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Abstract
Human rhinovirus (HRV) is the most common cause of acute exacerbations of chronic lung

diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV repli-

cation in human asthmatic airway epithelial cells may be one of the underlying mechanisms

leading to asthma exacerbations. Increased autophagy has been shown in asthmatic air-

way epithelium, but the role of autophagy in anti-HRV response remains uncertain. Treha-

lose, a natural glucose disaccharide, has been recognized as an effective autophagy

inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in

normal human primary airway epithelial cells in order to determine if autophagy directly reg-

ulates the anti-viral response against HRV. We found that trehalose-induced autophagy sig-

nificantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy

via knockdown of autophagy-related gene 5 (ATG5) effectively rescued the impaired IFN-

λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically,

ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I) and IFN-β promoter stim-

ulator 1 (IPS-1), two critical molecules involved in the expression of anti-viral interferons.

Our results suggest that induction of autophagy in human primary airway epithelial cells in-

hibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of exces-

sive autophagy in chronic lung diseases may provide a novel approach to attenuate viral

infections and associated disease exacerbations.

Introduction
Human rhinovirus (HRV) is the most frequently detected respiratory virus in all age groups of
human subjects who suffer from acute infections in the upper (e.g., common cold) as well as
the lower (e.g., bronchiolitis and pneumonia) airways [1]. Most importantly, HRV is the major
cause for acute exacerbations of chronic lung diseases such as asthma, chronic obstructive pul-
monary diseases, and cystic fibrosis [1–3]. HRV belongs to the picornaviridae family with
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single stranded RNA, and has been categorized into major (e.g., HRV-16) and minor (e.g.,
HRV-1A and HRV-1B) groups that bind host cell intercellular adhesion molecule 1 and low-
density lipoprotein receptor, respectively. Airway epithelial cells represent the primary site of
HRV infection in vivo [4, 5]. Interestingly, recent studies suggest that IFN-λ1, a type III anti-
viral interferon, is the major type of IFNs induced during HRV infection in human primary
airway epithelial cells [6–8] and serves as a crucial anti-viral mechanism against HRV infection
[9]. Impaired IFN-λ1 production and increased HRV-16 replication have been reported in
cultured human airway epithelial cells from asthmatics [10]. However, the exact mechanisms
underlying the impaired anti-viral interferon (i.e., IFN-λ1) response have not been well
elucidated.

Autophagy is an essential homeostatic pathway by which cells degrade damaged or obsolete
organelles and proteins through the lysosomal machinery [11, 12]. There is evidence of in-
creased autophagy in airway epithelial cells of asthmatics [13, 14], but the function of autop-
hagy in human airway epithelium, especially in the context of asthma-related viral (e.g., HRV)
infection, has not been explored. Recent studies suggest that autophagy serves as a novel host
defense mechanism against viral infections [15]. But, the interplay between autophagy and
anti-viral interferon response during viral infections is complex. Production of type I IFN-α in
response to infection of some RNA viruses (e.g., hepatitis C virus and HIV-1) depends on the
autophagic pathway [16, 17]. In contrast, the activation of autophagic pathway during infection
of certain RNA viruses (e.g., vesicular stomatitis virus, herpesvirus and hepatitis C virus) ap-
pears to block the production of type I IFN-β [18–20] and thereby promotes viral replication.
Mechanistically, the autophagy-related gene 5 (ATG5)-ATG12 conjugate, a key regulator of
the early autophagic process, may interact with retinoic acid-inducible gene I (RIG-I) and IFN-
β promoter stimulator 1 (IPS-1) to negatively regulate the expression of type I IFN-β [18, 21].
So far, whether ATG5 regulates the expression of type III interferons, especially IFN-λ1, in
HRV-infected human airway epithelial cells remains unclear.

