

Model-guided Analysis of Plant Metabolism and Design of Metabolic Engineering

Strategies

Jiun Y. Yen

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Biological Systems Engineering

Ryan S. Senger

Glenda E. Gillaspy

Chenming Zhang

David R. Bevan

February 16, 2017

Blacksburg, Virginia

Keywords: Genome-scale model, Metabolic engineering, Plant, Arabidopsis thaliana, Energy

metabolism, Flux balance analysis

Model-guided Analysis of Plant Metabolism and Design of Metabolic Engineering

Strategies

Jiun Y. Yen

ABSTRACT

Advances in bioinformatics and computational biology have enabled integration of an

enormous amount of known biological interactions. This has enabled researchers to use models

and data to design experiments and guide new discovery as well as test for consistency. One such

computational method is constraint-based metabolic flux modeling. This is performed using

genome-scale metabolic models (GEMs) that are a collection of biochemical reactions, derived

from a genome’s annotation. This type of flux modeling enables prediction of net metabolite

conversion rates (metabolic fluxes) to help understand metabolic activities under specific

environmental conditions. It can also be used to derive metabolic engineering strategies that

involve genetic manipulations. Over the past decade, GEMs have been constructed for several

different microbes, plants, and animal species. Researchers have also developed advanced

algorithms to use GEMs to predict genetic modifications for the overproduction of biofuel and

valuable commodity chemicals. Many of the predictive algorithms for microbes were validated

with experimental results and some have been applied industrially. However, there is much room

for improvement. For example, many algorithms lack straight-forward predictions that truly help

non-computationally oriented researchers understand the predicted necessary metabolic

modifications. Other algorithms are limited to simple genetic manipulations due to

computational demands. Utilization of GEMs and flux-based modeling to predict in vivo

characteristics of multicellular organisms has also proven to be challenging. Many researchers

have created unique frameworks to use plant GEMs to hypothesize complex cellular interactions,

such as metabolic adjustments in rice under variable light intensity and in developing tomato

fruit. However, few quantitative predictions have been validated experimentally in plants. This

research demonstrates the utility of GEMs and flux-based modeling in both metabolic

engineering and analysis by tackling the challenges addressed previously with alternative

approaches. Here, a novel predictive algorithm, Node-Reward Optimization (NR-Opt) toolbox,

was developed. It delivers concise and accurate metabolic engineering designs (i.e. genetic

modifications) that can truly improve the efficiency of strain development. As a proof-of-

concept, the algorithm was deployed on GEMs of E. coli and Arabidopsis thaliana, and the

predicted metabolic engineering strategies were compared with results of well-accepted

algorithms and validated with published experimental data. To demonstrate the utility of GEMs

and flux-based modeling in analyzing plant metabolism, specifically its response to changes in

the signaling pathway, a novel modeling framework and analytical pipeline were developed to

simulate changes of growth and starch metabolism in Arabidopsis over multiple stages of

development. This novel framework was validated through simulation of growth and starch

metabolism of Arabidopsis plants overexpressing sucrose non-fermenting related kinase 1.1

(SnRK1.1). Previous studies suggest that SnRK1.1 may play a critical signaling role in plant

development and starch level (a critical carbon source for plant night growth). It has been shown

that overexpressing of SnRK1.1 in Arabidopsis can delay vegetative-to-reproductive transition.

Many studies on plant development have correlated the delay in developmental transition to

reduction in starch turnover at night. To determine whether starch played a role in the delayed

developmental transition in SnRK1.1 overexpressor plants, starch turnover was simulated at

multiple developmental stages. Simulations predicted no reduction in starch turnover prior to

developmental transition. Predicted results were experimentally validated, and the predictions

were in close agreement with experimental data. This result further supports previous data that

SnRK1.1 may regulate developmental transition in Arabidopsis. This study further validates the

utility of GEMs and flux-based modeling in guiding future metabolic research.

Model-guided Analysis of Plant Metabolism and Design of Metabolic Engineering

Strategies

Jiun Y. Yen

GENERAL AUDIENCE ABSTRACT

Recent advances in genetic and biochemical studies revealed the incredible complexity of

cells, which generated interests in using computers to aid whole cell analyses and design cell

engineering strategies to overproduce valuable commodity chemicals, such as biofuel,

medicines, polymers, and many industrial materials. In order to use computers to study cells,

current knowledge of cellular machinery is converted into mathematical models, such as

genome-scale metabolic models. Genome-scale metabolic models are used to simulate the rates

of chemical events in cells, which helps researchers predict cellular outputs of interest, such as

growth rate and chemical synthesis rates. Combining genome-scale metabolic models with

sophisticated computer algorithms, researchers can simulate numerous cell engineering

experiments and select a few candidates to test physically, which can reduce cost and research

time significantly. This computational technique has been well validated in microorganisms,

such as E. coli and yeast; however, the ability to simulate cellular chemistry accurately in plants

remains a challenge, which was a goal in my research. In addition, my research also aimed to

reduce the inefficiencies in previous cell engineering design algorithms. I was able to develop a

novel genome-scale model framework that enabled accurate simulation of plant growth and

changes of starch content over time. I also developed a new computer algorithm that could

significantly improve the efficiency in designing cell engineering strategies.

vi

ACKNOWLEDGEMENTS

This might be the only section of this document that I can be myself. In that case, I want

to tell whomever reading this, possibly my advisers, committee members, graduate school,

proof-readers, parents, girlfriend, friends and future self, that thank you for all your support

throughout the years and I love you. It has been a long and treacherous road filled with boredom,

failure, rage, despair, and a sprinkle of excitement, success, and joy. Those of us in academia

choose this path in pursuit of intellectual satisfaction and human advancement. We may have all

wondered at some point whether we have chosen poorly. For me, I have a mixed bag of feelings

that is best summarized as “WOW!” This experience that you have given me is certainly life

changing. Statistically, it is just as life changing as any other experience that I could have had,

but that is not the point. Math aside, I am glad that I pursued this experience, and I am so glad

that I had all of you with me. I cannot wait to share whatever that lies ahead with you. I hope

they will be just as difficult as this.

vii

TABLE OF CONTENTS

ABSTRACT .. II

GENERAL AUDIENCE ABSTRACT.. V

ACKNOWLEDGEMENTS .. VI

TABLE OF CONTENTS ... VII

LIST OF FIGURES ... VIII

LIST OF TABLES ... XIV

LIST OF ABBREVIATIONS .. XV

CHAPTER 1 ... 1

Introduction ... 1

References ... 9

CHAPTER 2 ... 14

Designing metabolic engineering strategies with genome-scale metabolic flux modeling 14

References ... 25

CHAPTER 3 ... 28

Predicting metabolic engineering strategies with node-reward-optimization toolbox 28

References ... 55

CHAPTER 4 ... 58

Model-guided analysis of SnRK1.1 overexpression in Arabidopsis predicts significant

changes in starch metabolism over plant development ... 58

References ... 102

CHAPTER 5 ... 106

Conclusions ... 106

Future Directions .. 107

APPENDICES .. 109

A. Algorithm for the Node-Reward Optimization toolbox ... 109

B. MATLAB codes for the Node-Reward Optimization toolbox... 116

C. MATLAB codes for to simulate growth and starch metabolism 146

viii

LIST OF FIGURES

Figure 2-1. The relationship between the target chemical production flux and the growth rate for

wild-type (solid line) and an engineered strain (dash line). The initial wild-type optima

determined by FBA (bottom right) can be engineered an the resulting state predicted with

MOMA/ROOM. Evolution will eventually optimize growth, which can be predicted by

FBA/pFBA. Combiinatorial addition of metabolic capabilities can expand the solution space

beyond the wild-type potential. Abbreviations: FBA, flux balance analysis; MOMA,

minimization of the metabolic adjustment; pFBA, parsimonious FBA; ROOM, regulatory on/off

minimization. .. 17

Figure 2-2. Example workfow to design metabolic engineering strategies using “top-down” and

“bottom-up” approaches. Several different in silico tools apply these strategies in different forms.

In all cases, the objective is to maximize production of a target chemical (shown here as vtarget).

The following metabolic engineering strategies are shown: (KO) gene knockout, (OX) gene

overexpression, and (KD) gene expression knockdown. .. 19

Figure 3-1. The NR-Knock and NR-Ox algorithms. Complete algorithm is described in detail in

Materials and Methods. ... 38

Figure 3-2. Searching for optimal strategy from suboptimal strategy in the NR-Opt algorithm.

This plot shows a hypothetical scenario of NR-Knock predicting KO strains. The KO strains

represents KO of reaction A (A), double-KO of reactions A and B (AB), and triple-KO of

reactions A, B, and C (ABC). The %𝐵𝑃𝐶𝑌𝑚𝑎𝑥 for of the predicted strategies are shown as black

bars. 𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 (dash line) and 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 range are shown. The optimal strategy is

highlighted in orange box. .. 39

ix

Figure 3-3. Conventional production envelopes and BPCY envelopes of predicted KO strategies

to increase BDO yield. Conventional production envelopes (A) and BPCY envelopes (B) for

BDO-WT (black line), Yim et al. OptKnock strategy (red line), and 4 NR-Knock strategies (blue

lines). The maximum growth rate (vertical red dashed line) and BDO yield or BPCY (horizontal

red dashed line) of Yim et al. Optknock strategy is shown in every plot for comparison. 45

Figure 3-4. The dynamics of flux ratios of UGPase|UTP and Ndk1|ATP. BPCYs of different flux

ratios of UGPase|UTP and Ndk1|ATP are shown by the color gradient. The optimal flux ratios to

achieve maximum theoretical BPCY of 0.0039 is shown by the red curve. The flux ratios

examined by NR-Ox during run is shown by the black dot. ... 51

Figure 4-1. Model simulation of starch change in a 14 day-old plant over a 24-hour period.

Simulation began with a 9-hour light period starting at 1 PM when plant dry weight and the

biomass components were experimentally measured. It was followed by an 8-hour dark period

starting at 10 PM, then ended with a 7-hour light period of the next day starting at 6 AM. The

objective of the simulation is to (i) maximize the transitory starch pool (𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁), (ii)

minimize the difference between initial and final starch levels (𝑑𝑆𝑡0→𝑡24), and (iii) minimize the

difference between starch accumulation rates of day 14 (𝑟𝐴) and day 15 (𝑟𝐶). The starch turnover

rate (𝑟𝐵) is also predicted. ... 70

Figure 4-2. Differences in growth and development of WT and SnRK1.1:HA plants. (A)

Phenotypic appearances of WT and SnRK1.1:HA plants. Dry weight of WT and SnRK1.1:HA in

pre-flowering (B) and post-flowering (C) stages were measured for whole rosettes (n = 4).

Senescence stage (D) of mature leaves of 35 day-old WT and 42 day-old SnRK1.1:HA indicated

by SAG12 (blue) and SAG21 (red) gene expression markers (n = 2). The RER of WT and

SnRK1.1:HA (E) in the day (white) and the night (black) in pre-flowering and post-flowering

x

stages (n = 5 for pre-flowering, n = 8 for post-flowering). Values are shown as meanSE, and

asterisk indicates p < 0.05. .. 73

Figure 4-3. Cell wall compositions of WT and SnRK1.1:HA over plant development.

Measurements were taken with whole plants in the pre-flowering stage and mature leaves in the

post-flowering stage. Cellulose (A) and lignin compositions (B) in pre-flowering and post-

flowering stages are shown in absolute quantities. Glycosyl composition of hemicellulose and

pectin (C) at both stages are shown in relative quantity to the sum. Values are shown as

meanSE for n = 3, and asterisk indicates p < 0.05. ... 76

Figure 4-4. Amino acids profile of WT and SnRK1.1. Composition analysis shows relative levels

(A) and absolute levels (B) of 17 amino acids from hydrolyzed protein and amino acid extracts

of WT and SnRK1.1:HA in pre-flowering and post-flowering stages (n = 3). 77

Figure 4-5. Changes in starch, lipid, and net CO2 assimilation rate in SnRK1.1:HA plants. Total

starch (A, total lipid (B), and net CO2 assimilation rates (C) were quantified with whole plants in

pre-flowering stage and mature leaves in post-flowering stage (n = 3 for starch and lipid, n = 4

for gas exchange). Values are shown as meanSE and asterisk indicates p < 0.05. 78

Figure 4-6. Predicted values for growth and starch turnover in pre-flowering plants compared to

experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and

SnKR1.1:HA (red) starting at 14 days are shown as total predicted dry mass (solid lines) and

predicted non-starch dry mass (dashed lines), and compared to experimentally measured total dry

mass at 15 day-old (blue and red dots). (B) Predicted changes in starch concentration over the

24-hour diurnal cycle. Experimental values are indicated by E and predicted values are indicated

by P in C and D. (C) Predicted EOD (light grey) and EON (dark grey) starch concentrations

simulated from the initial starch levels (dots) compared to experimentally measured EOD (white)

xi

and EON (black) starch concentrations. (D) Predicted transitory starch pools (dark grey)

compared to experimentally measured transitory starch pools (light grey). Experimental data are

shown as mean  SE (n = 4 for biomass, n = 3 for starch), and asterisk indicates p < 0.05. 81

Figure 4-7. Predicted values for growth and starch turnover of post-flowering plants compared to

experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and

SnKR1.1:HA (red) starting at 35 days for WT and 42 days for SnRK1.1:HA are shown as total

predicted dry mass (solid lines) and predicted non-starch dry mass (dashed lines). (B) Predicted

changes in starch concentration over the 24-hour diurnal cycle. Experimental values are

indicated by E and predicted values are indicated by P in C and D. (C) Predicted EOD (light

grey) and EON (dark grey) starch concentrations simulated from the initial starch levels (dots)

compared to experimentally measured EOD (white) and EON (black) starch concentrations. (D)

Predicted transitory starch pools (dark grey) compared to experimentally measured transitory

starch pools (light grey). Experimental data are shown as mean  SE (n = 4 for biomass, n = 3

for starch), and asterisk indicates p < 0.05.. 82

Figure 4-8. Predicted values for growth and starch levels after adjustments to experimental

values. Predicted pre-flowering (A) and post-flowering (B) growth over the 24-hour diurnal

cycle for WT (blue) and SnKR1.1:HA (red) are shown as total predicted dry mass (solid lines)

and predicted non-starch dry mass (dashed lines). Predicted pre-flowering growth is compared to

experimentally measured total dry mass at 15 day-old (blue and red dots). Experimental values

are indicated by E and predicted values are indicated by P in C, D, E, and F. (C) Predicted pre-

flowering stage EOD (light grey) and EON (dark grey) starch concentrations simulated with

refined models from the initial starch levels (dots) compared to experimentally measured EOD

(white) and EON (black) starch concentrations. (D) Predicted pre-flowering stage transitory

xii

starch pools (dark grey) simulated with refined models compared to experimentally measured

transitory starch pools (light grey). Same for post-flowering stage (E and F). Experimental data

are the same as in Figure 4-6 and Figure 4-7 shown as mean  SE (n = 4 for biomass, n = 3 for

starch), and asterisk indicates p < 0.05. .. 84

Figure 4-9. Predicted and experimental EOD and EON starch levels over plant development. (A)

Predicted EOD (light grey) and EON (dark grey) starch levels for plant ages between the

designated pre-flowering and post-flowering stages. (B) Experimentally measured EOD (white)

and EON (black) starch levels for plant ages between the designated pre-flowering and post-

flowering stages (n = 3). Experimental data of pre-flowering and post-flowering stages are the

same as in Figure 4-6 and Figure 4-7. Data are shown as mean  SE, and asterisk indicates p <

0.05.. 86

Figure 4-10. Proposed model for the role of SnRK1 in starch metabolism. Gene knockout or

glucose inhibition of SnRK1 reduces starch turnover, which increases starch accumulation

(Baena-González et al., 2007; Jossier et al., 2009). SnRK1 overexpression plants under high

glucose have reduced sensitivity to glucose due to elevated enzyme abundance, which increases

starch turnover and lower starch accumulation compares to WT grown under high glucose

(Jossier et al., 2009). SnRK1 overexpression plants do not significantly reduce starch under

normal growth condition due to indirect regulation starch turnover as shown in this work and

previous studies (Baena-González et al., 2007; Jossier et al., 2009). ... 97

Figure A-1. Initialization of NR-Knock search. ... 110

Figure A-2. Evaluation of single-KO strategies. .. 111

Figure A-3. Evaluation of double-KO strategies. ... 112

Figure A-4. Evaluation of triple-KO strategies... 113

xiii

Figure A-5. Identification of the best metabolic engineering strategy. 114

xiv

LIST OF TABLES

Table 2-1. Summary of in silico tools for generating metabolic engineering strategies and the

experimental tools that can be used for implementation. ... 18

Table 3-1. NR-Opt parameters used in prediction. ... 41

Table 3-2. Predicted gene KO strategies to increase BDO BPCY in E. coli. 46

Table 3-3. NR-Ox predictions to increase BDO BPCY in E. coli strain with adh KO. 48

Table 3-4. NR-Ox predicted overexpression strategies to increase cellulose BPCY. 50

Table 4-1. Predicted metabolic changes by SnRK1.1:HA overexpression in the pre-flowering

developmental stage. ... 90

Table 4-2. Predicted metabolic changes by SnRK1.1:HA overexpression in the post-flowering

developmental stage. ... 91

Table 4-3. Predicted metabolic changes that are consistent during development. 92

Table 4-4. Predicted metabolic changes that vary during development. 93

xv

LIST OF ABBREVIATIONS

GEM Genome-scale model

ACOMoMA Ant colony optimization with MOMA

ADH Alcohol dehydrogenase

ATP Adenosine triphosphate

BAFBA Bees algorithm and FBA

BDO 1,4-butanediol

BPCY Biomass-product coupled yield

CESA Cellulose synthase

CiED Cipher of evolutionary design

CosMos Continuous modifications

dFBA Dynamic flux balance analysis

DIC Dicarboxylate carrier

EOD End-of-day

EON End-of-night

FBA Flux balance analysis

FBrAtio Flux balance analysis with flux ratio

FDCA Flux distribution comparison analysis

FSEOF Flux scanning based on enforce objective flux

FVA Flux variability analysis

hSOD Human superoxide dismutase

KD knock-down

KIKO Knock-in/knockout

KO Knockout

LDH Lactate dehydrogenase

LPDA Pyruvate dehydrogenase

MAGE Multiplex automated genome engineering

MDH Malate dehydrogenase

MMM Multiscale metabolic modeling

MOMA Minimization of metabolic adjustment

NDK1 Nucleoside diphosphate kinase

xvi

NR-Opt Node-reward optimization

OAC Oxaloacetate carrier

OX Overexpression

PCR Polymerase chain reaction

pFBA Parsimonious flux balance analysis

PFL Pyruvate formate lyase

RBS Ribosomal binding site

RER Relative leaf expansion rate

ROOM Regulatory on/off minimization

SnRK Sucrose non-fermenting related kinase

sRNA Small RNA

tRNA Transfer RNA

UDP Uridine diphosphate

UGPase UDP-glucose pyrophosphorylase

UTP Uridine triphosphate

WT Wild-type

1

CHAPTER 1

INTRODUCTION

Genome-scale models and their utilities

A genome-scale metabolic flux model (GEM) is a mathematical representation of the

metabolic network of an organism. It is a network of biochemical reactions assembled from

annotated enzyme-coding genes, and it has been used traditionally to aid the analysis of

metabolism and design metabolic engineering strategies. Since its initial introduction in 1999

(Schilling et al., 1999), GEM reconstructions have been built for many well-studied organisms,

including E. coli (Edwards and Palsson, 2000), Helicobacter pylori (Schilling et al., 2002; Thiele

et al., 2005), Saccharomyces cerevisiae (Förster et al., 2003; Herrgård et al., 2008), Mus

musculus (Sheikh et al., 2005), Arabidopsis thaliana (Cheung et al., 2013; de Oliveira Dal'Molin

et al., 2010; Mintz-Oron et al., 2012; Poolman et al., 2009), and Homo sapiens (Duarte et al.,

2007). A critical component of a GEM is the biomass equation, which accounts for all known

biomass constituents and their fractional contributions to the overall cellular biomass (Thiele and

Palsson, 2010). The biomass equation often includes carbohydrates, amino acids, lipids, nucleic

acids, cell wall polymers, ions, and maintenance ATP, which is the energy requirement to drive

growth and maintenance (Poolman et al., 2009). The most straight-forward method to compute

flux distribution within a metabolic network is to perform flux balance analysis (FBA) given an

objective function (usually maximized cell growth) and constraints (i.e. reaction reversibility

based on thermodynamics and observed influx/efflux of substrate/products). FBA functions by

first assuming cellular metabolism is at a pseudo-steady state, where changes in cell development

over time are slow compared to rates of catabolic and anabolic flux (Orth et al., 2010). To obtain

2

meaningful information from FBA calculations, a high-quality GEM with careful manual

curation is required. Comprehensive protocols for construction high-quality GEMs and resources

to automatically generate scaffold GEMs are currently available (Büchel et al., 2013; Devoid et

al., 2013; King et al., 2015; Thiele and Palsson, 2010). Another powerful computational method

to predict flux distribution in a GEM is the minimization of metabolic adjustment (MOMA)

algorithm. MOMA is used to predict the immediate flux adaptation in response to metabolic

changes, such as due to genetic manipulations (i.e. gene overexpression or knockout), and it has

been used to successfully predict the results of metabolic engineering effort (Agren et al., 2013;

Park et al., 2007; Segre et al., 2002). Unlike FBA, MOMA recognizes that achieving global flux

optimality may require evolution and results may not be immediate; thus, MOMA assumes that a

mutant cell will attempt to achieve a sub-optimal metabolic flux distribution with the smallest

adjustments from wild-type (WT) (Segre et al., 2002). This concept has been validated in E. coli

with experimental fluxomic analyses (Schuetz et al., 2012). MOMA has also been suggested as a

valid approach to predict plant metabolic flux and metabolic engineering strategies (Allen et al.,

2009; Yen et al., 2015).

GEMs have been used to aid research in systems and synthetic biology. A recent review

summarized the process of utilizing GEMs to design and examine metabolic engineering

strategies experimentally (Yen et al., 2015). Microbes, with emphasis on E. coli, have been the

prime target to validate new approaches of using GEMs and flux-based modeling due to their

well-understood metabolism, uniformity in cell cultures, and ease of experimental validation.

The robustness of translating these approaches to plant models has been discussed thoroughly in

the literature (Collakova et al., 2012; de Oliveira Dal’Molin and Nielsen, 2013). A novel

approach utilized FBA with flux ratio constraints (an algorithm called “FBrAtio”) to predict the

3

metabolic outcomes of genetic engineering strategies had been shown to perform well with plant

GEMs (Yen et al., 2013). FBrAtio utilizes flux ratios to constrain the partition of flux of a

metabolite through a metabolic network branch point, where multiple reactions are competing

for that metabolite (McAnulty et al., 2012; Yen et al., 2013). The metabolic branch point where

flux ratio is installed is termed a “node”. Unlike conventional flux constraints, flux ratio

constraints can redirect metabolism without limiting flux to a specific value. FBrAtio has been

shown to be effective in predicting metabolic engineering strategies in multiple species

(McAnulty et al., 2012; Yen et al., 2013). The limitation of FBrAtio is it requires a priori

knowledge on potential nodes or it requires sampling of the metabolic network to identify critical

nodes for metabolic engineering. The research in this dissertation will develop and utilize a

predictive algorithm inspired by the FBrAtio constraint, termed Node-Reward Optimization

(NR-Opt), to rapidly design concise metabolic engineering strategies for increasing target

chemical yield in a host organism.

The importance of integrating regulatory networks in GEM reconstructions is widely

accepted; however, methods of implementation are still being refined. Most current approaches

directly convert gene expression profile into flux constraints (Blazier and Papin, 2012). A recent

study showed that none of these approaches outperform a simple FBA with a growth constraint

(Machado and Herrgård, 2014). For these reasons, this research developed and validated a more

conservative approach to utilizing only metabolite profiles and known plant metabolic

interactions (i.e. diurnal pattern of starch metabolism) to study metabolic regulation and

signaling.

4

Motivation to develop new metabolic engineering design algorithms

The conventional process to model-guided metabolic engineering is (i) computer

automated design of metabolic engineering strategies, (ii) manual assessment of the list of

designs, (iii) conversion of designs into genetic engineering strategies, and (iv) experimental

implementation and validation of the selected designs. The availability of genetic engineering

tools, (i.e. for gene knockout, overexpression, or down-regulation) is considered when

developing design algorithms. A metabolic engineering strategy can require multiple

combinations of genetic engineering tools. Currently, there are many well-developed algorithms

that use GEMs to design metabolic engineering strategies for the overproduction of a target

chemical in a host cell, such as OptKnock, OptGene, RobustKnock, ReacKnock, BAFBA,

OptForce, and EMILiO (Burgard et al., 2003; Choon et al., 2014; Patil et al., 2005; Ranganathan

et al., 2010; Tepper and Shlomi, 2010; Xu et al., 2013; Yang et al., 2011). The utility of these

tools has been validated with experimental results. Until now, the aim of such design algorithms

has been to generate as many designs as possible to provide researchers with multiple options.

The size of a typical list of designs can be on the scale of hundreds, which can make manual

evaluation labor intensive. Manual evaluation of the predicted designs allows researchers to get a

better sense of the necessary metabolic modifications. However, additional genetic modifications

to improve target chemical yield is often necessary, and these requires expert analysis (Yim et

al., 2011). A design algorithm that predicts fewer but more accurate metabolic engineering

strategies would improve the efficiency of the overall metabolic engineering process. In many

cases, multiple iterations of computational predictions are necessary; thus, a fast design

algorithm is favorable. With speed, accuracy, and conciseness in mind, the NR-Opt algorithm

5

was developed to predict a reasonable list of concise and accurate metabolic engineering

strategies quickly. This will truly improve the workflow in the metabolic engineering process.

AraGEM – an Arabidopsis thaliana genome-scale model

The first genome-scale model reconstruction of the Arabidopsis genome was published in

2009, and it contains 1,406 reactions and 1,253 metabolites (Poolman et al., 2009). Most of the

reactions were gathered from the AraCyc database and compartmentalization was limited.

Another independent GEM reconstruction of Arabidopsis, AraGEM, was immediately published

(de Oliveira Dal'Molin et al., 2010). Similar to the previous model, AraGEM models primary

metabolism with 1,601 reactions associated with 1,404 annotated genes collected from public

databases. Unlike the previous model, AraGEM is compartmentalized into 5 organelles:

cytoplasm, mitochondrion, plastid, peroxisome, and vacuole. AraGEM was curated with biomass

composition and growth rate measured in cultured protoplasts to model cells undergoing

photosynthesis, photorespiration, and respiration. AraGEM was used to model photon utilization

and energy distribution in metabolism undergoing photosynthesis and photorespiration well (de

Oliveira Dal'Molin et al., 2010). It was also used to model redox metabolism to achieve the

optimal growth and maintenance in non-photosynthetic cells (de Oliveira Dal'Molin et al., 2010).

Although AraGEM was shown to perform well in modeling multiple Arabidopsis

pathways, it is still confined to modeling metabolism at pseudo-steady state when FBA is used

(Collakova et al., 2012). In this research, AraGEM was used to model metabolism of plants

grown in soil, which is significantly different from using protoplasts as the model plant material.

A new modeling framework was developed to simulate non-steady state metabolic changes.

6

SnRK1 regulation of plant metabolism

Without mobility, plants must adjust metabolism, nutrient partitioning, and

developmental programming via complex regulatory mechanisms in response to environmental

cues (Robaglia et al., 2012). Sucrose non-Fermenting Related Kinase 1 (SnRK1) plays a central

role in the global regulation of plant carbon metabolism (Li and Sheen, 2016). In Arabidopsis,

there are three genes in the SnRK1 gene family, which are the functional SnRK1.1 and SnRK1.2

and the unexpressed SnRK1.3 (Baena-González et al., 2007; Hrabak et al., 2003; Williams et al.,

2014). Of these, SnRK1.1 has been shown to be the predominantly expressed isoform in most

plant tissue (Jossier et al., 2009; Williams et al., 2014). In vitro experiments have shown that

plant SnRK1 can phosphorylate and inactivate four metabolic enzymes: (i) 3-hydroxymethyl 3-

methylglutaryl-CoA reductase (Dale et al., 1995), (ii) sucrose phosphate synthase, (iii) nitrate

reductase (Sugden et al., 1999), and (iv) trehalose phosphate synthase 5 (Harthill et al., 2006).

These enzymes are critical to sucrose biosynthesis, nitrogen assimilation for amino acid

biosynthesis, and signaling the regulation of plant metabolism and development (Halford et al.,

2003; Harthill et al., 2006; Jossier et al., 2009; Tsai and Gazzarrini, 2012). SnRK1 has also been

shown to phosphorylate stress response proteins, such as the small heat shock protein 17

(Slocombe et al., 2004). In addition, SnRK1 can regulate the transcription of many genes,

including the -amylase and SuSy genes, which are responsible for starch and sucrose

degradation (Laurie et al., 2003; Purcell et al., 1998). It has been suggested that SnRK1 may up-

regulate SuSy and ADP-glucose pyrophosphorylase under high sucrose to generate starch and

activate sucrose degradation (Fu and Park, 1995; Geigenberger, 2003). A recent study in

Arabidopsis seedlings treated with different sugars showed that sucrose, glucose, and fructose

can lower SnRK1.1 gene expression, and trehalose can dramatically increase SnRK1.2 gene

7

expression (Williams et al., 2014). It has been suggested that studies of SnRK1 may offer

insights in designing plant engineering strategies to improve stress tolerance and crop yield

(Coello et al., 2011). The overexpression of SnRK1.1 and SnRK1.2 in Arabidopsis generated

plants with increased developmental rate and biomass, which suggested SnRK1 overexpressor

plants to be valuable to metabolic engineering (Baena-González et al., 2007; Williams et al.,

2014).

Motivation to study metabolism of SnRK1.1 overexpression plants with modeling

As emphasized in the previous section, plant have a complex signaling pathway that can

alter metabolism (Yamaguchi-Shinozaki and Shinozaki, 2006). In addition, plants with genetic

modifications in the signaling pathway, such as overexpression of SnRK1.1, can manifest

different phenotypes in different stages of plant development (Gazzarrini and Tsai, 2014;

Williams et al., 2014). As concluded in the previous section, there is great interest in

understanding the role of SnRK1.1 in leaf metabolism over plant development. However,

studying the metabolic roles of genes in the signaling pathway is challenging due to the

difficulties in dissecting metabolic and regulatory events, and further complicated by the

temporal aspect (Sheen, 2014). It is possible to utilize the pseudo-steady state assumption in

flux-based modeling to indicate whether a metabolic event is a mass-balancing interaction or if it

involve regulation. Flux-based modeling with GEMs have previously been used to identify

organelle interactions in rice leaves that can be modeled with only mass-balancing (Poolman et

al., 2013). Flux-based modeling with GEMs has also been shown to model tomato fruit

development metabolism well (Colombié et al., 2015). Unlike in fruits, metabolic changes in

vegetative tissues are much faster; thus, pseudo-steady state assumption does not apply (Allen et

al., 2009; Collakova et al., 2012). Previous studies that imposed pseudo-steady state assumptions

8

to model vegetative tissue could only predicted results that are qualitatively accurate (Gomes de

Oliveira Dal'Molin et al., 2015; Grafahrend-Belau et al., 2013; Poolman et al., 2013). To gain

quantitative accuracy would require modeling at non-steady state. Modeling non-steady state

metabolic changes would need a framework similar to kinetic models, which requires enzyme

kinetics data. Such framework is currently inapplicable at the genome-scale (Smallbone et al.,

2010). With these challenges in mind, the goals of this study are to develop a novel genome-

scale modeling framework that can: (i) model metabolic changes over plant development, (ii)

model non-steady state metabolite changes, and (iii) calculate quantitative changes accurately.

To address these goals, a novel dynamic flux-based GEM modeling framework was developed to

model non-steady state changes of a target metabolic interaction. The new framework was used

to model changes of starch level in SnRK1.1 overexpressor plants at multiple stages of

development. Experimental validations revealed unprecedented quantitative accuracy.

Chapters and organization of this dissertation

The three main chapters of this dissertation – chapter II to IV are manuscripts that have

been accepted for publication or are in preparation for submission.

Chapter 2: Designing metabolic engineering strategies with genome-scale metabolic flux

modeling.

This published review discusses the utilities of all the well-accepted metabolic

engineering design algorithms that are used with GEMs.

Chapter 3: Predicting metabolic engineering strategies with the Node-Reward-

Optimization toolbox.

This manuscript introduces a novel metabolic engineering design algorithm to rapidly

predict concise metabolite engineering strategies. The algorithms implemented in the Node-

9

Reward Optimization programs are described in detail. To validate its utility, the Node-Reward

Optimization programs were used to design metabolic engineering strategies to overproduce 1,4-

butanediol in E. coli and cellulose in Arabidopsis thaliana. Predicted design strategies were

cross-validated with published data.

Chapter 4: Model-guided analysis of SnRK1.1 overexpression in Arabidopsis predicts

significant changes in starch metabolism over plant development

This manuscript demonstrates the utility of flux-based modeling of plant metabolism and

introduces a novel framework to simulate non-steady state starch metabolism. This novel

framework was used to investigate whether the delayed plant developmental transition in

SnRK1.1 overexpressor plants is due to changes in starch turnover rate. Model simulation of

growth and starch changes are validated experimentally. The results showed that SnRK1.1 may

regulate plant developmental transition independent of starch turnover rate.

Chapter 5: Conclusions and future directions

REFERENCES

Agren, R., Otero, J. M., Nielsen, J., 2013. Genome-scale modeling enables metabolic

engineering of Saccharomyces cerevisiae for succinic acid production. Journal of

industrial microbiology & biotechnology. 40, 735-747.

Allen, D. K., Libourel, I. G. L., Shachar-Hill, Y., 2009. Metabolic flux analysis in plants: coping

with complexity. Plant, cell & environment. 32, 1241-1257.

Baena-González, E., Rolland, F., Thevelein, J. M., Sheen, J., 2007. A central integrator of

transcription networks in plant stress and energy signalling. Nature. 448, 938-942.

Blazier, A., Papin, J., 2012. Integration of expression data in genome-scale metabolic network

reconstructions. Frontiers in physiology. 3.

Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag, F.,

Schubert, M., Glont, M., Golebiewski, M., 2013. Path2Models: large-scale generation of

computational models from biochemical pathway maps. BMC systems biology. 7, 116.

Burgard, A. P., Pharkya, P., Maranas, C. D., 2003. Optknock: A bilevel programming framework

for identifying gene knockout strategies for microbial strain optimization. Biotechnology

and bioengineering. 84, 647-657.

10

Cheung, C. Y. M., Williams, T. C. R., Poolman, M. G., Fell, D. A., Ratcliffe, R. G., Sweetlove,

L. J., 2013. A method for accounting for maintenance costs in flux balance analysis

improves the prediction of plant cell metabolic phenotypes under stress conditions. The

plant journal. 75, 1050-1061.

Choon, Y. W., Mohamad, M. S., Deris, S., Illias, R. M., Chong, C. K., Chai, L. E., Omatu, S.,

Corchado, J. M., 2014. Differential bees flux balance analysis with OptKnock for in

silico microbial strains optimization. PloS one. 9, e102744.

Coello, P., Hey, S. J., Halford, N. G., 2011. The sucrose non-fermenting-1-related (SnRK)

family of protein kinases: potential for manipulation to improve stress tolerance and

increase yield. Journal of experimental botany. 62, 883-893.

Collakova, E., Yen, J. Y., Senger, R. S., 2012. Are we ready for genome-scale modeling in

plants? Plant science. 191–192, 53-70.

Colombié, S., Nazaret, C., Bénard, C., Biais, B., Mengin, V., Solé, M., Fouillen, L., Dieuaide‐
Noubhani, M., Mazat, J. P., Beauvoit, B., 2015. Modelling central metabolic fluxes by

constraint‐based optimization reveals metabolic reprogramming of developing Solanum

lycopersicum (tomato) fruit. The plant journal. 81, 24-39.

Dale, S., Wilson, W. A., Edelman, A. M., Hardie, D. G., 1995. Similar substrate recognition

motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase

kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS

letters. 361, 191-195.

de Oliveira Dal'Molin, C. G., Quek, L. E., Palfreyman, R. W., Brumbley, S. M., Nielsen, L. K.,

2010. AraGEM, a genome-scale reconstruction of the primary metabolic network in

Arabidopsis. Plant physiology. 152, 579-89.

de Oliveira Dal’Molin, C. G., Nielsen, L. K., 2013. Plant genome-scale metabolic reconstruction

and modelling. Current opinion in biotechnology. 24, 271-277.

Devoid, S., Overbeek, R., DeJongh, M., Vonstein, V., Best, A. A., Henry, C., 2013. Automated

genome annotation and metabolic model reconstruction in the SEED and Model SEED.

Systems metabolic engineering. Springer, pp. 17-45.

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., Palsson,

B. Ø., 2007. Global reconstruction of the human metabolic network based on genomic

and bibliomic data. Proceedings of the national academy of sciences. 104, 1777-1782.

Edwards, J. S., Palsson, B. O., 2000. The Escherichia coli MG1655 in silico metabolic genotype:

Its definition, characteristics, and capabilities. Proceedings of the national academy of

sciences. 97, 5528-5533.

Förster, J., Famili, I., Fu, P., Palsson, B. Ø., Nielsen, J., 2003. Genome-scale reconstruction of

the Saccharomyces cerevisiae metabolic network. Genome research. 13, 244-253.

Fu, H., Park, W. D., 1995. Sink-and vascular-associated sucrose synthase functions are encoded

by different gene classes in potato. The plant cell. 7, 1369-1385.

Gazzarrini, S., Tsai, A. Y.-L., 2014. Trehalose-6-phosphate and SnRK1 kinases in plant

development and signaling: the emerging picture. Frontiers in plant science. 5, 119.

Geigenberger, P., 2003. Regulation of sucrose to starch conversion in growing potato tubers.

Journal of experimental botany. 54, 457-465.

Gomes de Oliveira Dal'Molin, C., Quek, L.-E., Saa, P. A., Nielsen, L. K., 2015. A multi-tissue

genome-scale metabolic modeling framework for the analysis of whole plant systems.

