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Free Vibration of Bi-directional Functionally Graded Material Circular Beams using Shear 

Deformation Theory employing Logarithmic Function of Radius 

 

Jamshid Fariborz 

ABSTRACT 

 

Curved beams such as arches find ubiquitous applications in civil, mechanical and aerospace 

engineering, e.g., stiffened floors, fuselage, railway compartments, and wind turbine blades.  The 

analysis of free vibrations of curved structures plays a critical role in their design to avoid transient loads 

with dominant frequencies close to their natural frequencies.  One way to increase their applications and 

possibly make them lighter without sacrificing strength is to comprise them of Functionally Graded 

Materials (FGMs) that are composites with continuously varying material properties in one or more 

directions.    

In this thesis, we study free vibrations of FGM circular beams by using a logarithmic shear deformation 

theory that incorporates through-the-thickness logarithmic variation of the circumferential 

displacement, does not require a shear correction factor, and has a parabolic through-the-thickness 

distribution of the shear strain.  The radial displacement of a point is assumed to depend only upon its 

angular position.  Thus the beam theory can be regarded as a generalization of the Timoshenko beam 

theory.  Equations governing transient deformations of the beam are derived by using Hamilton’s 

principle.  Assuming a time harmonic variation of displacements, and by utilizing a generalized 

differential quadrature method (GDQM), the free vibration problem is reduced to solving an algebraic 

eigenvalue problem whose solution provides frequencies and corresponding mode shapes.  Results are 

presented for different spatial variations of the material properties, boundary conditions, and the beam 

aspect ratio.  It is found that frequencies of the FGM beam are bounded by those of two geometrically 

identical homogeneous beams composed of the two constituents of the FGM beam.  Keeping other 

variables fixed, the change in the beam opening angle results in very close frequencies of the first two 

modes of vibration, a phenomenon usually called mode transition.        
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GENERAL AUDIENCE ABSTRACT 

 

Curved and straight beams of various cross-sections are one of the simplest and most fundamental 

structural elements that have been extensively studied because of their ubiquitous applications in civil, 

mechanical, biomedical and aerospace engineering. Many attempts have been made to enhance their 

material properties and designs for applications in harsh environments and reduce weight. One way of 

accomplishing this is to combine layerwise two or more distinct materials and take advantage of their 

directional properties.  It results in a lightweight structure having overall specific strength superior to 

that of its constituents.  Another possibility is to have volume fractions of two or more constituents 

gradually vary throughout the structure for enhancing its performance under anticipated applications.  

Functionally graded materials (FGMs) are a class of composites whose properties gradually vary along 

one or more space directions.  In this thesis, we have numerically studied free vibrations of FGM circular 

beams to enhance their application domain and possibly use them for energy harvesting.     
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1. Introduction  

 

Beams are one of the simplest, most studied and indispensable elements of mechanical, civil, 

marine, and aeronautical structures. They are regularly used in numerous modern engineering 

applications.  The literature is replete with studies on static and dynamic deformations of beams 

composed of monolithic and composite materials. Commonly studied beam theories include the Euler-

Bernoulli (EB), the Timoshenko, the first order shear deformation theory (FSDT) as well as higher order 

shear and normal deformation theories (HSNDT) for accurately analyzing beams of various geometries.  

The simplest beam theory taught in an undergraduate course is the EB theory that gives good results 

for slender (large length/thickness ratio) beams. It underestimates deflections and overestimates natural 

frequencies since it neglects transverse shear and normal deformations. The Timoshenko beam theory 

assumes uniform transverse shear strain through the beam thickness, and is often used to study 

moderately thick beams usually classified as ones with length/thickness ratio of about 10 [1].  This 

theory does not satisfy tangential traction boundary conditions at the top and the bottom surfaces of the 

beam, and generally requires a problem-dependent shear correction factor.  A number of higher order 

shear deformation theories considering non-uniform transverse shear deformations and not requiring a 

shear correction factor have been proposed for studying static and dynamic deformations of beams; e.g., 

see [2, 3].  

A majority of early works on beams considered a straight structure made of isotropic and 

homogeneous materials. However, modern engineering applications require more durable, lighter and 

thermally resistant materials than a homogeneous material. This resulted in laminated composite 

structures that exploit directional properties of the constituent materials [4-6]. Vel and Batra [29], 

amongst others, have analytically studied deformations of clamped-clamped composite laminate beams.   

The discontinuity across adjoining layers of a laminated composite structure may induce premature 

delamination and debonding.  These can be avoided by smoothly grading volume fractions of 

constituents and hence material properties in one or more spatial directions; such materials are called 

Functionally Graded Materials (FGMs) [7, 8].  The static, dynamic and buckling response of FGM 
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straight beams with material properties smoothly varying in the thickness direction has been extensively 

analyzed; e.g. see [9-14].   

There have been fewer studies on FGM beams with material properties graded in both directions, 

and even fewer for curved beams.   Qian and Batra [16] used the meshless local Petrov-Galerkin method 

(MLPG) to find bi-directional spatial distribution of the two constituents to optimize the fundamental 

frequency of a FGM beam.  Goupee and Vel [17] used a genetic algorithm coupled with a numerical 

scheme to maximize natural frequencies of a FGM beam.  Lu et al. [15] used the state-space based 

differential quadrature method to find a semi-analytical elasticity solution for static thermo-mechanical 

deformations of a bi-directional FGM beam.  Free and forced vibrations of FGM Timoshenko beams 

under a moving load and various boundary conditions have been studied by Simsek [18].   Karamanli 

[19] has analyzed free vibration of bi-directional FGM straight beams using a third order shear 

deformation theory in which material properties vary exponentially along the beam thickness and length.  

Rastgo et al. [20] have studied stability of curved FGM beams with material properties varying only 

in one direction and subjected to thermal loading.  Shafiee et al. [30] have investigated their in-plane 

and out-of-plane buckling. Eroglu [21] has studied in-plane vibration of FGM circular arches by 

employing a FSDT. However, there are a few studies on bi-directionally graded curved beams.  

Recently, Pydah and Sabale [22] presented static analysis of bi-directional FGM circular beams using 

kinematic assumptions of the EB beam theory. Pydah and Batra [23] extended it to a quadratic 

distribution of the transverse shear stress through the beam thickness and simultaneously satisfy non-

zero tangential tractions prescribed on beam’s top and bottom surfaces.  They employed a logarithmic 

function of the radial coordinate in the postulated expression for the circumferential displacement.   

Here we use Batra and Pydah’s [23] beam theory to study free vibration of homogeneous, either 

radially graded or bi-directionally graded circular beams of different opening angles and under various 

boundary conditions. For radially graded beams, material properties are assumed to vary either affinely 

or exponentially along the beam thickness. For a bi-directionally graded beam, we assume that a material 

property, Q, is given by 𝑄(𝑟, 𝜃) = 𝑄∗𝑓(𝑟)𝑔(𝜃) where 𝑓(𝑟) and 𝑔(𝜃) are, respectively, non-dimensional 

functions of the radial and the circumferential coordinates r and θ.  We employ Hamilton’s principle to 

derive equations of motion and boundary conditions, and a generalized differential quadrature method 

(GDQM) to numerically solve these equations for natural frequencies and mode shapes.  The in-house 

developed MATLAB code, included in the Appendix, is first verified by comparing computed results 
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for homogeneous and radially graded FG beams with those available in the literature.  Subsequently, we 

find natural frequencies and mode shapes for different gradation of material properties in both directions, 

the beam opening angle, and boundary conditions at the edges.  
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2. Formulation of the Problem 

 

Figure 1 represents a schematic sketch of a circular beam of rectangular cross-section having width 𝑏, 

thickness ℎ, opening angle 𝜃𝑡𝑖𝑝, and radius of the centroidal axis 𝑅0. 

 

Figure 1  Geometry of a circular beam [23] 

 

2.1. Equations of motion 

 

We employ the recently proposed shear deformable theory [23] using a logarithmic function of the radial 

coordinate 𝑟 to describe transverse shear deformations that satisfy tangential traction boundary 

conditions prescribed on beam’s inner and outer surfaces. For studying plane strain free vibrations of 

the beam, we assume that beam’s top and bottom surfaces are traction free, and boundary conditions 

prescribed on the edges do no work during beam’s deformations.  The theory assumes the following 

expressions for the radial and the circumferential displacements denoted, respectively, by 𝑢𝑟 and 𝑢𝜃, of 

a point of the beam. 
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𝑢𝑟(𝑟, 𝜃, 𝑡) = 𝑢𝑟
0(𝜃, 𝑡) 

𝑢𝜃(𝑟, 𝜃, 𝑡) = 𝑢𝜃
0(𝜃, 𝑡) + (𝑟 − 𝑅0)𝜙(𝜃, 𝑡) + 𝑈0(𝑟)𝜓(𝜃, 𝑡) 

(2.1) 

where 

𝜓(𝜃, 𝑡) = 𝑢𝜃
0(𝜃, 𝑡) − (𝑢𝑟

0(𝜃, 𝑡))
′

− 𝑅0𝜙(𝜃, 𝑡) 

𝑈0(𝑟) =
4

ℎ2
(𝑟2 − 𝑅0

2 + 𝑟 (1 − 2𝑅0𝑙𝑛 (
𝑟

𝑅0
))) 

(2.2) 

 

In equations (2.1) and (2.2), 𝑢𝑟
0(𝜃, 𝑡) and 𝑢𝜃

0(𝜃, 𝑡) are, respectively, the radial and the tangential 

displacements of a point on the beam centroidal axis, 𝜙(𝜃, 𝑡) represents the rotation of a cross-section 

about the 𝑋3- or the z-axis (not shown in Fig.1), and (𝑢𝑟
0(𝜃, 𝑡))

′
=  𝜕𝑢𝑟

0/𝜕𝜃.  The beam theory has three 

unknown fields, namely, 𝑢𝑟
0(𝜃, 𝑡), 𝑢𝜃

0(𝜃, 𝑡) and 𝜙(𝜃, 𝑡).  It does not require a shear correction factor. 