Trehalose is a natural glucose disaccharide found across the three domains of life and has
multiple biological functions such as preventing LPS-mediated inflammatory response [22,
23]. Recently, trehalose has been recognized as an effective autophagy inducer in various mam-
malian cells [24, 25]. Trehalose induces autophagy by promoting the recruitment of LC3 II, the
conjugated form of LC3 I with phosphatidylethanolamine (PE), into the forming autophago-
some membrane in an ATG5-ATG12-dependent manner [18]. Thus, trehalose-induced autop-
hagy serves as an excellent model to directly dissect the role of autophagy in regulating the
anti-viral (e.g., HRV) response in human airway epithelial cells.

In the present study, we hypothesized that induction of autophagy inhibits anti-viral IFN-
λ1 response and subsequently promotes HRV-16 infection in human airway epithelial cells.
We first examined the effects of trehalose on IFN-λ1 expression and HRV-16 load in normal
human primary airway epithelial cells. We then knocked down ATG5 gene to determine the
role of trehalose-induced autophagy in inhibiting airway epithelial anti-viral responses. Lastly,
to demonstrate the potential molecular mechanisms underlying autophagy-mediated inhibi-
tion of airway epithelial anti-viral function, we examined the interaction of ATG5 protein with
RIG-I and IPS-1.

Materials and Methods

Preparation of HRV-16
HRV-16 (American Type Culture Collection, Manassas, VA) was propagated in H1-Hela cells
(CRL-1958, ATCC), and purified as described previously [26]. H1-Hela cells are susceptible to
rhinovirus infection and thus very useful for passaging and titrating rhinoviruses. Viral stocks
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were titrated by infecting H1-HeLa monolayers with serially diluted HRV-16 to assess the cyto-
pathic effect, and the viral titer was expressed as 50% tissue culture infective doses per ml
(TCID50/ml) [27].

Trehalose treatment and HRV-16 infection in normal human primary
airway epithelial cells
Normal human tracheobronchial epithelial (NHTE) cells from never smokers were isolated
from the tracheas and bronchi of de-identified organ donors whose lungs were not suitable for
transplantation as described previously [28]. We obtained the donor lungs through the Inter-
national Institute for the Advancement of Medicine (Edison, NJ) and the National Disease Re-
search Interchange (Philadelphia, PA). The collection of human tracheobronchial epithelial
cells was approved by the institutional review board (IRB) of National Jewish Health. Briefly,
cells at passage 2 were seeded into 12-well cell culture plates at 1 × 105 cells/well in bronchial
epithelial cell growth medium (BEGM) with supplements (Lonza, Walkersville, MD) at 37°C,
5% CO2. At 40–50% confluence, cells were treated with medium (control) or with 100 mM tre-
halose (Sigma-Aldrich, St. Louis, MO) for 48 h to induce autophagy. The concentration and
pre-incubation period of trehalose were chosen based on previous publications [24, 29–31] and
our preliminary study. Thereafter, medium- or trehalose-treated cells were infected with HRV-
16 at 104 TCID50/well or sterile PBS (mock infection control). Two hours later, cells were
washed three times to remove free viruses and then cultured in BEGM with or without treha-
lose (100 mM) for additional 6 or 24 h to measure IFN-λ1 expression, HRV RNA levels, activi-
ty of lactate dehydrogenase (LDH) (a marker of cytotoxicity), or LC3 I and LC3 II proteins.

ATG5 gene knockdown in normal human primary airway epithelial cells
NHTE cells at passage 2 were seeded at 2 × 105 cells/well onto collagen-coated 12-well cell cul-
ture plates. ATG5 chimera siRNA (ATG5 siRNA, H00009474-R01, Abnova, Taipei, Taiwan)
or Naito1 chimera RNAi (control siRNA, R0017, Abnova) was transfected into cells at 60–70%
confluence using siRNA transfection reagents (Santa Cruz Biotechnology Inc., Santa Cruz,
CA) according to the manufacturer's instructions. Twenty-four hours after siRNA transfection,
cells were treated with or without 100 mM trehalose for 48 h to induce autophagy. Thereafter,
cells were infected with HRV-16 at 104 TCID50/well or sterile PBS (control) as described above.
Cells were processed to examine ATG5 knockdown by Western blot, IFN-λ1 mRNA expres-
sion and HRV RNA levels by quantitative RT-PCR after 6 h of HRV-16 infection when the
anti-viral response is expected to peak.

