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Abstract

Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in
coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment
when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct
disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing
the flow of information among models and the sequence of simulated events. Each model simulates processes
specific to its disciplinary realm while being informed of changes in other metamodel components by accessing
common descriptors of the system, populations, and individuals. Interactions among models are revealed as
emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of
the metamodel approach and as an example that we hope will facilitate the development of other platforms for
implementing metamodels in population biology, species risk assessments, and conservation planning. We present
two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease,
the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and
unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a
flexible, extensible method for expanding population viability analyses beyond models of isolated population
demographics into more complete representations of the external and intrinsic threats that must be understood and
managed for species conservation.
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Introduction

The Evolution of PVA Modeling
The dynamics of wildlife populations are highly complex due

to the diversity of processes that drive ecological systems,
branching chains of causal effects, feedbacks, coupling
between human and natural systems, and other often non-
linear interactions [1]. Ecological models aim to represent
natural systems in a manner that is complete enough to
forecast system dynamics with accuracy yet simple enough to
reflect limitations of data and knowledge [2,3]. Although
simplified models facilitate a general understanding of
ecological systems, such models may not incorporate the true
dynamics in sufficient detail for conservation management[4,5]
because they ignore sources of uncertainty or stochasticity
[6,7] or other critical factors (e.g., species-specific life history

attributes and dispersal behaviors [8–10]; social behaviors
[11–13]; genetics [14]).

Many recent species extinctions have been caused by
multiple, interacting, human-induced stresses [15] (e.g.,
pathogens, invasive species, collapse of inter-connected
communities, and global change). However, such stresses are
rarely incorporated fully into conservation planning because of
a lack of understanding of how threats act on a species [16]
and because populations are often threatened by multiple
stressors interacting synergistically [17]. The development of
analytical tools for population viability analysis (PVA) has
facilitated the consideration of both deterministic and stochastic
threats [18,19]. However, the restricted array of threats typically
included in PVA models (e.g., demographic and environmental
stochasticity, genetic decay, and habitat loss) limit the ability of
these models to describe even some primary biological,
physical, and human forces acting on wildlife populations
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[20–22]. For example, most PVA models target a single
species [23] under implicit assumptions that the species does
not interact with other species or that the interacting species
are constant in number or do not respond through dynamic
feedback processes. Thus, processes such as coupled
predator-prey systems, competition-structured communities,
and infectious disease are rarely included in PVA models.
Moreover, most PVA models use data from field studies
focused on single populations over short time scales to provide
estimates of demographic rates with the assumption that past
threats are adequate predictors of the future. Given the rate at
which the global environment and local human impacts are
changing [24], population models must consider the changing
forces driving population and system dynamics [1,25].

The need to expand PVA methods has been previously
recognized. Authors have called for the inclusion of more
threats in viability assessments [9,21], more explicit handling of
the sources of uncertainty [26,27], improvements to
collaborative processes through which PVAs are applied to
conservation [28,29], incorporation of multiple disciplinary
perspectives [20], and the integration of PVA with other tools
for more complete strategic planning [30,31]. However,
methods for extending PVA into a broader transdisciplinary
approach and the tools needed to implement such an approach
have not been readily available.

Metamodels: A New Approach for Extending PVA
Previously, we conceptualized what we term “metamodels”

to facilitate more holistic analyses of the diverse threats acting
on wildlife populations [32,33]. The metamodel approach links
discipline-specific models representing components of an
overall system to reveal emergent properties of multi-
dimensional interactions. In this approach, a central facilitator
program controls the sharing of information between models
(i.e., the outputs of one model can be inputs for another),
manages the sequence of events in the overall simulation,
translates variables into a common language for all linked
models, and ultimately combines outputs into a meaningful
representation of results. This approach is transdisciplinary in
that the interactive data flow allows projections of non-linear
feedbacks among processes that are analyzed by diverse
disciplinary methods. Thus, it provides more than a multi-
disciplinary summed effect of independent analyses or an inter-
disciplinary analysis of the connections between processes. It
combines the methods and strengths of each discipline into a
more encompassing analysis of main effects, interactions
among effects, and emergent higher level dynamics. It provides
a methodology for what Holling [34,35] described as the
“science of the integration of parts”.