For a thin beam, i.e, ℎ/𝑅0 ≪ 1, displacements (2.1) and (2.2) reduce to those for a Timoshenko beam. 

We assume the beam material to be isotropic and linearly elastic (i.e., it obeys Hooke’s law), and 

consider its infinitesimal deformations.  Thus the radial, the circumferential, and the transverse shear 

strains, respectively, denoted by 𝜖𝑟,  𝜖𝜃 and 𝛾𝑟𝜃 have the following expressions.  

 

𝜖𝑟(𝑟, 𝜃, 𝑡) = 0, 𝜖𝜃(𝑟, 𝜃, 𝑡) =
1

𝑟

𝜕𝑢𝜃

𝜕𝜃
+

𝑢𝑟

𝑟
, 𝛾𝑟𝜃(𝑟, 𝜃. 𝑡) =

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
+

𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟
 (2.3) 

 

By substituting for displacements from equation (2.1) into equation (2.3) we get 

𝜖𝜃(𝑟, 𝜃, 𝑡) =
1

𝑟
{𝑢𝑟

0(𝜃, 𝑡) + (𝑢𝜃
0(𝜃, 𝑡))

′

+ (𝑟 − 𝑅0)(𝜙(𝜃, 𝑡))
′

+ 𝑈0(𝑟)(𝜓(𝜃, 𝑡))
′
} 

𝛾𝑟𝜃(𝑟, 𝜃, 𝑡) =
1

ℎ2𝑟
(ℎ2 − 4(𝑟 − 𝑅0)2) ((𝑢𝑟

0(𝜃, 𝑡))
′

− 𝑢𝜃
0(𝜃, 𝑡) + 𝑅0𝜙(𝜃, 𝑡)) 

(2.4) 
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Thus, the transverse shear strain has a quadratic variation through the beam thickness and vanishes at 

the top and the bottom surfaces.  Recalling that 𝜓(𝜃, 𝑡) depends upon (𝑢𝑟
0(𝜃, 𝑡))

′
, the expression for 

𝜖𝜃(𝑟, 𝜃, 𝑡) has (𝑢𝑟
0(𝜃, 𝑡))

′′
. We introduce an auxiliary variable  

 

𝑢1
0 = (𝑢𝑟

0)′ (2.5) 

 

and rewrite equation (2.2a) as  

 

𝜓(𝜃, 𝑡) = 𝑢𝜃
0(𝜃, 𝑡) − (𝑢1

0(𝜃, 𝑡)) − 𝑅0𝜙(𝜃, 𝑡) (2.6) 

 

The circumferential (or the hoop or the bending) stress 𝜎𝜃, and the transverse shear stress 𝜏𝑟𝜃 are given 

by 

 

𝜎𝜃(𝑟, 𝜃, 𝑡) =
𝐸(𝑟, 𝜃)

𝑟
{𝑢𝑟

0(𝜃, 𝑡) + (𝑢𝜃
0(𝜃, 𝑡))

′

+ (𝑟 − 𝑅0)(𝜙(𝜃, 𝑡))
′

+ 𝑈0(𝑟)(𝜓(𝜃, 𝑡))
′
} 

 

𝜏𝑟𝜃(𝑟, 𝜃, 𝑡) = 𝐺(𝑟, 𝜃) [
1

ℎ2𝑟
(ℎ2 − 4(𝑟 − 𝑅0)2) ((𝑢𝑟

0(𝜃, 𝑡))
′

− 𝑢𝜃
0(𝜃, 𝑡) + 𝑅0𝜙(𝜃, 𝑡))] 

(2.7) 

 

Because of the kinematic constraint, 𝜖𝑟 = 0, the radial stress is indeterminate.  One can find it by using 

a stress-recovery scheme as was done in [23].  In equation (2.7),  𝐸(𝑟, 𝜃) and G(𝑟, 𝜃) are, respectively, 

the shear and Young’s modulii of the beam material.  For a homogeneous beam, 𝐸(𝑟, 𝜃) and G(𝑟, 𝜃) are 

constants.   

The action integral, 𝐴, for the beam with kinetic energy 𝐾 and potential energy 𝑈 in an arbitrarily small 

but known time interval [𝑡0, 𝑡1] is defined as 

𝐴 = ∫ [𝐾 − 𝑈]𝑑𝑡
𝑡1

𝑡0

 (2.8) 

We derive governing equations by using Hamilton’s principle, i.e, 
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𝛿𝐴 = ∫ [𝛿𝐾 − 𝛿𝑈]𝑑𝑡
𝑡1

𝑡0

= 0 (2.9) 

where 𝛿 represents a variation. For a circular beam in the absence of external surface tractions, we 

have 

𝛿𝐾 = 𝑏 ∫ ∫ ∫ [𝜌(𝑟, 𝜃)(𝑢̇𝑟𝛿𝑢̇𝑟 + 𝑢̇𝜃𝛿𝑢̇𝜃)]𝑟𝑑𝜃

𝜃𝑡𝑖𝑝

0

𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

𝑑𝑡 

𝑡1

𝑡0

 (2.10a) 

𝛿𝑈 = 𝑏 ∫ ∫ ∫ [𝜎𝜃𝛿𝜖𝜃 + 𝜏𝑟𝜃𝛿𝛾𝑟𝜃]𝑟𝑑𝜃

𝜃𝑡𝑖𝑝

0

𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

𝑑𝑡 

𝑡1

𝑡0

 (2.10b) 

Here 𝜌 is mass density of the beam material, and 𝑢̇𝑟 = 𝜕𝑢𝑟/𝜕𝑡.  

Substitution for displacements from equations (2.1) and (2.2) into equation (2.10a) gives 

∫ 𝛿𝐾𝑑𝑡 

𝑡1

𝑡0

= 𝑏 ∫ ∫ {𝐴1𝑢̇𝑟
0𝛿𝑢̇𝑟

0

𝜃𝑡𝑖𝑝

0

𝑡1

𝑡0

+ [(𝐴1 + 𝐼1 + 2𝐾1)𝑢̇𝜃
0 + (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝜙̇ − (𝐾1 + 𝐼1)𝑢̇1

0]𝛿𝑢̇𝜃
0

+ [(𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝑢̇𝜃
0

+ (𝐴3 + 𝑅0
2𝐴1 + 𝑅0

2𝐼2 − 2𝑅0𝐴2 − 2𝑅0𝐾2 + 2𝑅0
2𝐾1)𝜙̇ − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝑢̇1

0]𝛿𝜙̇

+  [−(𝐾1 + 𝐼1)𝑢̇𝜃
0 − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝜙̇ + 𝐼1𝑢̇1

0]𝛿𝑢̇1
0 }𝑑𝜃 𝑑𝑡  

(2.11) 

where 

𝐴𝑖 = ∫ 𝑟𝑖𝜌(𝑟, 𝜃)𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

, 𝐾𝑖 = ∫ 𝑟𝑖𝑈0𝜌(𝑟, 𝜃)𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

, 𝐼𝑖 = ∫ 𝑟𝑖𝑈0
2𝜌(𝑟, 𝜃)𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

.  (2.12) 
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Similarly,  

∫ 𝛿𝑈𝑑𝑡 

𝑡1

𝑡0

= 𝑏 ∫ ∫ ∫ [𝜎𝜃 {𝛿𝑢𝑟
0 − 𝑈0𝛿(𝑢1

0)′ + (1 + 𝑈0)𝛿(𝑢𝜃
0)

′
+ (𝑟 − 𝑅0 − 𝑅0𝑈0)𝛿𝜙′}

𝜃𝑡𝑖𝑝

0

𝑅0+
ℎ
2

𝑅0−
ℎ
2

𝑡1

𝑡0

+ 𝜏𝑟𝜃 (1 −
4

ℎ2
(𝑟 − 𝑅0)2) (𝛿𝑢1

0 − 𝛿𝑢𝜃
0 + 𝑅0𝛿𝜙)] 𝑑𝜃 𝑑𝑟 𝑑𝑡  

= 𝑏 ∫ ∫ [{𝑁𝛿𝑢𝑟
0 − 𝑃𝛿(𝑢1

0)′ + (𝑁 + 𝑃)𝛿(𝑢𝜃
0)

′
+ (𝑀 − 𝑅0𝑃)𝛿(𝜙)′}

𝜃𝑡𝑖𝑝

0

𝑡1

𝑡0

+
1

ℎ2
(ℎ2𝐹 − 4𝑅)(𝛿𝑢1

0 − 𝛿𝑢𝜃
0 + 𝑅0𝛿𝜙)] 𝑑𝜃 𝑑𝑡 

(2.13) 

where we have set 

 

𝐹 = ∫ 𝜏𝑟𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

, 𝑅 = ∫ (𝑟 − 𝑅0)2𝜏𝑟𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

, 𝑁 = ∫ 𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

 

𝑀 = ∫ (𝑟 − 𝑅0)𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

, 𝑃 = ∫ 𝑈0𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

 

(2.14) 

 

Here N, F and M equal, respectively, the resultant axial force, the resultant transverse shear force and 

the bending moment about the z-axis on a cross-section, and are, respectively, work conjugates of  

𝑢𝜃
0(𝜃, 𝑡), 𝑢𝑟

0(𝜃, 𝑡), and 𝜙(𝜃, 𝑡).  These are depicted in Fig. 2.  The other two quantities, 𝑃 and 𝑅, 

introduced for convenience, do not have easy physical interpretations. 