Lactate dehydrogenase (LDH) assay
To quantitate the cytotoxic effects of trehalose and HRV-16 infection, cell culture supernatants
were subjected to measure LDH levels using a cytotoxicity detection kit (Roche Diagnostics, In-
dianapolis, IN) according to the manufacturer’s instruction. The optical density values at 450
nm (OD450nm) were determined using a microplate reader.

Western blot analysis
Equal amounts of protein samples from different treatments were separated on 10% or 15%
SDS—PAGE, transferred onto polyvinylidene difluoride (PVDF) membranes, and probed with
rabbit anti-LC3 (Sigma-Aldrich), rabbit anti-ATG5 antibody (Novus Biological, Littleton, CO),
rabbit anti-RIG-I antibody (Cell Signaling Technology Inc., Danvers, MA), mouse anti-IPS-1
(Santa Cruz Biotechnology Inc.), or mouse anti-GAPDH (Santa Cruz Biotechnology Inc.).
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Blots were then incubated with appropriate HRP-linked secondary antibodies and ECLWest-
ern blotting substrate. Densitometry was performed using the NIH Image-J software. The ra-
tios of LC3 II/LC3 I protein were used to indicate the formation of autophagosomes.

Immunoprecipitation (IP)
NHTE cells at passage 2 were seeded at 5 × 105/well onto collagen-coated 6-well cell culture
plates and were treated with or without 100 mM trehalose for 48 h to induce autophagy. There-
after, cells were infected with HRV-16 at 104 TCID50/well or sterile PBS (control) as described
above. After 6 h of HRV-16 infection, cells were lysed in IP lysis buffer consisting of 50 mM
Tris-HCl (pH 8.0), 120 mMNaCl, 1% NP-40, 4 mM EDTA, 50 mMNaF, 1 mM Na3VO4, and
1× protease inhibitor cocktail. After the cell lysate was sonicated and centrifuged, the superna-
tant was transferred and pre-cleared with protein-G agarose beads (Santa Cruz Biotechnology
Inc.) that contained the mouse isotype control IgG for 1 h at 4°C. The pre-cleared supernatant
was incubated with 0.5 μg of mouse anti-human ATG5 antibody (clone ATG5-18, Sigma-
Aldrich) at 4°C for 2 h on a rotator. Immunoprecipitated proteins were separated on 10% SDS
—PAGE for Western blot analysis of RIG-I, IPS-1 and ATG5.

Quantitative real-time RT-PCR
Taqman quantitative real-time RT-PCR was used to detect human IFN-λ1 mRNA expression
and HRV RNA levels as previously described [32]. The specific primers and probes are: IFN-λ1
(forward: 50-GGG AAC CTG TGT CTG AGA ACG T-30; reverse: 50-GAG TAG GGC TCA
GCG CAT AAA TA-30; probe: 50-CTG AGT CCA CCT GAC ACC CCA CAC C-30); HRV
(forward: 50-CCT CCG GCC CCT GAA T-30; reverse: 50-GGT CCC ATC CCG CAA TT-30,
probe: 50-CTA ACC TTA AAC CTG CAG CCA-30). Housekeeping gene GAPDH (4352934E,
Applied Biosystems, Foster City, CA) was evaluated as an internal positive control. The com-
parative cycle of threshold (ΔΔCt) method was used to demonstrate the relative levels of
target genes.

ELISA
Human IFN-λ1 protein levels in cell culture supernatants were determined by using a human
IFN-λ1 DuoSet ELISA Development Kit (DY7246, R&D Systems, Minneapolis, MN).