The metamodel approach follows one of Nicholson et al.’s
[36] heuristics for interdisciplinary modeling – using a suite of
sub-models rather than one all-purpose model. This approach
helps to overcome challenges inherent to the use of
independent models that lack dynamic interactions or,
alternatively, the development of a massively complex model.
Independent models can provide insights into each of the
processes impacting a system in isolation. However, that
approach might not identify the relative importance of those

processes nor elucidate if synergisms in those processes have
cumulative impacts that differ from the impacts predicted from
individual processes. Without an integrated analysis,
uncoupled assessments can result in contradictory conclusions
regarding likely trajectories and effective management actions.
In contrast, a metamodel yields a single outcome resulting from
multiple forces interacting through dynamic feedbacks,
ultimately balancing any contradictory results generated by
uncoupled models. For example, a metamodel that combines a
wildlife population model, a habitat change model, and an
epidemiological model of infectious disease (Figure 1) can be
used to examine how changes in habitat connectivity can alter
dispersal, thereby altering disease spread and source-sink
dynamics within a metapopulation. It would be difficult to
assess the dynamics of a system like this from any one
perspective because the population model in isolation would
likely predict that habitat fragmentation would destabilize the
system [37–39], whereas the disease model would predict that
fragmentation would protect local populations from infection
[40,41]. The balance of these trade-offs in even this simple
case would be hard to predict without a metamodel approach.

To accommodate interactions, researchers can develop
“megamodels” to represent multiple system components within
a single model (e.g., FLORES [42] and HexSim [43]). Although
megamodels have utility (e.g., global climate models [44];
general ecosystem models [45]), many researchers lack the
resources to develop and operate the most expansive models.
Conversely, the metamodel approach enables users to
examine results of individual component models where there is
a high degree of disciplinary confidence, explore interactions
among modeled processes, and test alternative configurations
to understand how component models and their interactions
contribute to overall dynamics. This type of sensitivity analysis
can be difficult in a megamodel.

A lack of common language—or data “translators” that can
manage the flow of different data formats at varying
spatiotemporal scales—typically prevents the integration of
existing disciplinary models into a single transdisciplinary tool.
A metamodel can act as this translator, encourage broader
analysis by opening each discipline’s models to input from
others, and stimulate the development of new models that
describe additional aspects of a species and its interaction with
its environment.

Linked models can act on different spatial and temporal
scales, thereby facilitating analysis of effects that cross scales.
For example, a climate model might be used to predict shifts in
land cover, informing a landscape model that projects changes
in habitat configuration [46] and metapopulation structure [47],
which could then inform an agent-based model of animal
movements. The dispersal patterns might determine mating
patterns in a demographic model, which feeds back up through
a genetic model to generate the genetic structure of the
population, thereby evaluating the adaptability of the population
to climatic changes. Crossing temporal scales, a landscape
model might assess changes at a decadal interval, a genetic
model might work on a generational time step, a demographic
model might use an annual cycle, and a disease model might
require daily assessment of disease state transitions. A
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metamodel can invoke models acting on shorter timescales
multiple times within each time step used by the longer-scale
models. Linking across spatial scales, metamodels provide a
mechanism for down-scaling regional or local patterns of
broader global processes to the impacts that subsequently
occur on individual populations and their habitats. At the same
time, by building models of metapopulation complexes and
multi-species interactions, the metamodel approach allows a
user to up-scale from population viability models to ecological
community and landscape level assessments of cumulative
impacts over wider geographic and biological scales.

We describe below a new tool for implementing the
metamodel approach. We then present two case studies that
demonstrate how metamodels can reveal outcomes from
interacting systems that would otherwise be difficult to
examine. Our goal is that these descriptions and examples will

encourage other researchers to exploit the metamodel
approach and to develop additional tools for implementing
metamodels.

Methods

A New Tool for Metamodel Analyses
We developed a generic platform, MetaModel Manager [48],

to implement the metamodel approach. The software facilitates
a link between simulations of one or more populations with any
number of additional “modifier” models that create, use, and
modify characteristics of individuals, populations, or
environments. Model linkages that are currently being
developed and tested by the authors and our collaborators
include models of multi-species interactions, wildlife harvest,
infectious disease, vegetation change, landscape change,

Figure 1.  Metamodel that integrates demography, landscape change, dispersal, and disease status.  A PVA program acts as
the system model (solid outline) to simulate individual survival and reproduction based on individual and population state variables
(shown in italics) passed from other models. Modifier models (dashed outlines) simulate habitat dynamics, individual movements,
and individual transitions in disease status. A central facilitator program passes state variables between the system and modifier
models at appropriate time steps. The ultimate results are measures of population dynamics and extinction risk for a species
impacted by habitat change and disease.
doi: 10.1371/journal.pone.0084211.g001
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genetics, and animal movements. Details on the use of
MetaModel Manager are provided in the software manual [49].

MetaModel Manager provides a means of linking several
nested levels of data and several types of models (Figure 2).
“System models”, at least one of which is required for
MetaModel Manager to run, initially define the population(s)
and its individuals. The data managed by MetaModel Manager
include, at a minimum, the population’s size and age-sex
structure. In individual-based simulations, each individual must
be defined with an identifier, age, sex, and living status. The
system model can add variables that describe additional
characteristics of populations (population state variables) or
individuals (individual state variables). The overall system can
also have associated global state variables that describe
properties that apply to all populations in the focal system. In a
PVA context, the system model would normally simulate
demographic events (birth, aging, and death). The system
model can be as simple as a projection of exponential
population growth or as complex as an individual-based
simulation.