Substituting for stresses from equation (2.7) into equation (2.14) gives 
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𝐹 = 𝑏 ∫ 𝜏𝑟𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

= 𝑏 ∫ 𝐺(𝑟, 𝜃) [
1

ℎ2𝑟
(ℎ2 − 4(𝑟 − 𝑅0)2)((𝑢𝑟

0)′ − 𝑢𝜃
0 + 𝑅0𝜙)] 𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

 

 

𝑅 = 𝑏 ∫ (𝑟 − 𝑅0)2𝜏𝑟𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

= 𝑏 ∫ 𝐺(𝑟, 𝜃) [
(𝑟 − 𝑅0)2

ℎ2𝑟
(ℎ2 − 4(𝑟 − 𝑅0)2)((𝑢𝑟

0)′ − 𝑢𝜃
0 + 𝑅0𝜙)] 𝑑𝑟

𝑅0+
ℎ
2

𝑅0−
ℎ
2

 

 

𝑁 = 𝑏 ∫ 𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

= 𝑏 ∫
𝐸(𝑟, 𝜃)

𝑟
{𝑢𝑟

0 − 𝑈0(𝑢1
0)′ + (1 + 𝑈0)(𝑢𝜃

0)
′

+ (𝑟 − 𝑅0 − 𝑅0𝑈0)(𝜙)′} 𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

 

 

𝑀 = 𝑏 ∫ (𝑟 − 𝑅0)𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

= 𝑏 ∫
(𝑟 − 𝑅0)𝐸(𝑟, 𝜃)

𝑟
{𝑢𝑟

0 − 𝑈0(𝑢1
0)′ + (1 + 𝑈0)(𝑢𝜃

0)
′

𝑅0+
ℎ
2

𝑅0−
ℎ
2

+ (𝑟 − 𝑅0 − 𝑅0𝑈0)(𝜙)′} 𝑑𝑟 

𝑃 = 𝑏 ∫ 𝑈0𝜎𝜃𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

= 𝑏 ∫
𝑈0𝐸(𝑟, 𝜃)

𝑟
{𝑢𝑟

0 − 𝑈0(𝑢1
0)′ + (1 + 𝑈0)(𝑢𝜃

0)
′

+ (𝑟 − 𝑅0 − 𝑅0𝑈0)(𝜙)′} 𝑑𝑟
𝑅0+

ℎ
2

𝑅0−
ℎ
2

 

(2.15) 

Equation (2.15) expresses F, N, M, P and R in terms of the kinematic variables. 
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Figure 2 Free body diagram for a beam element [23]. 

 

Substituting from equations (2.11) and (2.13) into equation (2.9), we get  

 𝛿𝐴 = 𝑏 ∫ ∫ {𝐴1𝑢̇𝑟
0𝛿𝑢̇𝑟

0

𝜃𝑡𝑖𝑝

0

𝑡1

𝑡0

+ [(𝐴1 + 𝐼1 + 2𝐾1)𝑢̇𝜃
0 + (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝜙̇ − (𝐾1 + 𝐼1)𝑢̇1

0]𝛿𝑢̇𝜃
0

+ [(𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝑢̇𝜃
0

+ (𝐴3 + 𝑅0
2𝐴1 + 𝑅0

2𝐼2 − 2𝑅0𝐴2 − 2𝑅0𝐾2 + 2𝑅0
2𝐾1)𝜙̇ − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝑢̇1

0]𝛿𝜙̇

+  [−(𝐾1 + 𝐼1)𝑢̇𝜃
0 − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝜙̇ + 𝐼1𝑢̇1

0]𝛿𝑢̇1
0 }𝑑𝜃 𝑑𝑡 

− 𝑏 ∫ ∫ [{𝑁𝛿𝑢𝑟
0 − 𝑃𝛿(𝑢1

0)′ + (𝑁 + 𝑃)𝛿(𝑢𝜃
0)

′
+ (𝑀 − 𝑅0𝑃)𝛿(𝜙)′}

𝜃𝑡𝑖𝑝

0

𝑡1

𝑡0

+
1

ℎ2
(ℎ2𝐹 − 4𝑅)(𝛿𝑢1

0 − 𝛿𝑢𝜃
0 + 𝑅0𝛿𝜙)] 𝑑𝜃 𝑑𝑡 = 0 

 

(2.16) 

Integrating with respect to 𝜃 terms like 𝛿(𝜙)′ gives 
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∫ ∫ {(𝑁 − 𝐹′ + 𝐴1𝑢̈𝑟
0)𝛿𝑢𝑟

0

𝜃𝑡𝑖𝑝

0

𝑡1

𝑡0

+ [−𝑁′ − 𝑃′ − 𝐹 +
4

ℎ2
𝑅 + (𝐴1 + 2𝐾1 + 𝐼1)𝑢̈𝜃

0

+ (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝜙̈ − 𝜌(𝐾1 + 𝐼1)𝑢̈1
0] 𝛿𝑢𝜃

0

+ [−𝑀′ + 𝑅0𝑃′ + 𝑅0𝐹 −
4

ℎ2
𝑅0𝑅 + (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝑢̈𝜃

0

+ (𝐴3 + 𝑅0
2𝐴1 + 𝑅0

2𝐼2 − 2𝑅0𝐴2 − 2𝑅0𝐾2 + 2𝑅0
2𝐾1)𝜙̈ − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝑢̈1

0] 𝛿𝜙

+ [(𝑃′ −
4

ℎ2
𝑅) − (𝐾1 + 𝐼1)𝑢̈𝜃

0 − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝜙̈ + 𝐼1𝑢̈1
0] 𝛿𝑢1

0} 𝑑𝜃𝑑𝑡

+ ∫ [{−𝑃𝛿𝑢1
0 + (𝑁 + 𝑃)𝛿𝑢𝜃

0 + (𝑀 − 𝑅0𝑃)𝛿𝜙} + 𝐹𝛿𝑢𝑟
0] |

𝜃𝑡𝑖𝑝

0
𝑑𝑡

𝑡1

𝑡0

− ∫ {𝐴1𝑢̇𝑟
0𝛿𝑢𝑟

0

𝜃𝑡𝑖𝑝

0

+ [(𝐴1 + 𝐼1 + 2𝐾1)𝑢̇𝜃
0 + (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝜙̇ − (𝐾1 + 𝐼1)(𝑢̇1

0)]𝛿𝑢𝜃
0

+ [(𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝑢̇𝜃
0

+ (𝐴3 + 𝑅0
2𝐴1 + 𝑅0

2𝐼2 − 2𝑅0𝐴2 − 2𝑅0𝐾2 + 2𝑅0
2𝐾1)𝜙̇ − (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)(𝑢̇1

0)]𝛿𝜙

− [(𝐾1 + 𝐼1)𝑢̇𝜃
0 + (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝜙̇ − 𝐼1𝑢̇1

0]𝛿𝑢1
0} |

𝑡1

𝑡0
𝑑𝜃 = 0 

 

(2.17) 

Using the fundamental lemma of the calculus of variations and assuming that 𝛿𝑢1
0 is also arbitrary, we 

obtain the following equations of motion and boundary conditions.  We have not written initial 

conditions because they are not needed for studying free vibrations.  
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Governing equations: 

  

𝐹′ − 𝑁 = 𝐴1𝑢̈𝑟
0 

𝑁′ + 𝑃′ + 𝐹 −
4

ℎ2
𝑅

= (𝐴1 + 𝐼1 + 2𝐾1)𝑢̈𝜃
0 + (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝜙̈ − 𝜌(𝐾1 + 𝐼1)𝑢̈1

0 

𝑀′ − 𝑅0𝑃′ − 𝑅0𝐹 +
4

ℎ2
𝑅0𝑅

= (𝐴2 − 𝑅0𝐴1 − 2𝑅0𝐾1 + 𝐾2 − 𝑅0𝐼1)𝑢̈𝜃
0

+ (𝐴3 + 𝑅0
2𝐴1 + 𝑅0

2𝐼2 − 2𝑅0𝐴2 − 2𝑅0𝐾2 + 2𝑅0
2𝐾1)𝜙̈

− (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝑢̈1
0 

𝑃′ −
4

ℎ2
𝑅 = (𝐾1 + 𝐼1)𝑢̈𝜃

0 + (𝐾2 − 𝑅0𝐾1 − 𝑅0𝐼1)𝜙̈ − 𝐼1𝑢̈1
0 

 

(2.18) 

By substituting for 𝑃′   from equation (2.18d) into equations (2.18b, c) we get the following three 

equations of motion for the three unknown fields, 𝑢𝜃
0(𝜃, 𝑡), 𝑢𝑟

0(𝜃, 𝑡), and 𝜙(𝜃, 𝑡). These are 

supplemented by equation (2.5). 

𝐹′ − 𝑁 = 𝐴1𝑢̈𝑟
0 

𝑁′ + 𝐹 = (𝐴1 + 𝐾1)𝑢̈𝜃
0 + (𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1)𝜙̈ − 𝐾1𝑢̈1

0 

𝑀′ − 𝑅0𝐹 = (𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1 + 𝐾2)𝑢̈𝜃
0 + (𝐴3 + 𝑅0

2𝐴1 − 2𝑅0𝐴2 − 𝑅0𝐾2 + 𝑅0
2𝐾1)𝜙̈

− (𝐾2 − 𝑅0𝐾1)𝑢̈1
0 

(2.19) 

Boundary conditions at the ends 𝜃 = 0, 𝜃𝑡𝑖𝑝 require that   

either 𝑢𝜃 or 𝑁 is prescribed 

(2.20) either 𝜙 or 𝑀 is prescribed 

either 𝑢𝑟or 𝑁 is prescribed 
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We write below equations for different boundary conditions at the edge 𝜃 = 0. 