Frontiers in plant science. 6, 4.

11

Grafahrend-Belau, E., Junker, A., Eschenröder, A., Müller, J., Schreiber, F., Junker, B. H., 2013.

Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale.

Plant physiology. 163, 637-647.

Halford, N. G., Hey, S., Jhurreea, D., Laurie, S., McKibbin, R. S., Paul, M., Zhang, Y., 2003.

Metabolic signalling and carbon partitioning: role of Snf1‐related (SnRK1) protein

kinase. Journal of experimental botany. 54, 467-475.

Harthill, J. E., Meek, S. E., Morrice, N., Peggie, M. W., Borch, J., Wong, B. H., MacKintosh, C.,

2006. Phosphorylation and 14‐3‐3 binding of Arabidopsis trehalose‐phosphate synthase 5

in response to 2‐deoxyglucose. The plant journal. 47, 211-223.

Herrgård, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., Blüthgen, N.,

Borger, S., Costenoble, R., Heinemann, M., 2008. A consensus yeast metabolic network

reconstruction obtained from a community approach to systems biology. Nature

biotechnology. 26, 1155-1160.

Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., Kudla, J.,

Luan, S., Nimmo, H. G., Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J.-K.,

Harmon, A. C., 2003. The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases.

Plant physiology. 132, 666-680.

Jossier, M., Bouly, J. P., Meimoun, P., Arjmand, A., Lessard, P., Hawley, S., Grahame Hardie,

D., Thomas, M., 2009. SnRK1 (SNF1‐related kinase 1) has a central role in sugar and

ABA signalling in Arabidopsis thaliana. The plant journal. 59, 316-328.

King, Z. A., Lloyd, C. J., Feist, A. M., Palsson, B. O., 2015. Next-generation genome-scale

models for metabolic engineering. Current opinion in biotechnology. 35, 23-29.

Laurie, S., McKibbin, R. S., Halford, N. G., 2003. Antisense SNF1‐related (SnRK1) protein

kinase gene represses transient activity of an α‐amylase (α‐Amy2) gene promoter in

cultured wheat embryos. Journal of experimental botany. 54, 739-747.

Li, L., Sheen, J., 2016. Dynamic and diverse sugar signaling. Current opinion in plant biology.

33, 116-125.

Machado, D., Herrgård, M., 2014. Systematic evaluation of methods for integration of

transcriptomic data into constraint-based models of metabolism. PLoS computational

biology. 10, e1003580.

McAnulty, M. J., Yen, J. Y., Freedman, B. G., Senger, R. S., 2012. Genome-scale modeling

using flux ratio constraints to enable metabolic engineering of clostridial metabolism in

silico. BMC systems biology. 6, 42.

Mintz-Oron, S., Meir, S., Malitsky, S., Ruppin, E., Aharoni, A., Shlomi, T., 2012.

Reconstruction of Arabidopsis metabolic network models accounting for subcellular

compartmentalization and tissue-specificity. Proceedings of the national academy of

sciences. 109, 339-344.

Orth, J. D., Thiele, I., Palsson, B. O., 2010. What is flux balance analysis? Nature biotech. 28,

245-248.

Park, J. H., Lee, K. H., Kim, T. Y., Lee, S. Y., 2007. Metabolic engineering of Escherichia coli

for the production of L-valine based on transcriptome analysis and in silico gene

knockout simulation. Proceedings of the national academy of sciences. 104, 7797-7802.

Patil, K. R., Rocha, I., Förster, J., Nielsen, J., 2005. Evolutionary programming as a platform for

in silico metabolic engineering. BMC bioinformatics. 6, 1.

Poolman, M. G., Kundu, S., Shaw, R., Fell, D. A., 2013. Responses to light intensity in a

genome-scale model of rice metabolism. Plant physiology. 162, 1060-1072.

12

Poolman, M. G., Miguet, L., Sweetlove, L. J., Fell, D. A., 2009. A genome-scale metabolic

model of Arabidopsis and some of its properties. Plant physiology. 151, 1570-1581.

Purcell, P. C., Smith, A. M., Halford, N. G., 1998. Antisense expression of a sucrose non‐
fermenting‐1‐related protein kinase sequence in potato results in decreased expression of

sucrose synthase in tubers and loss of sucrose‐inducibility of sucrose synthase transcripts

in leaves. The plant journal. 14, 195-202.

Ranganathan, S., Suthers, P. F., Maranas, C. D., 2010. OptForce: an optimization procedure for

identifying all genetic manipulations leading to targeted overproductions. PLoS

computational biology. 6, e1000744.

Robaglia, C., Thomas, M., Meyer, C., 2012. Sensing nutrient and energy status by SnRK1 and

TOR kinases. Current opinion in plant biology. 15, 301-307.

Schilling, C. H., Covert, M. W., Famili, I., Church, G. M., Edwards, J. S., Palsson, B. O., 2002.

Genome-scale metabolic model of Helicobacter pylori 26695. Journal of bacteriology.

184, 4582-4593.

Schilling, C. H., Edwards, J. S., Palsson, B. O., 1999. Toward metabolic phenomics: analysis of

genomic data using flux balances. Biotechnology progress. 15, 288-295.

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U., 2012. Multidimensional

optimality of microbial metabolism. Science. 336, 601-604.

Segre, D., Vitkup, D., Church, G. M., 2002. Analysis of optimality in natural and perturbed

metabolic networks. Proceedings of the national academy of sciences. 99, 15112-15117.

Sheen, J., 2014. Master regulators in plant glucose signaling networks. Journal of plant biology.

57, 67-79.

Sheikh, K., Förster, J., Nielsen, L. K., 2005. Modeling hybridoma cell metabolism using a

generic genome‐scale metabolic model of Mus musculus. Biotechnology progress. 21,

112-121.

Slocombe, S. P., Beaudoin, F., Donaghy, P. G., Hardie, D. G., Dickinson, J. R., Halford, N. G.,

2004. SNF1-related protein kinase (snRK1) phosphorylates class I heat shock protein.

Plant physiology and biochemistry. 42, 111-116.

Smallbone, K., Simeonidis, E., Swainston, N., Mendes, P., 2010. Towards a genome-scale

kinetic model of cellular metabolism. BMC systems biology. 4, 6.

Sugden, C., Donaghy, P. G., Halford, N. G., Hardie, D. G., 1999. Two SNF1-related protein

kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-

coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant

physiology. 120, 257-274.

Tepper, N., Shlomi, T., 2010. Predicting metabolic engineering knockout strategies for chemical

production: accounting for competing pathways. Bioinformatics. 26, 536-543.

Thiele, I., Palsson, B. Ø., 2010. A protocol for generating a high-quality genome-scale metabolic

reconstruction. Nature protocols. 5, 93-121.

Thiele, I., Vo, T. D., Price, N. D., Palsson, B. Ø., 2005. Expanded metabolic reconstruction of

Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of

single-and double-deletion mutants. Journal of bacteriology. 187, 5818-5830.

Tsai, A. Y. L., Gazzarrini, S., 2012. AKIN10 and FUSCA3 interact to control lateral organ

development and phase transitions in Arabidopsis. The plant journal. 69, 809-821.

Williams, S. P., Rangarajan, P., Donahue, J. L., Hess, J. E., Gillaspy, G. E., 2014. Regulation of

Sucrose non-Fermenting Related Kinase 1 genes in Arabidopsis thaliana. Frontiers in

plant science. 5.

13

Xu, Z., Zheng, P., Sun, J., Ma, Y., 2013. ReacKnock: identifying reaction deletion strategies for

microbial strain optimization based on genome-scale metabolic network. PloS one. 8,

e72150.

Yamaguchi-Shinozaki, K., Shinozaki, K., 2006. Transcriptional regulatory networks in cellular

responses and tolerance to dehydration and cold stresses. Annual review of plant biology.

57, 781-803.

Yang, L., Cluett, W. R., Mahadevan, R., 2011. EMILiO: a fast algorithm for genome-scale strain

design. Metabolic engineering. 13, 272-281.

Yen, J. Y., Nazem-Bokaee, H., Freedman, B. G., Athamneh, A. I. M., Senger, R. S., 2013.

Deriving metabolic engineering strategies from genome-scale modeling with flux ratio

constraints. Biotechnology journal. 8, 581-594.

Yen, J. Y., Tanniche, I., Fisher, A., Gillaspy, G., Bevan, D., Senger, R., 2015. Designing

metabolic engineering strategies with genome-scale metabolic flux modeling. Advances

in genomics and genetics. 7, 149-160.

Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J.,

Trawick, J. D., Osterhout, R. E., Stephen, R., 2011. Metabolic engineering of Escherichia

coli for direct production of 1, 4-butanediol. Nature chemical biology. 7, 445-452.

14

CHAPTER 2

DESIGNING METABOLIC ENGINEERING STRATEGIES WITH GENOME-SCALE

METABOLIC FLUX MODELING

Jiun Y. Yen 1,2, Imen Tanniche 1, Amanda K. Fisher 1-3, Glenda E. Gillaspy 2, David R. Bevan 2,3,

Ryan S. Senger 1

1 Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA

2 Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA

3 Genomics, Bioinformatics, and Computational Biology Interdisciplinary Programs, Virginia

Tech, Blacksburg, VA, USA

Republished with permission of Dove Press, from Yen, J. Y., Tanniche, I., Fisher, A., Gillaspy,

G., Bevan, D., Senger, R., Yen, J. Y., Tanniche, I., Fisher, A. K., Gillaspy, G. E., 2015.

Designing metabolic engineering strategies with genome-scale metabolic flux modeling. Clinical

Epidemiology. 7, 149-160. Permission conveyed through Copyright Clearance Center, Inc.

Advances in Genomics and Genetics Dovepress

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

Designing metabolic engineering strategies with
genome-scale metabolic flux modeling

Jiun Y Yen1,2

Imen Tanniche1

Amanda K Fisher1–3

Glenda E Gillaspy2

David R Bevan2,3

Ryan S Senger1

1Department of Biological
Systems Engineering, 2Department
of Biochemistry, 3Genomics,
Bioinformatics, and Computational
Biology Interdisciplinary Program,
Virginia Tech, Blacksburg, VA, USA

Correspondence: Ryan S Senger
Department of Biological Systems
Engineering, Virginia Tech,
301C HABB1, Blacksburg, VA, USA
Tel 1 540 231 9501
Email senger@vt.edu

Abstract: New in silico tools that make use of genome-scale metabolic flux modeling are
improving the design of metabolic engineering strategies. This review highlights the latest
developments in this area, explains the interface between these in silico tools and the experi-
mental implementation tools of metabolic engineers, and provides a way forward so that in
silico predictions can better mimic reality and more experimental methods can be considered
in simulation studies. The several methodologies for solving genome-scale models (eg, flux
balance analysis [FBA], parsimonious FBA, flux variability analysis, and minimization of
metabolic adjustment) all have unique advantages and applications. There are two basic
approaches to designing metabolic engineering strategies in silico, and both have demonstrated
success in the literature. The first involves: 1) making a genetic manipulation in a model; 2)
testing for improved performance through simulation; and 3) iterating the process. The second
approach has been used in more recently designed in silico tools and involves: 1) comparing
metabolic flux profiles of a wild-type and ideally engineered state and 2) designing engineer-
ing strategies based on the differences in these flux profiles. Improvements in genome-scale
modeling are anticipated in areas such as the inclusion of all relevant cellular machinery, the
ability to understand and anticipate the results of combinatorial enrichment experiments, and
constructing dynamic and flexible biomass equations that can respond to environmental and
genetic manipulations.
Keywords: genome-scale modeling, flux balance analysis, flux variability analysis, minimiza-
tion of metabolic adjustment, metabolic bottleneck, pathway optimization

A brief introduction to genome-scale metabolic
flux modeling
A “genome-scale” metabolic flux model (GEM) consists of a network of biochemical
reactions that is reconstructed based on the genomic sequence and annotation of a
cell. Assuming a “steady-state” metabolism (ie, a snapshot of metabolism at one time
point) is reached on a short time-scale, these reactions can be represented by a linear
system of equations. Then, problems such as maximizing specific chemical produc-
tion or growth can be solved efficiently by linear programming. GEMs and their uses
have been reviewed thoroughly, and they are most basically used to predict reaction
flux, which is the overall rate of metabolite conversion.1,2 Often, laboratory measure-
ments including the rates of substrate consumption, product formation, and growth
are used as model constraints so calculations coincide with observations. Other model
constraints can be derived from reaction thermodynamics,3 cellular regulatory net-
works,4 and -omics datasets.5 GEMs have been constructed and utilized for intensively

15

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/AGG.S58494
mailto:senger@vt.edu

DovepressYen et al

studied model organisms with well-annotated genomes (eg,
Escherichia coli MG1655 [bacteria],6 Saccharomyces cer-
evisiae [yeast],7 Mus musculus [mouse],8 and Arabidopsis
thaliana [plant]9). In addition, homology algorithms have
enabled GEM construction of the less-studied organisms.
For example, the European Bioinformatics Institute has con-
structed draft GEMs for 2,630 organisms across phylogenetic
domains using automated model-building methods,10 and the
Model SEED also contains several GEMs and has the ability
to custom-build GEMs for annotated genomes submitted
by the user.11 The construction of high-quality models often
requires expert-informed manual curation,12 but automated
reconstruction provides foundations for further improvement.
Although GEMs have been built for species of all domains,
microbes still dominate GEM reconstructions and studies due
to their relative genomic simplicity, usefulness in biotechnol-
ogy, and the pathogenicity of some species.

GEMs have extraordinary utility for biological discovery,
and novel computational tools have been developed to predict
metabolic engineering strategies, which are then validated
in the laboratory. Much research in metabolic engineering is
focusing on the synthesis of valuable chemicals, biofuels, and
pharmaceuticals. Model-guided metabolic engineering presents
significant advantages, notably the minimization of laboratory
resource use and time required to develop productive strains.
Using GEM predictions to design strains enables researchers
to engineer product yield/selectivity, substrate utilization, and
growth rate. Future developments are anticipated to allow engi-
neering of toxicity responses, cellular differentiation, culture
density, and cellular interactions with other cells and materials.
Some of the computational tools for predicting gene targets in
GEMs for metabolic engineering have been reviewed.1 The
focuses of this review are: 1) how predictions from different
tools have been translated into experimental metabolic engi-
neering strategies and 2) which of the experimental methods
available are (or are not) represented in the computational (in
silico) tools. Since the experimental toolset for metabolic engi-
neering is expanding, this review also addresses how new tools
can be incorporated in the in silico design strategies.

In silico metabolic engineering tools
It has been long believed that cells (especially microbes)
maintain optimal growth as their primary objective. It has been
shown that an additional objective of a minimal adjustment
between initial and engineered states also exists.13 Imposing
the goal of chemical overproduction by metabolic engineer-
ing often conflicts with the optimal growth objective. Thus,
genome-scale modeling serves to establish the relationship

between target chemical production and growth. In silico
metabolic engineering tools seek to identify genetic manipula-
tions to alter this relationship so that stable strains with high
chemical production and growth can be achieved. This section
describes the various methods available for solving GEMs,
and it highlights those used when metabolism has been engi-
neered. In addition, this section presents the recent advances
in in silico tools used with GEMs to generate metabolic
engineering strategies for the overproduction of a targeted
chemical. In this review, in silico metabolic engineering tools
are classified as “top-down” or “bottom-up”. The top-down
algorithms generate/apply metabolic modifications in silico
and then simulate their effects on the dual objectives (ie, pro-
ductivity and growth) through genome-scale metabolic flux
modeling. The procedure is repeated until optimal metabolic
modifications are identified. On the other hand, bottom-up
algorithms generate separate flux solutions where: 1) growth is
maximized and 2) product formation of interest is maximized.
Differences between the two flux distributions are identified
as targets to design metabolic engineering strategies. These
approaches are reviewed in detail in the following section;
however, first the methods for generating metabolic flux solu-
tions of GEMs are summarized.

Flux balance analysis and its variants
The fundamental approaches of constraint-based model-
ing have been reviewed,1,2 and a subset of these applicable
to metabolic engineering are described here. The essential
base of almost all predictive tools is flux balance analysis
(FBA), which solves the linear system of biological reac-
tions given the “pseudo-” steady-state assumption and an
objective function (eg, maximize growth or chemical pro-
duction rate) using linear programming. The flux balance
equation is now commonly written as S v 0, where S is an
m-by-n matrix containing stoichiometric coefficients for
each biochemical reaction. Each compound is represented
by a row of the matrix, and each reaction is represented in
a column. The vector v contains flux values for all n reac-
tions of the system. The system also contains a “biomass
equation” that describes cell growth. This is often com-
posed of stoichiometric amounts of macromolecules (eg,
protein, DNA, RNA, lipids, cell wall), small molecules, and
adenosine triphosphate (ATP) hydrolysis required for growth
“maintenance”.14 FBA solves the system of equations given
an objective function and constraints (upper and lower) for
each flux contained in v. Flux constraints are imposed from
laboratory measurements, thermodynamic predictions, and
regulatory rules; many reaction fluxes are left unconstrained.

16

www.dovepress.com
www.dovepress.com
www.dovepress.com

Dovepress Metabolic engineering strategies in silico

Two other useful approaches are parsimonious FBA (pFBA)15
and flux variability analysis (FVA).16 Since the number of
reactions is typically greater than the number of compounds
in GEMs, multiple FBA solutions exist, and techniques that
explore this solution space have been reviewed. The pFBA
algorithm was developed to provide the FBA solution that
meets optimality with a minimized total flux in the system. In
addition, FVA serves the purpose of calculating the possible
flux distributions of all reactions.

As mentioned earlier, cellular metabolism changes when a
genetic manipulation is introduced in vivo. However, dramatic
shifts in metabolism, on a global level, toward optimality are
not immediate.17,18 Thus, a flux distribution predicted in silico
that captures this initial response of a cell, instead of one that
describes massive flux reorganization toward optimality, pro-
vides a better description of the cellular response to genetic
changes. For this reason, the minimization of metabolic adjust-
ment (MOMA) algorithm was developed to predict the optimal
flux distribution of altered metabolism that would require
the smallest change from that of wild-type metabolism.17
This concept has since been validated by 13C-isotope tracing
studies.13 Similar to MOMA, the regulatory on/off minimiza-
tion (ROOM) tool hypothesizes that a cell attempts to com-
pensate for genetic manipulations through the fewest number

of enzymatic reactions by gene regulation.18 Additional studies
have shown that, in time, cells will evolve from this minimized
flux redistribution state to the FBA solution.19 This concept,
introduced over a decade ago,20 is shown in Figure 1. The goal
of metabolic engineering is to alter the metabolic network of
a cell so that optimal growth and target chemical production
are coupled (meaning a product must be formed as the cell
reaches an optimum growth rate). This approach leads to stable
strains capable of industrial production. As a cell is engi-
neered, MOMA/ROOM can predict the immediate outcome
of genetic manipulations, and FBA (or pFBA) predicts the
long-term evolved state of the cell. In the following sections,
the top-down and bottom-up in silico metabolic engineering
tools are discussed, and a summary of these tools is given in
Table 1. However, it is important to note that not all tools are
designed to consider evolution and long-term strain stability,
which are critically important if an industrial process is going
to consider chemostat cultivation over batch processing in
which the microbe is replaced frequently.

Top-down in silico tools for designing
metabolic engineering strategies
As mentioned previously, a top-down approach is defined
here as one in which genetic manipulations are made in

Engineered
metabolic
potential

Wild-type
metabolic
potential

Growth rate (h−1) Growth optimality
(low productivity)

Metabolic adjustment
toward growth optimality

(high productivity)

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.02 0.04 0.06 0.08 0.1

MOMA,
ROOM

FBA,
pFBA

Potential with combinatorial
genome expansion
(higher productivity)

Metabolic engineering
(improved productivity)C

he
m

ic
al

 p
ro

du
ct

io
n

flu
x

(m
m

ol
 g

D
C

W
−1

 h
−1

)

Figure 1 The relationship between the target chemical production flux and the growth rate for wild-type (solid line) and an engineered strain (dash line). The initial wild-type

optima determined by FBA (bottom right) can be engineered and the resulting state predicted with MOMA/ROOM. Evolution will eventually optimize growth, which can be

predicted by FBA/pFBA. Combinatorial addition of metabolic capabilities can expand the solution space beyond the wild-type potential.

Abbreviations: FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA, parsimonious FBA; ROOM, regulatory on/off minimization.

17

www.dovepress.com
www.dovepress.com
www.dovepress.com

DovepressYen et al

Table 1 Summary of in silico tools for generating metabolic engineering strategies and the experimental tools that can be used for
implementation

In silico tool Description Experimental tools§,† Reference(s)

Top-down approaches
Randomized gene knockouts Fluxes associated with reactions catalyzed by one or more

genes are set to zero. Simulation performed by FBA, pFBA,
MOMA, or ROOM

Gene knockouta 21, 22

OptKnock A bilevel optimization to find gene knockout candidates
leading to product formation at optimal growth (FBA)

Gene knockouta 19, 20, 23

OptGene Explores the feasible solution region using a genetic algorithm to
identify the necessary gene deletions for the desired phenotype

Gene knockouta 24

Cipher of evolutionary
design (CiED)

Uses a genetic algorithm to identify optimal mutations
to maximize product formation

Gene knockouta
Gene overexpressionb

25

ReacKnock Inspired by OptKnock and enables up to 20 gene deletions Gene knockouta 26
OptReg An expansion of OptKnock designed to predict up- and

downregulation of reactions to achieve a desired phenotype
Gene knockouta
Gene overexpressionb
Gene expression knockdownc

27

OptStrain Uses a universal database of known enzyme-catalyzed reactions
to determine the minimal pathway modification required
to maximize product formation

Gene knockouta
Gene overexpressionb

28

MOMAKnock A similar bilevel programming framework to OptKnock except
MOMA assumption was adapted to determine flux redistribution

Gene knockouta 29

Ant colony optimization
with MOMA (ACOMoMA)

A hybrid of ant colony optimization and MOMA to predict
gene knockout strategies

Gene knockouta 30

Bees Algorithm and FBA
(BAFBA)

Similar to ACOMoMA, except Bees Algorithm is used
to search gene knockouts and FBA is used to determine fitness

Gene knockouta 31

Flux balance analysis
with flux ratios (FBrAtio)

Flux ratios serve as constraints to redirect metabolism
to a desired product. Resulting flux ratio constraints
can be translated to metabolic engineering strategies directly

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

32, 33

Bottom-up approaches
Flux distribution
comparison analysis (FDCA)

Incremental solutions are compared to identify genes
of reactions with significant flux changes

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

35, 36

Flux scanning based on
enforce objective flux (FSEOF)

Identifies genes of reactions with increased flux upon
maximizing product formation

Gene overexpressionb 37, 38

OptForce Flux variability analysis of wild-type and mutants (with a desired
phenotype) are compared to identify genes of reactions with
significant flux change

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

39–41

k-OptForce An expansion of OptForce with the integration of enzyme
kinetic constants to allow optimal solutions to arise from
metabolic and/or enzyme engineering

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

42

Continuous modifications

(CosMos)

A continuous modification to flux bounds is used to identify upper
and lower bounds that can guarantee product formation. The
solution space is sampled randomly to find optimum solutions

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

43

Redirector Iteratively identifies all reactions with flux changes that
accommodate for the progressive change in biomass
and desired product

Gene knockouta
Gene overexpressionb
Gene expression knockdownc

44

Notes: §Not all experimental tools apply to all species; †direct genome editing is likely to eventually apply to all cases; agene knockout can be accomplished through
insertion mutagenesis using homologous recombination (ie, red recombineering), transposable elements, or by genome editing with the aid of CRISPR-Cas systems;

bgene overexpression can be performed using plasmids or genome knock-in/editing procedures, which are accomplished by inserting gene-of-interest with high expression

promoter element using homologous recombination, transposable elements, or CRISPR-Cas systems. RBS and promoter engineering are recommended methods for
modulating expression levels. The RBS calculator is a valuable tool for RBS design; cgene expression knockdown can be achieved through posttranscriptional gene silencing
with sRNA, siRNA, antisense RNA, and/or microRNA. RBS redesign using the RBS calculator is also an effective strategy for gene expression knockdown.

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA,

parsimonious FBA; RBS, ribosomal binding site; ROOM, regulatory on/off minimization.

silico, and then genome-scale modeling is used to determine
whether the strategy is beneficial. The concept is shown in
Figure 2. The simplest strategy to employ is creating single-
gene knockouts. This is done in silico by constraining all reac-
tions associated with a gene of interest to zero and performing

FBA or MOMA/ROOM to look for knockouts that enhance
target chemical production without compromising growth.
This method was used in a well-known study to identify
gene knockouts in E. coli, resulting in the overproduction of
L-valine.21 Here, single-, double-, and triple-gene knockouts

18

www.dovepress.com
www.dovepress.com
www.dovepress.com

Dovepress Metabolic engineering strategies in silico

were investigated in silico using MOMA to predict resulting
phenotypes. Using a multifaceted approach that included
the in silico gene deletion study, an industrially relevant
strain capable of producing over 7.5 g/L of L-valine (2.27-
fold improvement over wild-type) was engineered. This
method was also used to generate all single- and double-
gene knockout combinations in S. cerevisiae in an effort

to overproduce succinate.22 FBA was used in calculations,
and three single knockouts (mdh, oac1, and dic1) were
selected for experimental validation. The dic1 strategy
was successful, yet non-intuitive for succinate production,
and this study demonstrated an important proof-of-concept
for designing strains by in silico predictions followed by
experimental validations. OptKnock was one of the first

Wild-type

vtarget

Flux redistribution

Identify candidates
Top-down:
If vtarget increases, strategy
becomes valid (iterate to find
optimal strategies)

Bottom-up:
Perturbed reactions are all
possible candidates

In silico engineered strain

Top-down Bottom-up

1

2

3

Methods:
Random
Genetic algorithm
Optimization
Ant colony algorithm
Bees Algorithm
Expert assessment

Flux through vtarget
and compare with
wild-type

Knockout
(KO)

Flux ratio
(OX or KD)

OX

KD

Top-down:
Maximize growth and/or
minimize metabolic adjustment

Bottom-up:
Compute differences between
the wild-type and engineered
strains

Wild-type

Engineered

KO

Choose gene target Maximize

Figure 2 Example workflow to design metabolic engineering strategies using “top-down” and “bottom-up” approaches. Several different in silico tools apply these strategies

in different forms. In all cases, the objective is to maximize production of a target chemical (shown here as vtarget). The following metabolic engineering strategies are shown:

(KO) gene knockout, (OX) gene overexpression, and (KD) gene expression knockdown.

19

www.dovepress.com
www.dovepress.com
www.dovepress.com

DovepressYen et al

in silico metabolic engineering tools, and it guides the
selection of gene knockouts in order to couple maximized
product formation to growth.20 It uses FBA and identifies a
limited number of gene knockouts, which serve to reshape
the growth and product formation relationship as shown in
Figure 1. Successful identification of gene knockout targets,
followed by adaptive evolution to achieve FBA predictions,
have led to industrially relevant strains capable of producing
lactic acid,19 1,4-butanediol,23 and others. Since its introduc-
tion, other inspired approaches have attempted to extend its
capabilities (ie, increase the potential number of gene candi-
dates for knockout) by reconsidering the bilevel optimization
framework. Approaches such as OptGene24 and the cipher of
evolutionary design (CiED)25 relied on an evolutionary algo-
rithm to select gene targets, and improved functionality was
noted. ReacKnock has emerged recently with a new approach
to the mixed integer bilevel optimization problem and enables
up to 20 gene deletion predictions in a short amount of
computational time.26 In their publication, the authors pro-
vide ReacKnock- and OptKnock-designed gene knockout
strategies to produce succinate, ethanol, acetate, hydrogen,
formate, glycolate, D-lactate, fumarate, and threonine from
E. coli.26 OptReg extended OptKnock to include gene
overexpressions,27 and OptStrain allowed incorporation of
non-native metabolic pathways for the production of new
chemicals.28 Other approaches, such as MOMAKnock29
have focused on the limitations of FBA and have sought to
implement MOMA in the automated design of gene knockout
strategies. Further modifications have combined ant colony
optimization (ACO) methods with MOMA in an algorithm
called ACOMoMA. The ACOMoMA approach was applied
to produce an improved gene knockout strategy for succinate
production from E. coli.30 Another development achieved
significant results using a hybrid of Bees Algorithm and
FBA (BAFBA; a metaheuristic procedure) to design gene
knockouts for succinate and lactate production.31

While most in silico designs rely on gene knockouts, oth-
ers infer gene overexpression and partial gene knockdowns as
metabolic engineering strategies. In general, the flux change
of a reaction may be the result of: 1) directly engineering
genes of the catalyzing enzymes; 2) engineering the avail-
ability of reaction precursors and substrates upstream; or
3) eliminating bottlenecks downstream. Thus, these strate-
gies are all major contributors to a metabolic adjustment.
A recent approach called FBA with flux ratios (FBrAtio)
considers strategies of gene overexpression, knockout, and
partial knockdown for designing metabolic engineering
strategies.32,33 FBrAtio examines how multiple enzymes

compete for the same substrate and allow the distribution
of this substrate to be modified and included as a flux ratio
constraint in a GEM. Flux ratio constraints can be modified,
and pFBA is used to predict global flux distributions. This
procedure has been used to design metabolic engineering
strategies for several chemicals by different organisms.
The concept of the flux ratio constraint was first introduced
for two enzymes that compete for the same compound.32
However, this was later expanded to include all enzymes
competing for the same compound.33 FBrAtio has been used
to model the metabolic shift in Clostridium acetobutylicum
from acids to solvents production as well as predict a high-
ethanol-producing phenotype.32 In addition, it has been used
to examine metabolic engineering strategies for: 1) cellulose
overproduction by A. thaliana; 2) isobutanol production by
yeast; 3) acetone production by Synechocystis; 4) hydrogen
production by E. coli; and 5) mixed solvents production by
C. acetobutylicum.33 The purpose of this study was to dem-
onstrate further improvements of experimental implementa-
tions where possible with “fine-tuned” metabolic engineering
strategies derived by FBrAtio. With Arabidopsis, it was shown
experimentally that the overexpression of a heterologous
uridine diphosphate (UDP)–glucose pyrophosphorylase
(UGPase) increased cellulose production by approximately
25%.34 The FBrAtio approach predicted that further increased
uridine triphosphate (UTP) consumption by the UGPase could
continue to increase cellulose production up to 30%–50%
(compared to wild-type) before UTP depletion impacted the
growth of the plants negatively.

Bottom-up in silico tools for designing
metabolic engineering strategies
The tools classified as bottom-up approaches rely on multiple
objective functions in genome-scale modeling to design meta-
bolic engineering strategies. The flux distribution comparison
analysis (FDCA) provides a good example of this. First,
a GEM is solved by FBA to maximize growth. Then, the
GEM is solved (by linear MOMA [lMOMA]) to maximize
the production of a chemical of interest. The differences
between the flux distributions are considered, and rules for
up- or downregulation of genes are determined based on
significant changes between the flux distributions.35 FDCA
has been used to improve lycopene production by 174% in
an E. coli strain already capable of high lycopene produc-
tion,36 and it identified 51 potential gene targets, including
five novel gene knockout targets and four novel gene over-
expression targets. The flux scanning based on enforced
objective flux (FSEOF) approach was also developed to

20

www.dovepress.com
www.dovepress.com
www.dovepress.com

Dovepress Metabolic engineering strategies in silico

enhance lycopene production.37 This approach also begins
with maximizing biomass formation of a GEM with FBA,
but the flux of product formation is constrained to be equal to
the experimentally observed flux in the wild-type organism.
Then, the theoretical maximum product formation rate is
calculated in a new simulation by setting this as the objective
function. FSEOF works by maximizing the cell growth rate
while the target product formation rate is increased gradually
from its initial value toward its theoretical maximum. Targets
for gene overexpression are identified as fluxes that increase
throughout simulations without changing direction. This
method identified 35 gene overexpression targets for lycopene
production by E. coli. FVA was then employed to narrow
these potential targets by selecting those showing increases
outside of the ranges due to flux variability.37 This approach
can also be used with an altered biomass equation to accom-
modate intracellular target (eg, protein) accumulation. For
example, the human superoxide dismutase (hSOD) enzyme
was overproduced in Pichia pastoris using predicted gene
knockout and overexpression strategies from MOMA and
FSEOF, respectively.38

OptForce is another bottom-up approach that has enabled
the incorporation of gene knockouts, overexpressions, and
knockdowns as metabolic engineering strategies.39 OptForce
also allows (and encourages) the incorporation of experimen-
tally measured metabolic flux data of the wild-type and a strain
engineered to overproduce a target chemical. In general, flux
variability is calculated for both wild-type and engineered
strains, and the flux ranges are compared for each reaction.
Candidates for metabolic engineering are identified as those
reactions where there is no overlap between possible flux
ranges. OptForce then performs a secondary optimization
(a top-down procedure) where the minimal set of metabolic
interventions is identified to achieve a desired goal. OptForce
has been used in several applications, including the overex-
pression of succinate39 and fatty acids of specified chain length
in E. coli.40 In addition, OptForce was used to design a meta-
bolic engineering strategy leading to a four-fold increase in
intracellular malonyl-CoA concentration in E. coli, which was
then utilized for the production of naringenin (a valuable plant
secondary metabolite).41 The recent extension k-OptForce has
enabled the incorporation of enzyme kinetic constants, where
possible, and returns metabolic engineering strategies (ie, gene
knockout, overexpression, or knockdown) along with kinetic
parameters that could be altered by enzyme engineering.42
This approach can consider relevant phenomena, such as
substrate inhibition, that cannot be modeled using flux-based
approaches alone. The continuous modifications (CosMos)

approach significantly differs from OptForce in that changes
to flux bounds are modified continuously, rather than by FVA
results. CosMos then minimizes product formation given a
constrained non-zero growth rate, and looks for modified
flux constraints that still yield product formation under these
conditions.43

Finally, the Redirector approach is different in that it
relies on an artificial objective function consisting of con-
tributions from growth and metabolic flux redirected into a
product-forming pathway and does not rely on manipulating
flux bounds.44 Redirector can also design gene knockout,
overexpression, or knockdown metabolic engineering strate-
gies, and the manipulation of algorithm parameters can alter
the number of manipulations returned by the algorithm. The
production of fatty acids by E. coli MG1655 was chosen as
a test case of the algorithm. The algorithm designed strate-
gies capable of reaching 80% of the theoretical yield for
myristoyl-CoA while maintaining 20% biomass yield.44 The
global implementation of FBrAtio (currently in press) is
also classified as an approach that does not manipulate flux
bounds to derive metabolic engineering strategies. The global
FBrAtio uses flux distribution maps of maximized growth
and product formation using pFBA and designs flux ratio
constraints that enable product formation and growth.

Experimental metabolic engineering
tools
The available in silico metabolic engineering tools return
strategies consisting of gene knockout, overexpression, and/
or knockdown (and enzyme engineering for k-OptForce).
There are several ways in which these strategies can be
implemented, but current in silico tools do not consider this
level of detail. In this section, many common (but certainly
not all) experimental implementation methods are reviewed
along with their relationship to in silico predictions. For
example, returning a gene overexpression strategy does not
explain how it should be implemented. If it must be encoded
on a plasmid, what type and strength of promoter/ribosomal
binding site (RBS) combination should be used? What copy
number of plasmid should be used? Since plasmid copy
number per cell is heterogeneous, what impacts will this
have? Will plasmid replication demand cellular resources that
influence metabolic flux predictions? What are the impacts of
antibiotic resistance genes? Should one or multiple copies of
the gene of interest be knocked into the genome? Or, should a
native promoter/RBS be tuned instead? If so, to what levels?
Finally, what impact will this genetic manipulation have on
the resulting phenotype? Will this significantly impact cell

21

www.dovepress.com
www.dovepress.com
www.dovepress.com

DovepressYen et al

composition, metabolic flux distribution, and predictions?
These and more questions will be addressed by in silico tools
that returned “fine-tuned” metabolic engineering strategies
(eg, overexpress a target gene by 70% relative to wild-type)
and take into account changing cell phenotype by updating
the GEM biomass equation.

Manipulating gene expression
Here, basic experimental strategies for gene expression
manipulations are reviewed in the context of genome-scale
modeling. Clearly, not all tools and approaches can be
discussed here, but the basics are identified. Manipulations
can occur at the transcriptional, translational, and posttrans-
lational levels, with emphasis on the first two in microbes.
Several experimental methods exist for generating gene
knockouts that involve chromosomal integration for gene
disruption. Of course, chromosomal integration can also
be used to knock-in useful genes/regulatory elements. One
particularly popular method for single-gene targeting is the
polymerase chain reaction (PCR)-based version of red
recombineering.45 It has also been used for the introduction
of site-directed mutations, promoter tuning/replacement,
and reporter genes for promoter tagging experiments.46
The knock-in/knockout (KIKO) vectors facilitate the chro-
mosomal integration of large DNA segments (including
multigene cassettes and entire pathways) at specific well-
characterized loci using red recombination.47 Other means
of gene knockout involve the use of transposons or homolo-
gous recombination mediated by phage-derived elements,
and more advanced genetic systems are required for other
microbes, such as the clostridia.48,49 In higher plant species,
such as A. thaliana, genomic integration is accomplished
using an Agrobacterium-mediated method that makes use of
its ability to transfer DNA from its tumor-inducing plasmid
into the plant host genome.50,51 This technology has been
used for both gene disruption and knock-in in Arabidopsis.
Gene knockouts (and knock-ins) appear to be the most
benign to genome-scale modeling predictions, as long as
plasmids and antibiotic resistance markers are removed.
Indeed, the presence of plasmids and antibiotics (even with
effective antibiotic resistance genes) has been shown to alter
cell phenotypes.52 The GEM biomass equation describes
the cell phenotype, and how this equation should be altered
by the presence of plasmids, antibiotics, or other genetic or
environmental manipulations remains a subject for research.
This makes clustered regularly interspaced short palindro-
mic repeats (CRISPR)-Cas systems53 attractive for genome

editing from a genome-scale modeling standpoint. While
the mechanisms of plasmid replication are understood, this
cellular machinery is not yet encoded in GEMs, creating a
divergence between the in silico and experimental systems.
In addition, gene knockouts, knock-ins, and genome editing
are designed to alter metabolism. When successful, this alters
the cellular phenotype; thus, the biomass equation must be
updated accordingly. However, this will require predictions
or a simplified method of measurement, both of which are
discussed later.