Optional “modifier models” add individual, population, or
global state variables to the metamodel and apply algorithms
that describe transitions in those variables. For example,
modifier models might be used to implement transitions in each
individual’s social status or spatial location; population
variables such as current habitat quality or prey abundance; or
global variables such as climate or human population
abundance. The separation of these sub-model algorithms into
modifier models as opposed to their inclusion within the system
model is optional (as all sub-models could be included in more
expansive system models). However, this separation is
consistent with the metamodel philosophy that promotes the
compartmentalization of processes for independent, single-
discipline model development, easier model validation, and
clearer testing of the role of each model in overall metamodel
dynamics. It also encourages the addition of new components
as needed without requiring alterations to the computer codes
of other models.

Transformations, which change any individual, population, or
global state variable outside of the system and modifier
models, can be applied via the evaluation of equations or
macros that contain sequential equations in which the other
variables are operands. These transformations can function as:
(1) translators among the data formats used by different
system or modifier models (2), simple modifier models that
apply transitions to an individual’s characteristics during a
simulation, or (3) a means of acquiring summary statistics from
the metamodel.

Input files read by MetaModel Manager at each simulated
time step can provide time series of global or population state
variables that drive processes in the metamodel, allowing for
links between models that do not require interlaced feedback.
For example, climate or landscape models could be used to
provide projections of change in temperature or habitat,
respectively, to a population model for assessing extinction risk
in changing environments. Hunter et al. [50] used projections of
Arctic sea ice from general circulation models to drive
stochastic matrix models of polar bear demography. Similarly, if

the effect of one species on another is largely one-directional
(e.g., a tree species provides an essential resource to a bird
species but is not affected by the presence of the bird), then
input files can be a means of providing abundance projections
for the resource species to the model of the dependent
species.

Finally, MetaModel Manager provides the user with the
option to pause a simulation and manually modify individual,
population, or global variables, thereby allowing the user to
become yet another “model” involved in a simulation. In this
way, a metamodel can include queries of experts for
management decisions based on the status of the population,
or the metamodel could be used as a teaching tool to allow
users to test the effectiveness of their responses.

Some key models have already been integrated as options
within MetaModel Manager, and additional models can be
added by users via the program’s interface. These models
include the PVA platform Vortex (system model) [51,52];
Outbreak, which simulates infectious disease epidemiology (as
a modifier or system model) [53]; and Spatial, which simulates
animal movement on landscapes (modifier model) [54].
Metamodels can also allow linkages between individual-based
models (e.g., Vortex) and population-based models (e.g.,
RAMAS Metapop [55]) to extend local analyses to the
landscape scale or to understand interactions between species
best modeled at the level of a single population and species
best modeled at a metapopulation scale.

Technical specifications.  MetaModel Manager was
developed in the C# language using Microsoft Visual Studio
2010 (Microsoft Corp., Redmond, Washington), with some
graphical tools obtained from ComponentOne Studio for
WinForms (Grape City Inc., Pittsburgh, Pennsylvania). The
program was compiled to run on any version of the MS
Windows operating system. An installation package that
includes the executable program, a preliminary manual, the
Vortex PVA program, the Outbreak epidemiological model, a
macro editor (MMMacro), and sample projects is available for
free download at www.vortex10.org/MMMInstallation.msi.
Further information about these programs is available at
www.vortex10.org/MeMoMa.aspx. A folder with the source
code for MetaModel Manager, MMMacro, and Outbreak is
available at www.vortex10.org/MMM.zip and is archived on the
SourceForge (Dice Holdings, Inc.) public repository (at
www.sourceforge.net/projects/metamodelmanager/ ). As an
alternative to linking models into a metamodel via shared C#
classes, data can be passed between MetaModel Manager and
external models at each step of the overall simulation via text
files. This flexibility removes the necessity for linked models to
access .NET classes and permits the external models to be
programmed in any language that can be compiled into
Dynamic-Link Libraries of functions for use by programs
running on a Windows-based system. Information about each
external model required by MetaModel Manager is provided via
a simple XML specification file, which can be built from a utility
within the MetaModel Manager interface.
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Figure 2.  Examples of data structure and program flow implemented by MetaModel Manager.  (A) Nested data representing
a species in a metamodel. Global state variables (GSvar), population state variables (PSvar), and individual state variables (ISvar)
are descriptors of the overall system, each population, and each individual, respectively. (B) Flow of control among component
models. Curved arrows represent access to and modification of data. Block arrows represent control passed among models. (C) A
two-species metamodel, with one modifier and one translator model acting on one species and two modifier models acting on the
second species. Control alternates between the species, as illustrated by solid block arrows. Each system, modifier, and translator
model has access to change any property of its populations and individuals as well as any shared global state variables.
doi: 10.1371/journal.pone.0084211.g002
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Case Study I: A Two-Component Metamodel
To illustrate how a metamodel has the ability to reveal