Clamped: 𝑢𝑟
0(0, 𝑡) = 0, 𝑢𝜃

0(0, 𝑡) = 0, 𝜙(0, 𝑡) = 0 (2.21) 

Hinged: 𝑢𝑟
0(0, 𝑡) = 0, 𝑢𝜃

0(0, 𝑡) = 0, 𝑀(0, 𝑡) = 0 (2.22) 

Free: 𝐹(0, 𝑡) = 0, 𝑁(0, 𝑡) = 0, 𝑀(0, 𝑡) = 0 (2.23) 

  

  

2.2.  Free-Vibration analysis 

 

For free vibrations, we assume that  

𝑢𝑟
0(𝜃, 𝑡) = 𝑒𝑖𝜔𝑡𝑈𝑟

0(𝜃) 

𝜙(𝜃, 𝑡) = 𝑒𝑖𝜔𝑡Φ(𝜃) 

𝑢𝜃
0(𝜃, 𝑡) = 𝑒𝑖𝜔𝑡𝑈𝜃

0(𝜃) 

𝑢1
0(𝜃, 𝑡) = 𝑒𝑖𝜔𝑡𝑈1

0(𝜃) 

(2.24) 

Substituting these in equations (2.19) and (2.5) gives the following four homogeneous equations for 

finding the frequency 𝜔 and the corresponding mode shapes, 𝑈𝑟
0(𝜃), 𝑈𝜃

0(𝜃), 𝑈1
0(𝜃) and Φ(𝜃).   

 

𝐹′ − 𝑁 + 𝜔2𝐴1𝑈𝑟
0(𝜃) = 0 

𝑁′ + 𝐹 + 𝜔2[(𝐴1 + 𝐾1)𝑈𝜃
0(𝜃) + (𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1)Φ(𝜃) − 𝐾1 𝑈1

0(𝜃)] = 0 

𝑀′ − 𝑅0𝐹 + 𝜔2[(𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1 + 𝐾2)𝑈𝜃
0(𝜃)

+ (𝐴3 + 𝑅0
2𝐴1 − 2𝑅0𝐴2 − 𝑅0𝐾2 + 𝑅0

2𝐾1)Φ(𝜃) − (𝐾2 − 𝑅0𝐾1) 𝑈1
0(𝜃)] = 0 

(𝑈𝑟
0(𝜃))

′
−  𝑈1

0(𝜃) = 0 

 

(2.25) 
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2.3. Generalized Differential Quadrature Method  

 

We use the generalized differential quadrature method (GDQM) [26] to numerically solve equations 

(2.25) for frequencies and mode shapes.  In the GDQM, the derivative of a function with respect to a 

coordinate direction is expressed as a weighted linear sum of values of the function at all mesh points 

along that direction. That is,   

 

𝑢(𝑚)(𝜃𝑖) = ∑ 𝑐𝑖𝑗
(𝑚)

𝑛

𝑗=1

𝑢(𝜃𝑗), for 𝑖 = 1,2, … , 𝑛 (2.26) 

where 

𝑐𝑖𝑗
1 =

𝑀(1)(𝜃𝑖)

(𝜃𝑖 − 𝜃𝑗)𝑀(1)(𝜃𝑗)
, for 𝑖 ≠ 𝑗 

𝑐𝑖𝑖
1 =

𝑀(2)(𝜃𝑖)

2𝑀(1)(𝜃𝑖)
, for 𝑖 = 𝑗 

(2.27) 

where 

𝑀(1)(𝜃𝑖) =  ∏ (𝜃𝑖 − 𝜃𝑗)

𝑛

𝑗=1,𝑗 ≠𝑖

 

𝑀(2)(𝜃) = 𝑑𝑀(1)(𝜃)/𝑑𝜃   

 

(2.28) 

We note that one could alternatively use the smooth symmetric particle hydrodynamics (SSPH) method 

[31, 32] that expresses the first and the second derivatives at a point in terms of values of the function 

at neighboring points. 
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We use the Chebyshev-Gauss-Lobbatto (CGL) grid on the domain [0, 𝜃𝑡𝑖𝑝] in which the location 𝜃𝑖 of 

a point in the 𝑛-point grid is given by  

 𝜃𝑖 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑖−1

𝑛−1
𝜋)] 𝜃𝑡𝑖𝑝 (2.29) 

In Figure 3 we display the locations of the grid points for 𝜃𝑡𝑖𝑝 = 180°, 𝑛 = 23. 

 

Figure 3 Chebyshev-Gauss-Lobbatto (CGL) grid points for n=23 

Using the summation convention, i.e., a repeated index implies summation over the range of the index, 

we write equations (2.25) as  

𝑐𝑖𝑗
1 𝐹(𝜃𝑗) − 𝑁(𝜃𝑖) + 𝜔2𝐴1𝑈𝑟

0(𝜃𝑖) = 0 

 

𝑐𝑖𝑗
1 𝑁(𝜃𝑗) + 𝐹(𝜃𝑖) + 𝜔2(𝐴1 + 𝐾1)𝑈𝜃

0(𝜃𝑖) + 𝜔2(𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1)Φ(𝜃𝑖) − 𝜔2𝐾1𝑈1
0(𝜃𝑖) = 0 

 

𝑐𝑖𝑗
1 𝑀(𝜃𝑗) − 𝑅0𝐹(𝜃𝑖) + 𝜔2(𝐴2 − 𝑅0𝐴1 − 𝑅0𝐾1 + 𝐾2)𝑈𝜃

0(𝜃𝑖)

+ 𝜔2(𝐴3 + 𝑅0
2𝐴1 − 2𝑅0𝐴2 − 𝑅0𝐾2 + 𝑅0

2𝐾1)Φ(𝜃𝑖) − 𝜔2(𝐾2 − 𝑅0𝐾1)𝑈1
0(𝜃𝑖) = 0 

 

𝑐𝑖𝑗
1 𝑈𝑟

0(𝜃𝑗) − 𝑈1
0(𝜃𝑖) = 0 

(2.30) 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
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We regard equations (2.15a, c and d) and (2.30) as 7 equations for the 7 unknowns, namely, F, N, M, 

𝑈𝑟
0(𝜃), 𝑈𝜃

0(𝜃), 𝑈1
0(𝜃) and Φ(𝜃). We find natural frequencies 𝜔 of the beam by first modifying these 

equations to satisfy boundary conditions that eliminate the rigid body modes (except for a free-free 

beam) and then setting the determinant of the coefficient matrix of the system of homogeneous algebraic 

equations equal to zero.  For each frequency so found, we compute the corresponding eigenvector to get 

the mode shape that is normalized by setting equal to 1 its maximum value.  We have developed an in-

house MATLAB code to analyze the eigenvalue problem.    

 

2.4.  Material gradation  

We consider three gradation of the material properties of which only one has variation in both directions.  

For gradation of material property, Q(r) (e.g., E, G and ρ), in the radial or the thickness direction we 

assume either the affine gradation 

𝑄(𝑟) = 𝑄𝑜𝑢𝑡 − (𝑄𝑜𝑢𝑡 − 𝑄𝑖𝑛) (
1

2
−

𝑟 − 𝑅0

ℎ
) (2.31) 

 

or the exponential   

𝑄(𝑟) = 𝑄𝑖𝑛 (
𝑟

𝑟𝑖𝑛
)

2

𝑒𝑥𝑝 {
[𝑙𝑛 (

𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
) − 2𝑙𝑛 (

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
)] [(

𝑟
𝑟𝑖𝑛

) − 1]

(
𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
) − 1

} (2.32) 

 

The subscripts “in” and “out” signify, respectively, values of the quantity on the inner and the outer 

surfaces of the beam.   

For bi-directional gradation of the material properties in both the radial and the circumferential 

directions we assume 

𝑄(𝑟, 𝜃) = 𝑄∗𝑓(𝑟)𝑔(𝜃) (2.33) 
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were 𝑄∗ represent a constant property of the material, and 𝑓(𝑟) and 𝑔(𝜃) are non-dimensional functions 

representing gradations along the radial and the circumferential directions, respectively. For numerical 

examples we choose the following functions that are the same as those in [23]. 

𝑓(𝑟) = 1 + (
𝑄𝑖𝑛

𝑄𝑜𝑢𝑡
− 1) (

1

2
−

𝑟 − 𝑅0

ℎ
)

𝜆𝑟

, (𝑤𝑖𝑡ℎ 𝑄∗ = 𝑄𝑜𝑢𝑡) (2.34) 

 

𝑔(𝜃) = 𝑒𝑥𝑝(𝜆𝜃𝜃) 

 

(2.35) 

 

Here 𝜃 is in radians, and 𝜆𝜃 and 𝜆𝑟 are non-dimensional parameters (also called gradation indices) 

dictating the properties variation along the radial and the circumferential directions. 

In this work, unless otherwise mentioned, the gradation indices are chosen to be 𝜆𝑟 = 1, 𝜆𝜃 = −0.25 

for which we have exhibited in Fig. 4 the spatial variation of 𝑄(𝑟, 𝜃).  

