64 0.11</td>
<td>20.24 0.13</td>
<td></td>
</tr>
<tr>
<td>Tues Anua Well 2</td>
<td></td>
<td>3.81 0.04</td>
<td>34.41 0.02</td>
<td>20.93 0.17</td>
<td></td>
</tr>
<tr>
<td>Tues EZ Treat</td>
<td></td>
<td>3.72 0.04</td>
<td>24.58 0.49</td>
<td>17.91 0.19</td>
<td></td>
</tr>
<tr>
<td>Tues Wetland 4</td>
<td></td>
<td>0.00 N/A</td>
<td>8.23 0.11</td>
<td>11.94 0.25</td>
<td></td>
</tr>
<tr>
<td>Tues Wetland 6</td>
<td></td>
<td>nd N/A</td>
<td>nd N/A</td>
<td>9.18 0.25</td>
<td></td>
</tr>
<tr>
<td>Tues Septic Tank</td>
<td></td>
<td>2.78 0.06</td>
<td>9.86 0.00</td>
<td>16.20 0.04</td>
<td></td>
</tr>
<tr>
<td>Sample #7</td>
<td>08_29_16</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>DOTW</td>
<td>System</td>
<td>Temp (°C)</td>
<td>pH</td>
<td>DO (mg/L)</td>
<td>Alkalinity (mg CaCO₃/L)</td>
<td>Oxygen Demand (mg/L)</td>
<td>TSS (mg/L)</td>
<td>NH₄⁺</td>
<td>NO₃⁻</td>
<td>NO₂⁻</td>
<td>TIN</td>
<td>TN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua</td>
<td></td>
<td>30.4</td>
<td>6.38</td>
<td>5.61</td>
<td>≤1.6 0.2</td>
<td>85 14</td>
<td>0.1 0.1</td>
<td>18.82 0.16</td>
<td>0.07 0.02</td>
<td>19.0 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua Well 1</td>
<td></td>
<td>33.0</td>
<td>7.23</td>
<td>6.80</td>
<td>≤1.2 0.3</td>
<td>20 4</td>
<td>0.2 N/A</td>
<td>25.31 0.13</td>
<td>0.09 0.01</td>
<td>25.6 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua Well 2</td>
<td></td>
<td>32.0</td>
<td>7.22</td>
<td>2.90</td>
<td>≤2 0.0</td>
<td>56 4</td>
<td>0.1 N/A</td>
<td>21.30 0.40</td>
<td>0.10 N/A</td>
<td>21.5 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon EZ Treat</td>
<td></td>
<td>30.2</td>
<td>6.83</td>
<td>6.32</td>
<td>≤4.6 3.2</td>
<td>20 1</td>
<td>2.0 0.1</td>
<td>22.65 0.24</td>
<td>0.69 0.01</td>
<td>25.3 0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Wetland 4</td>
<td></td>
<td>28.7</td>
<td>6.92</td>
<td>2.60</td>
<td>≤0.58 0.00</td>
<td>26 1</td>
<td>nd N/A</td>
<td>0.23 N/A</td>
<td>0.09 N/A</td>
<td>0.31 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Wetland 6</td>
<td></td>
<td>28.8</td>
<td>6.15</td>
<td>0.94</td>
<td>23.6 0.1</td>
<td>167 11</td>
<td>nd N/A</td>
<td>0.22 N/A</td>
<td>0.10 N/A</td>
<td>0.33 N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Septic Tank</td>
<td></td>
<td>29.4</td>
<td>7.04</td>
<td>0.45</td>
<td>232.9 0.1</td>
<td>75.1 2.6</td>
<td>195 21</td>
<td>32.45 1.38</td>
<td>0.24 0.01</td>
<td>0.10 0.01</td>
<td>32.55 1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #7</td>
<td>08-29-16</td>
<td>DOTW</td>
<td>System</td>
<td>Phosphorous (mg P/L)</td>
<td>Other Ions (mg/L)</td>
<td>Total Col (MPN/100 mL)</td>
<td>E Coli (MPN/100 mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PO₄³⁻</td>
<td>Avg</td>
<td>SD</td>
<td>TP</td>
<td>SO₄²⁻</td>
<td>Avg</td>
<td>SD</td>
<td>Cl⁻</td>
<td>Avg</td>
<td>SD</td>
<td>Geo Mean</td>
<td>Geo Mean</td>
</tr>
<tr>
<td>Mon</td>
<td>Anua</td>
<td></td>
<td></td>
<td>3.60</td>
<td>0.06</td>
<td>29.42</td>
<td>0.07</td>
<td>19.04</td>
<td>0.17</td>
<td>1094.8</td>
<td><2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>Anua Well 1</td>
<td></td>
<td></td>
<td>4.35</td>
<td>0.01</td>
<td>29.47</td>
<td>0.01</td>
<td>19.19</td>
<td>0.12</td>
<td>1684.2</td>
<td>49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>Anua Well 2</td>
<td></td>
<td></td>
<td>3.78</td>
<td>0.05</td>
<td>29.92</td>
<td>0.04</td>
<td>18.91</td>
<td>0.15</td>
<td>618.0</td>
<td><2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>EZ Treat</td>
<td></td>
<td></td>
<td>3.81</td>
<td>0.05</td>
<td>29.26</td>
<td>0.14</td>
<td>19.05</td>
<td>0.08</td>
<td>1753.9</td>
<td><2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>Wetland 4</td>
<td></td>
<td></td>
<td>nd</td>
<td>N/A</td>
<td>13.52</td>
<td>0.34</td>
<td>12.12</td>
<td>0.32</td>
<td>1675037.3</td>
<td>57500.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>Wetland 6</td>
<td></td>
<td></td>
<td>nd</td>
<td>N/A</td>
<td>nd</td>
<td>N/A</td>
<td>9.15</td>
<td>3.35</td>
<td>57500.0</td>
<td><2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>Septic Tank</td>
<td></td>
<td></td>
<td>3.68</td>
<td>0.12</td>
<td>8.06</td>
<td>0.11</td>
<td>21.94</td>
<td>0.09</td>
<td>1675037.3</td>
<td>57500.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #8 09_26_16</td>
<td>DOTW</td>
<td>System</td>
<td>Temp (°C)</td>
<td>pH</td>
<td>DO (mg/L)</td>
<td>Alkalinity (mg CaCO₃/L)</td>
<td>Oxygen Demand (mg/L)</td>
<td>TSS (mg/L)</td>
<td>NH₄⁺</td>
<td>NO₃⁻</td>
<td>NO₂⁻</td>
<td>TIN</td>
<td>TN (mg N/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua 09_26_16</td>
<td>20.9</td>
<td>6.09</td>
<td>6.84</td>
<td>35.5</td>
<td>1.8</td>
<td>≤1.0</td>
<td>64</td>
<td>1</td>
<td>0.08</td>
<td>25.41</td>
<td>3.55</td>
<td>0.04</td>
<td>25.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua Well 1</td>
<td>19.6</td>
<td>5.36</td>
<td>8.08</td>
<td>0.9</td>
<td>0.0</td>
<td>≤1.9</td>
<td>41</td>
<td>1</td>
<td>0.00</td>
<td>31.38</td>
<td>0.80</td>
<td>0.08</td>
<td>34.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Anua Well 2</td>
<td>19.3</td>
<td>7.09</td>
<td>5.78</td>
<td>43.2</td>
<td>1.0</td>
<td>≤1.1</td>
<td>51</td>
<td>4</td>
<td>0.06</td>
<td>32.45</td>
<td>0.35</td>
<td>0.04</td>
<td>32.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon EZ Treat 09_26_16</td>
<td>20.3</td>
<td>6.30</td>
<td>7.72</td>
<td>10.1</td>
<td>1</td>
<td>≤3.0</td>
<td>40</td>
<td>1</td>
<td>4.12</td>
<td>24.68</td>
<td>0.16</td>
<td>0.25</td>
<td>29.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Wetland 4</td>
<td>18.5</td>
<td>6.87</td>
<td>2.83</td>
<td>293.3</td>
<td>1.8</td>
<td>≤1.6</td>
<td>45</td>
<td>7</td>
<td>0.06</td>
<td>0.69</td>
<td>0.01</td>
<td>0.05</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Wetland 6</td>
<td>19.5</td>
<td>6.08</td>
<td>1.79</td>
<td>379.7</td>
<td>0.8</td>
<td>21.4</td>
<td>155</td>
<td>2</td>
<td>30.35</td>
<td>0.34</td>
<td>0.09</td>
<td>0.02</td>
<td>30.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon Septic Tank</td>
<td>20.7</td>
<td>6.93</td>
<td>0.66</td>
<td>208.1</td>
<td>2.2</td>
<td>96.9</td>
<td>74</td>
<td>23</td>
<td>1.09</td>
<td>0.69</td>
<td>0.01</td>
<td>0.05</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #9 10_22_16</th>
<th>DOTW</th>
<th>System</th>
<th>Temp (°C)</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>Alkalinity (mg CaCO₃/L)</th>
<th>Oxygen Demand (mg/L)</th>
<th>TSS (mg/L)</th>
<th>NH₄⁺</th>
<th>NO₃⁻</th>
<th>NO₂⁻</th>
<th>TIN</th>
<th>TN (mg N/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat Anua 10_22_16</td>
<td>18.5</td>
<td>6.98</td>
<td>7.37</td>
<td>75.4</td>
<td>0.5</td>
<td>≤1.4</td>
<td>0.1</td>
<td>78</td>
<td>0.05</td>
<td>35.78</td>
<td>8.35</td>
<td>0.02</td>
<td>35.85</td>
</tr>
<tr>
<td>Sat Anua Well 1</td>
<td>18.0</td>
<td>7.70</td>
<td>5.96</td>
<td>273.7</td>
<td>1.0</td>
<td>10.0</td>
<td>0</td>
<td>88</td>
<td>23.60</td>
<td>5.28</td>
<td>0.08</td>
<td>29.86</td>
<td></td>
</tr>
<tr>
<td>Sat Anua Well 2</td>
<td>18.9</td>
<td>7.36</td>
<td>5.08</td>
<td>93.1</td>
<td>0.3</td>
<td>≤1.04</td>
<td>0.3</td>
<td>65</td>
<td>40.10</td>
<td>0.99</td>
<td>0.02</td>
<td>38.7</td>
<td></td>
</tr>
<tr>
<td>Sat EZ Treat 10_22_16</td>
<td>17.4</td>
<td>7.21</td>
<td>8.32</td>
<td>26.0</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
<td>40</td>
<td>24.29</td>
<td>41.29</td>
<td>0.09</td>
<td>41.58</td>
<td></td>
</tr>
<tr>
<td>Sat Wetland 4</td>
<td>16.7</td>
<td>7.10</td>
<td>3.77</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td>10</td>
<td>25.36</td>
<td>0.01</td>
<td>0.04</td>
<td>25.36</td>
<td></td>
</tr>
<tr>
<td>Sat Wetland 6</td>
<td>16.7</td>
<td>6.55</td>
<td>1.94</td>
<td>18.0</td>
<td>0.1</td>
<td>20</td>
<td>25</td>
<td>0</td>
<td>1.17</td>
<td>0.05</td>
<td>0.17</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Sat Septic Tank</td>
<td>15.7</td>
<td>6.97</td>
<td>1.32</td>
<td>238.2</td>
<td>N/A</td>
<td>86.7</td>
<td>9.7</td>
<td>155</td>
<td>32.73</td>
<td>0.15</td>
<td>0.02</td>
<td>32.75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #10 11_16_16</th>
<th>DOTW</th>
<th>System</th>
<th>Temp (°C)</th>
<th>pH</th>
<th>DO (mg/L)</th>
<th>Alkalinity (mg CaCO₃/L)</th>
<th>Oxygen Demand (mg/L)</th>
<th>TSS (mg/L)</th>
<th>NH₄⁺</th>
<th>NO₃⁻</th>
<th>NO₂⁻</th>
<th>TIN</th>
<th>TN (mg N/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed Anua 11_16_16</td>
<td>17.3</td>
<td>6.99</td>
<td>9.07</td>
<td>94.1</td>
<td>3.8</td>
<td>≤1.7</td>
<td>0.2</td>
<td>58</td>
<td>3.25</td>
<td>24.6</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed Anua Well 1</td>
<td>17.3</td>
<td>7.71</td>
<td>9.82</td>
<td>94.1</td>
<td>3.8</td>
<td>≤1.7</td>
<td>0.2</td>
<td>58</td>
<td>3.25</td>
<td>24.6</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wed Anua Well 2</td>
<td>16.0</td>
<td>7.66</td>
<td>7.30</td>
<td>95.5</td>
<td>N/A</td>
<td>≤2.6</td>
<td>17</td>
<td>21</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Wed EZ Treat 11_16_16</td>
<td>16.3</td>
<td>6.94</td>
<td>9.10</td>
<td>24.1</td>
<td>0.5</td>
<td>≤2.8</td>
<td>0.2</td>
<td>16</td>
<td>2.1</td>
<td>30.7</td>
<td>0.5</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td>Wed Wetland 4</td>
<td>14.5</td>
<td>10.55</td>
<td>8.22</td>
<td>248.2</td>
<td>N/A</td>
<td>6.6</td>
<td>0.3</td>
<td>17</td>
<td>3.2</td>
<td>7.2</td>
<td>0.2</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Wed Wetland 6</td>
<td>14.8</td>
<td>6.54</td>
<td>2.52</td>
<td>316.4</td>
<td>N/A</td>
<td>9.1</td>
<td>0.6</td>
<td>11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Wed Septic Tank</td>
<td>20.7</td>
<td>7.06</td>
<td>1.17</td>
<td>614.7</td>
<td>1.7</td>
<td>226</td>
<td>3</td>
<td>29.68</td>
<td>0.67</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

No duplicates in sampling set
Value above analytical test range
RSD > 10%
RSD ≥ 100%
<table>
<thead>
<tr>
<th>Sample</th>
<th>DOTW</th>
<th>System</th>
<th>Phosphorous (mg P/L)</th>
<th>Other Ions (mg/L)</th>
<th>Total Col (MPN/100 mL)</th>
<th>E Coli (MPN/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PO$_4^{3-}$</td>
<td>TP</td>
<td>SO$_4^{2-}$</td>
<td>Cl$^-$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avg</td>
<td>SD</td>
<td>Avg</td>
<td>SD</td>
</tr>
<tr>
<td>Sample #8</td>
<td>09-26-16</td>
<td>Mon</td>
<td>Anua</td>
<td>4.33</td>
<td>0.35</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Anua Well 1</td>
<td>5.42</td>
<td>0.17</td>
<td>4.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Anua Well 2</td>
<td>4.92</td>
<td>0.49</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>EZ Treat</td>
<td>4.69</td>
<td>0.09</td>
<td>3.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Wetland 4</td>
<td>0.42</td>
<td>0.12</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Wetland 6</td>
<td>nd</td>
<td>N/A</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Septic Tank</td>
<td>3.50</td>
<td>0.14</td>
<td>3.2</td>
</tr>
<tr>
<td>Sample #8B</td>
<td>09-29-16</td>
<td>Mon</td>
<td>Tank 1 Eff</td>
<td>3.00</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Tank 2 Inf</td>
<td>3.55</td>
<td>0.13</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Tank 2 Eff</td>
<td>0.19</td>
<td>N/A</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mon</td>
<td>Tank 3 Inf</td>
<td>0.70</td>
<td>0.01</td>
<td>nd</td>
</tr>
<tr>
<td>Sample #9</td>
<td>10-22-16</td>
<td>Sat</td>
<td>Anua</td>
<td>11.19</td>
<td>1.89</td>
<td>13.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Anua Well 1</td>
<td>13.25</td>
<td>0.42</td>
<td>13.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Anua Well 2</td>
<td>13.04</td>
<td>0.33</td>
<td>12.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>EZ Treat</td>
<td>4.40</td>
<td>0.17</td>
<td>4.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Wetland 4</td>
<td>0.49</td>
<td>0.01</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Wetland 6</td>
<td>nd</td>
<td>N/A</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Septic Tank</td>
<td>4.25</td>
<td>0.10</td>
<td>4.0</td>
</tr>
<tr>
<td>Sample #9B</td>
<td>10-22-16</td>
<td>Sat</td>
<td>Tank 1 Eff</td>
<td>4.17</td>
<td>0.10</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Tank 2 Inf</td>
<td>3.68</td>
<td>0.46</td>
<td>15.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Tank 2 Eff</td>
<td>1.41</td>
<td>0.03</td>
<td>13.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sat</td>
<td>Tank 3 Inf</td>
<td>2.07</td>
<td>0.05</td>
<td>11.70</td>
</tr>
<tr>
<td>Sample #10</td>
<td>11-16-16</td>
<td>Wed</td>
<td>Anua</td>
<td>10.97</td>
<td>0.22</td>
<td>13.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Anua Well 1</td>
<td>10.38</td>
<td>0.13</td>
<td>11.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Anua Well 2</td>
<td>10.83</td>
<td>0.39</td>
<td>12.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>EZ Treat</td>
<td>3.92</td>
<td>0.08</td>
<td>5.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Wetland 4</td>
<td>1.41</td>
<td>0.05</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Wetland 6</td>
<td>nd</td>
<td>N/A</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Septic Tank</td>
<td>3.40</td>
<td>0.02</td>
<td>5.19</td>
</tr>
<tr>
<td>Sample #10B</td>
<td>11-16-16</td>
<td>Wed</td>
<td>Tank 1 Eff</td>
<td>3.79</td>
<td>0.05</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Tank 2 Inf</td>
<td>3.68</td>
<td>0.20</td>
<td>4.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Tank 3 Inf</td>
<td>2.73</td>
<td>0.10</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Tank 3 Eff</td>
<td>1.45</td>
<td>N/A</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed</td>
<td>Tank 4 Inf</td>
<td>1.50</td>
<td>0.04</td>
<td>1.65</td>
</tr>
</tbody>
</table>
C.4 Pilot System PPCP Results
<table>
<thead>
<tr>
<th>Sample DOTW System</th>
<th>ACE</th>
<th>CBZ</th>
<th>LAM</th>
<th>LEV</th>
<th>MET</th>
<th>TOP</th>
<th>TCS</th>
<th>VEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat Anua</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.036</td>
<td>26.654</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.500</td>
<td>0.046</td>
</tr>
<tr>
<td>Sat EZ Treat</td>
<td><LOQ</td>
<td>102.905</td>
<td>151.339</td>
<td>56.662</td>
<td><LOQ</td>
<td><LOQ</td>
<td>2.115</td>
<td>6.557</td>
</tr>
<tr>
<td>Sat Wetland 6</td>
<td>0.038</td>
<td>6.395</td>
<td>4.467</td>
<td>1.774</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.321</td>
<td><LOQ</td>
</tr>
<tr>
<td>Sat Septic Tank</td>
<td>244.396</td>
<td>148.547</td>
<td>527.045</td>
<td>386.120</td>
<td>0.881</td>
<td>0.330</td>
<td>8.506</td>
<td>10.327</td>
</tr>
<tr>
<td>Sat Field Blank</td>
<td>0.093</td>
<td>0.048</td>
<td>0.102</td>
<td>0.185</td>
<td><LOQ</td>
<td><LOQ</td>
<td>2.600</td>
<td><LOQ</td>
</tr>
<tr>
<td>Wed Anua</td>
<td><LOQ</td>
<td>0.201</td>
<td><LOQ</td>
<td>0.342</td>
<td><LOQ</td>
<td><LOQ</td>
<td>2.477</td>
<td><LOQ</td>
</tr>
<tr>
<td>Wed EZ Treat</td>
<td>0.044</td>
<td>88.010</td>
<td>138.263</td>
<td>42.655</td>
<td>0.035</td>
<td><LOQ</td>
<td>2.926</td>
<td>8.676</td>
</tr>
<tr>
<td>Wed Wetland 4</td>
<td>0.045</td>
<td>56.126</td>
<td>93.387</td>
<td>7.291</td>
<td>0.037</td>
<td><LOQ</td>
<td>3.708</td>
<td>0.041</td>
</tr>
<tr>
<td>Wed Wetland 6</td>
<td>0.101</td>
<td>10.207</td>
<td>5.089</td>
<td>0.484</td>
<td><LOQ</td>
<td><LOQ</td>
<td>2.186</td>
<td><LOQ</td>
</tr>
<tr>
<td>Wed Septic Tank</td>
<td>181.318</td>
<td>71.083</td>
<td>125.761</td>
<td>131.988</td>
<td>0.074</td>
<td><LOQ</td>
<td>9.167</td>
<td>5.791</td>
</tr>
<tr>
<td>Wed Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.040</td>
<td>0.069</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.663</td>
<td><LOQ</td>
</tr>
<tr>
<td>Thurs Anua</td>
<td>1.108</td>
<td>1.177</td>
<td>1.218</td>
<td>0.481</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.722</td>
<td>0.034</td>
</tr>
<tr>
<td>Thurs EZ Treat</td>
<td>0.367</td>
<td>105.529</td>
<td>141.336</td>
<td>4.815</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.424</td>
<td>12.119</td>
</tr>
<tr>
<td>Thurs Wetland 4</td>
<td>0.186</td>
<td>47.317</td>
<td>92.318</td>
<td>1.794</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.424</td>
<td>5.106</td>
</tr>
<tr>
<td>Thurs Wetland 6</td>
<td>0.744</td>
<td>9.827</td>
<td>5.089</td>
<td>0.484</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.321</td>
<td><LOQ</td>
</tr>
<tr>
<td>Thurs Septic Tank</td>
<td>182.549</td>
<td>74.995</td>
<td>147.034</td>
<td>43.620</td>
<td>0.056</td>
<td><LOQ</td>
<td>4.186</td>
<td>9.566</td>
</tr>
<tr>
<td>Thurs Field Blank</td>
<td>0.236</td>
<td>0.131</td>
<td>0.472</td>
<td>0.285</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.663</td>
<td><LOQ</td>
</tr>
<tr>
<td>Sun Anua</td>
<td><LOQ</td>
<td>1.717</td>
<td>0.196</td>
<td>0.147</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.004</td>
<td><LOQ</td>
</tr>
<tr>
<td>Sun EZ Treat</td>
<td>0.100</td>
<td>87.185</td>
<td>139.516</td>
<td>30.334</td>
<td><LOQ</td>
<td><LOQ</td>
<td>2.477</td>
<td>7.176</td>
</tr>
<tr>
<td>Sun Wetland 4</td>
<td>0.046</td>
<td>9.991</td>
<td>4.143</td>
<td>0.081</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.424</td>
<td>12.119</td>
</tr>
<tr>
<td>Sun Wetland 6</td>
<td>0.744</td>
<td>9.827</td>
<td>5.089</td>
<td>0.484</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.321</td>
<td><LOQ</td>
</tr>
<tr>
<td>Sun Septic Tank</td>
<td>154.193</td>
<td>61.308</td>
<td>151.390</td>
<td>142.704</td>
<td>0.063</td>
<td><LOQ</td>
<td>53.276</td>
<td>5.288</td>
</tr>
<tr>
<td>Sun Field Blank</td>
<td>0.091</td>
<td><LOQ</td>
<td>0.059</td>
<td>0.079</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.872</td>
<td><LOQ</td>
</tr>
<tr>
<td>Fri EZ Treat</td>
<td>2.086</td>
<td>49.041</td>
<td>111.658</td>
<td>18.567</td>
<td>0.427</td>
<td><LOQ</td>
<td>1.521</td>
<td>5.647</td>
</tr>
<tr>
<td>Tues Anua</td>
<td><LOQ</td>
<td>5.614</td>
<td>0.176</td>
<td>0.056</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.460</td>
<td><LOQ</td>
</tr>
<tr>
<td>Tues Anua Well 1</td>
<td>0.097</td>
<td>57.560</td>
<td>119.295</td>
<td>2.149</td>
<td>0.453</td>
<td><LOQ</td>
<td>3.584</td>
<td><LOQ</td>
</tr>
<tr>
<td>Tues Anua Well 2</td>
<td><LOQ</td>
<td>31.941</td>
<td>7.446</td>
<td>0.092</td>
<td>0.034</td>
<td><LOQ</td>
<td>0.035</td>
<td><LOQ</td>
</tr>
<tr>
<td>Tues EZ Treat</td>
<td>0.950</td>
<td>60.579</td>
<td>134.396</td>
<td>29.167</td>
<td>0.339</td>
<td><LOQ</td>
<td>1.246</td>
<td>4.606</td>
</tr>
<tr>
<td>Tues Wetland 4</td>
<td><LOQ</td>
<td>40.313</td>
<td>49.284</td>
<td>0.508</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.093</td>
<td>1.093</td>
</tr>
<tr>
<td>Tues Wetland 6</td>
<td><LOQ</td>
<td>12.573</td>
<td>5.568</td>
<td>0.057</td>
<td><LOQ</td>
<td><LOQ</td>
<td>1.093</td>
<td>1.093</td>
</tr>
<tr>
<td>Tues Septic Tank</td>
<td>11.894</td>
<td>43.416</td>
<td>98.415</td>
<td>118.730</td>
<td>0.125</td>
<td><LOQ</td>
<td>14.636</td>
<td>1.093</td>
</tr>
<tr>
<td>Tues Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>Mon Anua</td>
<td><LOQ</td>
<td>27.518</td>
<td>6.138</td>
<td>0.137</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.113</td>
<td><LOQ</td>
</tr>
<tr>
<td>Mon Anua Well 1</td>
<td>0.253</td>
<td>52.327</td>
<td>127.526</td>
<td>4.652</td>
<td>0.136</td>
<td>0.110</td>
<td>0.853</td>
<td>1.560</td>
</tr>
<tr>
<td>Sample</td>
<td>DOTW</td>
<td>System</td>
<td>ACE</td>
<td>CBZ</td>
<td>LAM</td>
<td>LEV</td>
<td>MET</td>
<td>TOP</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>#7 08 29 16</td>
<td>Mon</td>
<td>Anua Well 2</td>
<td><LOQ</td>
<td>9.483</td>
<td>0.216</td>
<td>0.070</td>
<td><LOQ</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>EZ Treat</td>
<td>1.307</td>
<td>54.278</td>
<td>149.963</td>
<td>17.115</td>
<td>0.049</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Wetland 4</td>
<td><LOQ</td>
<td>40.010</td>
<td>52.713</td>
<td>0.078</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Wetland 6</td>
<td><LOQ</td>
<td>11.531</td>
<td>2.772</td>
<td>0.056</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Septic Tank</td>
<td>32.186</td>
<td>40.613</td>
<td>134.277</td>
<td>129.845</td>
<td>0.052</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#8 09 29 16</td>
<td>Mon</td>
<td>Anua</td>
<td><LOQ</td>
<td>16.082</td>
<td>0.247</td>
<td>0.479</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Anua Well 1</td>
<td>0.205</td>
<td>28.561</td>
<td>96.254</td>
<td>9.829</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Anua Well 2</td>
<td><LOQ</td>
<td>21.369</td>
<td>2.404</td>
<td>0.636</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>EZ Treat</td>
<td>0.715</td>
<td>61.178</td>
<td>154.207</td>
<td>20.905</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Wetland 4</td>
<td><LOQ</td>
<td>30.775</td>
<td>49.997</td>
<td>0.311</td>
<td><LOQ</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Wetland 6</td>
<td><LOQ</td>
<td>6.630</td>
<td>1.611</td>
<td>0.201</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Septic Tank</td>
<td>85.878</td>
<td>53.845</td>
<td>122.681</td>
<td>124.888</td>
<td>0.148</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#8B 09 29 16</td>
<td>Mon</td>
<td>Tank 1 Eff</td>
<td>0.174</td>
<td>32.036</td>
<td>99.567</td>
<td>71.870</td>
<td>0.056</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Tank 2 Inf</td>
<td>0.185</td>
<td>45.707</td>
<td>138.077</td>
<td>97.658</td>
<td>0.046</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Tank 2 Eff</td>
<td><LOQ</td>
<td>36.595</td>
<td>90.354</td>
<td>0.387</td>
<td><LOQ</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>Mon</td>
<td>Tank 3 Inf</td>
<td><LOQ</td>
<td>38.347</td>
<td>164.568</td>
<td>0.748</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#9 10 22 16</td>
<td>Sat</td>
<td>Anua</td>
<td>0.915</td>
<td>16.376</td>
<td>1.690</td>
<td>4.441</td>
<td>1.121</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Anua Well 1</td>
<td><LOQ</td>
<td>30.900</td>
<td>104.109</td>
<td>1.007</td>
<td>0.036</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Anua Well 2</td>
<td><LOQ</td>
<td>26.712</td>
<td>5.546</td>
<td>0.034</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>EZ Treat</td>
<td>0.509</td>
<td>42.113</td>
<td>124.241</td>
<td>17.214</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Wetland 4</td>
<td><LOQ</td>
<td>41.828</td>
<td>80.331</td>
<td>3.863</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Wetland 6</td>
<td><LOQ</td>
<td>17.901</td>
<td>13.281</td>
<td>0.570</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Septic Tank</td>
<td>9.849</td>
<td>31.267</td>
<td>108.544</td>
<td>131.011</td>
<td>0.096</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#9B 10 22 16</td>
<td>Sat</td>
<td>Tank 1 Eff</td>
<td>0.413</td>
<td>38.865</td>
<td>135.017</td>
<td>130.432</td>
<td>0.051</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Tank 2 Inf</td>
<td>0.274</td>
<td>43.534</td>
<td>151.540</td>
<td>113.944</td>
<td>0.041</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Tank 2 Eff</td>
<td><LOQ</td>
<td>47.064</td>
<td>123.668</td>
<td>35.262</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>Tank 3 Inf</td>
<td><LOQ</td>
<td>51.016</td>
<td>125.791</td>
<td>59.307</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#10 11 16 16</td>
<td>Wed</td>
<td>Anua</td>
<td>0.060</td>
<td>14.630</td>
<td>1.031</td>
<td>0.400</td>
<td>0.106</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Anua Well 1</td>
<td>0.279</td>
<td>38.100</td>
<td>141.208</td>
<td>1.627</td>
<td>0.052</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Anua Well 2</td>
<td><LOQ</td>
<td>21.487</td>
<td>7.142</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>EZ Treat</td>
<td>3.629</td>
<td>33.503</td>
<td>147.013</td>
<td>19.227</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Wetland 4</td>
<td>0.095</td>
<td>30.235</td>
<td>88.782</td>
<td>1.291</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Wetland 6</td>
<td><LOQ</td>
<td>18.967</td>
<td>11.986</td>
<td>0.570</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Septic Tank</td>
<td>63.659</td>
<td>21.573</td>
<td>119.454</td>
<td>117.303</td>
<td>0.132</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Field Blank</td>
<td><LOQ</td>
<td><LOQ</td>
<td>0.068</td>
<td>0.093</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td>#10B 11 16 16</td>
<td>Wed</td>
<td>Tank 1 Eff</td>
<td>5.320</td>
<td>19.490</td>
<td>133.089</td>
<td>113.898</td>
<td>0.048</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Tank 2 Inf</td>
<td>0.247</td>
<td>34.424</td>
<td>117.574</td>
<td>37.221</td>
<td>0.034</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Tank 3 Inf</td>
<td>4.560</td>
<td>22.452</td>
<td>143.147</td>
<td>281.710</td>
<td>0.050</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Tank 3 Eff</td>
<td><LOQ</td>
<td>33.190</td>
<td>107.587</td>
<td>2.749</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
<tr>
<td></td>
<td>Wed</td>
<td>Tank 4 Inf</td>
<td>0.071</td>
<td>34.806</td>
<td>110.695</td>
<td>3.047</td>
<td><LOQ</td>
<td><LOQ</td>
</tr>
</tbody>
</table>
C.5 Evapotranspiration Calculations

