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ABSTRACT 

Advances in bioinformatics and computational biology have enabled integration of an 

enormous amount of known biological interactions. This has enabled researchers to use models 

and data to design experiments and guide new discovery as well as test for consistency. One such 

computational method is constraint-based metabolic flux modeling. This is performed using 

genome-scale metabolic models (GEMs) that are a collection of biochemical reactions, derived 

from a genome’s annotation. This type of flux modeling enables prediction of net metabolite 

conversion rates (metabolic fluxes) to help understand metabolic activities under specific 

environmental conditions. It can also be used to derive metabolic engineering strategies that 

involve genetic manipulations. Over the past decade, GEMs have been constructed for several 

different microbes, plants, and animal species. Researchers have also developed advanced 

algorithms to use GEMs to predict genetic modifications for the overproduction of biofuel and 

valuable commodity chemicals. Many of the predictive algorithms for microbes were validated 

with experimental results and some have been applied industrially. However, there is much room 

for improvement. For example, many algorithms lack straight-forward predictions that truly help 

non-computationally oriented researchers understand the predicted necessary metabolic 

modifications. Other algorithms are limited to simple genetic manipulations due to 

computational demands. Utilization of GEMs and flux-based modeling to predict in vivo 

characteristics of multicellular organisms has also proven to be challenging. Many researchers 

have created unique frameworks to use plant GEMs to hypothesize complex cellular interactions, 



such as metabolic adjustments in rice under variable light intensity and in developing tomato 

fruit. However, few quantitative predictions have been validated experimentally in plants. This 

research demonstrates the utility of GEMs and flux-based modeling in both metabolic 

engineering and analysis by tackling the challenges addressed previously with alternative 

approaches. Here, a novel predictive algorithm, Node-Reward Optimization (NR-Opt) toolbox, 

was developed. It delivers concise and accurate metabolic engineering designs (i.e. genetic 

modifications) that can truly improve the efficiency of strain development. As a proof-of-

concept, the algorithm was deployed on GEMs of E. coli and Arabidopsis thaliana, and the 

predicted metabolic engineering strategies were compared with results of well-accepted 

algorithms and validated with published experimental data. To demonstrate the utility of GEMs 

and flux-based modeling in analyzing plant metabolism, specifically its response to changes in 

the signaling pathway, a novel modeling framework and analytical pipeline were developed to 

simulate changes of growth and starch metabolism in Arabidopsis over multiple stages of 

development. This novel framework was validated through simulation of growth and starch 

metabolism of Arabidopsis plants overexpressing sucrose non-fermenting related kinase 1.1 

(SnRK1.1). Previous studies suggest that SnRK1.1 may play a critical signaling role in plant 

development and starch level (a critical carbon source for plant night growth). It has been shown 

that overexpressing of SnRK1.1 in Arabidopsis can delay vegetative-to-reproductive transition. 

Many studies on plant development have correlated the delay in developmental transition to 

reduction in starch turnover at night. To determine whether starch played a role in the delayed 

developmental transition in SnRK1.1 overexpressor plants, starch turnover was simulated at 

multiple developmental stages. Simulations predicted no reduction in starch turnover prior to 

developmental transition. Predicted results were experimentally validated, and the predictions 



were in close agreement with experimental data. This result further supports previous data that 

SnRK1.1 may regulate developmental transition in Arabidopsis. This study further validates the 

utility of GEMs and flux-based modeling in guiding future metabolic research. 
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GENERAL AUDIENCE ABSTRACT 

Recent advances in genetic and biochemical studies revealed the incredible complexity of 

cells, which generated interests in using computers to aid whole cell analyses and design cell 

engineering strategies to overproduce valuable commodity chemicals, such as biofuel, 

medicines, polymers, and many industrial materials. In order to use computers to study cells, 

current knowledge of cellular machinery is converted into mathematical models, such as 

genome-scale metabolic models. Genome-scale metabolic models are used to simulate the rates 

of chemical events in cells, which helps researchers predict cellular outputs of interest, such as 

growth rate and chemical synthesis rates. Combining genome-scale metabolic models with 

sophisticated computer algorithms, researchers can simulate numerous cell engineering 

experiments and select a few candidates to test physically, which can reduce cost and research 

time significantly. This computational technique has been well validated in microorganisms, 

such as E. coli and yeast; however, the ability to simulate cellular chemistry accurately in plants 

remains a challenge, which was a goal in my research. In addition, my research also aimed to 

reduce the inefficiencies in previous cell engineering design algorithms. I was able to develop a 

novel genome-scale model framework that enabled accurate simulation of plant growth and 

changes of starch content over time. I also developed a new computer algorithm that could 

significantly improve the efficiency in designing cell engineering strategies. 
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CHAPTER 1 

 

INTRODUCTION 

Genome-scale models and their utilities 

A genome-scale metabolic flux model (GEM) is a mathematical representation of the 

metabolic network of an organism. It is a network of biochemical reactions assembled from 

annotated enzyme-coding genes, and it has been used traditionally to aid the analysis of 

metabolism and design metabolic engineering strategies. Since its initial introduction in 1999 

(Schilling et al., 1999), GEM reconstructions have been built for many well-studied organisms, 

including E. coli (Edwards and Palsson, 2000), Helicobacter pylori (Schilling et al., 2002; Thiele 

et al., 2005), Saccharomyces cerevisiae (Förster et al., 2003; Herrgård et al., 2008), Mus 

musculus (Sheikh et al., 2005), Arabidopsis thaliana (Cheung et al., 2013; de Oliveira Dal'Molin 

et al., 2010; Mintz-Oron et al., 2012; Poolman et al., 2009), and Homo sapiens (Duarte et al., 

2007). A critical component of a GEM is the biomass equation, which accounts for all known 

biomass constituents and their fractional contributions to the overall cellular biomass (Thiele and 

Palsson, 2010). The biomass equation often includes carbohydrates, amino acids, lipids, nucleic 

acids, cell wall polymers, ions, and maintenance ATP, which is the energy requirement to drive 

growth and maintenance (Poolman et al., 2009). The most straight-forward method to compute 

flux distribution within a metabolic network is to perform flux balance analysis (FBA) given an 

objective function (usually maximized cell growth) and constraints (i.e. reaction reversibility 

based on thermodynamics and observed influx/efflux of substrate/products). FBA functions by 

first assuming cellular metabolism is at a pseudo-steady state, where changes in cell development 

over time are slow compared to rates of catabolic and anabolic flux (Orth et al., 2010). To obtain 
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meaningful information from FBA calculations, a high-quality GEM with careful manual 

curation is required. Comprehensive protocols for construction high-quality GEMs and resources 

to automatically generate scaffold GEMs are currently available (Büchel et al., 2013; Devoid et 

al., 2013; King et al., 2015; Thiele and Palsson, 2010). Another powerful computational method 

to predict flux distribution in a GEM is the minimization of metabolic adjustment (MOMA) 

algorithm. MOMA is used to predict the immediate flux adaptation in response to metabolic 

changes, such as due to genetic manipulations (i.e. gene overexpression or knockout), and it has 

been used to successfully predict the results of metabolic engineering effort (Agren et al., 2013; 

Park et al., 2007; Segre et al., 2002). Unlike FBA, MOMA recognizes that achieving global flux 

optimality may require evolution and results may not be immediate; thus, MOMA assumes that a 

mutant cell will attempt to achieve a sub-optimal metabolic flux distribution with the smallest 

adjustments from wild-type (WT) (Segre et al., 2002). This concept has been validated in E. coli 

with experimental fluxomic analyses (Schuetz et al., 2012). MOMA has also been suggested as a 

valid approach to predict plant metabolic flux and metabolic engineering strategies (Allen et al., 

2009; Yen et al., 2015). 

GEMs have been used to aid research in systems and synthetic biology. A recent review 

summarized the process of utilizing GEMs to design and examine metabolic engineering 

strategies experimentally (Yen et al., 2015). Microbes, with emphasis on E. coli, have been the 

prime target to validate new approaches of using GEMs and flux-based modeling due to their 

well-understood metabolism, uniformity in cell cultures, and ease of experimental validation. 

The robustness of translating these approaches to plant models has been discussed thoroughly in 

the literature (Collakova et al., 2012; de Oliveira Dal’Molin and Nielsen, 2013). A novel 

approach utilized FBA with flux ratio constraints (an algorithm called “FBrAtio”) to predict the 
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metabolic outcomes of genetic engineering strategies had been shown to perform well with plant 

GEMs (Yen et al., 2013). FBrAtio utilizes flux ratios to constrain the partition of flux of a 

metabolite through a metabolic network branch point, where multiple reactions are competing 

for that metabolite (McAnulty et al., 2012; Yen et al., 2013). The metabolic branch point where 

flux ratio is installed is termed a “node”. Unlike conventional flux constraints, flux ratio 

constraints can redirect metabolism without limiting flux to a specific value. FBrAtio has been 

shown to be effective in predicting metabolic engineering strategies in multiple species 

(McAnulty et al., 2012; Yen et al., 2013). The limitation of FBrAtio is it requires a priori 

knowledge on potential nodes or it requires sampling of the metabolic network to identify critical 

nodes for metabolic engineering. The research in this dissertation will develop and utilize a 

predictive algorithm inspired by the FBrAtio constraint, termed Node-Reward Optimization 

(NR-Opt), to rapidly design concise metabolic engineering strategies for increasing target 

chemical yield in a host organism. 

The importance of integrating regulatory networks in GEM reconstructions is widely 

accepted; however, methods of implementation are still being refined. Most current approaches 

directly convert gene expression profile into flux constraints (Blazier and Papin, 2012). A recent 

study showed that none of these approaches outperform a simple FBA with a growth constraint 

(Machado and Herrgård, 2014). For these reasons, this research developed and validated a more 

conservative approach to utilizing only metabolite profiles and known plant metabolic 

interactions (i.e. diurnal pattern of starch metabolism) to study metabolic regulation and 

signaling. 
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Motivation to develop new metabolic engineering design algorithms 

The conventional process to model-guided metabolic engineering is (i) computer 

automated design of metabolic engineering strategies, (ii) manual assessment of the list of 

designs, (iii) conversion of designs into genetic engineering strategies, and (iv) experimental 

implementation and validation of the selected designs. The availability of genetic engineering 

tools, (i.e. for gene knockout, overexpression, or down-regulation) is considered when 

developing design algorithms. A metabolic engineering strategy can require multiple 

combinations of genetic engineering tools. Currently, there are many well-developed algorithms 

that use GEMs to design metabolic engineering strategies for the overproduction of a target 

chemical in a host cell, such as OptKnock, OptGene, RobustKnock, ReacKnock, BAFBA, 

OptForce, and EMILiO (Burgard et al., 2003; Choon et al., 2014; Patil et al., 2005; Ranganathan 

et al., 2010; Tepper and Shlomi, 2010; Xu et al., 2013; Yang et al., 2011). The utility of these 

tools has been validated with experimental results. Until now, the aim of such design algorithms 

has been to generate as many designs as possible to provide researchers with multiple options. 

The size of a typical list of designs can be on the scale of hundreds, which can make manual 

evaluation labor intensive. Manual evaluation of the predicted designs allows researchers to get a 

better sense of the necessary metabolic modifications. However, additional genetic modifications 

to improve target chemical yield is often necessary, and these requires expert analysis (Yim et 

al., 2011). A design algorithm that predicts fewer but more accurate metabolic engineering 

strategies would improve the efficiency of the overall metabolic engineering process. In many 

cases, multiple iterations of computational predictions are necessary; thus, a fast design 

algorithm is favorable. With speed, accuracy, and conciseness in mind, the NR-Opt algorithm 
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was developed to predict a reasonable list of concise and accurate metabolic engineering 

strategies quickly. This will truly improve the workflow in the metabolic engineering process. 

AraGEM – an Arabidopsis thaliana genome-scale model 

The first genome-scale model reconstruction of the Arabidopsis genome was published in 

2009, and it contains 1,406 reactions and 1,253 metabolites (Poolman et al., 2009).  Most of the 

reactions were gathered from the AraCyc database and compartmentalization was limited. 

Another independent GEM reconstruction of Arabidopsis, AraGEM, was immediately published 

(de Oliveira Dal'Molin et al., 2010). Similar to the previous model, AraGEM models primary 

metabolism with 1,601 reactions associated with 1,404 annotated genes collected from public 

databases. Unlike the previous model, AraGEM is compartmentalized into 5 organelles: 

cytoplasm, mitochondrion, plastid, peroxisome, and vacuole. AraGEM was curated with biomass 

composition and growth rate measured in cultured protoplasts to model cells undergoing 

photosynthesis, photorespiration, and respiration. AraGEM was used to model photon utilization 

and energy distribution in metabolism undergoing photosynthesis and photorespiration well (de 

Oliveira Dal'Molin et al., 2010). It was also used to model redox metabolism to achieve the 

optimal growth and maintenance in non-photosynthetic cells (de Oliveira Dal'Molin et al., 2010). 

Although AraGEM was shown to perform well in modeling multiple Arabidopsis 

pathways, it is still confined to modeling metabolism at pseudo-steady state when FBA is used 

(Collakova et al., 2012). In this research, AraGEM was used to model metabolism of plants 

grown in soil, which is significantly different from using protoplasts as the model plant material. 

A new modeling framework was developed to simulate non-steady state metabolic changes. 
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SnRK1 regulation of plant metabolism 

Without mobility, plants must adjust metabolism, nutrient partitioning, and 

developmental programming via complex regulatory mechanisms in response to environmental 

cues (Robaglia et al., 2012). Sucrose non-Fermenting Related Kinase 1 (SnRK1) plays a central 

role in the global regulation of plant carbon metabolism (Li and Sheen, 2016). In Arabidopsis, 

there are three genes in the SnRK1 gene family, which are the functional SnRK1.1 and SnRK1.2 

and the unexpressed SnRK1.3 (Baena-González et al., 2007; Hrabak et al., 2003; Williams et al., 

2014). Of these, SnRK1.1 has been shown to be the predominantly expressed isoform in most 

plant tissue (Jossier et al., 2009; Williams et al., 2014). In vitro experiments have shown that 

plant SnRK1 can phosphorylate and inactivate four metabolic enzymes: (i) 3-hydroxymethyl 3-

methylglutaryl-CoA reductase (Dale et al., 1995), (ii) sucrose phosphate synthase, (iii) nitrate 

reductase (Sugden et al., 1999), and (iv) trehalose phosphate synthase 5 (Harthill et al., 2006). 

These enzymes are critical to sucrose biosynthesis, nitrogen assimilation for amino acid 

biosynthesis, and signaling the regulation of plant metabolism and development (Halford et al., 

2003; Harthill et al., 2006; Jossier et al., 2009; Tsai and Gazzarrini, 2012). SnRK1 has also been 

shown to phosphorylate stress response proteins, such as the small heat shock protein 17 

(Slocombe et al., 2004). In addition, SnRK1 can regulate the transcription of many genes, 

including the -amylase and SuSy genes, which are responsible for starch and sucrose 

degradation (Laurie et al., 2003; Purcell et al., 1998). It has been suggested that SnRK1 may up-

regulate SuSy and ADP-glucose pyrophosphorylase under high sucrose to generate starch and 

activate sucrose degradation (Fu and Park, 1995; Geigenberger, 2003). A recent study in 

Arabidopsis seedlings treated with different sugars showed that sucrose, glucose, and fructose 

can lower SnRK1.1 gene expression, and trehalose can dramatically increase SnRK1.2 gene 
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expression (Williams et al., 2014). It has been suggested that studies of SnRK1 may offer 

insights in designing plant engineering strategies to improve stress tolerance and crop yield 

(Coello et al., 2011). The overexpression of SnRK1.1 and SnRK1.2 in Arabidopsis generated 

plants with increased developmental rate and biomass, which suggested SnRK1 overexpressor 

plants to be valuable to metabolic engineering (Baena-González et al., 2007; Williams et al., 

2014). 

Motivation to study metabolism of SnRK1.1 overexpression plants with modeling 

As emphasized in the previous section, plant have a complex signaling pathway that can 

alter metabolism (Yamaguchi-Shinozaki and Shinozaki, 2006). In addition, plants with genetic 

modifications in the signaling pathway, such as overexpression of SnRK1.1, can manifest 

different phenotypes in different stages of plant development (Gazzarrini and Tsai, 2014; 

Williams et al., 2014). As concluded in the previous section, there is great interest in 

understanding the role of SnRK1.1 in leaf metabolism over plant development. However, 

studying the metabolic roles of genes in the signaling pathway is challenging due to the 

difficulties in dissecting metabolic and regulatory events, and further complicated by the 

temporal aspect (Sheen, 2014). It is possible to utilize the pseudo-steady state assumption in 

flux-based modeling to indicate whether a metabolic event is a mass-balancing interaction or if it 

involve regulation. Flux-based modeling with GEMs have previously been used to identify 

organelle interactions in rice leaves that can be modeled with only mass-balancing (Poolman et 

al., 2013). Flux-based modeling with GEMs has also been shown to model tomato fruit 

development metabolism well (Colombié et al., 2015). Unlike in fruits, metabolic changes in 

vegetative tissues are much faster; thus, pseudo-steady state assumption does not apply (Allen et 

al., 2009; Collakova et al., 2012). Previous studies that imposed pseudo-steady state assumptions 
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to model vegetative tissue could only predicted results that are qualitatively accurate (Gomes de 

Oliveira Dal'Molin et al., 2015; Grafahrend-Belau et al., 2013; Poolman et al., 2013). To gain 

quantitative accuracy would require modeling at non-steady state. Modeling non-steady state 

metabolic changes would need a framework similar to kinetic models, which requires enzyme 

kinetics data. Such framework is currently inapplicable at the genome-scale (Smallbone et al., 

2010). With these challenges in mind, the goals of this study are to develop a novel genome-

scale modeling framework that can: (i) model metabolic changes over plant development, (ii) 

model non-steady state metabolite changes, and (iii) calculate quantitative changes accurately. 

To address these goals, a novel dynamic flux-based GEM modeling framework was developed to 

model non-steady state changes of a target metabolic interaction. The new framework was used 

to model changes of starch level in SnRK1.1 overexpressor plants at multiple stages of 

development. Experimental validations revealed unprecedented quantitative accuracy. 

Chapters and organization of this dissertation 

The three main chapters of this dissertation – chapter II to IV are manuscripts that have 

been accepted for publication or are in preparation for submission. 

Chapter 2: Designing metabolic engineering strategies with genome-scale metabolic flux 

modeling. 

This published review discusses the utilities of all the well-accepted metabolic 

engineering design algorithms that are used with GEMs. 

Chapter 3: Predicting metabolic engineering strategies with the Node-Reward-

Optimization toolbox. 

This manuscript introduces a novel metabolic engineering design algorithm to rapidly 

predict concise metabolite engineering strategies. The algorithms implemented in the Node-
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Reward Optimization programs are described in detail. To validate its utility, the Node-Reward 

Optimization programs were used to design metabolic engineering strategies to overproduce 1,4-

butanediol in E. coli and cellulose in Arabidopsis thaliana. Predicted design strategies were 

cross-validated with published data. 

Chapter 4: Model-guided analysis of SnRK1.1 overexpression in Arabidopsis predicts 

significant changes in starch metabolism over plant development 

This manuscript demonstrates the utility of flux-based modeling of plant metabolism and 

introduces a novel framework to simulate non-steady state starch metabolism. This novel 

framework was used to investigate whether the delayed plant developmental transition in 

SnRK1.1 overexpressor plants is due to changes in starch turnover rate. Model simulation of 

growth and starch changes are validated experimentally. The results showed that SnRK1.1 may 

regulate plant developmental transition independent of starch turnover rate. 

Chapter 5: Conclusions and future directions 
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Abstract: New in silico tools that make use of genome-scale metabolic flux modeling are 
improving the design of metabolic engineering strategies. This review highlights the latest 
developments in this area, explains the interface between these in silico tools and the experi-
mental implementation tools of metabolic engineers, and provides a way forward so that in 
silico predictions can better mimic reality and more experimental methods can be considered 
in simulation studies. The several methodologies for solving genome-scale models (eg, flux 
balance analysis [FBA], parsimonious FBA, flux variability analysis, and minimization of 
metabolic adjustment) all have unique advantages and applications. There are two basic 
approaches to designing metabolic engineering strategies in silico, and both have demonstrated 
success in the literature. The first involves: 1) making a genetic manipulation in a model; 2) 
testing for improved performance through simulation; and 3) iterating the process. The second 
approach has been used in more recently designed in silico tools and involves: 1) comparing 
metabolic flux profiles of a wild-type and ideally engineered state and 2) designing engineer-
ing strategies based on the differences in these flux profiles. Improvements in genome-scale 
modeling are anticipated in areas such as the inclusion of all relevant cellular machinery, the 
ability to understand and anticipate the results of  combinatorial enrichment experiments, and 
constructing dynamic and flexible biomass equations that can respond to environmental and 
genetic manipulations.
Keywords: genome-scale modeling, flux balance analysis, flux variability analysis, minimiza-
tion of metabolic adjustment, metabolic bottleneck, pathway optimization

A brief introduction to genome-scale metabolic 
flux modeling
A “genome-scale” metabolic flux model (GEM) consists of a network of biochemical 
reactions that is reconstructed based on the genomic sequence and annotation of a 
cell. Assuming a “steady-state” metabolism (ie, a snapshot of metabolism at one time 
point) is reached on a short time-scale, these reactions can be represented by a linear 
system of equations. Then, problems such as maximizing specific chemical produc-
tion or growth can be solved efficiently by linear programming. GEMs and their uses 
have been reviewed thoroughly, and they are most basically used to predict reaction 
flux, which is the overall rate of metabolite conversion.1,2 Often, laboratory measure-
ments including the rates of substrate consumption, product formation, and growth 
are used as model constraints so calculations coincide with observations. Other model 
constraints can be derived from reaction thermodynamics,3 cellular regulatory net-
works,4 and -omics datasets.5 GEMs have been constructed and utilized for intensively 

15

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/AGG.S58494
mailto:senger@vt.edu


DovepressYen et al

studied model organisms with well-annotated genomes (eg, 
Escherichia coli MG1655 [bacteria],6 Saccharomyces cer-
evisiae [yeast],7 Mus musculus [mouse],8 and Arabidopsis 
thaliana [plant]9). In addition, homology algorithms have 
enabled GEM construction of the less-studied organisms. 
For example, the European Bioinformatics Institute has con-
structed draft GEMs for 2,630 organisms across phylogenetic 
domains using automated model-building methods,10 and the 
Model SEED also contains several GEMs and has the ability 
to custom-build GEMs for annotated genomes submitted 
by the user.11 The construction of high-quality models often 
requires expert-informed manual curation,12 but automated 
reconstruction provides foundations for further improvement. 
Although GEMs have been built for species of all domains, 
microbes still dominate GEM reconstructions and studies due 
to their relative genomic simplicity, usefulness in biotechnol-
ogy, and the pathogenicity of some species.

GEMs have extraordinary utility for biological discovery, 
and novel computational tools have been developed to predict 
metabolic engineering strategies, which are then validated 
in the laboratory. Much research in metabolic engineering is 
focusing on the synthesis of valuable chemicals, biofuels, and 
pharmaceuticals. Model-guided metabolic engineering presents 
significant advantages, notably the minimization of laboratory 
resource use and time required to develop productive strains. 
Using GEM predictions to design strains enables researchers 
to engineer product yield/selectivity, substrate utilization, and 
growth rate. Future developments are anticipated to allow engi-
neering of toxicity responses, cellular differentiation, culture 
density, and cellular interactions with other cells and materials. 
Some of the computational tools for predicting gene targets in 
GEMs for metabolic engineering have been reviewed.1 The 
focuses of this review are: 1) how predictions from different 
tools have been translated into experimental metabolic engi-
neering strategies and 2) which of the experimental methods 
available are (or are not) represented in the computational (in 
silico) tools. Since the experimental toolset for metabolic engi-
neering is expanding, this review also addresses how new tools 
can be incorporated in the in silico design strategies.

In silico metabolic engineering tools
It has been long believed that cells (especially microbes) 
maintain optimal growth as their primary objective. It has been 
shown that an additional objective of a minimal adjustment 
between initial and engineered states also exists.13 Imposing 
the goal of chemical overproduction by metabolic engineer-
ing often conflicts with the optimal growth  objective. Thus, 
genome-scale modeling serves to establish the  relationship 

between target chemical production and growth. In silico 
metabolic engineering tools seek to identify genetic manipula-
tions to alter this relationship so that stable strains with high 
chemical production and growth can be achieved. This section 
describes the various methods available for solving GEMs, 
and it highlights those used when metabolism has been engi-
neered. In addition, this section presents the recent advances 
in in silico tools used with GEMs to generate metabolic 
engineering strategies for the overproduction of a targeted 
chemical. In this review, in silico metabolic engineering tools 
are classified as “top-down” or “bottom-up”. The top-down 
algorithms generate/apply metabolic modifications in silico 
and then simulate their effects on the dual objectives (ie, pro-
ductivity and growth) through genome-scale metabolic flux 
modeling. The procedure is repeated until optimal metabolic 
modifications are identified. On the other hand, bottom-up 
algorithms generate separate flux solutions where: 1) growth is 
maximized and 2) product formation of interest is maximized. 
Differences between the two flux distributions are identified 
as targets to design metabolic engineering strategies. These 
approaches are reviewed in detail in the following section; 
however, first the methods for generating metabolic flux solu-
tions of GEMs are summarized.

Flux balance analysis and its variants
The fundamental approaches of constraint-based model-
ing have been reviewed,1,2 and a subset of these applicable 
to metabolic engineering are described here. The essential 
base of almost all predictive tools is flux balance analysis 
(FBA), which solves the linear system of biological reac-
tions given the “pseudo-” steady-state assumption and an 
objective function (eg, maximize growth or chemical pro-
duction rate) using linear programming. The flux balance 
equation is now commonly written as S v 0, where S is an 
m-by-n matrix containing stoichiometric coefficients for 
each biochemical reaction. Each compound is represented 
by a row of the matrix, and each reaction is represented in 
a column. The vector v contains flux values for all n reac-
tions of the system. The system also contains a “biomass 
equation” that describes cell growth. This is often com-
posed of stoichiometric amounts of macromolecules (eg, 
protein, DNA, RNA, lipids, cell wall), small molecules, and 
adenosine triphosphate (ATP) hydrolysis required for growth 
“maintenance”.14 FBA solves the system of equations given 
an objective function and constraints (upper and lower) for 
each flux contained in v. Flux constraints are imposed from 
laboratory measurements, thermodynamic predictions, and 
regulatory rules; many reaction fluxes are left unconstrained. 
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Two other useful approaches are parsimonious FBA (pFBA)15 
and flux variability analysis (FVA).16 Since the number of 
reactions is typically greater than the number of compounds 
in GEMs, multiple FBA solutions exist, and techniques that 
explore this solution space have been reviewed. The pFBA 
algorithm was developed to provide the FBA solution that 
meets optimality with a minimized total flux in the system. In 
addition, FVA serves the purpose of calculating the possible 
flux distributions of all reactions.

As mentioned earlier, cellular metabolism changes when a 
genetic manipulation is introduced in vivo. However, dramatic 
shifts in metabolism, on a global level, toward optimality are 
not immediate.17,18 Thus, a flux distribution predicted in silico 
that captures this initial response of a cell, instead of one that 
describes massive flux reorganization toward optimality, pro-
vides a better description of the cellular response to genetic 
changes. For this reason, the minimization of metabolic adjust-
ment (MOMA) algorithm was developed to predict the optimal 
flux distribution of altered metabolism that would require 
the smallest change from that of wild-type  metabolism.17 
This concept has since been validated by  13C-isotope tracing 
studies.13 Similar to MOMA, the regulatory on/off minimiza-
tion (ROOM) tool hypothesizes that a cell attempts to com-
pensate for genetic manipulations through the fewest number 

of  enzymatic reactions by gene regulation.18 Additional studies 
have shown that, in time, cells will evolve from this minimized 
flux redistribution state to the FBA solution.19 This concept, 
introduced over a decade ago,20 is shown in Figure 1. The goal 
of metabolic engineering is to alter the metabolic network of 
a cell so that optimal growth and target chemical production 
are coupled (meaning a product must be formed as the cell 
reaches an optimum growth rate). This approach leads to stable 
strains capable of industrial production. As a cell is engi-
neered, MOMA/ROOM can predict the immediate outcome 
of genetic manipulations, and FBA (or pFBA) predicts the 
long-term evolved state of the cell. In the following sections, 
the top-down and bottom-up in silico metabolic engineering 
tools are discussed, and a summary of these tools is given in 
Table 1. However, it is important to note that not all tools are 
designed to consider evolution and long-term strain stability, 
which are critically important if an industrial process is going 
to consider chemostat cultivation over batch processing in 
which the microbe is replaced frequently.

Top-down in silico tools for designing 
metabolic engineering strategies
As mentioned previously, a top-down approach is defined 
here as one in which genetic manipulations are made in 
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Figure 1 The relationship between the target chemical production flux and the growth rate for wild-type (solid line) and an engineered strain (dash line). The initial wild-type 

optima determined by FBA (bottom right) can be engineered and the resulting state predicted with MOMA/ROOM. Evolution will eventually optimize growth, which can be 

predicted by FBA/pFBA. Combinatorial addition of metabolic capabilities can expand the solution space beyond the wild-type potential. 

Abbreviations: FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA, parsimonious FBA; ROOM, regulatory on/off minimization.
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Table 1 Summary of in silico tools for generating metabolic engineering strategies and the experimental tools that can be used for 
implementation

In silico tool Description Experimental tools§,† Reference(s)

Top-down approaches
Randomized gene knockouts Fluxes associated with reactions catalyzed by one or more  

genes are set to zero. Simulation performed by FBA, pFBA,  
MOMA, or ROOM

Gene knockouta 21, 22

OptKnock A bilevel optimization to find gene knockout candidates  
leading to product formation at optimal growth (FBA)

Gene knockouta 19, 20, 23

OptGene Explores the feasible solution region using a genetic algorithm to 
identify the necessary gene deletions for the desired phenotype

Gene knockouta 24

Cipher of evolutionary 
design (CiED)

Uses a genetic algorithm to identify optimal mutations  
to maximize product formation

Gene knockouta 
Gene overexpressionb

25

ReacKnock Inspired by OptKnock and enables up to 20 gene deletions Gene knockouta 26
OptReg An expansion of OptKnock designed to predict up- and  

downregulation of reactions to achieve a desired phenotype
Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

27

OptStrain Uses a universal database of known enzyme-catalyzed reactions  
to determine the minimal pathway modification required  
to maximize product formation

Gene knockouta 
Gene overexpressionb

28

MOMAKnock A similar bilevel programming framework to OptKnock except  
MOMA assumption was adapted to determine flux redistribution

Gene knockouta 29

Ant colony optimization  
with MOMA (ACOMoMA)

A hybrid of ant colony optimization and MOMA to predict  
gene knockout strategies

Gene knockouta 30

Bees Algorithm and FBA  
(BAFBA)

Similar to ACOMoMA, except Bees Algorithm is used  
to search gene knockouts and FBA is used to determine fitness

Gene knockouta 31

Flux balance analysis  
with flux ratios (FBrAtio)

Flux ratios serve as constraints to redirect metabolism  
to a desired product. Resulting flux ratio constraints  
can be translated to metabolic engineering strategies directly

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

32, 33

Bottom-up approaches
Flux distribution  
comparison analysis (FDCA)

Incremental solutions are compared to identify genes 
of reactions with significant flux changes

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

35, 36

Flux scanning based on  
enforce objective flux (FSEOF)

Identifies genes of reactions with increased flux upon  
maximizing product formation

Gene overexpressionb 37, 38

OptForce Flux variability analysis of wild-type and mutants (with a desired  
phenotype) are compared to identify genes of reactions with  
significant flux change

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

39–41

k-OptForce An expansion of OptForce with the integration of enzyme  
kinetic constants to allow optimal solutions to arise from  
metabolic and/or enzyme engineering

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

42

Continuous modifications 

(CosMos)

A continuous modification to flux bounds is used to identify upper  
and lower bounds that can guarantee product formation. The  
solution space is sampled randomly to find optimum solutions

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

43

Redirector Iteratively identifies all reactions with flux changes that  
accommodate for the progressive change in biomass  
and desired product

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

44

Notes: §Not all experimental tools apply to all species; †direct genome editing is likely to eventually apply to all cases; agene knockout can be accomplished through 
insertion mutagenesis using homologous recombination (ie,  red recombineering), transposable elements, or by genome editing with the aid of CRISPR-Cas systems; 

bgene overexpression can be performed using plasmids or genome knock-in/editing procedures, which are accomplished by inserting gene-of-interest with high expression 

promoter element using homologous recombination, transposable elements, or CRISPR-Cas systems. RBS and promoter engineering are recommended methods for 
modulating expression levels. The RBS calculator is a valuable tool for RBS design; cgene expression knockdown can be achieved through posttranscriptional gene silencing 
with sRNA, siRNA, antisense RNA, and/or microRNA. RBS redesign using the RBS calculator is also an effective strategy for gene expression knockdown.