 

 

Figure 4 Variation of Q/Q* in a bi-directional FGM circular beam with 𝜆𝑟 = 1, 𝜆𝜃 = −0.25 [23] 
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3. Results and Discussion  

 

3.1. Verification and Convergence of the Solution  

 

We verify the accuracy and the convergence of the developed algorithm by comparing frequencies 

computed for a homogeneous circular beam and then for a FGM beam with their literature values.  For 

clamped-clamped and hinged-hinged arches, and different number, 𝑛, of grid points, we list in Tables 1 

and 2 the first five non-dimensional frequencies, 𝑐 = 𝜔𝑅0
2𝜃𝑡𝑖𝑝

2√𝜇 𝐸𝐼⁄  , where 𝜇 is the mass per unit 

length (=𝜌𝑏ℎ), and 𝐼 is the moment of inertia of the cross-section about the z-axis (=𝑏ℎ3/12 ).  These 

results establish that 21 grid points provide converged values of the first 5 frequencies, and their values 

agree well with those reported in [25] that used a different higher order beam theory.  As expected, the 

1st frequency converges much faster than the 5th frequency.  For R0/h = 50 and 100, the first (fifth) 

frequency of the hinged-hinged beam is about 52% (76%) of that for the clamped-clamped beam. For 

R0/h = 10, these ratios are, respectively, 52% and 95%. Results for 𝑅0/ℎ = 10 are not given in [25].  

Table 1 Non-dimensional frequencies, 𝑐 = 𝜔𝑅0
2𝜃𝑡𝑖𝑝

2√𝜇 𝐸𝐼⁄ ,  for uniform, homogeneous and 

monolithic clamped-clamped (hinged-hinged) 180° circular arches 

𝑅0 ℎ⁄  N  𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

100 13  43.27(22.37) 95.04(68.33) 175.4(137.9) 296.1(224.0) 445.9(340.1) 

15  43.26(22.37) 95.23(68.32) 176.9(137.9) 268.3(225.3) 383.9(334.6) 

19  43.26(22.37) 95.22(68.32) 176.8(137.9) 171.3(225.1) 392.1(334.7) 

21  43.26(22.37) 95.22(68.32) 176.8(137.9) 271.4(225.1) 392.4(334.7) 

23  43.26(22.37) 95.22(68.32) 176.8(137.9) 271.4(225.1) 392.3(334.7) 

 [25]  43.17(22.35) 94.76(68.16) 175.7(137.4) 268.5(223.7) 387.7(332.1) 

 Diff. (%)  0.2(0.01) 0.5(0.2) 0.6(0.4) 1(0.6) 1.1(0.8) 
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50 13  43.24(22.37) 94.91(68.26) 175.1(137.8) 295.0(223.7) 443.4(339.4) 

15  43.24(22.37) 95.10(68.28) 176.6(137.8) 267.5(225.0) 382.7(334.0) 

19  43.24(22.37) 95.09(68.28) 176.5(137.8) 270.5(224.8) 390.8(334.0) 

21  43.24(22.37) 95.09(68.28) 176.5(137.8) 270.6(224.8) 391.1(334.0) 

23  43.24(22.37) 95.09(68.28) 176.5(137.8) 270.6(224.8) 391.0(334.0) 

 [25]  42.87(22.28) 93.27(67.67) 172.3(135.9) 258.5(219.3) 372.8(324.0) 

 Diff. (%)  0.8(0.4) 1.9(0.9) 2.4(1.4) 4.4(2.4) 4.7(3.0) 

        

10 13  42.4(22.24) 90.92(67.21) 166.3(134.2) 251.8(212.5) 355.4(330.6) 

15  42.4(22.24) 91.08(67.20) 167.4(134.2) 239.8(213.6) 350.0(330.8) 

19  42.4(22.24) 91.07(67.20) 167.3(134.2) 241.3(213.6) 348.8(330.5) 

21  42.4(22.24) 91.07(67.20) 167.3(134.2) 241.3(213.6) 348.9(330.5) 

23  42.4(22.24) 91.07(67.20) 167.3(134.2) 241.3(213.6) 348.9(330.5) 

 

For the FGM beam, we compare results computed from our code with those of Filipich and Piovan [27] 

who considered a beam with the inner and the outer surfaces made, respectively, of steel and alumina 

having the following values of material parameters. 

𝐸𝑆𝑡 = 214 𝐺𝑃𝑎, 𝐺𝑆𝑡 = 82.2 𝐺𝑃𝑎, 𝜌𝑆𝑡 = 7800 
𝐾𝑔

𝑚3
 

𝐸𝐴𝑙2𝑂3
= 390 𝐺𝑃𝑎, 𝐺𝐴𝑙2𝑂3

= 137 𝐺𝑃𝑎, 𝜌𝐴𝑙2𝑂3
= 3200 

𝐾𝑔

𝑚3
 

(3.1) 

 

For clamped-clamped and cantilever FGM beams of 𝑅0 = 0.5 𝑚, ℎ = 0.05 𝑚, and 𝜃𝑡𝑖𝑝 = 1 𝑟𝑎𝑑, we 

compare in Table 2 the presently computed natural frequencies with those of [27]. 
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Table 2 Natural frequency (Hz) of the clamped-clamped (cantilever) circular arch with linear radial 

gradation of material properties 

 N 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

 13 2390(241.4) 3628(1268) 7069(3567) 7726(4450) 11150(7178) 

15 2390(241.4) 3628(1268) 7089(3540) 7726(4442) 11170(7132) 

19 2390(240.4) 3628(1268) 7089(3542) 7726(4443) 11170(7136) 

21 2390(240.4) 3628(1268) 7089(3542) 7726(4443) 11170(7136) 

23 2390(240.4) 3628(1268) 7089(3542) 7726(4443) 11170(7136) 

Ref. [27] 2367(241.40) 3431(1245) 6497(3419) 7702(4397) (Not Calculated) 

 Diff % 1.0(0.4) 5.3(1.8) 8.3(3.4) 0.3(1.0)  

 

We see that the presently computed first five natural frequencies agree with those reported in [27] 

deduced by using the Timoshenko beam theory as the maximum difference between any two sets of 

results is 8.3% for the third natural frequency for the clamped-clamped beam. For this beam, 15 points 

in equation (2.28) provide converged values of the first five frequencies. The first (fifth) frequency of 

the cantilever beam is about 10% (64%) of that for the clamped-clamped beam 

 

 

 

3.2. Frequencies of the bi-directional FGM beam  

 

For the steel/alumina bi-directionally graded half-circular beam with material properties given by 

equations (2.33) – (2.35) and 𝑅0 = 0.5 𝑚, ℎ = 0.05 𝑚  and 𝜃𝑡𝑖𝑝 = 𝜋 𝑟𝑎𝑑 we list in Table 3 for different 

edge conditions converged frequencies by taking 𝑛 = 23 in equation (2.28).  
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Table 3 Natural frequency (Hz) of half-circular beam with bi-directional gradation of material 

properties with radius 𝑅0 = 0.5 𝑚, thickness ℎ = 0.05 𝑚 and opening angle 𝜃𝑡𝑖𝑝 = 𝜋 𝑟𝑎𝑑 

 

Boundary condition 𝜆𝜃 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

 

Clamped-Clamped 0 290.6 625.2 1156 1675 2317 

 0.25 290.8 625.6 1155.8 1674.32 2301 

 1 294.4 632.2 1149 1661 2204 

 2 313.2 654.7 1140 1635 2146 

Hinged-Hinged 0 150.6 453.4 909.5 1450 2148 

 0.25 149.8 453.5 909.3 1450 2138 

 1 138.2 455.4 906.2 1445 2066 

 2 107.3 465.1 905.7 1437 1990 

Cantilever 0 29.40 91.78 311.7 498.2 687.8 

 0.25 23.23 78.32 293.8 560.6 671.5 

 1 10.79 45.64 241.0 313.6 629.1 

 2 3.495 19.32 96.00 172.3 590.2 

Free-Free 0 123.0 351.7 730.8 1240  1870 

 0.25 124.1 352.7 731.8 1241 1871 
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 1 139.4 368.2 746.7 1255 1885 

 2 187.6 417.6 794.4 1302 1931 

 

The effects of radial and circumferential gradation of material properties for a half-circular beam with 

clamped-clamped boundary conditions are shown in Figure (5), where 𝛼 = 𝜔1𝑅0
2𝜃𝑡𝑖𝑝

2
√𝜇𝐴𝑙2𝑂3

𝐸𝐴𝑙2𝑂3
𝐼⁄  

represents the dimensionless fundamental frequency parameter.  Thus, for a fixed value of λθ , 𝛼 

monotonically increases with an increase in λr, and 𝛼 only depends upon the magnitude of λθ.  

 

Figure 5 Variation of the fundamental frequency with the gradation indices for a clamped-clamped half-

circular bi-directional FGM beam  

 

In order to see how frequencies of the FGM beam compare with those of the monolithic steel and 

alumina beams we list below their frequencies.   

Table 4 Natural frequencies of steel (alumina) beam of radius 𝑅0 = 0.5 𝑚, thickness ℎ = 0.05 𝑚 and 

opening angle  𝜃𝑡𝑖𝑝 = 1 𝑟𝑎𝑑 

Material 𝐵. 𝐶 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 
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Steel(Alumina) Clamped-

Clamped 

1679(3538) 2396(5051) 4494(9472) 5272(11110) 6822(14380) 

Cantilever 170.3(359.1) 892.8(1882) 2381(5019) 3106(6548) 4635(9770) 

Hinged-

Hinged 

1542(3249) 1650(3478) 3652(7698) 5284(11140) 6083(12820) 

Free-Free 1007(2123) 2663(5612) 4893(10314) 5483(11556) 7493(15793) 

 

Table 5 Natural frequencies of steel (alumina) for (𝑅0, ℎ, 𝜃𝑡𝑖𝑝) = (0.5 𝑚, 0.05 𝑚, 𝜋 𝑟𝑎𝑑) 

 

 

 

𝐵. 𝐶 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 

Steel(Alumina) Clamped-

Clamped 

206.0(434.1) 441.8(931.8) 809.9(1707) 1168(2461) 1684(3548) 

Cantilever 20.87(43.99) 65.59(138.2) 222.0(468.0) 488.9(1030) 838.3(1767) 

Hinged-

Hinged 

107.9(227.3) 325.4(685.8) 648.5(1367) 1029(2168) 1593(3357) 

Free-Free 88.22(185.9) 253.3(534.0) 525.3(1107) 887.4(1870) 1331(2805) 

 

It is evident that a natural frequency of the FGM beam is bounded by that of the monolithic beams. 