ecological dynamics that would be difficult to predict from
unlinked models, we present a hypothetical case in which an
infectious disease was introduced to a metapopulation
consisting of 10 subpopulations with total abundance N = 250.
In the metamodel, population viability was predicted within the
PVA software Vortex (version 10.0), disease processes were
simulated within the epidemiological model Outbreak (version
2.0), and the model processes were linked via MetaModel
Manager. We applied demographic rates that would result in a
projected long-term average (deterministic) exponential growth
rate of r = 0.042 and a mean generation time of 5.2 years. We
added annual fluctuations in demographic rates, specified that
this temporal variation was independent across
subpopulations, and imposed moderate inbreeding depression
in juvenile survival (3.0 “lethal equivalents” [56]). The model
was initialized with 10 subpopulations, each with an initial
abundance of 25 individuals distributed according to a stable
age distribution and a carrying capacity of 50 individuals. We
tested a range of dispersal rates (0%, 1%, 2%, 4%, and 10%),
which describe the probability that an individual will disperse in
any given year to another subpopulation.

The disease model was initiated with an infected individual in
5 of the 10 subpopulations. Transmission occurred through
contact such that an infectious individual had a 10% probability
per day of encountering any given individual within its sub-
population. We assumed that 10% of those encounters
resulted in disease transmission. Occasional infection from an
environmental source (e.g., another species) was modeled to
occur with a daily contact probability of 0.00274 (once per year
per individual) and a transmission rate of 0.0008 per contact
(such that one individual in the metapopulation would be
infected from an outside source approximately every 5 years
when the population size was near its initial N = 250). Infected
individuals became infectious after an incubation period of 25
days, remained infectious for an additional 25 days, and then
either recovered with 95% probability or died. Recovered
individuals retained immunity for 25 days. Each case was
simulated for 50 years and repeated with 1000 iterations.

We simulated population viability under three model
structures. In the first, we modeled the metapopulation in
Vortex alone, with no consideration of disease. In the second
scenario, we used a metamodel linking Vortex and Outbreak
but minimized stochasticity in Vortex to represent a mostly
disease-driven model; we did not include variation in
reproductive success among breeding females, annual
environmental variation in mortality rates, or inbreeding
depression. However, random variation in sex ratio and
demographic stochasticity (due to binomial sampling from
constant reproductive and survival rates) are intrinsic to
individual-based models and could not be disabled. In the final
scenario, we simulated metapopulation viability using a full
Vortex – Outbreak metamodel with stochastic variation,
including annual variation in demographic rates and inbreeding
depression. The Vortex input file that includes all demographic
rates, the Outbreak disease specification file, and MetaModel
Manager control files used in this test are available at

www.vortex10.org/MetapopDzDemo.zip and in the
MetaModelManager project on the SourceForge repository.

Case Study II: A Two-Species PVA
We developed a simple predator-prey metamodel to illustrate

how metamodels can be used to extend PVA to encompass
dynamic species interactions. In one Vortex project, a predator
population was modeled with demographic rates typical of a
large cat (e.g., puma), resulting in an intrinsic rate of population
growth of r = 0.123 when there is no prey limitation. We added
annual fluctuations in demographic rates and imposed
moderately strong inbreeding depression (6.0 lethal
equivalents). We also added a catastrophe (representing
occasional disease epidemics) that occurred with 10%
probability each year, killing 10% of the animals and reducing
breeding by 10% in catastrophe years. We set initial predator
population size at N(predator) = 50 with a carrying capacity of
K(predator) = 250. We modeled the dynamics of a second
species (the prey species; e.g., a deer) in a separate Vortex
model, with demographic rates that result in an intrinsic rate of
population growth of r = 0.142 in the absence of predation. We
added annual fluctuations in demographic rates of the same
magnitude as for the predator. We set the initial prey
population at N(prey) = 10000 with K(prey) = 25000.

We specified the linkage between the predator and prey with
a logistic function that described the increasing number of the
prey killed (up to 25) per year by a predator, dependent on the
current density of this prey species, and a second logistic
function that described the reproductive rate of the predator as
dependent on the number of prey consumed. This logistic
function for reproduction specified that a predator was
physically able to reproduce after consuming a minimum of 5
prey per year but that the predator did not reach full
reproductive capability until at least 25 prey were consumed in
a year. It was presumed that a predator could survive on
alternate prey species (not modeled and therefore assumed
not to be significantly impacted by the predator) but availability
of the preferred prey was required to raise litters. The mortality
of the prey species was defined as the baseline mortality plus
the probability of being killed by a predator. The input files used
in this case are available at www.vortex10.org/
PredatorPreyDemo.zip and on the SourceForge repository.