Statistical analysis
Data are presented as means ± SEM. One-way analysis of variance (ANOVA) was used for
multiple comparisons, and a Tukey’s post hoc test was applied where appropriate. Student’s
t test was used when only two groups were compared. A p value< 0.05 was
considered significant.

Results

Trehalose inhibits IFN-λ1 expression and promotes HRV-16 replication
in normal human primary airway epithelial cells
To determine whether trehalose regulates the airway epithelial anti-viral responses, we mea-
sured IFN-λ1 expression and HRV load in NHTE cells after treatment with or without treha-
lose and HRV-16 for 6 and 24 h. The 6 and 24 h time points post infection were chosen based
on our preliminary time-course (6, 24 and 48 h) optimization experiments where cells were in-
fected with HRV-16 at the dose of 104 TCID50/well. We found that HRV-16 levels were in-
creased at 6 h, and maintained at 24 h, but not at 48 h.
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HRV-16 infection alone significantly increased IFN-λ1 mRNA levels as compare to cells
with medium/PBS treatment at both 6 and 24 h (Fig 1A). Trehalose treatment notably de-
creased HRV-induced IFN-λ1 mRNA expression compared with medium-treated and HRV-
infected cells at both 6 and 24 h. IFN-λ1 protein was undetectable by ELISA in non-infected
cells. HRV-induced IFN-λ1 protein secretion was suppressed by trehalose treatment, particu-
larly at 6 h (Fig 1B). To examine if trehalose affects airway epithelial HRV load, we quantified
HRV-16 RNA levels in HRV-infected cells. Trehalose treatment significantly increased intra-
cellular HRV-16 RNA levels at 6 h, and maintained at 24 h (Fig 1C).

Taken together, our data suggests that trehalose significantly impairs anti-viral IFN-λ1 ex-
pression and promotes HRV-16 infection in normal human primary airway epithelial cells.

Trehalose induces autophagy in normal human primary airway epithelial
cells
As the 6 h post HRV-16 infection presented the most significant changes of IFN-λ1 expression
and viral load with trehalose treatment, we focused on this early time-point to examine the in-
duction of autophagy by trehalose in normal human primary airway epithelial cells. We mea-
sured LC3 I and LC3 II protein levels in NHTE cells after treatment with or without trehalose
and HRV-16 for 6 h. Without HRV-16 infection, trehalose treatment notably increased accu-
mulation of LC3 II protein compared with medium control (Fig 2). In line with our previous
finding that HRV-16 induces autophagy in a human NCI-H292 lung epithelial cell line [32],
HRV-16 infection significantly increased the ratio of LC3 II/LC3 I protein in NHTE cells. Tre-
halose treatment robustly increased LC3 II protein levels following HRV-16 infection as com-
pared to medium-treated and HRV-infected cells.

To evaluate the potential cytotoxic effects of trehalose and HRV-16 infection that may affect
autophagy in NHTE cells, LDH release was measured in the cell supernatants from the same
experiments. No significant increase of LDH activity was observed in cells after treatment with
trehalose, HRV-16 or both for 6 h (Fig 3).

All these data suggest that trehalose can efficiently activate the autophagic pathway with
minimal cytotoxicity in normal human primary airway epithelial cells.