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA, 

parsimonious FBA; RBS, ribosomal binding site; ROOM, regulatory on/off minimization.

silico, and then genome-scale modeling is used to determine 
whether the strategy is beneficial. The concept is shown in 
Figure 2. The simplest strategy to employ is creating single-
gene knockouts. This is done in silico by constraining all reac-
tions associated with a gene of interest to zero and performing 

FBA or MOMA/ROOM to look for knockouts that enhance 
target chemical production without compromising growth. 
This method was used in a well-known study to identify 
gene knockouts in E. coli, resulting in the overproduction of 
L-valine.21 Here, single-, double-, and triple-gene knockouts 
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were investigated in silico using MOMA to predict resulting 
phenotypes. Using a multifaceted approach that included 
the in silico gene deletion study, an industrially relevant 
strain capable of producing over 7.5 g/L of L-valine (2.27-
fold improvement over wild-type) was engineered. This 
method was also used to generate all single- and double-
gene knockout combinations in S.  cerevisiae in an effort 

to overproduce succinate.22 FBA was used in calculations, 
and three single knockouts ( mdh, oac1, and dic1) were 
selected for experimental validation. The dic1 strategy 
was successful, yet non-intuitive for succinate production, 
and this study demonstrated an important proof-of-concept 
for designing strains by in silico predictions followed by 
experimental validations. OptKnock was one of the first 

Wild-type

vtarget

Flux redistribution

Identify candidates
Top-down:
If vtarget increases, strategy
becomes valid (iterate to find
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Figure 2 Example workflow to design metabolic engineering strategies using “top-down” and “bottom-up” approaches. Several different in silico tools apply these strategies 

in different forms. In all cases, the objective is to maximize production of a target chemical (shown here as vtarget). The following metabolic engineering strategies are shown: 

(KO) gene knockout, (OX) gene overexpression, and (KD) gene expression knockdown.

19

www.dovepress.com
www.dovepress.com
www.dovepress.com


DovepressYen et al

in silico metabolic engineering tools, and it guides the 
selection of gene knockouts in order to couple maximized 
product formation to growth.20 It uses FBA and identifies a 
limited number of gene knockouts, which serve to reshape 
the growth and product formation relationship as shown in 
Figure 1. Successful identification of gene knockout targets, 
followed by adaptive evolution to achieve FBA predictions, 
have led to industrially relevant strains capable of producing 
lactic acid,19 1,4-butanediol,23 and others. Since its introduc-
tion, other inspired approaches have attempted to extend its 
capabilities (ie, increase the potential number of gene candi-
dates for knockout) by reconsidering the bilevel optimization 
framework. Approaches such as OptGene24 and the cipher of 
evolutionary design (CiED)25 relied on an evolutionary algo-
rithm to select gene targets, and improved functionality was 
noted. ReacKnock has emerged recently with a new approach 
to the mixed integer bilevel optimization problem and enables 
up to 20 gene deletion predictions in a short amount of 
computational time.26 In their publication, the authors pro-
vide ReacKnock- and OptKnock-designed gene knockout 
strategies to produce succinate, ethanol, acetate, hydrogen, 
formate, glycolate, D-lactate, fumarate, and threonine from 
E. coli.26 OptReg extended OptKnock to include gene 
overexpressions,27 and OptStrain allowed incorporation of 
non-native metabolic pathways for the production of new 
chemicals.28 Other approaches, such as  MOMAKnock29 
have focused on the limitations of FBA and have sought to 
implement MOMA in the automated design of gene knockout 
strategies. Further modifications have combined ant colony 
optimization (ACO) methods with MOMA in an algorithm 
called ACOMoMA. The  ACOMoMA approach was applied 
to produce an improved gene knockout strategy for succinate 
production from E. coli.30 Another development achieved 
significant results using a hybrid of Bees Algorithm and 
FBA (BAFBA; a metaheuristic procedure) to design gene 
knockouts for succinate and lactate production.31

While most in silico designs rely on gene knockouts, oth-
ers infer gene overexpression and partial gene knockdowns as 
metabolic engineering strategies. In general, the flux change 
of a reaction may be the result of: 1) directly engineering 
genes of the catalyzing enzymes; 2) engineering the avail-
ability of reaction precursors and substrates upstream; or  
3) eliminating bottlenecks downstream. Thus, these strate-
gies are all major contributors to a metabolic adjustment. 
A recent approach called FBA with flux ratios  (FBrAtio) 
considers strategies of gene overexpression, knockout, and 
partial knockdown for designing metabolic engineering 
strategies.32,33 FBrAtio examines how multiple enzymes 

compete for the same substrate and allow the distribution 
of this substrate to be modified and included as a flux ratio 
constraint in a GEM. Flux ratio constraints can be modified, 
and pFBA is used to predict global flux distributions. This 
procedure has been used to design metabolic engineering 
strategies for several chemicals by different organisms. 
The concept of the flux ratio constraint was first introduced 
for two enzymes that compete for the same compound.32 
However, this was later expanded to include all enzymes 
competing for the same compound.33 FBrAtio has been used 
to model the metabolic shift in Clostridium acetobutylicum 
from acids to solvents production as well as predict a high-
ethanol-producing phenotype.32 In addition, it has been used 
to examine metabolic engineering strategies for: 1) cellulose 
overproduction by A. thaliana; 2) isobutanol production by 
yeast; 3) acetone production by  Synechocystis; 4) hydrogen 
production by E. coli; and 5) mixed solvents production by 
C. acetobutylicum.33 The purpose of this study was to dem-
onstrate further improvements of experimental implementa-
tions where possible with “fine-tuned” metabolic engineering 
strategies derived by FBrAtio. With  Arabidopsis, it was shown 
experimentally that the overexpression of a heterologous 
uridine diphosphate (UDP)–glucose pyrophosphorylase 
(UGPase) increased cellulose production by approximately 
25%.34 The FBrAtio approach predicted that further increased 
uridine triphosphate (UTP) consumption by the UGPase could 
continue to increase cellulose production up to 30%–50% 
(compared to wild-type) before UTP depletion impacted the 
growth of the plants negatively.

Bottom-up in silico tools for designing 
metabolic engineering strategies
The tools classified as bottom-up approaches rely on multiple 
objective functions in genome-scale modeling to design meta-
bolic engineering strategies. The flux distribution comparison 
analysis (FDCA) provides a good example of this. First,  
a GEM is solved by FBA to maximize growth. Then, the 
GEM is solved (by linear MOMA [lMOMA]) to maximize 
the production of a chemical of interest. The differences 
between the flux distributions are considered, and rules for 
up- or downregulation of genes are determined based on 
significant changes between the flux  distributions.35 FDCA 
has been used to improve lycopene production by 174% in 
an E. coli strain already capable of high lycopene produc-
tion,36 and it identified 51 potential gene targets, including 
five novel gene knockout targets and four novel gene over-
expression targets. The flux scanning based on enforced 
objective flux (FSEOF) approach was also developed to 
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enhance lycopene production.37 This approach also begins 
with maximizing  biomass formation of a GEM with FBA, 
but the flux of product formation is constrained to be equal to 
the experimentally observed flux in the wild-type organism. 
Then, the theoretical maximum product formation rate is 
calculated in a new simulation by setting this as the objective 
function. FSEOF works by maximizing the cell growth rate 
while the target product formation rate is increased gradually 
from its initial value toward its theoretical maximum. Targets 
for gene overexpression are identified as fluxes that increase 
throughout simulations without changing direction. This 
method identified 35 gene overexpression targets for lycopene 
production by E. coli. FVA was then employed to narrow 
these potential targets by selecting those showing increases 
outside of the ranges due to flux variability.37 This approach 
can also be used with an altered biomass equation to accom-
modate intracellular target (eg, protein)  accumulation. For 
example, the human superoxide dismutase (hSOD) enzyme 
was overproduced in Pichia pastoris using predicted gene 
knockout and overexpression strategies from MOMA and 
FSEOF, respectively.38

OptForce is another bottom-up approach that has enabled 
the incorporation of gene knockouts, overexpressions, and 
knockdowns as metabolic engineering strategies.39 OptForce 
also allows (and encourages) the incorporation of experimen-
tally measured metabolic flux data of the wild-type and a strain 
engineered to overproduce a target chemical. In general, flux 
variability is calculated for both wild-type and engineered 
strains, and the flux ranges are compared for each reaction. 
Candidates for metabolic engineering are identified as those 
reactions where there is no overlap between possible flux 
ranges. OptForce then performs a secondary optimization 
(a top-down procedure) where the minimal set of metabolic 
interventions is identified to achieve a desired goal. OptForce 
has been used in several applications, including the overex-
pression of succinate39 and fatty acids of specified chain length 
in E. coli.40 In addition, OptForce was used to design a meta-
bolic engineering strategy leading to a four-fold increase in 
intracellular malonyl-CoA concentration in E. coli, which was 
then utilized for the production of naringenin (a valuable plant 
secondary metabolite).41 The recent extension k-OptForce has 
enabled the incorporation of enzyme kinetic constants, where 
possible, and returns metabolic engineering strategies (ie, gene 
knockout, overexpression, or knockdown) along with kinetic 
parameters that could be altered by enzyme engineering.42 
This approach can consider relevant phenomena, such as 
substrate inhibition, that cannot be modeled using flux-based 
approaches alone. The  continuous modifications (CosMos) 

approach significantly differs from OptForce in that changes 
to flux bounds are modified continuously, rather than by FVA 
results.  CosMos then minimizes product formation given a 
constrained non-zero growth rate, and looks for modified 
flux constraints that still yield product formation under these 
conditions.43

Finally, the Redirector approach is different in that it 
relies on an artificial objective function consisting of con-
tributions from growth and metabolic flux redirected into a 
product-forming pathway and does not rely on manipulating 
flux bounds.44 Redirector can also design gene knockout, 
overexpression, or knockdown metabolic engineering strate-
gies, and the manipulation of algorithm parameters can alter 
the number of manipulations returned by the algorithm. The 
production of fatty acids by E. coli MG1655 was chosen as 
a test case of the algorithm. The algorithm designed strate-
gies capable of reaching 80% of the theoretical yield for 
myristoyl-CoA while maintaining 20% biomass yield.44 The 
global implementation of FBrAtio (currently in press) is 
also classified as an approach that does not manipulate flux 
bounds to derive metabolic engineering strategies. The global 
FBrAtio uses flux distribution maps of maximized growth 
and product formation using pFBA and designs flux ratio 
constraints that enable product formation and growth.

Experimental metabolic engineering 
tools
The available in silico metabolic engineering tools return 
strategies consisting of gene knockout, overexpression, and/
or knockdown (and enzyme engineering for k-OptForce). 
There are several ways in which these strategies can be 
implemented, but current in silico tools do not consider this 
level of detail. In this section, many common (but certainly 
not all) experimental implementation methods are reviewed 
along with their relationship to in silico predictions. For 
example, returning a gene overexpression strategy does not 
explain how it should be implemented. If it must be encoded 
on a plasmid, what type and strength of promoter/ribosomal 
binding site (RBS) combination should be used? What copy 
number of plasmid should be used? Since plasmid copy 
number per cell is heterogeneous, what impacts will this 
have? Will plasmid replication demand cellular resources that 
influence metabolic flux predictions? What are the impacts of 
antibiotic resistance genes? Should one or multiple copies of 
the gene of interest be knocked into the genome? Or, should a 
native promoter/RBS be tuned instead? If so, to what levels? 
Finally, what impact will this genetic manipulation have on 
the resulting phenotype? Will this significantly impact cell 
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composition, metabolic flux distribution, and predictions? 
These and more questions will be addressed by in silico tools 
that returned “fine-tuned” metabolic engineering strategies 
(eg, overexpress a target gene by 70% relative to wild-type) 
and take into account changing cell phenotype by updating 
the GEM biomass equation.

Manipulating gene expression
Here, basic experimental strategies for gene expression 
manipulations are reviewed in the context of genome-scale 
modeling. Clearly, not all tools and approaches can be 
discussed here, but the basics are identified. Manipulations 
can occur at the transcriptional, translational, and posttrans-
lational levels, with emphasis on the first two in microbes. 
Several experimental methods exist for generating gene 
knockouts that involve chromosomal integration for gene 
disruption. Of course, chromosomal integration can also 
be used to knock-in useful genes/regulatory elements. One 
particularly popular method for single-gene targeting is the 
polymerase chain reaction (PCR)-based version of  red 
recombineering.45 It has also been used for the introduction 
of site-directed mutations, promoter tuning/replacement, 
and reporter genes for promoter tagging experiments.46 
The knock-in/knockout (KIKO) vectors facilitate the chro-
mosomal integration of large DNA segments (including 
multigene cassettes and entire pathways) at specific well-
characterized loci using  red recombination.47 Other means 
of gene knockout involve the use of transposons or homolo-
gous recombination mediated by phage-derived elements, 
and more advanced genetic systems are required for other 
microbes, such as the clostridia.48,49 In higher plant species, 
such as A. thaliana, genomic integration is accomplished 
using an Agrobacterium-mediated method that makes use of 
its ability to transfer DNA from its tumor-inducing plasmid 
into the plant host genome.50,51 This technology has been 
used for both gene disruption and knock-in in Arabidopsis. 
Gene knockouts (and knock-ins) appear to be the most 
benign to genome-scale modeling predictions, as long as 
plasmids and antibiotic resistance markers are removed. 
Indeed, the presence of plasmids and antibiotics (even with 
effective antibiotic resistance genes) has been shown to alter 
cell phenotypes.52 The GEM biomass equation describes 
the cell phenotype, and how this equation should be altered 
by the presence of plasmids, antibiotics, or other genetic or 
environmental manipulations remains a subject for research. 
This makes clustered regularly interspaced short palindro-
mic repeats (CRISPR)-Cas systems53 attractive for genome 

editing from a genome-scale modeling standpoint. While 
the mechanisms of plasmid replication are understood, this 
cellular machinery is not yet encoded in GEMs, creating a 
divergence between the in silico and experimental systems. 
In addition, gene knockouts, knock-ins, and genome editing 
are designed to alter metabolism. When successful, this alters 
the cellular phenotype; thus, the biomass equation must be 
updated accordingly. However, this will require predictions 
or a simplified method of measurement, both of which are 
discussed later.

With this knowledge, it is easy to see why gene overex-
pression methods may lead to greater metabolic burden and 
uncertainty with genome-scale modeling, especially when a 
gene is overexpressed from a plasmid. Techniques that mini-
mize the ATP maintenance requirements of a cell are preferred 
and are more effectively modeled. With gene overexpression, 
promoter and RBS engineering have enabled significant 
progress. Controllable gene expression has launched the field 
of synthetic biology and led to the quest to design genetic 
circuits.54 Furthermore, promoter tuning55 with RBS optimiza-
tion can improve metabolic pathway function.56 Tools, such 
as the RBS calculator,57 are enabling RBS design based on 
thermodynamic principles. In these cases, it becomes clear 
that synthetic designs are enabling pathway overexpression 
by orders of magnitude, and at some point, cellular resources 
are depleted (eg, transfer RNA [tRNA] pools), creating com-
petition between cell growth and pathway expression. This is 
not yet accounted for by genome-scale modeling and presents 
a unique opportunity to integrate metabolic pathway tuning 
with genome-wide metabolic activity.

Gene expression tuning can also be engineered at the 
posttranslational level, where interactions with mRNA are 
the major focus. Small RNA (sRNA) bind targeted mRNA 
(through complementary base-pairing) and modulate its 
translation.58 The majority of sRNAs have been identified as 
translation repressors, and binding generally occurs at or near 
the RBS.59 Thermodynamic-based design has enabled “fine-
tuned” gene expression knockdowns,60 and these have proven 
advantageous in a metabolic engineering strategy to produce 
phenol from glucose.61 Similarly, artificial small interfering 
RNA and microRNA have been widely used in plant systems 
to reduce gene expression.62 Achieving stable gene integration 
in higher plants can be problematic. An alternative is to employ 
viral-induced gene silencing approaches.63 While these tech-
nologies enable gene knockdown, they are generally operated 
from plasmid-based systems, which provide the same chal-
lenges to genome-scale modeling as mentioned previously.
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Combinatorial approaches
Using genome-scale modeling to predict the outcomes of 
combinatorial metabolic engineering experiments is an area 
for many future advances. As shown in Figure 1, the addi-
tion of new genetic material (either synthetic or from other 
organisms) can expand the product-forming capabilities of 
an organism. Combinatorial approaches can involve induced 
chromosomal mutations, random insertion of transposons, 
genome shuffling, transcription factor engineering,64 or even 
randomized chromosomal insertion of synthetic DNA.65 Lyco-
pene production has been engineered successfully through: 
1) a combination of model-driven and transposon-based
combinatorial knockouts66 and 2) the multiplex automated 
genome engineering (MAGE) platform, which relies on 
synthetic DNA insertion.65 In addition, gene overexpression 
libraries offer the opportunity to insert the genomic capabili-
ties of a single organism or a metagenome. This strategy has 
proven successful in locating genomic sequences to confer 
tolerance to furfural,67 among many others. The simultaneous 
expression of dual libraries on a plasmid and fosmid led to a 
unique combination of gene enrichment that increased acid 
tolerance in E. coli by 9,000-fold.68 Expanding the genome 
to confer resistance to toxins or new/improved metabolic 
capabilities has the potential to redefine the relationship 
between product formation and culture growth, as shown 
in Figure 1. In the case of conferring resistance to toxins, 
often uncharacterized or non-obvious library fragments are 
selected during enrichment.69 This is often because toxicity 
mechanisms, as well as many cellular interactions, are mul-
tigenic and still not understood fully. While genome-scale 
modeling cannot provide these types of predictions, where 
the interaction mechanisms are uncharacterized, the meta-
bolic potentials through the completion and addition of new 
pathways and enzymes are predictable. It is likely that the 
theoretical limits of metabolic enhancement due to library 
enrichment can be found through genome-scale modeling, 
and the emergence of metagenomic GEMs will likely contain 
the metabolic potentials.

Phenotyping
Phenotyping refers to the monitoring of cell chemical com-
position and differentiation. This is critical because the GEM 
biomass equation contains the cell chemical composition and 
is representative of the cellular phenotype, which is known 
to change with genetic and environmental perturbations. The 
role of the biomass equation has been shown to be crucial in 
genome-scale modeling,14,70 creating the need for accurate 

and near real-time monitoring techniques to interface with 
GEMs. In silico optimization methods have shown promising 
results,70 but it is likely that an experimental approach will 
be needed as a supplement. Traditional methods of biomass 
equation generation are laborious and involve offline ana-
lytical methods. Analysis of heterogeneous populations of 
differentiating (eg, sporulating) microbes is now possible 
using flow cytometry.71 In addition, Raman spectroscopy 
has recently proven useful for near real-time phenotyping 
of E. coli. Raman spectroscopy also does not require the 
use of chemical labels and is nondestructive to the sample. 
In one application, Raman spectroscopy was used to resolve 
fatty acids (saturated, unsaturated, and cyclopropane), cell 
membrane fluidity, amino acids, and total protein content of 
cultures exposed to toxic 1.2% volume per volume 1-butanol 
(and control cultures) over a 180-minute time course.72 In 
another approach, “chemometric fingerprinting”, a multi-
variate statistical analysis involving principal component 
analysis and linear discriminate analysis, was used to classify 
the E. coli phenotypes resulting from exposure to different 
classes of antibiotics.73 Chemometric fingerprinting is unique 
in that it uses the entire Raman spectrum to characterize a 
phenotype, whereas most approaches focus on only a few 
well-defined characteristic bands of the spectrum. With these 
types of near real-time analyses, GEM biomass equations 
can become dynamic and responsive to environmental and 
genetic changes. With current offline methods of phenotype 
characterization, this level of detail is not possible. However, 
with easily accessible phenotyping capabilities, biomass 
equations can be updated easily, leading to improved genome-
scale modeling performance.

The path forward
New metabolic engineering targets and 
opportunities with plants
Deriving metabolic engineering strategies with genome-
scale modeling is proving to be efficient and informative. As 
research continues to derive de novo metabolic pathways to 
synthesize valuable chemicals, optimization of product yield 
to meet industrial demands will be inevitable. Still, the vari-
ety of potential products from microbes remains limited and 
may be expanded in the near term by looking into complex 
eukaryotic species, such as plants. There are many valuable 
compounds made by plants that are not available elsewhere. 
For example, oil seed crops (eg, soybeans) produce edible veg-
etable oil that is used throughout the world. Although the path-
ways for lipid biosynthesis in higher plants have been studied 
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for years, understanding of the crucial regulatory mechanisms 
of these pathways remains limited. Thus, engineering plants 
to accumulate high levels of healthy omega-3 long-chain 
polyunsaturated fatty acids,74 or modified non-native fatty 
acids as replacements for petroleum-derived chemicals in 
industrial processes75 is desirable. Similarly, central carbon 
metabolism is a target for understanding the relationship 
between the regulation of carbon partitioning and biomass 
production in plants. Identifying metabolic bottlenecks in the 
production of cellulose, the energy-rich polymer that is tar-
geted for consolidated bioprocessing,76 could enhance efforts 
to produce more cellulose per plant in the field. Likewise, 
modeling is being applied to the goal of reducing plant lignin, 
a phenolic polymer in the secondary wall that limits our use of 
cellulosic biomass during industrial processing.77 One caveat 
of reducing lignin is that optimal plant growth must also be 
preserved, and GEMs may be uniquely positioned to tackle 
this issue because they can theoretically integrate metabolic 
behavior with plant growth.78 Enhancing the vitamin content 
of edible plants is another active area of research.79 For some 
vitamin synthesis pathways, enough information exists to 
begin the application of genome-scale modeling to increase 
the concentration of vitamins to meet minimal requirements 
for humans.80 In the future, it may be possible to use genome-
scale modeling to tackle issues such as optimizing plant 
growth under stressful or poor nutrient growth conditions. 
In these cases, genome-scale models would have to account 
for complex interactions between stress, hormone, and other 
signaling pathways that impact biomass synthesis and com-
position.81 In addition, a related application is to understand 
how to limit plant yield loss due to pests, by engineering 
known, disease-resistance pathways.81 All of these approaches 
will require flexible biomass equations that can respond to 
manipulations, and a complex multicellular plant will likely 
require tissue-specific GEMs that will integrate to form an 
overall plant phenotype.

Enzyme engineering for pathway 

redirection
The k-OptForce in silico tool is among the first to incor-
porate the concept of enzyme engineering to redirect 
metabolic flux for the production of target chemicals. 
Kinetics-based approaches to genome-scale metabolic 
modeling are emerging,82,83 and soon enzyme redesign will 
be a valid metabolic engineering strategy. Direct genome 
editing, which is preferred over insertion of plasmids and 
markers that consume cellular resources, will enable easy 
implementation. Enzyme engineering is a complex field 

itself and beyond the scope of this review, but effective 
in silico methods are emerging and are expected to play a 
role in enzyme redesign. Improvements in hardware and 
software performance will continue to expand the range 
and size of enzyme engineering problems and systems that 
can be studied. Current computational approaches can be 
divided into bioinformatics, molecular modeling, and de 
novo design.84 Bioinformatics approaches are typically based 
on analysis of evolutionary data and can be used to change 
activity, selectivity, and stability within a family of enzymes. 
Molecular modeling approaches (eg, molecular dynamics, 
quantum mechanics/molecular mechanics simulations) have 
considerable potential to address challenges in computational 
enzyme design and redesign. In particular, advances in these 
methods may enable improved calculation of binding affini-
ties and energy barriers, which will enhance understanding 
of enzyme specificity.85 De novo design is also showing 
increasing promise in designing enzymes, including those 
that catalyze reactions for which nature has not designed a 
catalyst. Notably, these novel methods may be enhanced by 
the application of molecular modeling approaches.86

Increasing modeling accuracy
Finally, the path forward must focus on methods that increase 
the accuracy of genome-scale metabolic flux modeling and 
improve agreements with 13C-isotopomer tracing  studies. 
In our experience, there are four areas for immediate 
 improvement. The first area includes the incorporation of a 
more detailed account of cellular machinery in GEMs. As 
mentioned previously, the ATP maintenance approximation 
of the GEM biomass equation should be replaced by mecha-
nistic accounts. This must also allow for the identification of 
metabolic burdens of plasmids and altered metabolic states as 
a result of genome editing. There are current ongoing efforts of 
“whole cell modeling” that aim to include cellular machinery 
in modeling efforts. These models are showing promise of 
being able to predict phenotypes as well as better integrate 
and explain -omics datasets.87 Second, more accurate biomass 
equations are needed. Whether these will be derived compu-
tationally or experimentally remains to be seen, and there are 
good arguments for both approaches. Third, a more accurate 
representation of flux branching at critical metabolic nodes 
is needed. This occurs when multiple enzymes can consume 
the same metabolite. Ultimately, the laws of thermodynamics 
(including enzyme availability) determine how that metabolite 
is distributed among the competing enzymes. Current methods 
of FBA, pFBA, FVA, ROOM (etc) do not consider this level 
of detail. FBrAtio provides this capability, though significant 
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strides are needed to first translate the biophysical constraints 
into flux ratio constraints. Finally, the roles of redox states in 
product secretion profiles and the influx/efflux of protons 
across the cell membrane need to be included as constraints 
in GEMs. In addition, efforts in these areas will supplement 
the many useful emerging tools that are focusing on genomic 
regulation and -omics dataset integrations. All of these will 
improve genome-scale modeling accuracy, which is needed 
for deriving effective metabolic engineering strategies.
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ABSTRACT 

Overproduction of valuable metabolic compounds has been a primary goal of metabolic 

engineering. Identification of effective metabolic engineering strategies has proven to be an on-

going challenge due to metabolic complexity. With recent advances in bioinformatics and 

computational biology, many computational algorithms have been developed to design metabolic 

engineering strategies. Predictive algorithms that utilize constraint-based genome-scale 

metabolic flux models (GEMs) have shown promising results. Nearly all of these algorithms aim 

to generate many alternative designs, which leads to redundancies and requires expert-level 

interpretation. Redundant strategies can hinder down-stream cross-referencing and slow the 

experimental validation processes, thus reducing overall research efficiency. To address this 

issue, we developed the Node-Reward-Optimization (NR-Opt) toolbox, which consists of a set 

of fast and accurate algorithms that predicts ranked non-redundant gene knockout (KO), 

overexpression (OX), and knock-down (KD) strategies. The core programs of the NR-Opt 

toolbox implements a modified steepest ascent hill climbing algorithm to enable rapid 

convergence to the best design. We deployed NR-Opt to design strategies for the overproduction 

of 1,4-butanediol (BDO) in E. coli and cellulose in Arabidopsis thaliana. Within minutes, NR-

Opt designed four gene knockout strategies and two gene overexpression strategies to 

overproduce BDO in E. coli. The best strategy is a triple-knockout of alcohol dehydrogenase, 

lactate dehydrogenase, and pyruvate formate lyase, and this strategy has been experimentally 

validated previously. Although NR-Opt could not design knockout strategies to overproduce 

cellulose in Arabidopsis, it designed two gene overexpression strategies. The best strategy is the 

overexpression of cellulose synthase, and it has been shown to significantly increase cell wall 
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cellulose content in Arabidopsis in previous experimental studies. Overall, NR-Opt is a fast, 

accurate, and concise algorithm for designing metabolic engineering strategies.  
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INTRODUCTION 

Cells produce an extraordinary variety of metabolites to support growth and fitness. 

Many studies have shown that it is possible to engineer cellular metabolism to overproduce 

specific metabolites with high commodity values, which can include biofuels, commodity 

chemicals, pharmaceuticals, and polymers (Kempinski et al., 2015; Park et al., 2007; 

Phithakrotchanakoon et al., 2013; Yim et al., 2011). Due to the complexity of cellular 

metabolism, the identification an optimal metabolic engineering strategies is a challenge. Recent 

advances in bioinformatics, computational biology, and modeling have enabled faster and more 

accurate designs. Algorithms involving the utilization of genome-scale models (GEMs) and flux-

based modeling shown in the literature to yield effective designs (Agren et al., 2013; Burgard et 

al., 2003; McAnulty et al., 2012; Meng et al., 2011; Oddone et al., 2009; Yim et al., 2011). In 

fact, a wide range of design algorithms involving GEMs now exist essentially to achieve the 

same goal, but they (i) use different approaches, (ii) allow for different numbers of genetic 

manipulations, (iii) converge at different speeds, and (iv) consider the availability of different 

genetic tools for implementation. 

Flux-based modeling with GEMs utilizes mass balancing, making it a valuable approach 

to evaluate the maximum or minimum theoretical yield of biosynthesis. All predictive algorithms 

that uses GEMs, such as OptKnock, OptGene, RobustKnock, ReacKnock, BAFBA, OptForce, 

and EMILiO, take advantage of this feature to design strategies that ensure a high theoretical 

target yield as an obligatory byproduct of growth (Burgard et al., 2003; Choon et al., 2014; Patil 

et al., 2005; Ranganathan et al., 2010; Tepper and Shlomi, 2010; Xu et al., 2013; Yang et al., 

2011). It has been proposed that biomass-product coupled yield (BPCY), which is defined as the 

rate of target chemical formation multiplied by growth rate, is the most appropriate metric of 



32 

 

assessing cell productivity (Choon et al., 2014; Kim et al., 2012). Genetic tools to implement a 

metabolic engineering strategy essentially include gene knockout (KO), overexpression (OX), 

and expression knock-down (KD); although it is recognized there are several ways of 

accomplishing these desired effects, including altering regulatory elements. Algorithms that 

predict KO strategies, such as OptKnock and ReacKnock are popular due to the aggressive 

nature of gene KO and the relatively straightforward experimental procedure compared to OX or 

KD (Burgard et al., 2003; Xu et al., 2013). Recently, algorithms that can predict OX and KD or 

combinations of all three strategies, such as OptForce and EMILiO, have yield promising results 

(Ranganathan et al., 2010; Yang et al., 2011). So far, nearly all algorithms take the approach of 

returning many different designs, which are first screened computationally, expert-analyzed 

manually, and then evaluated experimentally. The caveat is that a manual assessment of the 

strategies is always necessary prior to experimentation, but the size of the prediction lists are 

usually in the hundreds (Yang et al., 2011; Yim et al., 2011). Some designs can contain 

redundant modifications that do not improve yield significantly. By first understanding the core 

strategies, researchers can then select the most rational strategies to validate (Yim et al., 2011). 

Considering that model predictions serve to guide strategy design, it would be more efficient to 

the overall workflow if there were only non-redundant designs that contain the core metabolic 

engineering strategy. It is also beneficial to repeat the design process multiple times, and often 

algorithm convergence time can be a limiting factor, especially as the design involves more 

genetic manipulations. Some available algorithms, such as EMILiO, ReacKnock, and DBFBA, 

operate on the scale of minutes, but they return many designs, which must be screened further 

and interpreted before implementation. 
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With speed, non-redundancy, and robustness as goals, we developed the Node-Reward 

Optimization (NR-Opt) toolbox, to enable efficient metabolic engineering strategy design that 

exceed the state-of-the-art standards. Similar to OptKnock, the algorithms in the NR-Opt toolbox 

are top-down, which means they perform modifications to the model first then examine the 

outcomes (Yen et al., 2015). The algorithms implemented in the NR-Opt core programs are 

unique from all other design algorithms because they integrate a modified steepest ascent hill 

climbing algorithm that allows for delayed ascension and uses a minimum improvement 

threshold, which reduces search iterations, enables more rapid convergence to the local maxima, 

and improves the chances of reaching the global maxima. The NR-Opt toolbox is primarily made 

of two core programs: (i) NR-Knock and (ii) NR-Ox. The NR-Knock algorithm is designed to 

predict KO strategies, and NR-Ox predicts OX and/or KD strategies. The NR-Opt toolbox is 

coded in MATLAB and optimized to run on parallel computing systems. Prediction of KO 

strategies and OX/KD strategies are separated because, as noted by others, gene KO is most 

likely to force metabolic reprogramming. The NR-Ox algorithm provides additional strategies 

when the predicted KO strategies are insufficient, ineffective, or absent. As a proof-of-concept, 

the NR-Opt toolbox was deployed to design metabolic engineering strategies for the 

overproduction of BDO in E. coli and cellulose in Arabidopsis thaliana. These designs are 

validated with experimental results available in the literature to demonstrate its utility with both 

microbes and eukaryotes. 

MATERIALS AND METHODS 

The NR-Knock and NR-Ox algorithms 

Both NR-Knock and NR-Ox use a modified steepest ascent hill climbing algorithm to 

enable short non-optimal neighborhood searches for design strategies. In brief, metabolic flux 



34 

 

modifications, including: eliminating (KO), increasing (OX), and decreasing flux (KD), in a 

GEM and numerous combinations of these make up the entire search space. The challenge is to 

reduce this enormous search space without eliminating optimal solutions. To improve efficiency 

of experimental validation, the designed strategies with “extra” metabolic modifications (which 

do not improve the outcomes) are termed “redundant” strategies and are removed. The NR-Opt 

toolbox reduces this search space intelligently to critical reactions and combinations to predict all 

the non-redundant strategies with significantly improved BPCY. The NR-Opt toolbox was coded 

in MATLAB R2016a with the parallel computing toolbox, and it comes with custom FBA and 

flux variability analysis (FVA) solvers that use the MOSEK 7 optimization software 

(https://www.mosek.com/). All the codes to the NR-Opt toolbox can be found in the 

Supplemental Information (Appendix B). Parallel computing was performed at Advance 

Research Computing at Virginia Tech using Dragontooth, a 48-node system with a 2x Intel Xeon 

E5-2680v3 (Haswell) 2.5 GHz 12-core CPU and a 256 GB 2133 MHz DDR4 RAM in each 

node. All runs were performed with 4 nodes (96 cores) unless specified. SBML models were 

converted to COBRA format with the COBRA Toolbox (Schellenberger et al., 2011). 

The overall logic flow of the NR-Knock and NR-Ox algorithm is shown in Figure 3-1 

and the step-by-step process is described in Appendix A. The designed metabolic engineering 

strategies are a set of genetic modifications. Thus, the entire search space is first reduced by 

keeping only enzyme-catalyzed reactions with gene annotation in the GEM. After this reduction, 

NR-Knock and NR-Ox each treat the search space differently. NR-Knock further reduces the 

search space by excluding reactions that do not carry meaningful flux after evaluating with FVA. 

Meaningful fluxes are ones that do not resemble futile cycles and not artifacts of computational 

precision. In this study, flux values between 10-9 and 150 mmol·gDCW-1·h-1 were considered 

https://www.mosek.com/
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meaningful. One of the features of the NR-Opt algorithms is the further reduction of search space 

by evaluating flux ratios. The flux ratio constraint is based on the principle of multiple reactions 

competing for the same limited metabolite pool. The metabolite distribution is determined by the 

thermodynamics and the availability of enzymes, which can be altered through genetic 

modifications (McAnulty et al., 2012; Yen et al., 2013). Reduction of the search space using flux 

ratio constraints serves as the first elimination of redundant predictions. Flux ratios are presented 

as reaction-node pairs, the competing reactions, and the limited metabolite pool(s). In NR-

Knock, the FVA flux solutions are used to determine flux ratio ranges. Reactions that do not 

have associated flux ratios are removed because these represent linear metabolic pathways where 

metabolism cannot be re-routed. The remaining reactions now feed into the steepest ascend hill 

climbing search, which iteratively searches for a combination of KOs that can generate the best 

BPCY. In the first iteration, single-KO strategies are tested by constraining each reactions to zero 

flux then perform FBA with the objectives of maximizing growth (𝐺) and minimizing target 

product yield (𝑌) to calculate BPCY, which is the product of 𝐺 and 𝑌 (Choon et al., 2014). Each 

single-KO strategy is assigned an initial reward point value specified by the user (𝑝𝑖 ← 𝑝0, where 

𝑝0 is the initial reward point and 𝑝𝑖 is the points for strategy i). Strategies that have non-zero 

BPCY are rewarded additional points. Likewise, each ineffective strategy is deducted one point. 

If the point falls below zero, then the strategy is eliminated from expansion. The stack of 

strategies is ranked by highest BPCY after the first search iteration. The second iteration of this 

depth-first search continues from the top of the strategy stack. The top KO strategy, now the 

“parent” strategy, is combined with an additional KO of each reaction in the search space except 

itself to form a “child” strategy. The BPCY and 𝑝 of this double-KO strategy is evaluated as 

described previously. Then, the strategy stack expands if the strategy has a better BPCY. Each 
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iteration of the depth-first search is optimized for parallel computing. The search loop ends when 

the stack is empty or at least one of the strategies meets the minimum BPCY goal 

(𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) assigned by the user. The list of designs is generated and updated as the 

program runs to allow for real-time monitoring of results. A build of NR-Knock for a local 

machine is also available, and FastFVA (Gudmundsson and Thiele, 2010) is used. 

The NR-Ox algorithm is fundamentally the same as NR-Knock with the notable 

exception that the search space is significantly larger and each strategy involves altering flux 

ratios of relevant reactions. The magnitude of flux ratio increase or decrease can be defined by 

the user. As shown in Figure 3-1, after the initial reduction, NR-Ox proceeds to its iterative 

search for strategies. With each iteration, FBA is performed with the top parent strategy (wild-

type for the first iteration) to determine the new set of flux ratios. In contrast with NR-Knock, 

where the search space is the same for each iteration, NR-Ox redefines search space for each 

iteration. It is important to emphasize that each reaction can compete in multiple nodes, and thus 

be involved in multiple flux ratios. Each flux ratio is subjected to increase or decrease as 

evaluations of overexpression and knock-down strategies. This illustrates the large size of the 

search space. FBA is performed to evaluate each strategy and BPCY is determined as before. 

Similarly, the stack of strategies is ranked by BPCY, the 𝑝 of each strategy is updated as 

necessary and the iterative search continues until the stack is empty or one strategy meets 

𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒. 

There are five parameters that are critical to robustness of design and required CPU time. 

The first is the minimum score increment (𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓), which is the minimum required BPCY 

increase from the current best BPCY if a strategy is qualified for reward. If the 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 is too 

high, all valid strategies are dismissed. If it is too low, insignificant strategies are qualified for 
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expansion and search space can become unnecessarily large. The default value is 10% of the 

predicted maximum theoretical BPCY. The initial reward point (𝑝0), mentioned previously, and 

the maximum allowable points (𝑝𝑚𝑎𝑥) are two parameters that determine how many expansions 

a strategy can have without improving BPCY. A 𝑝0 of zero means that any strategy that does not 

improve BPCY of the wild-type (WT) model in the first search iteration is eliminated. To 

maintain the integrity of good strategies, 𝑝𝑚𝑎𝑥 is used to limits the number of continuous sub-

optimal expansions. This feature enables faster search by allowing search of optimal strategies 

from sub-optimal strategies (Figure 3-2). In contrast to Bees Hill Flux Balance Analysis (Choon 

et al., 2015), which uses a traditional hill climbing algorithm, NR-Opt modifies the hill climbing 

algorithm to allow for short continuation of neighborhood search in non-optimal local solution in 

attempt to find the global maxima. Allowing sub-optimal solution expansion does not introduce 

redundant strategies in NR-Knock predictions, but it can introduce redundant strategies in NR-

Ox predictions, as search spaces can be different for each iteration. Thus, it is necessary to 

perform a reduction to eliminate unnecessary flux ratio modifications in preliminary NR-Ox 

strategies after the search is complete. The fourth critical parameter is the maximum number of 

modifications (𝑁𝑚𝑎𝑥). A high 𝑁𝑚𝑎𝑥  can increase CPU time (but not significantly) because most 

strategies are eliminated from expansion early on. This is, unless, 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 is small and 𝑝𝑚𝑎𝑥 is 

high. The fifth critical parameter is 𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒, which is the cutoff for 𝐵𝑃𝐶𝑌𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦/

𝐵𝑃𝐶𝑌𝑚𝑎𝑥 to allow for an early termination. It is important to note, just as in all hill climbing 

algorithms, NR-Opt is not guaranteed find the global optima, which is why these five parameters 

are critical and should be adjusted if good strategies cannot be found. 
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Figure 3-1. The NR-Knock and NR-Ox algorithms. Complete algorithm is described in detail in 

Materials and Methods. 
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Figure 3-2. Searching for optimal strategy from suboptimal strategy in the NR-Opt algorithm. 

This plot shows a hypothetical scenario of NR-Knock predicting KO strains. The KO strains 

represents KO of reaction A (A), double-KO of reactions A and B (AB), and triple-KO of 

reactions A, B, and C (ABC). The %𝐵𝑃𝐶𝑌𝑚𝑎𝑥 for of the predicted strategies are shown as black 

bars. 𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 (dash line) and 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 range are shown. The optimal strategy is 

highlighted in orange box. 
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NR-Opt setup for E. coli and Arabidopsis case studies 

A previously constructed GEM of E. coli (Ec-iAF1260) was modified to include the 

BDO biosynthesis pathway (Feist et al., 2007; Yim et al., 2011). This adds 6 reactions for 2-

oxoglutarate decarboxylase, CoA-dependent succinate semialdehyde dehydrogenase, 4-

hydroxybutyrate dehydrogenase, 4-hydroxybutanoate CoA-transferase, 4-hydroxybutyryl-CoA 

reductase, and alcohol dehydrogenase (for the conversion of 4-hydroxybutryraldehyde to BDO) 

to the Ec-iAF1260 model, and generates BDO-WT. An additional BDO exchange was added as 

necessary. BPCY was calculated as the product of growth and the BDO production flux. 

A previously constructed Arabidopsis thaliana GEM, AraGEM, (de Oliveira Dal'Molin 

et al., 2010), was used in the second case-study. Because cellulose is already a part of the 

biomass equation, a separate cellulose exchange was added and used as the target reaction to 

determine if excess cellulose could be produced. This generatd the Cellulose-WT model. BPCY 

was calculated as the product of growth and the cellulose exchange flux. The NR-Opt parameters 

for both case studies are shown in Table 3-1. 
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Table 3-1. NR-Opt parameters used in prediction. 

 BDO in E. coli  Cellulose in Arabidopsis 

 NR-Knock NR-Ox  NR-Knock NR-Ox 

Model BDO-WT BDO-Mut 8  Cellulose-WT Cellulose-WT 

Target reaction BDO exchange  Cellulose exchange 

𝒅𝒗𝒄𝒖𝒕𝒐𝒇𝒇 0.1 0.001  0.0001 0.0001 

𝒑𝟎 0 0  2 1 

𝒑𝒎𝒂𝒙 1 1  2 1 

𝑵𝒎𝒂𝒙 4 4  4 4 

𝑩𝑷𝑪𝒀𝒂𝒄𝒄𝒆𝒑𝒕𝒂𝒏𝒄𝒆 1 0.95  0.9 1 

Real time, s (1) 41.2 (2) 185.7  1259.1 373.2 

(1) Performance on 96 cores of the system described in Material and Methods 

(2) 57.7 s with 24 cores, and 248.1 s with 1 core on a laptop. 
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RESULTS 

Predicted metabolic engineering strategies to increase BDO yield from E. coli 

A gene KO strategy to increase 1,4-butanediol (BDO) yield in E. coli was predicted 

previously using OptKnock, and validated experimentally (Yim et al., 2011). To demonstrate 

that the NR-Opt toolbox can predict robust metabolic engineering strategies, we examined 

whether NR-Opt would design the same or a similar strategy to increase BDO production from 

E. coli. 

When FBA was performed on the modified Ec-iAF1260 model (BDO-WT), no BDO 

production was predicted as a byproduct of growth. NR-Knock was deployed on the BDO-WT 

model and 4 KO strategies to increase minimum BDO BPCY were designed. The conventional 

evaluation method of designed strategy is by examining the production envelope to identify the 

predicted minimum theoretical product yield as cells evolve or adjust towards maximum growth. 

As shown in Figure 3-3A, all 4 NR-Knock strategies ranked by BPCY were compared against 

the validated strategy (Yim et al., 2011). All of the NR-Knock strategies have equivalent or 

lower minimum BDO yield at maximum growth as compared to the validated strategy. The 

designed strategies do not have high minimum BDO yield at maximum growth because the NR-

Knock objective was to maximize BCPY. As shown in Figure 3-3B, the calculated BPCY 

envelopes of all the NR-Knock strategies have greater predicted BPCY and faster growth except 

of BDO-Mut 4. The BDO-Mut 4 design is interesting because its calculated BPCY envelope 

shows a mutant with alcohol dehydrogenase (adh) KO can generate high BDO, but the 

production is not yet at its theoretical maximum, as indicated by the round head space above the 

maximum growth rate point. In contrast, BDO-Mut 1 and 3 designs, and the validated Yim et al. 
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strategy, have reached their maximum theoretical BPCYs when the strains achieve maximum 

growth, as indicated by the sharp peak. 

Table 3-2 shows (i) the theoretical maximum BPCY of BDO, (ii) the BPCY of Yim et al. 

KO strategy, and (iii) the top NR-Knock designs. Although the maximum number of KOs was 

set to 4, the best strategies were 3 KOs or fewer. The validated 4-KO strategy implemented in 

Yim et al. has a BCPY that is 78.6% of the theoretical maximum, which is less than all the 

strategies predicted by NR-Knock. The best strategies predicted by NR-Knock is a 3-KO strategy 

(BDO-Mut 1) with a BCPY that is 99.94% of the BDO-WT theoretical maximum (Table 3-2). 

This strategy was validated experimentally in Yim et al. to produce significantly higher yield 

than the WT strain containing the BDO pathway (Yim et al., 2011). It is worth noting that BDO-

Mut 4 is a single KO strategy that has a BPCY similar to the OptKnock strategy of Yim et al. 

The gene targets in all of the NR-Knock strategies are similar to those of the validated Yim et al. 

strategy, in which they all attempt to limit the production of ethanol, lactate, and formate to force 

BDO production (Yim et al., 2011). In addition, NR-Knock was able generate these predictions 

in 57.7 seconds with 24 cores of the computer system described in Materials and Methods. 

Importantly, when NR-Knock was performed using one core on a local machine with an Intel 

Core i7-3537U 2.0 GHz CPU and an 8 GB RAM, it required 4.1 minutes to design the same KO 

strategies. By contrast, this is significantly faster than OptKnock, on the scale of tens of minutes 

with 48 cores, and ReacKnock, on the scale of minutes with 48 cores, when solving similar 

problems (Xu et al., 2013). DBFBA is a very fast and robust algorithm, but it requires 34 

minutes to solve a similar problem on a local machine (Choon et al., 2014). EMILiO is arguably 

the fastest algorithm to date with a run time as low as one minute, and it can predict KO, OX, 

and KD strategies simultaneously (Yang et al., 2011). The drawback is that EMILiO predicts 
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many redundant strategies with additional modifications to the core strategy that do not lead to 

significant differences. NR-Knock can perform on the same time scale as EMILiO, but 

redundant predictions are eliminated. 
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Figure 3-3. Conventional production envelopes and BPCY envelopes of predicted KO strategies 

to increase BDO yield. Conventional production envelopes (A) and BPCY envelopes (B) for 

BDO-WT (black line), Yim et al. OptKnock strategy (red line), and 4 NR-Knock strategies (blue 

lines). The maximum growth rate (vertical red dashed line) and BDO yield or BPCY (horizontal 

red dashed line) of Yim et al. Optknock strategy is shown in every plot for comparison. 
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Table 3-2. Predicted gene KO strategies to increase BDO BPCY in E. coli. 

Strains Reactions to KO Genes BPCY 

BDO-WT (No KO)  0 

 (Theoretical maximum)  0.0116 

Yim et al. Ethanol + NAD+ ↔ Acetaldehyde +  H++ NADH adh 0.0091 

 D-Lactate + NAD+ ↔ Pyruvate +  H++ NADH ldh  

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl  

 L-Malate + NAD+ ↔ H+ + NADH + Oxaloacetate mdh  

BDO-Mut 1 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0116 

 D-Lactate + NAD+ ↔ Pyruvate +  H++ NADH ldh  

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl  

BDO-Mut 2 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0115 

 ADP + 4 H+ + Phosphate ↔ ATP + H2O + 3 H+ atp  

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl  

BDO-Mut 3 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0107 

 ADP + 4 H+ + Phosphate ↔ ATP + H2O + 3 H+ atp  

 D-Glucose 6-phosphate ↔ D-Fructose 6-phosphate pgi  

BDO-Mut 4 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0093 
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To examine the performance of NR-Ox, the BDO-Mut 4 model (which contains the adh 

KO) was used to determine if a gene overexpression or knock-down strategy exists that can 

further improve its BPCY. The BDO-Mut 4 model was used because it contains a single gene 

KO and its BPCY was less than the theoretical maximum. NR-Ox returned 2 design strategies, 

given the parameters listed in Table 3-1, and these are shown in Table 3-3. Interestingly, NR-Ox 

predicted the importance of pyruvate dehydrogenase (lpdA) activity in the production of BDO 

(Yim et al., 2011). NR-Ox also calculated that if the overexpression of lpdA, in the presence of 

the adh KO, can partition 90.4% of the total pyruvate through pyruvate dehydrogenase reaction 

the BDO BCPY can improve from 80.2% to 100% of the theoretical maximum. For this study, 

NR-Ox was parameterized to search for at most 4 modifications, which included overexpression 

and/or knock-down of enzyme catalyzed reactions. Even though the solution space became very 

large, NR-Ox required only 3.1 minutes (using the 96 core configuration described in Materials 

and Methods) to design an optimal strategy. 
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Table 3-3. NR-Ox predictions to increase BDO BPCY in E. coli strain with adh KO. 

Strain ∆𝑭𝑹(1) Nodes Reactions Genes BPCY 

BDO-adh-Mut 1 +0.9 Pyruvate 
CoA + NAD+ + Pyruvate ↔ Acetyl-CoA + 

CO2 + NADH 
lpdA 0.0116 

BDO-adh-Mut 2 +0.315 
D-Erythrose 

4-phosphate 

D-erythrose 4-phosphate + H2O + 

Phosphoenolpyruvate ↔ 2-Dehydro-3-

deoxy-D-arabino-heptonate-7-phosphate + 

Phosphate 

aroG 0.0094 

(1) The amount of change to the initial flux ratio. Positive change indicates gene OX and 

negative change indicates gene KD. The maximum is 1. 
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Predicted metabolic engineering strategies to increase cellulose content in Arabidopsis 

The NR-Opt toolbox was used with the modified AraGEM model (Cellulose-WT) to 

predict metabolic engineering strategies to increase cellulose production in Arabidopsis thaliana. 

NR-Knock was unable to predict any KO strategy even when 𝑝0 and 𝑝𝑚𝑎𝑥 were large, as shown 

in Table 3-1. Given the size of the Cellulose-WT model, over 4 million KO strategies were 

evaluated in 21 minutes of real time (using the 96-core configuration described previously). This 

result also suggests that no metabolic characteristics are present to allow for repartitioning of 

cellular resources to overproduce cellulose. However, NR-Ox designed two gene overexpression 

strategies. As shown in Table 3-4, the strategy with the highest predicted BPCY (Cellulose-Mut 

1) is the overexpression of cellulose synthase (CesA). NR-Ox predicted that if CesA can 

partition 97% of the total UDP-glucose, then 100% of theoretical maximum BCPY can be 

achieved. The drawback of this strategy is that growth is reduced by 64% compared to wild-type 

(WT). 

The second strategy (Cellulose-Mut 2) requires upregulating both a nucleoside 

diphosphate kinase (Ndk1) and a UDP-glucose pyrophosphorylase (UGPase). Cellulose-Mut 2 

has a significantly lower predicted BPCY, which is only 9.5% of the theoretical maximum. 

However, further examination found that the low BPCY is primarily due to the significantly 

reduced predicted growth (4.4% of WT). Using slightly lower flux ratios on UGPase|UTP and 

Ndk1|ATP reaction|node pair than the default assigned in the NR-Ox run, lost growth is 

recovered and BPCY is further improved. The optimal flux ratios for UGPase in the UTP node 

and Ndk1 in the ATP node to maximize BPCY are shown in Figure 3-4. Analysis of the 

predicted flux distribution revealed that Ndk1 is predicted to have very low flux in WT, and flux 

through UGPase is reduced when the Ndk1 flux ratio increases.  
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Table 3-4. NR-Ox predicted overexpression strategies to increase cellulose BPCY. 

Strain ∆𝑭𝑹(1) Nodes Reactions Genes BPCY(2) 

Cellulose-WT  (No modification)(3)  0 

  (Theoretical maximum) 0.0063 

Cellulose-Mut 1 +0.295 UDP-Glucose UDP-glucose ↔ Cellulose + UDP CesA 0.0063 

Cellulose-Mut 2 +0.894 ATP ATP + UDP ↔ ADP + UTP Ndk1 0.0006 

 +0.898 UTP 
D-Glucose 1-phosphate + UTP ↔ 

Pyrophosphate + UDP-glucose 
UGPase  

(1) The amount of change to the initial flux ratio. Positive change indicates gene OX and 

negative change indicates gene KD. The maximum is 1. 

(2) Modified calculation: 𝐵𝑃𝐶𝑌 = 𝑣𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ∙ 𝑣𝐺𝑟𝑜𝑤𝑡ℎ. 

(3) Does not include the amount already in the biomass equation. 
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Figure 3-4. The dynamics of flux ratios of UGPase|UTP and Ndk1|ATP. BPCYs of different flux 

ratios of UGPase|UTP and Ndk1|ATP are shown by the color gradient. The optimal flux ratios 

to achieve maximum theoretical BPCY of 0.0039 is shown by the red curve. The flux ratios 

examined by NR-Ox during run is shown by the black dot. 
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DISCUSSION 

Computational predictions can aid the metabolic engineering process significantly. 

However, predictions from new algorithms should be cross-referenced with previous 

experimental studies to determine their degree of validity. Adjustments to the metabolic model 

may be required; thus, an iteration approach may be necessary. The NR-Opt toolbox, presented 

here for the first time, has shown to be capable of designing accurate, complex, yet concise 

metabolic engineering strategies in near-record time. Furthermore, the NR-Opt toolbox 

incorporates the genomic tools of KO, OX, and KD and offers a dynamic set of parameters to 

give users full control of run time and robustness. The NR-Opt toolbox has demonstrated shorter 

run-times due to competing algorithms. This allows users to explore more complex strategies 

(i.e. include more genetic manipulations) and repeat model designs. The reward parameters 

allow the user to reject redundant strategies, specifically ones with additional genetic 

manipulations that do not improve BCPY. This effectively removes them from FBA analysis, the 

most time-consuming step of the algorithm. This feature also allows the resulting list of designs 

to be concise, simplifying downstream evaluation and experimental validations. 

In the case of engineered BDO production in E. coli, OptKnock predicted a list of 203 

metabolic engineering strategies (Yim et al., 2011). Cross-referencing these with literature, to 

determine which to implement experimentally, can be tedious without expert knowledge. On the 

other hand, NR-Knock returned 4 optimal strategies, and each retained only necessary gene 

KO’s that can improve BPCY significantly. Thus, fewer refinements of results and experimental 

validations are required, and implementing any of the top NR-Knock designs will likely yield a 

favorable result. The differences between the sizes of the design strategy lists and the predictions 

themselves can be attributed to the metabolic models used in the studies; however, it is primarily 
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due to the differences in the design algorithms. It is worth emphasizing that the top ranking NR-

Knock strategy is an experimentally validated strategy by Yim et al., but it was not top ranking 

strategy designed by OptKnock (Yim et al., 2011). Another important point is that Yim et al. 

incorporated additional modifications on top of their OptKnock design, which ultimately lead to 

much higher BDO production. The complete Yim et al. strategy included four KOs of adh, 

lactate dehydrogenase (ldh), pyruvate formate lyase (pfl), and mdh, which were predicted by 

OptKnock, and three other genetic modifications that were rationalized by the authors based on 

the OptKnock strategy (Yim et al., 2011). In this strategy, mdh KO played a role of decreasing 

oxidative TCA cycle to increasing reducing equivalent reserve for BDO biosynthesis (Yim et al., 

2011). The three additional genetic modifications served to reinforce the OptKnock strategy. It is 

argued that with a quick evaluation of the short NR-Opt prediction list, a researcher could design 

the final strategy implemented in Yim et al more rapidly. 

Similarly, NR-Opt returned a very short list of designs (Table 3-4) to increase cellulose 

production in Arabidopsis. This is interesting because the predicted strategies contain, so far, the 

only two experimentally validated strategies despite decades of cellulose research (Kim et al., 

2013; Wang et al., 2011). This result implies the challenge of cellulose engineering owning to 

the robustness of Arabidopsis metabolism. Previous experimental study showed that the 

overexpression of a transcription factor, MYB46, in Arabidopsis can upregulate the cellulose 

synthase (CesA) complex and increase crystalline cellulose concentration in leaves by 30%. The 

up-regulation of CesA complex by overexpressing MYB46 can be considered a “true” strategy to 

increase cellulose, but this comes at the expense of growth (Kim et al., 2013). The reduced plant 

growth due to MYB46 overexpression has shown to be independent of cell wall thickening, 

which suggests it could be a metabolic consequence (Kim et al., 2013; Ko et al., 2009). The 
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reduction of growth can be compensated by inducing MYB46 overexpression later in the plant 

developmental stage (Kim et al., 2013). This suggests that cellulose production may still have 

room to increase, but this seems to be at the expense of plant growth. The analysis on the 

dynamics between Ndk1 and UGPase (Figure 3-4) shows that a coordinated adjustment of 

Ndk1|ATP and UGPase|UTP flux ratios is required to ensure optimal BPCY from this strategy. 

Although there is currently no evidence correlating Ndk1 expression to cellulose biosynthesis, 

multiple studies have found that the overexpression of UGPase can increase cellulose content (Li 

et al., 2014; Zhang et al., 2013). Overexpression of UGPase in Arabidopsis increases crystalline 

cellulose concentration in the stem, but this increase is much smaller compared to MYB46 

overexpression (Wang et al., 2011). It was shown that UGPase overexpression increases plant 

growth; however, FBA calculated reduced growth (Wang et al., 2011). In the modeling process, 

metabolic flux in AraGEM is calculated by FVA and FBA under the assumption of a maximal 

growth objective, which means all available resources are directed to growth, or transport 

reactions that serve growth through mass balancing. The disagreement between predicted growth 

consequences and experimental growth improvement suggests that the assumption of 

maximizing growth may not be accurate. This growth objective inaccuracy suggests that there is 

an underlying biological complexity in Arabidopsis that prevents maximal uptake of nutrients 

and/or maximal partitioning of nutrient into growth. Although the Cellulose-Mut 2 design is not 

entirely consistent with experimental evidence, this becomes an excellent example of using 

predictive algorithms to guide the understanding of biology and to contribute in the model 

improvement cycle. 

Finally, it is important to emphasize that regardless of the metabolic engineering strategy 

design algorithm being used, the quality of the design depends heavily on the quality of the 
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metabolic model. Cross-validation of designs with multiple GEMs and different design 

algorithms to explore robustness is still recommended, as noted previously (Choon et al., 2014). 

Because NR-Opt is fast and the predictions are more concise, it can serve as the first pass in the 

design process. Algorithms, such as EMILiO, ReacKnock, and DBFBA, can then be used for 

cross-validation and to explore alternative strategies. 

CONCLUSIONS 

The NR-Opt toolbox has been developed as a set of fast, accurate, and concise predictive 

algorithms that uses GEMs to design metabolic engineering strategies. The NR-Opt toolbox was 

applied in a proof-of-concept to design strategies that can theoretically increase BDO production 

in E. coli and cellulose production in Arabidopsis. Cross-validation with published experimental 

results showed that NR-Opt can efficiently generate complex and accurate designs. Its run time 

is among the fastest of any available design algorithms, and it returns a concise list of top-rated 

designs to accelerate the experimental validation process. 
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ABSTRACT 

The understanding of enzymatic functions in plant signaling pathways is extremely 

challenging and convoluted by interactions between metabolic and signaling responses. One 

important enzyme in both signaling and metabolism, the sucrose non-fermenting related kinase 1 

(SnRK1), has been shown to play a pivotal role in plant stress and energy signaling. Previous 

studies in Arabidopsis thaliana showed evidence that SnRK1 regulates global transcriptional 

responses to hypoxic stress and carbon starvation. SnRK1 overexpression has also been shown to 

delay plant developmental transitions, increase biomass, and reduce starch accumulation. Further 

understanding of the SnRK1 regulatory pathway may enable accurate metabolic engineering of 

plant energy metabolism to improve biomass yield. To address the complexity of SnRK1 

metabolic regulation, we modified and deployed a constraint-based genome-scale metabolic 

model (GEM) of Arabidopsis to help guide our study of SnRK1 overexpression plants. 

Quantitative validation of model predictions with experimental data showed high accuracy in 

predicting growth and starch turnover in both wild-type (WT) and SnRK1 overexpressors during 

development. Results suggest changes in plant development and starch are independent 

responses to SnRK1 overexpression, which supports a previous speculation on simultaneous 

SnRK1 regulation of plant development and starch metabolism. This study demonstrates the 

utility of flux-based modeling in studying signaling pathways and it introduces a novel modeling 

framework to enable prediction of non-steady state metabolite accumulation in a diurnal cycle. 
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INTRODUCTION 

In the absence of mobility, plants have evolved a diverse set of sensors to enable rapid 

response to unpredictable changes in their surrounding environment (Hasegawa et al., 2000; 

Sheen, 2014; Yamaguchi-Shinozaki and Shinozaki, 2006). Environmental stress can often 

compromise photosynthesis and respiration leading to a significant loss in cellular energy. 

Sucrose non-Fermenting Related Kinase 1 (SnRK1), a plant ortholog of mammalian AMP 

kinase, is encoded by a family of genes, and has been proposed to be a critical sensor of energy 

level in plants (Polge and Thomas, 2007). Previous studies in Arabidopsis showed evidence of 

SnRK1 global regulation of plant metabolism under stress and carbon starvation (Baena-

González et al., 2007). Transcriptomic analysis showed ectopic expression of SnRK1 represses 

transcription of genes involved in anabolic pathways and activates those involved in catabolic 

pathways and autophagy. In addition, this subset of SnRK1-regulated genes was also regulated 

when plants are grown under low sugar, low CO2, or an extended night period (Baena-González 

et al., 2007). The SnRK1-regulated metabolic pathways include the biosynthesis of cell wall, 

protein, lipid, and sugars (Baena-González et al., 2007). 

In the Arabidopsis genome, there are three genes in the SnRK1 gene family, which 

includes the functional SnRK1.1 and SnRK1.2, and the unexpressed pseudogene SnRK1.3 

(Baena-González et al., 2007; Hrabak et al., 2003). SnRK1.1 and SnRK1.2 double-knockout 

plants have greatly stunted growth and are infertile (Baena-González et al., 2007). 

Overexpression of SnRK1.1 can delay developmental transition and reduced rosette size in early 

development and increased rosette size in the post-flowering stage (Baena-González et al., 2007; 

Gazzarrini and Tsai, 2014; Williams et al., 2014). In contrast, overexpression of SnRK1.2 

induces early flowering and increased rosette size in early development (Williams et al., 2014). 
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The gene expression pattern of SnRK1.2 in seedlings is spatially restricted to roots, and 

hydathodes and vascular tissue within leaves; whereas, SnRK1.1 gene expression is more 

uniform in all tissue types (Williams et al., 2014). 

To overcome the inability to photosynthesize at night, most plants convert a portion of 

their photosynthate into starch during the day, and then remobilize starch in the night for growth 

and maintenance (Gibon et al., 2009). Gene expression analysis showed that SnRK1 is involved 

in activating starch degradation during energy deprivation (Baena-González et al., 2007). SnRK1 

loss-of-function plants showed elevated end-of-day (EOD) and end-of-night (EON) starch levels, 

which implicates reduced starch turnover in the night (Baena-González et al., 2007). In addition, 

SnRK1.1 overexpression in Arabidopsis resulted in reduced starch accumulation when 

overexpression plants were supplemented with high glucose (Jossier et al., 2009). Interestingly, 

overexpression of SnRK1 in a sink tissue, potato tuber, increased tuber starch content by up to 

30% (McKibbin et al., 2006). This disparity is likely due to differences in tissue type (i.e. source 

vs. sink tissue), nonetheless, it is generally agreed that SnRK1 has a significant role in regulating 

starch metabolism and plant development (Baena-González et al., 2007; Gazzarrini and Tsai, 

2014; Jossier et al., 2009; Williams et al., 2014). 

It has been shown that starch can impact plant developmental transitions (Matsoukas et 

al., 2013; Yu et al., 2000). Specifically, it was found that the total starch level does not regulate 

developmental transition; but rather, the reduction of starch turnover rate at night can 

significantly delay juvenile-to-adult phase transition during the vegetative stage, which can lead 

to delayed vegetative-to-reproductive stage transition (Matsoukas et al., 2013). Previous data 

seem to indicate that the developmental delay observed in SnRK1 overexpression plants is not a 
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consequence of altered starch metabolism and that SnRK1.1 may regulate starch and 

developmental transition simultaneously, however, concrete results have yet to be presented. 

Many challenges faced in sugar signaling research come from the difficulties in 

dissecting the convoluted mixture of metabolic and regulatory events that are further complicated 

on a temporal scale (Sheen, 2014). In light of recent advances in bioinformatics and 

computational biology, multiple plant researchers have sought alternative analysis and 

computational methods, including the utilization of constraint-based genome-scale metabolic 

models (GEMs) to address metabolic complexity (Cheung et al., 2013; Grafahrend-Belau et al., 

2013; Poolman et al., 2013; Töpfer et al., 2013). A GEM is a network of biochemical reactions 

defined solely by stoichiometry; kinetics and regulatory features are not required but can be 

added where information is known (Poolman et al., 2009; Schilling et al., 1999). Flux balance 

analysis (FBA) is commonly used with a GEM to calculate metabolic flux distributions given a 

growth objective and a pseudo-steady state. The pseudo-steady state assumption holds when the 

rate of metabolic reaction is significantly higher than the rate of organism development, such as 

in filling seeds or developing fruit (Allen et al., 2009; Caspeta et al., 2012; Colombié et al., 

2015). Under the pseudo-steady state assumption, flux of its formation is equal to the flux of that 

metabolite’s consumption; thus, metabolic network flux distribution (within the bounds of 

constraints) is calculated traditionally with linear programming using Equation 1, where 𝑆𝑖𝑗 is 

the stoichiometric coefficient of metabolite 𝑖 in reaction 𝑗, 𝑣𝑗  is the calculated flux of reaction 𝑗, 

and 𝑋𝑖 is the concentration of metabolite  (Caspeta et al., 2012; Förster et al., 2003; Park et al., 

2009). 

𝑑𝑋𝑖

𝑑𝑡
= 𝑆𝑖𝑗 ∙ 𝑣𝑗 = 0, 𝑣𝑗,𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑗,𝑚𝑎𝑥 (Equation 1) 
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The utility of flux-based modeling in studying plant metabolism has been a subject of 

great interest (Collakova et al., 2012). To show that it can be used for plant studies, a 

comprehensive analysis that compared experimentally measured fluxes with predicted fluxes of 

central carbon metabolism showed that flux-based modeling with GEMs can accurately predict 

steady-state flux in Arabidopsis cells in vitro (Williams et al., 2010). Although utilization of 

GEMs to accurately predict fluxes of plants in vivo is challenged by the lack of a long-term 

steady-state condition, a previous study on the effect of light intensity on rice metabolism 

revealed which metabolic interactions can be described solely with mass-balancing (Poolman et 

al., 2013). This study showed that flux-based modeling can be used to determine whether a 

metabolic change involves regulatory control, based on the accuracy of the prediction. Another 

study on the metabolic changes in developing tomato fruit demonstrated that GEMs and pseudo-

steady state flux-based modeling can also be used to predict metabolic flux “snap-shots” of 

developmental stages (Colombié et al., 2015). 

The objective of this study is to determine if flux-based modeling can be used to guide 

experimental research to determine the metabolic roles of enzymes in plant signaling pathways. 

As the proof-of-concept, we investigated whether starch turnover is regulated differently in WT 

and plants ectopically expressing a SnRK1.1 gene fused to an HA epitope tag (SnRK1.1:HA 

plant). Because overexpression of SnRK1.1:HA has distinct phenotypic consequences at 

different developmental stages, we examined starch turnover at two different stages of plant 

development. To do so, we modified an existing Arabidopsis GEM (AraGEM) (de Oliveira 

Dal'Molin et al., 2010) using experimentally measured biomass data and a novel modeling 

framework to predict quantitative changes of biomass and starch over a 24-hour diurnal growth 

cycle. Predicted growth and starch turnover rates were validated with experimental results, and 
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showed agreement with computational predictions. Results from this model-guided analysis of 

starch metabolism suggest that the delayed developmental transition in SnRK1.1 overexpression 

plants may not be associated with starch. Our analysis also supports previous speculation that 

SnRK1.1 plays a role in regulating starch and plant development simultaneously. 

MATERIALS AND METHODS 

Plant growth conditions 

Arabidopsis thaliana ecotype Landsberg erecta (Ler-0) plants were used for all 

experiments. Plants were grown in a controlled growth chamber at 22°C and 55% relative 

humidity under 16 hours of light, provided with fluorescent lamps (140 E). Soil-grown plants 

were maintained on Sunshine Mix #1 and watered with Miracle-Gro Liquid Houseplant Food (8-

7-6: 8% total nitrogen, 7% available phosphate, P2O5, 6% soluble potash, K2O, 0.1% Iron, Fe; 

Scotts Miracle-Gro Products, Inc.). 

Tissue collection 

All pre-flowering plant tissues for protein, biomass, cellulose, and metabolite analyses 

were harvested from 14 day-old plants. All tissues of other ages were green mature leaves 

harvested from rosette. For starch analyses, liquid nitrogen was poured directly onto rosette and 

samples were harvested while frozen. 

All samples except EOD and EON samples were harvested at 1 PM. EOD samples were 

harvested 30 minutes before the dark cycle began. EON samples were harvested 30 minutes prior 

to the light cycle. 

Quantification of cell wall 

Rosette leaves and stem tissues were harvested and dried via lyophilization and then 

pulverized with 3 mm steel beads. Samples were washed using 70% ethanol and centrifuged for 
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10 minutes at top speed on a table-top microcentrifuge. For cellulose, the pellet was resuspended 

in 1 mL of Updegraff reagent (acetic acid:nitric acid:water, 8:1:2 [v/v]) before boiling for 30 

minutes on a heating block at 98ºC. The remaining crystalline cellulose was pelleted by 

centrifugation and dissolved in 1 mL of 67% (v/v) sulfuric acid. Crystalline cellulose amount 

was quantified colorimetrically at 620 nm in a spectrophotometer using the anthrone reagent 

(Updegraff, 1969). 

Lignin and glycosyl levels were analyzed by the Complex Carbohydrate Research Center 

(CCRC) at University of Georgia. For cell wall glycosyl analysis, the ethanol insoluble pellet 

was de-starched with amylase and amyloglucosidase as described in starch quantification. 

Remaining pellet was sent to CCRC and analyzed using previously described method (Santander 

et al., 2013). For lignin analysis, dried plant tissue was sent directly to CCRC and pyrolyzed 

using single-shot pyrolysis at 500C to produce volatile compounds, which were analyzed with a 

beam mass spectrometer (Extrel Core Mass Spectrometers). 

Quantification of biomass and relative leaf expansion rate 

Dry weight was measured after 2 days of lyophilization at -50ºC. Leaf surface area (𝐴) 

was measured by first flattening the leaves between two glass slides and photographing the entire 

slide with the leaf surface positioned parallel to the camera lens. The photograph was processed 

in ImageJ to select only the leaf or the glass slide. The pixel count under the leaf selection was 

normalized to the pixel count under the glass slide selection. 𝐴 was calculated by multiplying the 

normalized pixel count by the known surface area of the glass slide. Relative leaf expansion rate 

(RER) was calculated as the ratio of the change of 𝐴 from 𝑡0 to 𝑡1 to the 𝐴 at 𝑡0 (Tardieu et al., 

1999). Mathematical formulation is shown in Equation 2 below. 

𝑅𝐸𝑅 =
𝐴1−𝐴0

𝐴0
  (Equation 2) 
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Day-RER was calculated from 𝐴 at EON to EOD of the same day, and night-RER was 

calculated from 𝐴 at EOD to EON of the next day. 

Quantification of amino acids and total lipid 

A previously published extraction and quantification method for amino acids and lipids 

was used with the following modifications (Collakova et al., 2013). In brief, amino acids and 

protein were extracted by homogenizing lyophilized plant powder with 200 L of chloroform 

and 200 L of 10 mM HCl. Norvaline (10 L of 5 mM) was used as the internal standard. Non-

polar extract containing fatty acids and lipid was transferred, dried, and weighted for total lipid 

content. Protein in the polar extract was hydrolyzed by overnight incubation in vapor of 6N HCl 

at 110C. Hydrolyzed extracts and amino acid standards of known concentrations were 

derivatized with Waters AccQ-TagTM Ultra Kit and analyzed on an H-class Acquity UPLC-FLD 

equipped with a 10-cm Waters AccQ-TagTM Ultra C18 (1.7 m x 2.1 mm) column (Waters, 

Milford, MA, USA) using Waters 10.2-minute method for free amino acid analysis (Collakova et 

al., 2013). 

Gas-exchange measurement 

Net CO2 assimilation rate was measured on pre-flowering and post-flowering plants 

grown under previously described conditions using a LI-6400 infrared gas analyzer (Li-Cor). 

Whole pre-flowering plant was placed in a Li-Cor 6400-17 whole plant Arabidopsis chamber. A 

single intact post-flowering mature leaf was placed in the original chamber (2 cm  3 cm). After 

acclimation to 140 E and CO2 concentration of 400 mol/L for 10 minutes, the rates of CO2 

assimilation were measured. 
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Starch Quantification 

Starch was measured in tissues harvested at mid-day, EON, and EON. Analysis was 

performed as previously described with slight modification (Smith and Zeeman, 2006). Briefly, 1 

– 4 mg of lyophilized plant sample was pulverized via bead-beating. Soluble sugars were 

removed using 80% ethanol. Starch was hydrolyzed by incubating with 6 U of -

amyloglucosidase and 1 U of amylase. Glucose was quantified with HPLC. The transitory starch 

pool was calculated as the difference between starch levels at EOD and EON. 

Construction of SnRK1.1:HA genome-scale models 

Four GEMs were built using AraGEM as base model for WT and SnRK1.1:HA plants at 

pre-flowering and post-flowering stages. Experimentally measured concentrations of biomass 

compounds except starch in mol·mgDW-1 were used to construct the biomass equation 

(reaction 47) of each model. Starch was structured as a separate pool to allow for changes in 

concentration independent from the other biomass compounds. Because the glycosyl profile of 

hemicellulose and pectin compositions was a relative quantitation, concentrations of glycosyls 

were determined using literature data. Hemicellulose and pectin makes up 66% of the cell wall 

(Zablackis et al., 1995). We found the cell wall of WT Arabidopsis is 63% of dry weight, thus 

the glycosyl concentrations in each model could then be estimated by multiplying the relative 

glycosyl levels by 416 g (total glycosyl)·mg DW-1. 

Mathematical formulation of the modified biomass equation and additional biomass 

constraints are summarized as follows: 

𝐹𝑜𝑟 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑋: 𝑑(𝑋̇) = (𝑆 ∙ 𝑣) − (𝑥1
′ 𝐵1

′ − 𝑥0
′ 𝐵0

′ ) = 0 

𝐵0 = 𝐵0
′ + 𝑚𝑦0 

𝐵1 = 𝐵1
′ + 𝑚𝑦1 
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Where 𝑋̇ is mol of compound 𝑋 per plant changed from t0 to t1 (i.e. 1 PM to 1:30 PM). 

𝑥′ is the adjusted concentration of compound 𝑋, which is normalized to a starch-less plant dry 

weight, 𝐵′. The stoichiometric relationship of compound 𝑋 with all other reactions is described 

by the stoichiometric matrix 𝑆, and flux vector 𝑣 carries a unit of mol·plant-1·0.5 h-1 instead of 

the conventional mol·mgDW-1·h-1. 𝐵0 is an input constraint, such as the dry weight measured at 

1 PM of a 14 day-old plant. 𝐵1 is the biomass to predict, such as the dry weight at 1:30 PM of the 

same age plant. Molar quantity of starch is denoted as 𝑦, and the molecular weight of starch is 

𝑚. The known starch level in mol·plant-1 at 1 PM of day 14 is 𝑦0, and the level to predict at 

1:30 PM is 𝑦1. Change of starch (𝑑𝑦) is constrained as follow. 

𝑑𝑦 = 𝑦1 − 𝑦0 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑡𝑎𝑟𝑐ℎ 𝑖𝑛 𝜇𝑚𝑜𝑙 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 = (∑ 𝑠 ∙ 𝑣) − 𝑑𝑦 = 0 

The stoichiometric matrix of the AraGEM model was modified to include the above 

equations. Models and MATLAB implementations are included in the Supplemental Information 

(Appendix C). 

Predicting the transitory starch pool 

As illustrated in Figure 4-1, the transitory starch pool (𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁) is calculated as the 

maximum amount of starch that could be synthesized in the day and utilized in the night while 

returning to the initial level after 24 hours. Thus, the objective of the model simulation is 

maximizing 𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁 while minimizing the difference between initial and final starch levels 

of the simulation (𝑑𝑆𝑡0→𝑡24). To simulate growth and the change of starch level over a 24-hour 

period starting from 1 PM, models were subjected to three simulation stages: (A) 9 hours of 

photosynthesis (1 PM to 10 PM), (B) 8 hours of respiration (10 PM to 6 AM), and (C) 7 hours of 

photosynthesis (6 AM to 1 PM). The rates of starch accumulation in stage A (𝑟𝐴) and C (𝑟𝐶) were 
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assumed to be similar in vivo, thus the difference between 𝑟𝐴 and 𝑟𝐶 is also minimized in the 

objective of the model simulation. Net CO2 assimilation rates in mol·cm-2·h-1 multiplied by the 

rosette surface area and 0.5-hour time-steps were used to constrain the CO2 uptake rates of the 

models during photosynthesis. Experimentally measured relative leaf expansion rate was used to 

estimate total CO2 assimilation over time during the photosynthetic stages. During the respiration 

stage, CO2 exchange was constrained to export and starch was constrained to import as a carbon 

source. Metabolic flux distribution over each 0.5-hour time-step was predicted using FBA with 

the objective of maximizing the non-starch biomass (𝐵1
′) (i.e. growth).  
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Figure 4-1. Model simulation of starch change in a 14 day-old plant over a 24-hour period. 

Simulation began with a 9-hour light period starting at 1 PM when plant dry weight and the 

biomass components were experimentally measured. It was followed by an 8-hour dark period 

starting at 10 PM, then ended with a 7-hour light period of the next day starting at 6 AM. The 

objective of the simulation is to (i) maximize the transitory starch pool (𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁), (ii) 

minimize the difference between initial and final starch levels (𝑑𝑆𝑡0→𝑡24), and (iii) minimize the 

difference between starch accumulation rates of day 14 (𝑟𝐴) and day 15 (𝑟𝐶). The starch turnover 

rate (𝑟𝐵) is also predicted. 

 

  



71 

 

Analysis of predicted metabolic flux distribution 

To compare the predicted metabolic fluxes of WT and SnRK1.1:HA models, the average 

flux of each simulation stage was calculated and compared. Because there are two light 

simulation stages (A and C), the predicted fluxes in both light stages were averaged together. 

The number of reactions in a pathway that were increased or decreased in SnRK1.1:HA models 

compared to WT models were recorded. This frequency was used to rank pathways with the 

most flux changes to the least flux changes. This comparison was performed to identify 

pathways with highest frequency of flux increase or decrease in SnRK1.1:HA model as 

compared to WT model during the day and the night simulations at the pre-flowering and the 

post-flowering stages. Four single-developmental stage comparisons were performed for (1) 

increased in the pre-flowering stage, (2) decreased in the pre-flowering stage, (3) increased in the 

post-flowering stage, and (4) decreased in the post-flowering stage. Two cross-developmental 

stage comparisons were performed to identify pathways with highest frequency of flux increase 

or decrease from the pre-flowering stage to the post-flowering stage. In addition, two cross-

developmental stage comparisons were performed to identify pathways with the highest 

frequency of flux increase in the pre-flowering stage and decreased in the post-flowering stage or 

decreased in the pre-flowering stage and increased in the post-flowering stage. 
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RESULTS 

SnRK1.1:HA plants differ in biomass and developmental age 

Previous studies on SnRK1.1:HA plants showed reduced rosette size in the pre-flowering 

stage, a delayed transition to flowering, and increased rosette size in the post-flowering stage 

(Williams et al., 2014). Representative differences in size and developmental transition are 

shown in Figure 4-2A. Analysis of 14 day-old rosette dry weight supports our previous 

observation that SnRK1.1:HA plants show reduced leaf biomass compared to WT (Figure 4-2B). 

To compare differences in post-flowering plants, we used well-established senescence gene 

markers, SAG12 and SAG21 to identify ages of WT and SnRK1.1:HA that are developmentally 

matched in terms of senescence (Watanabe et al., 2013). We selected a senescence stage in 

which plants exhibited mostly green rosette leaves and fully developed stems, which is 

accompanied by low SAG12 expression and robust expression of SAG21 (Watanabe et al., 

2013). As shown in Figure 4-2D, a 42 day-old SnRK1.1:HA plant has the same SAG 12 and 21 

profile as a 35 day-old WT plant. Rosette dry weights of post-flowering SnRK1.1:HA plants 

were significantly greater than that of WT, which indicates an increase in vegetative biomass in 

SnRK1.1:HA plants (Figure 4-2C). 

Analysis of the relative surface expansion rate (RER) of 14 day-old leaves showed that 

day-RER was 89% in WT and 83% in SnRK1.1:HA, however, by 21 days day-RER was reduced 

to 59% in WT and 54% in SnRK1.1:HA (Figure 4-2E). Reduction in RER ratio was due to 

decrease in day-RER and concurrent increase in night-RER. This analysis also revealed that 21 

day-old SnRK1.1:HA plants began to show greater rosette growth than WT. 
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Figure 4-2. Differences in growth and development of WT and SnRK1.1:HA plants. (A) 

Phenotypic appearances of WT and SnRK1.1:HA plants. Dry weight of WT and SnRK1.1:HA in 

pre-flowering (B) and post-flowering (C) stages were measured for whole rosettes (n = 4). 

Senescence stage (D) of mature leaves of 35 day-old WT and 42 day-old SnRK1.1:HA indicated 

by SAG12 (blue) and SAG21 (red) gene expression markers (n = 2). The RER of WT and 

SnRK1.1:HA (E) in the day (white) and the night (black) in pre-flowering and post-flowering 

stages (n = 5 for pre-flowering, n = 8 for post-flowering). Values are shown as meanSE, and 

asterisk indicates p < 0.05. 
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Biomass composition and photosynthetic rate are significantly altered in SnRK1.1:HA plants 

To construct genome-scale models, specific to our WT and SnRK1.1:HA plants, the 

biomass equations of the models were parameterized to experimental measurements. We focused 

on the primary components of plant biomass, including cell wall, amino acids/protein, lipid, and 

starch. Cell wall component analysis includes absolute quantification of cellulose and lignin and 

relative quantification of hemicellulose. As shown in Figure 4-3A, cellulose was significantly 

reduced by 42% and 41% in SnRK1.1:HA plants in pre-flowering and post-flowering stages, 

respectively. Analysis of lignin shows that levels of syringyl and guaiacyl were decreased by 

20% and 23%, respectively, in SnRK1.1:HA in the post-flowering stage (Figure 4-3B). Analysis 

of the relative levels of glycosyls in hemicellulose and pectin showed no significant differences 

between WT and SnRK1.1:HA at both developmental stages (Figure 4-3C). Our results show 

that SnRK1.1:HA overexpression alters cellulose and lignin content. 

Analysis of amino acid, which contains free amino acids and hydrolyzed protein, showed 

similar relative levels in both genotypes at both developmental stages, which suggests no change 

in amino acid ratios (Figure 4-4A). Absolute levels of all quantified amino acids (Figure 4-4B) in 

post-flowering SnRK1.1:HA plants were reduced by an average of 38.4% ( 5.8) compare to 

levels in post-flowering WT plants. Measurement of starch at mid-day showed a 16% increase in 

SnRK1.1:HA plants in the pre-flowering stage compared to WT (Figure 4-5A). In the post-

flowering stage, starch concentration in SnRK1.1:HA was 47% lower than in WT. This indicates 

that overexpression of SnRK1.1 has a different impact on starch levels at different 

developmental stages. Total lipid was quantified by measuring the dry weight of the non-polar 

extract, which could contain trace amounts of chlorophyll. As shown in Figure 4-5B, lipid levels 

of WT and SnRK.1:HA were not different in the pre-flowering stage; however, the post-
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flowering SnRK1.1:HA lipid level was significantly lower as compared to post-flowering WT. 

To model plant growth during photosynthesis, experimentally measured net CO2 assimilation 

rate was used to constrain the maximum CO2 uptake during the day period as described in 

Methods. As shown in Figure 4-5C, net CO2 assimilation rate of SnRK1.1:HA was 26% lower 

than that of WT in the post-flowering stage. 

These biomass compositional data were used to replace the biomass equation of the 

original AraGEM model. Out of the 32 metabolites we measured, absolute concentrations of 23 

metabolites, including cellulose, 3 lignin monomers, total lipid, 17 amino acids, and starch were 

directly incorporated into the biomass equation. The concentrations of the 9 glycosyls derived 

from hemicellulose and pectin were estimated by normalizing their relative levels to 41.6% (g/g) 

of the dry weight before incorporating into the biomass equation. This generates four GEMs for 

WT and SnRK1.1:HA at pre-flowering and post-flowering developmental stages. 
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Figure 4-3. Cell wall compositions of WT and SnRK1.1:HA over plant development. 

Measurements were taken with whole plants in the pre-flowering stage and mature leaves in the 

post-flowering stage. Cellulose (A) and lignin compositions (B) in pre-flowering and post-

flowering stages are shown in absolute quantities. Glycosyl composition of hemicellulose and 

pectin (C) at both stages are shown in relative quantity to the sum. Values are shown as 

meanSE for n = 3, and asterisk indicates p < 0.05. 
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Figure 4-4. Amino acids profile of WT and SnRK1.1. Composition analysis shows relative levels 

(A) and absolute levels (B) of 17 amino acids from hydrolyzed protein and amino acid extracts of 

WT and SnRK1.1:HA in pre-flowering and post-flowering stages (n = 3). 
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Figure 4-5. Changes in starch, lipid, and net CO2 assimilation rate in SnRK1.1:HA plants. Total 

starch (A, total lipid (B), and net CO2 assimilation rates (C) were quantified with whole plants in 

pre-flowering stage and mature leaves in post-flowering stage (n = 3 for starch and lipid, n = 4 

for gas exchange). Values are shown as meanSE and asterisk indicates p < 0.05. 
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Model simulation of growth and required transitory starch pool 

As emphasized previously, starch is a critical carbon storage molecule that is 

accumulated in the day and consumed in the night for growth. To validate the WT and the 

SnRK1.1:HA models, we examined their accuracy in predicting the accumulation and depletion 

of starch at pre-flowering and post-flowering stages. Each model was parameterized and 

constrained with only the dry weight, day and night relative leaf expansion rates, biomass 

composition, and CO2 assimilation rate described previously. Growth and starch concentration 

was simulated over a 24-hour period from the time of sample harvest. All samples were 

harvested 7 hours into a 16-hour-day regime, thus the first stage of the simulation was 9 hours of 

the remaining day, followed by 8 hours of night, then 7 hours of a light period over the next day. 

During the simulation, rates of starch accumulation and turnover were assumed to be linear as 

shown in previous experimental studies (Gibon et al., 2004; Graf et al., 2010). 

As shown in Figure 4-6A, simulation of 14 day-old WT and SnRK1.1:HA plants predicts 

that within 24 hours WT will increase biomass from 2.01 to 2.99 mg DW (0.98 mg DW increase) 

and SnRK1.1:HA will increase from 1.51 to 2.39 mg DW (0.88 mg DW increase). Experimental 

values are very similar to these predicted values, with 15 day-old WT at 3.08 mg DW (1.07 mg 

DW increase) and SnRK1.1:HA at 2.35 mg DW (0.84 mg DW increase). Thus our models can 

predict the reduction in growth rate in SnRK1.1:HA overexpressors as seen previously (Williams 

et al., 2014). Model simulations also predicts that most of the increase in dry weight during the 

day was due to the increase of starch, and non-starch biomass was mostly accumulated in the 

night. SnRK1.1:HA plants were predicted to have 21% higher EOD and 56% higher EON starch 

levels as well as 15% greater transitory starch level as compared to WT in the pre-flowering 

stage (Figure 4-6B). The increase in transitory starch level indicates faster starch turnover at 
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night. To validate these predictions, EOD and EON starch levels were quantified and transitory 

starch was determined as the difference between EOD and EON levels. As shown in (Figure 

4-6C), experimentally measured EOD and EON starch levels in pre-flowering SnRK1.1:HA 

plants were significantly higher than in pre-flowering WT by 22% and 50%, respectively. 

Experimentally quantified transitory starch level was also 12% higher in SnRK1.1:HA plants 

(Figure 4-6D). These results suggest that our model predictions on starch mobilization in pre-

flowering plants are accurate. 

As shown in Figure 4-7A, simulation of post-flowering leaves predicted that 

SnRK1.1:HA plants could increase biomass at 126.6 mg DW per day, which was much faster 

than WT plants that increased by 62.7 mg DW per day. This prediction is in agreement with 

previous studies, showing that post-flowering SnRK1.1:HA continue to increase rosette biomass 

when WT plant rosette growth has halted (Williams et al., 2014). Model simulation of starch 

concentration in the post-flowering stage predicted that WT plants accumulate and turnover 89% 

more starch as compared to SnRK1.1:HA plants (Figure 4-7B). Our models also predicted that 

starch could be depleted by the end of the night growth period in the post-flowering stage of both 

types of plants. Experimental measurements showed that WT accumulated 59% more starch by 

the end of the day and 62% more starch by the end of the night as compared to SnRK1.1:HA 

plants (Figure 4-7C). Starch was reduced to 94 mol/mg DW in WT and 58 mol/mg DW in 

SnRK1.1:HA plants at the end of the night, which was significantly lower than the EON starch 

levels in the pre-flowering stage. Experimental measurement of the transitory starch pool showed 

that WT level was 58% higher as compared to SnRK1.1:HA plants. Although, there are 

differences between the predicted values and the experimental values in post-flowering plants; 

nonetheless, the trends support model predictions strongly.  
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Figure 4-6. Predicted values for growth and starch turnover in pre-flowering plants compared to 

experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and 

SnKR1.1:HA (red) starting at 14 days are shown as total predicted dry mass (solid lines) and 

predicted non-starch dry mass (dashed lines), and compared to experimentally measured total 

dry mass at 15 day-old (blue and red dots). (B) Predicted changes in starch concentration over 

the 24-hour diurnal cycle. Experimental values are indicated by E and predicted values are 

indicated by P in C and D. (C) Predicted EOD (light grey) and EON (dark grey) starch 

concentrations simulated from the initial starch levels (dots) compared to experimentally 

measured EOD (white) and EON (black) starch concentrations. (D) Predicted transitory starch 

pools (dark grey) compared to experimentally measured transitory starch pools (light grey). 

Experimental data are shown as mean  SE (n = 4 for biomass, n = 3 for starch), and asterisk 

indicates p < 0.05. 
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Figure 4-7. Predicted values for growth and starch turnover of post-flowering plants compared 

to experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and 

SnKR1.1:HA (red) starting at 35 days for WT and 42 days for SnRK1.1:HA are shown as total 

predicted dry mass (solid lines) and predicted non-starch dry mass (dashed lines). (B) Predicted 

changes in starch concentration over the 24-hour diurnal cycle. Experimental values are 

indicated by E and predicted values are indicated by P in C and D. (C) Predicted EOD (light 

grey) and EON (dark grey) starch concentrations simulated from the initial starch levels (dots) 

compared to experimentally measured EOD (white) and EON (black) starch concentrations. (D) 

Predicted transitory starch pools (dark grey) compared to experimentally measured transitory 

starch pools (light grey). Experimental data are shown as mean  SE (n = 4 for biomass, n = 3 

for starch), and asterisk indicates p < 0.05. 
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Refinement of model predictions using experimental data 

The differences between predicted and experimental starch values lead us to refine our 

models using the starch experimental data. To refine our models, we focused on two types of 

adjustments: 1) the initial starch level and 2) the simulation objective. As described previously, 

the mid-day starch level was used as the initial starch level of the simulation. Since starch 

turnover has been shown to be close to linear, the mean value between the experimentally 

observed EOD and EON starch levels should be used as the new initial starch level. Simulations 

of the pre-flowering stage were repeated under the same parameters except the adjustment of the 

initial starch values to 0.662 mol/mg DW for WT and 0.843 mol/mg DW for SnRK1.1:HA. 

As shown in Figure 4-8C, predicted total starch levels of the adjusted pre-flowering models 

closely match the experimental observations. Although predicted total starch levels were 

changed significantly, the predicted growth remained almost identical because the predicted 

transitory starch pool, the primary factor for non-starch biomass accumulation, was not altered 

significantly (Figure 4-8A, D). 

For post-flowering simulations, the simulation objective was altered in addition to 

adjusting the initial starch value. The objective of maximizing starch accumulation and 

utilization generated more accurate predictions in pre-flowering models than in post-flowering 

models. To better capture the post-flowering metabolism, the simulation objective was changed 

to minimize the difference between predicted and observed transitory starch pool (Figure 4-8F). 

This enabled simulation of growth as well as EOD and EON starch levels more accurately. This 

adjustment increased the predicted non-starch growth in WT, as illustrated by the steeper blue 

dashed line in Figure 4-8B compared to Figure 4-7A. The predicted EOD and EON starch levels 

of the adjusted model matched the experimental data (Figure 4-8E).  
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Figure 4-8. Predicted values for growth and starch levels after adjustments to experimental 

values. Predicted pre-flowering (A) and post-flowering (B) growth over the 24-hour diurnal 

cycle for WT (blue) and SnKR1.1:HA (red) are shown as total predicted dry mass (solid lines) 

and predicted non-starch dry mass (dashed lines). Predicted pre-flowering growth is compared 

to experimentally measured total dry mass at 15 day-old (blue and red dots). Experimental 

values are indicated by E and predicted values are indicated by P in C, D, E, and F. (C) 

Predicted pre-flowering stage EOD (light grey) and EON (dark grey) starch concentrations 

simulated with refined models from the initial starch levels (dots) compared to experimentally 

measured EOD (white) and EON (black) starch concentrations. (D) Predicted pre-flowering 

stage transitory starch pools (dark grey) simulated with refined models compared to 

experimentally measured transitory starch pools (light grey). Same for post-flowering stage (E 

and F). Experimental data are the same as in Figure 4-6 and Figure 4-7 shown as mean  SE (n 

= 4 for biomass, n = 3 for starch), and asterisk indicates p < 0.05.  
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Starch accumulation and mobilization over plant development 

After refining the models to given experimental data, we examined how the models can 

be used to predict starch levels across multiple stages of development. A linear assumption 

between pre-flowering and post-flowering stages was used to interpolate (1) the biomass 

composition, (2) the initial starch level of each stage, and (3) the starch accumulation and 

turnover rates predicted with the refined model. These parameters were interpolated for 24-hour 

simulation of 21 and 28 day-old WT, and 21, 28, and 35 day-old SnRK1.1:HA. As shown in 

Figure 4-9A, the changes of predicted total starch level at EOD and EON are close to but not 

completely linear. This analysis predicted that the increase in EOD starch level in SnRK1.1:HA 

diminished when both plants were around 35 days-old. To validate this prediction, EOD and 

EON starch levels were measured at the same ages as for the model simulation. As shown in 

Figure 4-9B, there are no statistically significant differences between WT and SnRK1.1:HA 

EOD starch levels after 14 day-old; however, the trend continued to show higher level of EOD 

and EON starch until the plants were 35 day-old. The data suggests that SnRK1.1:HA EOD 

starch becomes lower than WT EOD starch between 28 and 35 day-old. In addition, there are no 

significant differences in the transitory starch levels when WT and SnRK1.1:HA plants are 

compared by chronological age. 
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Figure 4-9. Predicted and experimental EOD and EON starch levels over plant development. (A) 

Predicted EOD (light grey) and EON (dark grey) starch levels for plant ages between the 

designated pre-flowering and post-flowering stages. (B) Experimentally measured EOD (white) 

and EON (black) starch levels for plant ages between the designated pre-flowering and post-

flowering stages (n = 3). Experimental data of pre-flowering and post-flowering stages are the 

same as in Figure 4-6 and Figure 4-7. Data are shown as mean  SE, and asterisk indicates p < 

0.05. 
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Predicted metabolic differences between WT and SnRK1.1:HA plants 

The adjusted models were used to predict metabolic changes induced by overexpression 

of SnRK1.1:HA at pre-flowering and post-flowering stages. The analysis included only enzyme 

catalyzing reactions filtered through criteria described in the Methods, leaving a total of 211 

reactions for analysis. These reactions were associated with 52 of 137 pathways in the AraGEM 

model. Analyses were performed by comparing the reaction fluxes of SnRK1.1:HA to WT 

GEMs predicted with FBA. Metabolic pathways were ranked by the number of reactions in each 

pathway that had altered predicted fluxes. A pathway could be in both the increased flux list and 

the decreased flux list (i.e. starch and sucrose metabolism in Table 4-1) if some of its reactions 

were predicted to have increased fluxes and a similar number of its reactions were predicted to 

have decreased fluxes. 

As shown in Table 4-1, more reactions in sugar metabolism and amino-acid metabolism 

were predicted to altered by SnRK1.1:HA overexpression in pre-flowering plants. Surprisingly, 

fatty-acid biosynthesis was predicted to increase in pre-flowering SnRK1.1:HA plants even 

though experimental measurements showed no significant differences between total lipid levels 

in the pre-flowering stage plants. Further investigation revealed that 31 of the 72 reactions 

associated with fatty-acid biosynthesis in AraGEM were predicted to have higher fluxes in pre-

flowering SnRK1.1:HA plants as compared to WT plants at night. Another group of reactions 

predicted to carry higher fluxes at night are associated with hemicellulose biosynthesis. In 

contrast, reactions in cellulose biosynthesis were predicted to carry lower fluxes in pre-flowering 

SnRK1.1:HA plants than in pre-flowering WT plants. 

In the post-flowering stage, reactions involved in lignin and hemicellulose biosynthesis 

were predicted to have higher fluxes in SnRK1.1:HA plants during the day as compared to WT 
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plants (Table 4-2). Interestingly, no reaction fluxes were predicted to be significantly increased 

by SnRK1.1:HA overexpression during the night. Of the 211 reactions examined, 106 reactions 

were predicted to have lower fluxes in SnRK1.1:HA plants during the day and 192 reactions 

were predicted to have lower fluxes during the night. As expected, cellulose synthase was 

predicted to be lower in both day and night cycles. In contrast to the predicted increase in fatty 

acid biosynthesis in pre-flowering night cycle, post-flowering SnRK1.1:HA was predicted to 

have less fatty acid biosynthesis at night compared to WT. 

The predicted flux changes in fatty acid biosynthesis during pre-flowering stage versus 

post-flowering stage provide an avenue for investigating the consistency of predicted metabolic 

patterns over plant development. As shown in Table 4-3, no reaction in SnRK1.1:HA was 

predicted to have higher flux than WT throughout development. Only 6 reactions were predicted 

to have lower fluxes than WT across development, which were primarily reactions associated 

with cellulose biosynthesis. Similarly, reactions that were predicted to have alternating patterns 

were examined. As shown in Table 4-4, more pathways were predicted to switch from having 

higher fluxes in pre-flowering stage to having lower fluxes in post-flowering stage. A total of 

197 reactions were predicted to exhibit this pattern, of which, 13 reactions were in the day cycle 

and 185 reactions were in the night cycle. Fatty acid biosynthesis is on the top of the night cycle 

list, which also includes hemicellulose biosynthesis, amino acid biosynthesis, and lignin 

biosynthesis. Starch biosynthesis is on the day cycle list of reactions that have higher fluxes than 

WT in pre-flowering stage and lower fluxes in post-flowering stage. The only reactions that were 

predicted to exhibit the opposite pattern of lower fluxes in pre-flowering stage and higher fluxes 

in post-flowering stage were 2 hemicellulose biosynthesis reactions. However, there were more 
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hemicellulose associated reactions that were predicted to have higher fluxes in pre-flowering 

stage and lower fluxes in post-flowering stage.  
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Table 4-1. Predicted metabolic changes by SnRK1.1:HA overexpression in the pre-flowering 

developmental stage. 

Pathways with increased flux in 

SnRK1.1:HA 
 

Pathways with decreased flux in 

SnRK1.1:HA 

In the day In the night  In the day In the night 

Pentose phosphate 

pathway 

Fatty acid 

biosynthesis 
 Cell wall biosynthesis 

Starch and sucrose 

metabolism 

Carbon fixation Cell wall biosynthesis  
Nucleotide sugar 

metabolism 
Cell wall biosynthesis 

Starch and sucrose 

metabolism 

Hemicellulose 

biosynthesis 
 

Starch and sucrose 

metabolism 

Galactose 

metabolism 

Glycolysis / 

Gluconeogenesis 

Aminoacyl-tRNA 

biosynthesis 
 

Galactose 

metabolism 

Aminoacyl-tRNA 

biosynthesis 

ATP and NADPH 

generated from light 

(overall reaction in 

chloroplast) 

Valine, leucine and 

isoleucine 

biosynthesis 

 
Hemicellulose 

biosynthesis 
Cysteine metabolism 

Fructose and 

mannose metabolism 

Citrate cycle (TCA 

cycle) 
 

Aminoacyl-tRNA 

biosynthesis 

Glycine, serine and 

threonine metabolism 

Galactose 

metabolism 

Glycine, serine and 

threonine metabolism 
 Cysteine metabolism 

Glycolysis / 

Gluconeogenesis 

Pentose and 

glucuronate 

interconversions 

Histidine metabolism  
Glycine, serine and 

threonine metabolism 

Methionine 

metabolism 

Streptomycin 

biosynthesis 

Alanine and aspartate 

metabolism 
 

Glycolysis / 

Gluconeogenesis 

Nucleotide sugars 

metabolism 

 Nitrogen metabolism  
Methionine 

metabolism 

Oxidative 

phosphorylation 

(overall in 

mitochondria) 
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Table 4-2. Predicted metabolic changes by SnRK1.1:HA overexpression in the post-flowering 

developmental stage. 

Pathways with increased flux in 

SnRK1.1:HA 
 

Pathways with decreased flux in 

SnRK1.1:HA 

In the day In the night  In the day In the night 

Cell wall biosynthesis N/A  
Aminoacyl-tRNA 

biosynthesis 

Fatty acid 

biosynthesis 

Hemicellulose 

biosynthesis 
  

Valine, leucine and 

isoleucine 

biosynthesis 

Cell wall biosynthesis 

Fructose and 

mannose metabolism 
  

Glycine, serine and 

threonine metabolism 

Aminoacyl-tRNA 

biosynthesis 

Nucleotide sugar 

metabolism 
  Histidine metabolism 

Hemicellulose 

biosynthesis 

Carbon fixation   
Alanine and aspartate 

metabolism 

Valine, leucine and 

isoleucine 

biosynthesis 

Citrate cycle (TCA 

cycle) 
  

Arginine and proline 

metabolism 

Glycine, serine and 

threonine metabolism 

Coumarine and 

phenylpropanoid 

biosynthesis 

  Lysine biosynthesis 
Citrate cycle (TCA 

cycle) 

Galactose 

metabolism 
  Carbon fixation Histidine metabolism 

Glyoxylate and 

dicarboxylate 

metabolism 

  
Citrate cycle (TCA 

cycle) 

Nucleotide sugars 

metabolism 

Pentose and 

glucuronate 

interconversions 

  
Glutamate 

metabolism 

Alanine and aspartate 

metabolism 
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Table 4-3. Predicted metabolic changes that are consistent during development. 

Pathways always with increased flux in 

SnRK1.1:HA 
 

Pathways always with decreased flux in 

SnRK1.1:HA 

In the day In the night  In the day In the night 

N/A N/A  
Aminoacyl-tRNA 

biosynthesis 

Starch and sucrose 

metabolism 

   Cell wall biosynthesis Cell wall biosynthesis 

   Cysteine metabolism 
Galactose 

metabolism 

   
Glycine, serine and 

threonine metabolism 

Aminoacyl-tRNA 

biosynthesis 

   
Methionine 

metabolism 
Cysteine metabolism 

   
Starch and sucrose 

metabolism 

Glycine, serine and 

threonine metabolism 

    
Glycolysis / 

Gluconeogenesis 

    
Methionine 

metabolism 

    
Nucleotide sugar 

metabolism 

    

Oxidative 

phosphorylation 

(overall in 

mitochondria) 
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Table 4-4. Predicted metabolic changes that vary during development. 

Increased flux in pre-flower, 

decreased flux in post-flower 
 

Decreased flux in pre-flower, 

increased flux in post-flower 

In the day In the night  In the day In the night 

Pentose phosphate 

pathway 

Fatty acid 

biosynthesis 
 Cell wall biosynthesis N/A 

Carbon fixation Cell wall biosynthesis  
Hemicellulose 

biosynthesis 
 

Starch and sucrose 

metabolism 

Hemicellulose 

biosynthesis 
 

Nucleotide sugar 

metabolism 
 

Glycolysis / 

Gluconeogenesis 

Aminoacyl-tRNA 

biosynthesis 
   

ATP and NADPH 

generated from light 

(overall reaction in 

chloroplast) 

Valine, leucine and 

isoleucine 

biosynthesis 

   

Fructose and 

mannose metabolism 

Citrate cycle (TCA 

cycle) 
   

Galactose 

metabolism 

Glycine, serine and 

threonine metabolism 
   

Pentose and 

glucuronate 

interconversions 

Histidine metabolism    

Streptomycin 

biosynthesis 

Alanine and aspartate 

metabolism 
   

 Nitrogen metabolism    

 

  



94 

 

DISCUSSION 

Four GEMs were constructed to predict growth and starch metabolism in WT and 

SnRK1.1:HA during pre-flowering and post-flowering developmental stages. Experimental 

validation of the model predictions revealed that the models can quantitatively predict growth 

and starch accumulation and turnover with high accuracy. Further refinement of the models 

enabled accurate prediction of the starch changes across multiple stages of plant development 

and analysis of metabolic flux changes. 

Non-starch biomass is accumulated at night in pre-flowering Arabidopsis 

Simulation of pre-flowering growth was performed with the assumption that plants 

maximize the transitory starch level. Under this assumption, very little mass was predicted to 

accumulate during day growth because most of the photoassimilates were predicted to partition 

into starch. As shown in Figure 4-6D, the predicted transitory starch levels closely matched 

experimentally measured levels, which suggests that the predicted biomass accumulation pattern 

for pre-flowering plants may be valid. The presented model disagrees with a previous study that 

specifically modeled diurnal leaf growth (Weraduwage et al., 2015). The previous study 

concluded that, according to their model simulation, day time growth in terms of both size and 

mass is greater than night time growth (Weraduwage et al., 2015). The disagreement may be due 

to the differences between the fundamental model frameworks. The Weraduwage et al. model 

was constructed based on empirical relationships between photosynthesis and growth; whereas, 

flux-based modeling with AraGEM solely depends on mass balancing to satisfy the biomass 

equation (de Oliveira Dal'Molin et al., 2010; Weraduwage et al., 2015). Flux-based modeling 

allowed us to calculate the theoretical maximum of a system. In this case, the greatest amount of 

growth and starch biosynthesis given a known CO2 assimilation rate and leaf RER. This means 
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that our model finds no other way to distribute day and night growth if the experimentally 

measured transitory starch level must be satisfied. 

The role of SnRK1.1 in starch metabolism and plant development 

Starch has been shown to play a significant role in regulating flowering time (Matsoukas 

et al., 2013; Yu et al., 2000). Leaf starch deficiency has been shown to delay floral initiation (Yu 

et al., 2000). It has been proposed that the reduction of starch turnover rate is a primary cause of 

delayed developmental transition (Matsoukas et al., 2013). Our experimental data shows that 

although SnRK1.1:HA plants have delayed flowering and development, they maintain a 

significantly higher starch level than WT in the pre-flowering stage. A previous study on the 

effect of SnRK1.1 overexpression on flowering time showed that WT flowers 19 days after 

planting and SnRK1.1:HA flowers 22 days after planting (Williams et al., 2014). Our analysis of 

21 day-old WT and SnRK1.1:HA showed no significant difference in the transitory starch level 

(Figure 4-9B), which indicated no significant difference in starch turnover rate before 

transitioning to reproductive stage. Our results suggest that the delayed developmental transition 

in SnRK1.1:HA plants may not be associated with starch. This further supports a previous 

conclusion of SnRK1.1 involvement in regulating starch and developmental transition (Baena-

González et al., 2007; Gazzarrini and Tsai, 2014). A previous study found that double-knockout 

of SnRK1.1 and SnRK1.2 resulted in stunted plant growth, significantly increased starch 

accumulation, and reduced starch turnover as compared to WT of the same chronological age 

(Baena-González et al., 2007). In contrast, our data shows that SnRK1.1:HA overexpression 

does not increase starch turnover or reduce starch accumulation, and instead shows an increase 

of starch accumulation at a younger stage (Figure 4-6C and D). When WT and SnRK1.1:HA 

plants were compared by chronological age, the transitory starch levels measured at 14, 21, 28, 
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and 35 days showed no significant differences (Figure 4-9B). In addition, the accurate 

predictions of starch metabolism in WT and SnRK1.1:HA plants using flux-based modeling 

suggests that SnRK1.1 starch metabolism may be governed by mass balancing, as opposed to 

regulatory control. Based on our results, we hypothesize that SnRK1.1 may serve to prevent the 

inhibition of starch turnover (Figure 4-10). This would explain the reduced starch turnover in 

SnRK1 double-knockout plants as well as the lack of difference in starch turnover in our 

SnRK1.1:HA plants (Baena-González et al., 2007). It also explains the reduction of starch in 

SnRK1 overexpression plants under glucose supplemented growth (Jossier et al., 2009). In this 

case, high glucose reduced SnRK1 phosphorylation leading to SnRK1 inactivation, which 

reduced starch turnover and elevated starch content (Jossier et al., 2009; Rubenstein et al., 2008). 

Overexpression plants are less sensitive to glucose, thus they have greater starch turnover and 

lower starch accumulation than WT (Jossier et al., 2009).  
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Figure 4-10. Proposed model for the role of SnRK1 in starch metabolism. Gene knockout or 

glucose inhibition of SnRK1 reduces starch turnover, which increases starch accumulation 

(Baena-González et al., 2007; Jossier et al., 2009). SnRK1 overexpression plants under high 

glucose have reduced sensitivity to glucose due to elevated enzyme abundance, which increases 

starch turnover and lower starch accumulation compares to WT grown under high glucose 

(Jossier et al., 2009). SnRK1 overexpression plants do not significantly reduce starch under 

normal growth condition due to indirect regulation starch turnover as shown in this work and 

previous studies (Baena-González et al., 2007; Jossier et al., 2009). 
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Modeling non-steady state metabolic activities 

It is well accepted that plant metabolism is highly dynamic; thus, tremendous efforts from 

many research groups have been invested in the attempt to develop robust models. Methods to 

perform dynamic FBA (dFBA) were initially introduced to model metabolic reprogramming in 

E. coli during diauxic growth (Mahadevan et al., 2002). Since then dFBA has been utilized in 

studying the effects of alternating growth nutrients and environmental conditions as well as 

generating metabolic engineering strategies to overproduce commodity chemicals and protein 

(Anesiadis et al., 2008; Hjersted et al., 2007; Lequeux et al., 2010; Luo et al., 2009; Oddone et 

al., 2009). Reformulation of dFBA has also been examined by integrating other optimization 

methods, such as minimization of metabolic adjustments (MOMA) and regulatory on/off 

minimization (ROOM) to capture the biological objective of minimizing energetic cost 

(Kleessen and Nikoloski, 2012; Segre et al., 2002; Shlomi et al., 2005). 

Despite these advances, constraint-based modeling still depends on the pseudo-steady 

state assumption, which a developing plant is not under. A previous study on barley implemented 

a multiscale metabolic modeling (MMM) approach, which enabled modeling of source-sink 

interactions on a spatiotemporal resolution (Grafahrend-Belau et al., 2013). The MMM approach 

recognized the limitation of FBA, and restrict the FBA model to solving only spatial distribution 

of metabolic flux (Grafahrend-Belau et al., 2013). It then recruited a dynamic functional plant 

model to solve temporal metabolic adjustments (Grafahrend-Belau et al., 2013). The resulting 

model captured metabolic activities; however, quantitative results were not validated 

experimentally. A recent study took a different approach to model the development of tomato 

fruit (Colombié et al., 2015). Temporal resolution was achieved by using 9 steady-state tomato 

models each composed of a biomass composition measured at a distinct time points. This 
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approach is justifiable because of the relatively slow metabolic changes in tomato fruit on the 

scale of fruit development (Colombié et al., 2015). In contrast, metabolism of leaf tissues during 

day and night can be very different. The present study demonstrates a novel approach to simulate 

the dynamics of non-steady state plant metabolism during diurnal cycle across development. To 

the authors’ knowledge, this is the first time plant growth and starch concentrations have been 

predicted accurately through genome-scale modeling. 

Refinement of models enabled more accurate predictions 

The ability of our models to accurately predict trends in absolute growth and starch level 

changes indicates that they may be useful in predicting other metabolic activities. Experimental 

measurements of starch can, in turn, be used to correct inaccuracy in the predictions and improve 

model performance. This reiterative process has traditionally been used in model development 

process (Grafahrend-Belau et al., 2013; Weraduwage et al., 2015). 

The sources of disagreement in our model guided predictions and experimental data on 

starch could result from 1) subtle differences between biological samples used for 

parameterization and validation and 2) the inaccuracy of assuming maximum transitory starch. 

As shown in Figure 4-6C, the predicted EOD and EON starch levels in pre-flowering plants are 

lower than the experimental values. This may be attributed to lower mid-day starch levels in the 

biological samples used for model parameterization compared to samples used for validation 

despite the rigorous experimental controls. When the initial starch level of the simulation was 

adjusted to a new mid-day starch level estimated with the experimental measured EOD and EON 

starch concentrations, the predicted EOD and EON starch concentrations became much closer to 

the experimental values (Figure 4-8C). The differences between experimental and predicted 

starch values are more dramatic for post-flowering plants. This suggests the assumptions used in 
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model simulation, in which the plant maximizes the transitory starch pool, works better when 

modeling pre-flowering plants. This means that in addition to adjusting the initial starch value, 

the simulation objective must be changed, however, regulation of starch turnover in plants has 

been shown to be complex (Fernie et al., 2002; Stitt and Zeeman, 2012). Rather than imposing a 

more complex assumption for the simulation, the objective of the simulation was simply changed 

to replicate the experimental transitory starch level. Because of this new objective, it is not 

surprising that the new predictions on starch levels in post-flowering plants are exactly the same 

as the experimental values. Although these refinements are artificial, they are necessary for 

predicting metabolic fluxes and starch levels across multiple plant ages. 

Model predictions suggest greater metabolic changes at night 

The primary goal of this study is to see whether flux-based modeling can be used to help 

reveal the role of SnRK1.1 in plant metabolism. Through simulations and experimental 

validations, we were able to propose a novel hypothesis on the role of SnRK1.1 in starch 

metabolism. It would be interesting to examine if SnRK1.1:HA overexpression resulted in any 

other significant metabolic changes. The predicted SnRK1.1:HA metabolic flux distribution at 

each developmental stage (pre-flowering and post-flowering) was compared with predicted WT 

metabolic flux distribution. Pathways with highest frequency of changes were compiled into 

lists. Table 4-1 to Table 4-4 shows the truncated lists of most altered pathways at both stages of 

development and diurnal cycles. The assumption is that pathways with the most predicted 

changes are most effected by SnRK1.1:HA overexpression. The rationale behind this assumption 

is that predicted fluxes are different to compensate for the differences in the biomass 

composition and starch levels, which are different because of SnRK1.1:HA overexpression. 
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It is not surprising to see that the most altered pathways are predicted to be involved in 

the synthesis of biomass components given the assumption for this analysis. It is interesting that 

most of the predicted changes occur at night. This is primarily due to the prediction that more 

non-starch growth occurs during the night. Plant studies are queried rarely during the night 

unless there are specific objectives because research is mostly performed during the day. If the 

model is accurate about night growth, it would be critical to expand more research into studying 

night time metabolic changes of plants. A quick search on Google Scholar for “Arabidopsis” 

would retrieve over 1 million results, however, querying for “Arabidopsis night” only retrieves 

61,000 results. Previous studies have already shown that diurnal transition can have significant 

impact on the metabolism at both metabolomics and transcriptomics levels (Gibon et al., 2006). 

Extended night can also elevate the levels of many amino acids (Gibon et al., 2006). Extended 

night has also been shown to activate SnRK1 and initiates significant gene expression 

reprogramming (Baena-González et al., 2007). Further analysis of night time metabolism may 

reveal new roles for many previously characterized genes. 

CONCLUSION 

Novel GEMs were built to model the metabolism of Arabidopsis overexpressing 

SnRK1.1:HA in effort to further understand the metabolic role of SnRK1.1 over growth and 

development. Biomass compositions including cell wall, lipids, amino acids, and starch were 

measured in SnRK1.1:HA and WT at pre-flowering and post-flowering developmental stages. 

These data are used to re-parameterize the AraGEM model, and construct SnRK1.1:HA and WT 

GEMs. The original AraGEM framework was expanded to allow for 24-hour simulation of 

growth and starch accumulation and turnover in day and night cycles. Simulation predicted 

previously undermined dynamics between biomass and starch. Experimental validation revealed 
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that the quantitative levels of growth and starch were predicted with unprecedented accuracy. 

Data from experimental validation were used to refine the models for a second round of 

prediction. The refined models were used to guide further analysis of starch metabolism in 

SnRK1.1:HA and help build a novel hypothesis on the role of SnRK1.1 in regulating starch, 

which is SnRK1.1 prevents the inhibition of starch turnover. Analysis of model predictions on 

the metabolism also stressed a previously overlooked value in night time plant metabolism. This 

work demonstrated novel techniques and workflow to use GEM to guide analysis plant 

metabolism. 
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CHAPTER 5 

 

CONCLUSIONS 

Computational modeling enables us to efficiently organize and apply knowledge in effort 

to explore the unknown. Rapid independent advances in both computational and experimental 

biology have created an atmosphere to communicate computational results and gaps in 

knowledge to experimental researchers. In return, this collaboration can be used to update the 

knowledgebase and identify new gaps and/or areas for exploration. The research presented in this 

dissertation recognized the pitfalls of many current predictive algorithms for metabolic 

engineering, which include overwhelming predictions, unrealistic scoring methods, lack of 

quantitative predictions, long run times, and the absence of proper experimental validation. Here, 

the NR-Opt toolbox is presented and contains novel predictive algorithms for metabolic 

engineering strategy design. In addition, this research has developed a novel flux-based modeling 

framework involving GEMs that includes an analytical pipeline to enable model-guided 

discovery. The utility of this modeling framework was validated when quantitative predictions 

on starch changes in WT and transgenic plants agree with experimental results. 

The work done in this research provided a well curated list of current predictive 

algorithms for designing metabolic engineering strategies. A novel algorithm was introduced in 

the NR-Opt toolbox to overcome the limitations of current algorithms. Finally, a sophisticated 

modeling framework was developed to model non-steady state metabolic changes and guide 

sugar-signaling studies in plants. These advances can significantly improve the efficiency of 

metabolic engineering workflow and enable accurate genome-scale metabolic analysis of plant 

signaling pathways. 
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FUTURE DIRECTIONS 

It is obvious that further advancements in computational biology will enable a large array 

of benefits, which conservatively includes precision medicine, effective gene therapy, accurate 

metabolic engineering, and optimized farming practice. For this reason, there are significant 

focuses on combining multiple modeling frameworks, such as kinetic models, metabolic models, 

signaling and regulatory models, heuristic models, and statistical models, to integrate as much 

current biology as possible to help guide future research. The greatest challenge is the need for 

high quality curation and cross-validation, which can best be accomplished with one or both of 

two ways: 1) crowd sourcing through interaction of the scientific community and the public, and 

2) developing sophisticated machine learning methods that replaces human intervention. 

Needless to say that not only is the first option more attainable, the first option can lead to the 

realization of the latter. It is necessary to develop an efficient framework to facilitate crowd 

sourcing. It is also imperative to communicate the necessity and generate incentive for crowd 

sourcing. Current technology industry is ahead of the scientific community in crowd sourcing 

data, such as health, diet, and daily activities, by creating user-friendly applications and wearable 

technologies. These data are arguably being applied in the least creative and sophisticate analysis 

relative to the developments in academia. For this reason, the most critical next step is to learn 

from the industrial approaches and utilize their methods to benefit scientific agenda. This can 

include developing user-friendly applications that stream-line data integration into biological 

modeling platforms and improving communication of public benefits in utilizing methods that 

are beyond common comprehension. Open-source communities, such as Blender 3D modeling 

software, generates exciting products that attracts talents who seeks personal satisfaction over 

financial benefits. If the same can be done in the computational biology community, then the 
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advancement will accelerate at unprecedented speed, and bringing all the previously discussed 

benefits much closer to realization. 

It would be interesting to further explore the utility of the novel flux-based modeling 

framework introduced in this research in studying animal metabolism. It may be possible to 

model non-steady dietary and fat storage in mammalian organisms, such as mice and human. 

Publicly available data of net body biomass composition can be used to construct the biomass 

equation. Different dietary habits can be used as constraints to model changes in stored fat. 

Levels of maintenance energy can be a function of daily exercise. This study may reveal 

previously overlooked relationship between body types and rate of weight gain/loss. 
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APPENDICES 

A. ALGORITHM FOR THE NODE-REWARD OPTIMIZATION TOOLBOX 

THE NR-OPT ALGORITHM 

Both NR-Knock and NR-Ox search for a metabolic engineering strategy that can satisfy 

the termination criteria (i.e. 95% maximum BPCY). The search is accomplished with a modified 

steepest ascent hill climbing search algorithm that allows for delayed ascension. Here, NR-

Knock is used to explain the algorithm. NR-Knock first takes in the WT organism GEM, which 

is a strategy with no elimination of reaction (i.e. no gene KO). NR-Knock assigns the user-

defined initial reward point (𝑝0) to the WT strategy reward point (𝑝𝑊𝑇) (i.e., these values are 

equal initially). In the example shown in Figure A-1, 𝑝0 is 0. There are two rules on the reward 

points: (i) any strategy with 𝑝 < 0 is eliminated from “expansion” and (ii) no strategy can hold 

more than the user-defined maximum reward points (𝑝𝑚𝑎𝑥). In the example shown in Figure A-

1, 𝑝𝑚𝑎𝑥 is 1. NR-Knock performs FBA with the WT model to calculate the minimum BPCY 

under maximal growth. In the example in Figure A-1, the minimum BPCY of the WT strategy is 

0. Because no other strategy is examined, WT strategy with a BPCY of 0 is currently the “best” 

solution. The WT model is then used to calculate the maximum BPCY, thus allowing the user to 

define the BPCY criteria to terminate NR-Knock search (i.e. 95% of maximum BPCY). Because 

this is a steepest ascent hill climbing algorithm, for a strategy to receive an additional reward 

point, its minimum BPCY must be higher than the current best BPCY. One point is deducted 

from a strategy that fails to do so. 
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Figure A-1. Initialization of NR-Knock search. 

The WT strategy “expands” into single-gene KO strategies, which test for elimination of 

a single reaction in the WT GEM. In the example shown in Figure A-2, there are 4 possible 

single-KO strategies to test. Each strategy inherits the reward point of the WT strategy. FBA is 

performed for each strategy to determine their minimum BPCY. In the example shown in Figure 

A-2, all single-KO strategies have higher BPCY than the current best. NR-Knock now performs 

2 steps: (i) award 1 point to each strategy and (ii) sort the strategies from the highest BPCY. 
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Figure A-2. Evaluation of single-KO strategies. 

The current best strategy expands into double-KO strategies that inherits their parent’s 

reward point value. In the example shown in Figure A-3, there are 3 double-KO strategies that 

can be derived from the single-KO of B. FBA is performed on each of these double-KO 

strategies. In the example shown in Figure A-3, none of the double-KO strategies have a BPCY 

that exceeds the current best BPCY; thus, 1 point is deducted from each. Because the reward 

points of the double-KO strategies have not fallen below 0, they are sorted by BPCY (highest to 

lowest) and allowed to expand into triple-KO strategies. 
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Figure A-3. Evaluation of double-KO strategies. 

The best double-KO strategy is expanded into triple-KO strategies and evaluated with 

FBA. In the example shown in Figure A-4, none of the triple-KO strategies have BPCY higher 

than the best, thus 1 point is deducted. These triple-KO strategies are eliminated from further 

expansion because their reward points are below 0. Thus, the next best double-KO strategy is 

expanded into triple-KO strategies for evaluation. 
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Figure A-4. Evaluation of triple-KO strategies. 

In the example shown in Figure A-5, the next best double-KO strategy (BA) is expanded 

into only 1 triple-KO strategy (BAD) because the algorithm does not evaluate repeats. FBA is 

performed on the triple-KO strategy (BAD), and reveals a BPCY that satisfies the termination 

criteria. NR-Knock terminates and designates triple-KO of BAD as the “best” strategy. Any 

strategy that had at some point significantly improved BPCY (i.e. single-KO of A, B, C, or D) 
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are alternative strategies.  The user has the option of manipulating the BPCY acceptance value 

(e.g., 95% of maximum BPCY) so that multiple designs of a desired BPCY level are returned. 

 

Figure A-5. Identification of the best metabolic engineering strategy. 

NR-Ox follows uses the same algorithm as described for NR-Knock. The primary 

difference is that instead of performing FBA after elimination of reactions, NR-Ox perform FBA 

after increasing or decreasing flux ratio of a reaction|node pair to a user-defined level. As 

described in Methods, the flux ratio (𝑟𝑖) of a reaction|node pair 𝑖 is the ratio of a metabolite 

partitioned as a reactant to a reaction (the value is between 0 and 1). If, for example, user defines 
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flux ratio high and low coefficients as 0.9 (𝑐𝑜𝑒𝑓ℎ𝑖) and 0.01 (𝑐𝑜𝑒𝑓𝑙𝑜) to evaluate OX and KD 

strategies. These coefficients are used as described in Equation 1 and Equation 2 to calculate the 

OX and KD flux ratios. 

𝑟𝑖,𝑂𝑋 = 𝑟𝑖 + (1 − 𝑟𝑖) × 𝑐𝑜𝑒𝑓ℎ𝑖 (Equation 1) 

𝑟𝑖,𝐾𝐷 = 𝑟𝑖 × 𝑐𝑜𝑒𝑓𝑙𝑜   (Equation 2) 

If a reaction/node pair has a flux ratio of 0.4, NR-Ox performs FBA after raising its flux 

ratio to 0.95 (0.4 + (1 − 0.4) × 0.9) to assess the OX strategy, then performs FBA after 

reducing its flux ratio to 0.004 (0.4 × 0.01) to assess the KD strategy. 
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B. MATLAB CODES FOR THE NODE-REWARD OPTIMIZATION TOOLBOX 

There are three sections: (i) the core codes and their dependencies, (ii) the driver, and (iii) 

an example setup of the driver to design strategies for BDO production in E. coli. For both NR-

Knock and NR-Ox, a folder containing the design strategies will be created. The only relevant 

file is a text file named “scoreEvolution,” which contains all the concise strategies. For NR-

Knock, each line is a design in the comma delimited format: [reaction ID 1],[reaction ID 

2],[reaction ID 3],…,[BPCY score]. Similarly, the NR-Ox output is in the format: [compound ID 

1 | reaction ID 1 | flux ratio assigned],[compound ID 2 | reaction ID 2 | flux ratio 

assigned],…,[BPCY score]. Be cautious with metric units for BPCY score. In the programs, 

BPCY score is calculated as 𝑠𝑐𝑜𝑟𝑒𝐵𝑃𝐶𝑌 = 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 × 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑒𝑞. 

1) NR-OPT CORE CODE AND DEPENDENCIES 

Function (NR-Knock): nodeRewardKnockP 

%% Predicting knock-out strategies using a reward algorithm 
% Essentially OptKnock with an additional reduction by only searching 
% through node-associated reactions 
% **Utilizes parallel computing** 
% Author: Jiun Yen 
% Date: 2016.11.27 
% Version: 2016.12.27 
% 
% This is an exhaustive search with a reward system to reduce search space 
% All members of the RID array starts with p point(s) (allowing p 
% additional failed attempt); if successful, the set receive an additional 
% point. 
% This search is depth-first 
% 
% 
% Input: 
%   param. 
%       m -model 
%       target_rid - RID of the target reaction to maximize yield 
%       bio_rid - RID of the biomass equation (growth) 
%       BPCYacceptance - biomass-product coupled yield (Choon et al. 2013) 
%                      - percent of max theoretical BPCY to accept solution 
%                      and terminate run 
%       Nbests - number of best strategies to keep 
%       searchLethals - whether to look for RIDs which KO is lethal 
%       excluded - RIDs to exclude 
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%       v_cutoff - flux cutoff for zero 
%       hi_cutoff - flux cutoff for high values (recommend: 100) 
%       dv_cutoff - minimum degree of improvement each iteration 
%       p0 - point(s) to start with 
%       pmax - max number of points 
%       komax - max number of KOs 
%       forceBest - whether new score must be the best known score 
%       savedir - folder to save results in 
%       fn - file name header 
%       mskoption - option for mosek optimizer 

  
function [strategies, param] = nodeRewardKnockP(param) 

  
time0 = tic; 

  
%% compute test RIDs 
param.m.c(:) = 0; 
param.m.c(param.bio_rid) = 1; 

  
% first check viability 
v0 = m_linprogP(param.m, 1, 0, param.mskoption); 
if ~v0(param.bio_rid) 
    % terminate if no growth 
    fprintf('No growth from initial model. Exit search.\n'); 
    return 
end 

  
% perform FVA to find all solution space 
fprintf('Performing FVA\n'); 
[vmax, vmin] = fvaP(param.m, param.mskoption); 
fprintf('Completed FVA\n'); 
v0 = abs(vmax) + abs(vmin); 
v0(abs(v0) < param.v_cutoff) = 0; 
v0(abs(v0) > param.hi_cutoff) = 0; 

  
% find maximum theoretical BPCY 
maxbpcy = findMaxBPCY(param); 

  
% compute flux ratios to find node-associated reactions 
fr = genFR(param.m, v0); 

  
% identify all gene-coding reactions 
g_rids = geneCodingRxns(param.m); 
param.g_rids = g_rids; 

  
% determine RIDs to test with 
rids = intersect(fr.rids, g_rids); 

  
% search for lethals if necessary 
if param.searchLethals 

     
    Nrxns = size(param.m.S,2); 
    m = param.m; 
    mskoption = param.mskoption; 
    v_cutoff = param.v_cutoff; 
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    lethalrids = false(Nrxns,1); 
    parfor ii = 1:Nrxns 
        [~, bV] = m_linprogP(constraintKO(m, ii), 1, 0, mskoption); 
        if bV < v_cutoff 
            lethalrids(ii) = true; 
        end 
    end 
    param.lethalrids = find(lethalrids); 
    param.excludeRids = union(param.excludeRids, param.lethalrids); 

     
    clear Nrxns m mskoption v_cutoff lethalrids 
end 

  
% remove excluded RIDs 
rids = setdiff(rids, param.excludeRids); 

  
% print to file 
csvwrite([param.savedir param.fn 'all_RIDs.csv'], rids); 

  
%% initialize primary output variables 
strategies.best.scores = zeros(param.Nbests, 1); 
strategies.best.rids = cell(param.Nbests, 1); 

  
%% initialize eval param 
evalParam.max = 1; 
evalParam.target = param.target_rid; 
evalParam.modifier = []; 
evalParam.v_cutoff = param.v_cutoff; 
evalParam.mskoption = param.mskoption; 

  
%% perform tests 
% The inner search is performed with parallel CPUs. Because of this, 
% instead of using stacks, an array of definitely size is used to search 
% each time 

  
% constant variables 
dv_cutoff = param.dv_cutoff; 
roundN = abs(ceil(log(dv_cutoff)/log(10))) + 1; 
fn = [param.savedir param.fn 'scoreEvolution.csv']; 
f = fopen(fn, 'w'); 
fprintf(f, 'RID sets,Scores\n'); 
fclose(f); 
BPCYacceptance = param.BPCYacceptance; 

  
% stack to store KO strategies (not a real stack, just an array, because 

Matlab...) 
ridStack = []; 
scoreStack = []; 
pointStack = []; 
scoreHistory = []; 

  
% initialize bpcyRate 
bpcyRate = BPCYacceptance - 1; 
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start = true; 
while bpcyRate < BPCYacceptance && (~isempty(ridStack) || start) 

     
    % pop the stacks 
    if start 

         
        start = false; 
        rid0 = []; 
        [~, bV] = m_linprogP(param.m, 1, 0, param.mskoption); 
        m = param.m; 
        m.lb(param.bio_rid) = bV; 
        m.c(:) = 0; 
        m.c(param.target_rid) = 1; 
        [~, tV] = m_linprogP(m, 0, 0, param.mskoption); 
        if BPCYacceptance > 0 
            score0 = bV * tV; 
        else 
            score0 = tV; 
        end 
        parentScore = score0; 
        point0 = param.p0; 
        ncol = 1; 
        m = param.m; 

         
    else 

         
        rid0 = ridStack{1}; 
        ridStack(1) = []; 
        if param.forceBest 
            % force new score to be better than all current known score 
            score0 = max(scoreHistory); 
        else 
            % new score just needs to be better than parent's 
            score0 = scoreStack(1); 
        end 
        parentScore = scoreStack(1); 
        scoreStack(1) = []; 
        point0 = pointStack(1); 
        pointStack(1) = []; 
        ncol = length(rid0) + 1; 
        m = constraintKO(param.m, rid0); 

         
    end 

     
    % precalculate points if strategy fails 
    pointFail = point0 - 1; 

     
    % determine if maximum KO is reached 
    isMaxKO = length(rid0) >= param.komax-1; 

     
    % determine reward value 
    if point0 >= param.pmax 
        reward = 0; 
    else 
        reward = 1; 
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    end 

     
    % determine RIDs to test 
    v0 = m_linprogP(m, 1, 1, param.mskoption); 
    v0(abs(v0) < param.v_cutoff) = 0; 
    ridx = intersect(rids, find(v0)); 
    ridx = setdiff(ridx, rid0); 
    ridc = parallel.pool.Constant(ridx); 
    Nridx1 = length(ridx); 

     
    % set file print 
    fc = parallel.pool.Constant(@() fopen(fn, 'At'), @fclose); 

     
    %% solve LP problems with parallel cores 
    toExpand = true(Nridx1, 1); 
    points = false(Nridx1, 1); 
    scores = zeros(Nridx1, 1); 
    orig_scores = zeros(Nridx1, 1); % this is to keep record to determine top 

strategies 

     
    fprintf('Evaluate strategies\n'); 
    parfor ii = 1:Nridx1 

         
        testRids = [rid0 ridc.Value(ii)]; 
        mes = mesEvalP(m, addMes(initMes, ridc.Value(ii)), evalParam); 

         
        if mes.objV > 0 

             
            % scoring method 
            if BPCYacceptance > 0 
                % score by Biomass-Product Coupled Yield (Choon et al. 
                % 2013) 
                score = mes.score * mes.objV; 
            else 
                % conventional scoring by product yield 
                score = mes.score; 
            end 
            tmpScore = round(score, roundN); 

             
            % keep recrod of scores to rank 
            if tmpScore > 0 && (tmpScore - parentScore) > dv_cutoff 
                orig_scores(ii) = score; 
            end 

             
            % determine better scores and assign points 
            if tmpScore > 0 && isempty(find(scoreHistory == tmpScore, 1)) 
                % only if this is a new score 
                if (tmpScore - score0) > dv_cutoff 

  
                    % this RID set has better score than score0 
                    % 1 point will be awarded, unless reaches pmax 
                    points(ii) = true; 
                    scores(ii) = tmpScore; 

                     
                    str = sprintf('%u,', testRids); 
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                    fprintf(fc.Value, [str '%4.4f\n'], score); 

  
                else 

  
                    if pointFail < 0 
                        % failed and not enough points 
                        % this RID set lineage ends here 
                        toExpand(ii) = false; 
                    else 
                        % this RID set has enough points to be expanded 
                        % but 1 point will be deducted for failing 
                        scores(ii) = score0; 
                    end 

  
                end 
            elseif pointFail < 0 
                toExpand(ii) = false; 
            end 

             
            if isMaxKO 
                toExpand(ii) = false; 
            end 

             
        else 
            toExpand(ii) = false; 
        end 

  
    end 

     
    clear fc 

     
    %% push the RID-sets-to-expand into stacks 
    n = sum(toExpand); 
    if n > 0 
        % sort results 
        [~,i] = sortrows(scores, -1); 
        ridx2 = ridx(i); 
        scores = scores(i); 
        toExpand = toExpand(i); 
        points = points(i); 

         
        % push to stacks 
        tmp = [mat2cell([repmat(rid0, n, 1) ridx2(toExpand)], ones(n,1), 

ncol); ridStack]; 
        ridStack = tmp; 
        tmp = [scores(toExpand); scoreStack]; 
        scoreStack = tmp; 
        tmp = [zeros(n,1); pointStack]; 
        tmp(points(toExpand)) = point0 + reward; 
        tmp(~points(toExpand)) = point0 - 1; 
        pointStack = tmp; 

         
        % adding to scoreHistory 
        tmp = union(scoreHistory, scores); 
        scoreHistory = tmp; 
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        clear tmp 

         
        % determine bpcy rate if necessary 
        if BPCYacceptance > 0 
            bpcyRate = scores(1) / maxbpcy; 
        end 
    end 

     
    %% update best strategies 
    [~, rank] = sortrows(orig_scores, -1); 
    j = 1; 
    while j <= param.Nbests && j <= Nridx1 
        if orig_scores(rank(j)) > 0 
            betterThan = strategies.best.scores < orig_scores(rank(j)); 
            if sum(betterThan) > 0 
                tmp = [strategies.best.scores(~betterThan); 

orig_scores(rank(j)); strategies.best.scores(betterThan(1:end-1))]; 
                strategies.best.scores = tmp; 
                ridtmp = {[rid0 ridx(rank(j))]}; 
                tmp = [strategies.best.rids(~betterThan); ridtmp; 

strategies.best.rids(betterThan(1:end-1))]; 
                strategies.best.rids = tmp; 
            end 
        end 
        j = j + 1; 
    end 

     
end 

  
strategies.time = toc(time0); 
strategiesToRemove = strategies.best.scores == 0; 
strategies.best.scores(strategiesToRemove) = []; 
strategies.best.rids(strategiesToRemove) = []; 

  
%% print elapsed time 
f = fopen(fn, 'At'); 
fprintf(f, 'Elapsed time: %4.1f minutes\n', strategies.time/60); 
fclose(f); 

  
%% print best strategies 
f = fopen([param.savedir param.fn 'bestScores.csv'], 'w'); 
fprintf(f, 'Srategies,Scores\n'); 
for i = 1:length(strategies.best.scores) 
    fprintf(f, '%u,', strategies.best.rids{i}); 
    fprintf(f, '%4.4f\n', strategies.best.scores(i)); 
end 
fclose(f); 

 

Function (NR-Ox): nodeRewardOxP 

%% Predicting engineering strategies using a reward algorithm 
% **Utilizes parallel computing** 
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% Author: Jiun Yen 
% Date: 2016.11.27 
% Version: 2017.2.4 
% 
% This is an exhaustive search with a reward system to reduce search space 
% All members of the RID array starts with p point(s) (allowing p 
% additional failed attempt); if successful, the set receive an additional 
% point. 
% This search is depth-first 
% 
% 
% Input: 
%   param. 
%       m -model 
%       bio_rid - RID of the biomass equation (growth) 
%       target_rid - RID of the target reaction to maximize yield 
%       excludeRids - RIDs to exclude from mod 
%       BPCYacceptance - biomass-product coupled yield (Choon et al. 2013) 
%                      - percent of max theoretical BPCY to accept solution 
%                      and terminate run 
%       Nbests - number of best strategies to keep 
%       v_cutoff - flux cutoff for zero 
%       dv_cutoff - minimum degree of improvement each iteration 
%       ratioHiCutoff - high cutoff for flux ratio 
%       ratioLoCutoff - low cutoff for flux ratio 

%       hiCoeff - coefficient to calc increase of flux ratio 

%           r_hi = r + (1-r)*hiCoeff 

%       loCoeff - coefficient to calc decrease of flux ratio 

%           r_lo = r * loCoeff 

%       p0 - point(s) to start with 
%       pmax - max number of points 
%       maxMod - max number of modifications 
%       forceBest - whether new score must be the best known score 
%       savedir - folder to save results in 
%       fn - file name header 
%       mskoption - option for mosek optimizer 

  
function [strategies, param] = nodeRewardOxP(param) 

  
time0 = tic; 
strategies = []; 

  
%% initialize nodeEval parameters 
nodeParam0.m = decomposeS(param.m); 
nodeParam0.m.c(:) = 0; 
nodeParam0.m.c(param.bio_rid) = 1; 
nodeParam0.bio_rid = param.bio_rid; 
nodeParam0.target_rid = param.target_rid; 
nodeParam0.scoreByBPCY = logical(param.BPCYacceptance); 
nodeParam0.max = 1; 
nodeParam0.v_cutoff = param.v_cutoff; 
nodeParam0.mskoption = param.mskoption; 

  
% calc dhiCoeff 

param.dhiCoeff = 1 – param.hiCoeff; 
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% find maximum theoretical BPCY 
maxbpcy = findMaxBPCY(param); 

  
% constants 
dv_cutoff = param.dv_cutoff; 
roundN = abs(ceil(log(dv_cutoff)/log(10))) + 1; 
fn = [param.savedir param.fn 'scoreEvolution.csv']; 
f = fopen(fn, 'w'); 
fprintf(f, 'NID sets,Scores\n'); 
fclose(f); 
BPCYacceptance = param.BPCYacceptance; 
Nnodes0 = size(nodeParam0.m.S,1); 

  
%% initialize primary output variables 
strategies.best.scores = zeros(param.Nbests, 1); 
strategies.best.nids = cell(param.Nbests, 1); 
strategies.best.rids = cell(param.Nbests, 1); 
strategies.best.ratios = cell(param.Nbests, 1); 

  
%% Perform tests 

  
nidStack = []; 
ridStack = []; 
ratioStack = []; 
scoreStack = []; 
pointStack = []; 
scoreHistory = []; 
bpcyRate = 0; 

  
start = true; 
% while ~isempty(nidStack) || start 
while bpcyRate < BPCYacceptance && (~isempty(nidStack) || start) 

     
    % pop the stacks 
    if start 

         
        start = false; 
        nodeMod0.nids = []; 
        nodeMod0.rids = []; 
        nodeMod0.rs = []; 
        m0 = nodeParam0.m; 
        [~, bV] = m_linprogP(m0, 1, 0, param.mskoption); 
        obj = find(m0.c); 
        m0.lb(obj) = bV; 
        m0.ub(obj) = bV; 
        m0.c(:) = 0; 
        m0.c(param.target_rid) = 1; 
        [~, tV] = m_linprogP(m0, 0, 0, param.mskoption); 
        if BPCYacceptance > 0 
            score0 = bV * tV; 
        else 
            score0 = tV; 
        end 
        parentScore = score0; 
        point0 = param.p0; 
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        ncol = 1; 

         
    else 

         
        nodeMod0.nids = nidStack{1}; 
        nodeMod0.rids = ridStack{1}; 
        nodeMod0.rs = ratioStack{1}; 
        nidStack(1) = []; 
        ridStack(1) = []; 
        ratioStack(1) = []; 
        if param.forceBest 
            % force new score to be better than all current known score 
            score0 = max(scoreHistory); 
        else 
            % new score just needs to be better than parent's 
            score0 = scoreStack(1); 
        end 
        parentScore = scoreStack(1); 
        scoreStack(1) = []; 
        point0 = pointStack(1); 
        pointStack(1) = []; 
        ncol = length(nodeMod0.nids) + 1; 

         
    end 

     
    % precalculate points if strategy fails 
    pointFail = point0 - 1; 

     
    % install current nodeMod 
    nodeParam = installFR(nodeParam0, nodeMod0); 

     
    % determine reward value 
    isMaxKO = length(nodeMod0.nids) >= param.maxMod-1; 
    if point0 >= param.pmax 
        reward = 0; 
    else 
        reward = 1; 
    end 

     
    % solve current model to get FR 
    m = nodeParam.m; 
    v = m_linprogP(m, 1, 0, param.mskoption); 
    m.lb(param.bio_rid) = v(param.bio_rid); 
    m.c(:) = 0; 
    m.c(param.target_rid) = 1; 
    v = m_linprogP(m, 0, 0, param.mskoption); 
    v(abs(v) < nodeParam.v_cutoff) = 0; 
    v(param.target_rid) = 0; 
    fr = genFR(nodeParam.m, v); 

     
    % determine new nodes to test 
    nids = find(fr.isNode); 
    nids(nids > Nnodes0) = []; 
    nidx = setdiff(nids, nodeMod0.nids); 
    nidc = parallel.pool.Constant(nidx); 
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    Nnidx = length(nidx); 

     
    % populate all test cases 
    r = full(fr.r); 
    r2 = r; 
    r2(nodeMod0.nids,:) = [];   % remove nodes that are already in the set 
    Ntests = length(find(r2))*2; 
    clear r2 
    nids1 = zeros(Ntests, 1); 
    rids1 = zeros(Ntests, 1); 
    ratios1 = zeros(Ntests, 1); 
    k = 0; 
    for i = 1:Nnidx 
        ridstmp = setdiff(find(r(nidx(i),:)), param.excludeRids); 
        for j = 1:length(ridstmp) 
            rtmp = r(nidx(i),ridstmp(j)); 

             
            if rtmp < param.ratioHiCutoff 
                % OX 
                k = k + 1; 
                nids1(k) = nidx(i); 
                rids1(k) = ridstmp(j); 
                ratios1(k) = param.hiCoeff + param.dhiCoeff * rtmp; 
            end 

             
            if rtmp > param.ratioLoCutoff 
                % KD 
                k = k + 1; 
                nids1(k) = nidx(i); 
                rids1(k) = ridstmp(j); 
                ratios1(k) = param.loCoeff * rtmp; 
            end 

             
        end 
    end 
    Ntests = k; 
    k = k + 1; 
    nids1(k:end) = []; 
    rids1(k:end) = []; 
    ratios1(k:end) = []; 

     
    % set file print 
    fc = parallel.pool.Constant(@() fopen(fn, 'At'), @fclose); 

     
    %% solve LP problems with parallel cores 
    toExpand = true(Ntests, 1); 
    points = false(Ntests, 1); 
    scores = zeros(Ntests, 1); 
    orig_scores = zeros(Ntests, 1); 

     
    fprintf('Evaluating %u tests\n', Ntests); 
    fprintf('%u,', nodeMod0.nids); 
    fprintf('\n'); 
    fprintf('%u,', nodeMod0.rids); 
    fprintf('\n'); 
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    fprintf('%4.4f,', nodeMod0.rs); 
    fprintf('\n'); 

     
    parfor ii = 1:Ntests 

         
        % Evaluate node 
        nodeMod = nodeMod0; 
        nodeMod.nids = [nodeMod0.nids nids1(ii)]; 
        nodeMod.rids = [nodeMod0.rids rids1(ii)]; 
        nodeMod.rs = [nodeMod0.rs ratios1(ii)]; 
        nodeParam1 = installFR(nodeParam, nodeMod); 
        [~, bV] = m_linprogP(nodeParam1.m, 1, 0, nodeParam1.mskoption); 
        nodeParam1.m.lb(nodeParam1.bio_rid) = bV; 
        nodeParam1.m.c(:) = 0; 
        nodeParam1.m.c(nodeParam1.target_rid) = 1; 
        [~, tV] = m_linprogP(nodeParam1.m, 0, 0, nodeParam1.mskoption); 

         
        % Evalute score and assign reward 
        if bV > 0 

             
            if BPCYacceptance > 0 
                score = bV * tV; 
            else 
                score = tV; 
            end 
            tmpScore = round(score, roundN); 

             
            % keep recrod of scores to rank 
            if tmpScore > 0 && (tmpScore - parentScore) > dv_cutoff 
                orig_scores(ii) = score; 
            end 

             
            if tmpScore > 0 && isempty(find(scoreHistory == tmpScore, 1)) 
                % only if this is a new score 
                if (tmpScore - score0) > dv_cutoff 

  
                    % this RID set has better score than score0 
                    % 1 point will be awarded, unless reaches pmax 
                    points(ii) = true; 
                    scores(ii) = tmpScore; 

                     
                    tmp = reshape([nodeMod.nids; nodeMod.rids; 

nodeMod.rs],length(nodeMod.nids)*3,1); 
                    str = sprintf('%u|%u|%4.4f,', tmp); 
                    fprintf(fc.Value, [str '%4.4f\n'], score); 

  
                else 

  
                    if pointFail < 0 
                        % failed and not enough points 
                        % this RID set lineage ends here 
                        toExpand(ii) = false; 
                    else 
                        % this RID set has enough points to be expanded 
                        % but 1 point will be deducted for failing 
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                        scores(ii) = score0; 
                    end 

  
                end 

                 
            elseif pointFail < 0 
                toExpand(ii) = false; 
            end 

             
            if isMaxKO 
                toExpand(ii) = false; 
            end 

             
        else 
            toExpand(ii) = false; 
        end 

  
    end 

     
    clear fc 

     
    %% push the RID-sets-to-expand into stacks 
    n = sum(toExpand); 
    fprintf('%u to expand\n', n); 
    if n > 0 
        % sort results 
        [~,i] = sortrows(scores, -1); 
        nids2 = nids1(i); 
        rids2 = rids1(i); 
        ratios2 = ratios1(i); 
        scores = scores(i); 
        toExpand = toExpand(i); 
        points = points(i); 

         
        % push to stacks 
        tmp = [mat2cell([repmat(nodeMod0.nids, n, 1) nids2(toExpand)], 

ones(n,1), ncol); nidStack]; 
        nidStack = tmp; 
        tmp = [mat2cell([repmat(nodeMod0.rids, n, 1) rids2(toExpand)], 

ones(n,1), ncol); ridStack]; 
        ridStack = tmp; 
        tmp = [mat2cell([repmat(nodeMod0.rs, n, 1) ratios2(toExpand)], 

ones(n,1), ncol); ratioStack]; 
        ratioStack = tmp; 
        tmp = [scores(toExpand); scoreStack]; 
        scoreStack = tmp; 
        tmp = [zeros(n,1); pointStack]; 
        tmp(points(toExpand)) = point0 + reward; 
        tmp(~points(toExpand)) = point0 - 1; 
        pointStack = tmp; 

         
        % adding to scoreHistory 
        tmp = union(scoreHistory, scores); 
        scoreHistory = tmp; 
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        clear tmp 

         
        % determine bpcy rate if necessary 
        if BPCYacceptance > 0 
            bpcyRate = max(scores) / maxbpcy; 
            fprintf('BPCY: %u\n', max(scores)); 
            fprintf('BPCYrate: %u\n', bpcyRate); 
        end 

     
    end 

     
    %% update best strategies 
    [~, rank] = sortrows(orig_scores, -1); 
    j = 1; 
    while j <= param.Nbests && j <= Ntests 
        if orig_scores(rank(j)) > 0 
            betterThan = strategies.best.scores < orig_scores(rank(j)); 
            if sum(betterThan) > 0 
                tmp = [strategies.best.scores(~betterThan); 

orig_scores(rank(j)); strategies.best.scores(betterThan(1:end-1))]; 
                strategies.best.scores = tmp; 
                tmp = [strategies.best.nids(~betterThan); {[nodeMod0.nids 

nids1(rank(j))]}; strategies.best.nids(betterThan(1:end-1))]; 
                strategies.best.nids = tmp; 
                tmp = [strategies.best.rids(~betterThan); {[nodeMod0.rids 

rids1(rank(j))]}; strategies.best.rids(betterThan(1:end-1))]; 
                strategies.best.rids = tmp; 
                tmp = [strategies.best.ratios(~betterThan); {[nodeMod0.rs 

ratios1(rank(j))]}; strategies.best.ratios(betterThan(1:end-1))]; 
                strategies.best.ratios = tmp; 
            end 
        end 
        j = j + 1; 
    end 

     
    %% print best strategies 
    strategiesToRemove = strategies.best.scores == 0; 
    strategies.best.scores(strategiesToRemove) = []; 
    strategies.best.nids(strategiesToRemove) = []; 
    strategies.best.rids(strategiesToRemove) = []; 
    strategies.best.ratios(strategiesToRemove) = []; 
    f = fopen([param.savedir param.fn 'bestScores.csv'], 'w'); 
    fprintf(f, 'Srategies,Scores\n'); 
    for i = 1:length(strategies.best.scores) 
        tmp = reshape([strategies.best.nids{i}; strategies.best.rids{i}; 

strategies.best.ratios{i}],length(strategies.best.nids{i})*3,1); 
        fprintf(f, '%u|%u|%4.4f,', tmp); 
        fprintf(f, '%4.4f\n', strategies.best.scores(i)); 
    end 
    fclose(f); 

     
end 

  
strategies.time = toc(time0); 
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%% print elapsed time 
f = fopen(fn, 'At'); 
fprintf(f, 'Elapsed time: %4.1f minutes\n', strategies.time/60); 
fclose(f); 

 

Function: addMes 

%% Expand metabolic engineering strategy - use with initMes() 
% Author: Jiun Yen 
% Date: 2016.11.12 
% Version: 2016.11.12 

  
function mes = addMes(mes, rids, ubs, lbs, score, objV) 

  
if ~isempty(intersect(mes.rids, rids)) 
    return 
end 

  
mes.rids = [mes.rids rids]; 

  
if nargin < 3 
    mes.ubs = [mes.ubs zeros(1, length(rids))]; 
    mes.lbs = [mes.lbs zeros(1, length(rids))]; 
else 
    mes.ubs = [mes.ubs ubs]; 
    mes.lbs = [mes.lbs lbs]; 
end 

  
if nargin < 5 
    mes.score = 0; 
    mes.evaluated = false; 
else 
    mes.score = score; 
    mes.evaluated = true; 
end 

  
if nargin < 6 
    mes.objV = 0; 
else 
    mes.objV = objV; 
end 

 

Function: constraintKO 

%% Constrain flux(s) of specified reaction(s) to zero 

  
function m = constraintKO(m, rid) 
m.lb(rid) = 0; 
m.ub(rid) = 0; 
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Function: decomposeS 

%% Break down original COBRA model so there are only positive v 

  
function m = decomposeS(m) 

  
Nrxns = size(m.S,2); 

  
% S matrix decomposition 
m.S = sparse([full(m.S) -full(m.S)]); 

  
% boundary decomposition 
ub1 = zeros(Nrxns,1); 
ub2 = zeros(Nrxns,1); 
lb1 = zeros(Nrxns,1); 
lb2 = zeros(Nrxns,1); 
ub1(m.ub > 0) = m.ub(m.ub > 0); 
lb1(m.lb > 0) = m.lb(m.lb > 0); 
ub2(m.lb < 0) = abs(m.lb(m.lb < 0)); 
lb2(m.ub < 0) = abs(m.ub(m.ub < 0)); 
m.ub = [ub1;ub2]; 
m.lb = [lb1;lb2]; 

  
% reassign obj function 
obj = find(m.c); 
m.c = zeros(Nrxns * 2, 1); 
m.c(obj) = 1; 

 

Function: findMaxBPCY 

%% Calculate the maximum theoretical BPCY 

  
function [maxbpcy, bV, tV] = findMaxBPCY(param) 

  
tV = fminsearch(@bpcy, 0, [], param); 
m = param.m; 
m.lb(param.target_rid) = tV; 
[~, bV] = m_linprogP(m, 1, 0, param.mskoption); 
maxbpcy = tV * bV; 

  
function s = bpcy(t0, param) 

  
m = param.m; 
m.lb(param.target_rid) = t0; 
[~, b] = m_linprogP(m, 1, 0, param.mskoption); 
s = 1000 - b * t0; 

 

Function: fvaP 

% Flux variability analysis (for the parallel driver) 
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% Author: Jiun Yen 
% Version: 2016.12.18 
% Description: Analysis of flux variability as described in Appendix A of 
%   Ranganathan et al. The upper and lower flux range is determined through 
%   iterative optimization of each reaction in model m. 
% Input: 
%   m - a Cobra model 
% Output: 
%   vmax,vmin - matrix of upper and lower flux ranges of all reactions in m 

  
function [vmax,vmin,t] = fvaP(m, option, set) 
tic 

  
% final optimal obj solution 
s = m_linprogP(m, 1, 0, option); 
obj = find(m.c); 
m.ub(obj) = floor(s(obj)*10^6)/10^6; 
m.lb(obj) = m.ub(obj); 

  
% identify set 
Nrxns = size(m.S,2); 
m.c(:) = 0; 
if nargin < 3 || isempty(set) 
    set = 1:Nrxns; 
    set(obj) = []; 
    Nset = Nrxns - 1; 
else 
    Nset = length(set); 
end 

  
% initialize output 
vmax = zeros(Nrxns,1); 
vmin = zeros(Nrxns,1); 

  
% assign obj solution 
vmax(obj) = s(obj); 
vmin(obj) = s(obj); 

  
% perform FVA in parallel 
vmax_sub = zeros(Nset,1); 
vmin_sub = zeros(Nset,1); 
parfor i = 1:Nset 

     
    m1 = m; 

     
    m1.c(set(i)) = 1; 

     
    m1.ub(set(i)) = 1000; 
    m1.lb(set(i)) = -1000; 

     
    % find max 
    s = m_linprogP(m1,1,0,option); 
    vmax_sub(i) = s(set(i)); 

     
    % find min 
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    s = m_linprogP(m1,0,0,option); 
    vmin_sub(i) = s(set(i)); 

     
end 

  
% assign solutions 
vmax(set) = vmax_sub; 
vmin(set) = vmin_sub; 

  
t = toc; 

 

Function: genFR 

% Search for nodes with flux solution (v), and generate flux ratios 
% v should be cleaned-up (free of noisy values that are essentially zeros) 

  
function fr = genFR(m, v) 

  
fr.S = m.S; 
fr.v = v; 

  
[Nmets, Nrxns] = size(m.S); 

  
% multiply S by v and avoid summation 
r_mat = m.S .* repmat(v', Nmets, 1); 

  
% identify consumption fluxes (negative fluxes) 
negs = r_mat < 0; 

  
% remove production fluxes (positive fluxes) 
r_mat = r_mat .* negs; 

  
% find nodes, mets with 2 or more competing fluxes (more than 1) 
isNode = full(sum(negs, 2) > 1); 

  
% remove non-nodes (set to 0) 
r_mat = r_mat .* repmat(isNode, 1, Nrxns); 

  
% calculate total flux producing each met (node) 
v_sums = sum(r_mat, 2); 

  
% cheat: to prevent NaN, since non-mets will have 0 fluxes, 0/1 = 0 
v_sums(v_sums == 0) = 1; 

  
% finalize flux ratio matrices by dividing each node by its total flux 
r_mat = r_mat ./ repmat(v_sums, 1, Nrxns); 

  
% find rxns that are in node 
rids = find(sum(logical(r_mat),1)); 

  
fr.isNode = isNode; 
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fr.r = r_mat; 
fr.rids = rids; 

 

Function: geneCodingRxns 

%% Return only reactions associated to a gene 
function rids = geneCodingRxns(m) 
rids = find(sum(full(logical(m.rxnGeneMat)),2)); 

 

Function: initMes 

%% Special set data structure for metabolic engineering strategies (mes) 
% Author: Jiun Yen 
% Date: 2016.11.12 
% Version: 2016.11.12 
% Structure: 
%   rids: rids in this set 
%   ubs: flux upper bound assigned to the rids (same size vector as set) 
%   lbs: flux lower bound assigned to the rids (same size vector as set) 
%   score: score of this set 
%   objV: flux of the objective function 

  
function mes = initMes() 

  
mes.rids = []; 
mes.ubs = []; 
mes.lbs = []; 
mes.score = 0; 
mes.objV = 0; 
mes.evaluated = false; 

 

Function: installFR 

%% Install flux ratio into COBRA model 
% *** MUST perform decomposeS first!!*** 
% nodeMods. 
%   nids - node IDs 
%   rids - reaction IDs 
%   rs - ratios for RIDs 

  
function node = installFR(node, nodeMods) 

  
m = node.m; 
Nmets = size(m.S,1); 

  
for n = 1:length(nodeMods.nids) 

     
    rid0 = nodeMods.rids(n); 
    rids = setdiff(find(m.S(nodeMods.nids(n),:)), rid0); 
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    m.S(Nmets + n, rid0) = nodeMods.rs(n) - 2; 
    m.S(Nmets + n, rids) = nodeMods.rs(n); 

     
end 

  
node.m = m; 

 

Function: m_linprogP 

% m_linprog for parallel programming 

  
function [sol, objx] = m_linprogP(m, opt, minGlobal,option,beq) 

  
Nrxns = size(m.S,2); 
sol = zeros(Nrxns,1); 
obj = logical(m.c); 
objx = 0; 
tol = 1e-10; 

  
if nargin < 5 
    beq = zeros(size(m.S,1),1); 
end 
if nargin < 4 
    option = mskoptimset(''); 
    option = mskoptimset(option,'Simplex','primal'); 
end 

  
if minGlobal 

     
    % initialize variables 
    x0 = zeros(2*Nrxns,1); 
    Aeq = [full(m.S) -full(m.S)]; 

  
    % boundary decomposition 
    ub1 = zeros(Nrxns,1); 
    ub2 = zeros(Nrxns,1); 
    lb1 = zeros(Nrxns,1); 
    lb2 = zeros(Nrxns,1); 
    ub1(m.ub > 0) = m.ub(m.ub > 0); 
    lb1(m.lb > 0) = m.lb(m.lb > 0); 
    ub2(m.lb < 0) = abs(m.lb(m.lb < 0)); 
    lb2(m.ub < 0) = abs(m.ub(m.ub < 0)); 
    ub = [ub1;ub2]; 
    lb = [lb1;lb2]; 

     
    % max or min obj func 
    if opt > 0 
        f = [-m.c;m.c]; 
    else 
        f = [m.c;-m.c]; 
    end 
    flogical = logical(f); 
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    % find solution satisfy objective function 
    sol0 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 

     
    % continue only if optimal satisfy objective 
    if sum(sol0(flogical) < lb(flogical)) ~= 0 || sum(sol0(flogical) > 

ub(flogical)) ~= 0 
        return 
    end 

     
    % reverse objective for global minimization 
    lb(flogical) = sol0(flogical); 
    ub(flogical) = sol0(flogical); 
    f = double(~f); 

  
    % find solution for global minimization 
    sol1 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 

  
    % recompose original solution array 
    if sum(sol1 < lb-tol) ~= 0 || sum(sol1 > ub+tol) ~= 0 
        return 
    end 
    sol = sol1(1:Nrxns) - sol1(Nrxns+1:end); 
    objx = sol(obj); 

     
else 

     
    % initialize variables 
    x0 = zeros(Nrxns,1); 
    Aeq = full(m.S); 
    f = m.c; 
    lb = m.lb; 
    ub = m.ub; 

     
    % max or min obj func 
    if opt > 0 
        f = -f; 
    end 

     
    % find solution satisfy objective function 
    soltmp = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 
    if sum(soltmp < lb-tol) ~= 0 || sum(soltmp > ub+tol) ~= 0 
        return 
    end 
    sol = soltmp; 
    objx = sol(obj); 

     
end 

 

Function: addPathway 

%% Add pathway (multiple reactions/compounds) to m 

  
function m = addPathway(m, cid_add, rid_add, S_add) 
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[Nmets0, Nrxns0] = size(m.S); 

  
for i = 1:length(cid_add.cids) 
    m.mets(cid_add.cids(i)) = cid_add.mets(i); 
    m.metNames(cid_add.cids(i)) = cid_add.metNames(i); 
end 

  
Nrxns = length(rid_add.rids); 
for i = 1:Nrxns 
    m.rxns(rid_add.rids(i)) = rid_add.rxns(i); 
    m.rxnNames(rid_add.rids(i)) = rid_add.rxnNames(i); 
    m.subSystems{rid_add.rids(i)} = ''; 
end 

  
m.lb(end+1:end+Nrxns) = 0; 
m.ub(end+1:end+Nrxns) = 1000; 
m.c(end+1:end+Nrxns) = 0; 

  
for i = 1:length(S_add.s) 
    m.S(S_add.cids(i),S_add.rids(i)) = S_add.s(i); 
end 

 

Function: mesEvalP 

%% Evaluate MES by performing FBA (parallel computing version) 
% assign score as flux of objective function unless otherwise specified in 
% parameter (param) 
% Author: Jiun Yen 
% Date: 2016.11.12 
% Version: 2016.11.12 
% Input: 
%   m: model (COBRA format) 
%   mes: MES structure built by initMes() 
%   param: parameters 
%       max - BOOLEAN, to max (1) or min (0) objective function 
%       target - rid of flux used to determine the score (default: obj) 
%       modifier - equation to calculate score (default: []) 
%       v_cutoff - cutoff for zero 
%       mskoption - option for mosek optimizer 

  
function mes = mesEvalP(m, mes, param) 

  
m.ub(mes.rids) = mes.ubs; 
m.lb(mes.rids) = mes.lbs; 

  
if isfield(param, 'minGlobal') && param.minGlobal 
    [mes.v, objV] = m_linprogP(m, 1, 1, param.mskoption); 

     
    if abs(objV) > param.v_cutoff 
        mes.objV = objV; 

         
        if isempty(param.modifier) 
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            score = mes.v(param.target); 
        else 
            score = param.modifier(mes.v(param.target)); 
        end 

  
        if abs(score) > param.v_cutoff 
            mes.score = score; 
        end 
    end 
else 
    [~, objV] = m_linprogP(m, param.max, 0, param.mskoption); 

     
    if abs(objV) > param.v_cutoff 
        mes.objV = objV; 

         
        if ~param.target || param.target == find(m.c) 
            if isempty(param.modifier) 
                score = objV; 
            else 
                score = param.modifier(objV); 
            end 
        else 
            obj = find(m.c); 
            m.c(:) = 0; 
            m.c(param.target) = 1; 
            m.ub(obj) = objV; 
            m.lb(obj) = objV; 
            [~, objV] = m_linprogP(m, 0, 0, param.mskoption); 
            if isempty(param.modifier) 
                score = objV; 
            else 
                score = param.modifier(objV); 
            end 
        end 

  
        if abs(score) > param.v_cutoff 
            mes.score = score; 
        end 
    end 
end 

  
mes.evaluated = true; 

2) DRIVER FILE 

Driver for NR-Knock 

%% Driver - Node-Reward Knock 
% All numbered sections (1-5) are required 

  
%% (1) path to core codes and MESEK solver on HPC 

  
%% (2) Load model and biomass compositions and other criteria 
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%% (3) Specify parameters 

  
% Target compound for engineering 
% leave cid empty if rid (the exchange reaction of target cpd) is known 
target_cid = []; 
target_rid = []; 

  
% flux cutoff - below this is zero 
v_cutoff = 0.000000001; 

  
%% (4) Additional model modifications 

  
%% Automated steps - REQUIRES MODEL EXIST AS m 

  
% Assesss target compound 
% this create a new reaction for target compound if target_rid is empty 
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid, 

config.bio_rid, 1) 
    [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0); 
end 

  
% keep only basic model components 
m1.S = m.S; 
m1.ub = m.ub; 
m1.lb = m.lb; 
m1.c = m.c; 
m1.rxnGeneMat = m.rxnGeneMat; 

  
% setup Mosek solver option 
option = mskoptimset(''); 
option = mskoptimset(option,'Simplex','primal'); 

  
%% (5) Setup primary argument - param 

  
% RIDs to exclude (i.e. exchange, transport) 
excludeRids = []; 

  
% setup param 
param.m = m1; 
param.target_rid = target_rid; 
param.bio_rid = [];             % ID of the biomass equation 
param.BPCYacceptance = 0.98; 
param.Nbests = 40; 
param.searchLethals = false; 
param.excludeRids = excludeRids; 
param.v_cutoff = v_cutoff; 
param.hi_cutoff = 150; 
param.dv_cutoff = 0.01; 
param.p0 = 0; 
param.pmax = 1; 
param.komax = 4; 
param.forceBest = true; 
param.savedir = 'NRKnockP';     % folder name 
param.fn = '/NRKnockP_out_';    % output header 
param.mskoption = option; 
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%% Perform NR-Knock 
% make folder if does not exist 
mkdir(param.savedir); 
clearvars -except param 

  
% run nodeRewardKnockP 
[strategies, param_out] = nodeRewardKnockP(param); 
clearvars -except param param_out strategies 

  
% save workspace 
save([param.savedir param.fn 'results']); 

 

Driver for NR-Ox 

%% Driver - Node-Reward Ox 
% All numbered sections (1-5) are required 

  
%% (1) path to core codes and MESEK solver on HPC 

  
%% (2) Load model and biomass compositions and other criteria 

  
%% (3) Specify parameters 

  
% Target compound for engineering 
% leave cid empty if rid (the exchange reaction of target cpd) is known 
target_cid = []; 
target_rid = []; 

  
% flux cutoff - below this is zero 
v_cutoff = 0.000000001; 

  
%% (4) Additional model modifications 

  
%% Automated steps - REQUIRES MODEL EXIST AS m 

  
% Assesss target compound 
% this create a new reaction for target compound if target_rid is empty 
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid, 

config.bio_rid, 1) 
    [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0); 
end 

  
% keep only basic model components 
m1.S = m.S; 
m1.ub = m.ub; 
m1.lb = m.lb; 
m1.c = m.c; 
m1.rxnGeneMat = m.rxnGeneMat; 

  
% setup Mosek solver option 
option = mskoptimset(''); 
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option = mskoptimset(option,'Simplex','primal'); 

  
%% (5) Setup primary argument - param 

  
% RIDs to exclude (i.e. exchange, transport) 
excludeRids = []; 

  
% setup param 
param.m = m1; 
param.bio_rid = [];             % ID of the biomass equation 
param.target_rid = target_rid; 

param.excludeRids = excludeRids; 
param.BPCYacceptance = 0.98; 
param.Nbests = 40; 
param.v_cutoff = v_cutoff; 
param.dv_cutoff = 0.01; 
param.ratioHiCutoff = 0.8; 
param.ratioLoCutoff = 0.1; 

param.hiCoeff = 0.9; 

param.loCoeff = 0.01; 
param.p0 = 0; 
param.pmax = 1; 
param.maxMod = 4; 
param.forceBest = true; 
param.savedir = 'NROxP';        % folder name 
param.fn = '/NROxP_out_';       % output header 
param.mskoption = option; 

  
%% Perform NR-Knock 
% make folder if does not exist 
mkdir(param.savedir); 
clearvars -except param 

  
% run nodeRewardOxP 
[strategies, param_out] = nodeRewardOxP(param); 
clearvars -except param param_out strategies 

  
% save workspace 
save([param.savedir param.fn 'results']); 

 

3) EXAMPLE – DESIGNS FOR OVERPRODUCTION OF BDO IN E. COLI 

NR-Knock example 

%% Driver - Node-Reward Knock 
% Example: Predict metabolic engineering strategies to overproduce 
% 1,4-butanediol in E. coli 
% All numbered sections (1-5) are required 

  
%% (1) path to core codes and MESEK solver on HPC 
addpath('/home/qksilver/dragonstooth/codes/core') 
addpath('/home/qksilver/dragonstooth/mosek/7/toolbox/r2013a/') 
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%% (2) Load model and biomass compositions and other criteria 
load('20161103_Ec_iAF1260f1_C1000R2To01_N50000_bComps.mat') 
load('Ec_iAF1260_flux1_exchanges.mat') 
load('Ec_iAF1260_flux1_lethal_KOs.mat') 
clearvars -except starti Nsamples bComps config lethal_rids exchange_rids 

Vopts m0 

  
%% (3) Specify parameters 

  
% Target compound for engineering 
% leave cid empty if rid (the exchange reaction of target cpd) is known 
target_cid = 1672;  % 1,4-butanediol 
target_rid = []; 

  
% flux cutoff - below this is zero 
v_cutoff = 0.000000001; 

  
%% (4) Additional model modifications 
% Add Lee 2011 BDO biosynthetic pathway 
load('Lee_BDO_pathway.mat') 
m = addPathway(m0,cid_add,rid_add,S_add); 
clear cid_add rid_add S_add 

  
% Anaerobic condition (O2 exchange -> rid 933) 
m.lb(933) = 0; 

  
% Glucose uptake rate 
m.lb(849) = -20; 

  
%% Automated steps - REQUIRES MODEL EXIST AS m 

  
% Assesss target compound 
% this create a new reaction for target compound if target_rid is empty 
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid, 

config.bio_rid, 1) 
    [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0); 
end 

  
% keep only basic model components 
m1.S = m.S; 
m1.ub = m.ub; 
m1.lb = m.lb; 
m1.c = m.c; 
m1.rxnGeneMat = m.rxnGeneMat; 

  
% setup Mosek solver option 
option = mskoptimset(''); 
option = mskoptimset(option,'Simplex','primal'); 

  
%% (5) Setup primary argument - param 

  
% RIDs to exclude (i.e. exchange, transport) 
excludeRids = union(lethal_rids, exchange_rids); 
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% setup param 
param.m = m1; 
param.target_rid = target_rid; 
param.bio_rid = 1005;           % ID of the biomass equation 
param.BPCYacceptance = 0.98; 
param.Nbests = 40; 
param.searchLethals = false; 
param.excludeRids = excludeRids; 
param.v_cutoff = v_cutoff; 
param.hi_cutoff = 150; 
param.dv_cutoff = 0.01; 
param.p0 = 0; 
param.pmax = 1; 
param.komax = 4; 
param.forceBest = true; 
param.savedir = 'NRKnockP';     % folder name 
param.fn = '/NRKnockP_out_';    % output header 
param.mskoption = option; 

  
%% Perform NR-Knock 
% make folder if does not exist 
mkdir(param.savedir); 
clearvars -except param 

  
% run nodeRewardKnockP 
[strategies, param_out] = nodeRewardKnockP(param); 
clearvars -except param param_out strategies 

  
% save workspace 
save([param.savedir param.fn 'results']); 

 

NR-Ox example 

%% Driver - Node-Reward Ox 
% Example: Predict metabolic engineering strategies to overproduce 
% 1,4-butanediol in E. coli 
% All numbered sections (1-5) are required 

  
%% (1) path to core codes and MESEK solver on HPC 
addpath('/home/qksilver/dragonstooth/codes/core') 
addpath('/home/qksilver/dragonstooth/mosek/7/toolbox/r2013a/') 

  
%% (2) Load model and biomass compositions and other criteria 
load('20161103_Ec_iAF1260f1_C1000R2To01_N50000_bComps.mat') 
load('Ec_iAF1260_flux1_exchanges.mat') 
load('Ec_iAF1260_flux1_lethal_KOs.mat') 
clearvars -except starti Nsamples bComps config lethal_rids exchange_rids 

Vopts m0 

  
%% (3) Specify parameters 

  
% Target compound for engineering 
% leave cid empty if rid (the exchange reaction of target cpd) is known 
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target_cid = 1672;  % 1,4-butanediol 
target_rid = []; 

  
% flux cutoff - below this is zero 
v_cutoff = 0.000000001; 

  
%% (4) Additional model modifications 
% Add Lee 2011 BDO biosynthetic pathway 
load('Lee_BDO_pathway.mat') 
m = addPathway(m0,cid_add,rid_add,S_add); 
clear cid_add rid_add S_add 

  
% Anaerobic condition (O2 exchange -> rid 933) 
m.lb(933) = 0; 

  
% Glucose uptake rate 
m.lb(849) = -20; 

  
%% Automated steps - REQUIRES MODEL EXIST AS m 

  
% Assesss target compound 
% this create a new reaction for target compound if target_rid is empty 
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid, 

config.bio_rid, 1) 
    [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0); 
end 

  
% keep only basic model components 
m1.S = m.S; 
m1.ub = m.ub; 
m1.lb = m.lb; 
m1.c = m.c; 
m1.rxnGeneMat = m.rxnGeneMat; 

  
% setup Mosek solver option 
option = mskoptimset(''); 
option = mskoptimset(option,'Simplex','primal'); 

  
%% (5) Setup primary argument - param 

  
% RIDs to exclude (i.e. exchange, transport) 
excludeRids = union(lethal_rids, exchange_rids); 
excludeRids = union(excludeRids, setdiff(1:2382, geneCodingRxns(m1))); 

  
% setup param 
param.m = m1; 
param.bio_rid = 1005;           % ID of the biomass equation 
param.target_rid = target_rid; 
param.excludeRids = excludeRids; 
param.BPCYacceptance = 0.95; 
param.Nbests = 40; 
param.v_cutoff = v_cutoff; 
param.dv_cutoff = 0.01; 
param.ratioHiCutoff = 0.8; 
param.ratioLoCutoff = 0.1; 
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param.hiCoeff = 0.9; 

param.loCoeff = 0.01; 
param.p0 = 0; 
param.pmax = 1; 
param.maxMod = 4; 
param.forceBest = true; 
param.savedir = 'NROxP';        % folder name 
param.fn = '/NROxP_out_';       % output header 
param.mskoption = option; 

  
%% Perform NR-Knock 
% make folder if does not exist 
mkdir(param.savedir); 
clearvars -except param 

  
% run nodeRewardOxP 
[strategies, param_out] = nodeRewardOxP(param); 
clearvars -except param param_out strategies 

  
% save workspace 
save([param.savedir param.fn 'results']); 
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C. MATLAB CODES FOR TO SIMULATE GROWTH AND STARCH METABOLISM 

There are two sections: 1) core codes and their dependencies and 2) the drivers. Drivers 

are setup to solve and simulate growth and starch as described in Materials and Methods. 

CORE CODES AND DEPENDENCIES 

Function: solveGrowth 

%% Solve for growth from t0 to t1 
% Author: Jiun Yen 
% Date: 2016.12.11 
% Version: 2016.12.11 
% 
% Dependencies: stackGEM(), updateBiomassEq() 
% Input 
%   param 
%       m - COBRA model 
%       obj - objective of optimization (default to B1 if empty) 
%       opt - max(1) or min(0) obj 
%       B0p - rid of biomass equation 
%       B0V - initial biomass (mgDW) 
%       Nrxns - number of rxns in model 
%       Nmets - number of mets in model 
%       rids - reactions to constrain to v for model from t0->t1 
%       ubs - flux constraints for rids 
%       lbs - flux constraints for rids 
%       bcomp - biomass composition compound information struct 
%       biomass0 
%           sid - SIDs of mets in stoichiometric matrix of m 
%           data - data on biomass composition at t0 
%       biomass1 
%           sid - SIDs of mets in stoichiometric matrix of m 
%           data - data on biomass composition at t1 
%       ymets - SIDs of independent biomass compounds (i.e. starch - 1477) 
%       yubs - ub constraints for dymol 
%       ylbs - lb constraints for dymol 
%       minGlobal - to minimize global flux (yes - 1, no - 0) 

  
function [s, info] = solveGrowth(param) 

  
%% Define constants 
B0p = param.B0p; 
B1p = param.Nrxns + 1; 
B0 = B1p + 1; 
B1 = B0 + 1; 
Nymets = length(param.ymets); 
ymol0 = linspace(B1+1,B1+Nymets,Nymets); 
tmp = max(ymol0); 
ymol1 = linspace(tmp+1,tmp+Nymets,Nymets); 
tmp = max(ymol1); 
dymol = linspace(tmp+1,tmp+Nymets,Nymets); 
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%% Set up model 
% Generate new model 
m = param.m; 
m.ub(param.rids) = param.ubs; 
m.lb(param.rids) = param.lbs; 

  
% extract quantitative data and molecular weights on independent biomass 

compounds 
ymetData = zeros(Nymets, 1); 
ymw = zeros(Nymets, 1); 
for i = 1:Nymets 
    ymetData(i) = param.biomass0.data(param.biomass0.sids == param.ymets(i)); 
    ymw(i) = param.bcomp.mw(param.bcomp.sids == param.ymets(i)); 
end 

  
% Remove independent biomass compounds from biomass0 and biomass1 
[~,tmp] = intersect(param.biomass0.sids, param.ymets); 
param.biomass0.data(tmp) = 0; 
[~,tmp] = intersect(param.biomass1.sids, param.ymets); 
param.biomass1.data(tmp) = 0; 

  
% Update biomass equation with biomass composition data at t0 and t1 
m = updateBiomassEq(m, B0p, [], param.biomass0.data, false, 

param.biomass0.sids); 
m = updateBiomassEq(m, B1p, [], -param.biomass1.data, false, 

param.biomass1.sids); 

  
% add biomass-ymets relationships 
tmp = param.Nmets + 1; 
m.S(tmp, B0) = 1; 
m.S(tmp, B0p) = -1; 
m.S(tmp, ymol0) = -ymw; 
m = updateMet(m, tmp, 'B0-ymass_t1'); 
m = updateRxn(m, B0, 'Biomass_t0', 0, 1000, 0); 
m = updateRxn(m, B0p, 'Biomass_noYmets_t0', 0, 1000, 0); 
tmp = param.Nmets + 2; 
m.S(tmp, B1) = 1; 
m.S(tmp, B1p) = -1; 
m.S(tmp, ymol1) = -ymw; 
m = updateMet(m, tmp, 'B1-ymass_t1'); 
m = updateRxn(m, B1, 'Biomass_t1', 0, 1000, 0); 
m = updateRxn(m, B1p, 'Biomass_noYmets_t1', 0, 1000, 0); 

  
% associate ymets 
for i = 1:Nymets 
    tmp = tmp + 1; 
    m.S(tmp, ymol0(i)) = -1; 
    m.S(tmp, ymol1(i)) = 1; 
    m.S(tmp, dymol(i)) = -1; 
    m = updateMet(m, tmp, ['change_of_' m.metNames{param.ymets(i)}]); 
    m = updateRxn(m, ymol0(i), [m.metNames{param.ymets(i)} '_t0'], 0, 1000, 

0); 
    m = updateRxn(m, ymol1(i), [m.metNames{param.ymets(i)} '_t1'], 0, 1000, 

0); 



148 

 

    m = updateRxn(m, dymol(i), ['change_of_' m.metNames{param.ymets(i)}], 

param.ylbs(i), param.yubs(i), 0); 
    m.S(param.ymets(i),dymol(i)) = -1; 
end 

  
% Constraint biomass and ymet quantity at t0 
m.lb(B0) = param.B0V; 
m.ub(B0) = m.lb(B0); 
m.lb(B1) = m.lb(B0); 
m.lb(ymol0) = ymetData .* param.B0V; 
m.ub(ymol0) = m.lb(ymol0); 

  
%% Solve with FBA 
m.c(:) = 0; 
if ~isempty(param.obj) 
    m.c(param.obj) = 1; 
    s = m_linprog(m, param.opt, 0); 
    m.ub(param.obj) = s(param.obj); 
    m.lb(param.obj) = m.ub(param.obj); 
    m.c(param.obj) = 0; 
end 
m.c(B1p) = 1; 
s = m_linprog(m, 1, param.minGlobal); 

  
%% construct info 
info.m = m; 
info.const.B0 = B0; 
info.const.B1 = B1; 
info.const.B0p = B0p; 
info.const.B1p = B1p; 
info.const.ymol0 = ymol0; 
info.const.ymol1 = ymol1; 
info.const.dymol = dymol; 

  
%% Nested function to update compound name 
function m = updateMet(m, sid, name) 
m.mets(sid) = {name}; 
m.metNames(sid) = {name}; 

  
%% Nested function to update reaction name, set bounds, and c 
function m = updateRxn(m, rid, name, lb, ub, c) 
m.rxns(rid) = {name}; 
m.rxnNames(rid) = {name}; 
m.lb(rid) = lb; 
m.ub(rid) = ub; 
m.c(rid) = c; 

 

Function: sim24hgrowth 

function [sols, info] = sim24hgrowth(param, timeParam) 

  
% h = waitbar(0, 'initializing'); 

  
% solve first step, t0 -> t1 



149 

 

[s, info] = solveGrowth(param); 
sols = zeros(length(s), timeParam.steps-1); 
sols(:,1) = s; 
% waitbar(1/timeParam.steps, h, 'solving'); 

  
for t = 2:timeParam.steps-1 
    param.B0V = s(info.const.B1); 

     
    % update starch level 
    param.biomass0.data(25) = s(info.const.ymol1) / s(info.const.B1); 
    param.biomass1 = param.biomass0; 

     
    %% do this in multiple stages of a 24-hour day 
    % Stage 1: Starting from 1 PM (t0 -> t1), there is light until 10 PM (9h) 
    % Stage 2: Light's off from 10 PM to 6 AM (8h) 
    % Stage 3: Light's back on from 6 AM to 1 PM (7h) 
    tmp = rem(timeParam.range(t),24); 
    if tmp ~= 0 && tmp < timeParam.eod 
        % Stage 1 
        % update CO2 and light uptake 
        param.rids = [48 63]; 
        param.ubs = param.ubs .* param.beta_d; 
        tmp_ubs = param.ubs; 
        param.ylbs = param.ylb_a * s(info.const.B1p); 

         
        param.opt = 1; 

         
    elseif tmp ~= 0 && tmp < timeParam.eon 
        % Stage 2 
        % update growth condition and starch utilization 
        param.rids = [48 63 4]; 
        param.ubs = [0 0 1000]; 
        param.lbs = [-1000 0 -1000]; 
        param.ylbs = param.ylb_b * s(info.const.B1p); 

         
        param.opt = 0; 

         
        % update leaf size 
        tmp_ubs = tmp_ubs .* param.beta_n; 

         
    else 
        % Stage 3 
        param.rids = [48 63]; 
        tmp_ubs = tmp_ubs .* param.beta_d; 
        param.ubs = tmp_ubs; 
        param.lbs = [0 0]; 
        param.ylbs = param.ylb_c * s(info.const.B1p); 

         
        param.opt = 1; 
    end 

     
    [s, info] = solveGrowth(param); 
    if abs(s(info.const.B0p)) < 0.0000001 
        break; 
    end 
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    if tmp < timeParam.eon && abs(s(info.const.ymol1)) < 0.0000001 
        break; 
    end 
    sols(:,t) = s; 

     
%     waitbar(t/timeParam.steps, h, 'solving'); 
end 

  
sols = sols ./ param.scale; 

  
% close(h) 

 

Function: m_linprog 

function sol = m_linprog(m, opt, minGlobal,beq) 

  
if nargin < 4 
    beq = zeros(size(m.S,1),1); 
end 

  
% option = optimset('Algorithm','interior-point'); 
option = mskoptimset(''); 
option = mskoptimset(option,'Simplex','primal'); 

  
Nrxns = size(m.S,2); 
sol = zeros(Nrxns,1); 
tol = 1e-9; 

  
if minGlobal 
    % initialize variables 
    x0 = zeros(2*Nrxns,1); 
    Aeq = [full(m.S) -full(m.S)]; 

  
    % boundary decomposition 
    ub1 = zeros(Nrxns,1); 
    ub2 = zeros(Nrxns,1); 
    lb1 = zeros(Nrxns,1); 
    lb2 = zeros(Nrxns,1); 
    ub1(m.ub > 0) = m.ub(m.ub > 0); 
    lb1(m.lb > 0) = m.lb(m.lb > 0); 
    ub2(m.lb < 0) = abs(m.lb(m.lb < 0)); 
    lb2(m.ub < 0) = abs(m.ub(m.ub < 0)); 
    ub = [ub1;ub2]; 
    lb = [lb1;lb2]; 

     
    % max or min obj func 
    if opt > 0 
        f = [-m.c;m.c]; 
    else 
        f = [m.c;-m.c]; 
    end 
    flogical = logical(f); 

  
    % find solution satisfy objective function 
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    sol0 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 

     
    % continue only if optimal satisfy objective 
    if sum(sol0(flogical) < lb(flogical)) ~= 0 || sum(sol0(flogical) > 

ub(flogical)) ~= 0 
        return 
    end 

     
    % reverse objective for global minimization 
    lb(flogical) = sol0(flogical); 
    ub(flogical) = sol0(flogical); 
    f = double(~f); 

  
    % find solution for global minimization 
    sol1 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 

  
    % recompose original solution array 
    sol = sol1(1:Nrxns) - sol1(Nrxns+1:end); 
    if sum(sol1 < lb-tol) ~= 0 || sum(sol1 > ub+tol) ~= 0 
        sol = zeros(Nrxns,1); 
%         fprintf('Solution is unreliable - out of bounds.\n'); 
    end 
else 
    % initialize variables 
    x0 = zeros(Nrxns,1); 
    Aeq = full(m.S); 
    f = m.c; 
    lb = m.lb; 
    ub = m.ub; 

     
    % max or min obj func 
    if opt > 0 
        f = -f; 
    end 

     
    % find solution satisfy objective function 
    sol = linprog(f,[],[],Aeq,beq,lb,ub,x0,option); 
    if sum(sol < lb-tol) ~= 0 || sum(sol > ub+tol) ~= 0 
        sol = zeros(Nrxns,1); 
%         fprintf('Solution is unreliable - out of bounds.\n'); 
    end 
end 

 

Function: getdStarch 

function score = getdStarch(vars0, param, timeParam) 

  
% vars = fminsearch(@findMaxTstarch, vars0, [], param, timeParam); 
%  
% % assign variables 
% param.ylbs = vars(1) * (param.B0V - 

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V); 
% param.ylb_a = vars(1); 
% param.ylb_b = vars(2); 
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% param.ylb_c = vars(3); 
%  
% % simulate 
% [sols, info] = sim24hgrowth(param, timeParam); 
%  
% % generate output 
% totalGrowth = sols(info.const.B0,:); 
% totalGrowth(end+1) = sols(info.const.B1,end); 
% starch_umol = sols(info.const.ymol0,:); 
% starch_umol(end+1) = sols(info.const.ymol1,end); 
% starch_conc = starch_umol ./ totalGrowth; 
% dStarch = abs(starch_conc(end) - param.biomass0.data(25)); 
%  
% function tStarch = findMaxTstarch(vars0, param, timeParam) 

  
% assign variables 
param.ylbs = vars0(1) * (param.B0V - 

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V); 
param.ylb_a = vars0(1); 
param.ylb_b = vars0(2); 
param.ylb_c = vars0(3); 

  
% simulate 
[sols, info] = sim24hgrowth(param, timeParam); 

  
%% Plots 
totalGrowth = sols(info.const.B0,:); 
totalGrowth(end+1) = sols(info.const.B1,end); 
noStarchGrowth = sols(info.const.B0p,:); 
noStarchGrowth(end+1) = sols(info.const.B1p,end); 
starch_umol = sols(info.const.ymol0,:); 
starch_umol(end+1) = sols(info.const.ymol1,end); 
starch_conc = starch_umol ./ totalGrowth; 
% dStarch_umol_B0p_dt = 

sols(info.const.dymol,:)./sols(info.const.B0p,:)/timeParam.dt; 
tStarch = abs(starch_conc(timeParam.eodi) - starch_conc(timeParam.eoni)); 
dStarch = abs(starch_conc(end) - param.biomass0.data(25)); 

  
clf('reset') 
subplot(2,1,1) 
hold on 
plot(timeParam.range, totalGrowth,'.') 
plot(timeParam.range, noStarchGrowth,'.') 
ylabel('Total biomass, mgDW') 
subplot(2,1,2) 
plot(timeParam.range, starch_conc,'.') 
ylabel('Starch conc., \mumol/mgDW') 
xlabel('time after 1 PM, h') 
% subplot(3,1,3) 
% plot(timeParam.range(1:end-1), dStarch_umol_B0p_dt,'.') 
clc 
fprintf('EOD starch: %4.3f umol/mgDW\n', starch_conc(timeParam.eodi)); 
fprintf('EON starch: %4.3f umol/mgDW\n', starch_conc(timeParam.eoni)); 
fprintf('transitory starch: %4.3f umol/mgDW\n', tStarch); 
fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1)); 
fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end)); 
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fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1)); 
fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end)); 
pause(0.00001) 

  
% generate output 
score = -(tStarch - 10 * dStarch - 20 * abs(vars0(1) - vars0(3))); 
% score = abs(tStarch - 0.559) + dStarch + abs(vars0(1) - vars0(3)); 

 

Function: updateBiomassEq 

%% Assign new concentrations to compounds in the biomass equation 

  
function m = updateBiomassEq(m,r,bcomp,data,isKids,ids) 

  
if isKids 
    for i = 1:length(ids) 
        m.S(bcomp.sids(bcomp.kids == ids(i)),r) = data(i); 
    end 
else 
    m.S(ids,r) = data; 
end 

 

Function: calcMassRatio 

% determine how much of the total biomass is covered with data 

  
function massRatio = calcMassRatio(bcomp,data,kids,sids) 

  
massRatio = 0; 
if nargin < 4 || isempty(sids) 
    for i = 1:length(kids) 
        massRatio = massRatio + bcomp.mw(bcomp.kids == kids(i))*data(i); 
    end 
else 
    for i = 1:length(sids) 
        massRatio = massRatio + bcomp.mw(bcomp.sids == sids(i))*data(i); 
    end 
end 

 

DRIVER FILES 

Driver to solve and simulate results in Figure 6 and Figure 7 

%% Driver to Ler solveGrowth 
% for pre-flowering 
% only for pre-flowering stage because of the use of RGR for CO2 exchange 

  
clear 
clc 
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load('20161214_LerHA_model_constraints.mat') 
load('rgr_means.mat') 

  
%% modify glycosyl data - scale up to xx% 
targetMass = 0.416;   % 416 ug/mgDW 
metids = false(32,1); 
mws = zeros(32,1); 
for i = 1:32 
    j = bcomp.sids == sids(i); 
    n = bcomp.group(j); 
    if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin') 
        metids(i) = true; 
        mws(i) = bcomp.mw(j); 
    end 
end 
mws = mws(metids); 
totalMass = mws' * data(metids,:); 
massRatio = targetMass ./ totalMass; 
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1); 

  
clear targetMass metids mws i j n totalMass massRatio 

  
%% scale 
scale = 0.1; 

  
%% Which data set (Ler pre, HA pre, Ler post, HA post) 

  
% test Ler-pre 
id = 1; 
    sampleParam.a = 0.06; 
    sampleParam.b = -0.08; 
    sampleParam.c = 0.06; 
    sampleParam.rgr_d = rgrs(id,1); 
    sampleParam.rgr_n = rgrs(id,2); 
    sampleParam.starch0 = 0.662; 
    sampleParam.B0 = 2.01; 
    sampleParam.obj = []; 

  
% test HA-pre 
% id = 2; 
%     sampleParam.a = 0.06; 
%     sampleParam.b = -0.08; 
%     sampleParam.c = 0.06; 
%     sampleParam.rgr_d = rgrs(id,1); 
%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.843; 
%     sampleParam.B0 = 1.51; 
%     sampleParam.obj = []; 

  
% test Ler-post 
% id = 3; 
%     sampleParam.a = 0.05; 
%     sampleParam.b = -0.08; 
%     sampleParam.c = 0.05; 
%     sampleParam.rgr_d = rgrs(id,1); 
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%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.3735; 
%     sampleParam.B0 = 121.45; 
%     sampleParam.obj = []; 

  
% test HA-post 
% id = 4; 
%     sampleParam.a = 0.04; 
%     sampleParam.b = -0.05; 
%     sampleParam.c = 0.04; 
%     sampleParam.rgr_d = rgrs(id,1); 
%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.2346; 
%     sampleParam.B0 = 221.73; 
%     sampleParam.obj = []; 

  
toSolve = 1; 

  
c_ratio = calcMassRatio(bcomp,data(:,id),[],sids); 

  
%% Set up time parameters 
% hour 
timeParam.frame0 = 0; 
timeParam.frame1 = 24; 
timeParam.stepsPerHr = 2; 
timeParam.eod = 9; 
timeParam.eon = 17; 
timeParam.dframe = timeParam.frame1 - timeParam.frame0; 
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1; 
timeParam.dt = timeParam.dframe / (timeParam.steps-1); 
timeParam.range = linspace(timeParam.frame0, timeParam.frame1, 

timeParam.steps); 
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1; 
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1; 

  
%% rebuild only basic model 
m0.rxns = Ler.rxns; 
m0.rxnNames = Ler.rxnNames; 
m0.mets = Ler.mets; 
m0.metNames = Ler.metNames; 
m0.S = Ler.S; 
m0.lb = Ler.lb; 
m0.ub = Ler.ub; 
m0.c = Ler.c; 

  
%% calculate photon and CO2 uptake as umol/plant/time interval 
% values at t0 
hv_t0 = light * 3600 / m2a_ratio(id) * timeParam.dt * scale * rosDWMean(id); 
co2_t0 = co2Mean(id) * 3600 / m2a_ratio(id) * timeParam.dt * scale * 

rosDWMean(id) * 1; 

  
%% Define necessary coefficients 
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr)); 
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr)); 
ylb_a = sampleParam.a*timeParam.dt; 
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ylb_b = sampleParam.b*timeParam.dt; 
ylb_c = sampleParam.c*timeParam.dt; 

  
%% Set up param 
% at t0 
param.m = m0; 
param.obj = sampleParam.obj; 
param.opt = 1; 
param.B0p = 47; 
param.B0V = sampleParam.B0 * scale; 
[param.Nmets, param.Nrxns] = size(param.m.S); 
param.rids = [48 63]; 
param.ubs = [co2_t0 hv_t0]; 
param.lbs = [0 0]; 
param.bcomp = bcomp; 
param.biomass0.sids = sids; 
param.biomass0.data = data(:,id); 
tmp = setdiff(1:32, 25); 
param.biomass0.data(tmp) = data(tmp, id) * param.B0V / (param.B0V - 

param.bcomp.mw(36)*data(25,id)*param.B0V); 
param.biomass1 = param.biomass0; 
param.biomass0.data(25) = sampleParam.starch0; 
param.biomass1 = param.biomass0; 
param.ymets = 1477;     % starch_biomass 
param.yubs = 1000; 
param.ylbs = ylb_a * (param.B0V - 

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V); 
param.minGlobal = 0; 
param.scale = scale; 
param.beta_d = beta_d; 
param.beta_n = beta_n; 
param.ylb_a = ylb_a; 
param.ylb_b = ylb_b; 
param.ylb_c = ylb_c; 

  
%% Solve growth over time frame 

  
if toSolve 
    vars0 = [param.ylb_a param.ylb_b param.ylb_c]; 
    vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
    sampleParam.a = vars(1)/timeParam.dt; 
    sampleParam.b = vars(2)/timeParam.dt; 
    sampleParam.c = vars(3)/timeParam.dt; 
    while sum(abs(vars - vars0) > 0.0001) > 0 
        vars0 = vars; 
        vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
        sampleParam.a = vars(1)/timeParam.dt; 
        sampleParam.b = vars(2)/timeParam.dt; 
        sampleParam.c = vars(3)/timeParam.dt; 
    end 
else 
    [sols, info] = sim24hgrowth(param, timeParam); 
end 

  
clearvars -except toSolve param timeParam rosDWMean sols info c_ratio 

sampleParam 
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%% Plots 
if ~toSolve 
    totalGrowth = sols(info.const.B0,:); 
    totalGrowth(end+1) = sols(info.const.B1,end); 
    noStarchGrowth = sols(info.const.B0p,:); 
    noStarchGrowth(end+1) = sols(info.const.B1p,end); 
    starch_umol = sols(info.const.ymol0,:); 
    starch_umol(end+1) = sols(info.const.ymol1,end); 
    starch_conc = starch_umol ./ totalGrowth; 

     
    figure 
    set(0,'DefaultAxesFontName', 'Times New Roman') 
    set(0,'DefaultAxesFontSize', 12) 
    subplot(2,1,1) 
    hold on 
    rectangle('position',[timeParam.eod 1 8 

2],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, totalGrowth,'-','linewidth',1) 
    plot(timeParam.range, noStarchGrowth,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Total biomass'} {'mgDW'}]) 
    h = legend([{'Total DW'},{'Non-starch 

DW'}],'location','northwest','fontsize',12); 
    pos = get(h,'position'); 
    pos(1) = pos(1) + 0.025; 
    pos(2) = pos(2) + 0.025; 
    set(h,'position',pos); 
    legend boxoff 
    subplot(2,1,2) 
    hold on 
    rectangle('position',[timeParam.eod 0 8 

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, starch_conc,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Starch conc.'} {'\mumol/mgDW'}]) 
    xlabel('time after 1 PM, h') 
    fig = gcf; 
    fig.Position = [0 0 500 400]; 
    fig.PaperUnits = 'inches'; 
    fig.PaperPosition = [0 0 5 4]; 
    fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc)); 
    fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc)); 
    fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) - 

min(starch_conc))); 
    fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1)); 
    fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end)); 
    fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1)); 
    fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end)); 
end 

 

Driver to simulate results in Figure 8 

%% Driver to simulate growth and starch changes over 24 hours 
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% for pre-flowering and post-flowering after refinement 

  
clear 
clc 
load('20161214_LerHA_model_constraints.mat') 
load('rgr_means.mat') 

  
%% modify glycosyl data - scale up to xx% 
targetMass = 0.416;   % 416 ug/mgDW 
metids = false(32,1); 
mws = zeros(32,1); 
for i = 1:32 
    j = bcomp.sids == sids(i); 
    n = bcomp.group(j); 
    if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin') 
        metids(i) = true; 
        mws(i) = bcomp.mw(j); 
    end 
end 
mws = mws(metids); 
totalMass = mws' * data(metids,:); 
massRatio = targetMass ./ totalMass; 
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1); 

  
clear targetMass metids mws i j n totalMass massRatio 

  
%% scale 
scale = 0.1; 

  
%% Which data set (Ler pre, HA pre, Ler post, HA post) 

  
% test Ler-pre 
id = 1; 
    sampleParam.a = 0.0653; 
    sampleParam.b = -0.091; 
    sampleParam.c = 0.064; 
    sampleParam.rgr_d = rgrs(id,1); 
    sampleParam.rgr_n = rgrs(id,2); 
    sampleParam.starch0 = 0.662; 
    sampleParam.B0 = 2.01; 
    sampleParam.obj = []; 

  
% test HA-pre 
% id = 2; 
%     sampleParam.a = 0.0897; 
%     sampleParam.b = -0.106; 
%     sampleParam.c = 0.0731; 
%     sampleParam.rgr_d = rgrs(id,1); 
%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.843; 
%     sampleParam.B0 = 1.505; 
%     sampleParam.obj = []; 

  
% test Ler-post 
% id = 3; 



159 

 

%     sampleParam.a = 0.046; 
%     sampleParam.b = -0.069; 
%     sampleParam.c = 0.0451; 
%     sampleParam.rgr_d = rgrs(id,1); 
%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.3735; 
%     sampleParam.B0 = 121.45; 
%     sampleParam.obj = []; 

  
% test HA-post 
% id = 4; 
%     sampleParam.a = 0.0287; 
%     sampleParam.b = -0.0425; 
%     sampleParam.c = 0.0286; 
%     sampleParam.rgr_d = rgrs(id,1); 
%     sampleParam.rgr_n = rgrs(id,2); 
%     sampleParam.starch0 = 0.2346; 
%     sampleParam.B0 = 221.73; 
%     sampleParam.obj = []; 

  
toSolve = 1; 

  
c_ratio = calcMassRatio(bcomp,data(:,id),[],sids); 

  
%% Set up time parameters 
% hour 
timeParam.frame0 = 0; 
timeParam.frame1 = 24; 
timeParam.stepsPerHr = 2; 
timeParam.eod = 9; 
timeParam.eon = 17; 
timeParam.dframe = timeParam.frame1 - timeParam.frame0; 
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1; 
timeParam.dt = timeParam.dframe / timeParam.steps; 
timeParam.range = linspace(timeParam.frame0, timeParam.frame1, 

timeParam.steps); 
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1; 
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1; 

  
%% rebuild only basic model 
m0.rxns = Ler.rxns; 
m0.rxnNames = Ler.rxnNames; 
m0.mets = Ler.mets; 
m0.metNames = Ler.metNames; 
m0.S = Ler.S; 
m0.lb = Ler.lb; 
m0.ub = Ler.ub; 
m0.c = Ler.c; 

  
%% calculate photon and CO2 uptake as umol/plant/time interval 
% values at t0 
hv_t0 = light * 3600 / m2a_ratio(id) * timeParam.dt * scale * rosDWMean(id); 
co2_t0 = co2Mean(id) * 3600 / m2a_ratio(id) * timeParam.dt * scale * 

rosDWMean(id) * 1; 
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%% Define necessary coefficients 
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr)); 
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr)); 
ylb_a = sampleParam.a*timeParam.dt; 
ylb_b = sampleParam.b*timeParam.dt; 
ylb_c = sampleParam.c*timeParam.dt; 

  
%% Set up param 
% at t0 
param.m = m0; 
param.obj = sampleParam.obj; 
param.opt = 1; 
param.B0p = 47; 
param.B0V = sampleParam.B0 * scale; 
[param.Nmets, param.Nrxns] = size(param.m.S); 
param.rids = [48 63]; 
param.ubs = [co2_t0 hv_t0]; 
param.lbs = [0 0]; 
param.bcomp = bcomp; 
param.biomass0.sids = sids; 
param.biomass0.data = data(:,id); 
tmp = setdiff(1:32, 25); 
param.biomass0.data(tmp) = data(tmp, id) * param.B0V / (param.B0V - 

param.bcomp.mw(36)*data(25,id)*param.B0V); 
param.biomass1 = param.biomass0; 
param.biomass0.data(25) = sampleParam.starch0; 
param.biomass1 = param.biomass0; 
param.ymets = 1477;     % starch_biomass 
param.yubs = 1000; 
param.ylbs = ylb_a * (param.B0V - 

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V); 
param.minGlobal = 1; 
param.scale = scale; 
param.beta_d = beta_d; 
param.beta_n = beta_n; 
param.ylb_a = ylb_a; 
param.ylb_b = ylb_b; 
param.ylb_c = ylb_c; 

  
%% Solve growth over time frame 

  
if toSolve 
    vars0 = [param.ylb_a param.ylb_b param.ylb_c]; 
    vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
    sampleParam.a = vars(1)/timeParam.dt; 
    sampleParam.b = vars(2)/timeParam.dt; 
    sampleParam.c = vars(3)/timeParam.dt; 
    while sum(abs(vars - vars0) > 0.0001) > 0 
        vars0 = vars; 
        vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
        sampleParam.a = vars(1)/timeParam.dt; 
        sampleParam.b = vars(2)/timeParam.dt; 
        sampleParam.c = vars(3)/timeParam.dt; 
    end 
else 
    [sols, info] = sim24hgrowth(param, timeParam); 
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end 

  
clearvars -except toSolve param timeParam rosDWMean sols info c_ratio 

sampleParam 

  
%% Plots 
if ~toSolve 
    totalGrowth = sols(info.const.B0,:); 
    totalGrowth(end+1) = sols(info.const.B1,end); 
    noStarchGrowth = sols(info.const.B0p,:); 
    noStarchGrowth(end+1) = sols(info.const.B1p,end); 
    starch_umol = sols(info.const.ymol0,:); 
    starch_umol(end+1) = sols(info.const.ymol1,end); 
    starch_conc = starch_umol ./ totalGrowth; 

  
    figure 
    set(0,'DefaultAxesFontName', 'Times New Roman') 
    set(0,'DefaultAxesFontSize', 12) 
    subplot(2,1,1) 
    hold on 
    rectangle('position',[timeParam.eod 1 8 

2],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, totalGrowth,'-','linewidth',1) 
    plot(timeParam.range, noStarchGrowth,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Total biomass'} {'mgDW'}]) 
    h = legend([{'Total DW'},{'Non-starch 

DW'}],'location','northwest','fontsize',12); 
    pos = get(h,'position'); 
    pos(1) = pos(1) + 0.025; 
    pos(2) = pos(2) + 0.025; 
    set(h,'position',pos); 
    legend boxoff 
    subplot(2,1,2) 
    hold on 
    rectangle('position',[timeParam.eod 0 8 

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, starch_conc,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Starch conc.'} {'\mumol/mgDW'}]) 
    xlabel('time after 1 PM, h') 
    fig = gcf; 
    fig.Position = [0 0 500 400]; 
    fig.PaperUnits = 'inches'; 
    fig.PaperPosition = [0 0 5 4]; 
    fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc)); 
    fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc)); 
    fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) - 

min(starch_conc))); 
    fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1)); 
    fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end)); 
    fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1)); 
    fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end)); 
end 

 

 



162 

 

Driver to simulate results in Figure 9 

%% Driver to simulate growth and starch changes over 24 hours 
% for pre-flowering and post-flowering after refinement 
% solving and simulating for stages in-between pre- and post-flowering 

  
clear 
clc 
load('20161214_LerHA_model_constraints.mat') 
load('rgr_means.mat') 

  
%% modify glycosyl data - scale up to xx% 
targetMass = 0.416;   % 416 ug/mgDW 
metids = false(32,1); 
mws = zeros(32,1); 
for i = 1:32 
    j = bcomp.sids == sids(i); 
    n = bcomp.group(j); 
    if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin') 
        metids(i) = true; 
        mws(i) = bcomp.mw(j); 
    end 
end 
mws = mws(metids); 
totalMass = mws' * data(metids,:); 
massRatio = targetMass ./ totalMass; 
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1); 

  
clear targetMass metids mws i j n totalMass massRatio 

  
%% scale 
scale = 0.1; 

  
%% Which data set (Ler pre, HA pre, Ler post, HA post) 

  
t0 = 14; 
t1 = 42; 

  
tx = 35; 
coef = (tx - t0)/(t1 - t0); 

  
allstarch0 = [0.4941 0.5879 0.3556 0.1901]; 
allB0 = rosDWMean; 

  
% test 
id = 2; 
    co2x = (co2Mean(id+2) - co2Mean(id)) * coef + co2Mean(id); 
    m2a_ratiox = (m2a_ratio(id+2) - m2a_ratio(id)) * coef + m2a_ratio(id); 
    B0x = (allB0(id+2) - allB0(id)) * coef + allB0(id); 
    sampleParam.a = 0.0403; 
    sampleParam.b = -0.0662; 
    sampleParam.c = 0.0448; 
    sampleParam.rgr_d = rgrs(id,1); 
    sampleParam.rgr_n = rgrs(id,2); 
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    sampleParam.starch0 = (allstarch0(id+2) - allstarch0(id)) * coef + 

allstarch0(id); 
    sampleParam.B0 = B0x; 
    sampleParam.obj = []; 

  
toSolve = 0; 

  
datax = (data(:,id+2) - data(:,id)) * coef + data(:,id); 
c_ratio = calcMassRatio(bcomp,datax,[],sids); 

  
%% Set up time parameters 
% hour 
timeParam.frame0 = 0; 
timeParam.frame1 = 24; 
timeParam.stepsPerHr = 2; 
timeParam.eod = 9; 
timeParam.eon = 17; 
timeParam.dframe = timeParam.frame1 - timeParam.frame0; 
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1; 
timeParam.dt = timeParam.dframe / timeParam.steps; 
timeParam.range = linspace(timeParam.frame0, timeParam.frame1, 

timeParam.steps); 
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1; 
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1; 

  
%% rebuild only basic model 
m0.rxns = Ler.rxns; 
m0.rxnNames = Ler.rxnNames; 
m0.mets = Ler.mets; 
m0.metNames = Ler.metNames; 
m0.S = Ler.S; 
m0.lb = Ler.lb; 
m0.ub = Ler.ub; 
m0.c = Ler.c; 

  
%% calculate photon and CO2 uptake as umol/plant/time interval 
% values at t0 
hv_t0 = light * 3600 / m2a_ratiox * timeParam.dt * scale * B0x; 
co2_t0 = co2x * 3600 / m2a_ratiox * timeParam.dt * scale * B0x * 1; 

  
%% Define necessary coefficients 
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr)); 
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr)); 
ylb_a = sampleParam.a*timeParam.dt; 
ylb_b = sampleParam.b*timeParam.dt; 
ylb_c = sampleParam.c*timeParam.dt; 

  
%% Set up param 
% at t0 
param.m = m0; 
param.obj = sampleParam.obj; 
param.opt = 1; 
param.B0p = 47; 
param.B0V = sampleParam.B0 * scale; 
[param.Nmets, param.Nrxns] = size(param.m.S); 
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param.rids = [48 63]; 
param.ubs = [co2_t0 hv_t0]; 
param.lbs = [0 0]; 
param.bcomp = bcomp; 
param.biomass0.sids = sids; 
param.biomass0.data = datax; 
tmp = setdiff(1:32, 25); 
param.biomass0.data(tmp) = datax(tmp) * param.B0V / (param.B0V - 

param.bcomp.mw(36)*datax(25)*param.B0V); 
param.biomass1 = param.biomass0; 
param.biomass0.data(25) = sampleParam.starch0; 
param.biomass1 = param.biomass0; 
param.ymets = 1477;     % starch_biomass 
param.yubs = 1000; 
param.ylbs = ylb_a * (param.B0V - 

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V); 
param.minGlobal = 0; 
param.scale = scale; 
param.beta_d = beta_d; 
param.beta_n = beta_n; 
param.ylb_a = ylb_a; 
param.ylb_b = ylb_b; 
param.ylb_c = ylb_c; 

  
%% Solve growth over time frame 

  
if toSolve 
    vars0 = [param.ylb_a param.ylb_b param.ylb_c]; 
    vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
    sampleParam.a = vars(1)/timeParam.dt; 
    sampleParam.b = vars(2)/timeParam.dt; 
    sampleParam.c = vars(3)/timeParam.dt; 
    while sum(abs(vars - vars0) > 0.0001) > 0 
        vars0 = vars; 
        vars = fminsearch(@getdStarch, vars0, [], param, timeParam); 
        sampleParam.a = vars(1)/timeParam.dt; 
        sampleParam.b = vars(2)/timeParam.dt; 
        sampleParam.c = vars(3)/timeParam.dt; 
    end 
else 
    [sols, info] = sim24hgrowth(param, timeParam); 
end 

  
clearvars -except toSolve param timeParam rosDWMean sols info c_ratio 

sampleParam 

  
%% Plots 
if ~toSolve 
    totalGrowth = sols(info.const.B0,:); 
    totalGrowth(end+1) = sols(info.const.B1,end); 
    noStarchGrowth = sols(info.const.B0p,:); 
    noStarchGrowth(end+1) = sols(info.const.B1p,end); 
    starch_umol = sols(info.const.ymol0,:); 
    starch_umol(end+1) = sols(info.const.ymol1,end); 
    starch_conc = starch_umol ./ totalGrowth; 
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    figure 
    set(0,'DefaultAxesFontName', 'Times New Roman') 
    set(0,'DefaultAxesFontSize', 12) 
    subplot(2,1,1) 
    hold on 
    rectangle('position',[timeParam.eod 1 8 

2],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, totalGrowth,'-','linewidth',1) 
    plot(timeParam.range, noStarchGrowth,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Total biomass'} {'mgDW'}]) 
    h = legend([{'Total DW'},{'Non-starch 

DW'}],'location','northwest','fontsize',12); 
    pos = get(h,'position'); 
    pos(1) = pos(1) + 0.025; 
    pos(2) = pos(2) + 0.025; 
    set(h,'position',pos); 
    legend boxoff 
    subplot(2,1,2) 
    hold on 
    rectangle('position',[timeParam.eod 0 8 

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8]) 
    plot(timeParam.range, starch_conc,'-','linewidth',1) 
    xlim([0 24]) 
    ylabel([{'Starch conc.'} {'\mumol/mgDW'}]) 
    xlabel('time after 1 PM, h') 
    fig = gcf; 
    fig.Position = [0 0 500 400]; 
    fig.PaperUnits = 'inches'; 
    fig.PaperPosition = [0 0 5 4]; 
    fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc)); 
    fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc)); 
    fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) - 

min(starch_conc))); 
    fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1)); 
    fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end)); 
    fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1)); 
    fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end)); 
end 
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