We have not listed in Tables 3-5 the null natural frequencies for free-free beams corresponding to the 

infinitesimal rigid body modes given by [33] 
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[

𝑢𝑟

𝑢𝜃] = [
𝑐1 cos(𝜃) + 𝑐2 sin(𝜃)

−𝑐1 sin(𝜃) + 𝑐2 cos(𝜃) + 𝑑3𝑟] 

(3.2) 

where 𝑐1, 𝑐2, and 𝑑3 are constants.  One can easily verify that displacements (3.2) correspond to null 

strains. 

 

3.3. Mode transition 

 

For different values of 𝜃𝑡𝑖𝑝 of clamped-clamped and hinged-hinged monolithic and FGM circular beams, 

we have plotted in Figure 6 the variation of the first two non-dimensional frequencies  

𝛽 = 𝜔𝑅2√𝜇𝑜𝑢𝑡 𝐸𝑜𝑢𝑡𝐼⁄  (3.3) 

It is clear that the two frequencies are very close to each other for 𝜃𝑡𝑖𝑝 = 75° (60°) for clamped-clamped 

(hinged-hinged) beam irrespective of the material gradation. 
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(b) 

 

(c) 

 

(d) 

Figure 6 Variation with the opening angle of the first two natural non-dimensional frequencies for 

(left) clamped-clamped and (right) hinged-hinged circular arches composed of (a) homogeneous 

material, (b) linear radially graded FGM, (c) exponential radially graded FGM, and (d) bi-

directionally graded FGM. 
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For clamped-clamped beams with 𝜃𝑡𝑖𝑝 = 70° and 85° and exponential radial gradation of the material 

properties, we have plotted in Figure 7 the first two mode shapes.  No scales are included along the 

horizontal and the vertical axes because the mode shapes have been normalized by setting the maximum 

radial displacement equal to 1.  Thus, they provide only qualitative picture of the two mode shapes. It is 

clear that the two mode shapes are interchanged as 𝜃𝑡𝑖𝑝 passes through the mode-transition value. 

 

 

Figure 7 Deformed configuration clamped-clamped circular beam with exponential radially gradation 

of material properties. (a) 𝜃𝑡𝑖𝑝 = 70°  (b) 𝜃𝑡𝑖𝑝 = 85° 

 

3.4. Mode Shapes 

 

By using the afore-stated normalization for mode shapes, we have exhibited in Figure 8 the first four 

mode shapes for clamped-clamped, hinged-hinged and free-free semi-circular FGM beams for 

exponential radial and bi-directional gradation of material properties.  It is clear that bi-directionally 

grading the material properties affects the mode shapes.    
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Exponential Radial Material Gradation Bi-directional Material Gradation (𝜆𝜃 = 1) 

  

(a) 

  

(b) 

  

(c) 

Figure 8 First four mode shapes for semi-circular (left) exponential radial and (right) bi-directional 

gradation of (a) clamped-clamped, (b) hinged-hinged, and (c) free-free FGM beams (𝜃𝑡𝑖𝑝 = 𝜋 𝑟𝑎𝑑) 
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We have plotted in Figure 9, for various edge conditions, the variation along the circumferential 

direction of 𝑈𝑟
0(𝜃), 𝑈1

0(𝜃), 𝑈𝜃
0(𝜃) and Φ(𝜃) (i.e., the mid-surface radial displacement, the slope of the 

mid-surface displacement, the circumferential displacement, and the angle of rotation, respectively).  

These have been normalized to have the maximum value 1 (in appropriate units) at a point in [0, π].  The 

variation of 𝑈𝑟
0(𝜃) indicates how the beam deforms in the lateral direction, and that of  𝑈𝜃

0(𝜃) is a 

measure of stretching along the circumferential direction.  We see that the edge conditions strongly 

influence the variation of 𝑈𝑟
0(𝜃) and the point where the maximum value 1 of 𝑈1

0(𝜃) occurs.   

Exponential radial gradation 

Clamped-Clamped
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Hinged-Hinged

 

Free-Free 
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Bi-directional gradation (𝜆𝜃 = 1) 

Clamped-Clamped  

 

Hinged-Hinged 
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Free-Free

 

Figure 9 Variation with the angular position of the normalized displacements for the first four mode 

shapes of a semi-circular FGM beam (𝜃𝑡𝑖𝑝 = 𝜋 𝑟𝑎𝑑) 

The variations of stress resultants along the beam length for the four mode shapes corresponding to 

different edge conditions are exhibited in Figure 10.  These have been normalized to have the maximum 

value 1 (appropriate units) at a point in [0, π].  The mode shapes for the stress resultants do not 

qualitatively agree with those for any one of the four generalized displacements, 𝑈𝑟
0(𝜃), 𝑈𝜃

0(𝜃), 𝑈1
0(𝜃) 

and Φ(𝜃) because their expressions involve a combination of derivatives of displacements.    

 

 

 

 

 

 

 



32 

 

Exponential radial gradation 

Clamped-Clamped 

 

Hinged-Hinged

 

Free-Free 
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Bi-directional gradation (𝜆𝜃 = 1) 

Clamped-Clamped
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Hinged-Hinged

 

Free-Free

 

Figure 10 Normalized stress resultants for the first four mode shapes of a semi-circular FGM beam 

(𝜃𝑡𝑖𝑝 = 𝜋 𝑟𝑎𝑑) 
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4. Conclusions  
 

We have studied free vibrations of a bi-directionally graded material circular beam by using a higher 

order shear deformable beam theory that has logarithmic variation in the radial direction of the tangential 

displacement.  The beam theory exactly satisfies null tangential tractions on the top and the bottom 

surface, provides a quadratic through-the-thickness variation of the transverse shear strain, and does not 

need a shear correction factor.  For clamped-clamped, hinged-hinged and free-free beams, we have used 

a generalized differential quadrature method to compute frequencies and mode shapes.  Salient findings 

include that the spatial variation of material properties (mass density, shear modulus and Young’s 

modulus) does not affect both the mode shapes and the angular width of the beam for which the first 

two modes of free vibrations have very close frequencies.  This value is called the mode-transition width 

since shapes of modes one and two are interchanged for the beam angular width exceeding this value.  

For a clamped-clamped bi-directionally graded half-circular beam, the lowest frequency monotonically 

increases with an increase in the values of the two gradation indices in the postulated expressions for 

the material gradation.  For beams of other angular widths and edge conditions, one can find the 

gradation indices to optimize the fundamental frequency.   
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Appendix 

 

The MATLAB code for calculation of frequency parameters of a bi-directional FG semi-circular beam 

with clamped-clamped boundary conditions: 

 

clear all;close all; clc; 

  
% Determining the Domain & Meshing 
n   = 25  ; % Number of Points on the beam 
R   = 0.5;  % Beam's Radius 
h   = 0.05   ; %Beam's Thickness 
Rin = R-h/2; 
Rout= R+h/2; 

  
w   = 00.01:0.01:100 ; % The range of Natural Frequency 
%U0 =( 4*(r^2-R0^2-2*R0*r*log(r/R0))/h^2 ); 
Z1  = zeros(n,1);       %Matrix Determinant 
l   = pi;               %opening Angle 

  
%% Determininig The X Matrix 
[x,XX] = myPz(n,l);     %Coordinates of the points on the beam 

  
% Creating C_ij 
c   = myDQM(n,l);       % GDQ CoefficientsS 

  
g1  = eye(n);           %Gradation Of material Along the beam 
g2  = c; 

  
for i=1:n 
    for j=1:n 

     
    g1(i,j) = g1(i,j)*exp(   -0.25* x(i)); 
    g2(i,j) = g2(i,j) * exp( -0.25* x(i)); 
    end 
end 

  

  
rho_out     = 3200;     %Mass Density 
rho_in      = 7800; 

  
E_out       = 390*10^9; %Young's Modulus 
E_in        = 214*10^9; 

  
G_out       = 137*10^9; 
G_in        = 82.2*10^9; 

  

  
% Radial Gradation of Material 



40 

 

% rho = (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))   ;   
% E   = (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))   ; 
% G   = (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))/(2*(1+0.3) ; 

  

  

  

    
%% Calculution of Constant Coefficients 

  
AA1  =   integral(@(r) (1 + (rho_in/rho_out - 1) .* (1/2 - (r - R) / h))... 
    .*r                                            ,R-h/2,R+h/2); 
AA2  =   integral(@(r) (1 + (rho_in/rho_out - 1) .* (1/2 - (r - R) / h))... 
    .*r.^2                                         ,R-h/2,R+h/2); 
AA3  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^3                                         ,R-h/2,R+h/2); 

  
K0  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K1  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*      ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K2  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^2.*   ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K3  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^3.*   ( 4.*(r.^2-R.^2-2*R*r.*log(r./R))/h.^2 )        ,R-h/2,R+h/2); 