With this knowledge, it is easy to see why gene overex-
pression methods may lead to greater metabolic burden and
uncertainty with genome-scale modeling, especially when a
gene is overexpressed from a plasmid. Techniques that mini-
mize the ATP maintenance requirements of a cell are preferred
and are more effectively modeled. With gene overexpression,
promoter and RBS engineering have enabled significant
progress. Controllable gene expression has launched the field
of synthetic biology and led to the quest to design genetic
circuits.54 Furthermore, promoter tuning55 with RBS optimiza-
tion can improve metabolic pathway function.56 Tools, such
as the RBS calculator,57 are enabling RBS design based on
thermodynamic principles. In these cases, it becomes clear
that synthetic designs are enabling pathway overexpression
by orders of magnitude, and at some point, cellular resources
are depleted (eg, transfer RNA [tRNA] pools), creating com-
petition between cell growth and pathway expression. This is
not yet accounted for by genome-scale modeling and presents
a unique opportunity to integrate metabolic pathway tuning
with genome-wide metabolic activity.

Gene expression tuning can also be engineered at the
posttranslational level, where interactions with mRNA are
the major focus. Small RNA (sRNA) bind targeted mRNA
(through complementary base-pairing) and modulate its
translation.58 The majority of sRNAs have been identified as
translation repressors, and binding generally occurs at or near
the RBS.59 Thermodynamic-based design has enabled “fine-
tuned” gene expression knockdowns,60 and these have proven
advantageous in a metabolic engineering strategy to produce
phenol from glucose.61 Similarly, artificial small interfering
RNA and microRNA have been widely used in plant systems
to reduce gene expression.62 Achieving stable gene integration
in higher plants can be problematic. An alternative is to employ
viral-induced gene silencing approaches.63 While these tech-
nologies enable gene knockdown, they are generally operated
from plasmid-based systems, which provide the same chal-
lenges to genome-scale modeling as mentioned previously.

22

www.dovepress.com
www.dovepress.com
www.dovepress.com

Dovepress Metabolic engineering strategies in silico

Combinatorial approaches
Using genome-scale modeling to predict the outcomes of
combinatorial metabolic engineering experiments is an area
for many future advances. As shown in Figure 1, the addi-
tion of new genetic material (either synthetic or from other
organisms) can expand the product-forming capabilities of
an organism. Combinatorial approaches can involve induced
chromosomal mutations, random insertion of transposons,
genome shuffling, transcription factor engineering,64 or even
randomized chromosomal insertion of synthetic DNA.65 Lyco-
pene production has been engineered successfully through:
1) a combination of model-driven and transposon-based
combinatorial knockouts66 and 2) the multiplex automated
genome engineering (MAGE) platform, which relies on
synthetic DNA insertion.65 In addition, gene overexpression
libraries offer the opportunity to insert the genomic capabili-
ties of a single organism or a metagenome. This strategy has
proven successful in locating genomic sequences to confer
tolerance to furfural,67 among many others. The simultaneous
expression of dual libraries on a plasmid and fosmid led to a
unique combination of gene enrichment that increased acid
tolerance in E. coli by 9,000-fold.68 Expanding the genome
to confer resistance to toxins or new/improved metabolic
capabilities has the potential to redefine the relationship
between product formation and culture growth, as shown
in Figure 1. In the case of conferring resistance to toxins,
often uncharacterized or non-obvious library fragments are
selected during enrichment.69 This is often because toxicity
mechanisms, as well as many cellular interactions, are mul-
tigenic and still not understood fully. While genome-scale
modeling cannot provide these types of predictions, where
the interaction mechanisms are uncharacterized, the meta-
bolic potentials through the completion and addition of new
pathways and enzymes are predictable. It is likely that the
theoretical limits of metabolic enhancement due to library
enrichment can be found through genome-scale modeling,
and the emergence of metagenomic GEMs will likely contain
the metabolic potentials.

Phenotyping
Phenotyping refers to the monitoring of cell chemical com-
position and differentiation. This is critical because the GEM
biomass equation contains the cell chemical composition and
is representative of the cellular phenotype, which is known
to change with genetic and environmental perturbations. The
role of the biomass equation has been shown to be crucial in
genome-scale modeling,14,70 creating the need for accurate

and near real-time monitoring techniques to interface with
GEMs. In silico optimization methods have shown promising
results,70 but it is likely that an experimental approach will
be needed as a supplement. Traditional methods of biomass
equation generation are laborious and involve offline ana-
lytical methods. Analysis of heterogeneous populations of
differentiating (eg, sporulating) microbes is now possible
using flow cytometry.71 In addition, Raman spectroscopy
has recently proven useful for near real-time phenotyping
of E. coli. Raman spectroscopy also does not require the
use of chemical labels and is nondestructive to the sample.
In one application, Raman spectroscopy was used to resolve
fatty acids (saturated, unsaturated, and cyclopropane), cell
membrane fluidity, amino acids, and total protein content of
cultures exposed to toxic 1.2% volume per volume 1-butanol
(and control cultures) over a 180-minute time course.72 In
another approach, “chemometric fingerprinting”, a multi-
variate statistical analysis involving principal component
analysis and linear discriminate analysis, was used to classify
the E. coli phenotypes resulting from exposure to different
classes of antibiotics.73 Chemometric fingerprinting is unique
in that it uses the entire Raman spectrum to characterize a
phenotype, whereas most approaches focus on only a few
well-defined characteristic bands of the spectrum. With these
types of near real-time analyses, GEM biomass equations
can become dynamic and responsive to environmental and
genetic changes. With current offline methods of phenotype
characterization, this level of detail is not possible. However,
with easily accessible phenotyping capabilities, biomass
equations can be updated easily, leading to improved genome-
scale modeling performance.

The path forward
New metabolic engineering targets and
opportunities with plants
Deriving metabolic engineering strategies with genome-
scale modeling is proving to be efficient and informative. As
research continues to derive de novo metabolic pathways to
synthesize valuable chemicals, optimization of product yield
to meet industrial demands will be inevitable. Still, the vari-
ety of potential products from microbes remains limited and
may be expanded in the near term by looking into complex
eukaryotic species, such as plants. There are many valuable
compounds made by plants that are not available elsewhere.
For example, oil seed crops (eg, soybeans) produce edible veg-
etable oil that is used throughout the world. Although the path-
ways for lipid biosynthesis in higher plants have been studied

23

www.dovepress.com
www.dovepress.com
www.dovepress.com

DovepressYen et al

for years, understanding of the crucial regulatory mechanisms
of these pathways remains limited. Thus, engineering plants
to accumulate high levels of healthy omega-3 long-chain
polyunsaturated fatty acids,74 or modified non-native fatty
acids as replacements for petroleum-derived chemicals in
industrial processes75 is desirable. Similarly, central carbon
metabolism is a target for understanding the relationship
between the regulation of carbon partitioning and biomass
production in plants. Identifying metabolic bottlenecks in the
production of cellulose, the energy-rich polymer that is tar-
geted for consolidated bioprocessing,76 could enhance efforts
to produce more cellulose per plant in the field. Likewise,
modeling is being applied to the goal of reducing plant lignin,
a phenolic polymer in the secondary wall that limits our use of
cellulosic biomass during industrial processing.77 One caveat
of reducing lignin is that optimal plant growth must also be
preserved, and GEMs may be uniquely positioned to tackle
this issue because they can theoretically integrate metabolic
behavior with plant growth.78 Enhancing the vitamin content
of edible plants is another active area of research.79 For some
vitamin synthesis pathways, enough information exists to
begin the application of genome-scale modeling to increase
the concentration of vitamins to meet minimal requirements
for humans.80 In the future, it may be possible to use genome-
scale modeling to tackle issues such as optimizing plant
growth under stressful or poor nutrient growth conditions.
In these cases, genome-scale models would have to account
for complex interactions between stress, hormone, and other
signaling pathways that impact biomass synthesis and com-
position.81 In addition, a related application is to understand
how to limit plant yield loss due to pests, by engineering
known, disease-resistance pathways.81 All of these approaches
will require flexible biomass equations that can respond to
manipulations, and a complex multicellular plant will likely
require tissue-specific GEMs that will integrate to form an
overall plant phenotype.

Enzyme engineering for pathway

redirection
The k-OptForce in silico tool is among the first to incor-
porate the concept of enzyme engineering to redirect
metabolic flux for the production of target chemicals.
Kinetics-based approaches to genome-scale metabolic
modeling are emerging,82,83 and soon enzyme redesign will
be a valid metabolic engineering strategy. Direct genome
editing, which is preferred over insertion of plasmids and
markers that consume cellular resources, will enable easy
implementation. Enzyme engineering is a complex field

itself and beyond the scope of this review, but effective
in silico methods are emerging and are expected to play a
role in enzyme redesign. Improvements in hardware and
software performance will continue to expand the range
and size of enzyme engineering problems and systems that
can be studied. Current computational approaches can be
divided into bioinformatics, molecular modeling, and de
novo design.84 Bioinformatics approaches are typically based
on analysis of evolutionary data and can be used to change
activity, selectivity, and stability within a family of enzymes.
Molecular modeling approaches (eg, molecular dynamics,
quantum mechanics/molecular mechanics simulations) have
considerable potential to address challenges in computational
enzyme design and redesign. In particular, advances in these
methods may enable improved calculation of binding affini-
ties and energy barriers, which will enhance understanding
of enzyme specificity.85 De novo design is also showing
increasing promise in designing enzymes, including those
that catalyze reactions for which nature has not designed a
catalyst. Notably, these novel methods may be enhanced by
the application of molecular modeling approaches.86

Increasing modeling accuracy
Finally, the path forward must focus on methods that increase
the accuracy of genome-scale metabolic flux modeling and
improve agreements with 13C-isotopomer tracing studies.
In our experience, there are four areas for immediate
 improvement. The first area includes the incorporation of a
more detailed account of cellular machinery in GEMs. As
mentioned previously, the ATP maintenance approximation
of the GEM biomass equation should be replaced by mecha-
nistic accounts. This must also allow for the identification of
metabolic burdens of plasmids and altered metabolic states as
a result of genome editing. There are current ongoing efforts of
“whole cell modeling” that aim to include cellular machinery
in modeling efforts. These models are showing promise of
being able to predict phenotypes as well as better integrate
and explain -omics datasets.87 Second, more accurate biomass
equations are needed. Whether these will be derived compu-
tationally or experimentally remains to be seen, and there are
good arguments for both approaches. Third, a more accurate
representation of flux branching at critical metabolic nodes
is needed. This occurs when multiple enzymes can consume
the same metabolite. Ultimately, the laws of thermodynamics
(including enzyme availability) determine how that metabolite
is distributed among the competing enzymes. Current methods
of FBA, pFBA, FVA, ROOM (etc) do not consider this level
of detail. FBrAtio provides this capability, though significant

24

www.dovepress.com
www.dovepress.com
www.dovepress.com

Dovepress Metabolic engineering strategies in silico

strides are needed to first translate the biophysical constraints
into flux ratio constraints. Finally, the roles of redox states in
product secretion profiles and the influx/efflux of protons
across the cell membrane need to be included as constraints
in GEMs. In addition, efforts in these areas will supplement
the many useful emerging tools that are focusing on genomic
regulation and -omics dataset integrations. All of these will
improve genome-scale modeling accuracy, which is needed
for deriving effective metabolic engineering strategies.

Acknowledgments
Funding was provided by the National Science Foundation
(NSF1243988 and NSF1254242), the US Department of
Agriculture (2010-65504-20346 and the HATCH program),
and the Institute for Critical Technologies and Applied Sci-
ence at Virginia Tech.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Tomar N, De RK. Comparing methods for metabolic network analysis

and an application to metabolic engineering. Gene. 2013;521(1):
1–14.

2. Oberhardt MA, Palsson BØ, Papin JA. Applications of genome-scale
metabolic reconstructions. Mol Syst Biol. 2009;5:320.

3. Henry CS, Broadbelt LJ, Hatzimanikatis V. Thermodynamics-based
metabolic flux analysis. Biophys J. 2007;92(5):1792–1805.

4. Chandrasekaran S, Price ND. Probabilistic integrative modeling of
genome-scale metabolic and regulatory networks in Escherichia coli and
Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2010;107(41):
17845–17850.

5. Hyduke DR, Lewis NE, Palsson BØ. Analysis of omics data with genome-
scale models of metabolism. Mol Biosyst. 2013;9(2):167–174.

6. Orth JD, Conrad TM, Na J, et al. A comprehensive genome-scale
reconstruction of Escherichia coli metabolism – 2011. Mol Syst Biol.
2011;7:535.

7. Heavner BD, Smallbone K, Price ND, Walker LP. Version 6 of the
consensus yeast metabolic network refines biochemical coverage and
improves model performance. Database (Oxford). 2013;2013:bat059.

8. Selvarasu S, Karimi IA, Ghim GH, Lee DY. Genome-scale modeling
and in silico analysis of mouse cell metabolic network. Mol Biosyst.
2010;6(1):152–161.

9. de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM,
Nielsen LK. AraGEM, a genome-scale reconstruction of the primary
metabolic network in Arabidopsis. Plant Physiol. 2010;152(2):
579–589.

 10. Büchel F, Rodriguez N, Swainston N, et al. Path2Models: large-scale
generation of computational models from biochemical pathway maps.
BMC Syst Biol. 2013;7:116.

 11. Aziz RK, Devoid S, Disz T, et al. SEED servers: high-performance
access to the SEED genomes, annotations, and metabolic models. PLoS
One. 2012;7(10):e48053.

 12. Thiele I, Palsson BØ. A protocol for generating a high-quality genome-
scale metabolic reconstruction. Nat Protoc. 2010;5(1):93–121.

 13. Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U.
Multidimensional optimality of microbial metabolism. Science.
2012;336(6081):601–604.

 14. Senger RS. Biofuel production improvement with genome-scale models:
the role of cell composition. Biotechnol J. 2010;5(7):671–685.

 15. Lewis NE, Hixson KK, Conrad TM, et al. Omic data from evolved
E. coli are consistent with computed optimal growth from genome-scale
models. Mol Syst Biol. 2010;6:390.

 16. Gudmundsson S, Thiele I. Computationally efficient flux variability
analysis. BMC Bioinformatics. 2010;11:489.

 17. Segre D, Vitkup D, Church GM. Analysis of optimality in natural and
perturbed metabolic networks. Proc Natl Acad Sci U S A. 2002;99(23):
15112–15117.

 18. Shlomi T, Berkman O, Ruppin E. Regulatory on/off minimization of
metabolic flux changes after genetic perturbations. Proc Natl Acad Sci
U S A. 2005;102(21):7695–7700.

 19. Fong SS, Burgard AP, Herring CD, et al. In silico design and adaptive
evolution of Escherichia coli for production of lactic acid. Biotechnol
Bioeng. 2005;91(5):643–648.

 20. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnol Bioeng. 2003;84(6):647–657.

 21. Park JH, Lee KH, Kim TY, Lee SY. Metabolic engineering of
 Escherichia coli for the production of L-valine based on transcriptome
analysis and in silico gene knockout simulation. Proc Natl Acad Sci
U S A. 2007;104(19):7797–7802.

 22. Agren R, Otero JM, Nielsen J. Genome-scale modeling enables
metabolic engineering of Saccharomyces cerevisiae for succinic acid
production. J Ind Microbiol Biotechnol. 2013;40(7):735–747.

 23. Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia
coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011;7(7):
445–452.

 24. Patil KR, Rocha I, Forster J, Nielsen J. Evolutionary programming as
a platform for in silico metabolic engineering. BMC Bioinformatics.
2005;6:308.

 25. Fowler ZL, Gikandi WW, Koffas MA. Increased malonyl coenzyme
A biosynthesis by tuning the Escherichia coli metabolic network
and its application to flavanone production. Appl Environ Microbiol.
2009;75(18):5831–5839.

 26. Xu Z, Zheng P, Sun J, Ma Y. ReacKnock: identifying reaction deletion
strategies for microbial strain optimization based on genome-scale
metabolic network. PLoS One. 2013;8(12):e72150.

 27. Pharkya P, Maranas CD. An optimization framework for identifying
reaction activation/inhibition or elimination candidates for overproduc-
tion in microbial systems. Metab Eng. 2006;8(1):1–13.

 28. Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational
framework for redesign of microbial production systems. Genome Res.
2004;14(11):2367–2376.

 29. Ren S, Zeng B, Qian X. Adaptive bi-level programming for optimal gene
knockouts for targeted overproduction under phenotypic constraints.
BMC Bioinformatics. 2013;14 Suppl 2:S17.

 30. Chong SK, Mohamad MS, Mohamed Salleh AH, Choon YW, Chong CK,
Deris S. A hybrid of ant colony optimization and minimization of
metabolic adjustment to improve the production of succinic acid in
Escherichia coli. Comput Biol Med. 2014;49:74–82.

 31. Choon Y, Mohamad M, Deris S, et al. Identifying gene knockout strate-
gies using a hybrid of Bees Algorithm and flux balance analysis for in
silico optimization of microbial strains. In: Omatu S, De Paz Santana JF,
González SR, Molina JM, Bernardos AM, Rodríguez JMC, editors.
Distributed Computing and Artificial Intelligence. Vol 151. Springer
Berlin Heidelberg; 2012:371–378.

 32. McAnulty MJ, Yen JY, Freedman BG, Senger RS. Genome-scale
modeling using flux ratio constraints to enable metabolic engineering
of clostridial metabolism in silico. BMC Syst Biol. 2012;6(1):42.

 33. Yen JY, Nazem-Bokaee H, Freedman BG, Athamneh AI, Senger
RS. Deriving metabolic engineering strategies from genome-scale
modeling with flux ratio constraints. Biotechnol J. 2013;8(5):
581–594.

 34. Wang Q, Zhang X, Li F, Hou Y, Liu X, Zhang X. Identification of a
UDP-glucose pyrophosphorylase from cotton (Gossypium hirsutum L.)
involved in cellulose biosynthesis in Arabidopsis thaliana. Plant Cell
Rep. 2011;30(7):1303–1312.

25

www.dovepress.com
www.dovepress.com
www.dovepress.com

DovepressYen et al

 35. Meng H, Lu Z, Wang Y, Wang X, Zhang S. In silico improvement of het-
erologous biosynthesis of erythromycin precursor 6- deoxyerythronolide B
in Escherichia coli. Biotechnol Bioproc Eng. 2011;16(3):445–456.

 36. Wang JF, Meng HL, Xiong ZQ, Zhang SL, Wang Y. Identification of
novel knockout and up-regulated targets for improving isoprenoid
production in E. coli. Biotechnol Lett. 2014;36(5):1021–1027.

 37. Choi HS, Lee SY, Kim TY, Woo HM. In silico identification of gene
amplification targets for improvement of lycopene production. Appl
Environ Microbiol. 2010;76(10):3097–3105.

 38. Nocon J, Steiger MG, Pfeffer M, et al. Model based engineering of Pichia
pastoris central metabolism enhances recombinant protein production.
Metab Eng. 2014;24:129–138.

 39. Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization
procedure for identifying all genetic manipulations leading to targeted
overproductions. PLoS Comput Biol. 2010;6(4):e1000744.

 40. Ranganathan S, Tee TW, Chowdhury A, et al. An integrated com-
putational and experimental study for overproducing fatty acids in
Escherichia coli. Metab Eng. 2012;14(6):687–704.

 41. Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA. Genome-
scale metabolic network modeling results in minimal interventions that
cooperatively force carbon flux towards malonyl-CoA. Metab Eng.
2011;13(5):578–587.

 42. Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating
kinetics with flux balance analysis for strain design. PLoS Comput Biol.
2014;10(2):e1003487.

 43. Cotten C, Reed JL. Constraint-based strain design using continuous
modifications (CosMos) of flux bounds finds new strategies for meta-
bolic engineering. Biotechnol J. 2013;8(5):595–604.

 44. Rockwell G, Guido NJ, Church GM. Redirector: designing cell fac-
tories by reconstructing the metabolic objective. PLoS Comput Biol.
2013;9(1):e1002882.

 45. Datsenko KA, Wanner BL. One-step inactivation of chromosomal
genes in Escherichia coli K-12 using PCR products. Proc Natl Acad
Sci U S A. 2000;97(12):6640–6645.

 46. Thomason LC, Court D, Bubunenko M, et al. Recombineering: genetic
engineering in bacteria using homologous recombination. Curr Protoc
Mol Biol. 2007;Chapter 1:Unit 1.16.

 47. Sabri S, Steen JA, Bongers M, Nielsen LK, Vickers CE. Knock-in/
Knock-out (KIKO) vectors for rapid integration of large DNA
sequences, including whole metabolic pathways, onto the Escherichia
coli chromosome at well-characterised loci. Microb Cell Fact.
2013;12:60.

 48. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. The
ClosTron: a universal gene knock-out system for the genus Clostridium.
J Microbiol Methods. 2007;70(3):452–464.

 49. Tracy BP, Jones SW, Papoutsakis ET. Inactivation of E and G in
Clostridium acetobutylicum illuminates their roles in clostridial-cell-
form biogenesis, granulose synthesis, solventogenesis, and spore
morphogenesis. J Bacteriol. 2011;193(6):1414–1426.

 50. Tsuda K, Qi Y, Nguyen le V, et al. An efficient Agrobacterium-mediated
transient transformation of Arabidopsis. Plant J. 2012;69(4):
713–719.

 51. Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide insertional
mutagenesis of Arabidopsis thaliana. Science. 2003;301(5633):
653–657.

 52. Walter A, Reinicke M, Bocklitz T, et al. Raman spectroscopic detection of
physiology changes in plasmid-bearing Escherichia coli with and without
antibiotic treatment. Anal Bioanal Chem. 2011;400(9):2763–2773.

 53. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided edit-
ing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol.
2013;31(3):233–239.

 54. Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic
control through promoter engineering. Proc Natl Acad Sci U S A.
2005;102(36):12678–12683.

 55. Hammer K, Mijakovic I, Jensen PR. Synthetic promoter libraries –
tuning of gene expression. Trends Biotechnol. 2006;24(2):53–55.

 56. Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial
engineering of intergenic regions in operons tunes expression of multiple
genes. Nat Biotechnol. 2006;24(8):1027–1032.

 57. Salis MH, Mirsky EA, Voigt CA. Automated design of synthetic
ribosome binding sites to control protein expression. Nat Biotechnol.
2009;27(10):946–950.

 58. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009;136(4):
615–628.

 59. Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs.
Curr Opin Microbiol. 2007;10(2):134–139.

 60. Yoo SM, Na D, Lee SY. Design and use of synthetic regulatory small
RNAs to control gene expression in Escherichia coli. Nat Protoc.
2013;8(9):1694–1707.

 61. Kim B, Park H, Na D, Lee SY. Metabolic engineering of Escherichia
coli for the production of phenol from glucose. Biotechnol J. 2014;9(5):
621–629.

 62. Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated
gene silencing in plants: progress and perspectives. Plant Mol Biol.
2014;86(1–2):1–18.

 63. Lange M, Yellina AL, Orashakova S, Becker A. Virus-induced gene
silencing (VIGS) in plants: an overview of target species and the virus-
derived vector systems. Methods Mol Biol. 2013;975:1–14.

 64. Santos CN, Stephanopoulos G. Combinatorial engineering of microbes
for optimizing cellular phenotype. Curr Opin Chem Biol. 2008;12(2):
168–176.

 65. Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex
genome engineering and accelerated evolution. Nature. 2009;460(7257):
894–898.

 66. Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-
overproducing E. coli strains by combining systematic and combinato-
rial gene knockout targets. Nat Biotechnol. 2005;23(5):612–616.

 67. Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT.
Genome-wide mapping of furfural tolerance genes in Escherichia coli.
PLoS One. 2014;9(1):e87540.

 68. Nicolaou SA, Gaida SM, Papoutsakis ET. Coexisting/Coexpressing
Genomic Libraries (CoGeL) identify interactions among distantly
located genetic loci for developing complex microbial phenotypes.
Nucleic Acids Res. 2011;39(22):e152.

 69. Borden JR, Jones SW, Indurthi D, Chen Y, Papoutsakis ET.
A genomic-library based discovery of a novel, possibly synthetic, acid-
tolerance mechanism in Clostridium acetobutylicum involving non-
coding RNAs and ribosomal RNA processing. Metab Eng. 2010;12(3):
268–281.

 70. Senger RS, Nazem-Bokaee H. Resolving cell composition through
simple measurements, genome-scale modeling, and a genetic algorithm.
Methods Mol Biol. 2013;985:85–101.

 71. Tracy BP, Gaida SM, Papoutsakis ET. Development and application
of flow-cytometric techniques for analyzing and sorting endospore-
forming clostridia. Appl Environ Microbiol. 2008;74(24):7497–7506.

 72. Zu TN, Athamneh AI, Wallace RS, Collakova E, Senger RS. Near
real-time analysis of the phenotypic responses of Escherichia coli
to 1-butanol exposure using Raman spectroscopy. J Bacteriol.
2014;196(23): 3983–3991.

 73. Athamneh AI, Alajlouni RA, Wallace RS, Seleem MN, Senger RS.
Phenotypic profiling of antibiotic response signatures in Escherichia coli
using Raman spectroscopy. Antimicrob Agents Chemother. 2014;58(3):
1302–1314.

 74. Napier JA, Haslam RP, Beaudoin F, Cahoon EB. Understanding and
manipulating plant lipid composition: metabolic engineering leads the
way. Curr Opin Plant Biol. 2014;19:68–75.

 75. Yu XH, Prakash RR, Sweet M, Shanklin J. Coexpressing Escherichia
coli cyclopropane synthase with Sterculia foetida Lysophosphatidic
acid acyltransferase enhances cyclopropane fatty acid accumulation.
Plant Physiol. 2014;164(1):455–465.

 76. Youngs H, Somerville C. Development of feedstocks for cellulosic
biofuels. F1000 Biol Rep. 2012;4:10.

26

www.dovepress.com
www.dovepress.com
www.dovepress.com

Advances in Genomics and Genetics

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/advances-in-genomics-and-gene-expression-journal

Advances in Genomics and Genetics is an international, peer reviewed,
open access journal that focuses on new developments in characterizing the
human and animal genome and specific gene expressions in health and dis-
ease. Particular emphasis will be given to those studies that elucidate genes,
biomarkers and targets in the development of new or improved therapeutic

interventions. The journal is characterized by the rapid reporting of reviews,
original research, methodologies, technologies and analytics in this subject
area. The manuscript management system is completely online and includes
a very quick and fair peer-review system. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

Dovepress

Dovepress

Metabolic engineering strategies in silico

 77. Chen HC, Song J, Wang JP, et al. Systems biology of lignin biosynthesis
in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme a ligase
protein complex formation, regulation, and numerical modeling. Plant
Cell. 2014;26(3):876–893.

 78. Collakova E, Yen JY, Senger RS. Are we ready for genome-scale model-
ing in plants? Plant Sci. 2012;191–192:53–70.

 79. Wilson SA, Roberts SC. Metabolic engineering approaches for pro-
duction of biochemicals in food and medicinal plants. Curr Opin
Biotechnol. 2014;26:174–182.

 80. Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T.
Reconstruction of Arabidopsis metabolic network models accounting
for subcellular compartmentalization and tissue-specificity. Proc Natl
Acad Sci U S A. 2012;109(1):339–344.

 81. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and
biotic stress combinations. New Phytol. 2014;203(1):32–43.

 82. Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic
modeling of genome-scale metabolic networks without sacrificing
 stoichiometric, thermodynamic and physiological constraints.
 Biotechnol J. 2013;8(9):1043–1057.

 83. Jamshidi N, Palsson BO. Formulating genome-scale kinetic models in
the post-genome era. Mol Syst Biol. 2008;4:171.

 84. Damborsky J, Brezovsky J. Computational tools for designing and
engineering enzymes. Curr Opin Chem Biol. 2014;19:8–16.

 85. Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Computational
enzyme design. Angew Chem Int Ed Engl. 2013;52(22):5700–5725.

 86. Privett HK, Kiss G, Lee TM, et al. Iterative approach to compu-
tational enzyme design. Proc Natl Acad Sci U S A. 2012;109(10):
3790–3795.

 87. Karr JR, Sanghvi JC, Macklin DN, et al. A whole-cell computational model
predicts phenotype from genotype. Cell. 2012;150(2):389–401.

27

http://www.dovepress.com/advances-in-genomics-and-gene-expression-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

28

CHAPTER 3

PREDICTING METABOLIC ENGINEERING STRATEGIES WITH NODE-REWARD-

OPTIMIZATION TOOLBOX

Jiun Y. Yen 1,2, Glenda E. Gillaspy 2, Ryan S. Senger 1,3

1 Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA

2 Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA

3 Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA

29

ABSTRACT

Overproduction of valuable metabolic compounds has been a primary goal of metabolic

engineering. Identification of effective metabolic engineering strategies has proven to be an on-

going challenge due to metabolic complexity. With recent advances in bioinformatics and

computational biology, many computational algorithms have been developed to design metabolic

engineering strategies. Predictive algorithms that utilize constraint-based genome-scale

metabolic flux models (GEMs) have shown promising results. Nearly all of these algorithms aim

to generate many alternative designs, which leads to redundancies and requires expert-level

interpretation. Redundant strategies can hinder down-stream cross-referencing and slow the

experimental validation processes, thus reducing overall research efficiency. To address this

issue, we developed the Node-Reward-Optimization (NR-Opt) toolbox, which consists of a set

of fast and accurate algorithms that predicts ranked non-redundant gene knockout (KO),

overexpression (OX), and knock-down (KD) strategies. The core programs of the NR-Opt

toolbox implements a modified steepest ascent hill climbing algorithm to enable rapid

convergence to the best design. We deployed NR-Opt to design strategies for the overproduction

of 1,4-butanediol (BDO) in E. coli and cellulose in Arabidopsis thaliana. Within minutes, NR-

Opt designed four gene knockout strategies and two gene overexpression strategies to

overproduce BDO in E. coli. The best strategy is a triple-knockout of alcohol dehydrogenase,

lactate dehydrogenase, and pyruvate formate lyase, and this strategy has been experimentally

validated previously. Although NR-Opt could not design knockout strategies to overproduce

cellulose in Arabidopsis, it designed two gene overexpression strategies. The best strategy is the

overexpression of cellulose synthase, and it has been shown to significantly increase cell wall

30

cellulose content in Arabidopsis in previous experimental studies. Overall, NR-Opt is a fast,

accurate, and concise algorithm for designing metabolic engineering strategies.

31

INTRODUCTION

Cells produce an extraordinary variety of metabolites to support growth and fitness.

Many studies have shown that it is possible to engineer cellular metabolism to overproduce

specific metabolites with high commodity values, which can include biofuels, commodity

chemicals, pharmaceuticals, and polymers (Kempinski et al., 2015; Park et al., 2007;

Phithakrotchanakoon et al., 2013; Yim et al., 2011). Due to the complexity of cellular

metabolism, the identification an optimal metabolic engineering strategies is a challenge. Recent

advances in bioinformatics, computational biology, and modeling have enabled faster and more

accurate designs. Algorithms involving the utilization of genome-scale models (GEMs) and flux-

based modeling shown in the literature to yield effective designs (Agren et al., 2013; Burgard et

al., 2003; McAnulty et al., 2012; Meng et al., 2011; Oddone et al., 2009; Yim et al., 2011). In

fact, a wide range of design algorithms involving GEMs now exist essentially to achieve the

same goal, but they (i) use different approaches, (ii) allow for different numbers of genetic

manipulations, (iii) converge at different speeds, and (iv) consider the availability of different

genetic tools for implementation.

Flux-based modeling with GEMs utilizes mass balancing, making it a valuable approach

to evaluate the maximum or minimum theoretical yield of biosynthesis. All predictive algorithms

that uses GEMs, such as OptKnock, OptGene, RobustKnock, ReacKnock, BAFBA, OptForce,

and EMILiO, take advantage of this feature to design strategies that ensure a high theoretical

target yield as an obligatory byproduct of growth (Burgard et al., 2003; Choon et al., 2014; Patil

et al., 2005; Ranganathan et al., 2010; Tepper and Shlomi, 2010; Xu et al., 2013; Yang et al.,

2011). It has been proposed that biomass-product coupled yield (BPCY), which is defined as the

rate of target chemical formation multiplied by growth rate, is the most appropriate metric of

32

assessing cell productivity (Choon et al., 2014; Kim et al., 2012). Genetic tools to implement a

metabolic engineering strategy essentially include gene knockout (KO), overexpression (OX),

and expression knock-down (KD); although it is recognized there are several ways of

accomplishing these desired effects, including altering regulatory elements. Algorithms that

predict KO strategies, such as OptKnock and ReacKnock are popular due to the aggressive

nature of gene KO and the relatively straightforward experimental procedure compared to OX or

KD (Burgard et al., 2003; Xu et al., 2013). Recently, algorithms that can predict OX and KD or

combinations of all three strategies, such as OptForce and EMILiO, have yield promising results

(Ranganathan et al., 2010; Yang et al., 2011). So far, nearly all algorithms take the approach of

returning many different designs, which are first screened computationally, expert-analyzed

manually, and then evaluated experimentally. The caveat is that a manual assessment of the

strategies is always necessary prior to experimentation, but the size of the prediction lists are

usually in the hundreds (Yang et al., 2011; Yim et al., 2011). Some designs can contain

redundant modifications that do not improve yield significantly. By first understanding the core

strategies, researchers can then select the most rational strategies to validate (Yim et al., 2011).

Considering that model predictions serve to guide strategy design, it would be more efficient to

the overall workflow if there were only non-redundant designs that contain the core metabolic

engineering strategy. It is also beneficial to repeat the design process multiple times, and often

algorithm convergence time can be a limiting factor, especially as the design involves more

genetic manipulations. Some available algorithms, such as EMILiO, ReacKnock, and DBFBA,

operate on the scale of minutes, but they return many designs, which must be screened further

and interpreted before implementation.

33

With speed, non-redundancy, and robustness as goals, we developed the Node-Reward

Optimization (NR-Opt) toolbox, to enable efficient metabolic engineering strategy design that

exceed the state-of-the-art standards. Similar to OptKnock, the algorithms in the NR-Opt toolbox

are top-down, which means they perform modifications to the model first then examine the

outcomes (Yen et al., 2015). The algorithms implemented in the NR-Opt core programs are

unique from all other design algorithms because they integrate a modified steepest ascent hill

climbing algorithm that allows for delayed ascension and uses a minimum improvement

threshold, which reduces search iterations, enables more rapid convergence to the local maxima,

and improves the chances of reaching the global maxima. The NR-Opt toolbox is primarily made

of two core programs: (i) NR-Knock and (ii) NR-Ox. The NR-Knock algorithm is designed to

predict KO strategies, and NR-Ox predicts OX and/or KD strategies. The NR-Opt toolbox is

coded in MATLAB and optimized to run on parallel computing systems. Prediction of KO

strategies and OX/KD strategies are separated because, as noted by others, gene KO is most

likely to force metabolic reprogramming. The NR-Ox algorithm provides additional strategies

when the predicted KO strategies are insufficient, ineffective, or absent. As a proof-of-concept,

the NR-Opt toolbox was deployed to design metabolic engineering strategies for the

overproduction of BDO in E. coli and cellulose in Arabidopsis thaliana. These designs are

validated with experimental results available in the literature to demonstrate its utility with both

microbes and eukaryotes.

MATERIALS AND METHODS

The NR-Knock and NR-Ox algorithms

Both NR-Knock and NR-Ox use a modified steepest ascent hill climbing algorithm to

enable short non-optimal neighborhood searches for design strategies. In brief, metabolic flux

34

modifications, including: eliminating (KO), increasing (OX), and decreasing flux (KD), in a

GEM and numerous combinations of these make up the entire search space. The challenge is to

reduce this enormous search space without eliminating optimal solutions. To improve efficiency

of experimental validation, the designed strategies with “extra” metabolic modifications (which

do not improve the outcomes) are termed “redundant” strategies and are removed. The NR-Opt

toolbox reduces this search space intelligently to critical reactions and combinations to predict all

the non-redundant strategies with significantly improved BPCY. The NR-Opt toolbox was coded

in MATLAB R2016a with the parallel computing toolbox, and it comes with custom FBA and

flux variability analysis (FVA) solvers that use the MOSEK 7 optimization software

(https://www.mosek.com/). All the codes to the NR-Opt toolbox can be found in the

Supplemental Information (Appendix B). Parallel computing was performed at Advance

Research Computing at Virginia Tech using Dragontooth, a 48-node system with a 2x Intel Xeon

E5-2680v3 (Haswell) 2.5 GHz 12-core CPU and a 256 GB 2133 MHz DDR4 RAM in each

node. All runs were performed with 4 nodes (96 cores) unless specified. SBML models were

converted to COBRA format with the COBRA Toolbox (Schellenberger et al., 2011).

The overall logic flow of the NR-Knock and NR-Ox algorithm is shown in Figure 3-1

and the step-by-step process is described in Appendix A. The designed metabolic engineering

strategies are a set of genetic modifications. Thus, the entire search space is first reduced by

keeping only enzyme-catalyzed reactions with gene annotation in the GEM. After this reduction,

NR-Knock and NR-Ox each treat the search space differently. NR-Knock further reduces the

search space by excluding reactions that do not carry meaningful flux after evaluating with FVA.