Results

Case Study I
Impacts of stochastic processes on dynamics of

fragmented metapopulations.  In the metapopulation PVA
model alone, with no disease, increasing dispersal led to larger
and more sustained population growth (Figure 3a). With no or
little dispersal among sub-populations, each small sub-
population was vulnerable to stochastic fluctuations that
resulted in depressed mean population growth, inbreeding
depression, and, ultimately, population decline after about 15
years. When dispersal rates exceeded 1% per year,
destabilizing effects of population fragmentation were mostly
countered as demonstrated by the absence of long-term
population decline.
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Impacts of connectivity on spread of disease.  In the
mostly disease-driven model, dispersal had the opposite effect
on metapopulation size (Figure 3b). Infectious disease caused
immediate declines in metapopulation size. This decline was
severe under high dispersal as disease more rapidly spread
among all sub-populations. After about 10 years, the infectious
disease had largely disappeared from the metapopulation as
individuals recovered and became resistant and as smaller
population sizes were less able to sustain the epidemic.
However, occasional re-infection of the metapopulation from
outside sources, coupled with renewed rapid spread of the
disease, caused the mean metapopulation size to remain low
in scenarios with high rates of dispersal. Sub-populations with
the lowest levels of dispersal avoided the sharp disease-driven
declines because of the slow spread of disease. The negative
effects of fragmentation seen in the disease-free
metapopulation (Figure 3a) were reduced and delayed
because lower stochasticity in the disease-driven model helped
to stabilize the isolated subpopulations and because inbreeding
impacts were not included.

Differences in the impacts of population connectivity on
metapopulation dynamics in the absence (Figure 3a) or
presence (Figure 3b) of disease illustrates the opposing forces
acting on sub-divided populations: stochastic processes
threaten small, isolated populations and are countered by
dispersal while infectious disease transmission threatens inter-
connected populations and is blocked by isolation. Both

processes impact many real populations, but the balance
between these forces would be difficult to predict from the
application of standard PVA methodology for population
modeling, from standard epidemiological models of disease, or
even from the examination of both models independently, as
illustrated above.

Metamodel analysis of the dual effects of stochasticity
and disease.  The results of the full metamodel with both
stochastic demography and disease demonstrated population
trends that reflected the complex interaction between disease
spread at high dispersal rates and population decline due to
demographic stochasticity and inbreeding at low dispersal rates
(Figure 3c). The synergistic effects of stochastic processes and
epidemic disease resulted in population dynamics driven
initially by disease but later by small population fluctuations.
Until year 20, increasing dispersal led to lower metapopulation
size because of the more rapid spread of disease; the pattern
was reversed beyond year 35, and increasing dispersal led to
greater metapopulation size because of the stabilization of
demographic fluctuations. Between simulation years 20
through 35, intermediate dispersal rates resulted in the highest
metapopulation sizes; the partial benefits of connectivity
reduced inbreeding and other damaging effects of
fragmentation, but dispersal was low enough to slow the
spread of infectious disease.

Overall, the balance between positive and negative effects of
population fragmentation was dependent on the temporal scale

Figure 3.  Metapopulation dynamics influenced by dispersal.  Metapopulation size is projected by (A) a PVA model in Vortex
assuming varied rates of dispersal, annual fluctuations in demographic rates, and inbreeding depression; (B) a metamodel that
linked a PVA model in Vortex to an infectious disease model in Outbreak, assuming varied rates of dispersal, minimal annual
fluctuations in demographic rates, and no inbreeding depression; and (C) a metamodel that linked a PVA in Vortex to an infectious
disease model in Outbreak, assuming varied rates of dispersal, annual fluctuations in demographic rates, and inbreeding
depression. In (A), higher rates of dispersal increase growth and stability of the metapopulation because stochastic effects in local
subpopulations are dampened. When disease was introduced but stochasticity was removed, as in (B), higher rates of dispersal
depress population size because of the faster spread of disease. Finally, when stochasticity, disease, and dispersal were
considered in (C), higher dispersal initially reduced population size because of the faster spread of disease. In later years, disease
was largely eliminated from the system, and higher rates of dispersal stabilized the population against stochastic fluctuations.
During a few years in the middle of the simulation, disease and stochastic processes were equally important, and intermediate rates
of dispersal led to the highest population size.
doi: 10.1371/journal.pone.0084211.g003
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over which metapopulation dynamics were projected as well as
the specific population and disease parameters applied in the
metamodel. Changes to population size, intrinsic rates of
population growth, annual variation in demographic rates,
severity of inbreeding depression, or transmissibility and
pathogenicity of disease could have changed metamodel
predictions regarding the range of dispersal rates that would
lead to greatest metapopulation viability. Metamodels will
perhaps be most useful for investigations of the compound
threats facing specific populations in specific circumstances
precisely because outcomes are determined by complex
interactions that are sometimes synergistic and sometimes
countervailing.