Inhibition of the autophagic pathway in normal human primary airway
epithelial cells rescues the impaired IFN-λ1 expression by trehalose and
subsequently reduces HRV-16 load
To determine whether trehalose-induced autophagy contributes to the down-regulation of
IFN-λ1 upon HRV-16 infection, ATG5 was knocked down by using target-specific chimera
RNA interference [33–35]. Control siRNA- or ATG5 siRNA-transfected NHTE cells were in-
fected with HRV-16 or PBS for 6 h to examine whether ATG5 knockdown alters IFN-λ1 ex-
pression and viral load. Western blot analysis confirmed ATG5 protein reduction by ATG5
siRNA in both medium- and trehalose-treated cells (Fig 4A). Intriguingly, ATG5 siRNA was
shown to increase both LC3 I and LC3 II basal protein levels although an expected reduction in
the ratio of LC3 II/LC3 I protein was observed compared with control siRNA (Fig 4B). Similar
results were recently reported in fibroblasts transfected with conventional siRNAs against
ATG5 [36]. Trehalose treatment in control siRNA-treated cells markedly increased (4-fold) the
ratio of LC3 II/LC3 I protein compared with medium control. However, the conversion of LC3
I into LC3 II after trehalose treatment was decreased by 50% following ATG5 knockdown.

In keeping with above data, trehalose treatment significantly inhibited HRV-induced IFN-
λ1 mRNA expression in both control siRNA- and ATG5 siRNA-treated cells (Fig 5A). Impor-
tantly, HRV-induced IFN-λ1 mRNA levels were significantly higher in ATG5 siRNA-treated
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Fig 1. Trehalose inhibits IFN-λ1 expression and promotes HRV-16 replication in normal human
primary airway epithelial cells.Normal human tracheobronchial epithelial cells were treated with medium or
trehalose (TRE, 100 mM) for 48 h and then infected with HRV-16 (104 TCID50/well) for 2 h. After removing the
free viruses, cells were incubated with medium or trehalose for additional 6 and 24 h. IFN-λ1 mRNA levels (A)
and IFN-λ1 protein levels (B) were assessed by quantitative real-time RT-PCR and ELISA, respectively.
HRV-16 RNA levels (C) were examined by quantitative real-time RT-PCR. Data are presented as
mean ± SEM (n = 5 independent experiments). NS, not significant; *, p<0.05; **, p<0.01.

doi:10.1371/journal.pone.0124524.g001
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cells vs. control siRNA-treated cells. Lastly, ATG5 knockdown prevented the increase of intra-
cellular HRV-16 RNA levels after trehalose treatment (Fig 5B).

Collectively, these results indicate that the impaired IFN-λ1 expression and enhanced HRV
replication after trehalose treatment is dependent on induction of autophagy in normal human
primary airway epithelial cells.

ATG5 protein interacts with RIG-I and IPS-1 in normal human primary
airway epithelial cells
To uncover the potential molecular mechanisms involved in autophagy-mediated suppression
of IFN-λ1, the interaction of ATG5 protein with RIG-I and IPS-1 was examined by ATG5 pull-
down, followed by immunoblotting of RIG-I and IPS-1 in NHTE cells after treatment with or
without trehalose and HRV-16 for 6 h. ATG5 protein was constitutively expressed at a low
level in cultured NHTE cells. RIG-I and IPS-1 were co-immunoprecipitated with ATG5 protein
(Fig 6). A stronger interaction of RIG-I and IPS-1 with ATG5 protein was observed in

Fig 2. Trehalose induces autophagy in normal human primary airway epithelial cells.Normal human
tracheobronchial epithelial cells were treated with medium or trehalose (TRE, 100 mM) for 48 h and then
infected with HRV-16 (104 TCID50/well) for 2 h. After removing the free viruses, cells were incubated with
medium or trehalose for additional 6 h. Protein levels of LC3 I and LC3 II were examined byWestern blot
analysis with GAPDH protein used as loading control. Data are expressed as mean ± SEM (A) (n = 5
independent experiments, * p<0.05). A representative Western blot picture of LC3 I and LC3 II (B) was
shown from 5 independent experiments.

doi:10.1371/journal.pone.0124524.g002
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Fig 3. Trehalose exhibits minimal cytotoxic effect in normal human primary airway epithelial cells.
Normal human tracheobronchial epithelial cells were treated with medium or trehalose (TRE, 100 mM) for
48 h and then infected with HRV-16 (104 TCID50/well) for 2 h. After removing the free viruses, cells were
incubated with medium or trehalose for additional 6 h. The cytotoxic effect was assessed by measuring
lactate dehydrogenase (LDH) activity in cell culture supernatants. Data are presented as mean ± SEM (n = 5
independent experiments). NS, not significant.