Meaningful fluxes are ones that do not resemble futile cycles and not artifacts of computational

precision. In this study, flux values between 10-9 and 150 mmol·gDCW-1·h-1 were considered

https://www.mosek.com/

35

meaningful. One of the features of the NR-Opt algorithms is the further reduction of search space

by evaluating flux ratios. The flux ratio constraint is based on the principle of multiple reactions

competing for the same limited metabolite pool. The metabolite distribution is determined by the

thermodynamics and the availability of enzymes, which can be altered through genetic

modifications (McAnulty et al., 2012; Yen et al., 2013). Reduction of the search space using flux

ratio constraints serves as the first elimination of redundant predictions. Flux ratios are presented

as reaction-node pairs, the competing reactions, and the limited metabolite pool(s). In NR-

Knock, the FVA flux solutions are used to determine flux ratio ranges. Reactions that do not

have associated flux ratios are removed because these represent linear metabolic pathways where

metabolism cannot be re-routed. The remaining reactions now feed into the steepest ascend hill

climbing search, which iteratively searches for a combination of KOs that can generate the best

BPCY. In the first iteration, single-KO strategies are tested by constraining each reactions to zero

flux then perform FBA with the objectives of maximizing growth (𝐺) and minimizing target

product yield (𝑌) to calculate BPCY, which is the product of 𝐺 and 𝑌 (Choon et al., 2014). Each

single-KO strategy is assigned an initial reward point value specified by the user (𝑝𝑖 ← 𝑝0, where

𝑝0 is the initial reward point and 𝑝𝑖 is the points for strategy i). Strategies that have non-zero

BPCY are rewarded additional points. Likewise, each ineffective strategy is deducted one point.

If the point falls below zero, then the strategy is eliminated from expansion. The stack of

strategies is ranked by highest BPCY after the first search iteration. The second iteration of this

depth-first search continues from the top of the strategy stack. The top KO strategy, now the

“parent” strategy, is combined with an additional KO of each reaction in the search space except

itself to form a “child” strategy. The BPCY and 𝑝 of this double-KO strategy is evaluated as

described previously. Then, the strategy stack expands if the strategy has a better BPCY. Each

36

iteration of the depth-first search is optimized for parallel computing. The search loop ends when

the stack is empty or at least one of the strategies meets the minimum BPCY goal

(𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒) assigned by the user. The list of designs is generated and updated as the

program runs to allow for real-time monitoring of results. A build of NR-Knock for a local

machine is also available, and FastFVA (Gudmundsson and Thiele, 2010) is used.

The NR-Ox algorithm is fundamentally the same as NR-Knock with the notable

exception that the search space is significantly larger and each strategy involves altering flux

ratios of relevant reactions. The magnitude of flux ratio increase or decrease can be defined by

the user. As shown in Figure 3-1, after the initial reduction, NR-Ox proceeds to its iterative

search for strategies. With each iteration, FBA is performed with the top parent strategy (wild-

type for the first iteration) to determine the new set of flux ratios. In contrast with NR-Knock,

where the search space is the same for each iteration, NR-Ox redefines search space for each

iteration. It is important to emphasize that each reaction can compete in multiple nodes, and thus

be involved in multiple flux ratios. Each flux ratio is subjected to increase or decrease as

evaluations of overexpression and knock-down strategies. This illustrates the large size of the

search space. FBA is performed to evaluate each strategy and BPCY is determined as before.

Similarly, the stack of strategies is ranked by BPCY, the 𝑝 of each strategy is updated as

necessary and the iterative search continues until the stack is empty or one strategy meets

𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒.

There are five parameters that are critical to robustness of design and required CPU time.

The first is the minimum score increment (𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓), which is the minimum required BPCY

increase from the current best BPCY if a strategy is qualified for reward. If the 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 is too

high, all valid strategies are dismissed. If it is too low, insignificant strategies are qualified for

37

expansion and search space can become unnecessarily large. The default value is 10% of the

predicted maximum theoretical BPCY. The initial reward point (𝑝0), mentioned previously, and

the maximum allowable points (𝑝𝑚𝑎𝑥) are two parameters that determine how many expansions

a strategy can have without improving BPCY. A 𝑝0 of zero means that any strategy that does not

improve BPCY of the wild-type (WT) model in the first search iteration is eliminated. To

maintain the integrity of good strategies, 𝑝𝑚𝑎𝑥 is used to limits the number of continuous sub-

optimal expansions. This feature enables faster search by allowing search of optimal strategies

from sub-optimal strategies (Figure 3-2). In contrast to Bees Hill Flux Balance Analysis (Choon

et al., 2015), which uses a traditional hill climbing algorithm, NR-Opt modifies the hill climbing

algorithm to allow for short continuation of neighborhood search in non-optimal local solution in

attempt to find the global maxima. Allowing sub-optimal solution expansion does not introduce

redundant strategies in NR-Knock predictions, but it can introduce redundant strategies in NR-

Ox predictions, as search spaces can be different for each iteration. Thus, it is necessary to

perform a reduction to eliminate unnecessary flux ratio modifications in preliminary NR-Ox

strategies after the search is complete. The fourth critical parameter is the maximum number of

modifications (𝑁𝑚𝑎𝑥). A high 𝑁𝑚𝑎𝑥 can increase CPU time (but not significantly) because most

strategies are eliminated from expansion early on. This is, unless, 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 is small and 𝑝𝑚𝑎𝑥 is

high. The fifth critical parameter is 𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒, which is the cutoff for 𝐵𝑃𝐶𝑌𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦/

𝐵𝑃𝐶𝑌𝑚𝑎𝑥 to allow for an early termination. It is important to note, just as in all hill climbing

algorithms, NR-Opt is not guaranteed find the global optima, which is why these five parameters

are critical and should be adjusted if good strategies cannot be found.

38

Figure 3-1. The NR-Knock and NR-Ox algorithms. Complete algorithm is described in detail in

Materials and Methods.

39

Figure 3-2. Searching for optimal strategy from suboptimal strategy in the NR-Opt algorithm.

This plot shows a hypothetical scenario of NR-Knock predicting KO strains. The KO strains

represents KO of reaction A (A), double-KO of reactions A and B (AB), and triple-KO of

reactions A, B, and C (ABC). The %𝐵𝑃𝐶𝑌𝑚𝑎𝑥 for of the predicted strategies are shown as black

bars. 𝐵𝑃𝐶𝑌𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 (dash line) and 𝑑𝑣𝑐𝑢𝑡𝑜𝑓𝑓 range are shown. The optimal strategy is

highlighted in orange box.

40

NR-Opt setup for E. coli and Arabidopsis case studies

A previously constructed GEM of E. coli (Ec-iAF1260) was modified to include the

BDO biosynthesis pathway (Feist et al., 2007; Yim et al., 2011). This adds 6 reactions for 2-

oxoglutarate decarboxylase, CoA-dependent succinate semialdehyde dehydrogenase, 4-

hydroxybutyrate dehydrogenase, 4-hydroxybutanoate CoA-transferase, 4-hydroxybutyryl-CoA

reductase, and alcohol dehydrogenase (for the conversion of 4-hydroxybutryraldehyde to BDO)

to the Ec-iAF1260 model, and generates BDO-WT. An additional BDO exchange was added as

necessary. BPCY was calculated as the product of growth and the BDO production flux.

A previously constructed Arabidopsis thaliana GEM, AraGEM, (de Oliveira Dal'Molin

et al., 2010), was used in the second case-study. Because cellulose is already a part of the

biomass equation, a separate cellulose exchange was added and used as the target reaction to

determine if excess cellulose could be produced. This generatd the Cellulose-WT model. BPCY

was calculated as the product of growth and the cellulose exchange flux. The NR-Opt parameters

for both case studies are shown in Table 3-1.

41

Table 3-1. NR-Opt parameters used in prediction.

 BDO in E. coli Cellulose in Arabidopsis

 NR-Knock NR-Ox NR-Knock NR-Ox

Model BDO-WT BDO-Mut 8 Cellulose-WT Cellulose-WT

Target reaction BDO exchange Cellulose exchange

𝒅𝒗𝒄𝒖𝒕𝒐𝒇𝒇 0.1 0.001 0.0001 0.0001

𝒑𝟎 0 0 2 1

𝒑𝒎𝒂𝒙 1 1 2 1

𝑵𝒎𝒂𝒙 4 4 4 4

𝑩𝑷𝑪𝒀𝒂𝒄𝒄𝒆𝒑𝒕𝒂𝒏𝒄𝒆 1 0.95 0.9 1

Real time, s (1) 41.2 (2) 185.7 1259.1 373.2

(1) Performance on 96 cores of the system described in Material and Methods

(2) 57.7 s with 24 cores, and 248.1 s with 1 core on a laptop.

42

RESULTS

Predicted metabolic engineering strategies to increase BDO yield from E. coli

A gene KO strategy to increase 1,4-butanediol (BDO) yield in E. coli was predicted

previously using OptKnock, and validated experimentally (Yim et al., 2011). To demonstrate

that the NR-Opt toolbox can predict robust metabolic engineering strategies, we examined

whether NR-Opt would design the same or a similar strategy to increase BDO production from

E. coli.

When FBA was performed on the modified Ec-iAF1260 model (BDO-WT), no BDO

production was predicted as a byproduct of growth. NR-Knock was deployed on the BDO-WT

model and 4 KO strategies to increase minimum BDO BPCY were designed. The conventional

evaluation method of designed strategy is by examining the production envelope to identify the

predicted minimum theoretical product yield as cells evolve or adjust towards maximum growth.

As shown in Figure 3-3A, all 4 NR-Knock strategies ranked by BPCY were compared against

the validated strategy (Yim et al., 2011). All of the NR-Knock strategies have equivalent or

lower minimum BDO yield at maximum growth as compared to the validated strategy. The

designed strategies do not have high minimum BDO yield at maximum growth because the NR-

Knock objective was to maximize BCPY. As shown in Figure 3-3B, the calculated BPCY

envelopes of all the NR-Knock strategies have greater predicted BPCY and faster growth except

of BDO-Mut 4. The BDO-Mut 4 design is interesting because its calculated BPCY envelope

shows a mutant with alcohol dehydrogenase (adh) KO can generate high BDO, but the

production is not yet at its theoretical maximum, as indicated by the round head space above the

maximum growth rate point. In contrast, BDO-Mut 1 and 3 designs, and the validated Yim et al.

43

strategy, have reached their maximum theoretical BPCYs when the strains achieve maximum

growth, as indicated by the sharp peak.

Table 3-2 shows (i) the theoretical maximum BPCY of BDO, (ii) the BPCY of Yim et al.

KO strategy, and (iii) the top NR-Knock designs. Although the maximum number of KOs was

set to 4, the best strategies were 3 KOs or fewer. The validated 4-KO strategy implemented in

Yim et al. has a BCPY that is 78.6% of the theoretical maximum, which is less than all the

strategies predicted by NR-Knock. The best strategies predicted by NR-Knock is a 3-KO strategy

(BDO-Mut 1) with a BCPY that is 99.94% of the BDO-WT theoretical maximum (Table 3-2).

This strategy was validated experimentally in Yim et al. to produce significantly higher yield

than the WT strain containing the BDO pathway (Yim et al., 2011). It is worth noting that BDO-

Mut 4 is a single KO strategy that has a BPCY similar to the OptKnock strategy of Yim et al.

The gene targets in all of the NR-Knock strategies are similar to those of the validated Yim et al.

strategy, in which they all attempt to limit the production of ethanol, lactate, and formate to force

BDO production (Yim et al., 2011). In addition, NR-Knock was able generate these predictions

in 57.7 seconds with 24 cores of the computer system described in Materials and Methods.

Importantly, when NR-Knock was performed using one core on a local machine with an Intel

Core i7-3537U 2.0 GHz CPU and an 8 GB RAM, it required 4.1 minutes to design the same KO

strategies. By contrast, this is significantly faster than OptKnock, on the scale of tens of minutes

with 48 cores, and ReacKnock, on the scale of minutes with 48 cores, when solving similar

problems (Xu et al., 2013). DBFBA is a very fast and robust algorithm, but it requires 34

minutes to solve a similar problem on a local machine (Choon et al., 2014). EMILiO is arguably

the fastest algorithm to date with a run time as low as one minute, and it can predict KO, OX,

and KD strategies simultaneously (Yang et al., 2011). The drawback is that EMILiO predicts

44

many redundant strategies with additional modifications to the core strategy that do not lead to

significant differences. NR-Knock can perform on the same time scale as EMILiO, but

redundant predictions are eliminated.

45

Figure 3-3. Conventional production envelopes and BPCY envelopes of predicted KO strategies

to increase BDO yield. Conventional production envelopes (A) and BPCY envelopes (B) for

BDO-WT (black line), Yim et al. OptKnock strategy (red line), and 4 NR-Knock strategies (blue

lines). The maximum growth rate (vertical red dashed line) and BDO yield or BPCY (horizontal

red dashed line) of Yim et al. Optknock strategy is shown in every plot for comparison.

46

Table 3-2. Predicted gene KO strategies to increase BDO BPCY in E. coli.

Strains Reactions to KO Genes BPCY

BDO-WT (No KO) 0

 (Theoretical maximum) 0.0116

Yim et al. Ethanol + NAD+ ↔ Acetaldehyde + H++ NADH adh 0.0091

 D-Lactate + NAD+ ↔ Pyruvate + H++ NADH ldh

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl

 L-Malate + NAD+ ↔ H+ + NADH + Oxaloacetate mdh

BDO-Mut 1 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0116

 D-Lactate + NAD+ ↔ Pyruvate + H++ NADH ldh

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl

BDO-Mut 2 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0115

 ADP + 4 H+ + Phosphate ↔ ATP + H2O + 3 H+ atp

 CoA + Pyruvate ↔ Acetyl-CoA + Formate pfl

BDO-Mut 3 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0107

 ADP + 4 H+ + Phosphate ↔ ATP + H2O + 3 H+ atp

 D-Glucose 6-phosphate ↔ D-Fructose 6-phosphate pgi

BDO-Mut 4 Ethanol + NAD+ ↔ Acetaldehyde + H+ + NADH adh 0.0093

47

To examine the performance of NR-Ox, the BDO-Mut 4 model (which contains the adh

KO) was used to determine if a gene overexpression or knock-down strategy exists that can

further improve its BPCY. The BDO-Mut 4 model was used because it contains a single gene

KO and its BPCY was less than the theoretical maximum. NR-Ox returned 2 design strategies,

given the parameters listed in Table 3-1, and these are shown in Table 3-3. Interestingly, NR-Ox

predicted the importance of pyruvate dehydrogenase (lpdA) activity in the production of BDO

(Yim et al., 2011). NR-Ox also calculated that if the overexpression of lpdA, in the presence of

the adh KO, can partition 90.4% of the total pyruvate through pyruvate dehydrogenase reaction

the BDO BCPY can improve from 80.2% to 100% of the theoretical maximum. For this study,

NR-Ox was parameterized to search for at most 4 modifications, which included overexpression

and/or knock-down of enzyme catalyzed reactions. Even though the solution space became very

large, NR-Ox required only 3.1 minutes (using the 96 core configuration described in Materials

and Methods) to design an optimal strategy.

48

Table 3-3. NR-Ox predictions to increase BDO BPCY in E. coli strain with adh KO.

Strain ∆𝑭𝑹(1) Nodes Reactions Genes BPCY

BDO-adh-Mut 1 +0.9 Pyruvate
CoA + NAD+ + Pyruvate ↔ Acetyl-CoA +

CO2 + NADH
lpdA 0.0116

BDO-adh-Mut 2 +0.315
D-Erythrose

4-phosphate

D-erythrose 4-phosphate + H2O +

Phosphoenolpyruvate ↔ 2-Dehydro-3-

deoxy-D-arabino-heptonate-7-phosphate +

Phosphate

aroG 0.0094

(1) The amount of change to the initial flux ratio. Positive change indicates gene OX and

negative change indicates gene KD. The maximum is 1.

49

Predicted metabolic engineering strategies to increase cellulose content in Arabidopsis

The NR-Opt toolbox was used with the modified AraGEM model (Cellulose-WT) to

predict metabolic engineering strategies to increase cellulose production in Arabidopsis thaliana.

NR-Knock was unable to predict any KO strategy even when 𝑝0 and 𝑝𝑚𝑎𝑥 were large, as shown

in Table 3-1. Given the size of the Cellulose-WT model, over 4 million KO strategies were

evaluated in 21 minutes of real time (using the 96-core configuration described previously). This

result also suggests that no metabolic characteristics are present to allow for repartitioning of

cellular resources to overproduce cellulose. However, NR-Ox designed two gene overexpression

strategies. As shown in Table 3-4, the strategy with the highest predicted BPCY (Cellulose-Mut

1) is the overexpression of cellulose synthase (CesA). NR-Ox predicted that if CesA can

partition 97% of the total UDP-glucose, then 100% of theoretical maximum BCPY can be

achieved. The drawback of this strategy is that growth is reduced by 64% compared to wild-type

(WT).

The second strategy (Cellulose-Mut 2) requires upregulating both a nucleoside

diphosphate kinase (Ndk1) and a UDP-glucose pyrophosphorylase (UGPase). Cellulose-Mut 2

has a significantly lower predicted BPCY, which is only 9.5% of the theoretical maximum.

However, further examination found that the low BPCY is primarily due to the significantly

reduced predicted growth (4.4% of WT). Using slightly lower flux ratios on UGPase|UTP and

Ndk1|ATP reaction|node pair than the default assigned in the NR-Ox run, lost growth is

recovered and BPCY is further improved. The optimal flux ratios for UGPase in the UTP node

and Ndk1 in the ATP node to maximize BPCY are shown in Figure 3-4. Analysis of the

predicted flux distribution revealed that Ndk1 is predicted to have very low flux in WT, and flux

through UGPase is reduced when the Ndk1 flux ratio increases.

50

Table 3-4. NR-Ox predicted overexpression strategies to increase cellulose BPCY.

Strain ∆𝑭𝑹(1) Nodes Reactions Genes BPCY(2)

Cellulose-WT (No modification)(3) 0

 (Theoretical maximum) 0.0063

Cellulose-Mut 1 +0.295 UDP-Glucose UDP-glucose ↔ Cellulose + UDP CesA 0.0063

Cellulose-Mut 2 +0.894 ATP ATP + UDP ↔ ADP + UTP Ndk1 0.0006

 +0.898 UTP
D-Glucose 1-phosphate + UTP ↔

Pyrophosphate + UDP-glucose
UGPase

(1) The amount of change to the initial flux ratio. Positive change indicates gene OX and

negative change indicates gene KD. The maximum is 1.

(2) Modified calculation: 𝐵𝑃𝐶𝑌 = 𝑣𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ∙ 𝑣𝐺𝑟𝑜𝑤𝑡ℎ.

(3) Does not include the amount already in the biomass equation.

51

Figure 3-4. The dynamics of flux ratios of UGPase|UTP and Ndk1|ATP. BPCYs of different flux

ratios of UGPase|UTP and Ndk1|ATP are shown by the color gradient. The optimal flux ratios

to achieve maximum theoretical BPCY of 0.0039 is shown by the red curve. The flux ratios

examined by NR-Ox during run is shown by the black dot.

52

DISCUSSION

Computational predictions can aid the metabolic engineering process significantly.

However, predictions from new algorithms should be cross-referenced with previous

experimental studies to determine their degree of validity. Adjustments to the metabolic model

may be required; thus, an iteration approach may be necessary. The NR-Opt toolbox, presented

here for the first time, has shown to be capable of designing accurate, complex, yet concise

metabolic engineering strategies in near-record time. Furthermore, the NR-Opt toolbox

incorporates the genomic tools of KO, OX, and KD and offers a dynamic set of parameters to

give users full control of run time and robustness. The NR-Opt toolbox has demonstrated shorter

run-times due to competing algorithms. This allows users to explore more complex strategies

(i.e. include more genetic manipulations) and repeat model designs. The reward parameters

allow the user to reject redundant strategies, specifically ones with additional genetic

manipulations that do not improve BCPY. This effectively removes them from FBA analysis, the

most time-consuming step of the algorithm. This feature also allows the resulting list of designs

to be concise, simplifying downstream evaluation and experimental validations.

In the case of engineered BDO production in E. coli, OptKnock predicted a list of 203

metabolic engineering strategies (Yim et al., 2011). Cross-referencing these with literature, to

determine which to implement experimentally, can be tedious without expert knowledge. On the

other hand, NR-Knock returned 4 optimal strategies, and each retained only necessary gene

KO’s that can improve BPCY significantly. Thus, fewer refinements of results and experimental

validations are required, and implementing any of the top NR-Knock designs will likely yield a

favorable result. The differences between the sizes of the design strategy lists and the predictions

themselves can be attributed to the metabolic models used in the studies; however, it is primarily

53

due to the differences in the design algorithms. It is worth emphasizing that the top ranking NR-

Knock strategy is an experimentally validated strategy by Yim et al., but it was not top ranking

strategy designed by OptKnock (Yim et al., 2011). Another important point is that Yim et al.

incorporated additional modifications on top of their OptKnock design, which ultimately lead to

much higher BDO production. The complete Yim et al. strategy included four KOs of adh,

lactate dehydrogenase (ldh), pyruvate formate lyase (pfl), and mdh, which were predicted by

OptKnock, and three other genetic modifications that were rationalized by the authors based on

the OptKnock strategy (Yim et al., 2011). In this strategy, mdh KO played a role of decreasing

oxidative TCA cycle to increasing reducing equivalent reserve for BDO biosynthesis (Yim et al.,

2011). The three additional genetic modifications served to reinforce the OptKnock strategy. It is

argued that with a quick evaluation of the short NR-Opt prediction list, a researcher could design

the final strategy implemented in Yim et al more rapidly.

Similarly, NR-Opt returned a very short list of designs (Table 3-4) to increase cellulose

production in Arabidopsis. This is interesting because the predicted strategies contain, so far, the

only two experimentally validated strategies despite decades of cellulose research (Kim et al.,

2013; Wang et al., 2011). This result implies the challenge of cellulose engineering owning to

the robustness of Arabidopsis metabolism. Previous experimental study showed that the

overexpression of a transcription factor, MYB46, in Arabidopsis can upregulate the cellulose

synthase (CesA) complex and increase crystalline cellulose concentration in leaves by 30%. The

up-regulation of CesA complex by overexpressing MYB46 can be considered a “true” strategy to

increase cellulose, but this comes at the expense of growth (Kim et al., 2013). The reduced plant

growth due to MYB46 overexpression has shown to be independent of cell wall thickening,

which suggests it could be a metabolic consequence (Kim et al., 2013; Ko et al., 2009). The

54

reduction of growth can be compensated by inducing MYB46 overexpression later in the plant

developmental stage (Kim et al., 2013). This suggests that cellulose production may still have

room to increase, but this seems to be at the expense of plant growth. The analysis on the

dynamics between Ndk1 and UGPase (Figure 3-4) shows that a coordinated adjustment of

Ndk1|ATP and UGPase|UTP flux ratios is required to ensure optimal BPCY from this strategy.

Although there is currently no evidence correlating Ndk1 expression to cellulose biosynthesis,

multiple studies have found that the overexpression of UGPase can increase cellulose content (Li

et al., 2014; Zhang et al., 2013). Overexpression of UGPase in Arabidopsis increases crystalline

cellulose concentration in the stem, but this increase is much smaller compared to MYB46

overexpression (Wang et al., 2011). It was shown that UGPase overexpression increases plant

growth; however, FBA calculated reduced growth (Wang et al., 2011). In the modeling process,

metabolic flux in AraGEM is calculated by FVA and FBA under the assumption of a maximal

growth objective, which means all available resources are directed to growth, or transport

reactions that serve growth through mass balancing. The disagreement between predicted growth

consequences and experimental growth improvement suggests that the assumption of

maximizing growth may not be accurate. This growth objective inaccuracy suggests that there is

an underlying biological complexity in Arabidopsis that prevents maximal uptake of nutrients

and/or maximal partitioning of nutrient into growth. Although the Cellulose-Mut 2 design is not

entirely consistent with experimental evidence, this becomes an excellent example of using

predictive algorithms to guide the understanding of biology and to contribute in the model

improvement cycle.

Finally, it is important to emphasize that regardless of the metabolic engineering strategy

design algorithm being used, the quality of the design depends heavily on the quality of the

55

metabolic model. Cross-validation of designs with multiple GEMs and different design

algorithms to explore robustness is still recommended, as noted previously (Choon et al., 2014).

Because NR-Opt is fast and the predictions are more concise, it can serve as the first pass in the

design process. Algorithms, such as EMILiO, ReacKnock, and DBFBA, can then be used for

cross-validation and to explore alternative strategies.

CONCLUSIONS

The NR-Opt toolbox has been developed as a set of fast, accurate, and concise predictive

algorithms that uses GEMs to design metabolic engineering strategies. The NR-Opt toolbox was

applied in a proof-of-concept to design strategies that can theoretically increase BDO production

in E. coli and cellulose production in Arabidopsis. Cross-validation with published experimental

results showed that NR-Opt can efficiently generate complex and accurate designs. Its run time

is among the fastest of any available design algorithms, and it returns a concise list of top-rated

designs to accelerate the experimental validation process.

REFERENCES

Agren, R., Otero, J. M., Nielsen, J., 2013. Genome-scale modeling enables metabolic

engineering of Saccharomyces cerevisiae for succinic acid production. Journal of

industrial microbiology & biotechnology. 40, 735-747.

Burgard, A. P., Pharkya, P., Maranas, C. D., 2003. Optknock: A bilevel programming framework

for identifying gene knockout strategies for microbial strain optimization. Biotechnology

and bioengineering. 84, 647-657.

Choon, Y. W., Mohamad, M. S., Deris, S., Chong, C. K., Omatu, S., Corchado, J. M., 2015.

Gene knockout identification using an extension of Bees Hill Flux Balance Analysis.

BioMed research international. 2015.

Choon, Y. W., Mohamad, M. S., Deris, S., Illias, R. M., Chong, C. K., Chai, L. E., Omatu, S.,

Corchado, J. M., 2014. Differential bees flux balance analysis with OptKnock for in

silico microbial strains optimization. PloS one. 9, e102744.

de Oliveira Dal'Molin, C. G., Quek, L. E., Palfreyman, R. W., Brumbley, S. M., Nielsen, L. K.,

2010. AraGEM, a genome-scale reconstruction of the primary metabolic network in

Arabidopsis. Plant physiology. 152, 579-89.

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt,

L. J., Hatzimanikatis, V., Palsson, B. Ø., 2007. A genome‐scale metabolic reconstruction

56

for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic

information. Molecular systems biology. 3, 121.

Gudmundsson, S., Thiele, I., 2010. Computationally efficient flux variability analysis. BMC

bioinformatics. 11, 489.

Kempinski, C., Jiang, Z., Bell, S., Chappell, J., 2015. Metabolic Engineering of Higher Plants

and Algae for Isoprenoid Production. In: Schrader, J., Bohlmann, J., Eds.), Biotechnology

of isoprenoids. Springer International Publishing, Cham, pp. 161-199.

Kim, J.-W., Chin, Y.-W., Park, Y.-C., Seo, J.-H., 2012. Effects of deletion of glycerol-3-

phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol

metabolism in recombinant Saccharomyces cerevisiae. Bioprocess and biosystems

engineering. 35, 49-54.

Kim, W. C., Ko, J. H., Kim, J. Y., Kim, J., Bae, H. J., Han, K. H., 2013. MYB46 directly

regulates the gene expression of secondary wall‐associated cellulose synthases in

Arabidopsis. The plant journal. 73, 26-36.

Ko, J.-H., Kim, W.-C., Han, K.-H., 2009. Ectopic expression of MYB46 identifies

transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

The plant journal. 60, 649-665.

Li, N., Wang, L., Zhang, W., Takechi, K., Takano, H., Lin, X., 2014. Overexpression of UDP-

glucose pyrophosphorylase from Larix gmelinii enhances vegetative growth in transgenic

Arabidopsis thaliana. Plant Cell Rep. 33, 779-791.

McAnulty, M. J., Yen, J. Y., Freedman, B. G., Senger, R. S., 2012. Genome-scale modeling

using flux ratio constraints to enable metabolic engineering of clostridial metabolism in

silico. BMC systems biology. 6, 42.

Meng, H., Lu, Z., Wang, Y., Wang, X., Zhang, S., 2011. In silico improvement of heterologous

biosynthesis of erythromycin precursor 6-deoxyerythronolide B in Escherichia coli.

Biotechnology and bioprocess engineering. 16, 445-456.

Oddone, G. M., Mills, D. A., Block, D. E., 2009. A dynamic, genome-scale flux model of

Lactococcus lactis to increase specific recombinant protein expression. Metabolic

engineering. 11, 367-381.

Park, J. H., Lee, K. H., Kim, T. Y., Lee, S. Y., 2007. Metabolic engineering of Escherichia coli

for the production of L-valine based on transcriptome analysis and in silico gene

knockout simulation. Proceedings of the national academy of sciences. 104, 7797-7802.

Patil, K. R., Rocha, I., Förster, J., Nielsen, J., 2005. Evolutionary programming as a platform for

in silico metabolic engineering. BMC bioinformatics. 6, 1.

Phithakrotchanakoon, C., Champreda, V., Aiba, S.-i., Pootanakit, K., Tanapongpipat, S., 2013.

Engineered Escherichia coli for Short-Chain-Length Medium-Chain-Length

Polyhydroxyalkanoate Copolymer Biosynthesis from Glycerol and Dodecanoate.

Bioscience, biotechnology, and biochemistry. 77, 1262-1268.

Ranganathan, S., Suthers, P. F., Maranas, C. D., 2010. OptForce: an optimization procedure for

identifying all genetic manipulations leading to targeted overproductions. PLoS

computational biology. 6, e1000744.

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D.

C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R., Palsson, B. O.,

2011. Quantitative prediction of cellular metabolism with constraint-based models: the

COBRA Toolbox v2.0. Nature protocols. 6, 1290-1307.

57

Tepper, N., Shlomi, T., 2010. Predicting metabolic engineering knockout strategies for chemical

production: accounting for competing pathways. Bioinformatics. 26, 536-543.

Wang, Q., Zhang, X., Li, F., Hou, Y., Liu, X., Zhang, X., 2011. Identification of a UDP-glucose

pyrophosphorylase from cotton (Gossypium hirsutum L.) involved in cellulose

biosynthesis in Arabidopsis thaliana. Plant Cell Rep. 30, 1303-1312.

Xu, Z., Zheng, P., Sun, J., Ma, Y., 2013. ReacKnock: identifying reaction deletion strategies for

microbial strain optimization based on genome-scale metabolic network. PloS one. 8,

e72150.

Yang, L., Cluett, W. R., Mahadevan, R., 2011. EMILiO: a fast algorithm for genome-scale strain

design. Metabolic engineering. 13, 272-281.

Yen, J. Y., Nazem-Bokaee, H., Freedman, B. G., Athamneh, A. I. M., Senger, R. S., 2013.

Deriving metabolic engineering strategies from genome-scale modeling with flux ratio

constraints. Biotechnology journal. 8, 581-594.

Yen, J. Y., Tanniche, I., Fisher, A., Gillaspy, G., Bevan, D., Senger, R., 2015. Designing

metabolic engineering strategies with genome-scale metabolic flux modeling. Advances

in genomics and genetics. 7, 149-160.

Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J.,

Trawick, J. D., Osterhout, R. E., Stephen, R., 2011. Metabolic engineering of Escherichia

coli for direct production of 1, 4-butanediol. Nature chemical biology. 7, 445-452.

Zhang, G., Qi, J., Xu, J., Niu, X., Zhang, Y., Tao, A., Zhang, L., Fang, P., Lin, L., 2013.

Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content

in Jute (Corchorus capsularis L.). Biochemical and biophysical research communications.

442, 153-158.

58

CHAPTER 4

MODEL-GUIDED ANALYSIS OF SNRK1.1 OVEREXPRESSION IN ARABIDOPSIS

PREDICTS SIGNIFICANT CHANGES IN STARCH METABOLISM OVER PLANT

DEVELOPMENT

Jiun Y. Yen 1,2, Sarah P. Williams 2, Ryan S. Senger 1,3, Glenda E. Gillaspy 2

1 Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA

2 Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA

3 Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA

59

ABSTRACT

The understanding of enzymatic functions in plant signaling pathways is extremely

challenging and convoluted by interactions between metabolic and signaling responses. One

important enzyme in both signaling and metabolism, the sucrose non-fermenting related kinase 1

(SnRK1), has been shown to play a pivotal role in plant stress and energy signaling. Previous

studies in Arabidopsis thaliana showed evidence that SnRK1 regulates global transcriptional

responses to hypoxic stress and carbon starvation. SnRK1 overexpression has also been shown to

delay plant developmental transitions, increase biomass, and reduce starch accumulation. Further

understanding of the SnRK1 regulatory pathway may enable accurate metabolic engineering of

plant energy metabolism to improve biomass yield. To address the complexity of SnRK1

metabolic regulation, we modified and deployed a constraint-based genome-scale metabolic

model (GEM) of Arabidopsis to help guide our study of SnRK1 overexpression plants.

Quantitative validation of model predictions with experimental data showed high accuracy in

predicting growth and starch turnover in both wild-type (WT) and SnRK1 overexpressors during

development. Results suggest changes in plant development and starch are independent

responses to SnRK1 overexpression, which supports a previous speculation on simultaneous

SnRK1 regulation of plant development and starch metabolism. This study demonstrates the

utility of flux-based modeling in studying signaling pathways and it introduces a novel modeling

framework to enable prediction of non-steady state metabolite accumulation in a diurnal cycle.

60

INTRODUCTION

In the absence of mobility, plants have evolved a diverse set of sensors to enable rapid

response to unpredictable changes in their surrounding environment (Hasegawa et al., 2000;

Sheen, 2014; Yamaguchi-Shinozaki and Shinozaki, 2006). Environmental stress can often

compromise photosynthesis and respiration leading to a significant loss in cellular energy.

Sucrose non-Fermenting Related Kinase 1 (SnRK1), a plant ortholog of mammalian AMP

kinase, is encoded by a family of genes, and has been proposed to be a critical sensor of energy

level in plants (Polge and Thomas, 2007). Previous studies in Arabidopsis showed evidence of

SnRK1 global regulation of plant metabolism under stress and carbon starvation (Baena-

González et al., 2007). Transcriptomic analysis showed ectopic expression of SnRK1 represses

transcription of genes involved in anabolic pathways and activates those involved in catabolic

pathways and autophagy. In addition, this subset of SnRK1-regulated genes was also regulated

when plants are grown under low sugar, low CO2, or an extended night period (Baena-González

et al., 2007). The SnRK1-regulated metabolic pathways include the biosynthesis of cell wall,

protein, lipid, and sugars (Baena-González et al., 2007).

In the Arabidopsis genome, there are three genes in the SnRK1 gene family, which

includes the functional SnRK1.1 and SnRK1.2, and the unexpressed pseudogene SnRK1.3

(Baena-González et al., 2007; Hrabak et al., 2003). SnRK1.1 and SnRK1.2 double-knockout

plants have greatly stunted growth and are infertile (Baena-González et al., 2007).

Overexpression of SnRK1.1 can delay developmental transition and reduced rosette size in early

development and increased rosette size in the post-flowering stage (Baena-González et al., 2007;

Gazzarrini and Tsai, 2014; Williams et al., 2014). In contrast, overexpression of SnRK1.2

induces early flowering and increased rosette size in early development (Williams et al., 2014).

61

The gene expression pattern of SnRK1.2 in seedlings is spatially restricted to roots, and

hydathodes and vascular tissue within leaves; whereas, SnRK1.1 gene expression is more

uniform in all tissue types (Williams et al., 2014).

To overcome the inability to photosynthesize at night, most plants convert a portion of

their photosynthate into starch during the day, and then remobilize starch in the night for growth

and maintenance (Gibon et al., 2009). Gene expression analysis showed that SnRK1 is involved

in activating starch degradation during energy deprivation (Baena-González et al., 2007). SnRK1

loss-of-function plants showed elevated end-of-day (EOD) and end-of-night (EON) starch levels,

which implicates reduced starch turnover in the night (Baena-González et al., 2007). In addition,

SnRK1.1 overexpression in Arabidopsis resulted in reduced starch accumulation when

overexpression plants were supplemented with high glucose (Jossier et al., 2009). Interestingly,

overexpression of SnRK1 in a sink tissue, potato tuber, increased tuber starch content by up to

30% (McKibbin et al., 2006). This disparity is likely due to differences in tissue type (i.e. source

vs. sink tissue), nonetheless, it is generally agreed that SnRK1 has a significant role in regulating

starch metabolism and plant development (Baena-González et al., 2007; Gazzarrini and Tsai,

2014; Jossier et al., 2009; Williams et al., 2014).

It has been shown that starch can impact plant developmental transitions (Matsoukas et

al., 2013; Yu et al., 2000). Specifically, it was found that the total starch level does not regulate

developmental transition; but rather, the reduction of starch turnover rate at night can

significantly delay juvenile-to-adult phase transition during the vegetative stage, which can lead

to delayed vegetative-to-reproductive stage transition (Matsoukas et al., 2013). Previous data

seem to indicate that the developmental delay observed in SnRK1 overexpression plants is not a

62

consequence of altered starch metabolism and that SnRK1.1 may regulate starch and

developmental transition simultaneously, however, concrete results have yet to be presented.

Many challenges faced in sugar signaling research come from the difficulties in

dissecting the convoluted mixture of metabolic and regulatory events that are further complicated

on a temporal scale (Sheen, 2014). In light of recent advances in bioinformatics and

computational biology, multiple plant researchers have sought alternative analysis and

computational methods, including the utilization of constraint-based genome-scale metabolic

models (GEMs) to address metabolic complexity (Cheung et al., 2013; Grafahrend-Belau et al.,

2013; Poolman et al., 2013; Töpfer et al., 2013). A GEM is a network of biochemical reactions

defined solely by stoichiometry; kinetics and regulatory features are not required but can be

added where information is known (Poolman et al., 2009; Schilling et al., 1999). Flux balance

analysis (FBA) is commonly used with a GEM to calculate metabolic flux distributions given a

growth objective and a pseudo-steady state. The pseudo-steady state assumption holds when the

rate of metabolic reaction is significantly higher than the rate of organism development, such as

in filling seeds or developing fruit (Allen et al., 2009; Caspeta et al., 2012; Colombié et al.,

2015). Under the pseudo-steady state assumption, flux of its formation is equal to the flux of that

metabolite’s consumption; thus, metabolic network flux distribution (within the bounds of

constraints) is calculated traditionally with linear programming using Equation 1, where 𝑆𝑖𝑗 is

the stoichiometric coefficient of metabolite 𝑖 in reaction 𝑗, 𝑣𝑗 is the calculated flux of reaction 𝑗,

and 𝑋𝑖 is the concentration of metabolite (Caspeta et al., 2012; Förster et al., 2003; Park et al.,

2009).