Case Study II
Single-species PVA projections.  The population dynamics

of a predator and a prey species were examined first in
separate PVA models with the assumption that the other
species was a constant factor (determinant of reproduction for
the predator; determinant of mortality for the prey). With a fixed
size prey population of N(prey) = 10000, the predator
population was sustained with an average growth rate of r =
0.108 as it approached its carrying capacity. Models with prey
populations from N(prey) = 5000 to N(prey) = 15000 indicated
that, when N(prey) > 6000, the predator population was
sustained and remained near K(predator) (Figure 4). Similarly,
with a constant number of predators, N(predator) = 50, the prey
population could sustain the added mortality and grew initially
at a rate of r = 0.055 with an accelerated rate of r = 0.109 (due
to a lower ratio of predators to prey) as the population
approached K(prey). The prey species achieved positive
population growth whenever N(predator) < 80 (Figure 5). Thus,
the single species PVA models predicted stable single-species
dynamics in the predator-prey system; sufficient prey were
available to support the predator population, and the predation
rate was sustainable for the prey.

Predator-prey dynamics in the absence of external
sources of stochasticity.  The PVA models were then
coupled to investigate dynamics when changes in the number
of each species simultaneously affect the other. The dynamics
that could arise from analytical models, such as coupled
deterministic population growth models, were approximated by
removing stochasticity other than the demographic variation
intrinsic to individual-based PVA models. For this test, there
was no environmental variation in demographic rates across
years, mean effects of catastrophes were averaged across
years, and inbreeding depression was removed. This resulted
in a tight coupling of predator-prey dynamics with an initial rise
in the prey population followed closely by a rise in the predator
population. This caused a rapid collapse of the over-consumed
prey followed by a collapse of the predator population in the
absence of the prey (Figure 6a).

Full metamodel dynamics of predator-prey interactions
with external sources of stochasticity.  The linked predator-
prey system, when each species was also subjected to the
kinds of stochasticity that are often modeled in PVAs (e.g.,
environmental variation in demographic rates, catastrophes,
inbreeding depression), generated mean trajectories that

suggested that a stable predator-prey system with a reduced
prey population sustaining a small population of the predator
could arise after an initial increase and then decrease of both
populations (Figure 6b). However, the simulated dynamics
followed any of several different patterns in the independent
iterations. Consequently, the mean population trajectories
averaged across iterations (Figure 6b) obscured dynamics that
could be observed in individual simulations (Figure 7). In many
iterations, both populations followed the pattern seen in the
absence of externally driven stochasticity (Figure 6a): a rapid
rise in population size for the prey and predator, followed by a
collapse and, ultimately, extinction of both populations (Figure
7a). In other iterations, the predator population went extinct
while enough prey individuals remained to allow for recovery
(Figure 7b). In yet other cases, both predator and prey
persisted with dynamics that suggested that there could be
various, possibly unstable, equilibria – such as a reduced prey
base sustaining a predator population below its carrying
capacity or an inbred predator population persisting on an
abundant prey (Figure 7c).

This implementation of a two-species metamodel revealed
multiple possible outcomes that were not generated by the
separate single-species PVAs (each predicting growth and
stability of their focal species) or from the more deterministic
predator-prey coupling (predicting collapse of both species).
Thus, PVA projections that presume that strong interactions
with other species can be adequately represented by mean

Figure 4.  Population trajectories for a predator species at
different levels of prey availability.  Mean predator
population size through time is predicted by a single-species
PVA model that assumed a fixed prey population size.
Simulations were run for prey populations of 5000, 6000, 7000,
8000, 10000, and 15000 individuals. Approximately 6000 prey
was sufficient to sustain growth of the predator population from
its initial N = 50 to more than 100.
doi: 10.1371/journal.pone.0084211.g004
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Figure 5.  Population trajectories for a prey species
subjected to different levels of predation.  Mean prey
population size through time is predicted by a single-species
PVA model that assumed a fixed predator population size.
Simulations were run for predator populations of 50, 60, 70, 80,
and 100 individuals. The prey population was sustained at a
size of N = 10000 or more if there were 80 or fewer predators.
doi: 10.1371/journal.pone.0084211.g005

trends should be viewed with caution. Similarly, analytical or
simple simulation models that presume that feedbacks
between species models can ignore random stochastic forces
that might push species interactions into different zones of
dynamic behavior should be met with skepticism. Other sets of
parameters defining life histories, relationships between
species, or external factors could well have led to different or
more predictable results, but the first array of parameters that
we chose to test led to these surprising findings. The power of
the metamodel approach is that it allows full exploration of the
effects of model structure, functional relationships, and
parameter values. A more extensive multi-species metamodel
could explore effects of additional species in the system, such
as alternative prey, competing predators, or multiple trophic
levels.