doi:10.1371/journal.pone.0124524.g003

Fig 4. Knockdown of autophagy-related gene 5 (ATG5) inhibits trehalose-induced autophagy in
normal human primary airway epithelial cells. Normal human tracheobronchial epithelial cells were
transfected with Naito1 chimera RNAi (control siRNA) or ATG5 chimera siRNA (ATG5 siRNA). Twenty-four
hours after siRNA transfection, cells were treated with medium or trehalose (TRE, 100 mM) for 48 h. ATG5
protein (A) and LC3 I and LC3 II proteins (B) were examined byWestern blot analysis with GAPDH protein
used as loading control. The representative Western blot picture was shown from 2 independent experiments
with each being performed in triplicate wells.

doi:10.1371/journal.pone.0124524.g004
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trehalose-treated cells, especially with HRV-16 infection. These observations indicate that
ATG5 may interact with RIG-I and IPS-1 upon induction of autophagy in normal human pri-
mary airway epithelial cells.

Discussion
This is the first study to provide direct evidence that autophagy impairs the anti-viral interfer-
on response and facilitates HRV infection in human airway epithelial cells. We discovered that
trehalose-induced autophagy directly inhibits IFN-λ1 expression and promotes HRV-16 infec-
tion in normal human primary airway epithelial cells.

Despite overwhelming evidence linking HRV infections to exacerbations of asthma and
other lung diseases, the mechanisms of frequent airway HRV infections are poorly understood.
Impaired IFN-λ1 induction in HRV-infected asthmatic airway epithelial cells may in part

Fig 5. Inhibition of autophagy rescues the impaired IFN-λ1 expression by trehalose and subsequently
reduces HRV-16 load in normal human primary airway epithelial cells.Normal human tracheobronchial
epithelial cells were transfected with Naito1 chimera RNAi (control siRNA) or ATG5 chimera siRNA (ATG5
siRNA). Twenty-four hours after siRNA transfection, cells were treated with medium or trehalose (TRE, 100
mM) for 48 h and then infected with HRV-16 (104 TCID50/well) for 2 h. After removing the free viruses, cells
were incubated with medium or trehalose for additional 6 h. The expression of IFN-λ1 mRNA (A) and viral
RNA levels (B) were quantified by quantitative real-time RT-PCR. Data are presented as mean ± SEM (n = 2
independent experiments with each being performed in triplicate wells). NS, not significant; *, p<0.05.

doi:10.1371/journal.pone.0124524.g005
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explain the increased viral infection during acute exacerbations [1–3], but the underlying
mechanisms have not been well elucidated. Autophagy has been proposed as a novel mecha-
nism in response to viral infections. Although autophagy is increased in asthmatic airway epi-
thelial cells [13, 14], its role in the anti-viral interferon response remains uncertain. Our
previous publication [32] indicates that interleukin-1 receptor-associated kinase M (IRAK-M),
a negative regulator of innate immunity, promotes lung epithelial HRV-16 infection in part
through the activation of autophagic pathway. However, whether autophagy directly impairs
the anti-viral interferon response has not been addressed. Autophagy can be induced by vari-
ous physiological, pathological and pharmacological factors. In the current study, we used tre-
halose, a natural compound, to induce autophagy as it exhibits minimal cytotoxic effect in a
variety of mammalian cells [24, 25]. Indeed, trehalose did not show any cytotoxicity in normal
human primary airway epithelial cells that may compromise our conclusion about the role of
autophagy in host defense against HRV infection. Our data clearly reveal that trehalose-
induced autophagy directly inhibits the expression of IFN-λ1 and promotes viral replication in
HRV-16-infected normal human primary airway epithelial cells.