𝑑𝑋𝑖

𝑑𝑡
= 𝑆𝑖𝑗 ∙ 𝑣𝑗 = 0, 𝑣𝑗,𝑚𝑖𝑛 ≤ 𝑣𝑗 ≤ 𝑣𝑗,𝑚𝑎𝑥 (Equation 1)

63

The utility of flux-based modeling in studying plant metabolism has been a subject of

great interest (Collakova et al., 2012). To show that it can be used for plant studies, a

comprehensive analysis that compared experimentally measured fluxes with predicted fluxes of

central carbon metabolism showed that flux-based modeling with GEMs can accurately predict

steady-state flux in Arabidopsis cells in vitro (Williams et al., 2010). Although utilization of

GEMs to accurately predict fluxes of plants in vivo is challenged by the lack of a long-term

steady-state condition, a previous study on the effect of light intensity on rice metabolism

revealed which metabolic interactions can be described solely with mass-balancing (Poolman et

al., 2013). This study showed that flux-based modeling can be used to determine whether a

metabolic change involves regulatory control, based on the accuracy of the prediction. Another

study on the metabolic changes in developing tomato fruit demonstrated that GEMs and pseudo-

steady state flux-based modeling can also be used to predict metabolic flux “snap-shots” of

developmental stages (Colombié et al., 2015).

The objective of this study is to determine if flux-based modeling can be used to guide

experimental research to determine the metabolic roles of enzymes in plant signaling pathways.

As the proof-of-concept, we investigated whether starch turnover is regulated differently in WT

and plants ectopically expressing a SnRK1.1 gene fused to an HA epitope tag (SnRK1.1:HA

plant). Because overexpression of SnRK1.1:HA has distinct phenotypic consequences at

different developmental stages, we examined starch turnover at two different stages of plant

development. To do so, we modified an existing Arabidopsis GEM (AraGEM) (de Oliveira

Dal'Molin et al., 2010) using experimentally measured biomass data and a novel modeling

framework to predict quantitative changes of biomass and starch over a 24-hour diurnal growth

cycle. Predicted growth and starch turnover rates were validated with experimental results, and

64

showed agreement with computational predictions. Results from this model-guided analysis of

starch metabolism suggest that the delayed developmental transition in SnRK1.1 overexpression

plants may not be associated with starch. Our analysis also supports previous speculation that

SnRK1.1 plays a role in regulating starch and plant development simultaneously.

MATERIALS AND METHODS

Plant growth conditions

Arabidopsis thaliana ecotype Landsberg erecta (Ler-0) plants were used for all

experiments. Plants were grown in a controlled growth chamber at 22°C and 55% relative

humidity under 16 hours of light, provided with fluorescent lamps (140 E). Soil-grown plants

were maintained on Sunshine Mix #1 and watered with Miracle-Gro Liquid Houseplant Food (8-

7-6: 8% total nitrogen, 7% available phosphate, P2O5, 6% soluble potash, K2O, 0.1% Iron, Fe;

Scotts Miracle-Gro Products, Inc.).

Tissue collection

All pre-flowering plant tissues for protein, biomass, cellulose, and metabolite analyses

were harvested from 14 day-old plants. All tissues of other ages were green mature leaves

harvested from rosette. For starch analyses, liquid nitrogen was poured directly onto rosette and

samples were harvested while frozen.

All samples except EOD and EON samples were harvested at 1 PM. EOD samples were

harvested 30 minutes before the dark cycle began. EON samples were harvested 30 minutes prior

to the light cycle.

Quantification of cell wall

Rosette leaves and stem tissues were harvested and dried via lyophilization and then

pulverized with 3 mm steel beads. Samples were washed using 70% ethanol and centrifuged for

65

10 minutes at top speed on a table-top microcentrifuge. For cellulose, the pellet was resuspended

in 1 mL of Updegraff reagent (acetic acid:nitric acid:water, 8:1:2 [v/v]) before boiling for 30

minutes on a heating block at 98ºC. The remaining crystalline cellulose was pelleted by

centrifugation and dissolved in 1 mL of 67% (v/v) sulfuric acid. Crystalline cellulose amount

was quantified colorimetrically at 620 nm in a spectrophotometer using the anthrone reagent

(Updegraff, 1969).

Lignin and glycosyl levels were analyzed by the Complex Carbohydrate Research Center

(CCRC) at University of Georgia. For cell wall glycosyl analysis, the ethanol insoluble pellet

was de-starched with amylase and amyloglucosidase as described in starch quantification.

Remaining pellet was sent to CCRC and analyzed using previously described method (Santander

et al., 2013). For lignin analysis, dried plant tissue was sent directly to CCRC and pyrolyzed

using single-shot pyrolysis at 500C to produce volatile compounds, which were analyzed with a

beam mass spectrometer (Extrel Core Mass Spectrometers).

Quantification of biomass and relative leaf expansion rate

Dry weight was measured after 2 days of lyophilization at -50ºC. Leaf surface area (𝐴)

was measured by first flattening the leaves between two glass slides and photographing the entire

slide with the leaf surface positioned parallel to the camera lens. The photograph was processed

in ImageJ to select only the leaf or the glass slide. The pixel count under the leaf selection was

normalized to the pixel count under the glass slide selection. 𝐴 was calculated by multiplying the

normalized pixel count by the known surface area of the glass slide. Relative leaf expansion rate

(RER) was calculated as the ratio of the change of 𝐴 from 𝑡0 to 𝑡1 to the 𝐴 at 𝑡0 (Tardieu et al.,

1999). Mathematical formulation is shown in Equation 2 below.

𝑅𝐸𝑅 =
𝐴1−𝐴0

𝐴0
 (Equation 2)

66

Day-RER was calculated from 𝐴 at EON to EOD of the same day, and night-RER was

calculated from 𝐴 at EOD to EON of the next day.

Quantification of amino acids and total lipid

A previously published extraction and quantification method for amino acids and lipids

was used with the following modifications (Collakova et al., 2013). In brief, amino acids and

protein were extracted by homogenizing lyophilized plant powder with 200 L of chloroform

and 200 L of 10 mM HCl. Norvaline (10 L of 5 mM) was used as the internal standard. Non-

polar extract containing fatty acids and lipid was transferred, dried, and weighted for total lipid

content. Protein in the polar extract was hydrolyzed by overnight incubation in vapor of 6N HCl

at 110C. Hydrolyzed extracts and amino acid standards of known concentrations were

derivatized with Waters AccQ-TagTM Ultra Kit and analyzed on an H-class Acquity UPLC-FLD

equipped with a 10-cm Waters AccQ-TagTM Ultra C18 (1.7 m x 2.1 mm) column (Waters,

Milford, MA, USA) using Waters 10.2-minute method for free amino acid analysis (Collakova et

al., 2013).

Gas-exchange measurement

Net CO2 assimilation rate was measured on pre-flowering and post-flowering plants

grown under previously described conditions using a LI-6400 infrared gas analyzer (Li-Cor).

Whole pre-flowering plant was placed in a Li-Cor 6400-17 whole plant Arabidopsis chamber. A

single intact post-flowering mature leaf was placed in the original chamber (2 cm  3 cm). After

acclimation to 140 E and CO2 concentration of 400 mol/L for 10 minutes, the rates of CO2

assimilation were measured.

67

Starch Quantification

Starch was measured in tissues harvested at mid-day, EON, and EON. Analysis was

performed as previously described with slight modification (Smith and Zeeman, 2006). Briefly, 1

– 4 mg of lyophilized plant sample was pulverized via bead-beating. Soluble sugars were

removed using 80% ethanol. Starch was hydrolyzed by incubating with 6 U of -

amyloglucosidase and 1 U of amylase. Glucose was quantified with HPLC. The transitory starch

pool was calculated as the difference between starch levels at EOD and EON.

Construction of SnRK1.1:HA genome-scale models

Four GEMs were built using AraGEM as base model for WT and SnRK1.1:HA plants at

pre-flowering and post-flowering stages. Experimentally measured concentrations of biomass

compounds except starch in mol·mgDW-1 were used to construct the biomass equation

(reaction 47) of each model. Starch was structured as a separate pool to allow for changes in

concentration independent from the other biomass compounds. Because the glycosyl profile of

hemicellulose and pectin compositions was a relative quantitation, concentrations of glycosyls

were determined using literature data. Hemicellulose and pectin makes up 66% of the cell wall

(Zablackis et al., 1995). We found the cell wall of WT Arabidopsis is 63% of dry weight, thus

the glycosyl concentrations in each model could then be estimated by multiplying the relative

glycosyl levels by 416 g (total glycosyl)·mg DW-1.

Mathematical formulation of the modified biomass equation and additional biomass

constraints are summarized as follows:

𝐹𝑜𝑟 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑋: 𝑑(𝑋̇) = (𝑆 ∙ 𝑣) − (𝑥1
′ 𝐵1

′ − 𝑥0
′ 𝐵0

′) = 0

𝐵0 = 𝐵0
′ + 𝑚𝑦0

𝐵1 = 𝐵1
′ + 𝑚𝑦1

68

Where 𝑋̇ is mol of compound 𝑋 per plant changed from t0 to t1 (i.e. 1 PM to 1:30 PM).

𝑥′ is the adjusted concentration of compound 𝑋, which is normalized to a starch-less plant dry

weight, 𝐵′. The stoichiometric relationship of compound 𝑋 with all other reactions is described

by the stoichiometric matrix 𝑆, and flux vector 𝑣 carries a unit of mol·plant-1·0.5 h-1 instead of

the conventional mol·mgDW-1·h-1. 𝐵0 is an input constraint, such as the dry weight measured at

1 PM of a 14 day-old plant. 𝐵1 is the biomass to predict, such as the dry weight at 1:30 PM of the

same age plant. Molar quantity of starch is denoted as 𝑦, and the molecular weight of starch is

𝑚. The known starch level in mol·plant-1 at 1 PM of day 14 is 𝑦0, and the level to predict at

1:30 PM is 𝑦1. Change of starch (𝑑𝑦) is constrained as follow.

𝑑𝑦 = 𝑦1 − 𝑦0

𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑠𝑡𝑎𝑟𝑐ℎ 𝑖𝑛 𝜇𝑚𝑜𝑙 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 = (∑ 𝑠 ∙ 𝑣) − 𝑑𝑦 = 0

The stoichiometric matrix of the AraGEM model was modified to include the above

equations. Models and MATLAB implementations are included in the Supplemental Information

(Appendix C).

Predicting the transitory starch pool

As illustrated in Figure 4-1, the transitory starch pool (𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁) is calculated as the

maximum amount of starch that could be synthesized in the day and utilized in the night while

returning to the initial level after 24 hours. Thus, the objective of the model simulation is

maximizing 𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁 while minimizing the difference between initial and final starch levels

of the simulation (𝑑𝑆𝑡0→𝑡24). To simulate growth and the change of starch level over a 24-hour

period starting from 1 PM, models were subjected to three simulation stages: (A) 9 hours of

photosynthesis (1 PM to 10 PM), (B) 8 hours of respiration (10 PM to 6 AM), and (C) 7 hours of

photosynthesis (6 AM to 1 PM). The rates of starch accumulation in stage A (𝑟𝐴) and C (𝑟𝐶) were

69

assumed to be similar in vivo, thus the difference between 𝑟𝐴 and 𝑟𝐶 is also minimized in the

objective of the model simulation. Net CO2 assimilation rates in mol·cm-2·h-1 multiplied by the

rosette surface area and 0.5-hour time-steps were used to constrain the CO2 uptake rates of the

models during photosynthesis. Experimentally measured relative leaf expansion rate was used to

estimate total CO2 assimilation over time during the photosynthetic stages. During the respiration

stage, CO2 exchange was constrained to export and starch was constrained to import as a carbon

source. Metabolic flux distribution over each 0.5-hour time-step was predicted using FBA with

the objective of maximizing the non-starch biomass (𝐵1
′) (i.e. growth).

70

Figure 4-1. Model simulation of starch change in a 14 day-old plant over a 24-hour period.

Simulation began with a 9-hour light period starting at 1 PM when plant dry weight and the

biomass components were experimentally measured. It was followed by an 8-hour dark period

starting at 10 PM, then ended with a 7-hour light period of the next day starting at 6 AM. The

objective of the simulation is to (i) maximize the transitory starch pool (𝑑𝑆𝐸𝑂𝐷→𝐸𝑂𝑁), (ii)

minimize the difference between initial and final starch levels (𝑑𝑆𝑡0→𝑡24), and (iii) minimize the

difference between starch accumulation rates of day 14 (𝑟𝐴) and day 15 (𝑟𝐶). The starch turnover

rate (𝑟𝐵) is also predicted.

71

Analysis of predicted metabolic flux distribution

To compare the predicted metabolic fluxes of WT and SnRK1.1:HA models, the average

flux of each simulation stage was calculated and compared. Because there are two light

simulation stages (A and C), the predicted fluxes in both light stages were averaged together.

The number of reactions in a pathway that were increased or decreased in SnRK1.1:HA models

compared to WT models were recorded. This frequency was used to rank pathways with the

most flux changes to the least flux changes. This comparison was performed to identify

pathways with highest frequency of flux increase or decrease in SnRK1.1:HA model as

compared to WT model during the day and the night simulations at the pre-flowering and the

post-flowering stages. Four single-developmental stage comparisons were performed for (1)

increased in the pre-flowering stage, (2) decreased in the pre-flowering stage, (3) increased in the

post-flowering stage, and (4) decreased in the post-flowering stage. Two cross-developmental

stage comparisons were performed to identify pathways with highest frequency of flux increase

or decrease from the pre-flowering stage to the post-flowering stage. In addition, two cross-

developmental stage comparisons were performed to identify pathways with the highest

frequency of flux increase in the pre-flowering stage and decreased in the post-flowering stage or

decreased in the pre-flowering stage and increased in the post-flowering stage.

72

RESULTS

SnRK1.1:HA plants differ in biomass and developmental age

Previous studies on SnRK1.1:HA plants showed reduced rosette size in the pre-flowering

stage, a delayed transition to flowering, and increased rosette size in the post-flowering stage

(Williams et al., 2014). Representative differences in size and developmental transition are

shown in Figure 4-2A. Analysis of 14 day-old rosette dry weight supports our previous

observation that SnRK1.1:HA plants show reduced leaf biomass compared to WT (Figure 4-2B).

To compare differences in post-flowering plants, we used well-established senescence gene

markers, SAG12 and SAG21 to identify ages of WT and SnRK1.1:HA that are developmentally

matched in terms of senescence (Watanabe et al., 2013). We selected a senescence stage in

which plants exhibited mostly green rosette leaves and fully developed stems, which is

accompanied by low SAG12 expression and robust expression of SAG21 (Watanabe et al.,

2013). As shown in Figure 4-2D, a 42 day-old SnRK1.1:HA plant has the same SAG 12 and 21

profile as a 35 day-old WT plant. Rosette dry weights of post-flowering SnRK1.1:HA plants

were significantly greater than that of WT, which indicates an increase in vegetative biomass in

SnRK1.1:HA plants (Figure 4-2C).

Analysis of the relative surface expansion rate (RER) of 14 day-old leaves showed that

day-RER was 89% in WT and 83% in SnRK1.1:HA, however, by 21 days day-RER was reduced

to 59% in WT and 54% in SnRK1.1:HA (Figure 4-2E). Reduction in RER ratio was due to

decrease in day-RER and concurrent increase in night-RER. This analysis also revealed that 21

day-old SnRK1.1:HA plants began to show greater rosette growth than WT.

73

Figure 4-2. Differences in growth and development of WT and SnRK1.1:HA plants. (A)

Phenotypic appearances of WT and SnRK1.1:HA plants. Dry weight of WT and SnRK1.1:HA in

pre-flowering (B) and post-flowering (C) stages were measured for whole rosettes (n = 4).

Senescence stage (D) of mature leaves of 35 day-old WT and 42 day-old SnRK1.1:HA indicated

by SAG12 (blue) and SAG21 (red) gene expression markers (n = 2). The RER of WT and

SnRK1.1:HA (E) in the day (white) and the night (black) in pre-flowering and post-flowering

stages (n = 5 for pre-flowering, n = 8 for post-flowering). Values are shown as meanSE, and

asterisk indicates p < 0.05.

74

Biomass composition and photosynthetic rate are significantly altered in SnRK1.1:HA plants

To construct genome-scale models, specific to our WT and SnRK1.1:HA plants, the

biomass equations of the models were parameterized to experimental measurements. We focused

on the primary components of plant biomass, including cell wall, amino acids/protein, lipid, and

starch. Cell wall component analysis includes absolute quantification of cellulose and lignin and

relative quantification of hemicellulose. As shown in Figure 4-3A, cellulose was significantly

reduced by 42% and 41% in SnRK1.1:HA plants in pre-flowering and post-flowering stages,

respectively. Analysis of lignin shows that levels of syringyl and guaiacyl were decreased by

20% and 23%, respectively, in SnRK1.1:HA in the post-flowering stage (Figure 4-3B). Analysis

of the relative levels of glycosyls in hemicellulose and pectin showed no significant differences

between WT and SnRK1.1:HA at both developmental stages (Figure 4-3C). Our results show

that SnRK1.1:HA overexpression alters cellulose and lignin content.

Analysis of amino acid, which contains free amino acids and hydrolyzed protein, showed

similar relative levels in both genotypes at both developmental stages, which suggests no change

in amino acid ratios (Figure 4-4A). Absolute levels of all quantified amino acids (Figure 4-4B) in

post-flowering SnRK1.1:HA plants were reduced by an average of 38.4% ( 5.8) compare to

levels in post-flowering WT plants. Measurement of starch at mid-day showed a 16% increase in

SnRK1.1:HA plants in the pre-flowering stage compared to WT (Figure 4-5A). In the post-

flowering stage, starch concentration in SnRK1.1:HA was 47% lower than in WT. This indicates

that overexpression of SnRK1.1 has a different impact on starch levels at different

developmental stages. Total lipid was quantified by measuring the dry weight of the non-polar

extract, which could contain trace amounts of chlorophyll. As shown in Figure 4-5B, lipid levels

of WT and SnRK.1:HA were not different in the pre-flowering stage; however, the post-

75

flowering SnRK1.1:HA lipid level was significantly lower as compared to post-flowering WT.

To model plant growth during photosynthesis, experimentally measured net CO2 assimilation

rate was used to constrain the maximum CO2 uptake during the day period as described in

Methods. As shown in Figure 4-5C, net CO2 assimilation rate of SnRK1.1:HA was 26% lower

than that of WT in the post-flowering stage.

These biomass compositional data were used to replace the biomass equation of the

original AraGEM model. Out of the 32 metabolites we measured, absolute concentrations of 23

metabolites, including cellulose, 3 lignin monomers, total lipid, 17 amino acids, and starch were

directly incorporated into the biomass equation. The concentrations of the 9 glycosyls derived

from hemicellulose and pectin were estimated by normalizing their relative levels to 41.6% (g/g)

of the dry weight before incorporating into the biomass equation. This generates four GEMs for

WT and SnRK1.1:HA at pre-flowering and post-flowering developmental stages.

76

Figure 4-3. Cell wall compositions of WT and SnRK1.1:HA over plant development.

Measurements were taken with whole plants in the pre-flowering stage and mature leaves in the

post-flowering stage. Cellulose (A) and lignin compositions (B) in pre-flowering and post-

flowering stages are shown in absolute quantities. Glycosyl composition of hemicellulose and

pectin (C) at both stages are shown in relative quantity to the sum. Values are shown as

meanSE for n = 3, and asterisk indicates p < 0.05.

77

Figure 4-4. Amino acids profile of WT and SnRK1.1. Composition analysis shows relative levels

(A) and absolute levels (B) of 17 amino acids from hydrolyzed protein and amino acid extracts of

WT and SnRK1.1:HA in pre-flowering and post-flowering stages (n = 3).

78

Figure 4-5. Changes in starch, lipid, and net CO2 assimilation rate in SnRK1.1:HA plants. Total

starch (A, total lipid (B), and net CO2 assimilation rates (C) were quantified with whole plants in

pre-flowering stage and mature leaves in post-flowering stage (n = 3 for starch and lipid, n = 4

for gas exchange). Values are shown as meanSE and asterisk indicates p < 0.05.

79

Model simulation of growth and required transitory starch pool

As emphasized previously, starch is a critical carbon storage molecule that is

accumulated in the day and consumed in the night for growth. To validate the WT and the

SnRK1.1:HA models, we examined their accuracy in predicting the accumulation and depletion

of starch at pre-flowering and post-flowering stages. Each model was parameterized and

constrained with only the dry weight, day and night relative leaf expansion rates, biomass

composition, and CO2 assimilation rate described previously. Growth and starch concentration

was simulated over a 24-hour period from the time of sample harvest. All samples were

harvested 7 hours into a 16-hour-day regime, thus the first stage of the simulation was 9 hours of

the remaining day, followed by 8 hours of night, then 7 hours of a light period over the next day.

During the simulation, rates of starch accumulation and turnover were assumed to be linear as

shown in previous experimental studies (Gibon et al., 2004; Graf et al., 2010).

As shown in Figure 4-6A, simulation of 14 day-old WT and SnRK1.1:HA plants predicts

that within 24 hours WT will increase biomass from 2.01 to 2.99 mg DW (0.98 mg DW increase)

and SnRK1.1:HA will increase from 1.51 to 2.39 mg DW (0.88 mg DW increase). Experimental

values are very similar to these predicted values, with 15 day-old WT at 3.08 mg DW (1.07 mg

DW increase) and SnRK1.1:HA at 2.35 mg DW (0.84 mg DW increase). Thus our models can

predict the reduction in growth rate in SnRK1.1:HA overexpressors as seen previously (Williams

et al., 2014). Model simulations also predicts that most of the increase in dry weight during the

day was due to the increase of starch, and non-starch biomass was mostly accumulated in the

night. SnRK1.1:HA plants were predicted to have 21% higher EOD and 56% higher EON starch

levels as well as 15% greater transitory starch level as compared to WT in the pre-flowering

stage (Figure 4-6B). The increase in transitory starch level indicates faster starch turnover at

80

night. To validate these predictions, EOD and EON starch levels were quantified and transitory

starch was determined as the difference between EOD and EON levels. As shown in (Figure

4-6C), experimentally measured EOD and EON starch levels in pre-flowering SnRK1.1:HA

plants were significantly higher than in pre-flowering WT by 22% and 50%, respectively.

Experimentally quantified transitory starch level was also 12% higher in SnRK1.1:HA plants

(Figure 4-6D). These results suggest that our model predictions on starch mobilization in pre-

flowering plants are accurate.

As shown in Figure 4-7A, simulation of post-flowering leaves predicted that

SnRK1.1:HA plants could increase biomass at 126.6 mg DW per day, which was much faster

than WT plants that increased by 62.7 mg DW per day. This prediction is in agreement with

previous studies, showing that post-flowering SnRK1.1:HA continue to increase rosette biomass

when WT plant rosette growth has halted (Williams et al., 2014). Model simulation of starch

concentration in the post-flowering stage predicted that WT plants accumulate and turnover 89%

more starch as compared to SnRK1.1:HA plants (Figure 4-7B). Our models also predicted that

starch could be depleted by the end of the night growth period in the post-flowering stage of both

types of plants. Experimental measurements showed that WT accumulated 59% more starch by

the end of the day and 62% more starch by the end of the night as compared to SnRK1.1:HA

plants (Figure 4-7C). Starch was reduced to 94 mol/mg DW in WT and 58 mol/mg DW in

SnRK1.1:HA plants at the end of the night, which was significantly lower than the EON starch

levels in the pre-flowering stage. Experimental measurement of the transitory starch pool showed

that WT level was 58% higher as compared to SnRK1.1:HA plants. Although, there are

differences between the predicted values and the experimental values in post-flowering plants;

nonetheless, the trends support model predictions strongly.

81

Figure 4-6. Predicted values for growth and starch turnover in pre-flowering plants compared to

experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and

SnKR1.1:HA (red) starting at 14 days are shown as total predicted dry mass (solid lines) and

predicted non-starch dry mass (dashed lines), and compared to experimentally measured total

dry mass at 15 day-old (blue and red dots). (B) Predicted changes in starch concentration over

the 24-hour diurnal cycle. Experimental values are indicated by E and predicted values are

indicated by P in C and D. (C) Predicted EOD (light grey) and EON (dark grey) starch

concentrations simulated from the initial starch levels (dots) compared to experimentally

measured EOD (white) and EON (black) starch concentrations. (D) Predicted transitory starch

pools (dark grey) compared to experimentally measured transitory starch pools (light grey).

Experimental data are shown as mean  SE (n = 4 for biomass, n = 3 for starch), and asterisk

indicates p < 0.05.

82

Figure 4-7. Predicted values for growth and starch turnover of post-flowering plants compared

to experimental values. (A) Predicted growth over the 24-hour diurnal cycle for WT (blue) and

SnKR1.1:HA (red) starting at 35 days for WT and 42 days for SnRK1.1:HA are shown as total

predicted dry mass (solid lines) and predicted non-starch dry mass (dashed lines). (B) Predicted

changes in starch concentration over the 24-hour diurnal cycle. Experimental values are

indicated by E and predicted values are indicated by P in C and D. (C) Predicted EOD (light

grey) and EON (dark grey) starch concentrations simulated from the initial starch levels (dots)

compared to experimentally measured EOD (white) and EON (black) starch concentrations. (D)

Predicted transitory starch pools (dark grey) compared to experimentally measured transitory

starch pools (light grey). Experimental data are shown as mean  SE (n = 4 for biomass, n = 3

for starch), and asterisk indicates p < 0.05.

83

Refinement of model predictions using experimental data

The differences between predicted and experimental starch values lead us to refine our

models using the starch experimental data. To refine our models, we focused on two types of

adjustments: 1) the initial starch level and 2) the simulation objective. As described previously,

the mid-day starch level was used as the initial starch level of the simulation. Since starch

turnover has been shown to be close to linear, the mean value between the experimentally

observed EOD and EON starch levels should be used as the new initial starch level. Simulations

of the pre-flowering stage were repeated under the same parameters except the adjustment of the

initial starch values to 0.662 mol/mg DW for WT and 0.843 mol/mg DW for SnRK1.1:HA.

As shown in Figure 4-8C, predicted total starch levels of the adjusted pre-flowering models

closely match the experimental observations. Although predicted total starch levels were

changed significantly, the predicted growth remained almost identical because the predicted

transitory starch pool, the primary factor for non-starch biomass accumulation, was not altered

significantly (Figure 4-8A, D).

For post-flowering simulations, the simulation objective was altered in addition to

adjusting the initial starch value. The objective of maximizing starch accumulation and

utilization generated more accurate predictions in pre-flowering models than in post-flowering

models. To better capture the post-flowering metabolism, the simulation objective was changed

to minimize the difference between predicted and observed transitory starch pool (Figure 4-8F).

This enabled simulation of growth as well as EOD and EON starch levels more accurately. This

adjustment increased the predicted non-starch growth in WT, as illustrated by the steeper blue

dashed line in Figure 4-8B compared to Figure 4-7A. The predicted EOD and EON starch levels

of the adjusted model matched the experimental data (Figure 4-8E).

84

Figure 4-8. Predicted values for growth and starch levels after adjustments to experimental

values. Predicted pre-flowering (A) and post-flowering (B) growth over the 24-hour diurnal

cycle for WT (blue) and SnKR1.1:HA (red) are shown as total predicted dry mass (solid lines)

and predicted non-starch dry mass (dashed lines). Predicted pre-flowering growth is compared

to experimentally measured total dry mass at 15 day-old (blue and red dots). Experimental

values are indicated by E and predicted values are indicated by P in C, D, E, and F. (C)

Predicted pre-flowering stage EOD (light grey) and EON (dark grey) starch concentrations

simulated with refined models from the initial starch levels (dots) compared to experimentally

measured EOD (white) and EON (black) starch concentrations. (D) Predicted pre-flowering

stage transitory starch pools (dark grey) simulated with refined models compared to

experimentally measured transitory starch pools (light grey). Same for post-flowering stage (E

and F). Experimental data are the same as in Figure 4-6 and Figure 4-7 shown as mean  SE (n

= 4 for biomass, n = 3 for starch), and asterisk indicates p < 0.05.

85

Starch accumulation and mobilization over plant development

After refining the models to given experimental data, we examined how the models can

be used to predict starch levels across multiple stages of development. A linear assumption

between pre-flowering and post-flowering stages was used to interpolate (1) the biomass

composition, (2) the initial starch level of each stage, and (3) the starch accumulation and

turnover rates predicted with the refined model. These parameters were interpolated for 24-hour

simulation of 21 and 28 day-old WT, and 21, 28, and 35 day-old SnRK1.1:HA. As shown in

Figure 4-9A, the changes of predicted total starch level at EOD and EON are close to but not

completely linear. This analysis predicted that the increase in EOD starch level in SnRK1.1:HA

diminished when both plants were around 35 days-old. To validate this prediction, EOD and

EON starch levels were measured at the same ages as for the model simulation. As shown in

Figure 4-9B, there are no statistically significant differences between WT and SnRK1.1:HA

EOD starch levels after 14 day-old; however, the trend continued to show higher level of EOD

and EON starch until the plants were 35 day-old. The data suggests that SnRK1.1:HA EOD

starch becomes lower than WT EOD starch between 28 and 35 day-old. In addition, there are no

significant differences in the transitory starch levels when WT and SnRK1.1:HA plants are

compared by chronological age.

86

Figure 4-9. Predicted and experimental EOD and EON starch levels over plant development. (A)

Predicted EOD (light grey) and EON (dark grey) starch levels for plant ages between the

designated pre-flowering and post-flowering stages. (B) Experimentally measured EOD (white)

and EON (black) starch levels for plant ages between the designated pre-flowering and post-

flowering stages (n = 3). Experimental data of pre-flowering and post-flowering stages are the

same as in Figure 4-6 and Figure 4-7. Data are shown as mean  SE, and asterisk indicates p <

0.05.

87

Predicted metabolic differences between WT and SnRK1.1:HA plants

The adjusted models were used to predict metabolic changes induced by overexpression

of SnRK1.1:HA at pre-flowering and post-flowering stages. The analysis included only enzyme

catalyzing reactions filtered through criteria described in the Methods, leaving a total of 211

reactions for analysis. These reactions were associated with 52 of 137 pathways in the AraGEM

model. Analyses were performed by comparing the reaction fluxes of SnRK1.1:HA to WT

GEMs predicted with FBA. Metabolic pathways were ranked by the number of reactions in each

pathway that had altered predicted fluxes. A pathway could be in both the increased flux list and

the decreased flux list (i.e. starch and sucrose metabolism in Table 4-1) if some of its reactions

were predicted to have increased fluxes and a similar number of its reactions were predicted to

have decreased fluxes.

As shown in Table 4-1, more reactions in sugar metabolism and amino-acid metabolism

were predicted to altered by SnRK1.1:HA overexpression in pre-flowering plants. Surprisingly,

fatty-acid biosynthesis was predicted to increase in pre-flowering SnRK1.1:HA plants even

though experimental measurements showed no significant differences between total lipid levels

in the pre-flowering stage plants. Further investigation revealed that 31 of the 72 reactions

associated with fatty-acid biosynthesis in AraGEM were predicted to have higher fluxes in pre-

flowering SnRK1.1:HA plants as compared to WT plants at night. Another group of reactions

predicted to carry higher fluxes at night are associated with hemicellulose biosynthesis. In

contrast, reactions in cellulose biosynthesis were predicted to carry lower fluxes in pre-flowering

SnRK1.1:HA plants than in pre-flowering WT plants.

In the post-flowering stage, reactions involved in lignin and hemicellulose biosynthesis

were predicted to have higher fluxes in SnRK1.1:HA plants during the day as compared to WT

88

plants (Table 4-2). Interestingly, no reaction fluxes were predicted to be significantly increased

by SnRK1.1:HA overexpression during the night. Of the 211 reactions examined, 106 reactions

were predicted to have lower fluxes in SnRK1.1:HA plants during the day and 192 reactions

were predicted to have lower fluxes during the night. As expected, cellulose synthase was

predicted to be lower in both day and night cycles. In contrast to the predicted increase in fatty

acid biosynthesis in pre-flowering night cycle, post-flowering SnRK1.1:HA was predicted to

have less fatty acid biosynthesis at night compared to WT.

The predicted flux changes in fatty acid biosynthesis during pre-flowering stage versus

post-flowering stage provide an avenue for investigating the consistency of predicted metabolic

patterns over plant development. As shown in Table 4-3, no reaction in SnRK1.1:HA was

predicted to have higher flux than WT throughout development. Only 6 reactions were predicted

to have lower fluxes than WT across development, which were primarily reactions associated

with cellulose biosynthesis. Similarly, reactions that were predicted to have alternating patterns

were examined. As shown in Table 4-4, more pathways were predicted to switch from having

higher fluxes in pre-flowering stage to having lower fluxes in post-flowering stage. A total of

197 reactions were predicted to exhibit this pattern, of which, 13 reactions were in the day cycle

and 185 reactions were in the night cycle. Fatty acid biosynthesis is on the top of the night cycle

list, which also includes hemicellulose biosynthesis, amino acid biosynthesis, and lignin

biosynthesis. Starch biosynthesis is on the day cycle list of reactions that have higher fluxes than

WT in pre-flowering stage and lower fluxes in post-flowering stage. The only reactions that were

predicted to exhibit the opposite pattern of lower fluxes in pre-flowering stage and higher fluxes

in post-flowering stage were 2 hemicellulose biosynthesis reactions. However, there were more

89

hemicellulose associated reactions that were predicted to have higher fluxes in pre-flowering

stage and lower fluxes in post-flowering stage.

90

Table 4-1. Predicted metabolic changes by SnRK1.1:HA overexpression in the pre-flowering

developmental stage.

Pathways with increased flux in

SnRK1.1:HA

Pathways with decreased flux in

SnRK1.1:HA

In the day In the night In the day In the night

Pentose phosphate

pathway

Fatty acid

biosynthesis
 Cell wall biosynthesis

Starch and sucrose

metabolism

Carbon fixation Cell wall biosynthesis
Nucleotide sugar

metabolism
Cell wall biosynthesis

Starch and sucrose

metabolism

Hemicellulose

biosynthesis

Starch and sucrose

metabolism

Galactose

metabolism

Glycolysis /

Gluconeogenesis

Aminoacyl-tRNA

biosynthesis

Galactose

metabolism

Aminoacyl-tRNA

biosynthesis

ATP and NADPH

generated from light

(overall reaction in

chloroplast)

Valine, leucine and

isoleucine

biosynthesis

Hemicellulose

biosynthesis
Cysteine metabolism

Fructose and

mannose metabolism

Citrate cycle (TCA

cycle)

Aminoacyl-tRNA

biosynthesis

Glycine, serine and

threonine metabolism

Galactose

metabolism

Glycine, serine and

threonine metabolism
 Cysteine metabolism

Glycolysis /

Gluconeogenesis

Pentose and

glucuronate

interconversions

Histidine metabolism
Glycine, serine and

threonine metabolism

Methionine

metabolism

Streptomycin

biosynthesis

Alanine and aspartate

metabolism

Glycolysis /

Gluconeogenesis

Nucleotide sugars

metabolism

 Nitrogen metabolism
Methionine

metabolism

Oxidative

phosphorylation

(overall in

mitochondria)

91

Table 4-2. Predicted metabolic changes by SnRK1.1:HA overexpression in the post-flowering

developmental stage.

Pathways with increased flux in

SnRK1.1:HA

Pathways with decreased flux in

SnRK1.1:HA

In the day In the night In the day In the night

Cell wall biosynthesis N/A
Aminoacyl-tRNA

biosynthesis

Fatty acid

biosynthesis

Hemicellulose

biosynthesis

Valine, leucine and

isoleucine

biosynthesis

Cell wall biosynthesis

Fructose and

mannose metabolism

Glycine, serine and

threonine metabolism

Aminoacyl-tRNA

biosynthesis

Nucleotide sugar

metabolism
 Histidine metabolism

Hemicellulose

biosynthesis

Carbon fixation
Alanine and aspartate

metabolism

Valine, leucine and

isoleucine

biosynthesis

Citrate cycle (TCA

cycle)

Arginine and proline

metabolism

Glycine, serine and

threonine metabolism

Coumarine and

phenylpropanoid

biosynthesis

 Lysine biosynthesis
Citrate cycle (TCA

cycle)

Galactose

metabolism
 Carbon fixation Histidine metabolism

Glyoxylate and

dicarboxylate

metabolism

Citrate cycle (TCA

cycle)

Nucleotide sugars

metabolism

Pentose and

glucuronate

interconversions

Glutamate

metabolism

Alanine and aspartate

metabolism

92

Table 4-3. Predicted metabolic changes that are consistent during development.

Pathways always with increased flux in

SnRK1.1:HA

Pathways always with decreased flux in

SnRK1.1:HA

In the day In the night In the day In the night

N/A N/A
Aminoacyl-tRNA

biosynthesis

Starch and sucrose

metabolism

 Cell wall biosynthesis Cell wall biosynthesis

 Cysteine metabolism
Galactose

metabolism

Glycine, serine and

threonine metabolism

Aminoacyl-tRNA

biosynthesis

Methionine

metabolism
Cysteine metabolism

Starch and sucrose

metabolism

Glycine, serine and

threonine metabolism

Glycolysis /

Gluconeogenesis

Methionine

metabolism

Nucleotide sugar

metabolism

Oxidative

phosphorylation

(overall in

mitochondria)

93

Table 4-4. Predicted metabolic changes that vary during development.