  
I0  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*         (( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2)      ,R-h/2,R+h/2); 
I1  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*      (( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2)      ,R-h/2,R+h/2); 
I2  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^2.*   (( 4*(r.^2-R^2-2*R*r.*log(r./R))./h^2 ).^2)    ,R-h/2,R+h/2); 

  

  
E0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r                                            ,R-h/2,R+h/2); 
E1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^0                                         ,R-h/2,R+h/2); 
E2  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r                                            ,R-h/2,R+h/2); 

  

  
EE0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r.*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
EE1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*           ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
EE2  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*        ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 

  

  
EEE0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r.*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2           ,R-

h/2,R+h/2); 
EEE1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*           ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2           ,R-h/2,R+h/2); 
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G0  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) )/G_out./r                                            

,R-h/2,R+h/2); 
G1  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^0                                        ,R-h/2,R+h/2); 
G2  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) )/G_out.*r                                            

,R-h/2,R+h/2); 
G3  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^2                                         ,R-h/2,R+h/2); 
G4  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^3                                         ,R-h/2,R+h/2);  

  

  

  

  
for i=1:length(w) 
%% Construction of the Coefficent Matrix  

  
        A1 = zeros(7*n); 

  
        A1(1:n,1:n) = 1/l^4 *  1/12 * (h/R)^3 * w(i)^2 * AA1/(R*h) * g1;               

%Ur 
        A1(1:n,4*n+1:5*n) = c;                                                              

%F 
        A1(1:n,5*n+1:6*n) = -eye(n,n);                                                      

%N 

         

  

  

  
        A1(n+1:2*n,n+1:2*n)   = 1/l^4 * 1/12 * (h/R)^3 * (-K1/(R*h) ) * w(i)^2 * 

g1;   %U1 
        A1(n+1:2*n,2*n+1:3*n) = 1/l^4 * 1/12 * (h/R)^3 * (AA1/(R*h) +  K1/(R*h)) * 

w(i)^2 * g1;%Utheta 
        A1(n+1:2*n,3*n+1:4*n) = 1/l^4 *  1/12 * (h/R)^3  * (AA2/(R) - AA1 - K1 

)/(R*h) * w(i)^2 * g1;%phi 
        A1(n+1:2*n,4*n+1:5*n) = eye(n,n);                                                   

%F 
        A1(n+1:2*n,5*n+1:6*n) = c;                                                          

%N 

  

         

         
        A1(2*n+1:3*n,n+1:2*n)   = 1/l^4 *  (-1)/12 * (h/R)^3 * 1/(R*h) * (K2/R - 

K1 ) * w(i)^2 * g1; %U1 
        A1(2*n+1:3*n,2*n+1:3*n) = 1/l^4 *  1/12 * (h/R)^3 * 1/(R*h) * ( AA2/R - 

AA1 - K1 + K2/R ) * w(i)^2 * g1; %Utheta 
        A1(2*n+1:3*n,3*n+1:4*n) = 1/l^4 *  1/12 * (h/R)^3 * 1/(R*h) * (AA3/(R^2) + 

AA1 -2*AA2/R - K2/R + K1) * w(i)^2 * g1; %phi 
        A1(2*n+1:3*n,4*n+1:5*n) = -eye(n,n);%F 
        A1(2*n+1:3*n,6*n+1:7*n) = c;%M 
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        A1(3*n+1:4*n,1:n) = c;%Ur 
        A1(3*n+1:4*n,n+1:2*n) = -eye(n,n);%U1 

      

  
        A1(4*n+1:5*n,1:n) =  (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) * g2; 
        A1(4*n+1:5*n,2*n+1:3*n) =  - (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) 

* g1; 
        A1(4*n+1:5*n,3*n+1:4*n) = (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) * 

g1; 
        A1(4*n+1:5*n,4*n+1:5*n) = -eye(n,n);                % F Definition 

  

         
        A1(5*n+1:6*n,1:n) = E0*g1;  
        A1(5*n+1:6*n,n+1:2*n) = -EE0*g2; 
        A1(5*n+1:6*n,2*n+1:3*n) = (E0 + EE0) * g2;  
        A1(5*n+1:6*n,3*n+1:4*n) = (E1/R - E0 - EE0) * g2; 
        A1(5*n+1:6*n,5*n+1:6*n) = -eye(n,n);% N Definition 

         

         
        A1(6*n+1:7*n,1:n) = (E1/R - E0)*g1; 
        A1(6*n+1:7*n,n+1:2*n) = (EE0 - EE1/R)*g2; 
        A1(6*n+1:7*n,2*n+1:3*n) = (E1/R + EE1/R - E0 - EE0)*g2; 
        A1(6*n+1:7*n,3*n+1:4*n) = (E2/R^2 - 2*E1/R - EE1/R + EE0 + E0)*g2; 
        A1(6*n+1:7*n,6*n+1:7*n) = -eye(n,n); %M Definition 

         

  
 %% Applying the Boundry Conditions 

  
        A2 = A1; 

  
        A2(4*n,:)   = [];   % phi(n) 
        A2(3*n+1,:) = [];   % phi(1) 
        A2(3*n,:)   = [];   % Utheta(n) 
        A2(2*n+1,:) = [];   % Utheta(1) 
        A2(n,:)     = [];   % Ur(n) 
        A2(1,:)     = [];   % Ur(1) 

  

  

  
        A2(:,4*n)   = []; 
        A2(:,3*n+1) = []; 
        A2(:,3*n)   = []; 
        A2(:,2*n+1) = []; 
        A2(:,n)     = []; 
        A2(:,1)     = []; 

        

         
        Z1(i) = det(A2); 
end 

  
plot(w,Z1) 
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The MATLAB code for plotting normalized the mode shapes, displacement components and stress 

resultants of a bi-directional FG semi-circular beam with clamped-clamped boundary conditions: 

 

clear all;close all; clc; 

  
color1=['r' 'm' 'g' 'b']; 

  
% Determining the Domain & Meshing 
n   = 401  ; 
R   = 0.5  ; 
h   = 0.05   ; 
Rin = R-h/2; 
Rout= R+h/2; 

  
w   = [28.29 60.87 112.45 162.9] ; 
%U0 =( 4*(r^2-R0^2-2*R0*r*log(r/R0))/h^2 ); 
Z1  = zeros(n,1); 
l   = pi; 

  
%% Determininig The X Matrix 
[x,XX] = myPz(n,l); 

  
% Creating C_ij 

  

  
c   = myDQM(n,l); 

  
g1  = eye(n); 
g2  = c; 

  
for i=1:n 
    for j=1:n 

     
    g1(i,j) = g1(i,j)*exp(-0.25 * x(i)); 
    g2(i,j) = g2(i,j) * exp(-0.25 * x(i)); 
    end 
end 

  

  

  
rho = 1; 
E   = 1; 
G   = E/(2*(1+0.3)) ; 

  
rho_out     = 3200; 
rho_in      = 7800; 

  
E_out       = 390*10^9; 
E_in        = 214*10^9; 
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G_out       = 137*10^9; 
G_in        = 82.2*10^9; 

  
% rho = (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))   ; 
% E   = (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))   ; 
% G   = (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))/(2*(1+0.3) ; 

  

  

  

    
% AA0  =   integral(@(r) rho./r                                            ,R-

h/2,R+h/2); 
AA1  =   integral(@(r) (1 + (rho_in/rho_out - 1) .* (1/2 - (r - R) / h))... 
    .*r                                            ,R-h/2,R+h/2); 
AA2  =   integral(@(r) (1 + (rho_in/rho_out - 1) .* (1/2 - (r - R) / h))... 
    .*r.^2                                         ,R-h/2,R+h/2); 
AA3  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^3                                         ,R-h/2,R+h/2); 

  
K0  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K1  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*      ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K2  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^2.*   ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
K3  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^3.*   ( 4.*(r.^2-R.^2-2*R*r.*log(r./R))/h.^2 )        ,R-h/2,R+h/2); 

  
I0  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*         (( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2)      ,R-h/2,R+h/2); 
I1  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*      (( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2)      ,R-h/2,R+h/2); 
I2  =   integral(@(r) (1 + (rho_in/rho_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^2.*   (( 4*(r.^2-R^2-2*R*r.*log(r./R))./h^2 ).^2)    ,R-h/2,R+h/2); 

  

  
E0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r                                            ,R-h/2,R+h/2); 
E1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r.^0                                         ,R-h/2,R+h/2); 
E2  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r                                            ,R-h/2,R+h/2); 

  

  
EE0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r.*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
EE1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*           ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 
EE2  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*r.*        ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 )           ,R-h/2,R+h/2); 

  

  
EEE0  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    ./r.*         ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2           ,R-

h/2,R+h/2); 
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EEE1  =   integral(@(r) (1 + (E_in/E_out - 1) * (1/2 - (r - R) / h))... 
    .*           ( 4*(r.^2-R^2-2*R*r.*log(r./R))/h^2 ).^2           ,R-h/2,R+h/2); 

  

  
G0  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) )/G_out./r                                            

,R-h/2,R+h/2); 
G1  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^0                                        ,R-h/2,R+h/2); 
G2  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) )/G_out.*r                                            

,R-h/2,R+h/2); 
G3  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^2                                         ,R-h/2,R+h/2); 
G4  =   integral(@(r) (  G_out + ( G_in - G_out ) * ( 0.5 - ( r-R )/h ) 

)/G_out.*r.^3                                         ,R-h/2,R+h/2);  

  
  xx  = x; 
  xx(n)=[]; 
  xxx = xx; 
  xxx(4)=[]; 
  xxx(1)=[]; 
  xx(1)=[]; 