Discussion

The concept of a metamodel has been exploited in other
fields to create more powerful and flexible representations of
systems. A metamodel framework (termed “federated
architecture”) has been developed to integrate neuronal
simulation software [57]. LANDIS [58,59] is a metamodel for
simulating changes in forest structure and composition,
providing a platform for linking components modeling forest
succession, disturbance, climate change, and seed dispersal,
with options for further extensions by a user community.
BioMove [60] is a metamodel for simulating range-shifts in
plant populations, in which users can combine models of
landscape configuration, habitat characteristics, population
demography, and dispersal. ATLSS [61] is a series of spatially

Figure 6.  Mean predator-prey dynamics in coupled metamodels that (A) did not include and (B) did include stochastic
variation.  Mean population densities (N/K) for a predator and a prey species are predicted by a two-species metamodel, which
assumed that the density of one species would impact the other species. In (A), externally driven sources of stochasticity (e.g.,
environmental variation, catastrophes) and inbreeding did not impact either population, and we found that the predator population
grew rapidly, causing collapse of the prey population followed by collapse of the predator population. In (B), externally driven
stochasticity and inbreeding depression could impact each population. For this scenario, the average trajectory shows that the
predator population grew, followed by a decline in prey, causing subsequent decline in the predator, eventually resulting in a
possibly stable state in which a reduced prey population sustained a reduced predator population.
doi: 10.1371/journal.pone.0084211.g006
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explicit species models (termed a “multimodel” by its
developers) for the Everglades ecosystem that use common
modeling tools and can be driven by linked representations of
habitat characteristics (e.g., hydrology and vegetation
patterns). We conceptualize metamodels as even more flexible
and broadly applicable than the tools available to date for
ecological modeling, and we developed MetaModel Manager
as a generic platform for extending PVA through the use of
metamodel links. Importantly, the linked models can be
programmed in any language that can compile Windows
Dynamic-Link Libraries. Thus, with the addition of small
accessor functions, almost any existing or new Windows-based
model of ecological processes can be integrated with a PVA.

The two hypothetical examples presented in the Results
show that metamodels can reveal patterns not predicted by the
component models alone. Investigations of the dynamics of
real wildlife populations should include extensive sensitivity
testing to evaluate the impacts of model structure and
parameter uncertainty. Even more so than with standard PVA
models, the number of factors in a metamodel that are
uncertain or potentially subject to manipulation will typically be
large, making an exploration of all factorial combinations
impractical. One approach for sensitivity testing of many
potentially interacting variables is to generate a large number
of scenarios, each with parameters sampled from the
distributions describing the ranges of uncertainty. Regression
analyses can then be used to test the impact of each factor
(including interactions) on model predictions [62–64].

Cases Being Explored with Metamodels
Several metamodels implemented with MetaModel Manager

have recently been published. Keet et al. [65] linked a model of
socially structured population dynamics of lions in Kruger
National Park (SimSimba [66,67]) to an Outbreak model of

bovine tuberculosis transmission among lions and their prey.
The metamodel was complex and novel in that it included
feedbacks between the lion social system and disease
epidemiology such that the social system impacted the spread
of the disease and the disease disrupted the social system.
Similarly, Bradshaw et al. [68] linked an Outbreak model of
bovine tuberculosis in feral buffalo in Australia to a Vortex
model of population dynamics to explore efficacy of disease
surveillance and management strategies. Prowse et al. [69]
used a metamodel to explore functional responses among
trophic levels in an investigation of the possible causes of the
thylacine extinction from Tasmania following European
settlement. Their metamodels included an analytical model of
vegetation growth in response to rainfall and herbivore density;
numerical responses of macropods to vegetative biomass; time
series data on sheep as competitors of macropods for
vegetation; impacts of prey availability on thylacine
demography; decline in Aboriginal hunting of macropods as a
competitor of thylacines; harvesting of both macropods and
thylacine by Europeans; and habitat conversion by Europeans.
From the metamodels, they concluded that the rapid extinction
of the thylacine could have been due to the synergistic effects
of these forces without needing to invoke disease or other
unobserved factors.

With various sets of collaborators, investigations are
underway to test metamodel linkages among other models
relating to PVA (RAMAS [55]), animal dispersal (Spatial [54]),
landscape change (TELSA [70]), and climate change
projections (e.g., extending the work in Brook et al. [71]). A
topic of ongoing debate that might benefit from exploration with
a metamodel approach is the study of population cycles.
Cycles have been attributed to predator-prey systems with
delays, to fluctuations in food supply, to dispersal behaviors, to
weather patterns, to diseases, and to other causes (e.g.,

Figure 7.  Individual trajectories of predator and prey populations in a coupled metamodel subjected to stochastic
variation.  Simulated dynamics of the two-species predator-prey metamodel showed several different patterns for independent
iterations. Examples are shown for iterations that exhibited patterns where (A) both predator and prey populations initially increased
but then collapsed, (B) the predator population went extinct while there were still enough prey individuals to allow for recovery, and
(C) both predator and prey persisted with dynamics that suggested that there could be various, possibly unstable, equilibria.
doi: 10.1371/journal.pone.0084211.g007
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[72–75]) as well as being ascribed to spurious outcomes of
stochastic fluctuations. Metamodels provide a tool to explore
the outcomes of interactions among predator-prey-vegetation
trophic dynamics, dispersal patterns, disease, and external
drivers such as weather – all within stochastically variable
systems.

Advantages and Disadvantages of Increasing Model
Complexity

With the use of models in any discipline, trade-offs are
inevitable between model simplicity (providing clearer insight
into important factors) and model complexity (providing a more
complete representation of the interacting array of factors). The
metamodel approach heightens the need to manage these
trade-offs carefully. Perhaps the biggest challenge to using
metamodels is describing the functional linkages between
models. In some cases, the impacts of the dynamics of one
model on another are implicit and emergent. For example, the
coupling of an epidemiological model to a stochastic
demographic model can reveal the effects that demographic
fluctuations would have on the spread of disease, even if no
parameter other than population size was passed between
models and neither model incorporated feedback from the
other model into its own parameterization. However, for many
other metamodels (e.g., predator-prey models, social system
dynamics, and projections incorporating climate change), the
functional relationships through which outputs from one model
serve as necessary inputs to the next must be specified via
functions that use transferred variables to drive other
processes.

We hypothesize that the use of metamodels will reveal
emergent properties in ecological systems that would not have
been observed if component processes were analyzed in
isolation. For example, many epidemiological models of
infectious disease assume that the host population is constant
in size, experiencing simple exponential growth, or driven by
disease dynamics. Yet, the maintenance and spread of an
epidemic can have different dynamics if the host population is
subject to large fluctuations in size and distribution unrelated to
the disease itself [76]. Conversely, most PVA models treat
disease as a constant or simple stochastic source of mortality
(if disease is considered at all), but the impact of disease on
population viability can be quite different when disease occurs
in episodic outbreaks that spread through a population.
Consequently, predictions from metamodels should be more
accurate and robust, as perturbations to otherwise static
factors can be explicitly modeled.

However, it is also possible that the use of metamodels will
not improve understanding and management of a complex
ecological system. First, as with any model, if the factors
entered into the metamodel are not those that principally drive
true system dynamics, then the model will not represent the
natural world. The metamodel approach was pursued
specifically to reduce the frequency with which important
processes are ignored, but it is still vulnerable to the problem
that practitioners tend to rely on the models and data with
which they are familiar. If the ability to link a few models gives
practitioners inappropriately false confidence that all the

important parts of a complex system are understood, then the
metamodel will have perversely counteracted its purpose to
encourage broader consideration of pressures impinging on the
system. For this reason, it will be even more important that
metamodel analyses include sensitivity testing, including
examinations of: (1) including or omitting component models,
(2) changing descriptions of the functional linkages between
subsystems, (3) including or omitting specific threats, and (4)
altering parameter values. Structural uncertainty in the
processes driving the system becomes a more significant
concern when more processes are included in the overall
analysis. Nevertheless, metamodels provide a means to
reduce the false confidence that can result when many
processes are ignored to keep an analysis comfortably within
one discipline or realm of expertise.

Implications for the Development of Integrated,
Science-Based Conservation Strategies

When used well, metamodels can balance the partitioning of
highly complex systems into simpler component parts while
preserving the ability to represent the emergent effects of
interactions among those components. This novel framework
provides a means of moving beyond population risk
assessments that only consider impacts of isolated threats.
The metamodel approach will allow for more realistic models
that can guide management, test interactions among diverse
threats, and include additional expertise in comprehensive
population analyses.

The characteristics that define a well-functioning metamodel
are parallel to principles that promote collaboration among
people working on a shared problem. These include:
solicitation of experts from diverse disciplines; open sharing of
data; documentation of individual and synthetic outputs;
moderated sequential participation in modifying and expanding
information; translation as needed among the technical
languages; and openness to the addition of new participants
and types of data [77–79]. Indeed, the ideas for the
programming concepts and implementation of MetaModel
Manager software arose from discussions among natural and
social scientists about methods for transdisciplinary
collaboration [20,22,33]. Practitioners of disciplines necessary
for risk assessments of populations (e.g., ecologists,
geneticists, wildlife veterinarians, land managers, and resource
users) often work in isolation from experts in the other fields,
rarely sharing information effectively and even more rarely
collaborating on analyses and planning. A metamodel provides
a methodology that is as much social as it is technical by
allowing people across multiple disciplines to integrate their
knowledge into a comprehensive representation of the issues
and options.
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