Increased flux in pre-flower,

decreased flux in post-flower

Decreased flux in pre-flower,

increased flux in post-flower

In the day In the night In the day In the night

Pentose phosphate

pathway

Fatty acid

biosynthesis
 Cell wall biosynthesis N/A

Carbon fixation Cell wall biosynthesis
Hemicellulose

biosynthesis

Starch and sucrose

metabolism

Hemicellulose

biosynthesis

Nucleotide sugar

metabolism

Glycolysis /

Gluconeogenesis

Aminoacyl-tRNA

biosynthesis

ATP and NADPH

generated from light

(overall reaction in

chloroplast)

Valine, leucine and

isoleucine

biosynthesis

Fructose and

mannose metabolism

Citrate cycle (TCA

cycle)

Galactose

metabolism

Glycine, serine and

threonine metabolism

Pentose and

glucuronate

interconversions

Histidine metabolism

Streptomycin

biosynthesis

Alanine and aspartate

metabolism

 Nitrogen metabolism

94

DISCUSSION

Four GEMs were constructed to predict growth and starch metabolism in WT and

SnRK1.1:HA during pre-flowering and post-flowering developmental stages. Experimental

validation of the model predictions revealed that the models can quantitatively predict growth

and starch accumulation and turnover with high accuracy. Further refinement of the models

enabled accurate prediction of the starch changes across multiple stages of plant development

and analysis of metabolic flux changes.

Non-starch biomass is accumulated at night in pre-flowering Arabidopsis

Simulation of pre-flowering growth was performed with the assumption that plants

maximize the transitory starch level. Under this assumption, very little mass was predicted to

accumulate during day growth because most of the photoassimilates were predicted to partition

into starch. As shown in Figure 4-6D, the predicted transitory starch levels closely matched

experimentally measured levels, which suggests that the predicted biomass accumulation pattern

for pre-flowering plants may be valid. The presented model disagrees with a previous study that

specifically modeled diurnal leaf growth (Weraduwage et al., 2015). The previous study

concluded that, according to their model simulation, day time growth in terms of both size and

mass is greater than night time growth (Weraduwage et al., 2015). The disagreement may be due

to the differences between the fundamental model frameworks. The Weraduwage et al. model

was constructed based on empirical relationships between photosynthesis and growth; whereas,

flux-based modeling with AraGEM solely depends on mass balancing to satisfy the biomass

equation (de Oliveira Dal'Molin et al., 2010; Weraduwage et al., 2015). Flux-based modeling

allowed us to calculate the theoretical maximum of a system. In this case, the greatest amount of

growth and starch biosynthesis given a known CO2 assimilation rate and leaf RER. This means

95

that our model finds no other way to distribute day and night growth if the experimentally

measured transitory starch level must be satisfied.

The role of SnRK1.1 in starch metabolism and plant development

Starch has been shown to play a significant role in regulating flowering time (Matsoukas

et al., 2013; Yu et al., 2000). Leaf starch deficiency has been shown to delay floral initiation (Yu

et al., 2000). It has been proposed that the reduction of starch turnover rate is a primary cause of

delayed developmental transition (Matsoukas et al., 2013). Our experimental data shows that

although SnRK1.1:HA plants have delayed flowering and development, they maintain a

significantly higher starch level than WT in the pre-flowering stage. A previous study on the

effect of SnRK1.1 overexpression on flowering time showed that WT flowers 19 days after

planting and SnRK1.1:HA flowers 22 days after planting (Williams et al., 2014). Our analysis of

21 day-old WT and SnRK1.1:HA showed no significant difference in the transitory starch level

(Figure 4-9B), which indicated no significant difference in starch turnover rate before

transitioning to reproductive stage. Our results suggest that the delayed developmental transition

in SnRK1.1:HA plants may not be associated with starch. This further supports a previous

conclusion of SnRK1.1 involvement in regulating starch and developmental transition (Baena-

González et al., 2007; Gazzarrini and Tsai, 2014). A previous study found that double-knockout

of SnRK1.1 and SnRK1.2 resulted in stunted plant growth, significantly increased starch

accumulation, and reduced starch turnover as compared to WT of the same chronological age

(Baena-González et al., 2007). In contrast, our data shows that SnRK1.1:HA overexpression

does not increase starch turnover or reduce starch accumulation, and instead shows an increase

of starch accumulation at a younger stage (Figure 4-6C and D). When WT and SnRK1.1:HA

plants were compared by chronological age, the transitory starch levels measured at 14, 21, 28,

96

and 35 days showed no significant differences (Figure 4-9B). In addition, the accurate

predictions of starch metabolism in WT and SnRK1.1:HA plants using flux-based modeling

suggests that SnRK1.1 starch metabolism may be governed by mass balancing, as opposed to

regulatory control. Based on our results, we hypothesize that SnRK1.1 may serve to prevent the

inhibition of starch turnover (Figure 4-10). This would explain the reduced starch turnover in

SnRK1 double-knockout plants as well as the lack of difference in starch turnover in our

SnRK1.1:HA plants (Baena-González et al., 2007). It also explains the reduction of starch in

SnRK1 overexpression plants under glucose supplemented growth (Jossier et al., 2009). In this

case, high glucose reduced SnRK1 phosphorylation leading to SnRK1 inactivation, which

reduced starch turnover and elevated starch content (Jossier et al., 2009; Rubenstein et al., 2008).

Overexpression plants are less sensitive to glucose, thus they have greater starch turnover and

lower starch accumulation than WT (Jossier et al., 2009).

97

Figure 4-10. Proposed model for the role of SnRK1 in starch metabolism. Gene knockout or

glucose inhibition of SnRK1 reduces starch turnover, which increases starch accumulation

(Baena-González et al., 2007; Jossier et al., 2009). SnRK1 overexpression plants under high

glucose have reduced sensitivity to glucose due to elevated enzyme abundance, which increases

starch turnover and lower starch accumulation compares to WT grown under high glucose

(Jossier et al., 2009). SnRK1 overexpression plants do not significantly reduce starch under

normal growth condition due to indirect regulation starch turnover as shown in this work and

previous studies (Baena-González et al., 2007; Jossier et al., 2009).

98

Modeling non-steady state metabolic activities

It is well accepted that plant metabolism is highly dynamic; thus, tremendous efforts from

many research groups have been invested in the attempt to develop robust models. Methods to

perform dynamic FBA (dFBA) were initially introduced to model metabolic reprogramming in

E. coli during diauxic growth (Mahadevan et al., 2002). Since then dFBA has been utilized in

studying the effects of alternating growth nutrients and environmental conditions as well as

generating metabolic engineering strategies to overproduce commodity chemicals and protein

(Anesiadis et al., 2008; Hjersted et al., 2007; Lequeux et al., 2010; Luo et al., 2009; Oddone et

al., 2009). Reformulation of dFBA has also been examined by integrating other optimization

methods, such as minimization of metabolic adjustments (MOMA) and regulatory on/off

minimization (ROOM) to capture the biological objective of minimizing energetic cost

(Kleessen and Nikoloski, 2012; Segre et al., 2002; Shlomi et al., 2005).

Despite these advances, constraint-based modeling still depends on the pseudo-steady

state assumption, which a developing plant is not under. A previous study on barley implemented

a multiscale metabolic modeling (MMM) approach, which enabled modeling of source-sink

interactions on a spatiotemporal resolution (Grafahrend-Belau et al., 2013). The MMM approach

recognized the limitation of FBA, and restrict the FBA model to solving only spatial distribution

of metabolic flux (Grafahrend-Belau et al., 2013). It then recruited a dynamic functional plant

model to solve temporal metabolic adjustments (Grafahrend-Belau et al., 2013). The resulting

model captured metabolic activities; however, quantitative results were not validated

experimentally. A recent study took a different approach to model the development of tomato

fruit (Colombié et al., 2015). Temporal resolution was achieved by using 9 steady-state tomato

models each composed of a biomass composition measured at a distinct time points. This

99

approach is justifiable because of the relatively slow metabolic changes in tomato fruit on the

scale of fruit development (Colombié et al., 2015). In contrast, metabolism of leaf tissues during

day and night can be very different. The present study demonstrates a novel approach to simulate

the dynamics of non-steady state plant metabolism during diurnal cycle across development. To

the authors’ knowledge, this is the first time plant growth and starch concentrations have been

predicted accurately through genome-scale modeling.

Refinement of models enabled more accurate predictions

The ability of our models to accurately predict trends in absolute growth and starch level

changes indicates that they may be useful in predicting other metabolic activities. Experimental

measurements of starch can, in turn, be used to correct inaccuracy in the predictions and improve

model performance. This reiterative process has traditionally been used in model development

process (Grafahrend-Belau et al., 2013; Weraduwage et al., 2015).

The sources of disagreement in our model guided predictions and experimental data on

starch could result from 1) subtle differences between biological samples used for

parameterization and validation and 2) the inaccuracy of assuming maximum transitory starch.

As shown in Figure 4-6C, the predicted EOD and EON starch levels in pre-flowering plants are

lower than the experimental values. This may be attributed to lower mid-day starch levels in the

biological samples used for model parameterization compared to samples used for validation

despite the rigorous experimental controls. When the initial starch level of the simulation was

adjusted to a new mid-day starch level estimated with the experimental measured EOD and EON

starch concentrations, the predicted EOD and EON starch concentrations became much closer to

the experimental values (Figure 4-8C). The differences between experimental and predicted

starch values are more dramatic for post-flowering plants. This suggests the assumptions used in

100

model simulation, in which the plant maximizes the transitory starch pool, works better when

modeling pre-flowering plants. This means that in addition to adjusting the initial starch value,

the simulation objective must be changed, however, regulation of starch turnover in plants has

been shown to be complex (Fernie et al., 2002; Stitt and Zeeman, 2012). Rather than imposing a

more complex assumption for the simulation, the objective of the simulation was simply changed

to replicate the experimental transitory starch level. Because of this new objective, it is not

surprising that the new predictions on starch levels in post-flowering plants are exactly the same

as the experimental values. Although these refinements are artificial, they are necessary for

predicting metabolic fluxes and starch levels across multiple plant ages.

Model predictions suggest greater metabolic changes at night

The primary goal of this study is to see whether flux-based modeling can be used to help

reveal the role of SnRK1.1 in plant metabolism. Through simulations and experimental

validations, we were able to propose a novel hypothesis on the role of SnRK1.1 in starch

metabolism. It would be interesting to examine if SnRK1.1:HA overexpression resulted in any

other significant metabolic changes. The predicted SnRK1.1:HA metabolic flux distribution at

each developmental stage (pre-flowering and post-flowering) was compared with predicted WT

metabolic flux distribution. Pathways with highest frequency of changes were compiled into

lists. Table 4-1 to Table 4-4 shows the truncated lists of most altered pathways at both stages of

development and diurnal cycles. The assumption is that pathways with the most predicted

changes are most effected by SnRK1.1:HA overexpression. The rationale behind this assumption

is that predicted fluxes are different to compensate for the differences in the biomass

composition and starch levels, which are different because of SnRK1.1:HA overexpression.

101

It is not surprising to see that the most altered pathways are predicted to be involved in

the synthesis of biomass components given the assumption for this analysis. It is interesting that

most of the predicted changes occur at night. This is primarily due to the prediction that more

non-starch growth occurs during the night. Plant studies are queried rarely during the night

unless there are specific objectives because research is mostly performed during the day. If the

model is accurate about night growth, it would be critical to expand more research into studying

night time metabolic changes of plants. A quick search on Google Scholar for “Arabidopsis”

would retrieve over 1 million results, however, querying for “Arabidopsis night” only retrieves

61,000 results. Previous studies have already shown that diurnal transition can have significant

impact on the metabolism at both metabolomics and transcriptomics levels (Gibon et al., 2006).

Extended night can also elevate the levels of many amino acids (Gibon et al., 2006). Extended

night has also been shown to activate SnRK1 and initiates significant gene expression

reprogramming (Baena-González et al., 2007). Further analysis of night time metabolism may

reveal new roles for many previously characterized genes.

CONCLUSION

Novel GEMs were built to model the metabolism of Arabidopsis overexpressing

SnRK1.1:HA in effort to further understand the metabolic role of SnRK1.1 over growth and

development. Biomass compositions including cell wall, lipids, amino acids, and starch were

measured in SnRK1.1:HA and WT at pre-flowering and post-flowering developmental stages.

These data are used to re-parameterize the AraGEM model, and construct SnRK1.1:HA and WT

GEMs. The original AraGEM framework was expanded to allow for 24-hour simulation of

growth and starch accumulation and turnover in day and night cycles. Simulation predicted

previously undermined dynamics between biomass and starch. Experimental validation revealed

102

that the quantitative levels of growth and starch were predicted with unprecedented accuracy.

Data from experimental validation were used to refine the models for a second round of

prediction. The refined models were used to guide further analysis of starch metabolism in

SnRK1.1:HA and help build a novel hypothesis on the role of SnRK1.1 in regulating starch,

which is SnRK1.1 prevents the inhibition of starch turnover. Analysis of model predictions on

the metabolism also stressed a previously overlooked value in night time plant metabolism. This

work demonstrated novel techniques and workflow to use GEM to guide analysis plant

metabolism.

REFERENCES

Allen, D. K., Libourel, I. G. L., Shachar-Hill, Y., 2009. Metabolic flux analysis in plants: coping

with complexity. Plant, cell & environment. 32, 1241-1257.

Anesiadis, N., Cluett, W. R., Mahadevan, R., 2008. Dynamic metabolic engineering for

increasing bioprocess productivity. Metabolic engineering. 10, 255-266.

Baena-González, E., Rolland, F., Thevelein, J. M., Sheen, J., 2007. A central integrator of

transcription networks in plant stress and energy signalling. Nature. 448, 938-942.

Caspeta, L., Shoaie, S., Agren, R., Nookaew, I., Nielsen, J., 2012. Genome-scale metabolic

reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their

potentials. BMC systems biology. 6, 24.

Cheung, C. Y. M., Williams, T. C. R., Poolman, M. G., Fell, D. A., Ratcliffe, R. G., Sweetlove,

L. J., 2013. A method for accounting for maintenance costs in flux balance analysis

improves the prediction of plant cell metabolic phenotypes under stress conditions. The

plant journal. 75, 1050-1061.

Collakova, E., Aghamirzaie, D., Fang, Y., Klumas, C., Tabataba, F., Kakumanu, A., Myers, E.,

Heath, L. S., Grene, R., 2013. Metabolic and transcriptional reprogramming in

developing soybean (Glycine max) embryos. Metabolites. 3, 347-372.

Collakova, E., Yen, J. Y., Senger, R. S., 2012. Are we ready for genome-scale modeling in

plants? Plant science. 191–192, 53-70.

Colombié, S., Nazaret, C., Bénard, C., Biais, B., Mengin, V., Solé, M., Fouillen, L., Dieuaide‐
Noubhani, M., Mazat, J. P., Beauvoit, B., 2015. Modelling central metabolic fluxes by

constraint‐based optimization reveals metabolic reprogramming of developing Solanum

lycopersicum (tomato) fruit. The plant journal. 81, 24-39.

de Oliveira Dal'Molin, C. G., Quek, L. E., Palfreyman, R. W., Brumbley, S. M., Nielsen, L. K.,

2010. AraGEM, a genome-scale reconstruction of the primary metabolic network in

Arabidopsis. Plant physiology. 152, 579-89.

Fernie, A. R., Willmitzer, L., Trethewey, R. N., 2002. Sucrose to starch: a transition in molecular

plant physiology. Trends in plant science. 7, 35-41.

103

Förster, J., Famili, I., Fu, P., Palsson, B. Ø., Nielsen, J., 2003. Genome-scale reconstruction of

the Saccharomyces cerevisiae metabolic network. Genome research. 13, 244-253.

Gazzarrini, S., Tsai, A. Y.-L., 2014. Trehalose-6-phosphate and SnRK1 kinases in plant

development and signaling: the emerging picture. Frontiers in plant science. 5, 119.

Gibon, Y., Blaesing, O. E., Palacios, N., Pankovic, D., Hendriks, J. H. M., Fisahn, J., Hoehne,

M., Günter, M., Stitt, M., 2004. Adjustment of diurnal starch turnover to short days:

Depletion of sugar during the night leads to a temporary inhibition of carbohydrate

utilisation, accumulation of sugars and post-translational activation of ADPglucose

pyrophosphorylase in the following light period. The plant journal. 39.

Gibon, Y., PYL, E. T., Sulpice, R., Lunn, J. E., Hoehne, M., Guenther, M., Stitt, M., 2009.

Adjustment of growth, starch turnover, protein content and central metabolism to a

decrease of the carbon supply when Arabidopsis is grown in very short photoperiods.

Plant, cell & environment. 32, 859-874.

Gibon, Y., Usadel, B., Blaesing, O. E., Kamlage, B., Hoehne, M., Trethewey, R., Stitt, M., 2006.

Integration of metabolite with transcript and enzyme activity profiling during diurnal

cycles in Arabidopsis rosettes. Genome biology. 7, R76.

Graf, A., Schlereth, A., Stitt, M., Smith, A. M., 2010. Circadian control of carbohydrate

availability for growth in Arabidopsis plants at night. Proceedings of the national

academy of sciences. 107, 9458-9463.

Grafahrend-Belau, E., Junker, A., Eschenröder, A., Müller, J., Schreiber, F., Junker, B. H., 2013.

Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale.

Plant physiology. 163, 637-647.

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., Bohnert, H. J., 2000. Plant cellular and molecular

responses to high salinity. Annual review of plant biology. 51, 463-499.

Hjersted, J. L., Henson, M. A., Mahadevan, R., 2007. Genome‐scale analysis of Saccharomyces

cerevisiae metabolism and ethanol production in fed‐batch culture. Biotechnology and

bioengineering. 97, 1190-1204.

Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., Kudla, J.,

Luan, S., Nimmo, H. G., Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J.-K.,

Harmon, A. C., 2003. The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases.

Plant physiology. 132, 666-680.

Jossier, M., Bouly, J. P., Meimoun, P., Arjmand, A., Lessard, P., Hawley, S., Grahame Hardie,

D., Thomas, M., 2009. SnRK1 (SNF1‐related kinase 1) has a central role in sugar and

ABA signalling in Arabidopsis thaliana. The plant journal. 59, 316-328.

Kleessen, S., Nikoloski, Z., 2012. Dynamic regulatory on/off minimization for biological

systems under internal temporal perturbations. BMC systems biology. 6, 1.

Lequeux, G., Beauprez, J., Maertens, J., Van Horen, E., Soetaert, W., Vandamme, E.,

Vanrolleghem, P. A., 2010. Dynamic metabolic flux analysis demonstrated on cultures

where the limiting substrate is changed from carbon to nitrogen and vice versa. BioMed

research international. 2010.

Luo, R., Wei, H., Ye, L., Wang, K., Chen, F., Luo, L., Liu, L., Li, Y., Crabbe, M. J. C., Jin, L.,

2009. Photosynthetic metabolism of C3 plants shows highly cooperative regulation under

changing environments: A systems biological analysis. Proceedings of the national

academy of sciences. 106, 847-852.

Mahadevan, R., Edwards, J. S., Doyle, F. J., 2002. Dynamic flux balance analysis of diauxic

growth in Escherichia coli. Biophysical journal. 83, 1331-1340.

104

Matsoukas, I. G., Massiah, A. J., Thomas, B., 2013. Starch metabolism and antiflorigenic signals

modulate the juvenile‐to‐adult phase transition in Arabidopsis. Plant, cell & environment.

36, 1802-1811.

McKibbin, R. S., Muttucumaru, N., Paul, M. J., Powers, S. J., Burrell, M. M., Coates, S., Purcell,

P. C., Tiessen, A., Geigenberger, P., Halford, N. G., 2006. Production of high‐starch,

low‐glucose potatoes through over‐expression of the metabolic regulator SnRK1. Plant

biotechnology journal. 4, 409-418.

Oddone, G. M., Mills, D. A., Block, D. E., 2009. A dynamic, genome-scale flux model of

Lactococcus lactis to increase specific recombinant protein expression. Metabolic

engineering. 11, 367-381.

Park, J. M., Kim, T. Y., Lee, S. Y., 2009. Constraints-based genome-scale metabolic simulation

for systems metabolic engineering. Biotechnology advances. 27.

Polge, C., Thomas, M., 2007. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of

energy control? Trends in plant science. 12, 20-28.

Poolman, M. G., Kundu, S., Shaw, R., Fell, D. A., 2013. Responses to light intensity in a

genome-scale model of rice metabolism. Plant physiology. 162, 1060-1072.

Poolman, M. G., Miguet, L., Sweetlove, L. J., Fell, D. A., 2009. A genome-scale metabolic

model of Arabidopsis and some of its properties. Plant physiology. 151, 1570-1581.

Rubenstein, E. M., McCartney, R. R., Zhang, C., Shokat, K. M., Shirra, M. K., Arndt, K. M.,

Schmidt, M. C., 2008. Access denied: Snf1 activation loop phosphorylation is controlled

by availability of the phosphorylated threonine 210 to the PP1 phosphatase. The Journal

of biological chemistry. 283, 222-230.

Santander, J., Martin, T., Loh, A., Pohlenz, C., Gatlin III, D. M., Curtiss III, R., 2013.

Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and

its influence on fish gut inflammation and virulence. Microbiology. 159, 1471-1486.

Schilling, C. H., Edwards, J. S., Palsson, B. O., 1999. Toward metabolic phenomics: analysis of

genomic data using flux balances. Biotechnology progress. 15, 288-295.

Segre, D., Vitkup, D., Church, G. M., 2002. Analysis of optimality in natural and perturbed

metabolic networks. Proceedings of the national academy of sciences. 99, 15112-15117.

Sheen, J., 2014. Master regulators in plant glucose signaling networks. Journal of plant biology.

57, 67-79.

Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of metabolic flux

changes after genetic perturbations. Proceedings of the national academy of sciences.

102, 7695-7700.

Smith, A. M., Zeeman, S. C., 2006. Quantification of starch in plant tissues. Nature protocols. 1,

1342-5.

Stitt, M., Zeeman, S. C., 2012. Starch turnover: pathways, regulation and role in growth. Current

opinion in plant biology. 15, 282-292.

Tardieu, F., Granier, C., Muller, B., 1999. Modelling leaf expansion in a fluctuating

environment: are changes in specific leaf area a consequence of changes in expansion

rate? New phytologist. 143, 33-43.

Töpfer, N., Caldana, C., Grimbs, S., Willmitzer, L., Fernie, A. R., Nikoloski, Z., 2013.

Integration of genome-scale modeling and transcript profiling reveals metabolic

pathways underlying light and temperature acclimation in Arabidopsis. The plant cell. 25,

1197-1211.

105

Updegraff, D. M., 1969. Semimicro determination of cellulose inbiological materials. Analytical

biochemistry. 32, 420-424.

Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J., Mueller-Roeber,

B., Fernie, A. R., Hoefgen, R., 2013. Comprehensive dissection of spatiotemporal

metabolic shifts in primary, secondary, and lipid metabolism during developmental

senescence in Arabidopsis. Plant physiology. 162, 1290-310.

Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., Sharkey, T. D., 2015.

The relationship between leaf area growth and biomass accumulation in Arabidopsis

thaliana. Frontiers in plant science. 6, 167.

Williams, S. P., Rangarajan, P., Donahue, J. L., Hess, J. E., Gillaspy, G. E., 2014. Regulation of

Sucrose non-Fermenting Related Kinase 1 genes in Arabidopsis thaliana. Frontiers in

plant science. 5.

Williams, T. C. R., Poolman, M. G., Howden, A. J. M., Schwarzlander, M., Fell, D. A., Ratcliffe,

R. G., Sweetlove, L. J., 2010. A Genome-Scale Metabolic Model Accurately Predicts

Fluxes in Central Carbon Metabolism under Stress Conditions. Plant physiology. 154,

311-323.

Yamaguchi-Shinozaki, K., Shinozaki, K., 2006. Transcriptional regulatory networks in cellular

responses and tolerance to dehydration and cold stresses. Annual review of plant biology.

57, 781-803.

Yu, T.-S., Lue, W.-L., Wang, S.-M., Chen, J., 2000. Mutation of Arabidopsis plastid

phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant

physiology. 123, 319-326.

Zablackis, E., Huang, J., Muller, B., Darvill, A. G., Albersheim, P., 1995. Characterization of the

cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant physiology. 107, 1129-

1138.

106

CHAPTER 5

CONCLUSIONS

Computational modeling enables us to efficiently organize and apply knowledge in effort

to explore the unknown. Rapid independent advances in both computational and experimental

biology have created an atmosphere to communicate computational results and gaps in

knowledge to experimental researchers. In return, this collaboration can be used to update the

knowledgebase and identify new gaps and/or areas for exploration. The research presented in this

dissertation recognized the pitfalls of many current predictive algorithms for metabolic

engineering, which include overwhelming predictions, unrealistic scoring methods, lack of

quantitative predictions, long run times, and the absence of proper experimental validation. Here,

the NR-Opt toolbox is presented and contains novel predictive algorithms for metabolic

engineering strategy design. In addition, this research has developed a novel flux-based modeling

framework involving GEMs that includes an analytical pipeline to enable model-guided

discovery. The utility of this modeling framework was validated when quantitative predictions

on starch changes in WT and transgenic plants agree with experimental results.

The work done in this research provided a well curated list of current predictive

algorithms for designing metabolic engineering strategies. A novel algorithm was introduced in

the NR-Opt toolbox to overcome the limitations of current algorithms. Finally, a sophisticated

modeling framework was developed to model non-steady state metabolic changes and guide

sugar-signaling studies in plants. These advances can significantly improve the efficiency of

metabolic engineering workflow and enable accurate genome-scale metabolic analysis of plant

signaling pathways.

107

FUTURE DIRECTIONS

It is obvious that further advancements in computational biology will enable a large array

of benefits, which conservatively includes precision medicine, effective gene therapy, accurate

metabolic engineering, and optimized farming practice. For this reason, there are significant

focuses on combining multiple modeling frameworks, such as kinetic models, metabolic models,

signaling and regulatory models, heuristic models, and statistical models, to integrate as much

current biology as possible to help guide future research. The greatest challenge is the need for

high quality curation and cross-validation, which can best be accomplished with one or both of

two ways: 1) crowd sourcing through interaction of the scientific community and the public, and

2) developing sophisticated machine learning methods that replaces human intervention.

Needless to say that not only is the first option more attainable, the first option can lead to the

realization of the latter. It is necessary to develop an efficient framework to facilitate crowd

sourcing. It is also imperative to communicate the necessity and generate incentive for crowd

sourcing. Current technology industry is ahead of the scientific community in crowd sourcing

data, such as health, diet, and daily activities, by creating user-friendly applications and wearable

technologies. These data are arguably being applied in the least creative and sophisticate analysis

relative to the developments in academia. For this reason, the most critical next step is to learn

from the industrial approaches and utilize their methods to benefit scientific agenda. This can

include developing user-friendly applications that stream-line data integration into biological

modeling platforms and improving communication of public benefits in utilizing methods that

are beyond common comprehension. Open-source communities, such as Blender 3D modeling

software, generates exciting products that attracts talents who seeks personal satisfaction over

financial benefits. If the same can be done in the computational biology community, then the

108

advancement will accelerate at unprecedented speed, and bringing all the previously discussed

benefits much closer to realization.

It would be interesting to further explore the utility of the novel flux-based modeling

framework introduced in this research in studying animal metabolism. It may be possible to

model non-steady dietary and fat storage in mammalian organisms, such as mice and human.

Publicly available data of net body biomass composition can be used to construct the biomass

equation. Different dietary habits can be used as constraints to model changes in stored fat.

Levels of maintenance energy can be a function of daily exercise. This study may reveal

previously overlooked relationship between body types and rate of weight gain/loss.

109

APPENDICES

A. ALGORITHM FOR THE NODE-REWARD OPTIMIZATION TOOLBOX

THE NR-OPT ALGORITHM

Both NR-Knock and NR-Ox search for a metabolic engineering strategy that can satisfy

the termination criteria (i.e. 95% maximum BPCY). The search is accomplished with a modified

steepest ascent hill climbing search algorithm that allows for delayed ascension. Here, NR-

Knock is used to explain the algorithm. NR-Knock first takes in the WT organism GEM, which

is a strategy with no elimination of reaction (i.e. no gene KO). NR-Knock assigns the user-

defined initial reward point (𝑝0) to the WT strategy reward point (𝑝𝑊𝑇) (i.e., these values are

equal initially). In the example shown in Figure A-1, 𝑝0 is 0. There are two rules on the reward

points: (i) any strategy with 𝑝 < 0 is eliminated from “expansion” and (ii) no strategy can hold

more than the user-defined maximum reward points (𝑝𝑚𝑎𝑥). In the example shown in Figure A-

1, 𝑝𝑚𝑎𝑥 is 1. NR-Knock performs FBA with the WT model to calculate the minimum BPCY

under maximal growth. In the example in Figure A-1, the minimum BPCY of the WT strategy is

0. Because no other strategy is examined, WT strategy with a BPCY of 0 is currently the “best”

solution. The WT model is then used to calculate the maximum BPCY, thus allowing the user to

define the BPCY criteria to terminate NR-Knock search (i.e. 95% of maximum BPCY). Because

this is a steepest ascent hill climbing algorithm, for a strategy to receive an additional reward

point, its minimum BPCY must be higher than the current best BPCY. One point is deducted

from a strategy that fails to do so.

110

Figure A-1. Initialization of NR-Knock search.

The WT strategy “expands” into single-gene KO strategies, which test for elimination of

a single reaction in the WT GEM. In the example shown in Figure A-2, there are 4 possible

single-KO strategies to test. Each strategy inherits the reward point of the WT strategy. FBA is

performed for each strategy to determine their minimum BPCY. In the example shown in Figure

A-2, all single-KO strategies have higher BPCY than the current best. NR-Knock now performs

2 steps: (i) award 1 point to each strategy and (ii) sort the strategies from the highest BPCY.

111

Figure A-2. Evaluation of single-KO strategies.

The current best strategy expands into double-KO strategies that inherits their parent’s

reward point value. In the example shown in Figure A-3, there are 3 double-KO strategies that

can be derived from the single-KO of B. FBA is performed on each of these double-KO

strategies. In the example shown in Figure A-3, none of the double-KO strategies have a BPCY

that exceeds the current best BPCY; thus, 1 point is deducted from each. Because the reward

points of the double-KO strategies have not fallen below 0, they are sorted by BPCY (highest to

lowest) and allowed to expand into triple-KO strategies.

112

Figure A-3. Evaluation of double-KO strategies.

The best double-KO strategy is expanded into triple-KO strategies and evaluated with

FBA. In the example shown in Figure A-4, none of the triple-KO strategies have BPCY higher

than the best, thus 1 point is deducted. These triple-KO strategies are eliminated from further

expansion because their reward points are below 0. Thus, the next best double-KO strategy is

expanded into triple-KO strategies for evaluation.

113

Figure A-4. Evaluation of triple-KO strategies.

In the example shown in Figure A-5, the next best double-KO strategy (BA) is expanded

into only 1 triple-KO strategy (BAD) because the algorithm does not evaluate repeats. FBA is

performed on the triple-KO strategy (BAD), and reveals a BPCY that satisfies the termination

criteria. NR-Knock terminates and designates triple-KO of BAD as the “best” strategy. Any

strategy that had at some point significantly improved BPCY (i.e. single-KO of A, B, C, or D)

114

are alternative strategies. The user has the option of manipulating the BPCY acceptance value

(e.g., 95% of maximum BPCY) so that multiple designs of a desired BPCY level are returned.

Figure A-5. Identification of the best metabolic engineering strategy.

NR-Ox follows uses the same algorithm as described for NR-Knock. The primary

difference is that instead of performing FBA after elimination of reactions, NR-Ox perform FBA

after increasing or decreasing flux ratio of a reaction|node pair to a user-defined level. As

described in Methods, the flux ratio (𝑟𝑖) of a reaction|node pair 𝑖 is the ratio of a metabolite

partitioned as a reactant to a reaction (the value is between 0 and 1). If, for example, user defines

115

flux ratio high and low coefficients as 0.9 (𝑐𝑜𝑒𝑓ℎ𝑖) and 0.01 (𝑐𝑜𝑒𝑓𝑙𝑜) to evaluate OX and KD

strategies. These coefficients are used as described in Equation 1 and Equation 2 to calculate the

OX and KD flux ratios.

𝑟𝑖,𝑂𝑋 = 𝑟𝑖 + (1 − 𝑟𝑖) × 𝑐𝑜𝑒𝑓ℎ𝑖 (Equation 1)

𝑟𝑖,𝐾𝐷 = 𝑟𝑖 × 𝑐𝑜𝑒𝑓𝑙𝑜 (Equation 2)

If a reaction/node pair has a flux ratio of 0.4, NR-Ox performs FBA after raising its flux

ratio to 0.95 (0.4 + (1 − 0.4) × 0.9) to assess the OX strategy, then performs FBA after

reducing its flux ratio to 0.004 (0.4 × 0.01) to assess the KD strategy.

116

B. MATLAB CODES FOR THE NODE-REWARD OPTIMIZATION TOOLBOX

There are three sections: (i) the core codes and their dependencies, (ii) the driver, and (iii)

an example setup of the driver to design strategies for BDO production in E. coli. For both NR-

Knock and NR-Ox, a folder containing the design strategies will be created. The only relevant

file is a text file named “scoreEvolution,” which contains all the concise strategies. For NR-

Knock, each line is a design in the comma delimited format: [reaction ID 1],[reaction ID

2],[reaction ID 3],…,[BPCY score]. Similarly, the NR-Ox output is in the format: [compound ID

1 | reaction ID 1 | flux ratio assigned],[compound ID 2 | reaction ID 2 | flux ratio

assigned],…,[BPCY score]. Be cautious with metric units for BPCY score. In the programs,

BPCY score is calculated as 𝑠𝑐𝑜𝑟𝑒𝐵𝑃𝐶𝑌 = 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 × 𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑒𝑞.