For the first time, we have applied chimera RNAi, a novel mammalian gene-silencing tool,
in human primary airway epithelial cells. ATG5 chimera siRNA successfully reduces ATG5
protein and leads to inhibition of autophagy reflected by a reduction in the ratio of LC3 II/LC3
I protein in NHTE cells. Blocking trehalose-induced autophagy via ATG5 knockdown effec-
tively rescues the impairment of IFN-λ1 expression after trehalose treatment and subsequently
reduces HRV-16 load. Our research findings suggest induction of autophagy as a novel mecha-
nism to hinder host anti-viral defense against respiratory viral (e.g., HRV-16) infections in the
lung. Of note, we have observed that control chimera siRNA alone slightly increased LC3 II ex-
pression in NHTE cells. This data is similar to a previous report that the transfection reagent
(Lipofectamine 2000) and negative control siRNA complex could increase autophagosome for-
mation [37]. Since activation of airway epithelial autophagy promotes HRV-16 replication
[32], the increase of the basal autophagy levels caused by chimera siRNA transfection may be
partially responsible for the smaller difference of HRV-16 load at 6 h between medium and tre-
halose treatment groups (Fig 5B) as compared to cells without chimera siRNA transfection
(Fig 1C).

How trehalose-mediated autophagy impairs the anti-viral interferon response in airway epi-
thelial cells remains to be elucidated. Upon RNA viral infections, RIG-I recognizes viral RNA

Fig 6. Autophagy-related gene 5 (ATG5) protein interacts with retinoic acid-inducible gene I (RIG-I)
and IFN-β promoter stimulator 1 (IPS-1) in normal human primary airway epithelial cells. Normal
human tracheobronchial epithelial cells were treated with medium or trehalose (TRE, 100 mM) for 48 h and
then infected with HRV-16 (104 TCID50/well) for 2 h. After removing the free viruses, cells were incubated with
medium or trehalose for additional 6 h. Pre-cleared cell lysates were incubated with a mouse anti-human
ATG5 antibody, and immunoprecipitated proteins were separated on 10% SDS—PAGE for immunoblotting
of RIG-I, IPS-1 and ATG5. The representative Western blot picture was shown from 2 independent
experiments with each being performed in triplicate wells.

doi:10.1371/journal.pone.0124524.g006
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in the cytoplasm of infected cells and then binds to IPS-1 to induce the production of interfer-
ons and host anti-viral defense [38, 39]. A recent study has demonstrated that IPS-1 is essential
for type III IFN production by hepatocytes and dendritic cells in response to hepatitis C virus
infection [40]. Interestingly, ATG5-ATG12 conjugate negatively regulates type I IFN produc-
tion by direct association with RIG-I and IPS-1 through the caspase recruitment domains
[18–21]. As trehalose increases ATG5-ATG12 conjugate, we sought to examine if ATG5 inter-
acts with RIG-I and IPS-1 in human airway epithelial cells. Our data suggests that ATG5 pro-
tein interacts with RIG-I and IPS-1 in NHTE cells, especially when the autophagic pathway is
activated by trehalose and HRV infection. Such an interaction may be responsible for the sup-
pression of type III IFN-λ1 expression and the subsequent increase of HRV replication in nor-
mal human primary airway epithelial cells. Future studies are warranted to clarify the detailed
molecular mechanisms by which the interaction of ATG5 with RIG-I and IPS-1 in human air-
way epithelial cells inhibits IFN-λ1 expression following HRV infection.

In summary, our research findings indicate that induction of autophagy directly impairs the
expression of anti-viral type III IFN-λ1 and enhances HRV-16 infection in normal human pri-
mary airway epithelial cells. A better understanding of the role of autophagy in airway epitheli-
al defense against HRV infection may lead to novel interventions to attenuate viral infections
during acute exacerbations of asthma and other chronic lung diseases.
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