   

   
  xcoordinate = x - l/2 ; 
  xxcoordinate = xx - l/2 ; 
  xxxcoordinate = xxx - l/2 ; 

  
for i=1:length(w) 

  
% Coefficent Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
        A1 = zeros(7*n); 

  
        A1(1:n,1:n) = 1/l^4 *  1/12 * (h/R)^3 * w(i)^2 * AA1/(R*h) * g1;               

%Ur 
        A1(1:n,4*n+1:5*n) = c;                                                              

%F 
        A1(1:n,5*n+1:6*n) = -eye(n,n);                                                      

%N 

         

  

  

  
        A1(n+1:2*n,n+1:2*n)   = 1/l^4 * 1/12 * (h/R)^3 * (-K1/(R*h) ) * w(i)^2 * 

g1;   %U1 
        A1(n+1:2*n,2*n+1:3*n) = 1/l^4 * 1/12 * (h/R)^3 * (AA1/(R*h) +  K1/(R*h)) * 

w(i)^2 * g1;%Utheta 
        A1(n+1:2*n,3*n+1:4*n) = 1/l^4 *  1/12 * (h/R)^3  * (AA2/(R) - AA1 - K1 

)/(R*h) * w(i)^2 * g1;%phi 
        A1(n+1:2*n,4*n+1:5*n) = eye(n,n);                                                   

%F 
        A1(n+1:2*n,5*n+1:6*n) = c;                                                          

%N 
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        A1(2*n+1:3*n,n+1:2*n)   = 1/l^4 *  (-1)/12 * (h/R)^3 * 1/(R*h) * (K2/R - 

K1 ) * w(i)^2 * g1; 
        A1(2*n+1:3*n,2*n+1:3*n) = 1/l^4 *  1/12 * (h/R)^3 * 1/(R*h) * ( AA2/R - 

AA1 - K1 + K2/R ) * w(i)^2 * g1; 
        A1(2*n+1:3*n,3*n+1:4*n) = 1/l^4 *  1/12 * (h/R)^3 * 1/(R*h) * (AA3/(R^2) + 

AA1 -2*AA2/R - K2/R + K1) * w(i)^2 * g1; 
        A1(2*n+1:3*n,4*n+1:5*n) = -eye(n,n); 
        A1(2*n+1:3*n,6*n+1:7*n) = c; 

  

  

         
        A1(3*n+1:4*n,1:n) = c; 
        A1(3*n+1:4*n,n+1:2*n) = -eye(n,n); 

      

  
        A1(4*n+1:5*n,1:n) =  (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) * g2; 
        A1(4*n+1:5*n,2*n+1:3*n) =  - (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) 

* g1; 
        A1(4*n+1:5*n,3*n+1:4*n) = (G0* (1 - 4*(R/h)^2) - 4*G2/h^2 + 8*G1*R/h^2) * 

g1; 
        A1(4*n+1:5*n,4*n+1:5*n) = -eye(n,n);                % F Definition 

  

         
        A1(5*n+1:6*n,1:n) = E0*g1;  
        A1(5*n+1:6*n,n+1:2*n) = -EE0*g2; 
        A1(5*n+1:6*n,2*n+1:3*n) = (E0 + EE0) * g2;  
        A1(5*n+1:6*n,3*n+1:4*n) = (E1/R - E0 - EE0) * g2; 
        A1(5*n+1:6*n,5*n+1:6*n) = -eye(n,n); 

         

         
        A1(6*n+1:7*n,1:n) = (E1/R - E0)*g1; 
        A1(6*n+1:7*n,n+1:2*n) = (EE0 - EE1/R)*g2; 
        A1(6*n+1:7*n,2*n+1:3*n) = (E1/R + EE1/R - E0 - EE0)*g2; 
        A1(6*n+1:7*n,3*n+1:4*n) = (E2/R^2 - 2*E1/R - EE1/R + EE0 + E0)*g2; 
        A1(6*n+1:7*n,6*n+1:7*n) = -eye(n,n); 

         

         

  

  
 % Boundry Conditions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
        A2 = A1; 

  
        A2(4*n,:)   = []; 
        A2(3*n+1,:) = []; 
        A2(3*n,:)   = []; 
        A2(2*n+1,:) = []; 
        A2(n,:)     = []; 
        A2(5,:)= []; 
        A2(1,:)     = []; 
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        A2(:,4*n)   = []; 
        A2(:,3*n+1) = []; 
        A2(:,3*n)   = []; 
        A2(:,2*n+1) = []; 
        A2(:,n)     = []; 
        A2(:,5)     = []; 
        A2(:,1)     = []; 

         

         

         
        B1 = -A1(:,5); 
        B1(4*n,:)   = []; 
        B1(3*n+1,:) = []; 
        B1(3*n,:)   = []; 
        B1(2*n+1,:) = []; 
        B1(n,:)     = []; 
        B1(5,:)     = []; 
        B1(1,:)     = []; 

  

         

         

  
       Sol(:,i) = A2\B1 ;   

         
ur = Sol(1:n-3,i) / max( [max(abs(Sol(1:n-3,i))) max(abs(Sol(2*n-2:3*n-5,i)))] 

)/10; 
ut = Sol(2*n-2:3*n-5,i) / max( [max(abs(Sol(1:n-3,i))) max(abs(Sol(2*n-2:3*n-

5,i)))] )/10; 

  
ut(5,:)=[]; 

        
figure(1) 
subplot(2,2,1) 
plot(xxx/l,Sol(1:n-3,i)/max(abs(Sol(1:n-3,i))),'LineWidth',2,'linestyle','-

','color',color1(i)) 

  
ylabel('u_r^0','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(a)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  
% figure(2) 
subplot(2,2,2) 
plot(x/l,Sol(n-2:2*n-3,i)/max(abs(Sol(n-2:2*n-3,i))),'LineWidth',2,'linestyle','-

','color',color1(i)) 

  
ylabel('u_1','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
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% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(b)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  
subplot(2,2,3) 
plot(xx/l,Sol(2*n-2:3*n-5,i)/max(abs(Sol(2*n-2:3*n-

5,i))),'LineWidth',2,'linestyle','-','color',color1(i)) 

  
ylabel('u_\theta','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(c)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  

  
subplot(2,2,4) 
plot(xx/l,Sol(3*n-4:4*n-7,i)/max(abs(Sol(3*n-4:4*n-

7,i))),'LineWidth',2,'linestyle','-','color',color1(i)) 

  
ylabel('\phi','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(d)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  

  

  

  
figure(2) 
subplot(3,1,1) 
plot(x/l,Sol(4*n-6:5*n-7,i)/max(abs(Sol(4*n-6:5*n-

7,i))),'LineWidth',2,'linestyle','-','color',color1(i)) 

  
ylabel('F','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(a)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  

  
subplot(3,1,2) 
plot(x/l,Sol(5*n-6:6*n-7,i)/max(abs(Sol(5*n-6:6*n-

7,i))),'LineWidth',2,'linestyle','-','color',color1(i)) 
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ylabel('N','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(b)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  
subplot(3,1,3) 
plot(x/l,Sol(6*n-6:7*n-7,i)/max(abs(Sol(6*n-6:7*n-

7,i))),'LineWidth',2,'linestyle','-','color',color1(i)) 

  
ylabel('M','FontSize',14) 
xlabel('X = \theta / \theta_0','FontSize',14) 
% title('FG beam with exponential radial gradation of properties 

CC','FontSize',14) 
title('(c)','FontSize',14) 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode'); 
grid on 
hold on 

  

  

  

  

  

  

  

  
figure(3) 

    

  
plot(sin((xxxcoordinate)').*(R+ur) + cos((xxxcoordinate)').*ut , 

cos((xxxcoordinate)').*(R+ur) + sin((xxxcoordinate)').*ut 

,'LineWidth',2,'linestyle','-','color',color1(i)) 

  

  
% title('FG beam with exponential radial gradation of properties 

HH','FontSize',14) 
title('(a)','FontSize',14) 
% legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode', 'Initial 

Shape'); 

  
hold on 

  
end 

  

  
plot(sin((xxxcoordinate)').*(R) , 

cos((xxxcoordinate)').*(R),'LineWidth',3,'linestyle','-','color','k') 
legend('1^s^t Mode' , '2^n^d Mode' , '3^r^d Mode' , '4^t^h Mode', 'Undeformed 

Beam'); 
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Definition of the Function myPz: 

 
function [fun1,fun2] = myPz(N,L) 

  
z   = zeros(1,N); 
Pz  = ones(1,N); 

  
% Defining xi_i 
for i = 1:N 
    z(i) = L*(0.5)*(  1 - cos( pi*(i-1)/(N-1) )  ); 
end 

  
% Defining Product of (xi_i - zi_j) 
for i = 1:N 
    for v = 1:N 
        if i ~= v 
            Pz(i) = Pz(i) * (z(i)-z(v)); 
        end 
    end 
end 

  
fun1 = z; 
fun2 = Pz; 

 

 

Definition of the Function myDQM: 

 
function A = myDQM(N,L) 

  
[z,Pz] = myPz(N,L); 

  
%% Defining A^1_ij 
A  = zeros(N,N); 
for i = 1:N 
    for j = 1:N 
        if i ~= j 
            A(i,j) = Pz(i) / (z(i)-z(j)) / Pz(j); 
        end 
    end 
end 
for i = 1:N 
    for v = 1:N 
        if i ~= v 
            A(i,i) = A(i,i) - A(i,v); 
        end 
    end 
end 

 

*Functions myPz and myDQM must exist in the same folder as the MATLAB codes. 
 