1) NR-OPT CORE CODE AND DEPENDENCIES

Function (NR-Knock): nodeRewardKnockP

%% Predicting knock-out strategies using a reward algorithm
% Essentially OptKnock with an additional reduction by only searching
% through node-associated reactions
% **Utilizes parallel computing**
% Author: Jiun Yen
% Date: 2016.11.27
% Version: 2016.12.27
%
% This is an exhaustive search with a reward system to reduce search space
% All members of the RID array starts with p point(s) (allowing p
% additional failed attempt); if successful, the set receive an additional
% point.
% This search is depth-first
%
%
% Input:
% param.
% m -model
% target_rid - RID of the target reaction to maximize yield
% bio_rid - RID of the biomass equation (growth)
% BPCYacceptance - biomass-product coupled yield (Choon et al. 2013)
% - percent of max theoretical BPCY to accept solution
% and terminate run
% Nbests - number of best strategies to keep
% searchLethals - whether to look for RIDs which KO is lethal
% excluded - RIDs to exclude

117

% v_cutoff - flux cutoff for zero
% hi_cutoff - flux cutoff for high values (recommend: 100)
% dv_cutoff - minimum degree of improvement each iteration
% p0 - point(s) to start with
% pmax - max number of points
% komax - max number of KOs
% forceBest - whether new score must be the best known score
% savedir - folder to save results in
% fn - file name header
% mskoption - option for mosek optimizer

function [strategies, param] = nodeRewardKnockP(param)

time0 = tic;

%% compute test RIDs
param.m.c(:) = 0;
param.m.c(param.bio_rid) = 1;

% first check viability
v0 = m_linprogP(param.m, 1, 0, param.mskoption);
if ~v0(param.bio_rid)
 % terminate if no growth
 fprintf('No growth from initial model. Exit search.\n');
 return
end

% perform FVA to find all solution space
fprintf('Performing FVA\n');
[vmax, vmin] = fvaP(param.m, param.mskoption);
fprintf('Completed FVA\n');
v0 = abs(vmax) + abs(vmin);
v0(abs(v0) < param.v_cutoff) = 0;
v0(abs(v0) > param.hi_cutoff) = 0;

% find maximum theoretical BPCY
maxbpcy = findMaxBPCY(param);

% compute flux ratios to find node-associated reactions
fr = genFR(param.m, v0);

% identify all gene-coding reactions
g_rids = geneCodingRxns(param.m);
param.g_rids = g_rids;

% determine RIDs to test with
rids = intersect(fr.rids, g_rids);

% search for lethals if necessary
if param.searchLethals

 Nrxns = size(param.m.S,2);
 m = param.m;
 mskoption = param.mskoption;
 v_cutoff = param.v_cutoff;

118

 lethalrids = false(Nrxns,1);
 parfor ii = 1:Nrxns
 [~, bV] = m_linprogP(constraintKO(m, ii), 1, 0, mskoption);
 if bV < v_cutoff
 lethalrids(ii) = true;
 end
 end
 param.lethalrids = find(lethalrids);
 param.excludeRids = union(param.excludeRids, param.lethalrids);

 clear Nrxns m mskoption v_cutoff lethalrids
end

% remove excluded RIDs
rids = setdiff(rids, param.excludeRids);

% print to file
csvwrite([param.savedir param.fn 'all_RIDs.csv'], rids);

%% initialize primary output variables
strategies.best.scores = zeros(param.Nbests, 1);
strategies.best.rids = cell(param.Nbests, 1);

%% initialize eval param
evalParam.max = 1;
evalParam.target = param.target_rid;
evalParam.modifier = [];
evalParam.v_cutoff = param.v_cutoff;
evalParam.mskoption = param.mskoption;

%% perform tests
% The inner search is performed with parallel CPUs. Because of this,
% instead of using stacks, an array of definitely size is used to search
% each time

% constant variables
dv_cutoff = param.dv_cutoff;
roundN = abs(ceil(log(dv_cutoff)/log(10))) + 1;
fn = [param.savedir param.fn 'scoreEvolution.csv'];
f = fopen(fn, 'w');
fprintf(f, 'RID sets,Scores\n');
fclose(f);
BPCYacceptance = param.BPCYacceptance;

% stack to store KO strategies (not a real stack, just an array, because

Matlab...)
ridStack = [];
scoreStack = [];
pointStack = [];
scoreHistory = [];

% initialize bpcyRate
bpcyRate = BPCYacceptance - 1;

119

start = true;
while bpcyRate < BPCYacceptance && (~isempty(ridStack) || start)

 % pop the stacks
 if start

 start = false;
 rid0 = [];
 [~, bV] = m_linprogP(param.m, 1, 0, param.mskoption);
 m = param.m;
 m.lb(param.bio_rid) = bV;
 m.c(:) = 0;
 m.c(param.target_rid) = 1;
 [~, tV] = m_linprogP(m, 0, 0, param.mskoption);
 if BPCYacceptance > 0
 score0 = bV * tV;
 else
 score0 = tV;
 end
 parentScore = score0;
 point0 = param.p0;
 ncol = 1;
 m = param.m;

 else

 rid0 = ridStack{1};
 ridStack(1) = [];
 if param.forceBest
 % force new score to be better than all current known score
 score0 = max(scoreHistory);
 else
 % new score just needs to be better than parent's
 score0 = scoreStack(1);
 end
 parentScore = scoreStack(1);
 scoreStack(1) = [];
 point0 = pointStack(1);
 pointStack(1) = [];
 ncol = length(rid0) + 1;
 m = constraintKO(param.m, rid0);

 end

 % precalculate points if strategy fails
 pointFail = point0 - 1;

 % determine if maximum KO is reached
 isMaxKO = length(rid0) >= param.komax-1;

 % determine reward value
 if point0 >= param.pmax
 reward = 0;
 else
 reward = 1;

120

 end

 % determine RIDs to test
 v0 = m_linprogP(m, 1, 1, param.mskoption);
 v0(abs(v0) < param.v_cutoff) = 0;
 ridx = intersect(rids, find(v0));
 ridx = setdiff(ridx, rid0);
 ridc = parallel.pool.Constant(ridx);
 Nridx1 = length(ridx);

 % set file print
 fc = parallel.pool.Constant(@() fopen(fn, 'At'), @fclose);

 %% solve LP problems with parallel cores
 toExpand = true(Nridx1, 1);
 points = false(Nridx1, 1);
 scores = zeros(Nridx1, 1);
 orig_scores = zeros(Nridx1, 1); % this is to keep record to determine top

strategies

 fprintf('Evaluate strategies\n');
 parfor ii = 1:Nridx1

 testRids = [rid0 ridc.Value(ii)];
 mes = mesEvalP(m, addMes(initMes, ridc.Value(ii)), evalParam);

 if mes.objV > 0

 % scoring method
 if BPCYacceptance > 0
 % score by Biomass-Product Coupled Yield (Choon et al.
 % 2013)
 score = mes.score * mes.objV;
 else
 % conventional scoring by product yield
 score = mes.score;
 end
 tmpScore = round(score, roundN);

 % keep recrod of scores to rank
 if tmpScore > 0 && (tmpScore - parentScore) > dv_cutoff
 orig_scores(ii) = score;
 end

 % determine better scores and assign points
 if tmpScore > 0 && isempty(find(scoreHistory == tmpScore, 1))
 % only if this is a new score
 if (tmpScore - score0) > dv_cutoff

 % this RID set has better score than score0
 % 1 point will be awarded, unless reaches pmax
 points(ii) = true;
 scores(ii) = tmpScore;

 str = sprintf('%u,', testRids);

121

 fprintf(fc.Value, [str '%4.4f\n'], score);

 else

 if pointFail < 0
 % failed and not enough points
 % this RID set lineage ends here
 toExpand(ii) = false;
 else
 % this RID set has enough points to be expanded
 % but 1 point will be deducted for failing
 scores(ii) = score0;
 end

 end
 elseif pointFail < 0
 toExpand(ii) = false;
 end

 if isMaxKO
 toExpand(ii) = false;
 end

 else
 toExpand(ii) = false;
 end

 end

 clear fc

 %% push the RID-sets-to-expand into stacks
 n = sum(toExpand);
 if n > 0
 % sort results
 [~,i] = sortrows(scores, -1);
 ridx2 = ridx(i);
 scores = scores(i);
 toExpand = toExpand(i);
 points = points(i);

 % push to stacks
 tmp = [mat2cell([repmat(rid0, n, 1) ridx2(toExpand)], ones(n,1),

ncol); ridStack];
 ridStack = tmp;
 tmp = [scores(toExpand); scoreStack];
 scoreStack = tmp;
 tmp = [zeros(n,1); pointStack];
 tmp(points(toExpand)) = point0 + reward;
 tmp(~points(toExpand)) = point0 - 1;
 pointStack = tmp;

 % adding to scoreHistory
 tmp = union(scoreHistory, scores);
 scoreHistory = tmp;

122

 clear tmp

 % determine bpcy rate if necessary
 if BPCYacceptance > 0
 bpcyRate = scores(1) / maxbpcy;
 end
 end

 %% update best strategies
 [~, rank] = sortrows(orig_scores, -1);
 j = 1;
 while j <= param.Nbests && j <= Nridx1
 if orig_scores(rank(j)) > 0
 betterThan = strategies.best.scores < orig_scores(rank(j));
 if sum(betterThan) > 0
 tmp = [strategies.best.scores(~betterThan);

orig_scores(rank(j)); strategies.best.scores(betterThan(1:end-1))];
 strategies.best.scores = tmp;
 ridtmp = {[rid0 ridx(rank(j))]};
 tmp = [strategies.best.rids(~betterThan); ridtmp;

strategies.best.rids(betterThan(1:end-1))];
 strategies.best.rids = tmp;
 end
 end
 j = j + 1;
 end

end

strategies.time = toc(time0);
strategiesToRemove = strategies.best.scores == 0;
strategies.best.scores(strategiesToRemove) = [];
strategies.best.rids(strategiesToRemove) = [];

%% print elapsed time
f = fopen(fn, 'At');
fprintf(f, 'Elapsed time: %4.1f minutes\n', strategies.time/60);
fclose(f);

%% print best strategies
f = fopen([param.savedir param.fn 'bestScores.csv'], 'w');
fprintf(f, 'Srategies,Scores\n');
for i = 1:length(strategies.best.scores)
 fprintf(f, '%u,', strategies.best.rids{i});
 fprintf(f, '%4.4f\n', strategies.best.scores(i));
end
fclose(f);

Function (NR-Ox): nodeRewardOxP

%% Predicting engineering strategies using a reward algorithm
% **Utilizes parallel computing**

123

% Author: Jiun Yen
% Date: 2016.11.27
% Version: 2017.2.4
%
% This is an exhaustive search with a reward system to reduce search space
% All members of the RID array starts with p point(s) (allowing p
% additional failed attempt); if successful, the set receive an additional
% point.
% This search is depth-first
%
%
% Input:
% param.
% m -model
% bio_rid - RID of the biomass equation (growth)
% target_rid - RID of the target reaction to maximize yield
% excludeRids - RIDs to exclude from mod
% BPCYacceptance - biomass-product coupled yield (Choon et al. 2013)
% - percent of max theoretical BPCY to accept solution
% and terminate run
% Nbests - number of best strategies to keep
% v_cutoff - flux cutoff for zero
% dv_cutoff - minimum degree of improvement each iteration
% ratioHiCutoff - high cutoff for flux ratio
% ratioLoCutoff - low cutoff for flux ratio

% hiCoeff - coefficient to calc increase of flux ratio

% r_hi = r + (1-r)*hiCoeff

% loCoeff - coefficient to calc decrease of flux ratio

% r_lo = r * loCoeff

% p0 - point(s) to start with
% pmax - max number of points
% maxMod - max number of modifications
% forceBest - whether new score must be the best known score
% savedir - folder to save results in
% fn - file name header
% mskoption - option for mosek optimizer

function [strategies, param] = nodeRewardOxP(param)

time0 = tic;
strategies = [];

%% initialize nodeEval parameters
nodeParam0.m = decomposeS(param.m);
nodeParam0.m.c(:) = 0;
nodeParam0.m.c(param.bio_rid) = 1;
nodeParam0.bio_rid = param.bio_rid;
nodeParam0.target_rid = param.target_rid;
nodeParam0.scoreByBPCY = logical(param.BPCYacceptance);
nodeParam0.max = 1;
nodeParam0.v_cutoff = param.v_cutoff;
nodeParam0.mskoption = param.mskoption;

% calc dhiCoeff

param.dhiCoeff = 1 – param.hiCoeff;

124

% find maximum theoretical BPCY
maxbpcy = findMaxBPCY(param);

% constants
dv_cutoff = param.dv_cutoff;
roundN = abs(ceil(log(dv_cutoff)/log(10))) + 1;
fn = [param.savedir param.fn 'scoreEvolution.csv'];
f = fopen(fn, 'w');
fprintf(f, 'NID sets,Scores\n');
fclose(f);
BPCYacceptance = param.BPCYacceptance;
Nnodes0 = size(nodeParam0.m.S,1);

%% initialize primary output variables
strategies.best.scores = zeros(param.Nbests, 1);
strategies.best.nids = cell(param.Nbests, 1);
strategies.best.rids = cell(param.Nbests, 1);
strategies.best.ratios = cell(param.Nbests, 1);

%% Perform tests

nidStack = [];
ridStack = [];
ratioStack = [];
scoreStack = [];
pointStack = [];
scoreHistory = [];
bpcyRate = 0;

start = true;
% while ~isempty(nidStack) || start
while bpcyRate < BPCYacceptance && (~isempty(nidStack) || start)

 % pop the stacks
 if start

 start = false;
 nodeMod0.nids = [];
 nodeMod0.rids = [];
 nodeMod0.rs = [];
 m0 = nodeParam0.m;
 [~, bV] = m_linprogP(m0, 1, 0, param.mskoption);
 obj = find(m0.c);
 m0.lb(obj) = bV;
 m0.ub(obj) = bV;
 m0.c(:) = 0;
 m0.c(param.target_rid) = 1;
 [~, tV] = m_linprogP(m0, 0, 0, param.mskoption);
 if BPCYacceptance > 0
 score0 = bV * tV;
 else
 score0 = tV;
 end
 parentScore = score0;
 point0 = param.p0;

125

 ncol = 1;

 else

 nodeMod0.nids = nidStack{1};
 nodeMod0.rids = ridStack{1};
 nodeMod0.rs = ratioStack{1};
 nidStack(1) = [];
 ridStack(1) = [];
 ratioStack(1) = [];
 if param.forceBest
 % force new score to be better than all current known score
 score0 = max(scoreHistory);
 else
 % new score just needs to be better than parent's
 score0 = scoreStack(1);
 end
 parentScore = scoreStack(1);
 scoreStack(1) = [];
 point0 = pointStack(1);
 pointStack(1) = [];
 ncol = length(nodeMod0.nids) + 1;

 end

 % precalculate points if strategy fails
 pointFail = point0 - 1;

 % install current nodeMod
 nodeParam = installFR(nodeParam0, nodeMod0);

 % determine reward value
 isMaxKO = length(nodeMod0.nids) >= param.maxMod-1;
 if point0 >= param.pmax
 reward = 0;
 else
 reward = 1;
 end

 % solve current model to get FR
 m = nodeParam.m;
 v = m_linprogP(m, 1, 0, param.mskoption);
 m.lb(param.bio_rid) = v(param.bio_rid);
 m.c(:) = 0;
 m.c(param.target_rid) = 1;
 v = m_linprogP(m, 0, 0, param.mskoption);
 v(abs(v) < nodeParam.v_cutoff) = 0;
 v(param.target_rid) = 0;
 fr = genFR(nodeParam.m, v);

 % determine new nodes to test
 nids = find(fr.isNode);
 nids(nids > Nnodes0) = [];
 nidx = setdiff(nids, nodeMod0.nids);
 nidc = parallel.pool.Constant(nidx);

126

 Nnidx = length(nidx);

 % populate all test cases
 r = full(fr.r);
 r2 = r;
 r2(nodeMod0.nids,:) = []; % remove nodes that are already in the set
 Ntests = length(find(r2))*2;
 clear r2
 nids1 = zeros(Ntests, 1);
 rids1 = zeros(Ntests, 1);
 ratios1 = zeros(Ntests, 1);
 k = 0;
 for i = 1:Nnidx
 ridstmp = setdiff(find(r(nidx(i),:)), param.excludeRids);
 for j = 1:length(ridstmp)
 rtmp = r(nidx(i),ridstmp(j));

 if rtmp < param.ratioHiCutoff
 % OX
 k = k + 1;
 nids1(k) = nidx(i);
 rids1(k) = ridstmp(j);
 ratios1(k) = param.hiCoeff + param.dhiCoeff * rtmp;
 end

 if rtmp > param.ratioLoCutoff
 % KD
 k = k + 1;
 nids1(k) = nidx(i);
 rids1(k) = ridstmp(j);
 ratios1(k) = param.loCoeff * rtmp;
 end

 end
 end
 Ntests = k;
 k = k + 1;
 nids1(k:end) = [];
 rids1(k:end) = [];
 ratios1(k:end) = [];

 % set file print
 fc = parallel.pool.Constant(@() fopen(fn, 'At'), @fclose);

 %% solve LP problems with parallel cores
 toExpand = true(Ntests, 1);
 points = false(Ntests, 1);
 scores = zeros(Ntests, 1);
 orig_scores = zeros(Ntests, 1);

 fprintf('Evaluating %u tests\n', Ntests);
 fprintf('%u,', nodeMod0.nids);
 fprintf('\n');
 fprintf('%u,', nodeMod0.rids);
 fprintf('\n');

127

 fprintf('%4.4f,', nodeMod0.rs);
 fprintf('\n');

 parfor ii = 1:Ntests

 % Evaluate node
 nodeMod = nodeMod0;
 nodeMod.nids = [nodeMod0.nids nids1(ii)];
 nodeMod.rids = [nodeMod0.rids rids1(ii)];
 nodeMod.rs = [nodeMod0.rs ratios1(ii)];
 nodeParam1 = installFR(nodeParam, nodeMod);
 [~, bV] = m_linprogP(nodeParam1.m, 1, 0, nodeParam1.mskoption);
 nodeParam1.m.lb(nodeParam1.bio_rid) = bV;
 nodeParam1.m.c(:) = 0;
 nodeParam1.m.c(nodeParam1.target_rid) = 1;
 [~, tV] = m_linprogP(nodeParam1.m, 0, 0, nodeParam1.mskoption);

 % Evalute score and assign reward
 if bV > 0

 if BPCYacceptance > 0
 score = bV * tV;
 else
 score = tV;
 end
 tmpScore = round(score, roundN);

 % keep recrod of scores to rank
 if tmpScore > 0 && (tmpScore - parentScore) > dv_cutoff
 orig_scores(ii) = score;
 end

 if tmpScore > 0 && isempty(find(scoreHistory == tmpScore, 1))
 % only if this is a new score
 if (tmpScore - score0) > dv_cutoff

 % this RID set has better score than score0
 % 1 point will be awarded, unless reaches pmax
 points(ii) = true;
 scores(ii) = tmpScore;

 tmp = reshape([nodeMod.nids; nodeMod.rids;

nodeMod.rs],length(nodeMod.nids)*3,1);
 str = sprintf('%u|%u|%4.4f,', tmp);
 fprintf(fc.Value, [str '%4.4f\n'], score);

 else

 if pointFail < 0
 % failed and not enough points
 % this RID set lineage ends here
 toExpand(ii) = false;
 else
 % this RID set has enough points to be expanded
 % but 1 point will be deducted for failing

128

 scores(ii) = score0;
 end

 end

 elseif pointFail < 0
 toExpand(ii) = false;
 end

 if isMaxKO
 toExpand(ii) = false;
 end

 else
 toExpand(ii) = false;
 end

 end

 clear fc

 %% push the RID-sets-to-expand into stacks
 n = sum(toExpand);
 fprintf('%u to expand\n', n);
 if n > 0
 % sort results
 [~,i] = sortrows(scores, -1);
 nids2 = nids1(i);
 rids2 = rids1(i);
 ratios2 = ratios1(i);
 scores = scores(i);
 toExpand = toExpand(i);
 points = points(i);

 % push to stacks
 tmp = [mat2cell([repmat(nodeMod0.nids, n, 1) nids2(toExpand)],

ones(n,1), ncol); nidStack];
 nidStack = tmp;
 tmp = [mat2cell([repmat(nodeMod0.rids, n, 1) rids2(toExpand)],

ones(n,1), ncol); ridStack];
 ridStack = tmp;
 tmp = [mat2cell([repmat(nodeMod0.rs, n, 1) ratios2(toExpand)],

ones(n,1), ncol); ratioStack];
 ratioStack = tmp;
 tmp = [scores(toExpand); scoreStack];
 scoreStack = tmp;
 tmp = [zeros(n,1); pointStack];
 tmp(points(toExpand)) = point0 + reward;
 tmp(~points(toExpand)) = point0 - 1;
 pointStack = tmp;

 % adding to scoreHistory
 tmp = union(scoreHistory, scores);
 scoreHistory = tmp;

129

 clear tmp

 % determine bpcy rate if necessary
 if BPCYacceptance > 0
 bpcyRate = max(scores) / maxbpcy;
 fprintf('BPCY: %u\n', max(scores));
 fprintf('BPCYrate: %u\n', bpcyRate);
 end

 end

 %% update best strategies
 [~, rank] = sortrows(orig_scores, -1);
 j = 1;
 while j <= param.Nbests && j <= Ntests
 if orig_scores(rank(j)) > 0
 betterThan = strategies.best.scores < orig_scores(rank(j));
 if sum(betterThan) > 0
 tmp = [strategies.best.scores(~betterThan);

orig_scores(rank(j)); strategies.best.scores(betterThan(1:end-1))];
 strategies.best.scores = tmp;
 tmp = [strategies.best.nids(~betterThan); {[nodeMod0.nids

nids1(rank(j))]}; strategies.best.nids(betterThan(1:end-1))];
 strategies.best.nids = tmp;
 tmp = [strategies.best.rids(~betterThan); {[nodeMod0.rids

rids1(rank(j))]}; strategies.best.rids(betterThan(1:end-1))];
 strategies.best.rids = tmp;
 tmp = [strategies.best.ratios(~betterThan); {[nodeMod0.rs

ratios1(rank(j))]}; strategies.best.ratios(betterThan(1:end-1))];
 strategies.best.ratios = tmp;
 end
 end
 j = j + 1;
 end

 %% print best strategies
 strategiesToRemove = strategies.best.scores == 0;
 strategies.best.scores(strategiesToRemove) = [];
 strategies.best.nids(strategiesToRemove) = [];
 strategies.best.rids(strategiesToRemove) = [];
 strategies.best.ratios(strategiesToRemove) = [];
 f = fopen([param.savedir param.fn 'bestScores.csv'], 'w');
 fprintf(f, 'Srategies,Scores\n');
 for i = 1:length(strategies.best.scores)
 tmp = reshape([strategies.best.nids{i}; strategies.best.rids{i};

strategies.best.ratios{i}],length(strategies.best.nids{i})*3,1);
 fprintf(f, '%u|%u|%4.4f,', tmp);
 fprintf(f, '%4.4f\n', strategies.best.scores(i));
 end
 fclose(f);

end

strategies.time = toc(time0);

130

%% print elapsed time
f = fopen(fn, 'At');
fprintf(f, 'Elapsed time: %4.1f minutes\n', strategies.time/60);
fclose(f);

Function: addMes

%% Expand metabolic engineering strategy - use with initMes()
% Author: Jiun Yen
% Date: 2016.11.12
% Version: 2016.11.12

function mes = addMes(mes, rids, ubs, lbs, score, objV)

if ~isempty(intersect(mes.rids, rids))
 return
end

mes.rids = [mes.rids rids];

if nargin < 3
 mes.ubs = [mes.ubs zeros(1, length(rids))];
 mes.lbs = [mes.lbs zeros(1, length(rids))];
else
 mes.ubs = [mes.ubs ubs];
 mes.lbs = [mes.lbs lbs];
end

if nargin < 5
 mes.score = 0;
 mes.evaluated = false;
else
 mes.score = score;
 mes.evaluated = true;
end

if nargin < 6
 mes.objV = 0;
else
 mes.objV = objV;
end

Function: constraintKO

%% Constrain flux(s) of specified reaction(s) to zero

function m = constraintKO(m, rid)
m.lb(rid) = 0;
m.ub(rid) = 0;

131

Function: decomposeS

%% Break down original COBRA model so there are only positive v

function m = decomposeS(m)

Nrxns = size(m.S,2);

% S matrix decomposition
m.S = sparse([full(m.S) -full(m.S)]);

% boundary decomposition
ub1 = zeros(Nrxns,1);
ub2 = zeros(Nrxns,1);
lb1 = zeros(Nrxns,1);
lb2 = zeros(Nrxns,1);
ub1(m.ub > 0) = m.ub(m.ub > 0);
lb1(m.lb > 0) = m.lb(m.lb > 0);
ub2(m.lb < 0) = abs(m.lb(m.lb < 0));
lb2(m.ub < 0) = abs(m.ub(m.ub < 0));
m.ub = [ub1;ub2];
m.lb = [lb1;lb2];

% reassign obj function
obj = find(m.c);
m.c = zeros(Nrxns * 2, 1);
m.c(obj) = 1;

Function: findMaxBPCY

%% Calculate the maximum theoretical BPCY

function [maxbpcy, bV, tV] = findMaxBPCY(param)

tV = fminsearch(@bpcy, 0, [], param);
m = param.m;
m.lb(param.target_rid) = tV;
[~, bV] = m_linprogP(m, 1, 0, param.mskoption);
maxbpcy = tV * bV;

function s = bpcy(t0, param)

m = param.m;
m.lb(param.target_rid) = t0;
[~, b] = m_linprogP(m, 1, 0, param.mskoption);
s = 1000 - b * t0;

Function: fvaP

% Flux variability analysis (for the parallel driver)

132

% Author: Jiun Yen
% Version: 2016.12.18
% Description: Analysis of flux variability as described in Appendix A of
% Ranganathan et al. The upper and lower flux range is determined through
% iterative optimization of each reaction in model m.
% Input:
% m - a Cobra model
% Output:
% vmax,vmin - matrix of upper and lower flux ranges of all reactions in m

function [vmax,vmin,t] = fvaP(m, option, set)
tic

% final optimal obj solution
s = m_linprogP(m, 1, 0, option);
obj = find(m.c);
m.ub(obj) = floor(s(obj)*10^6)/10^6;
m.lb(obj) = m.ub(obj);

% identify set
Nrxns = size(m.S,2);
m.c(:) = 0;
if nargin < 3 || isempty(set)
 set = 1:Nrxns;
 set(obj) = [];
 Nset = Nrxns - 1;
else
 Nset = length(set);
end

% initialize output
vmax = zeros(Nrxns,1);
vmin = zeros(Nrxns,1);

% assign obj solution
vmax(obj) = s(obj);
vmin(obj) = s(obj);

% perform FVA in parallel
vmax_sub = zeros(Nset,1);
vmin_sub = zeros(Nset,1);
parfor i = 1:Nset

 m1 = m;

 m1.c(set(i)) = 1;

 m1.ub(set(i)) = 1000;
 m1.lb(set(i)) = -1000;

 % find max
 s = m_linprogP(m1,1,0,option);
 vmax_sub(i) = s(set(i));

 % find min

133

 s = m_linprogP(m1,0,0,option);
 vmin_sub(i) = s(set(i));

end

% assign solutions
vmax(set) = vmax_sub;
vmin(set) = vmin_sub;

t = toc;

Function: genFR

% Search for nodes with flux solution (v), and generate flux ratios
% v should be cleaned-up (free of noisy values that are essentially zeros)

function fr = genFR(m, v)

fr.S = m.S;
fr.v = v;

[Nmets, Nrxns] = size(m.S);

% multiply S by v and avoid summation
r_mat = m.S .* repmat(v', Nmets, 1);

% identify consumption fluxes (negative fluxes)
negs = r_mat < 0;

% remove production fluxes (positive fluxes)
r_mat = r_mat .* negs;

% find nodes, mets with 2 or more competing fluxes (more than 1)
isNode = full(sum(negs, 2) > 1);

% remove non-nodes (set to 0)
r_mat = r_mat .* repmat(isNode, 1, Nrxns);

% calculate total flux producing each met (node)
v_sums = sum(r_mat, 2);

% cheat: to prevent NaN, since non-mets will have 0 fluxes, 0/1 = 0
v_sums(v_sums == 0) = 1;

% finalize flux ratio matrices by dividing each node by its total flux
r_mat = r_mat ./ repmat(v_sums, 1, Nrxns);

% find rxns that are in node
rids = find(sum(logical(r_mat),1));

fr.isNode = isNode;

134

fr.r = r_mat;
fr.rids = rids;

Function: geneCodingRxns

%% Return only reactions associated to a gene
function rids = geneCodingRxns(m)
rids = find(sum(full(logical(m.rxnGeneMat)),2));

Function: initMes

%% Special set data structure for metabolic engineering strategies (mes)
% Author: Jiun Yen
% Date: 2016.11.12
% Version: 2016.11.12
% Structure:
% rids: rids in this set
% ubs: flux upper bound assigned to the rids (same size vector as set)
% lbs: flux lower bound assigned to the rids (same size vector as set)
% score: score of this set
% objV: flux of the objective function

function mes = initMes()

mes.rids = [];
mes.ubs = [];
mes.lbs = [];
mes.score = 0;
mes.objV = 0;
mes.evaluated = false;

Function: installFR

%% Install flux ratio into COBRA model
% *** MUST perform decomposeS first!!***
% nodeMods.
% nids - node IDs
% rids - reaction IDs
% rs - ratios for RIDs

function node = installFR(node, nodeMods)

m = node.m;
Nmets = size(m.S,1);

for n = 1:length(nodeMods.nids)

 rid0 = nodeMods.rids(n);
 rids = setdiff(find(m.S(nodeMods.nids(n),:)), rid0);

135

 m.S(Nmets + n, rid0) = nodeMods.rs(n) - 2;
 m.S(Nmets + n, rids) = nodeMods.rs(n);

end

node.m = m;

Function: m_linprogP

% m_linprog for parallel programming

function [sol, objx] = m_linprogP(m, opt, minGlobal,option,beq)

Nrxns = size(m.S,2);
sol = zeros(Nrxns,1);
obj = logical(m.c);
objx = 0;
tol = 1e-10;

if nargin < 5
 beq = zeros(size(m.S,1),1);
end
if nargin < 4
 option = mskoptimset('');
 option = mskoptimset(option,'Simplex','primal');
end

if minGlobal

 % initialize variables
 x0 = zeros(2*Nrxns,1);
 Aeq = [full(m.S) -full(m.S)];

 % boundary decomposition
 ub1 = zeros(Nrxns,1);
 ub2 = zeros(Nrxns,1);
 lb1 = zeros(Nrxns,1);
 lb2 = zeros(Nrxns,1);
 ub1(m.ub > 0) = m.ub(m.ub > 0);
 lb1(m.lb > 0) = m.lb(m.lb > 0);
 ub2(m.lb < 0) = abs(m.lb(m.lb < 0));
 lb2(m.ub < 0) = abs(m.ub(m.ub < 0));
 ub = [ub1;ub2];
 lb = [lb1;lb2];

 % max or min obj func
 if opt > 0
 f = [-m.c;m.c];
 else
 f = [m.c;-m.c];
 end
 flogical = logical(f);

136

 % find solution satisfy objective function
 sol0 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);

 % continue only if optimal satisfy objective
 if sum(sol0(flogical) < lb(flogical)) ~= 0 || sum(sol0(flogical) >

ub(flogical)) ~= 0
 return
 end

 % reverse objective for global minimization
 lb(flogical) = sol0(flogical);
 ub(flogical) = sol0(flogical);
 f = double(~f);

 % find solution for global minimization
 sol1 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);

 % recompose original solution array
 if sum(sol1 < lb-tol) ~= 0 || sum(sol1 > ub+tol) ~= 0
 return
 end
 sol = sol1(1:Nrxns) - sol1(Nrxns+1:end);
 objx = sol(obj);

else

 % initialize variables
 x0 = zeros(Nrxns,1);
 Aeq = full(m.S);
 f = m.c;
 lb = m.lb;
 ub = m.ub;

 % max or min obj func
 if opt > 0
 f = -f;
 end

 % find solution satisfy objective function
 soltmp = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);
 if sum(soltmp < lb-tol) ~= 0 || sum(soltmp > ub+tol) ~= 0
 return
 end
 sol = soltmp;
 objx = sol(obj);

end

Function: addPathway

%% Add pathway (multiple reactions/compounds) to m

function m = addPathway(m, cid_add, rid_add, S_add)

137

[Nmets0, Nrxns0] = size(m.S);

for i = 1:length(cid_add.cids)
 m.mets(cid_add.cids(i)) = cid_add.mets(i);
 m.metNames(cid_add.cids(i)) = cid_add.metNames(i);
end

Nrxns = length(rid_add.rids);
for i = 1:Nrxns
 m.rxns(rid_add.rids(i)) = rid_add.rxns(i);
 m.rxnNames(rid_add.rids(i)) = rid_add.rxnNames(i);
 m.subSystems{rid_add.rids(i)} = '';
end

m.lb(end+1:end+Nrxns) = 0;
m.ub(end+1:end+Nrxns) = 1000;
m.c(end+1:end+Nrxns) = 0;

for i = 1:length(S_add.s)
 m.S(S_add.cids(i),S_add.rids(i)) = S_add.s(i);
end

Function: mesEvalP

%% Evaluate MES by performing FBA (parallel computing version)
% assign score as flux of objective function unless otherwise specified in
% parameter (param)
% Author: Jiun Yen
% Date: 2016.11.12
% Version: 2016.11.12
% Input:
% m: model (COBRA format)
% mes: MES structure built by initMes()
% param: parameters
% max - BOOLEAN, to max (1) or min (0) objective function
% target - rid of flux used to determine the score (default: obj)
% modifier - equation to calculate score (default: [])
% v_cutoff - cutoff for zero
% mskoption - option for mosek optimizer

function mes = mesEvalP(m, mes, param)

m.ub(mes.rids) = mes.ubs;
m.lb(mes.rids) = mes.lbs;

if isfield(param, 'minGlobal') && param.minGlobal
 [mes.v, objV] = m_linprogP(m, 1, 1, param.mskoption);

 if abs(objV) > param.v_cutoff
 mes.objV = objV;

 if isempty(param.modifier)

138

 score = mes.v(param.target);
 else
 score = param.modifier(mes.v(param.target));
 end

 if abs(score) > param.v_cutoff
 mes.score = score;
 end
 end
else
 [~, objV] = m_linprogP(m, param.max, 0, param.mskoption);

 if abs(objV) > param.v_cutoff
 mes.objV = objV;

 if ~param.target || param.target == find(m.c)
 if isempty(param.modifier)
 score = objV;
 else
 score = param.modifier(objV);
 end
 else
 obj = find(m.c);
 m.c(:) = 0;
 m.c(param.target) = 1;
 m.ub(obj) = objV;
 m.lb(obj) = objV;
 [~, objV] = m_linprogP(m, 0, 0, param.mskoption);
 if isempty(param.modifier)
 score = objV;
 else
 score = param.modifier(objV);
 end
 end

 if abs(score) > param.v_cutoff
 mes.score = score;
 end
 end
end

mes.evaluated = true;

2) DRIVER FILE

Driver for NR-Knock

%% Driver - Node-Reward Knock
% All numbered sections (1-5) are required

%% (1) path to core codes and MESEK solver on HPC

%% (2) Load model and biomass compositions and other criteria

139

%% (3) Specify parameters

% Target compound for engineering
% leave cid empty if rid (the exchange reaction of target cpd) is known
target_cid = [];
target_rid = [];

% flux cutoff - below this is zero
v_cutoff = 0.000000001;

%% (4) Additional model modifications

%% Automated steps - REQUIRES MODEL EXIST AS m

% Assesss target compound
% this create a new reaction for target compound if target_rid is empty
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid,

config.bio_rid, 1)
 [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0);
end

% keep only basic model components
m1.S = m.S;
m1.ub = m.ub;
m1.lb = m.lb;
m1.c = m.c;
m1.rxnGeneMat = m.rxnGeneMat;

% setup Mosek solver option
option = mskoptimset('');
option = mskoptimset(option,'Simplex','primal');

%% (5) Setup primary argument - param

% RIDs to exclude (i.e. exchange, transport)
excludeRids = [];

% setup param
param.m = m1;
param.target_rid = target_rid;
param.bio_rid = []; % ID of the biomass equation
param.BPCYacceptance = 0.98;
param.Nbests = 40;
param.searchLethals = false;
param.excludeRids = excludeRids;
param.v_cutoff = v_cutoff;
param.hi_cutoff = 150;
param.dv_cutoff = 0.01;
param.p0 = 0;
param.pmax = 1;
param.komax = 4;
param.forceBest = true;
param.savedir = 'NRKnockP'; % folder name
param.fn = '/NRKnockP_out_'; % output header
param.mskoption = option;

140

%% Perform NR-Knock
% make folder if does not exist
mkdir(param.savedir);
clearvars -except param

% run nodeRewardKnockP
[strategies, param_out] = nodeRewardKnockP(param);
clearvars -except param param_out strategies

% save workspace
save([param.savedir param.fn 'results']);

Driver for NR-Ox

%% Driver - Node-Reward Ox
% All numbered sections (1-5) are required

%% (1) path to core codes and MESEK solver on HPC

%% (2) Load model and biomass compositions and other criteria

%% (3) Specify parameters

% Target compound for engineering
% leave cid empty if rid (the exchange reaction of target cpd) is known
target_cid = [];
target_rid = [];

% flux cutoff - below this is zero
v_cutoff = 0.000000001;

%% (4) Additional model modifications

%% Automated steps - REQUIRES MODEL EXIST AS m

% Assesss target compound
% this create a new reaction for target compound if target_rid is empty
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid,

config.bio_rid, 1)
 [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0);
end

% keep only basic model components
m1.S = m.S;
m1.ub = m.ub;
m1.lb = m.lb;
m1.c = m.c;
m1.rxnGeneMat = m.rxnGeneMat;

% setup Mosek solver option
option = mskoptimset('');

141

option = mskoptimset(option,'Simplex','primal');

%% (5) Setup primary argument - param

% RIDs to exclude (i.e. exchange, transport)
excludeRids = [];

% setup param
param.m = m1;
param.bio_rid = []; % ID of the biomass equation
param.target_rid = target_rid;

param.excludeRids = excludeRids;
param.BPCYacceptance = 0.98;
param.Nbests = 40;
param.v_cutoff = v_cutoff;
param.dv_cutoff = 0.01;
param.ratioHiCutoff = 0.8;
param.ratioLoCutoff = 0.1;

param.hiCoeff = 0.9;

param.loCoeff = 0.01;
param.p0 = 0;
param.pmax = 1;
param.maxMod = 4;
param.forceBest = true;
param.savedir = 'NROxP'; % folder name
param.fn = '/NROxP_out_'; % output header
param.mskoption = option;

%% Perform NR-Knock
% make folder if does not exist
mkdir(param.savedir);
clearvars -except param

% run nodeRewardOxP
[strategies, param_out] = nodeRewardOxP(param);
clearvars -except param param_out strategies

% save workspace
save([param.savedir param.fn 'results']);

3) EXAMPLE – DESIGNS FOR OVERPRODUCTION OF BDO IN E. COLI

NR-Knock example

%% Driver - Node-Reward Knock
% Example: Predict metabolic engineering strategies to overproduce
% 1,4-butanediol in E. coli
% All numbered sections (1-5) are required

%% (1) path to core codes and MESEK solver on HPC
addpath('/home/qksilver/dragonstooth/codes/core')
addpath('/home/qksilver/dragonstooth/mosek/7/toolbox/r2013a/')

142

%% (2) Load model and biomass compositions and other criteria
load('20161103_Ec_iAF1260f1_C1000R2To01_N50000_bComps.mat')
load('Ec_iAF1260_flux1_exchanges.mat')
load('Ec_iAF1260_flux1_lethal_KOs.mat')
clearvars -except starti Nsamples bComps config lethal_rids exchange_rids

Vopts m0

%% (3) Specify parameters

% Target compound for engineering
% leave cid empty if rid (the exchange reaction of target cpd) is known
target_cid = 1672; % 1,4-butanediol
target_rid = [];

% flux cutoff - below this is zero
v_cutoff = 0.000000001;

%% (4) Additional model modifications
% Add Lee 2011 BDO biosynthetic pathway
load('Lee_BDO_pathway.mat')
m = addPathway(m0,cid_add,rid_add,S_add);
clear cid_add rid_add S_add

% Anaerobic condition (O2 exchange -> rid 933)
m.lb(933) = 0;

% Glucose uptake rate
m.lb(849) = -20;

%% Automated steps - REQUIRES MODEL EXIST AS m

% Assesss target compound
% this create a new reaction for target compound if target_rid is empty
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid,

config.bio_rid, 1)
 [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0);
end

% keep only basic model components
m1.S = m.S;
m1.ub = m.ub;
m1.lb = m.lb;
m1.c = m.c;
m1.rxnGeneMat = m.rxnGeneMat;

% setup Mosek solver option
option = mskoptimset('');
option = mskoptimset(option,'Simplex','primal');

%% (5) Setup primary argument - param

% RIDs to exclude (i.e. exchange, transport)
excludeRids = union(lethal_rids, exchange_rids);

143

% setup param
param.m = m1;
param.target_rid = target_rid;
param.bio_rid = 1005; % ID of the biomass equation
param.BPCYacceptance = 0.98;
param.Nbests = 40;
param.searchLethals = false;
param.excludeRids = excludeRids;
param.v_cutoff = v_cutoff;
param.hi_cutoff = 150;
param.dv_cutoff = 0.01;
param.p0 = 0;
param.pmax = 1;
param.komax = 4;
param.forceBest = true;
param.savedir = 'NRKnockP'; % folder name
param.fn = '/NRKnockP_out_'; % output header
param.mskoption = option;

%% Perform NR-Knock
% make folder if does not exist
mkdir(param.savedir);
clearvars -except param

% run nodeRewardKnockP
[strategies, param_out] = nodeRewardKnockP(param);
clearvars -except param param_out strategies

% save workspace
save([param.savedir param.fn 'results']);

NR-Ox example

%% Driver - Node-Reward Ox
% Example: Predict metabolic engineering strategies to overproduce
% 1,4-butanediol in E. coli
% All numbered sections (1-5) are required

%% (1) path to core codes and MESEK solver on HPC
addpath('/home/qksilver/dragonstooth/codes/core')
addpath('/home/qksilver/dragonstooth/mosek/7/toolbox/r2013a/')

%% (2) Load model and biomass compositions and other criteria
load('20161103_Ec_iAF1260f1_C1000R2To01_N50000_bComps.mat')
load('Ec_iAF1260_flux1_exchanges.mat')
load('Ec_iAF1260_flux1_lethal_KOs.mat')
clearvars -except starti Nsamples bComps config lethal_rids exchange_rids

Vopts m0

%% (3) Specify parameters

% Target compound for engineering
% leave cid empty if rid (the exchange reaction of target cpd) is known

144

target_cid = 1672; % 1,4-butanediol
target_rid = [];

% flux cutoff - below this is zero
v_cutoff = 0.000000001;

%% (4) Additional model modifications
% Add Lee 2011 BDO biosynthetic pathway
load('Lee_BDO_pathway.mat')
m = addPathway(m0,cid_add,rid_add,S_add);
clear cid_add rid_add S_add

% Anaerobic condition (O2 exchange -> rid 933)
m.lb(933) = 0;

% Glucose uptake rate
m.lb(849) = -20;

%% Automated steps - REQUIRES MODEL EXIST AS m

% Assesss target compound
% this create a new reaction for target compound if target_rid is empty
if isempty(target_rid) || logical(target_rid) || ~isBioComp(m, target_cid,

config.bio_rid, 1)
 [m, target_rid] = addExchangeRxn(m, target_cid, 0, 1000, 0);
end

% keep only basic model components
m1.S = m.S;
m1.ub = m.ub;
m1.lb = m.lb;
m1.c = m.c;
m1.rxnGeneMat = m.rxnGeneMat;

% setup Mosek solver option
option = mskoptimset('');
option = mskoptimset(option,'Simplex','primal');

%% (5) Setup primary argument - param

% RIDs to exclude (i.e. exchange, transport)
excludeRids = union(lethal_rids, exchange_rids);
excludeRids = union(excludeRids, setdiff(1:2382, geneCodingRxns(m1)));

% setup param
param.m = m1;
param.bio_rid = 1005; % ID of the biomass equation
param.target_rid = target_rid;
param.excludeRids = excludeRids;
param.BPCYacceptance = 0.95;
param.Nbests = 40;
param.v_cutoff = v_cutoff;
param.dv_cutoff = 0.01;
param.ratioHiCutoff = 0.8;
param.ratioLoCutoff = 0.1;

145

param.hiCoeff = 0.9;

param.loCoeff = 0.01;
param.p0 = 0;
param.pmax = 1;
param.maxMod = 4;
param.forceBest = true;
param.savedir = 'NROxP'; % folder name
param.fn = '/NROxP_out_'; % output header
param.mskoption = option;

%% Perform NR-Knock
% make folder if does not exist
mkdir(param.savedir);
clearvars -except param

% run nodeRewardOxP
[strategies, param_out] = nodeRewardOxP(param);
clearvars -except param param_out strategies

% save workspace
save([param.savedir param.fn 'results']);

146

C. MATLAB CODES FOR TO SIMULATE GROWTH AND STARCH METABOLISM

There are two sections: 1) core codes and their dependencies and 2) the drivers. Drivers

are setup to solve and simulate growth and starch as described in Materials and Methods.