Evapotranspiration rates were estimated using the Penman Monteith equation and weather data from the Mount Fair Farm Weather Underground station (KVACROZE8) located 2.1 miles (3.4 km) and at elevation 220 ft (67 m) lower than the project site. The calculation procedure, summarized below, was based on the FAO Guidelines for Computing Crop Water Requirements (Allen et al, 1998).

1. Site location was found using Google maps: (38.2, -78.7), elevation 1020 ft.

2. Weather data including maximum and minimum daily temperatures, maximum daily humidity, precipitation, and cloud cover was downloaded for dates encompassing the sampling period (June 1 – November 30).

3. Atmospheric pressure was calculated as follows:

\[P_{atm} = 101.3 \left(\frac{293 - 0.0065z}{293} \right)^{5.26} \]

Where \(P_{atm} \) is in kPa and \(z \) is the elevation in m.

4. The psychrometric constant was calculated as follows:

\[\gamma = 0.000665P_{atm} \]

Where \(\gamma \) is in kPa/°C and \(P_{atm} \) is the atmospheric pressure in kPa.

5. Daily average temperatures (\(T_{\text{mean}} \)) were calculated as an average of \(T_{\text{min}} \) and \(T_{\text{max}} \).

6. Saturation vapor pressure was calculated as follows:

\[e^o(T) = 0.6108 \exp \left(\frac{17.27T}{T + 237.3} \right) \]

\[e_s = \frac{e^o(T_{\text{max}}) + e^o(T_{\text{min}})}{2} \]

Where \(e_s \) is in kPa and \(T \) is in °C.
7. Actual vapor pressure was calculated as follows:

\[e_a = e_0(T_{min}) \times \frac{RH_{max}}{100} \]

Where \(e_a \) is in kPa, \(RH_{max} \) is a percent, and \(T \) is in °C.

8. The slope of the vapor pressure curve is calculated as the derivative of the saturation vapor pressure equation:

\[\Delta(T) = \frac{4090 \times 0.6108 \exp \left(\frac{17.27T}{T + 237.3} \right)}{(T + 237.3)^2} \]

\[\Delta = \frac{\Delta(T_{max}) + \Delta(T_{min})}{2} \]

Where \(\Delta \) is in kPa/°C and \(T \) is in °C.

9. Extraterrestrial radiation (\(R_a \)) values for different latitudes were provided in Annex 2 of the FAO report. The monthly average value at latitude 38.2 was interpolated between provided values at 38 and 40 degrees. Then, an equation was developed for the \(R_a \) value based on days past May 15th, assuming that the average value was the actual \(R_a \) value in the middle of the month. The table, graph, and equation (\(R^2 = 0.998 \)) for the relationship are shown below. This equation was used to calculate \(R_a \) values throughout the time period of interest.

| Table C.5.1: Monthly extraterrestrial radiation values as a function of latitude |
|-----------------|-----------------|-----------------|-----------------|
| Date | Days Since 5/15 | \(R_a \) (MJ/m²d) | Latitude Degree |
| | | 40.0 | 38.2 | 38.0 |
| 5/15/2016 | 0 | 39.7 | 39.7 | 39.9 |
| 6/15/2016 | 31 | 41.9 | 41.9 | 41.8 |
| 7/15/2016 | 61 | 40.8 | 40.8 | 40.8 |
| 8/15/2016 | 92 | 36.7 | 36.7 | 37.0 |
| 9/15/2016 | 123 | 30.0 | 30.1 | 30.7 |
| 10/15/2016 | 153 | 22.5 | 22.6 | 23.6 |
| 11/15/2016 | 184 | 16.3 | 16.4 | 17.5 |
| 12/15/2016 | 214 | 13.6 | 13.7 | 14.8 |
| 1/15/2017 | 245 | 15.0 | 15.1 | 16.2 |
| 2/15/2017 | 276 | 20.4 | 20.5 | 21.5 |
10. Solar radiation, R_s was calculated using the Angstrom formula:

$$R_s = (a_s + b_s \frac{n}{N}) R_a$$

Where R_s is the solar radiation in MJ/m2d, a_s and b_s are regression constants with value 0.25 and 0.50, respectively, n/N is the relative sunshine duration, and R_a is the extraterrestrial radiation in MJ/m2d. The relative sunshine duration was estimated based on cloud cover data from the weather station. Cloud cover values are integers from 0 to 8, representing the fraction of the sky covered by clouds. The relative sunshine duration was estimated using the following formula:

$$\frac{n}{N} = \frac{8 - CC}{8}$$

Where CC is the cloud cover.

11. The clear sky solar radiation, R_{so} is the R_s value when n/N is equal to 1. However, if calibrated a_s and b_s values are not available, it is recommended that the following equation be used instead.
\[R_{so} = (0.75 + 2 \times 10^{-5}z)R_a \]

Where \(R_{so} \) is the clear sky solar radiation in MJ/m\(^2\)d, \(z \) is the elevation in m, and \(R_a \) is the extraterrestrial radiation in MJ/m\(^2\)d.

12. The net solar radiation, \(R_{ns} \) is calculated as follows:
\[R_{ns} = (1 - \alpha)R_s \]

Where \(R_{ns} \) is the net solar radiation in MJ/m\(^2\)d, \(\alpha \) is the albedo, and \(R_s \) is the solar radiation in MJ/m\(^2\)d. An \(\alpha \) value of 0.23 is recommended for a hypothetical grass reference crop.

13. The net long-wave radiation, \(R_{nl} \) is calculated as follows:
\[R_{nl} = 4.903 \times 10^{-9} \left[\frac{T_{max,K}^4 + T_{min,K}^4}{2} \right] (0.34 - 0.14\sqrt{e_a}) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right) \]

Where \(T_{max,K} \) and \(T_{min,K} \) are temperature in Kelvin, \(e_a \) is the actual vapor pressure in kPa, \(R_s \) is the solar radiation in MJ/m\(^2\)d, and \(R_{so} \) is the clear sky solar radiation in MJ/m\(^2\)d.

14. The net radiation, \(R_n \) is calculated as follows:
\[R_n = R_{ns} - R_{nl} \]

Where \(R_n \) is the net radiation, \(R_{ns} \) is the net solar radiation, and \(R_{nl} \) is the net long wave radiation, and all are in units of MJ/m\(^2\)d.

15. The reference evapotranspiration is calculated based on weather and radiation using the following equation:
\[
ETo = \frac{1}{25.4} \left[\frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273.2} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)} \right]
\]

Where \(ETo \) is the reference evapotranspiration in in/day, \(R_n \) is the net radiation in MJ/m\(^2\)d, \(G \) is the soil heat flux density (approximated as zero for daily time steps), \(\gamma \) is the psychrometric constant in kPa/°C, \(T \) is the mean temperature in °C, \(u_2 \) is the wind speed at an elevation of 2 m in m/s, and \(e_s - e_a \) is the saturation vapor pressure deficit in kPa.
16. The crop coefficient, K_c, accounts for both crop transpiration and soil evaporation and is used to adjust the reference evapotranspiration to the crop evapotranspiration. Values of K_c for three growing stages (initial, mid, and end) were found in Table 12 using values for “Reed swamp, moist soil” in the group “Wetlands – temperature climate.” The $K_{c,\text{ini}}$ value of 0.90 was used for the month of June. The $K_{c,\text{mid}}$ value of 1.20 was used for the months July through September. The $K_{c,\text{end}}$ value of 0.70 was used for the months of October and November.

17. The daily crop evapotranspiration rate, ET_c, was calculated using the following equation:

$$ET_c = K_c ET_o$$

Where K_c is unitless and ET has value of in/day.

C.6 Statistics Calculations – R Code

Nitrogen Calculations

```r
> N<-read.csv("nitrogen.csv")
> attach(N)
> #Determine whether measured treated TIN concentrations are
> #statistically different from estimated TN concentrations
> #(based on TSS measurements)
> TINVTN<-(estTN-tTN);TINVTN
> [1] 0.372 1.364 0.124 0.992 0.248 0.124 0.124 0.062 0.620 0.496 0.496 0.124
> [13] 0.124 0.992 0.372 0.124 1.364
> shapiro.test(TINVTN)
> Shapiro-Wilk normality test
> data:  TINVTN
> W = 0.81446, p-value = 0.003225
> lnTINVTN<-log(TINVTN)
> shapiro.test(lnTINVTN)
> Shapiro-Wilk normality test
> data:  lnTINVTN
> W = 0.9046, p-value = 0.08113
> #Not parametric, so need to build CI using bootstrapping
> n<-100000
> bootTINVTN<-numeric(n)
> for (i in 1:n) {
+ bootTINVTN[i]<-mean(sample(TINVTN,replace=T))
+ }
> hist(bootTINVTN)
> quantile(bootTINVTN,probs=c(0.025,0.975))
> 2.5% 97.5%
> 0.2881176 0.6929412
> mean(bootTINVTN)
> [1] 0.4775729
```
#Now find out if the estimated TN values are significantly different from the TN values measured using Hach kits
> eTNvmTN<-measTN-estTN_short
> shapiro.test(eTNvmTN)

Shapiro-Wilk normality test
data: eTNvmTN
W = 0.95914, p-value = 0.7715
> mu<-mean(eTNvmTN,na.rm=TRUE); mu
[1] 2.118667
> s<-sd(eTNvmTN,na.rm=TRUE); s
[1] 4.194994
> n<-length(which(eTNvmTN!="NA"));n
[1] 12
> a<-0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] -0.5467054 2.1186667 4.7840388
> #Compare previous and current septic tank ammonia concentrations
> shapiro.test(stAMM)

Shapiro-Wilk normality test
data: stAMM
W = 0.9055, p-value = 0.2856
> shapiro.test(qAMM)

Shapiro-Wilk normality test
data: qAMM
W = 0.83548, p-value = 0.06767
> mu<-mean(stAMM,na.rm=TRUE); mu
[1] 31.48556
> s<-sd(stAMM,na.rm=TRUE); s
[1] 4.958748
> n<-length(which(stAMM!="NA"));n
[1] 9
> a<-0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 27.67392 31.48556 35.29719
> mu<-mean(qAMM,na.rm=TRUE); mu
[1] 32.365
> s<-sd(qAMM,na.rm=TRUE); s
[1] 7.113311
> n<-length(which(qAMM!="NA"));n
[1] 8
> a<-0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 26.41812 32.36500 38.31188

Table C.6.1: Data from nitrogen.csv

<table>
<thead>
<tr>
<th>rTIN</th>
<th>rTSS</th>
<th>estTIN</th>
<th>estTIN_short</th>
<th>measTN</th>
<th>stAMM</th>
<th>stTN</th>
<th>stTSS</th>
<th>qAMM</th>
<th>qTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>3</td>
<td>7.872</td>
<td>29.962</td>
<td>38</td>
<td>31.87</td>
<td>50.1872</td>
<td>68</td>
<td>29.7</td>
<td>41.1</td>
</tr>
<tr>
<td>26.21</td>
<td>11</td>
<td>27.574</td>
<td>41.662</td>
<td>44</td>
<td>41.02</td>
<td>23.73973</td>
<td>14</td>
<td>31</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>2</td>
<td>0.898</td>
<td>36.346</td>
<td>42</td>
<td>33.71</td>
<td>35.597</td>
<td>23</td>
<td>44.53</td>
<td>55.9</td>
</tr>
<tr>
<td>0.65</td>
<td>8</td>
<td>1.642</td>
<td>25.596</td>
<td>32</td>
<td>29.56</td>
<td>35.7779</td>
<td>43</td>
<td>41.9</td>
<td>51.9</td>
</tr>
<tr>
<td>22.25</td>
<td>2</td>
<td>22.498</td>
<td>0.834</td>
<td>2</td>
<td>22</td>
<td>30.32</td>
<td>39.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.72</td>
<td>1</td>
<td>16.844</td>
<td>0.474</td>
<td>3</td>
<td>32.45</td>
<td>30.87</td>
<td>50.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.45</td>
<td>1</td>
<td>12.574</td>
<td>16.624</td>
<td>18</td>
<td>30.35</td>
<td>25.1</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.03</td>
<td>1</td>
<td>7.154</td>
<td>16.754</td>
<td>15</td>
<td>32.73</td>
<td>25.5</td>
<td>33.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>1</td>
<td>22.224</td>
<td>16.872</td>
<td>15</td>
<td>29.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>0.524</td>
<td>31.072</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>5</td>
<td>0.93</td>
<td>35.6</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.36</td>
<td>1</td>
<td>34.484</td>
<td>35.78</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.49</td>
<td>0.5</td>
<td>32.552</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.9</td>
<td>0.5</td>
<td>29.962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.6</td>
<td>0.5</td>
<td>41.662</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.85</td>
<td>4</td>
<td>36.346</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td>4</td>
<td>25.596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>1</td>
<td>0.834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>1</td>
<td>0.474</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>1</td>
<td>16.624</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.63</td>
<td>1</td>
<td>16.754</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.88</td>
<td>8</td>
<td>16.872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.7</td>
<td>3</td>
<td>31.072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>1</td>
<td>7.324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>11</td>
<td>2.074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA Calculations – Conventional Pollutants

```r
> library(car)
> library(pgirmess)
> dat<-read.csv("anova.csv")
> time<-dat$time

#### Alkalinity

```r
> ###set-up
> stAlk<-dat$stAlk
> avgStAlk<-mean(stAlk,na.rm=TRUE)
> sdStAlk<-sd(stAlk,na.rm=TRUE)
```
RSDAlk <- sdstAlk/avgstAlk; RSDAlk

shapiro.test(rranuaAlk)
Shapiro-Wilk normality test
data: rranuaAlk
W = 0.95029, p-value = 0.7179

shapiro.test(rrezAlk)
Shapiro-Wilk normality test
data: rrezAlk
W = 0.95733, p-value = 0.7621

shapiro.test(rrw4Alk)
Shapiro-Wilk normality test
data: rrw4Alk
W = 0.83944, p-value = 0.1938

shapiro.test(rrw6Alk)
Shapiro-Wilk normality test
data: rrw6Alk
W = 0.98473, p-value = 0.9291

### independent?
# null hypothesis - no correlation
# p > 0.05 indicates independence

shapiro.test(rrAlk)

### equal variance?
# null hypothesis - equal variance
# p > 0.05 indicates equal variance

rrAlk <- cbind(rranuaAlk, rrezAlk, rrw4Alk, rrw6Alk)
rrAlkstack <- stack(data.frame(rrAlk))
#use with parametric cases
> bartlett.test(rrAlkstack$values,rrAlkstack$ind)

Bartlett test of homogeneity of variances
data: rrAlkstack$values and rrAlkstack$ind
Bartlett's K-squared = 2.1482, df = 3, p-value = 0.5422

###are column means the same?
#null hypothesis - column means are the same
#p<0.05 indicates significantly different means
#use with parametric cases when variances are equal
> summary(aov(rrAlkstack$values~rrAlkstack$ind))

        Df Sum Sq Mean Sq F value   Pr(>F)
rrAlkstack$ind  3  4.597   1.532   190.4 2.2e-10 ***
Residuals      12  0.097   0.008
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

48 observations deleted due to missingness

###if column means are different, which columns?
#null hypothesis - column means are the same
#p<0.05 indicates significantly different means
> TukeyHSD(aov(rrAlkstack$values~rrAlkstack$ind))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = rrAlkstack$values ~ rrAlkstack$ind)

$'rrAlkstack$ind'
diff lwr   upr           p adj
rrezAlk-rranuaAlk 0.09115162 -0.09716872  0.2794720 0.5018206
rrw4Alk-rranuaAlk -0.80699994 -0.99532028 -0.6186796 0.0000001
rrw6Alk-rranuaAlk -1.17713968 -1.36546002 -0.9888193 0.0000000
rrw4Alk-rrezAlk   -0.89815156 -1.08647190 -0.6186796 0.0000000
rrw6Alk-rrezAlk   -1.17713968 -1.36546002 -0.9888193 0.0000000
rrw6Alk-rrw4Alk   -0.37013974 -0.55846008 -0.1818194 0.0004031

> #compare rrw4Alk and rrw6Alk to 0
> mu<-mean(rrw4Alk,na.rm=TRUE); mu
[1] -0.01742679
> s<-sd(rrw4Alk,na.rm=TRUE); s
[1] 0.05964531
> n<-length(which(rrw4Alk!="NA"));n
[1] 4
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] -0.11233578 -0.01742679  0.07748220
> mu<-mean(rrw6Alk,na.rm=TRUE); mu
[1] -0.3875665
> s<-sd(rrw6Alk,na.rm=TRUE); s
[1] 0.1068473
> n<-length(which(rrw6Alk!="NA"));n
[1] 4
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] -0.5575845 -0.3875665 -0.2175486

#CI for rnanuaAlk
> mu<-mean(rnanuaAlk,na.rm=TRUE); mu
[1] 0.01742679
> s <- sd(anuaAlk, na.rm = TRUE); s
> n <- length(which(anuaAlk != "NA")); n
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
> # CI for anua2Alk
> mu <- mean(anua2Alk, na.rm = TRUE); mu
> s <- sd(anua2Alk, na.rm = TRUE); s
> n <- length(which(anua2Alk != "NA")); n
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
> # CI for ezAlk
> mu <- mean(ezAlk, na.rm = TRUE); mu
> s <- sd(ezAlk, na.rm = TRUE); s
> n <- length(which(ezAlk != "NA")); n
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
> # CI for w4Alk
> mu <- mean(w4Alk, na.rm = TRUE); mu
> s <- sd(w4Alk, na.rm = TRUE); s
> n <- length(which(w4Alk != "NA")); n
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
> # CI for w6Alk
> mu <- mean(w6Alk, na.rm = TRUE); mu
> s <- sd(w6Alk, na.rm = TRUE); s
> n <- length(which(w6Alk != "NA")); n
# CI for stAlk
mu <- mean(stAlk, na.rm=TRUE); mu
[1] 224.9
s <- sd(stAlk, na.rm=TRUE); s
[1] 37.30914
n <- length(which(stAlk!="NA")); n
[1] 6
a <- 0.05
t <- qt(1-a/2, n-1)
se <- s/sqrt(n)
ci <- c(mu-t*se, mu, mu+t*se); ci
[1] 185.7465 224.9000 264.0535

BOD

# set-up
stBOD <- dat$stBOD
avgstBOD <- mean(stBOD, na.rm=TRUE)
sdstBOD <- sd(stBOD, na.rm=TRUE)
RSDBOD <- sdstBOD/avgstBOD
[1] 0.2185352
dwt(lm(stBOD~time))
lag Autocorrelation D-W Statistic p-value
1  0.09614452  1.994222   0.618
Alternative hypothesis: rho != 0
anuaBOD <- dat$anuaBOD
rranuaBOD <- (avgstBOD-anuaBOD)/avgstBOD
anua2BOD <- dat$anua2BOD
rranua2BOD <- (avgstBOD-anua2BOD)/avgstBOD
ezBOD <- dat$ezBOD
rrezBOD <- (avgstBOD-ezBOD)/avgstBOD
w4BOD <- dat$w4BOD
rrw4BOD <- (avgstBOD-w4BOD)/avgstBOD
w6BOD <- dat$w6BOD
rrw6BOD <- (avgstBOD-w6BOD)/avgstBOD

## lognormally/normally distributed?
# null hypothesis - normal distribution
# p>0.05 indicates normality
shapiro.test(rranuaBOD)
Shapiro-Wilk normality test
data:  rranuaBOD
W = 0.83888, p-value = 0.1276
shapiro.test(rrrezBOD)
Shapiro-Wilk normality test
data:  rrezBOD
W = 0.91768, p-value = 0.4888
shapiro.test(rrw4BOD)
Shapiro-Wilk normality test
data:  rrw4BOD
W = 0.78425, p-value = 0.04221
shapiro.test(rrw6BOD)
Shapiro-Wilk normality test
data:  rrw6BOD
W = 0.9577, p-value = 0.8018

###independent?

#null hypothesis - no correlation
#p>0.05 indicates independence

dwt(lm(rranuaBOD~time))

```
lag Autocorrelation D-W Statistic p-value
1 0.1356161 1.514711 0.168
```

Alternative hypothesis: rho != 0

dwt(lm(rrezBOD~time))

```
lag Autocorrelation D-W Statistic p-value
1 -0.61258 2.96566 0.462
```

Alternative hypothesis: rho != 0

dwt(lm(rrw4BOD~time))

```
lag Autocorrelation D-W Statistic p-value
1 -0.1329665 1.633625 0.236
```

Alternative hypothesis: rho != 0

dwt(lm(rrw6BOD~time))

```
lag Autocorrelation D-W Statistic p-value
1 -0.5727937 3.124321 0.252
```

Alternative hypothesis: rho != 0

###equal variance?

rrBOD<-cbind(rranuaBOD,rrezBOD,rrw4BOD,rrw6BOD)

```
rrBODstack<-stack(data.frame(rrBOD))
```

#use with nonparametric cases

leveneTest(rrBODstack$values,rrBODstack$ind)

```
Levene's Test for Homogeneity of Variance (center = median)

 Df F value Pr(>F)
group 3 1.4199 0.2664

20
```

###are column means the same?

#use with nonparametric cases

kruskal.test(rrBODstack$values~rrBODstack$ind)

```
Kruskal-Wallis rank sum test

data: rrBODstack$values by rrBODstack$ind

Kruskal-Wallis chi-squared = 15.547, df = 3, p-value = 0.001404
```

###if column means are different, which columns?

#use with nonparametric cases

kruskalmc(rrBODstack$values~rrBODstack$ind)

```
Multiple comparison test after Kruskal-Wallis

p.value: 0.05

Comparisons

 obs.dif critical.dif difference
rranuaBOD-rrezBOD 4.666667 10.77064 FALSE
rranuaBOD-rrw4BOD 1.666667 10.77064 FALSE
rranuaBOD-rrw6BOD 13.000000 10.77064 TRUE
rrezBOD-rrw4BOD 6.333333 10.77064 FALSE
rrezBOD-rrw6BOD 8.333333 10.77064 FALSE
rrw4BOD-rrw6BOD 14.666667 10.77064 TRUE
```

#compare removal rate CIs for systems in lowest group(s) to zero

mu<-mean(rrw6BOD,na.rm=TRUE); mu

```
[1] 0.8278825
```

```
s<-sd(rrw6BOD,na.rm=TRUE); s
[1] 0.03151939
```

```
n<-length(which(rrw6BOD!="NA")); n
[1] 6
```

```
a<-0.05
```
\[ t < - qt(1 - a/2, n - 1) \]
\[ se < - s / \sqrt{n} \]
\[ ci.mu < - c(mu - t*se, mu, mu + t*se); ci.mu \]
\[ [1] \quad 0.7948049 \quad 0.8278825 \quad 0.8609601 \]
# CI for anuaBOD
\[ mu < - mean(anuaBOD, na.rm=TRUE); mu \]
\[ [1] \quad 2.083333 \]
\[ s < - sd(anuaBOD, na.rm=TRUE); s \]
\[ [1] \quad 1.049603 \]
\[ n < - length(which(anuaBOD!="NA")); n \]
\[ [1] \quad 6 \]
\[ a < - 0.05 \]
\[ t < - qt(1 - a/2, n - 1) \]
\[ se < - s / \sqrt{n} \]
\[ ci.mu < - c(mu - t*se, mu, mu + t*se); ci.mu \]
\[ [1] \quad 0.9818424 \quad 2.0833333 \quad 3.1848242 \]
# CI for anua2BOD
\[ mu < - mean(anua2BOD, na.rm=TRUE); mu \]
\[ [1] \quad 3.4 \]
\[ s < - sd(anua2BOD, na.rm=TRUE); s \]
\[ [1] \quad 0.1414214 \]
\[ n < - length(which(anua2BOD!="NA")); n \]
\[ [1] \quad 2 \]
\[ a < - 0.05 \]
\[ t < - qt(1 - a/2, n - 1) \]
\[ se < - s / \sqrt{n} \]
\[ ci.mu < - c(mu - t*se, mu, mu + t*se); ci.mu \]
\[ [1] \quad 2.12938 \quad 3.40000 \quad 4.67062 \]
# CI for ezBOD
\[ mu < - mean(ezBOD, na.rm=TRUE); mu \]
\[ [1] \quad 3.466667 \]
\[ s < - sd(ezBOD, na.rm=TRUE); s \]
\[ [1] \quad 1.032796 \]
\[ n < - length(which(ezBOD!="NA")); n \]
\[ [1] \quad 6 \]
\[ t < - qt(1 - a/2, n - 1) \]
\[ a < - 0.05 \]
\[ se < - s / \sqrt{n} \]
\[ ci.mu < - c(mu - t*se, mu, mu + t*se); ci.mu \]
\[ [1] \quad 2.382814 \quad 3.466667 \quad 4.550519 \]
# CI for w4BOD
\[ n < - 100000 \]
\[ w4BODbs < - w4BOD[!is.na(w4BOD)]; w4BODbs \]
\[ [1] \quad 2.4268571 \quad 0.9714286 \quad 0.2784000 \quad 1.4297143 \quad 1.0548571 \quad 6.1851429 \]
\[ bootw4BOD < - numeric(n) \]
\[ for (i in 1:n) { \]
\[ + \quad bootw4BOD[i] < - mean(sample(w4BODbs, replace=T), na.rm=TRUE) \]
\[ + \}
\[ hist(bootw4BOD) \]
\[ quantile(bootw4BOD, probs=c(0.025, 0.975)) \]
\[ 2.5% \quad 97.5% \]
\[ 0.8307048 \quad 3.8208571 \]
\[ mean(bootw4BOD) \]
\[ [1] \quad 2.05481 \]
# CI for w6BOD
\[ mu < - mean(w6BOD, na.rm=TRUE); mu \]
```r
> s <- sd(w6BOD, na.rm = TRUE); s
[1] 2.649204
> n <- length(which(w6BOD != "NA")); n
[1] 6
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> # CI for stBOD
> mu <- mean(stBOD, na.rm = TRUE); mu
[1] 84.05
> s <- sd(stBOD, na.rm = TRUE); s
[1] 18.36788
> n <- length(which(stBOD != "NA")); n
[1] 6
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
[1] 64.77409 84.05000 103.32591
COD

> # set-up
> stCOD <- dat$stCOD
> avgstCOD <- mean(stCOD, na.rm = TRUE)
> sdstCOD <- sd(stCOD, na.rm = TRUE)
> RSCOD <- sdstCOD / avgstCOD; RSCOD
[1] 0.2627184
> dwt(lm(stCOD ~ time))

<table>
<thead>
<tr>
<th>lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.168857</td>
<td>2.118626</td>
<td>0.804</td>
</tr>
</tbody>
</table>
Alternative hypothesis: rho != 0
> anuaCOD <- dat$anuaCOD
> rranuaCOD <- (avgstCOD - anuaCOD) / avgstCOD
> anua2COD <- dat$anua2COD
> rranua2COD <- (avgstCOD - anua2COD) / avgstCOD
> ezCOD <- dat$ezCOD
> rrezCOD <- (avgstCOD - ezCOD) / avgstCOD
> w4COD <- dat$w4COD
> rrw4COD <- (avgstCOD - w4COD) / avgstCOD
> w6COD <- dat$w6COD
> rrw6COD <- (avgstCOD - w6COD) / avgstCOD
> ### lognormally/normally distributed?
> # null hypothesis - normal distribution
> # p > 0.05 indicates normality
> shapiro.test(rranuaCOD)
Shapiro-Wilk normality test
data: rranuaCOD
W = 0.97267, p-value = 0.9165
> shapiro.test(rranua2COD)
Shapiro-Wilk normality test
data: rranua2COD
```

W = 0.9848, p-value = 0.9586
> shapiro.test(rrezCOD)
  Shapiro-Wilk normality test
data:  rrezCOD
W = 0.97724, p-value = 0.9371
> shapiro.test(rrw4COD)
  Shapiro-Wilk normality test
data:  rrw4COD
W = 0.97133, p-value = 0.9082
> shapiro.test(rrw6COD)
  Shapiro-Wilk normality test
data:  rrw6COD
W = 0.74482, p-value = 0.007159
>
###independent?
> #null hypothesis - no correlation
> #p>0.05 indicates independence
> dwt(lm(rranuaCOD~time),max.lag=3)

<table>
<thead>
<tr>
<th>Lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.6568965</td>
<td>3.286971</td>
<td>0.056</td>
</tr>
<tr>
<td>2</td>
<td>0.2702993</td>
<td>1.221206</td>
<td>0.264</td>
</tr>
<tr>
<td>3</td>
<td>-0.2532636</td>
<td>2.173364</td>
<td>0.346</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho[lag] != 0

> #anuaCODuse<-dat$anuaCOD_use
> #rranuaCODuse<-avgstCOD-anuaCODuse/avgstCOD
> shapiro.test(rranuaCODuse)
> dwt(lm(rranuaCOD~time),max.lag=3)

<table>
<thead>
<tr>
<th>Lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.3305213</td>
<td>2.571565</td>
<td>0.868</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

> dwt(lm(rrezCOD~time))

<table>
<thead>
<tr>
<th>Lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2756132</td>
<td>2.417324</td>
<td>0.926</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

> dwt(lm(rrw4COD~time))

<table>
<thead>
<tr>
<th>Lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.1858045</td>
<td>2.298373</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

> dwt(lm(rrw6COD~time))

<table>
<thead>
<tr>
<th>Lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2914714</td>
<td>0.8928461</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

> #w6CODuse<-dat$w6COD_use
> #rrw6CODuse<-avgstCOD-w6CODuse/avgstCOD
> shapiro.test(rrw6CODuse)
> dwt(lm(rrw6COD~time),max.lag=3)

###equal variance?

> rrCOD<-cbind(rranuaCOD,rrezCOD,rrw4COD,rrw6COD)
> rrCODstack<-stack(data.frame(rrCOD))
> rrCOD2<-cbind(rranua2COD,rrezCOD,rrw4COD,rrw6COD)
> rrCODstack2<-stack(data.frame(rrCOD2))

#use with nonparametric cases
> leveneTest(rrCODstack$values,rrCODstack$ind)

Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th>DF</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2.5412</td>
</tr>
</tbody>
</table>
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> leveneTest(rrCODstack2$values,rrCODstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

        Df F value Pr(>F)
group   3 2.1337 0.1236

> ###are column means the same?
> #use with nonparametric cases
> kruskal.test(rrCODstack$values~rrCODstack$ind)

Kruskal-Wallis rank sum test
data:  rrCODstack$values by rrCODstack$ind
Kruskal-Wallis chi-squared = 24.323, df = 3, p-value = 2.138e-05

> kruskal.test(rrCODstack2$values~rrCODstack2$ind)

Kruskal-Wallis rank sum test
data:  rrCODstack2$values by rrCODstack2$ind
Kruskal-Wallis chi-squared = 20.312, df = 3, p-value = 0.0001462

> ###if column means are different, which columns?
> #use with nonparametric cases
> kruskalmc(rrCODstack$values~rrCODstack$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

Comparisons (obs.dif critical.dif difference)
rranuaCOD-rrezCOD 11.388889 12.64245 FALSE
rranuaCOD-rrw4COD 13.722222 11.65576 TRUE
rranuaCOD-rrw6COD  5.902778 11.65576 FALSE
rrezCOD-rrw4COD   2.333333 12.95465 FALSE
rrezCOD-rrw6COD   17.291667 11.99368 TRUE
rrw4COD-rrw6COD   19.625000 11.99368 TRUE

> kruskalmc(rrCODstack2$values~rrCODstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

Comparisons (obs.dif critical.dif difference)
rranua2COD-rrezCOD 10.166667 12.68011 FALSE
rranua2COD-rrw4COD 12.500000 11.93793 TRUE
rranua2COD-rrw6COD  3.250000 11.93793 FALSE
rrezCOD-rrw4COD   2.333333 11.30917 FALSE
rrezCOD-rrw6COD   13.416667 11.30917 TRUE
rrw4COD-rrw6COD   15.750000 10.47026 TRUE

> #compare removal rate CIs for systems in lowest group(s) to zero
> n=100000
> rrw6CODbs=sample(rrw6CODbs,replace=T,na.rm=TRUE)
> hist(bootrrw6COD)
> quantile(bootrrw6COD,probs=c(0.025,0.975))

2.5%     97.5%
0.2378654 0.6350639

mean(bootrrw6COD)
```r
CI for anuaCOD
mu <- mean(anuaCOD, na.rm = TRUE); mu
[1] 78.77778
s <- sd(anuaCOD, na.rm = TRUE); s
[1] 14.4722
n <- length(which(anuaCOD != "NA")); n
[1] 9
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)
ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
[1] 67.65346 78.77778 89.90209

CI for anua2COD
mu <- mean(anua2COD, na.rm = TRUE); mu
[1] 84.8
s <- sd(anua2COD, na.rm = TRUE); s
[1] 14.1845
n <- length(which(anua2COD != "NA")); n
[1] 5
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)
ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
[1] 67.18762 84.80000 102.41238

CI for ezCOD
mu <- mean(ezCOD, na.rm = TRUE); mu
[1] 27
s <- sd(ezCOD, na.rm = TRUE); s
[1] 8.671793
n <- length(which(ezCOD != "NA")); n
[1] 6
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)
ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
[1] 17.89951 27.00000 36.10049

CI for w4COD
mu <- mean(w4COD, na.rm = TRUE); mu
[1] 22.75643
s <- sd(w4COD, na.rm = TRUE); s
[1] 7.77527
n <- length(which(w4COD != "NA")); n
[1] 8
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)
ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu

CI for w6COD
n <- 100000
w6CODbs <- w6COD[!is.na(w6COD)]; w6CODbs
[1] 301.92000 195.84000 86.00571 86.85714 103.40571 80.16000 133.74286
87.36000
bootw6COD <- numeric(n)
for (i in 1:n) {

```

185
```r
+ bootw6COD[i]<-mean(sample(w6CODbs,replace=T),na.rm=TRUE)
+ }
> hist(bootw6COD)
> quantile(bootw6COD,probs=c(0.025,0.975))
 2.5% 97.5%
 91.5771 191.0421
> mean(bootw6COD)
 [1] 134.5158
> #CI for stCOD
> mu<-mean(stCOD,na.rm=TRUE); mu
 [1] 250.7778
> s<-sd(stCOD,na.rm=TRUE); s
 [1] 65.88395
> n<-length(which(stCOD!="NA"));n
 [1] 9
> a<-0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
 [1] 200.1349 250.7778 301.4207

TSS

> #set-up
> stTSS<dat$stTSS
> avgstTSS<mean(stTSS,na.rm=TRUE)
> sdstTSS<sd(stTSS,na.rm=TRUE)
> RSDTSS<sdstTSS/avgstTSS;RSDTSS
 [1] 0.6475215
> dwt(lm(stTSS~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.3126707 2.180431 0.48
 Alternative hypothesis: rho != 0
> anuaTSS<dat$anuaTSS
> rranuaTSS<((avgstTSS-anuaTSS)/avgstTSS
> anua2TSS<dat$anua2TSS
> rranua2TSS<((avgstTSS-anua2TSS)/avgstTSS
> ezTSS<dat$ezTSS
> rrezTSS<((avgstTSS-ezTSS)/avgstTSS
> w4TSS<dat$w4TSSN
> rrw4TSS<((avgstTSS-w4TSS)/avgstTSS
> w6TSS<dat$w6TSSN
> rrw6TSS<((avgstTSS-w6TSS)/avgstTSS
> #lognormally/normally distributed?
> #null hypothesis - normal distribution
> #p>0.05 indicates normality
> shapiro.test(rranuaTSS)
 Shapiro-Wilk normality test
 data: rranuaTSS
 W = 0.95278, p-value = 0.7335
> shapiro.test(rranua2TSS)
Error in shapiro.test(rranua2TSS) :
 sample size must be between 3 and 5000
> shapiro.test(rrezTSS)
```

186
Shapiro-Wilk normality test
data:  rrezTSS
W = 0.99291, p-value = 0.9719
> shapiro.test(rrw4TSS)
Shapiro-Wilk normality test
data:  rrw4TSS
W = 0.91854, p-value = 0.5288
> shapiro.test(rrw6TSS)
Shapiro-Wilk normality test
data:  rrw6TSS
W = 0.84655, p-value = 0.2152

###independent?

#null hypothesis - no correlation
#p>0.05 indicates independence

dwt(lm(rranuaTSS~time))
  Lag Autocorrelation D-W Statistic p-value
  1  -0.2503323  2.006546  0.236
  Alternative hypothesis: rho != 0

> dwt(lm(rrezTSS~time))
  Lag Autocorrelation D-W Statistic p-value
  1  -0.7924291  3.271861  0.2
  Alternative hypothesis: rho != 0

> dwt(lm(rrw4TSS~time))
  Lag Autocorrelation D-W Statistic p-value
  1  -0.4084329  2.431475  0.79
  Alternative hypothesis: rho != 0

> dwt(lm(rrw6TSS~time))
  Lag Autocorrelation D-W Statistic p-value
  1  -0.4099404  2.376324  0.724
  Alternative hypothesis: rho != 0

###equal variance?

> rrTSS<-cbind(rranuaTSS,rrezTSS,rrw4TSS,rrw6TSS)
> rrTSSstack<-stack(data.frame(rrTSS))
#use with parametric cases

> bartlett.test(rrTSSstack$values,rrTSSstack$ind)
Bartlett test of homogeneity of variances
data:  rrTSSstack$values and rrTSSstack$ind
Bartlett's K-squared = 9.957, df = 3, p-value = 0.01893

###are column means the same?

#use with nonparametric cases

> oneway.test(rrTSSstack$values~rrTSSstack$ind)
One-way analysis of means (not assuming equal variances)
data:  rrTSSstack$values and rrTSSstack$ind
F = 3.2997, num df = 3.0000, denom df = 5.3991, p-value = 0.1086

###if column means are different, which columns?
#use with nonparametric cases

> TukeyHSD(aov(rrTSSstack$values~rrTSSstack$ind))
  Tukey multiple comparisons of means
  95% family-wise confidence level
  Fit: aov(formula = rrTSSstack$values ~ rrTSSstack$ind)

"rrTSSstack$ind"

<table>
<thead>
<tr>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>rrezTSS-rranuaTSS 0.04054054 -0.10374691 0.18482799 0.8373271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw4TSS-rranuaTSS 0.08185328 -0.06243417 0.22614074 0.3727741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw6TSS-rranuaTSS -0.02355212 -0.16783958 0.12073533 0.9610613</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw4TSS-rrezTSS 0.04131274 -0.10297471 0.18560019 0.8297563</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
#compare removal rate CIs for systems in lowest group(s) to zero
mu<-mean(rranuaTSS,na.rm=TRUE); mu
[1] 0.8918919
s<-sd(rranuaTSS,na.rm=TRUE); s
[1] 0.07956541
n<-length(which(rranuaTSS!="NA")); n
[1] 4
a<-0.05
t<-qt(1-a/2,n-1)
se<-s/sqrt(n)
ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 0.7652856 0.8918919 1.0184982
mu<-mean(rrezTSS,na.rm=TRUE); mu
[1] 0.9324324
s<-sd(rrezTSS,na.rm=TRUE); s
[1] 0.03489174
n<-length(which(rrezTSS!="NA")); n
[1] 4
a<-0.05
t<-qt(1-a/2,n-1)
se<-s/sqrt(n)
ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 0.8769119 0.9324324 0.9879530
mu<-mean(rrw4TSS,na.rm=TRUE); mu
[1] 0.9737452
s<-sd(rrw4TSS,na.rm=TRUE); s
[1] 0.01146608
n<-length(which(rrw4TSS!="NA")); n
[1] 4
a<-0.05
t<-qt(1-a/2,n-1)
se<-s/sqrt(n)
ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 0.9555001 0.9737452 0.9919903
mu<-mean(rrw6TSS,na.rm=TRUE); mu
[1] 0.8683398
s<-sd(rrw6TSS,na.rm=TRUE); s
[1] 0.1059048
n<-length(which(rrw6TSS!="NA")); n
[1] 4
a<-0.05
t<-qt(1-a/2,n-1)
se<-s/sqrt(n)
ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 0.6998216 0.8683398 1.0368579
#CI for anuaTSS
mu<-mean(anuaTSS,na.rm=TRUE); mu
[1] 4
s<-sd(anuaTSS,na.rm=TRUE); s
[1] 2.94392
n<-length(which(anuaTSS!="NA")); n
[1] 4
a<-0.05
t<-qt(1-a/2,n-1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> #CI for anua2TSS
> mu <- mean(anua2TSS, na.rm = TRUE); mu
> [1] 2
> s <- sd(anua2TSS, na.rm = TRUE); s
> [1] 1.414214
> n <- length(which(anua2TSS != "NA")); n
> [1] 2
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> [1] -0.6844341 4.0000000 8.6844341
> #CI for ezTSS
> mu <- mean(ezTSS, na.rm = TRUE); mu
> [1] 2.5
> s <- sd(ezTSS, na.rm = TRUE); s
> [1] 1.290994
> n <- length(which(ezTSS != "NA")); n
> [1] 4
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> [1] 0.4457397 2.5000000 4.5542603
> #CI for w4TSS
> mu <- mean(w4TSS, na.rm = TRUE); mu
> [1] 0.9714286
> s <- sd(w4TSS, na.rm = TRUE); s
> [1] 0.4242448
> n <- length(which(w4TSS != "NA")); n
> [1] 4
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> [1] 0.2963604 0.9714286 1.6464968
> #CI for w6TSS
> mu <- mean(w6TSS, na.rm = TRUE); mu
> [1] 4.871429
> s <- sd(w6TSS, na.rm = TRUE); s
> [1] 3.918477
> n <- length(which(w6TSS != "NA")); n
> [1] 4
> a <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
> [1] -1.363742 4.871429 11.106599
> #CI for stTSS
> mu <- mean(stTSS, na.rm = TRUE); mu
> [1] 37
> s <- sd(stTSS, na.rm = TRUE); s
> [1] 23.9583
\begin{verbatim}
> n<-length(which(stTSS!="NA")); n [1] 4 > a<-0.05 > t<-qt(1-a/2,n-1) > se<-s/sqrt(n) > ci.mu<-c(mu-t*se,mu+t*se);ci.mu [1] -1.122997 37.000000 75.122997

Ammonia

> #set-up > stAMM<-dat$stAMM > avgstAMM<-mean(stAMM,na.rm=TRUE) > sdstAMM<-sd(stAMM,na.rm=TRUE) > RSDAMM<-sdstAMM/avgstAMM;RSDAMM [1] 0.1574928

> dwt(lm(stAMM~time))

Tag Autocorrelation D-W Statistic p-value
1 0.05565039 1.876195 0.462
Alternative hypothesis: rho != 0

> anuaAMM<-dat$anuaAMM > rranuaAMM<-(avgstAMM-anuaAMM)/avgstAMM > anua2AMM<-dat$anua2AMM > rranua2AMM<-(avgstAMM-anua2AMM)/avgstAMM > ezAMM<-dat$ezAMM > rrezAMM<-(avgstAMM-ezAMM)/avgstAMM > w4AMM<-dat$w4AMMN > rrw4AMM<-(avgstAMM-w4AMM)/avgstAMM > w6AMM<-dat$w6AMMN > rrw6AMM<-(avgstAMM-w6AMM)/avgstAMM

###lognormally/normally distributed?
#null hypothesis - normal distribution
#p>0.05 indicates normality
> shapiro.test(rranuaAMM)

Shapiro-Wilk normality test
data:  rranuaAMM
W = 0.89729, p-value = 0.2367

> shapiro.test(rranua2AMM)

Shapiro-Wilk normality test
data:  rranua2AMM
W = 0.88251, p-value = 0.3208

> shapiro.test(rrezAMM)

Shapiro-Wilk normality test
data:  rrezAMM
W = 0.85829, p-value = 0.1461

> shapiro.test(rrw4AMM)

Shapiro-Wilk normality test
data:  rrw4AMM
W = 0.41382, p-value = 6.174e-07

> shapiro.test(rrw6AMM)

Shapiro-Wilk normality test
data:  rrw6AMM
W = 0.58483, p-value = 6.349e-05

###independent?
\end{verbatim}
> # null hypothesis - no correlation
> # p > 0.05 indicates independence
> dwt(lm(rranuaAMM ~ time))
  lag Autocorrelation D-W Statistic p-value
  1 -0.3494611 2.670835 0.47
  Alternative hypothesis: rho != 0
> dwt(lm(rranua2AMM ~ time))
  lag Autocorrelation D-W Statistic p-value
  1 -0.5138876 2.739348 0.758
  Alternative hypothesis: rho != 0
> dwt(lm(rrezAMM ~ time))
  lag Autocorrelation D-W Statistic p-value
  1 0.0713651 1.703903 0.31
  Alternative hypothesis: rho != 0
> dwt(lm(rrw4AMM ~ time))
  lag Autocorrelation D-W Statistic p-value
  1 -0.0866163 1.600447 0.278
  Alternative hypothesis: rho != 0
> dwt(lm(rrw6AMM ~ time))
  lag Autocorrelation D-W Statistic p-value
  1 0.1903787 1.522047 0.226
  Alternative hypothesis: rho != 0
> ### equal variance?
> rrAMM <- cbind(rranuaAMM, rrezAMM, rrw4AMM, rrw6AMM)
> rrAMMstack <- stack(data.frame(rrAMM))
> rrAMM2 <- cbind(rranua2AMM, rrezAMM, rrw4AMM, rrw6AMM)
> rrAMMstack2 <- stack(data.frame(rrAMM2))
> # use with nonparametric cases
> leveneTest(rrAMMstack$values, rrAMMstack$ind)
  Levene's Test for Homogeneity of Variance (center = median)
  Df F value  Pr(>F)
  group  3  2.3809 0.08925 .
  30
  ---
  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> leveneTest(rrAMMstack2$values, rrAMMstack2$ind)
  Levene's Test for Homogeneity of Variance (center = median)
  Df F value  Pr(>F)
  group  3  1.8739 0.1588
  26
> ### are column means the same?
> # use with nonparametric cases
> kruskal.test(rrAMMstack$values ~ rrAMMstack$ind)
  Kruskal–Wallis rank sum test
  data: rrAMMstack$values by rrAMMstack$ind
  Kruskal–Wallis chi-squared = 20.585, df = 3, p-value = 0.0001283
> kruskal.test(rrAMMstack2$values ~ rrAMMstack2$ind)
  Kruskal–Wallis rank sum test
  data: rrAMMstack2$values by rrAMMstack2$ind
  Kruskal–Wallis chi-squared = 17, df = 3, p-value = 0.0007069
> ### if column means are different, which columns?
> # use with nonparametric cases
> kruskalmc(rrAMMstack$values, rrAMMstack$ind, probs=0.05)
  Multiple comparison test after Kruskal–Wallis
  p.value: 0.05
  Comparisons
### obs.dif critical.dif difference

<table>
<thead>
<tr>
<th>Comparison</th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaAMM - rrezAMM</td>
<td>10.142857</td>
<td>13.24005</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rranuaAMM - rrw4AMM</td>
<td>5.500000</td>
<td>12.38494</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rranuaAMM - rrw6AMM</td>
<td>11.833333</td>
<td>12.38494</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rrezAMM - rrw4AMM</td>
<td>15.642857</td>
<td>13.24005</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>rrezAMM - rrw6AMM</td>
<td>21.976190</td>
<td>13.24005</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>rrw4AMM - rrw6AMM</td>
<td>6.333333</td>
<td>12.38494</td>
<td>FALSE</td>
<td></td>
</tr>
</tbody>
</table>

**Warning message:**
In kruskalmc.default(rrAMMstack$values, rrAMMstack$ind, probs = 0.05) :
50 lines including NA have been omitted

> kruskalmc(rrAMMstack$values, rrAMMstack$ind, probs = 0.05)

Multiple comparison test after Kruskal–Wallis

### obs.dif critical.dif difference

<table>
<thead>
<tr>
<th>Comparison</th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2AMM - rrezAMM</td>
<td>9.142857</td>
<td>13.59955</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rranua2AMM - rrw4AMM</td>
<td>3.277778</td>
<td>12.95465</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rranua2AMM - rrw6AMM</td>
<td>8.833333</td>
<td>12.95465</td>
<td>FALSE</td>
<td></td>
</tr>
<tr>
<td>rrezAMM - rrw4AMM</td>
<td>12.420635</td>
<td>11.70463</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>rrezAMM - rrw6AMM</td>
<td>17.976190</td>
<td>11.70463</td>
<td>TRUE</td>
<td></td>
</tr>
<tr>
<td>rrw4AMM - rrw6AMM</td>
<td>5.555556</td>
<td>10.94868</td>
<td>FALSE</td>
<td></td>
</tr>
</tbody>
</table>

**Warning message:**
In kruskalmc.default(rrAMMstack2$values, rrAMMstack2$ind, probs = 0.05) :
54 lines including NA have been omitted

> # compare removal rate CIs for systems in lowest group(s) to zero
> mu <- mean(rranuaAMM, na.rm = TRUE); mu
table
mu[1] 0.9976568
> s <- sd(rranuaAMM, na.rm = TRUE); s
table
s[1] 0.001811592
> n <- length(which(rranuaAMM != "NA")); n
table
n[1] 9
> ac <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu + t*se); ci.mu
table
ci.mu[1] 0.9962643 0.9976568 0.9990493
> mu <- mean(rranua2AMM, na.rm = TRUE); mu
table
mu[1] 0.9976243
> s <- sd(rranua2AMM, na.rm = TRUE); s
table
s[1] 0.002487729
> n <- length(which(rranua2AMM != "NA")); n
table
n[1] 5
> ac <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
> ci.mu <- c(mu - t*se, mu + t*se); ci.mu
table
ci.mu[1] 0.9945354 0.9976243 1.0007132
> mu <- mean(rrezAMM, na.rm = TRUE); mu
table
mu[1] 0.9401086
> s <- sd(rrezAMM, na.rm = TRUE); s
table
s[1] 0.03577868
> n <- length(which(rrezAMM != "NA")); n
table
n[1] 7
> ac <- 0.05
> t <- qt(1 - a/2, n - 1)
> se <- s/sqrt(n)
#CI for anuaAMM
mu <- mean(anuaAMM, na.rm = TRUE); mu
[1] 0.0737778
s <- sd(anuaAMM, na.rm = TRUE); s
[1] 0.05703897
n <- length(which(anuaAMM != "NA")); n
[1] 9
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)

#CI for anua2AMM
mu <- mean(anua2AMM, na.rm = TRUE); mu
[1] 0.0748
s <- sd(anua2AMM, na.rm = TRUE); s
[1] 0.07832752
n <- length(which(anua2AMM != "NA")); n
[1] 5
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)

#CI for ezAMM
mu <- mean(ezAMM, na.rm = TRUE); mu
[1] 1.8857
s <- sd(ezAMM, na.rm = TRUE); s
[1] 1.126512
n <- length(which(ezAMM != "NA")); n
[1] 7
a <- 0.05
t <- qt(1 - a / 2, n - 1)
se <- s / sqrt(n)

#CI for w4AMM
shapiro.test(w4AMM)
Shapiro-Wilk normality test
data:  w4AMM
W = 0.41382, p-value = 6.174e-07

#CI for w4AMM
w4AMM <- numeric(n)
for (i in 1:n) {
  bootw4AMM[i] <- mean(sample(w4AMMbs, replace = T), na.rm = TRUE)
}
hist(bootw4AMM)
quantile(bootw4AMM, probs = c(0.025, 0.975))
   2.5%     97.5%
0.01584508 1.02428705
mean(bootw4AMM)
# CI for w6AMM

```r
shapiro.test(w6AMM)
```

Shapiro-Wilk normality test
data:  w6AMM
W = 0.58483, p-value = 6.349e-05

```r
bootw6AMM <- numeric(n)
for (i in 1:n) {
 bootw6AMM[i] <- mean(sample(w6AMMbs, replace=T), na.rm=TRUE)
}
hist(bootw6AMM)
quantile(bootw6AMM, probs=c(0.025, 0.975))

2.5% 97.5%
0.002821587 0.021168254

mean(bootw6AMM)
[1] 0.01034588
```

# CI for stAMM

```r
shapiro.test(stAMM)
```

Shapiro-Wilk normality test
data:  stAMM
W = 0.9055, p-value = 0.2856

```r
mu <- mean(stAMM, na.rm=TRUE); mu
[1] 31.48556
s <- sd(stAMM, na.rm=TRUE); s
[1] 4.958748
n <- length(which(stAMM!="NA")); n
[1] 9
a <- 0.05
t <- qt(1-a/2, n-1)
se <- s/sqrt(n)
cl.mu <- c(mu-t*se, mu, mu+t*se); cl.mu
[1] 27.67392 31.48556 35.29719
```

## TIN

```r
set-up
stTN <- dat$stTN
avgstTN <- mean(stTN, na.rm=TRUE)
sdstTN <- sd(stTN, na.rm=TRUE)
RSDTN <- dstTN/avgstTN; RSDTN
[1] 0.3230159
dwt(lm(stTN~time))
```

<table>
<thead>
<tr>
<th>lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.7436104</td>
<td>3.270712</td>
<td>0.448</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

```r
anuaTIN <- dat$anuaTIN
rranuaTIN <- (avgstTN-anuaTIN)/avgstTN
anua2TIN <- dat$anua2TIN
rranua2TIN <- (avgstTN-anua2TIN)/avgstTN
ezTIN <- dat$ezTIN
rrezTIN <- (avgstTN-ezTIN)/avgstTN
```
> w4TIN <- dat$w4TIN
> rrw4TIN <- (avgSTN - w4TIN) / avgSTN
> w6TIN <- dat$w6TIN
> rrw6TIN <- (avgSTN - w6TIN) / avgSTN
> ### log normally/normally distributed?
> # null hypothesis - normal distribution
> # p > 0.05 indicates normality
> shapiro.test(rranuaTIN)
Shapiro-Wilk normality test
data: rranuaTIN
W = 0.87307, p-value = 0.1326
> shapiro.test(rranua2TIN)
Shapiro-Wilk normality test
data: rranua2TIN
W = 0.88585, p-value = 0.3367
> shapiro.test(rrezTIN)
Shapiro-Wilk normality test
data: rrezTIN
W = 0.9001, p-value = 0.3316
> shapiro.test(rrw4TIN)
Shapiro-Wilk normality test
data: rrw4TIN
W = 0.47346, p-value = 3.115e-06
> shapiro.test(rrw6TIN)
Shapiro-Wilk normality test
data: rrw6TIN
W = 0.91076, p-value = 0.3212
> ### independent?
> # null hypothesis - no correlation
> # p > 0.05 indicates independence
> dwt(lm(rranuaTIN ~ time))
 lag Autocorrelation D-W Statistic p-value
  1 -0.1306912      1.897104   0.524
Alternative hypothesis: rho != 0
> dwt(lm(rranua2TIN ~ time))
 lag Autocorrelation D-W Statistic p-value
  1 -0.4150037      2.568423   0.96
Alternative hypothesis: rho != 0
> dwt(lm(rrezTIN ~ time))
 lag Autocorrelation D-W Statistic p-value
  1 -0.4166215      2.691144   0.656
Alternative hypothesis: rho != 0
> dwt(lm(rrw4TIN ~ time))
 lag Autocorrelation D-W Statistic p-value
  1 -0.02786021     1.494356   0.21
Alternative hypothesis: rho != 0
> dwt(lm(rrw6TIN ~ time))
 lag Autocorrelation D-W Statistic p-value
  1 -0.1635367      2.090772   0.718
Alternative hypothesis: rho != 0
> ### equal variance?
> rrTIN <- cbind(rranuaTIN, rrezTIN, rrw4TIN, rrw6TIN)
> rrTINstack <- stack(data.frame(rrTIN))
> rrTIN2 <- cbind(rranua2TIN, rrezTIN, rrw4TIN, rrw6TIN)
> rrTINstack2 <- stack(data.frame(rrTIN2))
> # use with nonparametric cases
```R
> leveneTest(rrTINstack$values, rrTINstack$ind)
Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.8216</td>
<td>0.007409 **</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> leveneTest(rrTINstack2$values, rrTINstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.3794</td>
<td>0.09269 .</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

are column means the same?

use with nonparametric cases

> kruskal.test(rrTINstack$values ~ rrTINstack$ind)

Kruskal-Wallis rank sum test

data: rrTINstack$values by rrTINstack$ind
Kruskal-Wallis chi-squared = 25.382, df = 3, p-value = 1.284e-05

> kruskal.test(rrTINstack2$values ~ rrTINstack2$ind)

Kruskal-Wallis rank sum test

data: rrTINstack2$values by rrTINstack2$ind
Kruskal-Wallis chi-squared = 21.99, df = 3, p-value = 6.553e-05

if column means are different, which columns?

> kruskalmc(rrTINstack$values, rrTINstack$ind, probs=0.05)

Multiple comparison test after Kruskal-Wallis

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaTIN-rrrezTIN 5.0634921 13.24005 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranuaTIN-rrw4TIN 15.0000000 12.38494 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranuaTIN-rrw6TIN 14.3333333 12.38494 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezTIN-rrw4TIN 20.0634921 13.24005 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezTIN-rrw6TIN 19.3968254 13.24005 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw4TIN-rrw6TIN 0.6666667 12.38494 FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning message:
In kruskalmc.default(rrTINstack$values, rrTINstack$ind, probs = 0.05) :
 50 lines including NA have been omitted

> kruskalmc(rrTINstack2$values, rrTINstack2$ind, probs=0.05)

Multiple comparison test after Kruskal-Wallis

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2TIN-rrrezTIN 6.2000000 13.59955 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranua2TIN-rrw4TIN 11.5777778 12.95465 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranua2TIN-rrw6TIN 10.9111111 12.95465 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezTIN-rrw4TIN 17.7777778 11.70463 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezTIN-rrw6TIN 17.1111111 11.70463 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw4TIN-rrw6TIN 0.6666667 10.94868 FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning message:
In kruskalmc.default(rrTINstack2$values, rrTINstack2$ind, probs = 0.05) :
 54 lines including NA have been omitted

compare removal rate CIs for systems in lowest group(s) to zero

> mu<-mean(rranuaTIN, na.rm=TRUE); mu
[1] 0.58322
```
> s<-sd(rranuaTIN,na.rm=TRUE); s
[1] 0.2728754
> n<-length(which(rranuaTIN!="NA")); n
[1] 9
> a<-0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.3734693 0.5832200 0.7929706
> mu<-mean(rranua2TIN,na.rm=TRUE); mu
[1] 0.7736599
> s<-sd(rranua2TIN,na.rm=TRUE); s
[1] 0.06052951
> n<-length(which(rranua2TIN!="NA")); n
[1] 5
> a<-0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.3379882 0.4889117 0.6408352
> mu<-mean(rrezTIN,na.rm=TRUE); mu
[1] 0.3032459
> s<-sd(rrezTIN,na.rm=TRUE); s
[1] 0.08779772
> n<-length(which(rrezTIN!="NA")); n
[1] 7
> a<-0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.2220465 0.3032459 0.3844452
> #CI for anuaTIN
> mu<-mean(anuaTIN,na.rm=TRUE); mu
[1] 15.31667
> s<-sd(anuaTIN,na.rm=TRUE); s
[1] 10.02817
> n<-length(which(anuaTIN!="NA")); n
[1] 9
> a<-0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 7.608332 15.316667 23.025002
> #CI for anua2TIN
> mu<-mean(anua2TIN,na.rm=TRUE); mu
[1] 8.318
> s<-sd(anua2TIN,na.rm=TRUE); s
[1] 2.224459
> n<-length(which(anua2TIN!="NA")); n
[1] 5
> a<-0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 5.555969 8.318000 11.080031
> #CI for eZTIN

197
\begin{verbatim}
> mu<-mean(ezTIN,na.rm=TRUE); mu
[1] 25.60571
> s<-sd(ezTIN,na.rm=TRUE); s
[1] 3.226566
> n<-length(which(ezTIN!="NA")); n
[1] 7
> ac<-0.05
> tx<-qt(1-ac/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
> #CI for w4TIN
> mu<-mean(w4TIN,na.rm=TRUE); mu
[1] 0.972527
> s<-sd(w4TIN,na.rm=TRUE); s
[1] 2.174514
> n<-length(which(w4TIN!="NA")); n
[1] 9
> ac<-0.05
> tx<-qt(1-ac/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] -0.6989523 0.9725270 2.6440063
> #CI for w6TIN
> mu<-mean(w6TIN,na.rm=TRUE); mu
[1] 0.3129905
> n<-length(which(w6TIN!="NA")); n
[1] 9
> s<-sd(w6TIN,na.rm=TRUE); s
[1] 0.2181481
> ac<-0.05
> tx<-qt(1-ac/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.1453070 0.3129905 0.4806739
> #CI for stTIN
> stTIN<-dat$stTIN
> mu<-mean(stTIN,na.rm=TRUE); mu
[1] 31.8
> s<-sd(stTIN,na.rm=TRUE); s
[1] 5.10759
> n<-length(which(stTIN!="NA")); n
[1] 9
> ac<-0.05
> tx<-qt(1-ac/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 27.87396 31.80000 35.72604

TN

> #set-up
> stTN<-dat$stTN
\end{verbatim}
```r
> avgstTN<-mean(stTN,na.rm=TRUE)
> sdstTN<-sd(stTN,na.rm=TRUE)
> dwt(lm(stTN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.7436104 3.270712 0.38
Alternative hypothesis: rho != 0
> RSDTN<-sdstTN/avgstTN;RSDTN
[1] 0.3230159
> anuaTN<-dat$anuaTN
> rranuaTN<-(avgstTN-anuaTN)/avgstTN
> anua2TN<-dat$anua2TN
> rranua2TN<-(avgstTN-anua2TN)/avgstTN
> ezTN<dat$ezTN
> rrezTN<-(avgstTN-ezTN)/avgstTN
> w4TN<dat$w4TN
> w6TN<dat$w6TN
> rrw4TN<-(avgstTN-w4TN)/avgstTN
> rrw6TN<-(avgstTN-w6TN)/avgstTN
> ###lognormally/normally distributed?
> #null hypothesis
> #p>0.05 indicates normality
> shapiro.test(rranuaTN)
 Shapiro-Wilk normality test
 data: rranuaTN
 W = 0.78905, p-value = 0.084
> shapiro.test(rranua2TN)
Error in shapiro.test(rranua2TN) : sample size must be between 3 and 5000
> shapiro.test(rrezTN)
 Shapiro-Wilk normality test
 data: rrezTN
 W = 0.82067, p-value = 0.1447
> shapiro.test(rrw4TN)
 Shapiro-Wilk normality test
 data: rrw4TN
 W = 0.7875, p-value = 0.08162
> shapiro.test(rrw6TN)
 Shapiro-Wilk normality test
 data: rrw6TN
 W = 0.88301, p-value = 0.3517
> ###independent?
> #null hypothesis
> #p>0.05 indicates independence
> dwt(lm(rranuaTN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.6612397 3.014143 0.632
Alternative hypothesis: rho != 0
> dwt(lm(rranua2TN~time))
 lag Autocorrelation D-W Statistic p-value
 1 NaN NaN NA
Alternative hypothesis: rho != 0
> dwt(lm(rrezTN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.7242488 3.136602 0.396
Alternative hypothesis: rho != 0
> dwt(lm(rrw4TN~time))
 lag Autocorrelation D-W Statistic p-value
 1 NaN NaN NA
```

199
1  -0.3151171  2.144425  0.408
Alternative hypothesis: rho != 0

> dwt(lm(rrw6TN~time))

<table>
<thead>
<tr>
<th>lag</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.7923805</td>
<td>3.366311</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

### equal variance?

> rrtN$< cbind(rranuATN,rrezTN,rrw4TN,rrw6TN)
> rrtN$stack$< stack(data.frame(rrT$N))
> # use with parametric cases
> bartlett.test(rr$T$stack$values,rr$T$stack$ind)

Bartlett test of homogeneity of variances

data:  rr$T$stack$values and rr$T$stack$ind
Bartlett's K-squared = 17.325, df = 3, p-value = 0.0006058

### are column means the same?

> # use with parametric cases when variances are not equal
> oneway.test(rr$T$stack$values~rr$T$stack$ind)

One-way analysis of means (not assuming equal variances)

data:  rr$T$stack$values and rr$T$stack$ind
F = 25.785, num df = 3.0000, denom df = 5.3485, p-value = 0.001347

### if column means are different, which columns?

> # use with parametric cases
> TukeyHSD(aov(rr$T$stack$values~rr$T$stack$ind))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = rr$T$stack$values ~ rr$T$stack$ind)

<table>
<thead>
<tr>
<th>diff</th>
<th>lwr</th>
<th>upr</th>
<th>p adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>rrezTN-rranuATN</td>
<td>-0.24489796</td>
<td>-0.74391727</td>
<td>0.2541213</td>
</tr>
<tr>
<td>rrw4TN-rranuATN</td>
<td>0.42792614</td>
<td>-0.07109317</td>
<td>0.9269454</td>
</tr>
<tr>
<td>rrw6TN-rranuATN</td>
<td>0.45013800</td>
<td>-0.04888131</td>
<td>0.9491573</td>
</tr>
<tr>
<td>rrw4TN-rrezTN</td>
<td>0.67282410</td>
<td>0.17380479</td>
<td>1.1718434</td>
</tr>
<tr>
<td>rrw6TN-rrezTN</td>
<td>0.69503596</td>
<td>0.19601665</td>
<td>1.1940553</td>
</tr>
<tr>
<td>rrw6TN-rrw4TN</td>
<td>0.02221186</td>
<td>-0.47680745</td>
<td>0.5212312</td>
</tr>
</tbody>
</table>

### compare removal rate CIs for systems in lowest group(s) to zero

> mu<-.mean(rranuATN,na.rm=TRUE); mu
[1] 0.5102041
> s<-.sd(rranuATN,na.rm=TRUE); s
[1] 0.4460151
> n<-.length(which(rranuATN!="NA")); n
[1] 4
> ac<0.05
> tc<qt(1-a/2,n-1)
> se<-.s/sqrt(n)
> ci.mu<-.c(mu-t*se,mu,mu+t*se);ci.mu
[1] -0.1995055 0.5102041 1.2199136
> mu<-.mean(rranua2TN,na.rm=TRUE); mu
[1] 0.7959184
> s<-.sd(rranua2TN,na.rm=TRUE); s
[1] 0.019241
> n<-.length(which(rranua2TN!="NA")); n
[1] 2
> ac<0.05
> tc<qt(1-a/2,n-1)
> se<-.s/sqrt(n)
> ci.mu<-.c(mu-t*se,mu,mu+t*se);ci.mu
```r
> mu <- mean(rrezTN, na.rm = TRUE); mu
[1] 0.2653061
> s <- sd(rrezTN, na.rm = TRUE); s
[1] 0.142262
> n <- length(which(rrezTN != "NA")); n
[1] 4
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu + t * se); ci.mu
[1] 0.03893551 0.26530612 0.49167673
> # CI for anuaTN
> mu <- mean(anuaTN, na.rm = TRUE); mu
[1] 18
> s <- sd(anuaTN, na.rm = TRUE); s
[1] 16.39105
> n <- length(which(anuaTN != "NA")); n
[1] 4
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu + t * se); ci.mu
[1] -8.081825 18.000000 44.081825
> # CI for anua2TN
> mu <- mean(anua2TN, na.rm = TRUE); mu
[1] 7.5
> s <- sd(anua2TN, na.rm = TRUE); s
[1] 0.7071068
> n <- length(which(anua2TN != "NA")); n
[1] 2
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu + t * se); ci.mu
> # CI for ezTN
> mu <- mean(ezTN, na.rm = TRUE); mu
[1] 27
> s <- sd(ezTN, na.rm = TRUE); s
[1] 5.228129
> n <- length(which(ezTN != "NA")); n
[1] 4
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu + t * se); ci.mu
[1] 18.68088 27.00000 35.31912
> # CI for w4TN
> mu <- mean(w4TN, na.rm = TRUE); mu
[1] 2.273714
> s <- sd(w4TN, na.rm = TRUE); s
[1] 2.913304
> n <- length(which(w4TN != "NA")); n
[1] 4
> a <- 0.05
```
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] -2.362003  2.273714  6.909431
> #CI for w6TN
> mu<-mean(w6TN,na.rm=TRUE); mu
[1] 1.457429
> s<-sd(w6TN,na.rm=TRUE); s
[1] 0.8701716
> n<-length(which(w6TN!="NA")); n
[1] 4
> ac<0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 0.0727913 1.4574286 2.8420658
> #CI for stTN
> mu<-mean(stTN,na.rm=TRUE); mu
[1] 36.75
> s<-sd(stTN,na.rm=TRUE); s
[1] 11.87083
> n<-length(which(stTN!="NA")); n
[1] 4
> ac<0.05
> t<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se);ci.mu
[1] 17.86086 36.75000 55.63914

ANOVA Calculations – PPCPs

> library(car)
> library(pgirmess)
> dat<-read.csv("anovaPPCP.csv")
> time<-dat$time

ACE

> ###set-up
> stACE<-dat$stACE
> avgstACE<-mean(stACE,na.rm=TRUE)
> sdstACE<-sd(stACE,na.rm=TRUE)
> RSDACE<-sdstACE/avgstACE;RSDACE
[1] 0.8043276
> dwt(lm(stACE~time))
lag Autocorrelation D-W Statistic p-value
 1 0.3235067  1.129273  0.052
Alternative hypothesis: rho != 0

202
```r
> anuaACE <- dat$anuaACE
> rranuaACE <- (avgstACE-anuaACE)/avgstACE
> rrpanuaACE <- (stACE-anuaACE)/stACE; rrpanuaACE
> [1] 0.9999173 NA 0.9939321 NA 0.9990278 NA 0.9990278
> [8] NA 0.9987388 NA 0.9995340 0.9998253 0.9070600 0.9990526
> anua2ACE <- dat$anua2ACE
> rranua2ACE <- (avgstACE-anua2ACE)/avgstACE
> rrpanua2ACE <- (stACE-anua2ACE)/stACE; rrpanua2ACE
> [1] 0.9999173 NA 0.9939321 NA 0.9990278 NA 0.9990278
> [8] NA 0.9987388 NA NA NA NA NA
> ezACE <- dat$ezACE
> rrezACE <- (avgstACE-ezACE)/avgstACE
> rrpezACE <- (stACE-ezACE)/stACE; rrpezACE
> [1] NA NA NA NA NA NA NA 0.9993245
> [8] NA 0.9987388 NA 0.9995340 0.9998253 0.9984770 0.9985960
> w4ACE <- dat$w4ACE
> rrw4ACE <- (avgstACE-w4ACE)/avgstACE
> rrpw4ACE <- (stACE-w4ACE)/stACE; rrpw4ACE
> [1] 0.9998070 NA 0.9992036 NA 0.9998633 NA 0.9962729
> [8] NA 0.9987388 NA 0.9995340 0.9998253 0.9984770 0.9997644
> w6ACE <- dat$w6ACE
> rrw6ACE <- (avgstACE-w6ACE)/avgstACE
> rrpw6ACE <- (stACE-w6ACE)/stACE; rrpw6ACE
> [1] 0.9994633 NA 0.9979730 NA 0.9998633 NA 0.9962729
> [8] NA 0.9987388 NA 0.9995340 0.9998253 0.9984770 0.9997644
> lognormally/normally distributed?
> #null hypothesis
> #p>0.05 indicates normality
> shapiro.test(rranuaACE)
> Shapiro-Wilk normality test
> data: rranuaACE
> W = 0.58789, p-value = 6.897e-05
> shapiro.test(rrpanuaACE)
> Shapiro-Wilk normality test
> data: rrpanuaACE
> W = 0.43113, p-value = 9.879e-07
> shapiro.test(rrpanua2ACE)
> Shapiro-Wilk normality test
> data: rrpanua2ACE
> W = 0.57646, p-value = 0.000297
> shapiro.test(rrezACE)
> Shapiro-Wilk normality test
> data: rrezACE
> W = 0.81133, p-value = 0.07414
> shapiro.test(rrpezACE)
> Shapiro-Wilk normality test
> data: rrpezACE
> W = 0.94149, p-value = 0.6712
> shapiro.test(rrw4ACE)
> Shapiro-Wilk normality test
> data: rrw4ACE
> W = 0.63457, p-value = 0.0002434
```
> shapiro.test(rrpw4ACE)
  Shapiro-Wilk normality test
  data:  rrpw4ACE
  W = 0.85418, p-value = 0.08283
> shapiro.test(rrw6ACE)
  Shapiro-Wilk normality test
  data:  rrw6ACE
  W = 0.66537, p-value = 0.0005587
> shapiro.test(rrpw6ACE)
  Shapiro-Wilk normality test
  data:  rrpw6ACE
  W = 0.82692, p-value = 0.04123
> ###independent?
> #null hypothesis - no correlation
> #p>0.05 indicates independence
> dwt(lm(rranuaACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.3152519      2.573015   0.624
  Alternative hypothesis: rho != 0
> dwt(lm(rrpanuaACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.5000007      2.822536   0.32
  Alternative hypothesis: rho != 0
> dwt(lm(rranua2ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.6335683      3.030021   0.406
  Alternative hypothesis: rho != 0
> dwt(lm(rrpanua2ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.6363691      3.068258   0.454
  Alternative hypothesis: rho != 0
> dwt(lm(rrezACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.2232736      2.109583   0.644
  Alternative hypothesis: rho != 0
> dwt(lm(rrpezACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.3566762      2.478834   0.964
  Alternative hypothesis: rho != 0
> dwt(lm(rrw4ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.109513      2.032312   0.612
  Alternative hypothesis: rho != 0
> dwt(lm(rrpw4ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.3166343      2.622694   0.566
  Alternative hypothesis: rho != 0
> dwt(lm(rrw6ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.5936025      3.113447   0.132
  Alternative hypothesis: rho != 0
> dwt(lm(rrpw6ACE~time))
  lag Autocorrelation D-W Statistic p-value
  1  -0.4277992      2.761795   0.39
  Alternative hypothesis: rho != 0
> ###equal variance?
null hypothesis - equal variance
#p>0.05 indicates equal variance

> rrACE<-cbind(rranuaACE,rezACE,rrw4ACE,rrw6ACE)
> rrACEstack<-stack(data.frame(rrACE))
> rrACE2<-cbind(rranua2ACE,rezACE,rrw4ACE,rrw6ACE)
> rrACEstack2<-stack(data.frame(rrACE2))
> rrpACE<-cbind(rparanuaACE,rrpezACE,rrpw4ACE,rrpw6ACE)
> rrpACEstack<-stack(data.frame(rrpACE))
> rrpACE2<-cbind(rparanua2ACE,rrpezACE,rrpw4ACE,rrpw6ACE)
> rrpACEstack2<-stack(data.frame(rrpACE2))

#use with nonparametric cases
> leveneTest(rrACEstack$values,rrACEstack$ind)
Levene's Test for Homogeneity of Variance (center = median)

   Df F value  Pr(>F)
group  3  3.2965 0.03432 *

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> leveneTest(rrACEstack2$values,rrACEstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

   Df F value  Pr(>F)
group  3  3.1064 0.04454 *

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> leveneTest(rrpACEstack$values,rrpACEstack$ind)
Levene's Test for Homogeneity of Variance (center = median)

   Df F value  Pr(>F)
group  3  2.624 0.06938 .

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> leveneTest(rrpACEstack2$values,rrpACEstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

   Df F value  Pr(>F)
group  3 12.219 4.08e-05 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##are column means the same?

#null hypothesis - column means are the same

#p<0.05 indicates significantly different means

#use with nonparametric cases

> kruskal.test(rrACEstack$values~rrACEstack$ind)
Kruskal-Wallis rank sum test
data: rrACEstack$values by rrACEstack$ind
Kruskal-Wallis chi-squared = 11.594, df = 3, p-value = 0.00891

> kruskal.test(rrACEstack2$values~rrACEstack2$ind)
Kruskal-Wallis rank sum test
data: rrACEstack2$values by rrACEstack2$ind
Kruskal-Wallis chi-squared = 11.711, df = 3, p-value = 0.008442

> kruskal.test(rrpACEstack$values~rrpACEstack$ind)
Kruskal-Wallis rank sum test
data: rrpACEstack$values by rrpACEstack$ind
Kruskal-Wallis chi-squared = 8.93, df = 3, p-value = 0.03024

> kruskal.test(rrpACEstack2$values~rrpACEstack2$ind)
Kruskal-Wallis rank sum test
data: rrpACEstack2$values by rrpACEstack2$ind
Kruskal-Wallis chi-squared = 10.035, df = 3, p-value = 0.01827

# if column means are different, which columns?
# null hypothesis - column means are the same
# p<0.05 indicates significantly different means
# use with nonparametric case

> kruskalmc(rrACEstack$values~rrACEstack$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuACE-rrrezACE 12.222222</td>
<td>13.44534</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuACE-rrw4ACE 3.166667</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuACE-rrw6ACE 1.111111</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrrezACE-rrw4ACE 15.388889</td>
<td>13.44534</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrrezACE-rrw6ACE 13.333333</td>
<td>13.44534</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrw4ACE-rrw6ACE 2.055556</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrACEstack2$values~rrACEstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranu2ACE-rrrezACE 11.333333</td>
<td>13.60260</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranu2ACE-rrw4ACE 2.277778</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranu2ACE-rrw6ACE 0.444444</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrrezACE-rrw4ACE 13.611111</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrrezACE-rrw6ACE 11.777778</td>
<td>11.83954</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrw4ACE-rrw6ACE 1.833333</td>
<td>10.58961</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrpACEstack$values~rrpACEstack$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuACE-rrpezACE 12.333333</td>
<td>13.44534</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuACE-rrpw4ACE 1.833333</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuACE-rrpw6ACE 0.333333</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezACE-rrpw4ACE 14.166667</td>
<td>13.44534</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrpezACE-rrpw6ACE 12.000000</td>
<td>13.44534</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpw4ACE-rrpw6ACE 2.166667</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrpACEstack2$values~rrpACEstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranu2ACE-rrpezACE 12.766667</td>
<td>13.60260</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranu2ACE-rrpw4ACE 0.233333</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranu2ACE-rrpw6ACE 1.711111</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezACE-rrpw4ACE 13.000000</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrpezACE-rrpw6ACE 11.055556</td>
<td>11.83954</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpw4ACE-rrpw6ACE 1.944444</td>
<td>10.58961</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

# compare removal rate CIs for systems in lowest group(s) to zero
mu<mean(rrrezACE,na.rm=TRUE); mu
[1] 0.9862137
s<sd(rrrezACE,na.rm=TRUE); s
[1] 0.01467285
n <- length(which(rrpezACE != "NA")); n
[1]  6
a <- 0.05
t <- qt(1 - a/2, n - 1)
se <- s/sqrt(n)
mu <- mean(rrpezACE, na.rm = TRUE); mu
[1] 0.9603063
s <- sd(rrpezACE, na.rm = TRUE); s
[1] 0.0302117
n <- length(which(rrpezACE != "NA")); n
[1]  6
a <- 0.05
t <- qt(1 - a/2, n - 1)
se <- s/sqrt(n)
ci.mu <- c(mu - t*se, mu, mu + t*se); ci.mu
[1] 0.9286011 0.9603063 0.9920116

CBZ

### set-up
stCBZ <- dat$stCBZ
avgstCBZ <- mean(stCBZ, na.rm = TRUE)
sdstCBZ <- sd(stCBZ, na.rm = TRUE)
RSDCBZ <- dstCBZ/avgstCBZ; RSDCBZ
[1] 0.3801992
dwt(lm(stCBZ ~ time))

<table>
<thead>
<tr>
<th>lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1889356</td>
<td>1.592533</td>
<td>0.242</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

anuaCBZ <- dat$anuaCBZ
rranuaCBZ <- (avgstCBZ - anuaCBZ)/avgstCBZ
rrpanuaCBZ <- (stCBZ - anuaCBZ)/stCBZ; rrpanuaCBZ
[1] 0.9971754 NA 0.9843073 NA 0.9719931 NA 0.8270113
[8] NA 0.8706987 NA 0.3224374 0.7013219 0.4762475 0.3218441

anua2CBZ <- dat$anua2CBZ
rranua2CBZ <- (avgstCBZ - anua2CBZ)/avgstCBZ
rrpanua2CBZ <- (stCBZ - anua2CBZ)/stCBZ; rrpanua2CBZ
[1] 0.9971754 NA 0.9843073 NA 0.9719931 NA 0.8270113
[8] NA 0.8706987 NA NA NA NA

ezCBZ <- dat$ezCBZ
rrezCBZ <- (avgstCBZ - ezCBZ)/avgstCBZ
rr pepCBZ <- (stCBZ - ezCBZ)/stCBZ; r rpezCBZ
[1] NA NA NA NA NA -0.4833010
[8] NA -0.3953182 NA -0.3364586 -0.1361817 -0.3468637 -0.5529961

w4CBZ <- dat$w4CBZN
rrw4CBZ <- (avgstCBZ - w4CBZ)/avgstCBZ
rrpw4CBZ <- (stCBZ - w4CBZ)/stCBZ; r rpw4CBZ
[1] 0.38186661 NA 0.5060713 NA 0.6381136 NA
[7] -0.01993263 NA 0.46941364 NA 0.52713271 0.54603507
[13] -0.08549120 -0.31342020

w6CBZ <- dat$w6CBZN
rrw6CBZ <- (avgstCBZ - w6CBZ)/avgstCBZ
rrpw6CBZ <- (stCBZ - w6CBZ)/stCBZ; r rpw6CBZ
[1] 0.8621499 NA 0.9348562 NA 0.9254996 NA 0.5606913
[8] NA 0.8080368 NA 0.8637234 0.8937516 0.5321854 0.1559872
> ## lognormally/normally distributed?
> null hypothesis - normal distribution
> # p>0.05 indicates normality
> shapiro.test(rranuaCBZ)
>      Shapiro-Wilk normality test
> data: rranuaCBZ
> W = 0.89478, p-value = 0.2233
> shapiro.test(rrpanuaCBZ)
>      Shapiro-Wilk normality test
> data: rrpanuaCBZ
> W = 0.8504, p-value = 0.07529
> shapiro.test(rranua2CBZ)
>      Shapiro-Wilk normality test
> data: rranua2CBZ
> W = 0.85367, p-value = 0.2064
> shapiro.test(rrpanua2CBZ)
>      Shapiro-Wilk normality test
> data: rrpanua2CBZ
> W = 0.84569, p-value = 0.1813
> shapiro.test(rrrezCBZ)
>      Shapiro-Wilk normality test
> data: rrrezCBZ
> W = 0.90146, p-value = 0.3826
> shapiro.test(rrpezCBZ)
>      Shapiro-Wilk normality test
> data: rrpezCBZ
> W = 0.95292, p-value = 0.7638
> shapiro.test(rrw4CBZ)
>      Shapiro-Wilk normality test
> data: rrw4CBZ
> W = 0.94033, p-value = 0.5853
> shapiro.test(rrpw4CBZ)
>      Shapiro-Wilk normality test
> data: rrpw4CBZ
> W = 0.8413, p-value = 0.05971
> shapiro.test(rrw6CBZ)
>      Shapiro-Wilk normality test
> data: rrw6CBZ
> W = 0.86808, p-value = 0.1172
> shapiro.test(rrpw6CBZ)
>      Shapiro-Wilk normality test
> data: rrpw6CBZ
> W = 0.79195, p-value = 0.01652
> ## independent?
> null hypothesis - no correlation
> # p>0.05 indicates independence
> dwt(lm(rranuaCBZ ~ time))
>          lag Autocorrelation D-W Statistic p-value
>        1      0.02140585      1.845301   0.472
> Alternative hypothesis: rho != 0
> dwt(lm(rrpanuaCBZ ~ time))
>          lag Autocorrelation D-W Statistic p-value
>        1      -0.4551992     -2.910389  0.154
> Alternative hypothesis: rho != 0
> dwt(lm(rranua2CBZ ~ time))
>          lag Autocorrelation D-W Statistic p-value
>        1      -0.4551992     -2.910389  0.154
> Alternative hypothesis: rho != 0
Alternative hypothesis: rho != 0
> dwt(lm(rrpanua2CBZ~time))
lag Autocorrelation D-W Statistic p-value
1  -0.65163      3.069216   0.396
Alternative hypothesis: rho != 0
> dwt(lm(rrezCBZ~time))
lag Autocorrelation D-W Statistic p-value
1  -0.1891895      2.045536    0.55
Alternative hypothesis: rho != 0
> dwt(lm(rrpezCBZ~time))
lag Autocorrelation D-W Statistic p-value
1       0.1390417       1.33312   0.064
Alternative hypothesis: rho != 0
> dwt(lm(rrw4CBZ~time))
lag Autocorrelation D-W Statistic p-value
1      0.04693143      1.646343    0.29
Alternative hypothesis: rho != 0
> dwt(lm(rrw6CBZ~time))
lag Autocorrelation D-W Statistic p-value
1    0.0006011698      1.822333   0.508
Alternative hypothesis: rho != 0
> #equal variance?
> #null hypothesis - equal variance
> #p>0.05 indicates equal variance
> rrCBZ<-cbind(rranuaCBZ,rrezCBZ,rrw4CBZ,rrw6CBZ)
> rrCBZstack<-stack(data.frame(rrCBZ))
> rrCBZ2<-cbind(rranua2CBZ,rrezCBZ,rrw4CBZ,rrw6CBZ)
> rrCBZstack2<-stack(data.frame(rrCBZ2))
> rrpCBZ<-cbind(rrpanuaCBZ,rrpezCBZ,rrpw4CBZ,rrpw6CBZ)
> rrpCBZstack<-stack(data.frame(rrpCBZ))
> rrpCBZ2<-cbind(rrpanua2CBZ,rrpezCBZ,rrpw4CBZ,rrpw6CBZ)
> rrpCBZstack2<-stack(data.frame(rrpCBZ2))
> #use with parametric cases
> bartlett.test(rrCBZstack$values,rrCBZstack$ind)
Bartlett test of homogeneity of variances
data:  rrCBZstack$values and rrCBZstack$ind
Bartlett’s K-squared = 3.5044, df = 3, p-value = 0.3202
> bartlett.test(rrCBZstack2$values,rrCBZstack2$ind)
Bartlett test of homogeneity of variances
data:  rrCBZstack2$values and rrCBZstack2$ind
Bartlett’s K-squared = 7.8089, df = 3, p-value = 0.05013
> #use with nonparametric cases
> leveneTest(rrpCBZstack$values,rrpCBZstack$ind)
Levene’s Test for Homogeneity of Variance (center = median)
  DF F value Pr(>F)
group 3  0.6236  0.6055
209
> leveneTest(rrpCBZstack2$values, rrpCBZstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)
  Df  F value  Pr(>F)
 group 3   1.0864   0.373
  25
> ## are column means the same?
> # null hypothesis - column means are the same
> # p<0.05 indicates significantly different means
> # use with parametric cases when variances are equal
> summary(aov(rrCBZstack$values ~ rrCBZstack$ind))

Df Sum Sq Mean Sq F value  Pr(>F)
 rrCBZstack$ind 3   3.512  1.1706   38.46 3.1e-10 ***
 Residuals 29   0.883  0.0304
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
23 observations deleted due to missingness
> summary(aov(rrCBZstack2$values ~ rrCBZstack2$ind))

Df Sum Sq Mean Sq  F value Pr(>F)
 rrCBZstack2$ind 3   3.715  1.2384   51.49 7.64e-11 ***
 Residuals 25   0.601  0.0241
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
27 observations deleted due to missingness
> # use with nonparametric cases
> kruskal.test(rrpCBZstack$values ~ rrpCBZstack$ind)
Kruskal-Wallis rank sum test
data: rrpCBZstack$values by rrpCBZstack$ind
Kruskal-Wallis chi-squared = 19.67, df = 3, p-value = 0.0001987
> kruskal.test(rrpCBZstack2$values ~ rrpCBZstack2$ind)
Kruskal-Wallis rank sum test
data: rrpCBZstack2$values by rrpCBZstack2$ind
Kruskal-Wallis chi-squared = 22.258, df = 3, p-value = 5.765e-05
> ### if column means are different, which columns?
> # null hypothesis - column means are the same
> # p<0.05 indicates significantly different means
> # use with parametric case
> TukeyHSD(aov(rrCBZstack$values ~ rrCBZstack$ind))

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = rrCBZstack$values ~ rrCBZstack$ind)
$'rrCBZstack$ind'
diff lwr    upr  p adj
 rrezCBZ-rranuaCBZ  -0.846309296 -1.0968353 -0.5957833  0.0000000
 rrw4CBZ-rranuaCBZ  -0.412502676 -0.6365799 -0.1884254  0.0001365
 rrw6CBZ-rranuaCBZ  0.000506849 -0.2190164  0.2291381  0.9999143
 rrw4CBZ-rrezCBZ    0.433806620  0.1832807  0.6843326  0.0000309
 rrw6CBZ-rrezCBZ    0.851370145  0.6008442  1.1018961  0.0000000
 rrw6CBZ-rrw4CBZ    0.417563525  0.1934863  0.6416408  0.0001152
> TukeyHSD(aov(rrCBZstack2$values ~ rrCBZstack2$ind))

Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = rrCBZstack2$values ~ rrCBZstack2$ind)
$'rrCBZstack2$ind'
diff  lwr    upr  p adj
 rrezCBZ-rranua2CBZ -0.9910001 -1.2493106 -0.73268960  0.0000000

210
> #use with nonparametric case
> kruskalmc(rrpCBZstack$values~rrpCBZstack$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaCBZ - rrpezCBZ</td>
<td>19.333333</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranuaCBZ - rpeg4CBZ</td>
<td>9.333333</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuaCBZ - rpegw6CBZ</td>
<td>0.222222</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezCBZ - rpegw4CBZ</td>
<td>10.000000</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezCBZ - rpegw6CBZ</td>
<td>19.555556</td>
<td>TRUE</td>
</tr>
<tr>
<td>rpeg4CBZ - rpegw6CBZ</td>
<td>9.555555</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrpCBZstack2$values~rrpCBZstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2CBZ - rrpezCBZ</td>
<td>21.733333</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2CBZ - rpeg4CBZ</td>
<td>13.511111</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2CBZ - rpegw6CBZ</td>
<td>5.511111</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezCBZ - rpegw4CBZ</td>
<td>8.222222</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrpezCBZ - rpegw6CBZ</td>
<td>16.222222</td>
<td>TRUE</td>
</tr>
<tr>
<td>rpeg4CBZ - rpegw6CBZ</td>
<td>8.000000</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> #compare removal rate CIs for systems in lowest group(s) to zero
> mu<mean(rranuaCBZ, na.rm=TRUE); mu
[1] 0.7936866
> s<sd(rranuaCBZ, na.rm=TRUE); s
[1] 0.1917473
> n<length(which(rranuaCBZ!="NA")); n
[1] 9
> a<0.05
> tc<qt(1-a/2, n-1)
> se<s/sqrt(n)
> ci.mu<-(mu-t*se, mu, mu+t*se); ci.mu
[1] 0.6462966 0.7936866 0.9410767
> mu<mean(rrpanuaCBZ, na.rm=TRUE); mu
[1] 0.7192263
> s<sd(rrpanuaCBZ, na.rm=TRUE); s
[1] 0.278543
> n<length(which(rrpanuaCBZ!="NA")); n
[1] 9
> a<0.05
> tc<qt(1-a/2, n-1)
> se<s/sqrt(n)
> ci.mu<-(mu-t*se, mu, mu+t*se); ci.mu
[1] 0.5051192 0.7192263 0.9333334
> mu<mean(rrpanua2CBZ, na.rm=TRUE); mu
[1] 0.9383774
> s<sd(rrpanua2CBZ, na.rm=TRUE); s
[1] 0.05633213
> n<-length(which(rrpanua2CBZ!="NA")); n
[1] 5
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.8684318 0.9383774 1.0083230
> mu<-mean(rrpanua2CBZ,na.rm=TRUE); mu
[1] 0.9302372
> sx<-sd(rrpanua2CBZ,na.rm=TRUE); s
[1] 0.07640072
> nc<-length(which(rrpanua2CBZ!="NA")); nc
[1] 5
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.8353732 0.9302372 1.0251012
> mu<-mean(rrrezCBZ,na.rm=TRUE); mu
[1] 0.3751866
> sx<-sd(rrrezCBZ,na.rm=TRUE); s
[1] 0.1436215
> nc<-length(which(rrrezCBZ!="NA")); nc
[1] 6
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.5259080 0.3751866 0.2244651
> mu<-mean(rrw4CBZ,na.rm=TRUE); mu
[1] 0.3811839
> sx<-sd(rrw4CBZ,na.rm=TRUE); s
[1] 0.1731893
> nc<-length(which(rrw4CBZ!="NA")); nc
[1] 9
> a<0.05
> tc<-qt(1-a/2,n-1)
> se<-s/sqrt(n)
> ci.mu<-c(mu-t*se,mu,mu+t*se); ci.mu
[1] 0.294421 0.3811839 0.5143091
> mu<-mean(rrpw4CBZ,na.rm=TRUE); mu
[1] 0.294421
> sx<-sd(rrpw4CBZ,na.rm=TRUE); s
[1] 0.3411885
> nc<-length(which(rrpw4CBZ!="NA")); nc
LAM

### set-up

```r
###set up
stLAM<-dat$stLAM
dat$stLAM
avgstLAM<mean(stLAM,na.rm=TRUE)
sdstLAM<sd(stLAM,na.rm=TRUE)
RSDLAM<sdstLAM/avgstLAM;RSDLAM
[1] 0.1478286
dwt(lm(stLAM~time))
1 0.00349483 1.934419 0.568
Alternative hypothesis: rho != 0
anualAM<-dat$anualAM
rranualAM<-(avgstLAM-anualAM)/avgstLAM
anual2LAM<dat$anual2LAM
rranual2LAM<-(avgstLAM-anual2LAM)/avgstLAM
ezLAM<dat$ezLAM
rrezLAM<-(avgstLAM-ezLAM)/avgstLAM
w4LAM<dat$w4LAM
rrw4LAM<-(avgstLAM-w4LAM)/avgstLAM
w6LAM<dat$w6LAM
rrw6LAM<-(avgstLAM-w6LAM)/avgstLAM
###lognormally/normally distributed?
#null hypothesis - normal distribution
```
> #p>0.05 indicates normality
> shapiro.test(rranuaLAM)
  Shapiro-Wilk normality test
data:  rranuaLAM
w = 0.63813, p-value = 0.000268
> shapiro.test(rranua2LAM)
  Shapiro-Wilk normality test
data:  rranua2LAM
w = 0.68503, p-value = 0.006634
> shapiro.test(rrezLAM)
  Shapiro-Wilk normality test
data:  rrezLAM
w = 0.87756, p-value = 0.258
> shapiro.test(rrw4LAM)
  Shapiro-Wilk normality test
data:  rrw4LAM
w = 0.93935, p-value = 0.575
> shapiro.test(rrw6LAM)
  Shapiro-Wilk normality test
data:  rrw6LAM
w = 0.85445, p-value = 0.0834
> ###independent?
> #null hypothesis - no correlation
> #p>0.05 indicates independence
> dwt(lm(rranuaLAM~time))
  lag   Autocorrelation D-W Statistic p-value
    1  -0.3357955       2.629865   0.478
Alternative hypothesis: rho != 0
> dwt(lm(rranua2LAM~time))
  lag   Autocorrelation D-W Statistic p-value
    1  -0.595738      2.903088   0.558
Alternative hypothesis: rho != 0
> dwt(lm(rrezLAM~time))
  lag   Autocorrelation D-W Statistic p-value
    1  -0.1635293      2.162732   0.686
Alternative hypothesis: rho != 0
> dwt(lm(rrw4LAM~time))
  lag   Autocorrelation D-W Statistic p-value
    1    0.4352629     0.8101197   0.006
Alternative hypothesis: rho != 0
> dwt(lm(rrw6LAM~time))
  lag   Autocorrelation D-W Statistic p-value
    1    0.1276424      1.572595   0.262
Alternative hypothesis: rho != 0
> w4LAMuse<-dat$w4LAMuse
> rrw4LAMuse<-(avgstLAM-w4LAMuse)/avgstLAM
> dwt(lm(rrw4LAMuse~time),reps=10000)
  lag   Autocorrelation D-W Statistic p-value
    1   -0.07415112      1.678914   0.1908
Alternative hypothesis: rho != 0
> shapiro.test(rrw4LAMuse)
  Shapiro-Wilk normality test
data:  rrw4LAMuse
w = 0.96728, p-value = 0.8575
> ###equal variance?
> #null hypothesis - equal variance
#p>0.05 indicates equal variance
> rLAM<-cbind(rranuaLAM,rrezLAM,rrw4LAMuse,rrw6LAM)
> rLAMstack<-stack(data.frame(rLAM))
> rLAM2<-cbind(rranua2LAM,rrezLAM,rrw4LAMuse,rrw6LAM)
> rLAMstack2<-stack(data.frame(rLAM2))

#use with nonparametric cases
> leveneTest(rLAMstack$values, rLAMstack$ind)
Levene's Test for Homogeneity of Variance (center = median)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
<td>F value</td>
<td>Pr(&gt;F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>3</td>
<td>8.2547</td>
</tr>
</tbody>
</table>

25

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> leveneTest(rLAMstack2$values, rLAMstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
<td>F value</td>
<td>Pr(&gt;F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>3</td>
<td>6.5557</td>
</tr>
</tbody>
</table>

21

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

###are column means the same?
> #null hypothesis - column means are the same
> #p<0.05 indicates significantly different means
> #use with nonparametric cases
> kruskal.test(rLAMstack$values~rLAMstack$ind)

Kruskal-Wallis rank sum test
data:  rLAMstack$values by rLAMstack$ind
Kruskal-Wallis chi-squared = 24.175, df = 3, p-value = 2.296e-05

> kruskal.test(rLAMstack2$values~rLAMstack2$ind)

Kruskal-Wallis rank sum test
data:  rLAMstack2$values by rLAMstack2$ind
Kruskal-Wallis chi-squared = 22.2, df = 3, p-value = 5.927e-05

###if column means are different, which columns?
> #null hypothesis - column means are the same
> #p<0.05 indicates significantly different means
> #use with nonparametric case
> kruskalmc(rLAMstack$values~rLAMstack$ind)
Multiple comparison test after Kruskal-Wallis

p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th></th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaLAM-rrezLAM</td>
<td>20.611111</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranuaLAM-rrw4LAMuse</td>
<td>15.111111</td>
<td>12.52979</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranuaLAM-rrw6LAM</td>
<td>7.222222</td>
<td>10.58961</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezLAM-rrw4LAMuse</td>
<td>5.500000</td>
<td>13.60260</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezLAM-rrw6LAM</td>
<td>13.388889</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrw4LAMuse-rrw6LAM</td>
<td>7.888889</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rLAMstack2$values~rLAMstack2$ind)
Multiple comparison test after Kruskal-Wallis

p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th></th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2LAM-rrezLAM</td>
<td>19.5</td>
<td>11.75761</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2LAM-rrw4LAMuse</td>
<td>14.0</td>
<td>12.28042</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2LAM-rrw6LAM</td>
<td>7.0</td>
<td>10.83031</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezLAM-rrw4LAMuse</td>
<td>5.5</td>
<td>11.75761</td>
<td>FALSE</td>
</tr>
</tbody>
</table>
### LEV

> ### set-up
> stLEV<-dat$stLEV
> avgstLEV<-mean(stLEV,na.rm=TRUE)
> sdstLEV<-sd(stLEV,na.rm=TRUE)
> RSDLEV<-sd(stLEV)/avgstLEV
> dwt(lm(stLEV~time))

<table>
<thead>
<tr>
<th>lag</th>
<th>Autocorrelation</th>
<th>D-W Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.5799318</td>
<td>3.044526</td>
<td>0.136</td>
</tr>
</tbody>
</table>

Alternative hypothesis: rho != 0

> anuLEV<-dat$anuaLEV
> rranuaLEV<-avgstLEV-anuLEV/avgstLEV
> anua2LEV<-dat$anua2LEV
> rranua2LEV<-avgstLEV-anu2LEV/avgstLEV
> ezLEV<-dat$ezLEV
> rrezLEV<-(avgstLEV-ezLEV)/avgstLEV
> w4LEV<-dat$w4LEV
> rrw4LEV<-(avgstLEV-w4LEV)/avgstLEV
> w5LEV<-dat$w5LEV
> rrw6LEV<-(avgstLEV-w6LEV)/avgstLEV
> #lognormally/normally distributed?
> #null hypothesis - normal distribution
> #p>0.05 indicates normality
> shapiro.test(rranuaLEV)
  Shapiro-Wilk normality test
  data:  rranuaLEV
  W = 0.49513, p-value = 5.604e-06
> shapiro.test(rranua2LEV)
  Shapiro-Wilk normality test
  data:  rranua2LEV
  W = 0.98659, p-value = 0.9664
> shapiro.test(rrezLEV)
  Shapiro-Wilk normality test
  data:  rrezLEV
  W = 0.94121, p-value = 0.669
> shapiro.test(rrw4LEV)
  Shapiro-Wilk normality test
  data:  rrw4LEV
  W = 0.80003, p-value = 0.02044
> shapiro.test(rrw6LEV)
  Shapiro-Wilk normality test
  data:  rrw6LEV
  W = 0.72382, p-value = 0.00269
> #independent?
> #null hypothesis - no correlation
> #p>0.05 indicates independence
> dwt(lm(rranuaLEV~time))
  Lag Autocorrelation D-W Statistic p-value
  1 -0.4207224      2.662479   0.476
  Alternative hypothesis: rho != 0
> dwt(lm(rranua2LEV~time))
  Lag Autocorrelation D-W Statistic p-value
  1 -0.8445977      3.588703   0.012
  Alternative hypothesis: rho != 0
> dwt(lm(rrezLEV~time))
  Lag Autocorrelation D-W Statistic p-value
  1 -0.6062884      2.840949   0.504
  Alternative hypothesis: rho != 0
> dwt(lm(rrw4LEV~time))
  Lag Autocorrelation D-W Statistic p-value
  1 -0.32664      2.504007   0.728
  Alternative hypothesis: rho != 0
> dwt(lm(rrw6LEV~time))
  Lag Autocorrelation D-W Statistic p-value
  1 -0.4275562      2.851593   0.316
  Alternative hypothesis: rho != 0
> anua2LEVuse<--dat$anua2LEVuse
> rranua2LEVuse<-(avgstLEV-anua2LEVuse)/avgstLEV
> dwt(lm(rranua2LEVuse~time))
  Lag Autocorrelation D-W Statistic p-value
Alternative hypothesis: rho != 0

> shapiro.test(rranua2LEVuse)
  Shapiro-Wilk normality test
data: rranua2LEVuse
W = 0.98185, p-value = 0.9128

### equal variance?

# null hypothesis - equal variance
# p>0.05 indicates equal variance
> rrLEV<-cbind(rranuaLEV,rrezLEV,rrw4LEV,rrw6LEV)
> rrLEVstack<-stack(data.frame(rrLEV))
> rrLEV2<-cbind(rranua2LEVuse,rrezLEV,rrw4LEV,rrw6LEV)
> rrLEVstack2<-stack(data.frame(rrLEV2))
> # use with nonparametric cases
> leveneTest(rrLEVstack$values,rrLEVstack$ind)
Levene’s Test for Homogeneity of Variance (center = median)
  Df  F value    Pr(>F)
group  3  4.3541 0.01194 *
29
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
> leveneTest(rrLEVstack2$values,rrLEVstack2$ind)
Levene’s Test for Homogeneity of Variance (center = median)
  Df  F value    Pr(>F)
group  3  4.0094 0.01906 *
24
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

### are column means the same?

# null hypothesis - column means are the same
# p<0.05 indicates significantly different means
# use with nonparametric cases
> kruskal.test(rrLEVstack$values~rrLEVstack$ind)
Kruskal-Wallis rank sum test
data: rrLEVstack$values by rrLEVstack$ind
Kruskal-Wallis chi-squared = 16.821, df = 3, p-value = 0.0007694
> kruskal.test(rrLEVstack2$values~rrLEVstack2$ind)
Kruskal-Wallis rank sum test
data: rrLEVstack2$values by rrLEVstack2$ind
Kruskal-Wallis chi-squared = 16.124, df = 3, p-value = 0.00107

### if column means are different, which columns?

# null hypothesis - column means are the same
# p<0.05 indicates significantly different means
# use with nonparametric case
> kruskalmc(rrLEVstack$values~rrLEVstack$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaLEV-rrezLEV</td>
<td>16.166667</td>
<td>13.44534</td>
</tr>
<tr>
<td>rranuaLEV-rrw4LEV</td>
<td>3.111111</td>
<td>12.02588</td>
</tr>
<tr>
<td>rranuaLEV-rrw6LEV</td>
<td>4.111111</td>
<td>12.02588</td>
</tr>
<tr>
<td>rrezLEV-rrw4LEV</td>
<td>13.055556</td>
<td>13.44534</td>
</tr>
<tr>
<td>rrezLEV-rrw6LEV</td>
<td>20.277778</td>
<td>13.44534</td>
</tr>
<tr>
<td>rrw4LEV-rrw6LEV</td>
<td>7.222222</td>
<td>12.02588</td>
</tr>
</tbody>
</table>
> kruskalmc(rrLEVstack2$values~rrLEVstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05
Comparisons

<table>
<thead>
<tr>
<th>obs.diff</th>
<th>critical.diff</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2LEVuse-rrezLEV 15.500000 14.00873 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranua2LEVuse-rrw4LEV 4.777778 13.04142 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rranua2LEVuse-rrw6LEV 1.111111 13.04142 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezLEV-rrw4LEV 10.722222 11.43808 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrezLEV-rrw6LEV 16.611111 11.43808 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrw4LEV-rrw6LEV 5.888889 10.23053 FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do rr CIs include zero?

```r
> mu <- mean(rrezLEV, na.rm = TRUE); mu
[1] 0.8372376
> s <- sd(rrezLEV, na.rm = TRUE); s
[1] 0.05141909
> n <- length(which(rrezLEV != "NA")); n
[1] 6
> a <- 0.05
> t <- qt(1 - a / 2, n - 1)
> se <- s / sqrt(n)
> ci.mu <- c(mu - t * se, mu, mu + t * se); ci.mu
[1] 0.7832765 0.8372376 0.8911986
```

**MET**

```r
> ### set-up
> stMET <- dat$stMET
> avgstMET <- mean(stMET, na.rm = TRUE)
> sdstMET <- sd(stMET, na.rm = TRUE)
> RSDMET <- sdstMET / avgstMET; RSDMET
[1] 0.605109
> dwt(lm(stMET ~ time))
lag Autocorrelation D-W Statistic p-value
1 0.1250741 2.236556 0.916
Alternative hypothesis: rho != 0
> anuaMET <- dat$anuaMET
> rranuaMET <- (avgstMET - anuaMET) / avgstMET
> anua2MET <- dat$anua2MET
> rranua2MET <- (avgstMET - anua2MET) / avgstMET
> ezMET <- dat$ezMET
> rrezMET <- (avgstMET - ezMET) / avgstMET
> w4MET <- dat$w4MET
> rrw4MET <- (avgstMET - w4MET) / avgstMET
> w6MET <- dat$w6MET
> rrw6MET <- (avgstMET - w6MET) / avgstMET
> ### lognormally/ normally distributed?
> # null hypothesis - normal distribution
> # p > 0.05 indicates normality
> shapiro.test(rranuaMET)

Shapiro-Wilk normality test

data: rranuaMET
```

219
w = 0.43213, p-value = 1.015e-06

> shapiro.test(rranua2MET)
Error in shapiro.test(rranua2MET) : all 'x' values are identical
> shapiro.test(rrezMET)

Shapiro-Wilk normality test
data:  rrezMET
w = 0.72667, p-value = 0.01166

> shapiro.test(rrw4MET)

Shapiro-Wilk normality test
data:  rrw4MET
w = 0.38984, p-value = 3.217e-07

> shapiro.test(rrw6MET)

Shapiro-Wilk normality test
data:  rrw6MET
w = 0.38984, p-value = 3.217e-07

> ### independent?
> # null hypothesis - no correlation
> # p > 0.05 indicates independence
> dwt(lm(rranuaMET~time))
   lag Autocorrelation D-W Statistic p-value
   1 -0.4914153  2.819928   0.342
   Alternative hypothesis: rho != 0
> dwt(lm(rranua2MET~time))
   lag Autocorrelation D-W Statistic p-value
   1   NaN    NaN    NA
   Alternative hypothesis: rho != 0
Warning message:
In summary.lm(model) : essentially perfect fit: summary may be unreliable
> dwt(lm(rrezMET~time))
   lag Autocorrelation D-W Statistic p-value
   1   0.1886256  1.079414   0.016
   Alternative hypothesis: rho != 0
> dwt(lm(rrw4MET~time))
   lag Autocorrelation D-W Statistic p-value
   1 -0.05639898  1.371858   0.162
   Alternative hypothesis: rho != 0
> dwt(lm(rrw6MET~time))
   lag Autocorrelation D-W Statistic p-value
   1  -0.1804434  2.327542   0.96
   Alternative hypothesis: rho != 0
> ezMETuse<-dat$ezMETuse
> rrezMETuse<-(avgstMET-ezMETuse)/avgstMET
> dwt(lm(rrezMETuse~time))
   lag Autocorrelation D-W Statistic p-value
   1   -0.1888651  1.844626   0.32
   Alternative hypothesis: rho != 0
```r
> shapiro.test(rrzMETuse)

Shapiro-Wilk normality test

data: rrezMETuse
W = 0.59751, p-value = 0.0005803

> ###equal variance?
> #null hypothesis - equal variance
> #p>0.05 indicates equal variance
> rrMET<-cbind(rranuaMET,rezMETuse,rrw4MET,rrw6MET)
> rrMETstack<-stack(data.frame(rrMET))
> rrMET2<-cbind(rranua2MET,rezMETuse,rrw4MET,rrw6MET)
> rrMETstack2<-stack(data.frame(rrMET2))
> #use with nonparametric cases
> leveneTest(rrMETstack$values,rrMETstack$ind)

Levene's Test for Homgeneity of Variance (center = median)

Df F value Pr(>F)
group 3 0.8562 0.4752
28

> leveneTest(rrMETstack2$values,rrMETstack2$ind)

Levene's Test for Homgeneity of Variance (center = median)

Df F value Pr(>F)
group 3 1.8249 0.1696
24

> ###are column means the same?
> #null hypothesis - column means are the same
> #p<0.05 indicates significantly different means
> #use with nonparametric cases
> kruskal.test(rrMETstack$values~rrMETstack$ind)

Kruskal-Wallis rank sum test

data: rrMETstack$values by rrMETstack$ind
Kruskal-Wallis chi-squared = 2.4461, df = 3, p-value = 0.4851

> kruskal.test(rrMETstack2$values~rrMETstack2$ind)

Kruskal-Wallis rank sum test

data: rrMETstack2$values by rrMETstack2$ind
Kruskal-Wallis chi-squared = 3.8654, df = 3, p-value = 0.2764

> ###if column means are different, which columns?
> #null hypothesis - column means are the same
> #p<0.05 indicates significantly different means
> #compare removal rate CIs for systems in lowest group(s) to zero
> #use bootstrapping to find confidence interval around rr
> n<-100000
> rranuaMETbs<-rranuaMET[!is.na(rranuaMET)];rranuaMETbs

> bootrranuaMET<-numeric(n)
> for (i in 1:n) {
+ bootrranuaMET[i]<-mean(sample(rranuaMETbs,replace=T),na.rm=TRUE)
+ }
```
hist(bootranuaMET)
quantile(bootranuaMET, probs=c(0.025, 0.975))
  2.5%     97.5%
  -2.4914600  0.8669852
mean(bootranuaMET)
[1] -0.3141332
rranua2METbs <- rranua2MET[!is.na(rranua2MET)]; rranua2METbs
[1] 0.8669852 0.8669852 0.8669852 0.8669852 0.8669852
bootranua2MET <- numeric(n)
for (i in 1:n) {
  + bootranua2MET[i] <- mean(sample(rranua2METbs, replace=T), na.rm=TRUE)
+ }
hist(bootranua2MET)
quantile(bootranua2MET, probs=c(0.025, 0.975))
  2.5%     97.5%
  0.8669852  0.8669852
mean(bootranua2MET)
[1] 0.8669852
rrrezMETbs <- rrrezMETuse[!is.na(rrrezMETuse)]; rrrezMETbs
[1] -3.5457201  0.5657512  0.8669852  0.8669852  0.8669852
bootrrrezMET <- numeric(n)
for (i in 1:n) {
  + bootrrrezMET[i] <- mean(sample(rrrezMETbs, replace=T), na.rm=TRUE)
+ }
hist(bootrrrezMET)
quantile(bootrrrezMET, probs=c(0.025, 0.975))
  2.5%     97.5%
-1.8408848  0.8669852
mean(bootrrrezMET)
[1] -0.07814058
rrw4METbs <- rrw4MET[!is.na(rrw4MET)]; rrw4METbs
[1] 0.7436050  0.8669852  0.8669852  0.8669852  0.8669852  0.8669852
[8] 0.8669852  0.8669852
bootrrw4MET <- numeric(n)
for (i in 1:n) {
  + bootrrw4MET[i] <- mean(sample(rrw4METbs, replace=T), na.rm=TRUE)
+ }
hist(bootrrw4MET)
quantile(bootrrw4MET, probs=c(0.025, 0.975))
  2.5%     97.5%
  0.8258585  0.8669852
mean(bootrrw4MET)
[1] 0.8533446
rrw6METbs <- rrw6MET[!is.na(rrw6MET)]; rrw6METbs
[1] 0.8669852  0.8669852  0.8669852  0.4675351  0.8669852  0.8669852
[8] 0.8669852  0.8669852
bootrrw6MET <- numeric(n)
for (i in 1:n) {
  + bootrrw6MET[i] <- mean(sample(rrw6METbs, replace=T), na.rm=TRUE)
+ }
hist(bootrrw6MET)
quantile(bootrrw6MET, probs=c(0.025, 0.975))
  2.5%     97.5%
  0.7338352  0.8669852
mean(bootrrw6MET)
[1] 0.8225881

222
### Setup

```r
> stTOP<-dat$stTOP
> avgstTOP<-mean(stTOP,na.rm=TRUE)
> sdstTOP<-sd(stTOP,na.rm=TRUE)
> RSDTOP<-sdstTOP/avgstTOP
> dwt(lm(stTOP~time))

 lag Autocorrelation D-W Statistic p-value
 1 -0.1435915 2.257869 0.858

Alternative hypothesis: rho != 0
```

### Independent?

```r
> anuaTOP<-dat$anuaTOP
> rranuaTOP<-avgstTOP-anuaTOP
> anua2TOP<-dat$anua2TOP
> rranua2TOP<-avgstTOP-anua2TOP
> ezTOP<-dat$ezTOP
> rrezTOP<-avgstTOP-ezTOP
> w4TOP<-dat$w4TOP
> rrw4TOP<-avgstTOP-w4TOP
> w6TOP<-dat$w6TOP
> rrw6TOP<-avgstTOP-w6TOP

Lognormally/normally distributed?

```r
> shapiro.test(rranuaTOP)

Shapiro-Wilk normality test
data:  rranuaTOP
W = 0.67699, p-value = 0.0007641
```

Error in shapiro.test(rranua2TOP) : all 'x' values are identical

```r
> shapiro.test(rranua2TOP)

Shapiro-Wilk normality test
data:  rranua2TOP
W = 0.49609, p-value = 2.073e-05
```

```r
> shapiro.test(rrezTOP)

Shapiro-Wilk normality test
data:  rrezTOP
W = 0.38984, p-value = 3.217e-07
```

```r
> shapiro.test(rrw4TOP)

Shapiro-Wilk normality test
data:  rrw4TOP
W = 0.38984, p-value = 3.217e-07
```

Independent?

```r
> dwt(lm(rranuaTOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034

Alternative hypothesis: rho != 0
```

```r
> dwt(lm(rranua2TOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034
```

Independent?

```r
> dwt(lm(rrw4TOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034
```

```r
> dwt(lm(rrw6TOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034
```

Independent?

```r
> dwt(lm(rranuaTOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034
```

```r
> dwt(lm(rranua2TOP~time))

   lag Autocorrelation  D-W Statistic  p-value
   1   -0.6889641      3.357781      0.034
```
1 NaN NaN NA
Alternative hypothesis: rho != 0
Warning message:
In summary.lm(model) : essentially perfect fit: summary may be unreliable
> dwt(lm(rrzTOP~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.2957374 2.490251 0.896
Alternative hypothesis: rho != 0
> dwt(lm(rrw4TOP~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.2334385 2.392764 0.816
Alternative hypothesis: rho != 0
> dwt(lm(rrw6TOP~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.1804434 2.327542 0.954
Alternative hypothesis: rho != 0
> anuaTOPuse<-dat$anuaTOPuse
> rranuaTOPuse<-(avgstTOP-anuaTOPuse)/avgstTOP
> dwt(lm(rranuaTOPuse~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5578832 3.086111 0.17
Alternative hypothesis: rho != 0
> shapiro.test(rranuaTOPuse)
Shapiro-Wilk normality test
data: rranuaTOPuse
W = 0.71104, p-value = 0.003001
> ###equal variance?
> #null hypothesis - equal variance
> #p>0.05 indicates equal variance
> rrTOP<-cbind(rranuaTOPuse,rrzTOP,rrw4TOP,rrw6TOP)
> rrTOPstack<-stack(data.frame(rrTOP))
> rrTOP2<-cbind(rranua2TOP,rrzTOP,rrw4TOP,rrw6TOP)
> rrTOPstack2<-stack(data.frame(rrTOP2))
> #use with nonparametric cases
> leveneTest(rrTOPstack$values,rrTOPstack$ind)
 Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 3 1.7821 0.1734
28
> leveneTest(rrTOPstack2$values,rrTOPstack2$ind)
 Levene's Test for Homogeneity of Variance (center = median)
 Df F value Pr(>F)
group 3 0.2834 0.8369
25
> ###are column means the same?
> #null hypothesis - column means are the same
> #p<0.05 indicates significantly different means
> #use with nonparametric cases
> kruskal.test(rrTOPstack$values~rrTOPstack$ind)
Kruskal-Wallis rank sum test
data: rrTOPstack$values by rrTOPstack$ind
Kruskal-Wallis chi-squared = 2.972, df = 3, p-value = 0.396
> kruskal.test(rrTOPstack2$values~rrTOPstack2$ind)
Kruskal-Wallis rank sum test
data: rrTOPstack2$values by rrTOPstack2$ind
Kruskal-Wallis chi-squared = 0.82575, df = 3, p-value = 0.8433
#compare removal rate CIs for systems in lowest group(s) to zero
#use bootstrapping to find confidence interval around rr
> n<-100000
> rranuaTOPbs<-rranuaTOPuse[!is.na(rranuaTOPuse)];rranuaTOPbs
> rranuaTOPuse
[1] 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878
[8] -1.8651039 0.3273878 -5.9083254
> bootrranuaTOP<-numeric(n)
> for (i in 1:n) {
+ bootrranuaTOP[i]<-mean(sample(rranuaTOPbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrranuaTOP)
> quantile(bootrranuaTOP,probs=c(0.025,0.975))
2.5% 97.5%
-3.14377709 0.05332632
> mean(bootrranuaTOP)
[1] 1.363798
> rranua2TOPbs<-rranua2TOP[!is.na(rranua2TOP)];rranua2TOPbs
> rranua2TOP
[1] 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878
> bootrranua2TOP<-numeric(n)
> for (i in 1:n) {
+ bootrranua2TOP[i]<-mean(sample(rranua2TOPbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrranua2TOP)
> quantile(bootrranua2TOP,probs=c(0.025,0.975))
2.5% 97.5%
0.3273878 0.3273878
> mean(bootrranua2TOP)
[1] 0.3273878
> rrezTOPbs<-rrezTOP[!is.na(rrezTOP)];rrezTOPbs
> rrezTOP
[1] 0.3273878 0.3273878 -2.0774999 0.3273878 0.3273878 0.3273878
> bootrrezTOP<-numeric(n)
> for (i in 1:n) {
+ bootrrezTOP[i]<-mean(sample(rrezTOPbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrezTOP)
> quantile(bootrrezTOP,probs=c(0.025,0.975))
2.5% 97.5%
-0.8750561 0.3273878
> mean(bootrrezTOP)
[1] -0.07448499
> rrw4TOPbs<-rrw4TOP[!is.na(rrw4TOP)];rrw4TOPbs
> rrw4TOP
[1] 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878
[8] 0.3273878 0.3273878
> bootrrw4TOP<-numeric(n)
> for (i in 1:n) {
+ bootrrw4TOP[i]<-mean(sample(rrw4TOPbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrw4TOP)
> quantile(bootrrw4TOP,probs=c(0.025,0.975))
2.5% 97.5%
-0.2759359 0.3273878
> mean(bootrrw4TOP)
[1] 0.1258616
> rrw6TOPbs<-rrw6TOP[!is.na(rrw6TOP)];rrw6TOPbs
> rrw6TOP
[1] 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878 0.3273878
[8] 0.3273878 0.3273878
225
```r
> bootrrw6TOP <- numeric(n)
> for (i in 1:n) {
+ bootrrw6TOP[i] <- mean(sample(rrw6TOPbs, replace=T), na.rm=TRUE)
+ }
> hist(bootrrw6TOP)
> quantile(bootrrw6TOP, probs=c(0.025, 0.975))
  2.5%     97.5%
-0.6346245  0.3273878
> mean(bootrrw6TOP)
[1] 0.007396837

**TCS**

```
Shapiro-Wilk normality test

data: rrw6TCS
W = 0.65985, p-value = 0.0004815

> # independent?
> # null hypothesis - no correlation
> # p > 0.05 indicates independence
> dwt(lm(rranuaTCS ~ time))
 lag Autocorrelation D-W Statistic p-value
 1 0.0422858 1.488373 0.186
 Alternative hypothesis: rho != 0

> dwt(lm(rranua2TCS ~ time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.0428163 1.553065 0.126
 Alternative hypothesis: rho != 0

> dwt(lm(rrezTCS ~ time))
 lag Autocorrelation D-W Statistic p-value
 1 0.207811 1.488373 0.016
 Alternative hypothesis: rho != 0

> dwt(lm(rrw4TCS ~ time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.0563989 1.371858 0.134
 Alternative hypothesis: rho != 0

> dwt(lm(rrw6TCS ~ time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.3043859 2.346418 0.98
 Alternative hypothesis: rho != 0

> # equal variance?
> # null hypothesis - equal variance
> # p > 0.05 indicates equal variance
> rrTCS <- cbind(rranuaTCS, rrezTCS, rrw4TCS, rrw6TCS)
> rrTCSstack <- stack(data.frame(rrTCS))
> rrTCS2 <- cbind(rranua2TCS, rrezTCS, rrw4TCS, rrw6TCS)
> rrTCSstack2 <- stack(data.frame(rrTCS2))
> # use with nonparametric cases
> leveneTest(rrTCSstack$values, rrTCSstack$ind)
Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>3</td>
<td>0.2159</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> leveneTest(rrTCSstack2$values, rrTCSstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>3</td>
<td>0.2141</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> # are column means the same?
> # null hypothesis - column means are the same
> # p < 0.05 indicates significantly different means
> # use with nonparametric cases
> kruskal.test(rrTCSstack$values ~ rrTCSstack$ind)
Kruskal-Wallis rank sum test

data: rrTCSstack$values by rrTCSstack$ind
Kruskal-Wallis chi-squared = 1.6808, df = 3, p-value = 0.6412

> kruskal.test(rrTCSstack2$values ~ rrTCSstack2$ind)
Kruskal-Wallis rank sum test

data: rrTCSstack2$values by rrTCSstack2$ind
Kruskal-Wallis chi-squared = 4.9437, df = 3, p-value = 0.176
#compare removal rate CIs for systems in lowest group(s) to zero

```r
nc<-100000
rranuaTCSbs<-rranuaTCS[!is.na(rranuaTCS)]:rranuaTCSbs
[1] 0.8390569 0.8881139 0.9347832 0.9675173 0.9051393 0.9675173 0.9675173
[8] 0.9675173 0.9675173
bootrranuaTCS<-numeric(n)
for (i in 1:n) {
  + bootrranuaTCS[i]<-mean(sample(rranuaTCSbs,replace=T),na.rm=TRUE)
+ }
hist(bootrranuaTCS)
quantile(bootrranuaTCS,probs=c(0.025,0.975))
  2.5%     97.5%
0.9024244 0.9602431
mean(bootrranuaTCS)
[1] 0.938616
rranua2TCSbs<-rranua2TCS[!is.na(rranua2TCS)]:rranua2TCSbs
[1] 0.8390569 0.8881139 0.9347832 0.9675173 0.9051393 0.9675173 0.9675173
bootrranua2TCS<-numeric(n)
for (i in 1:n) {
  + bootrranua2TCS[i]<-mean(sample(rranua2TCSbs,replace=T),na.rm=TRUE)
+ }
hist(bootrranua2TCS)
quantile(bootrranua2TCS,probs=c(0.025,0.975))
  2.5%     97.5%
0.8680136 0.9425661
mean(bootrranua2TCS)
[1] 0.9069631
rrezTCSbs<-rrezTCS[!is.na(rrezTCS)]:rrezTCSbs
[1] 0.8867232 0.9190580 0.9675173 0.9675173 0.9675173 0.9675173
bootrrezTCS<-numeric(n)
for (i in 1:n) {
  + bootrrezTCS[i]<-mean(sample(rrezTCSbs,replace=T),na.rm=TRUE)
+ }
hist(bootrrezTCS)
quantile(bootrrezTCS,probs=c(0.025,0.975))
  2.5%     97.5%
0.9190437 0.9675173
mean(bootrrezTCS)
[1] 0.9459606
rrw4TCSbs<-rrw4TCS[!is.na(rrw4TCS)]:rrw4TCSbs
[1] 0.8114108 0.9675173 0.9675173 0.9675173 0.9675173 0.9675173 0.9675173
[8] 0.9675173 0.9675173
bootrrw4TCS<-numeric(n)
for (i in 1:n) {
  + bootrrw4TCS[i]<-mean(sample(rrw4TCSbs,replace=T),na.rm=TRUE)
+ }
hist(bootrrw4TCS)
quantile(bootrrw4TCS,probs=c(0.025,0.975))
  2.5%     97.5%
0.9154818 0.9675173
mean(bootrrw4TCS)
[1] 0.9501385
rrw6TCSbs<-rrw6TCS[!is.na(rrw6TCS)]:rrw6TCSbs
[1] 0.8636901 0.9675173 0.9675173 0.9175820 0.9675173 0.9675173 0.8616306
[8] 0.9675173 0.9675173
bootrrw6TCS<-numeric(n)
```

228
for (i in 1:n) {
 bootrrw6TCS[i]<-mean(sample(rrw6TCSbs,replace=T),na.rm=TRUE)
}
hist(bootrrw6TCS)
quantile(bootrrw6TCS,probs=c(0.025,0.975))
 2.5% 97.5%
 0.9091491 0.9675173
mean(bootrrw6TCS)
[1] 0.9386761

VEN

set-up
> stVEN<-dat$stVEN
> avgstVEN<-mean(stVEN,na.rm=TRUE)
> sdstVEN<-sd(stVEN,na.rm=TRUE)
> RSDVEN<-sdstVEN/avgstVEN;RSDVEN
[1] 1.099574
> dwt(lm(stVEN~time))
 Lag Autocorrelation D-W Statistic p-value
1 0.1862342 1.510831 0.212
Alternative hypothesis: rho != 0
> anuaVEN<-dat$anuaVEN
> rranuaVEN<-((avgstVEN-anuaVEN)/avgstVEN)
> rrpanuaVEN<-(stVEN-anuaVEN)/stVEN;rrpanuaVEN
[1] 0.9974097 NA 0.9964489 NA 0.9971634 NA 0.9967468
[8] NA 0.9862739 NA 0.9151818 0.9330696 0.6437849 0.9405952
> anua2VEN<-dat$anua2VEN
> rranua2VEN<-(avgstVEN-anua2VEN)/avgstVEN
> rrpanua2VEN<-(stVEN-anua2VEN)/stVEN;rrpanua2VEN
[1] 0.9974097 NA 0.9964489 NA 0.9971634 NA 0.9967468
[8] NA 0.9862739 NA NA NA NA NA
> ezVEN<-dat$ezVEN
> rrezVEN<-(avgstVEN-ezVEN)/avgstVEN
> rrpezVEN<-(stVEN-ezVEN)/stVEN;rrpezVEN
[1] NA NA NA NA NA NA -0.1749118
[8] NA -3.2148947 NA -1.4652170 -2.8469599 -0.6007124 -0.9776242
> w4VEN<-dat$w4VEN
> rrw4VEN<-(avgstVEN-w4VEN)/avgstVEN
> rrpw4VEN<-(stVEN-w4VEN)/stVEN;rrpw4VEN
[1] 0.9944405 NA 0.9984319 NA 0.9971634 NA 0.9967468
[8] NA 0.9862739 NA 0.9676938 0.9330696 0.9550391 0.9405952
> w6VEN<-dat$w6VEN
> rrw6VEN<-(avgstVEN-w6VEN)/avgstVEN
> rrpw6VEN<-(stVEN-w6VEN)/stVEN;rrpw6VEN
[1] 0.9974097 NA 0.9982068 NA 0.9971634 NA 0.9914444
[8] NA 0.9862739 NA 0.9676938 0.9330696 0.9550391 0.9405952
lognormally/normally distributed?
null hypothesis - normal distribution
p>0.05 indicates normality
> shapiro.test(rranuaVEN)
Shapiro-Wilk normality test
data: rranuaVEN
 W = 0.9964489, p-value = 0.9405952
w = 0.56793, p-value = 4.021e-05
> shapiro.test(rrpanuaVEN)
 Shapiro-Wilk normality test
data: rrpanuaVEN
w = 0.61867, p-value = 0.0001584
> shapiro.test(rranua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.55218, p-value = 0.000131
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.62622, p-value = 0.001368
> shapiro.test(rranua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.55218, p-value = 0.000131
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.62622, p-value = 0.001368
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.61867, p-value = 0.0001584
> shapiro.test(rrzanua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.55218, p-value = 0.000131
> shapiro.test(rranua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.62622, p-value = 0.001368
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.61867, p-value = 0.0001584
> shapiro.test(rrzanua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.55218, p-value = 0.000131
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.62622, p-value = 0.001368
> shapiro.test(rrzanua2VEN)
 Shapiro-Wilk normality test
data: rranua2VEN
w = 0.55218, p-value = 0.000131
> shapiro.test(rrpanua2VEN)
 Shapiro-Wilk normality test
data: rrpanua2VEN
w = 0.62622, p-value = 0.001368
> ###independent?
> #null hypothesis - no correlation
> #p>0.05 indicates independence
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrzanuaVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5950128 3.001662 0.162
 Alternative hypothesis: rho != 0
> dwt(lm(rrrezVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 0.1645413 1.361692 0.092
 Alternative hypothesis: rho != 0

> dwt(lm(rrpezVEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.5292611 2.678481 0.738
 Alternative hypothesis: rho != 0

> dwt(lm(rrw4VEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.05639898 1.371858 0.106
 Alternative hypothesis: rho != 0

> dwt(lm(rrpw4VEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 0.07070128 1.782733 0.378
 Alternative hypothesis: rho != 0

> dwt(lm(rrw6VEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 -0.2290776 2.414729 0.886
 Alternative hypothesis: rho != 0

> dwt(lm(rrpw6VEN~time))
 lag Autocorrelation D-W Statistic p-value
 1 0.01693531 1.908844 0.586
 Alternative hypothesis: rho != 0

> ### equal variance?
> # null hypothesis - equal variance
> # p > 0.05 indicates equal variance
> rrVEN<-cbind(rranuaVEN,rrrezVEN,rrw4VEN,rrw6VEN)
> rrVENstack<-stack(data.frame(rrVEN))
> rrVEN2<-cbind(rranua2VEN,rrpezVEN,rrw4VEN,rrw6VEN)
> rrVENstack2<-stack(data.frame(rrVEN2))
> rrpVEN<-cbind(rranueVEN,rrpezVEN,rrpw4VEN,rrpw6VEN)
> rrpVENstack<-stack(data.frame(rrpVEN))
> rrpVEN2<-cbind(rranue2VEN,rrpezVEN,rrpw4VEN,rrpw6VEN)
> rrpVENstack2<-stack(data.frame(rrpVEN2))
> # use with nonparametric cases
> leveneTest(rrVENstack$values,rrVENstack$ind)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 6.0199 0.002562 **
29

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> leveneTest(rrVENstack2$values,rrVENstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 5.0609 0.007087 **
25

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> leveneTest(rrpVENstack2$values,rrpVENstack2$ind)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 14.842 4.846e-06 ***
29

> leveneTest(rrpVENstack2$values, rrpVENstack2$ind)

Levene's Test for Homogeneity of Variance (center = median)

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>3</td>
<td>13.302</td>
<td>2.179e-05 ***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ### are column means the same?
> # null hypothesis - column means are the same
> # p < 0.05 indicates significantly different means
> # use with nonparametric cases

> kruskal.test(rrVENstack$values ~ rrVENstack$ind)

Kruskal-Wallis rank sum test
data: rrVENstack$values by rrVENstack$ind
Kruskal-Wallis chi-squared = 20.019, df = 3, p-value = 0.0001682

> kruskal.test(rrVENstack2$values ~ rrVENstack2$ind)

Kruskal-Wallis rank sum test
data: rrVENstack2$values by rrVENstack2$ind
Kruskal-Wallis chi-squared = 19.361, df = 3, p-value = 0.0002302

> kruskal.test(rrpVENstack$values ~ rrpVENstack$ind)

Kruskal-Wallis rank sum test
data: rrpVENstack$values by rrpVENstack$ind
Kruskal-Wallis chi-squared = 14.698, df = 3, p-value = 0.002094

> kruskal.test(rrpVENstack2$values ~ rrpVENstack2$ind)

Kruskal-Wallis rank sum test
data: rrpVENstack2$values by rrpVENstack2$ind
Kruskal-Wallis chi-squared = 15.001, df = 3, p-value = 0.001816

> ### if column means are different, which columns?
> # null hypothesis - column means are the same
> # p < 0.05 indicates significantly different means
> # use with nonparametric case

> kruskalmc(rrVENstack$values ~ rrVENstack$ind)

Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th></th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranuaVEN - rrezVEN</td>
<td>14.72222</td>
<td>13.44534</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranuaVEN - rrw4VEN</td>
<td>3.444444</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranuaVEN - rrw6VEN</td>
<td>1.888889</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezVEN - rrw4VEN</td>
<td>18.16667</td>
<td>13.44534</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrezVEN - rrw6VEN</td>
<td>16.61111</td>
<td>13.44534</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrw4VEN - rrw6VEN</td>
<td>1.55556</td>
<td>12.02588</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrVENstack2$values ~ rrVENstack2$ind)

Multiple comparison test after Kruskal-Wallis
p.value: 0.05

<table>
<thead>
<tr>
<th></th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2VEN - rrezVEN</td>
<td>14.10000</td>
<td>13.60260</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2VEN - rrw4VEN</td>
<td>1.17778</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranua2VEN - rrw6VEN</td>
<td>0.15556</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezVEN - rrw4VEN</td>
<td>15.27778</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrezVEN - rrw6VEN</td>
<td>13.94444</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrw4VEN - rrw6VEN</td>
<td>1.33333</td>
<td>10.58961</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

> kruskalmc(rrpVENstack$values ~ rrpVENstack$ind)

Multiple comparison test after Kruskal-Wallis

<table>
<thead>
<tr>
<th></th>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rranua2VEN - rrezVEN</td>
<td>14.10000</td>
<td>13.60260</td>
<td>TRUE</td>
</tr>
<tr>
<td>rranua2VEN - rrw4VEN</td>
<td>1.17778</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rranua2VEN - rrw6VEN</td>
<td>0.15556</td>
<td>12.52979</td>
<td>FALSE</td>
</tr>
<tr>
<td>rrezVEN - rrw4VEN</td>
<td>15.27778</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrezVEN - rrw6VEN</td>
<td>13.94444</td>
<td>11.83954</td>
<td>TRUE</td>
</tr>
<tr>
<td>rrw4VEN - rrw6VEN</td>
<td>1.33333</td>
<td>10.58961</td>
<td>FALSE</td>
</tr>
</tbody>
</table>
p.value: 0.05

Comparisons

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rrpanuaVEN-rrpezVEN 14.9444444 13.44534 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpanuaVEN-rrpw4VEN 2.1666667 12.02588 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpanuaVEN-rrpw6VEN 2.5000000 12.02588 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpezVEN-rrpw4VEN 17.1111111 13.44534 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpezVEN-rrpw6VEN 17.4444444 13.44534 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpw4VEN-rrpw6VEN 0.3333333 12.02588 FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> kruskalmc(rrpVENstack2$values~rrpVENstack2$ind)
Multiple comparison test after Kruskal-Wallis
p.value: 0.05

Comparisons

<table>
<thead>
<tr>
<th>obs.dif</th>
<th>critical.dif</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rrpanua2VEN-rrpezVEN 18.1000000 13.60260 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpanua2VEN-rrpw4VEN 4.7666667 12.52979 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpanua2VEN-rrpw6VEN 4.4333333 12.52979 FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpezVEN-rrpw4VEN 13.3333333 11.83954 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpezVEN-rrpw6VEN 13.6666667 11.83954 TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rrpw4VEN-rrpw6VEN 0.3333333 10.58961 FALSE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> #compare removal rate CIs for systems in lowest group(s) to zero
> nc<-100000
> rranuaVENbs<-rranuaVEN[!is.na(rranuaVEN)];rranuaVENbs
[1] 0.9951127 0.9889324 0.9951127 0.9951127 0.9951127 0.9871687 0.9951127
[8] 0.9612790 0.9951127
> bootrranuaVEN<-numeric(n)
> for (i in 1:n) {
+ bootrranuaVEN[i]<-mean(sample(rranuaVENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrranuaVEN)
> quantile(bootrranuaVEN,probs=c(0.025,0.975))
 2.5% 97.5%
0.9820695 0.9951127
> mean(bootrranuaVEN)
[1] 0.9897617
> rranua2VENbs<-rranua2VEN[!is.na(rranua2VEN)];rranua2VENbs
[1] 0.9951127 0.9889324 0.9951127 0.9951127 0.9951127
> bootrranua2VEN<-numeric(n)
> for (i in 1:n) {
+ bootrranua2VEN[i]<-mean(sample(rranua2VENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrranua2VEN)
> quantile(bootrranua2VEN,probs=c(0.025,0.975))
 2.5% 97.5%
0.9914045 0.9951127
> mean(bootrranua2VEN)
[1] 0.9938781
> rrezVENbs<-rrezVEN[!is.na(rrrezVEN)];rrrezVENbs
[1] -0.7650549 -0.5007477 0.6270611 0.7190927 0.8260008 0.8372986
> bootrrrezVEN<-numeric(n)
> for (i in 1:n) {
+ bootrrrezVEN[i]<-mean(sample(rrrezVENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrrezVEN)
> quantile(bootrrrezVEN,probs=c(0.025,0.975))
 2.5% 97.5%
-0.2347030 0.7763127
> mean(boottrezVEN)
[1] 0.2900181
> rrw4VENbs<-rrw4VEN[!is.na(rrw4VEN)]; rrw4VEN
[1] 0.9895107 0.9951127 0.9951127 0.9951127 0.9951127 0.9951127 0.9951127
[8] 0.9951127
> bootrrw4VEN<-numeric(n)
> for (i in 1:n) {
+ bootrrw4VEN[i]<-mean(sample(rrw4VENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrw4VEN)
> quantile(bootrrw4VEN, probs=c(0.025,0.975))
 2.5% 97.5%
0.9932454 0.9951127
> mean(bootrrw4VEN)
[1] 0.9944941
> rrw6VENbs<-rrw6VEN[!is.na(rrw6VEN)]; rrw6VEN
[1] 0.9951127 0.9944112 0.9951127 0.9871470 0.9951127 0.9951127 0.9951127
[8] 0.9951127
> bootrrw6VEN<-numeric(n)
> for (i in 1:n) {
+ bootrrw6VEN[i]<-mean(sample(rrw6VENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrw6VEN)
> quantile(bootrrw6VEN, probs=c(0.025,0.975))
 2.5% 97.5%
0.9923795 0.9951127
> mean(bootrrw6VEN)
[1] 0.9941519
> n<100000
> rrpanuaVENbs<-rrpanuaVEN[!is.na(rrpanuaVEN)]; rrpanua
[1] 0.9974097 0.9964489 0.9971634 0.9967468 0.9862739 0.9151818 0.9330696
[8] 0.6437849 0.9405952
> bootrrpanuaVEN<-numeric(n)
> for (i in 1:n) {
+ bootrrpanuaVEN[i]<-mean(sample(rrpanuaVENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrpanuaVEN)
> quantile(bootrrpanuaVEN, probs=c(0.025,0.975))
 2.5% 97.5%
0.8548944 0.9866885
> mean(bootrrpanuaVEN)
[1] 0.9340241
> rrpanua2VENbs<-rrpanua2VEN[!is.na(rrpanua2VEN)]; rrpanua2VEN
[1] 0.9974097 0.9964489 0.9971634 0.9967468 0.9862739
> bootrrpanua2VEN<-numeric(n)
> for (i in 1:n) {
+ bootrrpanua2VEN[i]<-mean(sample(rrpanua2VENbs,replace=T),na.rm=TRUE)
+ }
> hist(bootrrpanua2VEN)
> quantile(bootrrpanua2VEN, probs=c(0.025,0.975))
 2.5% 97.5%
0.9904868 0.9971786
> mean(bootrrpanua2VEN)
[1] 0.9948034
> mu<mean(rrpezVEN, na.rm=TRUE); mu
CBZ and LAM Correlations

```r
> dat<-read.csv("anovaPPCP.csv")
> time<-dat$time
> w6pH<-dat$w6pH
> w4pH<-dat$w4pH
> anuapH<-dat$anuapH
> AW1pH<-dat$AW1pH
> w4CBZ<-dat$w4CBZ
> w4LAM<-dat$w4LAM
> w6CBZ<-dat$w6CBZ
> w6LAM<-dat$w6LAM
> AW1CBZ<-dat$AW1CBZ
> AW1LAM<-dat$AW1LAM
> anuaCBZ<-dat$anuaCBZ
> anuaLAM<-dat$anuaLAM
> cwdeltapH<-w4pH-w6pH
```
Correlations between time and CBZ and LAM for CW4 and Anua Effluent

> lmw6CBZtime <- lm(w6CBZ ~ time)
> summary(lmw6CBZtime)

Call: lm(formula = w6CBZ ~ time)

Residuals:
 Min 1Q Median 3Q Max
-7.3572 -0.2103 0.7721 1.8489 2.5268

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.24180 1.71203 5.398 0.00101 **
time 0.05332 0.02328 2.291 0.05576 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.197 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.4284, Adjusted R-squared: 0.3468
F-statistic: 5.247 on 1 and 7 DF, p-value: 0.05576

> lmw6LAMtime <- lm(w6LAM ~ time)
> summary(lmw6LAMtime)

Call: lm(formula = w6LAM ~ time)

Residuals:
 Min 1Q Median 3Q Max
-6.1322 -0.1768 0.6708 1.6833 4.2712

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.40609 1.78822 1.905 0.0985 .
time 0.04873 0.02431 2.004 0.0851 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.34 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.3646, Adjusted R-squared: 0.2738
F-statistic: 4.017 on 1 and 7 DF, p-value: 0.08509
> \lmanuaCBZtime<-lm(anuaCBZ~time)
> summary(lmanuaCBZtime)

Call:
lm(formula = anuaCBZ ~ time)

Residuals:
 Min 1Q Median 3Q Max
-5.9809 -3.0882 -2.2879 -0.9983 17.1334

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.48867 3.87428 0.642 0.5411
time 0.12944 0.05268 2.457 0.0436 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.236 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.4631, Adjusted R-squared: 0.3864
F-statistic: 6.038 on 1 and 7 DF, p-value: 0.04364

> \lmanuaLAMtime<-lm(anuaLAM~time)
> summary(lmanuaLAMtime)

Call:
lm(formula = anuaLAM ~ time)

Residuals:
 Min 1Q Median 3Q Max
-1.1922 -0.8849 -0.7780 0.0619 4.9016

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.793848 1.090661 0.728 0.49
time 0.007253 0.014830 0.489 0.64

Residual standard error: 2.037 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.03304, Adjusted R-squared: -0.1051
F-statistic: 0.2392 on 1 and 7 DF, p-value: 0.6397

Correlations between pH and CBZ and LAM for CW4 and Anua Effluent

> \lmw6pHCBZ<-lm(w6CBZ~w6pH)
> summary(lmw6pHCBZ)

Call:
lm(formula = w6CBZ ~ w6pH)

Residuals:
 Min 1Q Median 3Q Max
-2.3122 -0.9849 -0.7780 0.0619 4.9016

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.793848 1.090661 0.728 0.49
time 0.007253 0.014830 0.489 0.64

Residual standard error: 2.037 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.03304, Adjusted R-squared: -0.1051
F-statistic: 0.2392 on 1 and 7 DF, p-value: 0.6397

237
Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -89.987 | 27.196 | -3.309 | 0.01296 *|
| w6pH | 16.261 | 4.321 | 3.763 | 0.00705 **|

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.432 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.6692, Adjusted R-squared: 0.622
F-statistic: 14.16 on 1 and 7 DF, p-value: 0.007046

\[
\text{lm(w6pH} \sim \text{LAM)}
\]

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -98.489 | 25.040 | -3.933 | 0.00565 **|
| w6pH | 16.642 | 3.978 | 4.183 | 0.00412 **|

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.24 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.7143, Adjusted R-squared: 0.6735
F-statistic: 17.5 on 1 and 7 DF, p-value: 0.004121

\[
\text{lm(anuaPH} \sim \text{CBZ)}
\]

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| -64.884 | 45.520 | -1.425 | 0.197 |
| anuapH | 11.795 | 7.163 | 1.647 | 0.144 |

Residual standard error: 8.384 on 7 degrees of freedom
(3 observations deleted due to missingness)
Multiple R-squared: 0.2792, Adjusted R-squared: 0.1763
F-statistic: 2.712 on 1 and 7 DF, p-value: 0.1436
```r
> lm(amuapHLAM <- lm(amuALAM ~ amuaph))
> summary(lm(amuapHLAM))

Call:
  lm(formula = amuALAM ~ amuaph)

Residuals:
      Min       1Q   Median       3Q      Max
-1.09050 -0.89220 -0.71830 -0.13930  4.89100

Coefficients:  
                         Estimate  Std. Error     t value  Pr(>|t|)
(Intercept)               -4.9443     11.0032    -0.4490    0.6670
amuaph                     0.9704      1.7313     0.5600    0.5929

Residual standard error: 2.026 on 7 degrees of freedom  
(3 observations deleted due to missingness)  
Multiple R-squared:  0.04295,  Adjusted R-squared:  -0.09377  
F-statistic: 0.3142 on 1 and 7 DF,  p-value: 0.5926

Change between CW4 and Tank 6 and Anua Well 1 and Effluent

> summary(lmrrcwCBZpH)

Call:
  lm(formula = rrcwCBZ ~ cwdeltaph)

Residuals:
    2       4       5       7       9      10      11
 0.112165  0.007257 -0.038732 -0.069783 -0.018317  0.043323 -0.035913

Coefficients:  
                           Estimate  Std. Error     t value  Pr(>|t|)
(Intercept)                0.3025      0.1774     1.7062    0.1487
cwdeltaph                  0.5553      0.2372     2.3413    0.0663 .

---  
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.06709 on 5 degrees of freedom  
(5 observations deleted due to missingness)  
Multiple R-squared:  0.5229,  Adjusted R-squared:  0.4275  
F-statistic: 5.481 on 1 and 5 DF,  p-value: 0.06629

> lmrrcwLAMpH <- lm(rrcwLAM ~ cwdeltaph)
> summary(lmrrcwLAMpH)

Call:
  lm(formula = rrcwLAM ~ cwdeltaph)

Residuals:
    2       4       5       7       9      10      11
 0.039922 -0.006119 -0.004635 -0.055609  0.019711  0.034108 -0.027378

Coefficients:  
                         Estimate  Std. Error     t value  Pr(>|t|)
(Intercept)               0.2962     11.0032    0.02713    0.9801
amuaph                    0.9704      1.7313     0.5600    0.5930
```

239
(Intercept) 0.69790 0.09924 7.033 0.000897 ***
cwdeltapH 0.29844 0.13273 2.249 0.07441 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.03754 on 5 degrees of freedom
(5 observations deleted due to missingness)
Multiple R-squared: 0.5028, Adjusted R-squared: 0.4033
F-statistic: 5.056 on 1 and 5 DF, p-value: 0.07441

lmrranuaCBZpH <- lm(rranuaCBZ ~ anuadeltapH)
summary(lmrranuaCBZpH)

Call:
lm(formula = rranuaCBZ ~ anuadeltapH)

Residuals:
 5 7 9 10 11 12
 0.16201 0.15951 -0.19605 0.07765 -0.17456 -0.02857

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5029 0.1033 4.87 0.00822 **
anuadeltapH 0.1968 0.1137 1.73 0.15862

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1785 on 4 degrees of freedom
(6 observations deleted due to missingness)
Multiple R-squared: 0.4281, Adjusted R-squared: 0.2851
F-statistic: 2.994 on 1 and 4 DF, p-value: 0.1586

lmrranuaLAMpH <- lm(rranuaLAM ~ anuadeltapH)
summary(lmrranuaLAMpH)

Call:
lm(formula = rranuaLAM ~ anuadeltapH)

Residuals:
 5 7 9 10 11 12
 0.012974 0.013713 -0.034415 0.004865 -0.003033 0.005895

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.989665 0.011600 85.315 1.13e-07 ***
anuadeltapH -0.003976 0.012775 -0.311 0.771

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02005 on 4 degrees of freedom
(6 observations deleted due to missingness)
Multiple R-squared: 0.02365, Adjusted R-squared: -0.2204
F-statistic: 0.09689 on 1 and 4 DF, p-value: 0.7711
Table C.6.2: anova.csv

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>time</th>
<th>w4adj</th>
<th>w6adj</th>
<th>anuaAlk</th>
<th>anua2Alk</th>
<th>eAlk</th>
<th>w4Alk</th>
<th>w4AlkN</th>
<th>w6Alk</th>
<th>w6AlkN</th>
<th>w6Alk_use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/19/2016</td>
<td>0</td>
<td>1.171</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6/29/2016</td>
<td>10</td>
<td>0.783</td>
<td>0.96</td>
<td>16</td>
<td>16</td>
<td>267.5</td>
<td>209.4</td>
<td>328.6</td>
<td>315.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7/7/2016</td>
<td>18</td>
<td>0.783</td>
<td>0.497</td>
<td>16</td>
<td>16</td>
<td>267.5</td>
<td>209.4</td>
<td>328.6</td>
<td>315.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7/17/2016</td>
<td>28</td>
<td>0.423</td>
<td>0.457</td>
<td>16</td>
<td>16</td>
<td>267.5</td>
<td>209.4</td>
<td>328.6</td>
<td>315.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8/7/2016</td>
<td>49</td>
<td>1</td>
<td>1.183</td>
<td>63.3</td>
<td>63.3</td>
<td>33.8</td>
<td>240.3</td>
<td>240.3</td>
<td>241.7</td>
<td>385.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8/16/2016</td>
<td>58</td>
<td>0.571</td>
<td>0.663</td>
<td>16</td>
<td>16</td>
<td>267.5</td>
<td>209.4</td>
<td>328.6</td>
<td>315.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8/29/2016</td>
<td>71</td>
<td>0.48</td>
<td>0.48</td>
<td>16</td>
<td>16</td>
<td>267.5</td>
<td>209.4</td>
<td>328.6</td>
<td>315.456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9/26/2016</td>
<td>99</td>
<td>0.794</td>
<td>0.863</td>
<td>35.5</td>
<td></td>
<td></td>
<td>10</td>
<td>293.3</td>
<td>232.964</td>
<td>397.7</td>
<td>343.158</td>
</tr>
<tr>
<td>9</td>
<td>10/22/2016</td>
<td>125</td>
<td>0.811</td>
<td>0.817</td>
<td>74.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11/16/2016</td>
<td>150</td>
<td>0.937</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stAlk</td>
<td>anuaBOD</td>
<td>anua2BOD</td>
<td>ezBOD</td>
<td>w4BOD</td>
<td>w4BODN</td>
<td>w6BOD</td>
<td>w6BODN</td>
<td>stBOD</td>
<td>anuaCOD</td>
<td>anua2COD</td>
<td>ezCOD</td>
<td>w4COD</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>212.1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.1</td>
<td>2.426857</td>
<td>25.6</td>
<td>12.72686</td>
<td>112</td>
<td>82</td>
<td>82</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>284.9</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>173.2</td>
<td>3.3</td>
<td>3.3</td>
<td>3.4</td>
<td>1.7</td>
<td>0.971429</td>
<td>19.7</td>
<td>13.05829</td>
<td>72.2</td>
<td>67</td>
<td>67</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>232.9</td>
<td>1.6</td>
<td>4.6</td>
<td>0.58</td>
<td>0.2784</td>
<td>23.6</td>
<td>11.328</td>
<td>75.1</td>
<td>85</td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208.1</td>
<td>1</td>
<td>3</td>
<td>1.8</td>
<td>1.429714</td>
<td>21.4</td>
<td>18.46514</td>
<td>96.9</td>
<td>64</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238.2</td>
<td>1.4</td>
<td>2.2</td>
<td>1.3</td>
<td>1.054857</td>
<td>18</td>
<td>14.70857</td>
<td>86.7</td>
<td>78</td>
<td>26</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>2.8</td>
<td>6.6</td>
<td>6.185143</td>
<td>17.2</td>
<td>16.512</td>
<td>61.4</td>
<td>58</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w4CODN</td>
<td>w6COD</td>
<td>w6CODN</td>
<td>w6COD_u</td>
<td>stCOD</td>
<td>anuaTSS</td>
<td>anua2TSS</td>
<td>ezTSS</td>
<td>w4TSS</td>
<td>w4TSSN</td>
<td>w6TSS</td>
<td>w6TSSN</td>
<td>stTSS</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>204</td>
<td>301.92</td>
<td>316</td>
<td>194.5886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.61714</td>
<td>204</td>
<td>195.84</td>
<td>291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.74857</td>
<td>173</td>
<td>86.00571</td>
<td>319</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1.565714</td>
<td>8</td>
<td>3.977143</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.76</td>
<td>190</td>
<td>86.85714</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.13143</td>
<td></td>
</tr>
<tr>
<td>19.42857</td>
<td>156</td>
<td>103.4057</td>
<td>189</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.571429</td>
<td>5</td>
<td>3.314286</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12.48</td>
<td>167</td>
<td>80.16</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.9514</td>
<td></td>
</tr>
<tr>
<td>35.74286</td>
<td>155</td>
<td>133.7429</td>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.34286</td>
<td>155</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0.811429</td>
<td>2</td>
<td>1.634286</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.93143</td>
<td>91</td>
<td>87.36</td>
<td>87.36</td>
<td>226</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>0.937143</td>
<td>11</td>
<td>10.56</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>anuaAMM</td>
<td>anua2AMM</td>
<td>ezAMM</td>
<td>w4AMM</td>
<td>w4AMMN</td>
<td>w6AMM</td>
<td>w6AMMN</td>
<td>stAMM</td>
<td>anuaTIN</td>
<td>anua2TIN</td>
<td>ezTIN</td>
<td>w4TIN</td>
<td>w4TINN</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.078286</td>
<td>0.004</td>
<td>0.00384</td>
<td>31.87</td>
<td>10.8</td>
<td>10.8</td>
<td>0.2</td>
<td>0.156571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003131</td>
<td>0.004</td>
<td>0.001989</td>
<td>41.02</td>
<td>7.5</td>
<td>7.5</td>
<td>0.65</td>
<td>0.508857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.016914</td>
<td>0.08</td>
<td>0.036571</td>
<td>33.71</td>
<td>5.76</td>
<td>5.76</td>
<td>0.04</td>
<td>0.016914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.74</td>
<td>0.02</td>
<td>0.02</td>
<td>0.035486</td>
<td>29.56</td>
<td>10.5</td>
<td>10.5</td>
<td>0.65</td>
<td>0.508857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
<td>1.3</td>
<td>0.1</td>
<td>0.057143</td>
<td>0.004</td>
<td>0.002651</td>
<td>22</td>
<td>7.03</td>
<td>7.03</td>
<td>0.04</td>
<td>0.016914</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>2</td>
<td>0.004</td>
<td>0.00192</td>
<td>0.004</td>
<td>0.00192</td>
<td>32.45</td>
<td>19</td>
<td>25.3</td>
<td>0.31</td>
<td>0.1488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>4.12</td>
<td>0.06</td>
<td>0.047657</td>
<td>0.004</td>
<td>0.003451</td>
<td>30.35</td>
<td>25.53</td>
<td>29.05</td>
<td>0.44</td>
<td>0.349486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>2</td>
<td>0.004</td>
<td>0.003246</td>
<td>0.004</td>
<td>0.003269</td>
<td>32.73</td>
<td>35.85</td>
<td>25.1</td>
<td>0.71</td>
<td>0.576114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td>2.1</td>
<td>3.2</td>
<td>2.998857</td>
<td>0.004</td>
<td>0.00384</td>
<td>29.68</td>
<td>15.88</td>
<td>30.7</td>
<td>7.2</td>
<td>6.747429</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>0.3552</td>
<td>32.39</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.323143</td>
<td>41.75</td>
<td>8</td>
<td>8</td>
<td>0.8</td>
<td>0.626286</td>
<td>1.6</td>
<td>0.795429</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>0.141714</td>
<td>34.14</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.035486</td>
<td>29.67</td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>0.205486</td>
<td>22.1</td>
<td>7</td>
<td>7</td>
<td>22</td>
<td>0.5</td>
<td>0.285714</td>
<td>1</td>
<td>0.662857</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td>0.1584</td>
<td>32.55</td>
<td></td>
</tr>
<tr>
<td>0.73</td>
<td>0.629886</td>
<td>30.44</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>0.286</td>
<td>32.75</td>
<td>42</td>
<td>32</td>
<td>2</td>
<td>1.622857</td>
<td>3</td>
<td>2.451429</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>0.6816</td>
<td>30.41</td>
<td>15</td>
<td>31</td>
<td>7</td>
<td>6.56</td>
<td>2</td>
<td>1.92</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Date</td>
<td>time</td>
<td>w4adj</td>
<td>w6adj</td>
<td>w6pH</td>
<td>anuapH</td>
<td>anuaACE</td>
<td>anua2ACE</td>
<td>ezACE</td>
<td>w4ACE</td>
<td>w4ACEN</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6/29/2016</td>
<td>0</td>
<td>0.782857</td>
<td>0.96</td>
<td>6.39</td>
<td>6.03</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
<td>0.044697</td>
<td>0.034991</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7/7/2016</td>
<td>8</td>
<td>0.782857</td>
<td>0.497143</td>
<td>6.24</td>
<td>5.93</td>
<td>1.107682</td>
<td>1.107682</td>
<td></td>
<td>0.1857</td>
<td>0.145377</td>
<td></td>
</tr>
<tr>
<td>theoretical</td>
<td>7/15/2016</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7/17/2016</td>
<td>18</td>
<td>0.422857</td>
<td>0.457143</td>
<td>5.98</td>
<td>5.89</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8/7/2016</td>
<td>39</td>
<td>1</td>
<td>1.182857</td>
<td>6.41</td>
<td>6.4</td>
<td>0.054527</td>
<td>0.054527</td>
<td>0.037887</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>theoretical</td>
<td>8/11/2016</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8/16/2016</td>
<td>48</td>
<td>0.571429</td>
<td>0.662857</td>
<td>6.28</td>
<td>6.4</td>
<td>0.015</td>
<td>0.015</td>
<td>0.949607</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>theoretical</td>
<td>8/22/2016</td>
<td>54.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8/29/2016</td>
<td>61</td>
<td>0.48</td>
<td>0.48</td>
<td>6.15</td>
<td>6.38</td>
<td>0.015</td>
<td></td>
<td>1.30656</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9/26/2016</td>
<td>89</td>
<td>0.794286</td>
<td>0.862857</td>
<td>6.08</td>
<td>6.09</td>
<td>0.015</td>
<td></td>
<td>0.714522</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10/22/2016</td>
<td>115</td>
<td>0.811429</td>
<td>0.817143</td>
<td>6.55</td>
<td>6.98</td>
<td>0.915365</td>
<td></td>
<td>0.509467</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11/16/2016</td>
<td>140</td>
<td>0.937143</td>
<td>0.96</td>
<td>6.54</td>
<td>6.99</td>
<td>0.060312</td>
<td></td>
<td>3.628867</td>
<td>0.095373</td>
<td>0.089378</td>
<td></td>
</tr>
<tr>
<td>w6ACE</td>
<td>w6ACEN</td>
<td>stACE</td>
<td>anuaCBZ</td>
<td>anua2CBZ</td>
<td>ezCBZ</td>
<td>w4CBZ</td>
<td>w4CBZN</td>
<td>w6CBZ</td>
<td>w6CBZN</td>
<td>stCBZ</td>
<td>anuaLAM</td>
<td>anua2LAM</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0.101377</td>
<td>0.097322</td>
<td>181.3176</td>
<td>0.20078</td>
<td>0.20078</td>
<td>56.12616</td>
<td>43.93877</td>
<td>10.20708</td>
<td>9.798798</td>
<td>71.08298</td>
<td>0.015</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.744293</td>
<td>0.37002</td>
<td>182.5486</td>
<td>1.176868</td>
<td>1.176868</td>
<td>47.31657</td>
<td>37.04211</td>
<td>9.827063</td>
<td>4.885454</td>
<td>74.99487</td>
<td>1.217517</td>
<td>1.217517</td>
<td></td>
</tr>
<tr>
<td>0.04611</td>
<td>0.021079</td>
<td>154.1928</td>
<td>1.717033</td>
<td>1.717033</td>
<td>52.4678</td>
<td>22.18638</td>
<td>9.991273</td>
<td>4.567439</td>
<td>61.3076</td>
<td>0.195507</td>
<td>0.195507</td>
<td></td>
</tr>
<tr>
<td>0.176725</td>
<td>0.20904</td>
<td>56.08688</td>
<td>6.13446</td>
<td>6.13446</td>
<td>52.60027</td>
<td>36.16847</td>
<td>13.17032</td>
<td>15.5786</td>
<td>35.46163</td>
<td>0.191823</td>
<td>0.191823</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>11.89387</td>
<td>5.613777</td>
<td>5.613777</td>
<td>60.57946</td>
<td>40.31311</td>
<td>23.03606</td>
<td>8.334322</td>
<td>43.41624</td>
<td>0.17576</td>
<td>0.17576</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>32.18582</td>
<td>27.51808</td>
<td>54.27805</td>
<td>40.00983</td>
<td>19.20472</td>
<td>11.53051</td>
<td>5.534646</td>
<td>40.61334</td>
<td>6.13784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>85.87832</td>
<td>16.08246</td>
<td>61.17824</td>
<td>30.77476</td>
<td>24.44395</td>
<td>6.630292</td>
<td>5.720995</td>
<td>53.84547</td>
<td>0.24719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>9.84899</td>
<td>16.37642</td>
<td>42.11302</td>
<td>41.82816</td>
<td>33.94056</td>
<td>17.90064</td>
<td>14.62738</td>
<td>31.26747</td>
<td>1.689828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>63.65948</td>
<td>14.62991</td>
<td>33.5029</td>
<td>30.23499</td>
<td>28.33451</td>
<td>18.96661</td>
<td>18.20795</td>
<td>21.57307</td>
<td>1.031287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ezLAM</td>
<td>w4LAM</td>
<td>w4LAMN</td>
<td>w4LAMuse</td>
<td>w6LAM</td>
<td>w6LAMN</td>
<td>stLAM</td>
<td>anuaLEV</td>
<td>anua2LEV</td>
<td>anua2LEVuse</td>
<td>w4LEV</td>
<td>w4LEVN</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>93.38736</td>
<td>73.10896</td>
<td>5.08944</td>
<td>4.885862</td>
<td>125.7606</td>
<td>0.341992</td>
<td>0.341992</td>
<td>7.291122</td>
<td>5.707907</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92.31777</td>
<td>72.27162</td>
<td>5.468583</td>
<td>2.718667</td>
<td>147.0336</td>
<td>0.481463</td>
<td>0.481463</td>
<td>1.793705</td>
<td>1.404215</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104.5796</td>
<td>44.22222</td>
<td>4.143422</td>
<td>1.894136</td>
<td>151.3902</td>
<td>0.14705</td>
<td>0.14705</td>
<td>0.14705</td>
<td>0.273612</td>
<td>0.115699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.6184</td>
<td>55.98047</td>
<td>55.98047</td>
<td>5.97746</td>
<td>7.070481</td>
<td>104.8457</td>
<td>0.271043</td>
<td>0.271043</td>
<td>0.271043</td>
<td>10.77514</td>
<td>7.166453</td>
<td>7.166453</td>
<td></td>
</tr>
<tr>
<td>134.3962</td>
<td>49.2844</td>
<td>28.16252</td>
<td>5.568403</td>
<td>3.691056</td>
<td>98.41451</td>
<td>0.056118</td>
<td>0.056118</td>
<td>0.056118</td>
<td>29.1671</td>
<td>0.50787</td>
<td>0.290211</td>
<td></td>
</tr>
<tr>
<td>26.7325</td>
<td></td>
</tr>
<tr>
<td>149.9628</td>
<td>52.71349</td>
<td>25.30247</td>
<td>2.772073</td>
<td>1.330595</td>
<td>134.2766</td>
<td>0.13676</td>
<td>17.11475</td>
<td>0.07783</td>
<td>0.037358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.2066</td>
<td>49.99651</td>
<td>39.71151</td>
<td>39.71151</td>
<td>1.61099</td>
<td>1.390054</td>
<td>122.6814</td>
<td>0.479157</td>
<td>20.90532</td>
<td>0.31147</td>
<td>0.247396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.0126</td>
<td>88.78219</td>
<td>83.20159</td>
<td>83.20159</td>
<td>11.98592</td>
<td>11.50649</td>
<td>119.4543</td>
<td>0.399777</td>
<td>19.2269</td>
<td>1.290945</td>
<td>1.2098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w6LEV</td>
<td>w6LEVN</td>
<td>stLEV</td>
<td>anuaMET</td>
<td>anua2MET</td>
<td>ezMET</td>
<td>ezMETuse</td>
<td>w4MET</td>
<td>w4METN</td>
<td>w6MET</td>
<td>w6METN</td>
<td>stMET</td>
<td>anuaTOP</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>0.483702</td>
<td>0.464354</td>
<td>131.9878</td>
<td>0.015</td>
<td>0.015</td>
<td>0.036933</td>
<td>0.028914</td>
<td>0.015</td>
<td>0.015</td>
<td>0.074208</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37225</td>
<td>0.185061</td>
<td>43.62001</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.055753</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.081062</td>
<td>0.037057</td>
<td>142.7043</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.06273</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.108773</td>
<td>1.31152</td>
<td>114.2346</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.060046</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.512618</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.125092</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.057123</td>
<td>0.037865</td>
<td>118.7299</td>
<td>0.015</td>
<td>0.015</td>
<td>0.339423</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.11279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.056313</td>
<td>0.02703</td>
<td>129.8446</td>
<td>0.015</td>
<td>0.015</td>
<td>0.04897</td>
<td>0.04897</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.051802</td>
<td>0.11279</td>
<td></td>
</tr>
<tr>
<td>0.570428</td>
<td>0.492198</td>
<td>124.888</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.147975</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.055803</td>
<td>0.045599</td>
<td>131.0108</td>
<td>1.120725</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.096393</td>
<td>0.154063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20121</td>
<td>0.193162</td>
<td>117.3033</td>
<td>0.106395</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.132498</td>
<td>0.12872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anuaTOPw</td>
<td>anua2TOP</td>
<td>ezTOP</td>
<td>w4TOP</td>
<td>w4TOPN</td>
<td>w6TOP</td>
<td>w6TOPN</td>
<td>stTOP</td>
<td>anuaTCS</td>
<td>anua2TCS</td>
<td>ezTCS</td>
<td>w4TCS</td>
<td>w4TCSN</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>2.477368</td>
<td>2.477368</td>
<td>3.70811</td>
<td>2.90292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>1.722243</td>
<td>1.722243</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>1.00387</td>
<td>1.00387</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>1.460173</td>
<td>1.460173</td>
<td>1.245927</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.063895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.068632</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.08071</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.154063</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.12872</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w6TCS</td>
<td>w6TCSN</td>
<td>stTCS</td>
<td>anuAVEN</td>
<td>anuAVEN ezVEN</td>
<td>w4VEN</td>
<td>w4VENN</td>
<td>w6VEN</td>
<td>w6VENN</td>
<td>stVEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.185618</td>
<td>2.098194</td>
<td>9.167433</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.015</td>
<td>0.041123</td>
<td>0.032194</td>
<td>0.015</td>
<td>0.015</td>
<td>5.790798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>4.186408</td>
<td>0.033968</td>
<td>0.988932</td>
<td>0.033968</td>
<td>0.015</td>
<td>0.015</td>
<td>0.034503</td>
<td>0.039448</td>
<td>4.61079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>53.27594</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>5.288052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.072527</td>
<td>1.268646</td>
<td>27.75055</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.015</td>
<td>5.417272</td>
<td>0.015</td>
<td>0.015</td>
<td>0.03335</td>
<td>0.039448</td>
<td>4.61079</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>14.63649</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.015</td>
<td>4.606065</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>1.092807</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>18.1838</td>
<td>0.039382</td>
<td>0.987169</td>
<td>1.144617</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.464307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.468422</td>
<td>2.129895</td>
<td>8.265385</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.862155</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.224113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.999138</td>
<td>0.118842</td>
<td>0.961279</td>
<td>0.534035</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.333623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>1.07028</td>
<td>0.015</td>
<td>0.995113</td>
<td>0.49936</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.015</td>
<td>0.252505</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C.7 Pilot Study Photos

March

CW Tank 1 two weeks after planting

CW Tank 1 two weeks after planting
CW Tank 2 two weeks after planting

CW Tank 3 two weeks after planting
CW Tank 4 two weeks after planting
Trametes versicolor and Pleurotus ostreatus spawn for mycoremediation filters

Trametes versicolor spawn blended with wood chips, hardwood mulch, and a small amount of compost
Trametes versicolor spawn blended with wood chips, hardwood mulch, and a small amount of compost
Peristaltic pumps for CW system
CW Tank 1 effluent piping, including level control, air gap, and sampling port
CW Tank 1 effluent piping and sampling port

CW Tank 2 three weeks after planting
CW Tank 3 three weeks after planting

CW Tank 3 three weeks after planting
CW Tank 5 with shade cloth; distribution piping replaced prior to sampling period
May

CW Tank 4 eight weeks after planting
Pleurotus ostreatus blooms in CW Tank 6; distribution piping replaced prior to sampling period

Iris versicolor blooms in CW Tank 2
Trametes versicolor blooms in CW Tank 5

Fungal blooms in CW Tank 6
June

CW Tank 1 12 weeks after planting with distribution piping used throughout sampling period

CW Tank 2 12 weeks after planting
CW Tank 3 12 weeks after planting

CW Tank 4 12 weeks after planting with distribution piping used throughout sampling period
CW Tank 5 with distribution piping used throughout sampling period

CW Tank 5 with distribution piping installed throughout sampling period
CW Tank 6 with distribution piping installed throughout sampling period

CW Tank 6 effluent piping, including level control, air gap, sampling port, and backflow prevention device (bucket)
E-Z Treat biofilter and holding tank wrapped in reflective material for temperature control

E-Z Treat holding tank and backflow prevention device (barrel)
Pilot system
Pilot system

Coprinus comatus blooms in CW Tank 6
Unknown fungal blooms in CW Tank 5

Pontedaria cordata blooms in CW Tank 2
July

CW Tank 1 18 weeks after planting

CW Tank 2 18 weeks after planting
Pontedaria cordata leaves chewed by Japanese beetles in CW Tank 2

CW Tank 3 18 weeks after planting
CW Tank 4 18 weeks after planting

September

CW Tank 1 27 weeks after planting
CW Tank 2 27 weeks after planting
CW Tank 6