CORE CODES AND DEPENDENCIES

Function: solveGrowth

%% Solve for growth from t0 to t1
% Author: Jiun Yen
% Date: 2016.12.11
% Version: 2016.12.11
%
% Dependencies: stackGEM(), updateBiomassEq()
% Input
% param
% m - COBRA model
% obj - objective of optimization (default to B1 if empty)
% opt - max(1) or min(0) obj
% B0p - rid of biomass equation
% B0V - initial biomass (mgDW)
% Nrxns - number of rxns in model
% Nmets - number of mets in model
% rids - reactions to constrain to v for model from t0->t1
% ubs - flux constraints for rids
% lbs - flux constraints for rids
% bcomp - biomass composition compound information struct
% biomass0
% sid - SIDs of mets in stoichiometric matrix of m
% data - data on biomass composition at t0
% biomass1
% sid - SIDs of mets in stoichiometric matrix of m
% data - data on biomass composition at t1
% ymets - SIDs of independent biomass compounds (i.e. starch - 1477)
% yubs - ub constraints for dymol
% ylbs - lb constraints for dymol
% minGlobal - to minimize global flux (yes - 1, no - 0)

function [s, info] = solveGrowth(param)

%% Define constants
B0p = param.B0p;
B1p = param.Nrxns + 1;
B0 = B1p + 1;
B1 = B0 + 1;
Nymets = length(param.ymets);
ymol0 = linspace(B1+1,B1+Nymets,Nymets);
tmp = max(ymol0);
ymol1 = linspace(tmp+1,tmp+Nymets,Nymets);
tmp = max(ymol1);
dymol = linspace(tmp+1,tmp+Nymets,Nymets);

147

%% Set up model
% Generate new model
m = param.m;
m.ub(param.rids) = param.ubs;
m.lb(param.rids) = param.lbs;

% extract quantitative data and molecular weights on independent biomass

compounds
ymetData = zeros(Nymets, 1);
ymw = zeros(Nymets, 1);
for i = 1:Nymets
 ymetData(i) = param.biomass0.data(param.biomass0.sids == param.ymets(i));
 ymw(i) = param.bcomp.mw(param.bcomp.sids == param.ymets(i));
end

% Remove independent biomass compounds from biomass0 and biomass1
[~,tmp] = intersect(param.biomass0.sids, param.ymets);
param.biomass0.data(tmp) = 0;
[~,tmp] = intersect(param.biomass1.sids, param.ymets);
param.biomass1.data(tmp) = 0;

% Update biomass equation with biomass composition data at t0 and t1
m = updateBiomassEq(m, B0p, [], param.biomass0.data, false,

param.biomass0.sids);
m = updateBiomassEq(m, B1p, [], -param.biomass1.data, false,

param.biomass1.sids);

% add biomass-ymets relationships
tmp = param.Nmets + 1;
m.S(tmp, B0) = 1;
m.S(tmp, B0p) = -1;
m.S(tmp, ymol0) = -ymw;
m = updateMet(m, tmp, 'B0-ymass_t1');
m = updateRxn(m, B0, 'Biomass_t0', 0, 1000, 0);
m = updateRxn(m, B0p, 'Biomass_noYmets_t0', 0, 1000, 0);
tmp = param.Nmets + 2;
m.S(tmp, B1) = 1;
m.S(tmp, B1p) = -1;
m.S(tmp, ymol1) = -ymw;
m = updateMet(m, tmp, 'B1-ymass_t1');
m = updateRxn(m, B1, 'Biomass_t1', 0, 1000, 0);
m = updateRxn(m, B1p, 'Biomass_noYmets_t1', 0, 1000, 0);

% associate ymets
for i = 1:Nymets
 tmp = tmp + 1;
 m.S(tmp, ymol0(i)) = -1;
 m.S(tmp, ymol1(i)) = 1;
 m.S(tmp, dymol(i)) = -1;
 m = updateMet(m, tmp, ['change_of_' m.metNames{param.ymets(i)}]);
 m = updateRxn(m, ymol0(i), [m.metNames{param.ymets(i)} '_t0'], 0, 1000,

0);
 m = updateRxn(m, ymol1(i), [m.metNames{param.ymets(i)} '_t1'], 0, 1000,

0);

148

 m = updateRxn(m, dymol(i), ['change_of_' m.metNames{param.ymets(i)}],

param.ylbs(i), param.yubs(i), 0);
 m.S(param.ymets(i),dymol(i)) = -1;
end

% Constraint biomass and ymet quantity at t0
m.lb(B0) = param.B0V;
m.ub(B0) = m.lb(B0);
m.lb(B1) = m.lb(B0);
m.lb(ymol0) = ymetData .* param.B0V;
m.ub(ymol0) = m.lb(ymol0);

%% Solve with FBA
m.c(:) = 0;
if ~isempty(param.obj)
 m.c(param.obj) = 1;
 s = m_linprog(m, param.opt, 0);
 m.ub(param.obj) = s(param.obj);
 m.lb(param.obj) = m.ub(param.obj);
 m.c(param.obj) = 0;
end
m.c(B1p) = 1;
s = m_linprog(m, 1, param.minGlobal);

%% construct info
info.m = m;
info.const.B0 = B0;
info.const.B1 = B1;
info.const.B0p = B0p;
info.const.B1p = B1p;
info.const.ymol0 = ymol0;
info.const.ymol1 = ymol1;
info.const.dymol = dymol;

%% Nested function to update compound name
function m = updateMet(m, sid, name)
m.mets(sid) = {name};
m.metNames(sid) = {name};

%% Nested function to update reaction name, set bounds, and c
function m = updateRxn(m, rid, name, lb, ub, c)
m.rxns(rid) = {name};
m.rxnNames(rid) = {name};
m.lb(rid) = lb;
m.ub(rid) = ub;
m.c(rid) = c;

Function: sim24hgrowth

function [sols, info] = sim24hgrowth(param, timeParam)

% h = waitbar(0, 'initializing');

% solve first step, t0 -> t1

149

[s, info] = solveGrowth(param);
sols = zeros(length(s), timeParam.steps-1);
sols(:,1) = s;
% waitbar(1/timeParam.steps, h, 'solving');

for t = 2:timeParam.steps-1
 param.B0V = s(info.const.B1);

 % update starch level
 param.biomass0.data(25) = s(info.const.ymol1) / s(info.const.B1);
 param.biomass1 = param.biomass0;

 %% do this in multiple stages of a 24-hour day
 % Stage 1: Starting from 1 PM (t0 -> t1), there is light until 10 PM (9h)
 % Stage 2: Light's off from 10 PM to 6 AM (8h)
 % Stage 3: Light's back on from 6 AM to 1 PM (7h)
 tmp = rem(timeParam.range(t),24);
 if tmp ~= 0 && tmp < timeParam.eod
 % Stage 1
 % update CO2 and light uptake
 param.rids = [48 63];
 param.ubs = param.ubs .* param.beta_d;
 tmp_ubs = param.ubs;
 param.ylbs = param.ylb_a * s(info.const.B1p);

 param.opt = 1;

 elseif tmp ~= 0 && tmp < timeParam.eon
 % Stage 2
 % update growth condition and starch utilization
 param.rids = [48 63 4];
 param.ubs = [0 0 1000];
 param.lbs = [-1000 0 -1000];
 param.ylbs = param.ylb_b * s(info.const.B1p);

 param.opt = 0;

 % update leaf size
 tmp_ubs = tmp_ubs .* param.beta_n;

 else
 % Stage 3
 param.rids = [48 63];
 tmp_ubs = tmp_ubs .* param.beta_d;
 param.ubs = tmp_ubs;
 param.lbs = [0 0];
 param.ylbs = param.ylb_c * s(info.const.B1p);

 param.opt = 1;
 end

 [s, info] = solveGrowth(param);
 if abs(s(info.const.B0p)) < 0.0000001
 break;
 end

150

 if tmp < timeParam.eon && abs(s(info.const.ymol1)) < 0.0000001
 break;
 end
 sols(:,t) = s;

% waitbar(t/timeParam.steps, h, 'solving');
end

sols = sols ./ param.scale;

% close(h)

Function: m_linprog

function sol = m_linprog(m, opt, minGlobal,beq)

if nargin < 4
 beq = zeros(size(m.S,1),1);
end

% option = optimset('Algorithm','interior-point');
option = mskoptimset('');
option = mskoptimset(option,'Simplex','primal');

Nrxns = size(m.S,2);
sol = zeros(Nrxns,1);
tol = 1e-9;

if minGlobal
 % initialize variables
 x0 = zeros(2*Nrxns,1);
 Aeq = [full(m.S) -full(m.S)];

 % boundary decomposition
 ub1 = zeros(Nrxns,1);
 ub2 = zeros(Nrxns,1);
 lb1 = zeros(Nrxns,1);
 lb2 = zeros(Nrxns,1);
 ub1(m.ub > 0) = m.ub(m.ub > 0);
 lb1(m.lb > 0) = m.lb(m.lb > 0);
 ub2(m.lb < 0) = abs(m.lb(m.lb < 0));
 lb2(m.ub < 0) = abs(m.ub(m.ub < 0));
 ub = [ub1;ub2];
 lb = [lb1;lb2];

 % max or min obj func
 if opt > 0
 f = [-m.c;m.c];
 else
 f = [m.c;-m.c];
 end
 flogical = logical(f);

 % find solution satisfy objective function

151

 sol0 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);

 % continue only if optimal satisfy objective
 if sum(sol0(flogical) < lb(flogical)) ~= 0 || sum(sol0(flogical) >

ub(flogical)) ~= 0
 return
 end

 % reverse objective for global minimization
 lb(flogical) = sol0(flogical);
 ub(flogical) = sol0(flogical);
 f = double(~f);

 % find solution for global minimization
 sol1 = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);

 % recompose original solution array
 sol = sol1(1:Nrxns) - sol1(Nrxns+1:end);
 if sum(sol1 < lb-tol) ~= 0 || sum(sol1 > ub+tol) ~= 0
 sol = zeros(Nrxns,1);
% fprintf('Solution is unreliable - out of bounds.\n');
 end
else
 % initialize variables
 x0 = zeros(Nrxns,1);
 Aeq = full(m.S);
 f = m.c;
 lb = m.lb;
 ub = m.ub;

 % max or min obj func
 if opt > 0
 f = -f;
 end

 % find solution satisfy objective function
 sol = linprog(f,[],[],Aeq,beq,lb,ub,x0,option);
 if sum(sol < lb-tol) ~= 0 || sum(sol > ub+tol) ~= 0
 sol = zeros(Nrxns,1);
% fprintf('Solution is unreliable - out of bounds.\n');
 end
end

Function: getdStarch

function score = getdStarch(vars0, param, timeParam)

% vars = fminsearch(@findMaxTstarch, vars0, [], param, timeParam);
%
% % assign variables
% param.ylbs = vars(1) * (param.B0V -

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V);
% param.ylb_a = vars(1);
% param.ylb_b = vars(2);

152

% param.ylb_c = vars(3);
%
% % simulate
% [sols, info] = sim24hgrowth(param, timeParam);
%
% % generate output
% totalGrowth = sols(info.const.B0,:);
% totalGrowth(end+1) = sols(info.const.B1,end);
% starch_umol = sols(info.const.ymol0,:);
% starch_umol(end+1) = sols(info.const.ymol1,end);
% starch_conc = starch_umol ./ totalGrowth;
% dStarch = abs(starch_conc(end) - param.biomass0.data(25));
%
% function tStarch = findMaxTstarch(vars0, param, timeParam)

% assign variables
param.ylbs = vars0(1) * (param.B0V -

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V);
param.ylb_a = vars0(1);
param.ylb_b = vars0(2);
param.ylb_c = vars0(3);

% simulate
[sols, info] = sim24hgrowth(param, timeParam);

%% Plots
totalGrowth = sols(info.const.B0,:);
totalGrowth(end+1) = sols(info.const.B1,end);
noStarchGrowth = sols(info.const.B0p,:);
noStarchGrowth(end+1) = sols(info.const.B1p,end);
starch_umol = sols(info.const.ymol0,:);
starch_umol(end+1) = sols(info.const.ymol1,end);
starch_conc = starch_umol ./ totalGrowth;
% dStarch_umol_B0p_dt =

sols(info.const.dymol,:)./sols(info.const.B0p,:)/timeParam.dt;
tStarch = abs(starch_conc(timeParam.eodi) - starch_conc(timeParam.eoni));
dStarch = abs(starch_conc(end) - param.biomass0.data(25));

clf('reset')
subplot(2,1,1)
hold on
plot(timeParam.range, totalGrowth,'.')
plot(timeParam.range, noStarchGrowth,'.')
ylabel('Total biomass, mgDW')
subplot(2,1,2)
plot(timeParam.range, starch_conc,'.')
ylabel('Starch conc., \mumol/mgDW')
xlabel('time after 1 PM, h')
% subplot(3,1,3)
% plot(timeParam.range(1:end-1), dStarch_umol_B0p_dt,'.')
clc
fprintf('EOD starch: %4.3f umol/mgDW\n', starch_conc(timeParam.eodi));
fprintf('EON starch: %4.3f umol/mgDW\n', starch_conc(timeParam.eoni));
fprintf('transitory starch: %4.3f umol/mgDW\n', tStarch);
fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1));
fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end));

153

fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1));
fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end));
pause(0.00001)

% generate output
score = -(tStarch - 10 * dStarch - 20 * abs(vars0(1) - vars0(3)));
% score = abs(tStarch - 0.559) + dStarch + abs(vars0(1) - vars0(3));

Function: updateBiomassEq

%% Assign new concentrations to compounds in the biomass equation

function m = updateBiomassEq(m,r,bcomp,data,isKids,ids)

if isKids
 for i = 1:length(ids)
 m.S(bcomp.sids(bcomp.kids == ids(i)),r) = data(i);
 end
else
 m.S(ids,r) = data;
end

Function: calcMassRatio

% determine how much of the total biomass is covered with data

function massRatio = calcMassRatio(bcomp,data,kids,sids)

massRatio = 0;
if nargin < 4 || isempty(sids)
 for i = 1:length(kids)
 massRatio = massRatio + bcomp.mw(bcomp.kids == kids(i))*data(i);
 end
else
 for i = 1:length(sids)
 massRatio = massRatio + bcomp.mw(bcomp.sids == sids(i))*data(i);
 end
end

DRIVER FILES

Driver to solve and simulate results in Figure 6 and Figure 7

%% Driver to Ler solveGrowth
% for pre-flowering
% only for pre-flowering stage because of the use of RGR for CO2 exchange

clear
clc

154

load('20161214_LerHA_model_constraints.mat')
load('rgr_means.mat')

%% modify glycosyl data - scale up to xx%
targetMass = 0.416; % 416 ug/mgDW
metids = false(32,1);
mws = zeros(32,1);
for i = 1:32
 j = bcomp.sids == sids(i);
 n = bcomp.group(j);
 if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin')
 metids(i) = true;
 mws(i) = bcomp.mw(j);
 end
end
mws = mws(metids);
totalMass = mws' * data(metids,:);
massRatio = targetMass ./ totalMass;
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1);

clear targetMass metids mws i j n totalMass massRatio

%% scale
scale = 0.1;

%% Which data set (Ler pre, HA pre, Ler post, HA post)

% test Ler-pre
id = 1;
 sampleParam.a = 0.06;
 sampleParam.b = -0.08;
 sampleParam.c = 0.06;
 sampleParam.rgr_d = rgrs(id,1);
 sampleParam.rgr_n = rgrs(id,2);
 sampleParam.starch0 = 0.662;
 sampleParam.B0 = 2.01;
 sampleParam.obj = [];

% test HA-pre
% id = 2;
% sampleParam.a = 0.06;
% sampleParam.b = -0.08;
% sampleParam.c = 0.06;
% sampleParam.rgr_d = rgrs(id,1);
% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.843;
% sampleParam.B0 = 1.51;
% sampleParam.obj = [];

% test Ler-post
% id = 3;
% sampleParam.a = 0.05;
% sampleParam.b = -0.08;
% sampleParam.c = 0.05;
% sampleParam.rgr_d = rgrs(id,1);

155

% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.3735;
% sampleParam.B0 = 121.45;
% sampleParam.obj = [];

% test HA-post
% id = 4;
% sampleParam.a = 0.04;
% sampleParam.b = -0.05;
% sampleParam.c = 0.04;
% sampleParam.rgr_d = rgrs(id,1);
% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.2346;
% sampleParam.B0 = 221.73;
% sampleParam.obj = [];

toSolve = 1;

c_ratio = calcMassRatio(bcomp,data(:,id),[],sids);

%% Set up time parameters
% hour
timeParam.frame0 = 0;
timeParam.frame1 = 24;
timeParam.stepsPerHr = 2;
timeParam.eod = 9;
timeParam.eon = 17;
timeParam.dframe = timeParam.frame1 - timeParam.frame0;
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1;
timeParam.dt = timeParam.dframe / (timeParam.steps-1);
timeParam.range = linspace(timeParam.frame0, timeParam.frame1,

timeParam.steps);
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1;
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1;

%% rebuild only basic model
m0.rxns = Ler.rxns;
m0.rxnNames = Ler.rxnNames;
m0.mets = Ler.mets;
m0.metNames = Ler.metNames;
m0.S = Ler.S;
m0.lb = Ler.lb;
m0.ub = Ler.ub;
m0.c = Ler.c;

%% calculate photon and CO2 uptake as umol/plant/time interval
% values at t0
hv_t0 = light * 3600 / m2a_ratio(id) * timeParam.dt * scale * rosDWMean(id);
co2_t0 = co2Mean(id) * 3600 / m2a_ratio(id) * timeParam.dt * scale *

rosDWMean(id) * 1;

%% Define necessary coefficients
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr));
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr));
ylb_a = sampleParam.a*timeParam.dt;

156

ylb_b = sampleParam.b*timeParam.dt;
ylb_c = sampleParam.c*timeParam.dt;

%% Set up param
% at t0
param.m = m0;
param.obj = sampleParam.obj;
param.opt = 1;
param.B0p = 47;
param.B0V = sampleParam.B0 * scale;
[param.Nmets, param.Nrxns] = size(param.m.S);
param.rids = [48 63];
param.ubs = [co2_t0 hv_t0];
param.lbs = [0 0];
param.bcomp = bcomp;
param.biomass0.sids = sids;
param.biomass0.data = data(:,id);
tmp = setdiff(1:32, 25);
param.biomass0.data(tmp) = data(tmp, id) * param.B0V / (param.B0V -

param.bcomp.mw(36)*data(25,id)*param.B0V);
param.biomass1 = param.biomass0;
param.biomass0.data(25) = sampleParam.starch0;
param.biomass1 = param.biomass0;
param.ymets = 1477; % starch_biomass
param.yubs = 1000;
param.ylbs = ylb_a * (param.B0V -

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V);
param.minGlobal = 0;
param.scale = scale;
param.beta_d = beta_d;
param.beta_n = beta_n;
param.ylb_a = ylb_a;
param.ylb_b = ylb_b;
param.ylb_c = ylb_c;

%% Solve growth over time frame

if toSolve
 vars0 = [param.ylb_a param.ylb_b param.ylb_c];
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 while sum(abs(vars - vars0) > 0.0001) > 0
 vars0 = vars;
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 end
else
 [sols, info] = sim24hgrowth(param, timeParam);
end

clearvars -except toSolve param timeParam rosDWMean sols info c_ratio

sampleParam

157

%% Plots
if ~toSolve
 totalGrowth = sols(info.const.B0,:);
 totalGrowth(end+1) = sols(info.const.B1,end);
 noStarchGrowth = sols(info.const.B0p,:);
 noStarchGrowth(end+1) = sols(info.const.B1p,end);
 starch_umol = sols(info.const.ymol0,:);
 starch_umol(end+1) = sols(info.const.ymol1,end);
 starch_conc = starch_umol ./ totalGrowth;

 figure
 set(0,'DefaultAxesFontName', 'Times New Roman')
 set(0,'DefaultAxesFontSize', 12)
 subplot(2,1,1)
 hold on
 rectangle('position',[timeParam.eod 1 8

2],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, totalGrowth,'-','linewidth',1)
 plot(timeParam.range, noStarchGrowth,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Total biomass'} {'mgDW'}])
 h = legend([{'Total DW'},{'Non-starch

DW'}],'location','northwest','fontsize',12);
 pos = get(h,'position');
 pos(1) = pos(1) + 0.025;
 pos(2) = pos(2) + 0.025;
 set(h,'position',pos);
 legend boxoff
 subplot(2,1,2)
 hold on
 rectangle('position',[timeParam.eod 0 8

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, starch_conc,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Starch conc.'} {'\mumol/mgDW'}])
 xlabel('time after 1 PM, h')
 fig = gcf;
 fig.Position = [0 0 500 400];
 fig.PaperUnits = 'inches';
 fig.PaperPosition = [0 0 5 4];
 fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc));
 fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc));
 fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) -

min(starch_conc)));
 fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1));
 fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end));
 fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1));
 fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end));
end

Driver to simulate results in Figure 8

%% Driver to simulate growth and starch changes over 24 hours

158

% for pre-flowering and post-flowering after refinement

clear
clc
load('20161214_LerHA_model_constraints.mat')
load('rgr_means.mat')

%% modify glycosyl data - scale up to xx%
targetMass = 0.416; % 416 ug/mgDW
metids = false(32,1);
mws = zeros(32,1);
for i = 1:32
 j = bcomp.sids == sids(i);
 n = bcomp.group(j);
 if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin')
 metids(i) = true;
 mws(i) = bcomp.mw(j);
 end
end
mws = mws(metids);
totalMass = mws' * data(metids,:);
massRatio = targetMass ./ totalMass;
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1);

clear targetMass metids mws i j n totalMass massRatio

%% scale
scale = 0.1;

%% Which data set (Ler pre, HA pre, Ler post, HA post)

% test Ler-pre
id = 1;
 sampleParam.a = 0.0653;
 sampleParam.b = -0.091;
 sampleParam.c = 0.064;
 sampleParam.rgr_d = rgrs(id,1);
 sampleParam.rgr_n = rgrs(id,2);
 sampleParam.starch0 = 0.662;
 sampleParam.B0 = 2.01;
 sampleParam.obj = [];

% test HA-pre
% id = 2;
% sampleParam.a = 0.0897;
% sampleParam.b = -0.106;
% sampleParam.c = 0.0731;
% sampleParam.rgr_d = rgrs(id,1);
% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.843;
% sampleParam.B0 = 1.505;
% sampleParam.obj = [];

% test Ler-post
% id = 3;

159

% sampleParam.a = 0.046;
% sampleParam.b = -0.069;
% sampleParam.c = 0.0451;
% sampleParam.rgr_d = rgrs(id,1);
% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.3735;
% sampleParam.B0 = 121.45;
% sampleParam.obj = [];

% test HA-post
% id = 4;
% sampleParam.a = 0.0287;
% sampleParam.b = -0.0425;
% sampleParam.c = 0.0286;
% sampleParam.rgr_d = rgrs(id,1);
% sampleParam.rgr_n = rgrs(id,2);
% sampleParam.starch0 = 0.2346;
% sampleParam.B0 = 221.73;
% sampleParam.obj = [];

toSolve = 1;

c_ratio = calcMassRatio(bcomp,data(:,id),[],sids);

%% Set up time parameters
% hour
timeParam.frame0 = 0;
timeParam.frame1 = 24;
timeParam.stepsPerHr = 2;
timeParam.eod = 9;
timeParam.eon = 17;
timeParam.dframe = timeParam.frame1 - timeParam.frame0;
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1;
timeParam.dt = timeParam.dframe / timeParam.steps;
timeParam.range = linspace(timeParam.frame0, timeParam.frame1,

timeParam.steps);
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1;
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1;

%% rebuild only basic model
m0.rxns = Ler.rxns;
m0.rxnNames = Ler.rxnNames;
m0.mets = Ler.mets;
m0.metNames = Ler.metNames;
m0.S = Ler.S;
m0.lb = Ler.lb;
m0.ub = Ler.ub;
m0.c = Ler.c;

%% calculate photon and CO2 uptake as umol/plant/time interval
% values at t0
hv_t0 = light * 3600 / m2a_ratio(id) * timeParam.dt * scale * rosDWMean(id);
co2_t0 = co2Mean(id) * 3600 / m2a_ratio(id) * timeParam.dt * scale *

rosDWMean(id) * 1;

160

%% Define necessary coefficients
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr));
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr));
ylb_a = sampleParam.a*timeParam.dt;
ylb_b = sampleParam.b*timeParam.dt;
ylb_c = sampleParam.c*timeParam.dt;

%% Set up param
% at t0
param.m = m0;
param.obj = sampleParam.obj;
param.opt = 1;
param.B0p = 47;
param.B0V = sampleParam.B0 * scale;
[param.Nmets, param.Nrxns] = size(param.m.S);
param.rids = [48 63];
param.ubs = [co2_t0 hv_t0];
param.lbs = [0 0];
param.bcomp = bcomp;
param.biomass0.sids = sids;
param.biomass0.data = data(:,id);
tmp = setdiff(1:32, 25);
param.biomass0.data(tmp) = data(tmp, id) * param.B0V / (param.B0V -

param.bcomp.mw(36)*data(25,id)*param.B0V);
param.biomass1 = param.biomass0;
param.biomass0.data(25) = sampleParam.starch0;
param.biomass1 = param.biomass0;
param.ymets = 1477; % starch_biomass
param.yubs = 1000;
param.ylbs = ylb_a * (param.B0V -

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V);
param.minGlobal = 1;
param.scale = scale;
param.beta_d = beta_d;
param.beta_n = beta_n;
param.ylb_a = ylb_a;
param.ylb_b = ylb_b;
param.ylb_c = ylb_c;

%% Solve growth over time frame

if toSolve
 vars0 = [param.ylb_a param.ylb_b param.ylb_c];
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 while sum(abs(vars - vars0) > 0.0001) > 0
 vars0 = vars;
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 end
else
 [sols, info] = sim24hgrowth(param, timeParam);

161

end

clearvars -except toSolve param timeParam rosDWMean sols info c_ratio

sampleParam

%% Plots
if ~toSolve
 totalGrowth = sols(info.const.B0,:);
 totalGrowth(end+1) = sols(info.const.B1,end);
 noStarchGrowth = sols(info.const.B0p,:);
 noStarchGrowth(end+1) = sols(info.const.B1p,end);
 starch_umol = sols(info.const.ymol0,:);
 starch_umol(end+1) = sols(info.const.ymol1,end);
 starch_conc = starch_umol ./ totalGrowth;

 figure
 set(0,'DefaultAxesFontName', 'Times New Roman')
 set(0,'DefaultAxesFontSize', 12)
 subplot(2,1,1)
 hold on
 rectangle('position',[timeParam.eod 1 8

2],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, totalGrowth,'-','linewidth',1)
 plot(timeParam.range, noStarchGrowth,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Total biomass'} {'mgDW'}])
 h = legend([{'Total DW'},{'Non-starch

DW'}],'location','northwest','fontsize',12);
 pos = get(h,'position');
 pos(1) = pos(1) + 0.025;
 pos(2) = pos(2) + 0.025;
 set(h,'position',pos);
 legend boxoff
 subplot(2,1,2)
 hold on
 rectangle('position',[timeParam.eod 0 8

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, starch_conc,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Starch conc.'} {'\mumol/mgDW'}])
 xlabel('time after 1 PM, h')
 fig = gcf;
 fig.Position = [0 0 500 400];
 fig.PaperUnits = 'inches';
 fig.PaperPosition = [0 0 5 4];
 fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc));
 fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc));
 fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) -

min(starch_conc)));
 fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1));
 fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end));
 fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1));
 fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end));
end

162

Driver to simulate results in Figure 9

%% Driver to simulate growth and starch changes over 24 hours
% for pre-flowering and post-flowering after refinement
% solving and simulating for stages in-between pre- and post-flowering

clear
clc
load('20161214_LerHA_model_constraints.mat')
load('rgr_means.mat')

%% modify glycosyl data - scale up to xx%
targetMass = 0.416; % 416 ug/mgDW
metids = false(32,1);
mws = zeros(32,1);
for i = 1:32
 j = bcomp.sids == sids(i);
 n = bcomp.group(j);
 if strcmp(n, 'Hemicellulose') || strcmp(n, 'Pectin')
 metids(i) = true;
 mws(i) = bcomp.mw(j);
 end
end
mws = mws(metids);
totalMass = mws' * data(metids,:);
massRatio = targetMass ./ totalMass;
data(metids,:) = data(metids,:) .* repmat(massRatio,sum(metids),1);

clear targetMass metids mws i j n totalMass massRatio

%% scale
scale = 0.1;

%% Which data set (Ler pre, HA pre, Ler post, HA post)

t0 = 14;
t1 = 42;

tx = 35;
coef = (tx - t0)/(t1 - t0);

allstarch0 = [0.4941 0.5879 0.3556 0.1901];
allB0 = rosDWMean;

% test
id = 2;
 co2x = (co2Mean(id+2) - co2Mean(id)) * coef + co2Mean(id);
 m2a_ratiox = (m2a_ratio(id+2) - m2a_ratio(id)) * coef + m2a_ratio(id);
 B0x = (allB0(id+2) - allB0(id)) * coef + allB0(id);
 sampleParam.a = 0.0403;
 sampleParam.b = -0.0662;
 sampleParam.c = 0.0448;
 sampleParam.rgr_d = rgrs(id,1);
 sampleParam.rgr_n = rgrs(id,2);

163

 sampleParam.starch0 = (allstarch0(id+2) - allstarch0(id)) * coef +

allstarch0(id);
 sampleParam.B0 = B0x;
 sampleParam.obj = [];

toSolve = 0;

datax = (data(:,id+2) - data(:,id)) * coef + data(:,id);
c_ratio = calcMassRatio(bcomp,datax,[],sids);

%% Set up time parameters
% hour
timeParam.frame0 = 0;
timeParam.frame1 = 24;
timeParam.stepsPerHr = 2;
timeParam.eod = 9;
timeParam.eon = 17;
timeParam.dframe = timeParam.frame1 - timeParam.frame0;
timeParam.steps = timeParam.dframe * timeParam.stepsPerHr + 1;
timeParam.dt = timeParam.dframe / timeParam.steps;
timeParam.range = linspace(timeParam.frame0, timeParam.frame1,

timeParam.steps);
timeParam.eodi = timeParam.eod * timeParam.stepsPerHr + 1;
timeParam.eoni = timeParam.eon * timeParam.stepsPerHr + 1;

%% rebuild only basic model
m0.rxns = Ler.rxns;
m0.rxnNames = Ler.rxnNames;
m0.mets = Ler.mets;
m0.metNames = Ler.metNames;
m0.S = Ler.S;
m0.lb = Ler.lb;
m0.ub = Ler.ub;
m0.c = Ler.c;

%% calculate photon and CO2 uptake as umol/plant/time interval
% values at t0
hv_t0 = light * 3600 / m2a_ratiox * timeParam.dt * scale * B0x;
co2_t0 = co2x * 3600 / m2a_ratiox * timeParam.dt * scale * B0x * 1;

%% Define necessary coefficients
beta_d = (sampleParam.rgr_d + 1)^(1/(16*timeParam.stepsPerHr));
beta_n = (sampleParam.rgr_n + 1)^(1/(8*timeParam.stepsPerHr));
ylb_a = sampleParam.a*timeParam.dt;
ylb_b = sampleParam.b*timeParam.dt;
ylb_c = sampleParam.c*timeParam.dt;

%% Set up param
% at t0
param.m = m0;
param.obj = sampleParam.obj;
param.opt = 1;
param.B0p = 47;
param.B0V = sampleParam.B0 * scale;
[param.Nmets, param.Nrxns] = size(param.m.S);

164

param.rids = [48 63];
param.ubs = [co2_t0 hv_t0];
param.lbs = [0 0];
param.bcomp = bcomp;
param.biomass0.sids = sids;
param.biomass0.data = datax;
tmp = setdiff(1:32, 25);
param.biomass0.data(tmp) = datax(tmp) * param.B0V / (param.B0V -

param.bcomp.mw(36)*datax(25)*param.B0V);
param.biomass1 = param.biomass0;
param.biomass0.data(25) = sampleParam.starch0;
param.biomass1 = param.biomass0;
param.ymets = 1477; % starch_biomass
param.yubs = 1000;
param.ylbs = ylb_a * (param.B0V -

param.bcomp.mw(36)*param.biomass0.data(25)*param.B0V);
param.minGlobal = 0;
param.scale = scale;
param.beta_d = beta_d;
param.beta_n = beta_n;
param.ylb_a = ylb_a;
param.ylb_b = ylb_b;
param.ylb_c = ylb_c;

%% Solve growth over time frame

if toSolve
 vars0 = [param.ylb_a param.ylb_b param.ylb_c];
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 while sum(abs(vars - vars0) > 0.0001) > 0
 vars0 = vars;
 vars = fminsearch(@getdStarch, vars0, [], param, timeParam);
 sampleParam.a = vars(1)/timeParam.dt;
 sampleParam.b = vars(2)/timeParam.dt;
 sampleParam.c = vars(3)/timeParam.dt;
 end
else
 [sols, info] = sim24hgrowth(param, timeParam);
end

clearvars -except toSolve param timeParam rosDWMean sols info c_ratio

sampleParam

%% Plots
if ~toSolve
 totalGrowth = sols(info.const.B0,:);
 totalGrowth(end+1) = sols(info.const.B1,end);
 noStarchGrowth = sols(info.const.B0p,:);
 noStarchGrowth(end+1) = sols(info.const.B1p,end);
 starch_umol = sols(info.const.ymol0,:);
 starch_umol(end+1) = sols(info.const.ymol1,end);
 starch_conc = starch_umol ./ totalGrowth;

165

 figure
 set(0,'DefaultAxesFontName', 'Times New Roman')
 set(0,'DefaultAxesFontSize', 12)
 subplot(2,1,1)
 hold on
 rectangle('position',[timeParam.eod 1 8

2],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, totalGrowth,'-','linewidth',1)
 plot(timeParam.range, noStarchGrowth,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Total biomass'} {'mgDW'}])
 h = legend([{'Total DW'},{'Non-starch

DW'}],'location','northwest','fontsize',12);
 pos = get(h,'position');
 pos(1) = pos(1) + 0.025;
 pos(2) = pos(2) + 0.025;
 set(h,'position',pos);
 legend boxoff
 subplot(2,1,2)
 hold on
 rectangle('position',[timeParam.eod 0 8

1.5],'edgecolor','none','facecolor',[0.8 0.8 0.8])
 plot(timeParam.range, starch_conc,'-','linewidth',1)
 xlim([0 24])
 ylabel([{'Starch conc.'} {'\mumol/mgDW'}])
 xlabel('time after 1 PM, h')
 fig = gcf;
 fig.Position = [0 0 500 400];
 fig.PaperUnits = 'inches';
 fig.PaperPosition = [0 0 5 4];
 fprintf('max starch: %4.3f umol/mgDW\n', max(starch_conc));
 fprintf('min starch: %4.3f umol/mgDW\n', min(starch_conc));
 fprintf('transitory starch: %4.3f umol/mgDW\n', (max(starch_conc) -

min(starch_conc)));
 fprintf('t0 starch: %4.3f umol/mgDW\n', starch_conc(1));
 fprintf('t1 starch: %4.3f umol/mgDW\n', starch_conc(end));
 fprintf('t0 Biomass: %4.3f mg\n', totalGrowth(1));
 fprintf('t1 Biomass: %4.3f mg\n', totalGrowth(end));
end

	Nimber of times reviewed:
	Publication Info 2:

