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ABSTRACT

Cyber-physical systems (CPSs) are large-scale systems that seamlessly integrate physical and hu-
man elements via a cyber layer that enables connectivity, sensing, and data processing. Key ex-
amples of CPSs include smart power systems, smart transportation systems, and the Internet of
Things (IoT). This wide-scale cyber-physical interconnection introduces various operational ben-
efits and promises to transform cities, infrastructure, and networked systems into more efficient,
interactive, and interconnected smart systems. However, this ubiquitous connectivity leaves CPSs
vulnerable to menacing security threats as evidenced by the recent discovery of the Stuxnet worm
and the Mirai malware, as well as the latest reported security breaches in a number of CPS applica-
tion domains such as the power grid and the IoT. Addressing these culminating security challenges
requires a holistic analysis of CPS security which necessitates: 1) Determining the effects of pos-
sible attacks on a CPS and the effectiveness of any implemented defense mechanism, 2) Analyzing
the multi-agent interactions – among humans and automated systems – that occur within CPSs
and which have direct effects on the security state of the system, and 3) Recognizing the role that
humans and their decision making processes play in the security of CPSs. Based on these three
tenets, the central goal of this dissertation is to enhance the security of CPSs with human actors by
developing fool-proof defense strategies founded on novel theoretical frameworks which integrate
the engineering principles of CPSs with the mathematical concepts of game theory and human
behavioral models.

Towards realizing this overarching goal, this dissertation presents a number of key contributions
targeting two prominent CPS application domains: the smart electric grid and drone systems. In
smart grids, first, a novel analytical framework is developed which generalizes the analysis of a
wide set of security attacks targeting the state estimator of the power grid, including observabil-
ity and data injection attacks. This framework provides a unified basis for solving a broad set of
known smart grid security problems. Indeed, the developed tools allow a precise characterization
of optimal observability and data injection attack strategies which can target the grid as well as
the derivation of optimal defense strategies to thwart these attacks. For instance, the results show
that the proposed framework provides an effective and tractable approach for the identification of
the sparsest stealthy attacks as well as the minimum sets of measurements to defend for protecting
the system. Second, a novel game-theoretic framework is developed to derive optimal defense
strategies to thwart stealthy data injection attacks on the smart grid, launched by multiple adver-
saries, while accounting for the limited resources of the adversaries and the system operator. The
analytical results show the existence of a diminishing effect of aggregated multiple attacks which
can be leveraged to successfully secure the system; a novel result which leads to more efficiently
and effectively protecting the system. Third, a novel analytical framework is developed to enhance
the resilience of the smart grid against blackout-inducing cyber attacks by leveraging distributed
storage capacity to meet the grid’s critical load during emergency events. In this respect, the results



demonstrate that the potential subjectivity of storage units’ owners plays a key role in shaping their
energy storage and trading strategies. As such, financial incentives must be carefully designed,
while accounting for this subjectivity, in order to provide effective incentives for storage owners
to commit the needed portions of their storage capacity for possible emergency events. Next, the
security of time-critical drone-based CPSs is studied. In this regard, a stochastic network interdic-
tion game is developed which addresses pertinent security problems in two prominent time-critical
drone systems: drone delivery and anti-drone systems. Using the developed network interdiction
framework, the optimal path selection policies for evading attacks and minimizing mission com-
pletion times, as well as the optimal interdiction strategies for effectively intercepting the paths
of the drones, are analytically characterized. Using advanced notions from Nobel-prize winning
prospect theory, the developed framework characterizes the direct impacts of humans’ bounded
rationality on their chosen strategies and the achieved mission completion times. For instance, the
results show that this bounded rationality can lead to mission completion times that significantly
surpass the desired target times. Such deviations from the desired target times can lead to detrimen-
tal consequences primarily in drone delivery systems used for the carriage of emergency medical
products. Finally, a generic security model for CPSs with human actors is proposed to study the
diffusion of threats across the cyber and physical realms. This proposed framework can capture
several application domains and allows a precise characterization of optimal defense strategies to
protect the critical physical components of the system from threats emanating from the cyber layer.
The developed framework accounts for the presence of attackers that can have varying skill levels.
The results show that considering such differing skills leads to defense strategies which can better
protect the system.

In a nutshell, this dissertation presents new theoretical foundations for the security of large-scale
CPSs, that tightly integrate cyber, physical, and human elements, thus paving the way towards the
wide-scale adoption of CPSs in tomorrow’s smart cities and critical infrastructure.
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General Audience Abstract

Enhancing the efficiency, sustainability, and resilience of cities, infrastructure, and industrial sys-
tems is contingent on their transformation into more interactive and interconnected smart systems.
This has led to the emergence of what is known as cyber-physical systems (CPSs). CPSs are wide-
scale distributed and interconnected systems integrating physical components and humans via a
cyber layer that enables sensing, connectivity, and data processing. Some of the most prominent
examples of CPSs include the smart electric grid, smart cities, intelligent transportation systems,
and the Internet of Things.

The seamless interconnectivity between the various elements of a CPS introduces a wealth of op-
erational benefits. However, this wide-scale interconnectivity and ubiquitous integration of cyber
technologies render CPSs vulnerable to a range of security threats as manifested by recently re-
ported security breaches in a number of CPS application domains. Addressing these culminating
security challenges requires the development and implementation of fool-proof defense strategies
grounded in solid theoretical foundations.

To this end, the central goal of this dissertation is to enhance the security of CPSs by advancing
novel analytical frameworks which tightly integrate the cyber, physical, and human elements of a
CPS. The developed frameworks and tools enable the derivation of holistic defense strategies by: a)
Characterizing the security interdependence between the various elements of a CPS, b) Quantifying
the consequences of possible attacks on a CPS and the effectiveness of any implemented defense
mechanism, c) Modeling the multi-agent interactions in CPSs, involving humans and automated
systems, which have a direct effect on the security state of the system, and d) Capturing the role
that human perceptions and decision making processes play in the security of CPSs. The developed
tools and performed analyses integrate the engineering principles of CPSs with the mathematical
concepts of game theory and human behavioral models and introduce key contributions to a number
of CPS application domains such as the smart electric grid and drone systems. The introduced
results enable strengthening the security of CPSs, thereby paving the way for their wide-scale
adoption in smart cities and critical infrastructure.



To my wife, Hanna,

my parents, Afdokia and Jean,

and my brother, Adon.

v



Acknowledgments

I am ever grateful to the almighty God for all his blessings.

I would like to thank everyone who helped me during the course of this work. First and foremost,
I owe my deepest gratitude to my Ph.D. advisor, Dr. Walid Saad, for his continuous support,
guidance, and motivation which have made this dissertation1 possible. I would like to thank him
for always encouraging me and allowing me to benefit from his knowledge and expertise. His
mentorship and energy have made my Ph.D. experience productive and stimulating. I would like to
thank the members of my Ph.D. advisory committee, Dr. T. Charles Clancy, Dr. Harpreet Dhillon,
Dr. Jaime De La Reelopez, and Dr. Danfeng Yao for their valuable comments and guidance which
were tremendously helpful in improving the quality of this dissertation.

I would also like to express my sincere gratitude to Prof. Tamer Başar at the University of Illinois at
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Chapter 1

Cyber-Physical Systems Security:
Motivation, Background, and Contributions

In the era of the Internet of everything (IoE), cyber-physical systems (CPSs) have emerged as one
of the most transformative technologies due to the key role they are expected to play in trans-
forming traditional infrastructure, cities, and engineering systems into more sustainable, efficient,
economic, resilient, and interactive systems. CPSs are networked systems comprising i) a cyber
layer responsible for performing communication, data collection, processing, and exchange, ii) a
physical system that encompasses physical components such as actuators and controllers, and iii) a
human layer comprising users, operators, maintenance personnel, or any individual whose actions
can have a direct impact on the system, in particular, administrators and hackers [1–6].

In a CPS, all physical components along with humans are interconnected via a cyber layer that
provides a reliable and fast exchange of data as well as large data processing abilities enabling an
efficient, accurate, and sustainable wide-area observability, controlability, and operation of CPSs.
Indeed, accurately collected, exchanged, and processed data in CPSs will allow a continuous mon-
itoring of their real-time state of operation which – alongside a wide reachability and control
ability provided by the underlying communication layer – enables taking informed control deci-
sions to ensure rejection of disturbances, optimal operation, and sustainable availability of these
CPSs. For example, in the smart electric grid – a prominent example of such CPSs – the wide
area synchronized data, collected and exchanged throughout the system, will potentially allow
an accurate and quick identification and localization of the occurrence of faults and disturbances
and enable taking optimal security and control actions (such as, line disconnection, and genera-
tion and load rescheduling/redistribution) which guarantees an efficient mitigation of the detected
disturbances [7]. Along with the physical systems and cyber layer, humans represent a central
component of CPSs. In this respect, humans can be passive agents, whose observations and col-
lected data are used in the operation of CPSs, or active agents taking decisions which directly
affect the operation and security of the CPS. Prominent examples of active human agents within
CPSs security are hackers and system operators whose attack and defense strategies – relying on

1
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human intelligence in conjunction with software, mathematical, and engineering tools – naturally
induce significant impacts on the operation and availability of a CPS. In addition, the decision of a
user regarding whether to follow security recommendations and practices have a direct impact on
securing or exposing a CPS to security threats.

In addition to the smart electric grid, leading examples of CPSs include the Internet of Things (IoT),
unmanned aerial vehicle (UAV) systems, smart cities, intelligent transportation systems (ITS),
smart water distribution systems, and smart medical systems, among others. Each of these CPS
application domains is briefly introduced next.

• The Smart Electric Grid: as defined by the European Technology Platform for Smart Grids
in their 2035 Strategic Research Agenda, a smart electric grid is "an electricity network that
can intelligently integrate the actions of all users connected to it - generators, consumers and
those that do both - in order to efficiently deliver sustainable, economic and secure electricity
supplies" [8]. The smart grid is expected to play a key role in enhancing the efficiency,
reliability, and availability of the power system due its underlying ability to provide wide-
area protection, observability, and control of the system.

• The Internet of Things: The IoT will provide a large-scale interconnection of sensors, ve-
hicles, electronics, and mundane objects that are endowed with cyber and computing capa-
bilities. The IoT will create a world in which all used electronics, appliances, humans, and
physical objects are interconnected, thus creating a massive CPS [9].

• Unmanned Aerial Vehicles: UAVs, commonly known as drones, are small-scale aircrafts
piloted remotely or using on-board computers, with no human on board. UAVs were used, in
the past few decades, exclusively for military applications. However, recently, advancements
in their design and efficiency has promoted their potential use for civilian applications such
as in disaster warning and rescue operations, delivery of medical supplies, and providing
communication services [10–13]. Such UAV systems typically require constant UAV-UAV
and UAV-ground base communications and continuous data collection and processing to
insure the success of their missions.

• Smart Cities: Smart cities use crowd sensing (also known as citizen sensing)1 as well as
IoT and intelligent infrastructure systems’ (electric grid, transportation systems, water and
gas distribution systems), to i) create intelligent and interactive urban infrastructure, ii) effi-
ciently manage cities’ asset, and iii) coordinate response to emergency events [14, 15].

• Intelligent Transportation Systems: ITS enable the collection and exchange of data between
vehicles and traffic control in transportation systems allowing an efficient and optimal traffic
management [16,17]. Such systems are based on the emerging integration of computing and

1Crowd sensing consists of the collection of large amount of data from a vast number users’ computing devises
such as smartphones, tablets, and wearables and use such data to extract certain features and learn about a certain
process of interest [14].
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communication technologies in every-day used automobiles and the collection, processing,
and use of massive amounts of user and traffic data [16].

• Smart Water Distribution Systems: Smart water distribution and management systems use
installed sensors (i.e. flow, temperature, and pressure sensors) and distributed computing
devices to gain continuous monitoring and controllability of water distribution and water
treatment systems [18].

• Smart Medical Systems: Smart medical systems will integrate wireless communication,
sensing, and automation technologies to provide remote medical and health care services and
monitoring. Such services range from diagnostic analyses and therapeutic decision making
to robotic surgery [19].

All such CPSs rely on an interconnection of cutting edge data processing and communication
technologies and novel intelligent physical components enabling a real-time reliable interaction
between their various components as well as accurate and effective control and decision making.

However, despite the promising potential of CPSs, they are highly vulnerable to menacing security
threats, known as cyber-physical attacks (CPAs), which are becoming increasingly common as ev-
idenced by recent CPS security breaches [20–28].2 Such security threats stem from the existence
of various vulnerable points, in the physical and cyber systems, which can either be directly tar-
geted – creating a cascading chain of failures – or can be used to infiltrate the system by leveraging
the dense interconnectivity between the various CPSs elements. Indeed, such a dense interconnec-
tivity and functional interdependence between the various components of a CPS, even though it
introduces significant advantages to system operation and efficiency, it makes CPSs increasingly
vulnerable to security breaches which can be detrimental to the system [29–32].

In this chapter, we investigate emerging security threats which can target CPSs in an effort to un-
derstand the unique challenges of security in CPSs and, then, propose effective security solutions.
To this end, this chapter is organized as follows. Section 1.1 provides an overview of major recent
CPS security breaches. Section 1.2 reviews the related research works pertaining to CPS security.
Section 1.3 provides an analysis of the main challenges and difficulties which face the analysis of
CPS security situation and the advancement of effective solutions. Section 1.3 also sheds light on
the major differences between CPSs security and i) conventional network security, ii) conventional
reliability analyses, and iii) robust control system design. Finally, Section 1.4 presents the main
contributions of this dissertation.

1.1 Major CPS Security Breaches

Due to their critical role in the daily functionality of modern societies, CPSs have been the target
of various recent security breaches which have led to damages and interruptions at various lev-

2Such breaches are surveyed in Section 1.1.
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els of their operation. Indeed, many reports have discussed the vulnerability of critical CPSs to
attacks [33–36] and the destructive effect that such attacks can have on a multitude of CPS ap-
plication domains [34, 37]. Next, an overview of some of the recently reported major attacks on
CPSs is provided; itemized with respect to the targeted CPS application. This overview exposes
the vulnerabilities of CPSs to various types of attacks and enables learning from these security
breaches to gain a better and deeper understanding of the security of CPSs, which allows devising
appropriate security solutions.

• Electric Power Grids: Electric power systems are rapidly adopting new sensing, commu-
nication, and data processing technologies which enable accurate wide area protection, op-
eration, and control of the power grid [7]. These technologies are incorporated at various
levels of the grid, namely, at the generation, transmission and distribution components of the
system. Such cyber-physical electric systems, are known as smart grids, and are a prominent
example of CPSs. However, the security of smart grids is one of the most critical challenges
facing its deployment [36,38–42]. In fact, smart grids are complex dynamic systems relying
on accurate and synchronized data to control, operate, and protect the grid against potential
disturbances. As a result, the manipulation or blockage of such transfered data – or using
such interconnectivity to infiltrate into the control units of the grid – can have detrimen-
tal consequences as evidenced by the recent Ukrainian power grid security breach [20, 21]
described next.

The first recorded successful cyber-physical attack on a power system was the notorious
attack which targeted the electric distribution system in Ukraine in December 2015 caus-
ing a large-scale blackout affecting 225,000 customers spanning several western Ukrainian
cities [20, 21]. This cyber-physical attack is a coordinated attack which concurrently tar-
geted three power distribution companies. The attack compromised a number of distribution
companies’ computers, through phishing e-mails and malware infiltration, to gain control of
the supervisory control and data acquisition (SCADA) system to simultaneously disconnect
27 power substations while, at the same time, launching a denial-of-service attack against
the power companies’ call centers to prevent customers from reporting outages [20]. Simi-
lar cyber-physical attacks targeting the Ukrainian power grid have also taken place gain on
December 2016 leading to a blackout in Ukraine’s capital city Kiev [43].

Physical attacks have also recently been launched on electric transformers and power substa-
tions. For example, remote physical attacks using rifles have been reported such as a sniper
attack on a substation in California in 2013 [44] and a rifle attack that took place in 2005,
in Florida, which led to the destruction of a power system transformer oil tank leading to a
local blackout [45].

• The Internet of Things: The vast interconnectivity that the IoT brings in, introduces an
unimaginable set of new services and applications. However, it poses various security chal-
lenges as recently evidenced by a malware labeled Mirai [22–24]. Mirai is a malware tar-
geting IoT devices, which has recently infected IoT devices such as web cams, surveillance
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cameras, digital video recorders (DVRs), and other every-day-use IoT devices [22–24]. Mi-
rai continuously searches for IoT connected devices, to infect the largest possible set of de-
vices and, then, use this large set of infected devices as part of a botnet – a set of networked
Internet connected devices controlled by one entity for, typically, malicious purposes – to
launch a distributed denial-of-service (DDoS) attack. This DDoS, carried out by a huge
number of infected devices, overwhelms the Internet infrastructure with massive traffic such
that many providers of Internet services would not have any remaining capacity to provide
services for benign users [22–24]. In this respect, Mirai has been responsible for a number
of recent DDoS attacks around the globe, such as the attack on Deutsche Telekom (one of
the largest telecommunications companies in Germany) in November 2016 [24] and the lat-
est attack on Dyn (Internet performance management and domain name system provider) in
October 2016 which has denied access to various prominent websites such as Twitter and
Netflix in North America and Europe [22,23]. This attack on Dyn is the largest DDoS attack
ever recorded with a throughput of 1.2 Tbps of data. Mirai is, hence, a real world example
of how vulnerabilities in the physical system can be used to target the cyber layer in CPSs;
unlike the other attacks listed here in which cyber vulnerabilities were used to penetrate and
inflict damage to the physical system.

• Industrial Systems: One of the most recent major attacks on industrial CPSs was carried out
using a computer worm known by the name of “Stuxnet” which was discovered in June of
2010 and which was responsible for infecting the cyber system of more than 14 industrial
systems in Iran including a critical plant for uranium enrichment [25]. This computer worm
typical targets the control of industrial systems – compromising their programmable logic
controllers (PLC) – and giving the ability to the attacker to operate the control system the
way it intends. As a result, the adversary may not only spy on the system but also cause self
deterioration of large spinning centrifuges. This worm is known to be stealthy and has the
ability to update and self-replicate [46].

A malware that shows a high similarity to Stuxnet is a remote access Trojan (RTA) known by
the name “Duqu” which was discovered in 2011 [47]. This malware does not have the capa-
bility to self-replicate or to trigger physical damage. It rather aims at collecting data to learn
about a target industrial system which can help in future directed destructive attacks [48]. A
high similarity exists between Duqu and Stuxnet [47, 48]. Hence, this projects the continu-
ous evolution of such attacks and anticipates their recurrence which may inflict even larger
damage to CPSs.

• Transportation Systems: Transportation systems have also been subject to CPSs security
breaches. In 2001, a denial-of-service attack disabled a ship assistance system at the Port
of Houston, TX, USA. Various other reported CPS breaches have targeted railroad systems
in Washington, DC in 2003 and Sydney, Australia in 2004 [28]. In addition, the increasing
use of wireless systems, microprocessors, and Internet connectivity in new automobiles–
such as, for instance, in self-driving cars – has raised various concerns regarding the security
of such cars and their vulnerability to being remotely hacked. In fact, various real-time
experiments [49, 50] have shown that a hacker could launch attacks against such cars which
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can lead to disabling braking systems, denying control over the steering wheel, or even
shutting down the engine.

• Water Services: One of the most famous attacks on water CPSs is the one which targeted
Maroochy Water Services in Queensland, Australia in 2000 [26,27]. This attack was carried
out by a former contractor of the victim company who was able to hack into the system
using a laptop computer and a radio transmitter. As an act of revenge for not being offered
a job with the Maroochy council, the identified attacker hacked into the system and success-
fully blocked communication links with wastewater pumping stations leading to the spill of
around one million liters of sewage water mixing with water flowing to local waterways.

• Medical Services: CPS security threats also pose a concern to the medical sector. In fact,
many implementable medical units, such as cardiac defibrillators, neurostimulators and drug
pumps, among others, have underlying wireless communication features that enable them to
be reprogrammed using wireless signals. Even though no major security-related incidents
have been reported to date, multiple experiments on such devices showed the possibility of
compromising such medical devices using wireless links, taking control of their functional-
ity, which can be fatal to the targeted patients [28].

Few reported health related breaches include the "Conficker" worm which was reported
to target magnetic resonance imaging (MRI), X-ray machines, and other medical devices
largely affecting their functionality [28].

This overview of the latest security breaches which have targeted CPSs shows the seriousness
of the emerging threats and the need for the derivation of effective defense solutions. In fact,
concentrated research efforts are needed to gain a deeper understanding of the vulnerabilities of
CPSs and the threats with which they are faced. In this respect, next section overviews the CPS
security threat models, the type of potential security solutions which can be implemented, and
the challenges associated with gaining a full understanding of CPSs’ security vulnerabilities and
devising holistic security solutions.

1.2 Existing Research Efforts Focusing on CPS Security

Securing CPSs is indispensable to sustaining their availability and benefiting from the advantages
that they introduce. To this end, a number of research efforts have focused, in the past few years, on
studying the security of CPSs [9, 29, 51–113]. Indeed, researchers from multiple domains such as
network and information security, wireless communications, control systems, power systems, and
game theory have recently studied CPS security problems aiming at gaining a better and deeper
understating of the security threats facing CPSs and proposing methods and solutions to thwart
these threats. For analyzing the contributions made in this field, these contributions are categorized
next based on the type of the studied security vulnerability, purpose of the work (i.e. aspect of the
proposed security solution), and CPS domain area. A review of these contribution is provided next.
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1.2.1 Threat Models in CPSs

Given their interconnected cyber-physical nature, CPSs will inherit physical and dynamic system
threats as well as well-known communication and network threats such as those targeting their
integrity, availability, and privacy. However, the goals of such attacks will significantly differ from
those sought by adversaries targeting classical cyber systems, such as communication networks.
Indeed, an attack on a CPS will primarily seek to disturb the operation of the underlying physical
systems by exploiting their reliance on the cyber layer (e.g. the Internet and underlying commu-
nication infrastructure). The main differences between CPS security analyses and conventional
network security analyses are further highlighted in Section 1.3. Next, the key CPSs security
threats are discussed, in detail.

Integrity:

Integrity refers to the credibility of the data collected and transferred over the CPS. Targeting this
integrity through what is known as deception attacks of the transfered data, used for instance in a
feedback control, can have detrimental effects on the system. Attacks that target this integrity can
cause a false visualization of the real-time state of operation of the system as well as lead to the un-
observability or even dynamic instability of the system. Two of the most studied types of integrity
attacks are data injection attacks (DIAs) [69, 75, 81] and time-synchronization attacks [114, 115].
DIAs consist of an adversary manipulating exchanged data such as sensor readings and feedback
control signals. DIAs have a detrimental effect on the capacity to correctly monitor the real-time
state of operation of the system which can lead to false control decisions. In addition, manipulat-
ing feedback control signals using DIAs can have serious consequences which can range from a
suboptimal operation of the CPS to completely destabilizing the system. Time synchnronization
attacks correspond to manipulating the time tags at which measurements have been collected. Such
manipulation can cause inaccurate perception of the real-time state of operation of the system and,
hence, leads to false control and operational actions.

Availability:

Availability, on the other hand, represents the accessibility of every component of the system as
well as to the information transmitted and collected when needed. Attacks compromising this
availability are known as denial-of-service (DoS) attacks. Given that the dynamic stability of dy-
namic CPSs – CPSs incorporating dynamic control systems – is dependent on feedback control
signals, DoS attacks blocking such feedback control signals can lead to the instability of these
CPSs. Such instability causes large-scale components disconnection and failures, loss of service,
as well as physical damage to a wide-range of dynamic physical components. For example, block-
ing control signals in a power system (a dynamic CPS) can lead to a generation-load mismatch
which causes significant rises or drops in system frequency requiring protection systems (i.e. over
and under-frequency relays) to disconnect generation units or shed loads. If such protection relays’
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Figure 1.1: Illustration of Integrity and Availability Attacks Against CPSs [117].

actions are not performed in a timely manner, the resulting swings in frequency can cause detrimen-
tal damage to the generation, transmission, and even the distribution systems [116]. Moreover, the
observability and monitoring of such systems is often dependent on a set of collected system-wide
measurements which are fed to a data acquisition system responsible for estimating the real-time
operating state of the CPS. As such, disrupting the communication links that carry these measure-
ments may lead to the unobservability of the system. This, in turn, will deprive the CPS operator
from accurately monitoring the operation of the CPS which can lead to taking inappropriate con-
trol and operational actions. Hence, compromising availably can thus destabilize a cyber-physical
system as opposed to the case of conventional networked systems in which a temporary DoS may
not, in most cases, lead to the collapse of the whole system [117].

Fig. 1.1, based on the work in [117], helps illustrating such integrity and availability attacks with
can target CPSs. In this regard, Fig. 1.1 presents a simple CPS consisting of a physical dynamic
system and a controller with targeted attacks launched by CPS adversaries [117]. In Fig. 1.1,
attacks A1 and A3 correspond to deception attacks in which the attacker corrupts the sensors’ and
controllers’ outputs y and u, respectively, and sends instead false data ŷ and û such that ŷ 6= y
and û 6= u. The adversary can perform these attacks by, for example, compromising measurement
devices or controllers (e.g. PLCs [46]) or intercepting the associated communication channels [81]
and can, for instance, send false data [81], false transmitters’ identification [117], or false time-
stamps corresponding to the time at which the measurements were taken. On the other hand,
attacks A2 and A4 in Fig. 1.1 correspond to DoS attacks in which the adversary blocks sensor
measurements from reaching the controller and/or block the control signals from reaching the
physical system, namely, the actuator [118]. Such DoS attacks can be achieved, for example, by
jamming or disrupting the communication channels [118], or by compromising the measurement
devices [117].
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Dynamic System Attacks:

As a dynamic control system, various dynamic system attacks (DSAs) can target CPSs. One
well investigated type of such attacks is known as replay attacks (RAs) which can have serious
effects on system stability [119]. In RAs, the adversary injects input data in the system without
causing changes to the measurable outputs. To launch this attack, an adversary compromises
sensors, monitors their outputs, learns from them, and repeats them while injecting its attack signal.
Another type of DSAs is known as dynamic data injection attacks (D-DIAs) which uses knowledge
of the system’s dynamic model to inject data that causes unobservability of unstable poles [120].
As a result, a successful D-DIA prevents the CPS’s operator from detecting instability which, in
turn, can lead to a system collapse. In addition, stealthy data injection attacks (S-DIAs) are a
type of data injection attacks which leverage an acquired knowledge of the system dynamic model
to launch an attack that is undetectable [120]. A covert attack is one other type of DSAs that is
basically a closed loop version of a replay attack [120].

Physical Attacks:

Given the wide footprint over which CPSs are physically spread and the presence of unprotected
physical components, the danger of physical attacks in which an adversary physically attacks sys-
tem components is prominent [44, 45]. Such attacks encompass tampering with the physical envi-
ronment, physical destruction of a component, or manipulating the component’s circuitry to output
corrupt data.

The threats of physical attacks targeting the physical environment of a CPS is most pronounced
in IoT critical applications (for example, forest monitoring for fire hazards) in which an attack-
induced physical environment manipulation of certain sensors leads to sending corrupt data (such
as, for example, false fire alarm data) which cannot be identified to be malicious using conven-
tional authentication techniques since such data is actually sent by an authenticated component.
IoT systems are the most vulnerable to such types of physical attacks since, in the IoT, the physi-
cal environment is more accessible to an attacker, as compared to other CPS applications, whose
components and physical environment might be physically inaccessible or might be within secured
perimeters. Nevertheless, physical environment manipulation attacks can also target other CPSs
such as transportation systems, as explored in [81], which studied non-invasive attacks directly
targeting antilock braking system (ABS) speed sensors and highly affecting the vehicle’s operation
and safety. In addition, physical attacks can consist of physically destroying some components of a
CPSs. Well-known examples of such attacks include the recent rifle attacks which targeted power
substations in California, USA in 2013 [44] and in Florida, USA in 2005 [45]. Moreover, physical
attacks can take the form of physical manipulation of the electric circuits of CPS components to in-
terfere and modify their functionality. Such types of attacks are common in smart grid applications
for energy theft purposes [38, 121]. In this regard, electric energy suppliers have long studied the
energy theft problem and identified various physical manipulation techniques which are the most
used for theft purposes including: meter bypass (or bridging) as well as tampering with the meter’s
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software, and memory, among others [121].

Coordinated Attacks:

Coordinated attacks (CAs) are a type of cyber-physical attacks in which several types of attacks
are concurrently used; simultaneously targeting various parts of a CPS eventually leading to its
collapse. CAs are the most challenging type of CPS attacks since they can surpass traditional re-
dundancy and robustness design solutions, by entailing very unlikely simultaneous failures which
are not accounted for in robustness measures. For instance, CPSs typically incorporate robust-
ness measures (based, for example, on added redundancy) which help them survive potential fail-
ures [122, 123]. Due to these measures, under typical system conditions, an attack leading to the
failure of one or few components might not always have significant effects on the system’s opera-
tion. However, since CAs lead to a large number of naturally unlikely simultaneous failures, such
robustness techniques based on added redundancy will no longer be able to thwart such attacks and
maintain the system operational. For example, the power system follows the so-called “N − 1” se-
curity criterion [122] which instills redundancies in the system design allowing the preservation of
the system’s state of normal operation even after the loss of one of its N components. However, a
coordinated attack leading to the simultaneous failure of various components may not be prevented
by the N −1 security criterion. In this respect, the recent attack-induced blackout of the Ukrainian
grid – including malware infiltration and control of the SCADA along with a DoS attack targeting
the power system customers (i.e. targeting the human layer of the CPS) – is a real-world example
of the detrimental effect that CAs can inflict on a power system.

Advanced Persistent Threats:

Advanced persistent threats (APTs) are, by design, a type of targeted attacks that specifically target
a certain user or group of users (or a certain node in a CPS) considered to be a valued target, and
employ all available resources for such attacks, rather than being concerned with attacking a certain
network as a whole (which is typically the case for viruses and worms) [124,125]. Such attacks are
persistent in the way that they focus on a specific target rather than searching for weak alternative
targets. The value of the target can reflect its essentialness to a whole CPS, in which compromising
such target opens access to various parts of the CPS or enables inflicting a broad damage to the
system. The value of the target can also reflect the importance of the target itself, regardless of its
interconnected network (for example, acquiring confidential information about a prominent figure,
learning about certain features of a CPS, among others). A prominent example of APTs which
targeted cyber-physical systems is Stuxnet [25, 124]. In fact, Stuxnet has specifically targeted
a brand of programmable logic controllers used in the SCADA network of a targeted industrial
system. Due to their nature, such attacks comprise long intelligence gathering and attack modeling
phases to be able to design an effective attack. APTs are considered to be an emerging type of
attacks. Hence, research efforts in this field are quickly rising with the goal to devise appropriate
solutions which are, primarily, user-centric rather than network centric [124, 125].
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Privacy:

Due to the human participation in CPSs – as users, customers, and operators – privacy naturally
remains a primary concern. This concern directly stem from the private data that users transmit
as part of cyber-physical interactive systems such as in the IoT (home automation and application
usage data), smart grid (customers’ electricity usage), and smart cities (users’ movement and lo-
cation). A mere access to such users’ data may lead to a broader breach of user’s privacy. For
example, various studies [38, 40, 126] have focused on analyzing privacy concerns when it comes
to readings of smart meters and energy consumption patterns. In fact, from smart meters’ readings,
private information such as which appliances are being used at which time, whether an individual
is present in its dwelling or not, and the type of activities that a person is performing can be ex-
tracted [38,40,42,126]. With regard to IoT and smart cities [126], the nature of the data transmitted
itself contains various private information which must be kept confidential.

A number of research works [29, 30, 68–70, 74, 75, 81, 90, 114, 115, 118–120, 124, 125, 127, 128]
have studied these types of attacks with the purpose of analyzing and understanding these emerging
threats as well as deriving adequate security solutions. In this respect, Table 1.1 provides a listing
of some of these research works grouped by the type of threats studied.

Table 1.1: CPS Security Research Efforts

Type of Attacks Relevant Work
Denial-of-Service [118, 127]

Data Injection Attacks [69, 75, 81]
Time Synchronization Attacks [114, 115]

Stealthy Dynamic Data Injection [29, 30, 68, 70, 74, 128]
Dynamic Data Injection Attacks [120]

Replay and Covert Attacks [90, 119]
Advanced Persistent Threats [124, 125]

CPS Privacy Attacks [38, 40, 42, 126]

Facing such security threats, a number of security solutions can be advanced to prevent such attacks
from targeting CPSs, detect their presence, and mitigate their effects. These security solutions are
explored next.

1.2.2 Security Solutions: Prevention, Detection, Mitigation, and Restora-
tion

To address the various types of CPS threats explored in the previous subsection, a number of
research efforts have focused on devising CPS-centric security solutions that can maintain the
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integrity, availability, and operation of CPSs, under such diverse threats. The existing security
solutions can be categorized based on their central security objective, namely: i) prevention, ii)
detection, as well as iii) mitigation and restoration. In fact, the reviewed literature includes various
security solutions which are specific to the treated application. Hence, rather then going through
each of these specific solutions, this subsection aims at introducing the guidelines of each of these
defense solutions, by categorizing them in terms of their primary security objective, i.e., either to
thwart potential future threats (prevention), detect the presence of stealthy threats (detection), or
mitigate the potential damage that an attack can inflict on the system (mitigation).

These categorized security objectives and the major research works which have focused on each
of these objectives are presented next.

• Prevention – Vulnerability Assessment and Security Reinforcement: Attack prevention
consists of reinforcing the security of the CPS to prevent any attack from successfully intrud-
ing and intervening in its operation. Attack prevention necessitates vulnerability assessment
and risk management. The vulnerability analysis phase consists of analyzing which CPS
components are vulnerable to what type of threats as well as the security interdependence
between the various system components (in an analogous manner to vulnerability assess-
ment and security hardening in network security [129–131]). In addition, risk management
corresponds to assessing the effect that the loss of a CPS component can have on the system
and identifying the cascading chain of failures that such a component loss can trigger. Once
these threats are identified and their effects are traced, a security reinforcement phase must
be implemented in which security solutions to thwart the attacks targeting the previously
identified vulnerable components are implemented. Such security solutions include mea-
sures such as encrypting sensor readings, implementing new security protocols, replacing
outdated components with more secure ones, setting up security perimeters, or incorporat-
ing additional redundant components, among others. Hence, this prevention phase aims at
implementing preventive security solutions to secure the CPS against a range of potential
threats. A number of research works have recently focused on devising preventive security
solutions to thwart potential attacks on CPSs such as the works in [64–68]. For example,
the work in [64] developed a testbed to assess the security threats which can target super-
visory control and data acquisition systems of CPSs, based on which defense solutions can
be implemented. Similarly, the work in [67] provides a discussion of the threats which can
target data acquisition systems of the power grid. The authors in [65] focused on the imple-
mentation of preventive techniques to protect advanced metering infrastructure (AMI)3 from
potential attacks. Such preventive techniques are based on a continuous monitoring of the
AMI traffic. In addition, the work in [66] discusses security standards which can be imple-
mented to prevent attacks on smart electric grids. These standard must surpass the traditional
concepts of security by obscurity which relies on the confidentiality of the designs and sys-
tem models as the system’s primary way to prevent attacks. The authors in [68] propose a
framework based on which measurement units in a power system can be made more secure

3Infrastructure which enables a reliable communication between electric utilities and customers.
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to prevent potential data injection attacks.

• Detection: Vulnerability assessment, risk management, and security reinforcement consti-
tute preventive measures to thwart potential attacks which can target CPSs. However, such
preventive security reinforcement techniques may fail to thwart some type of stealthy attacks
and advanced threats. This is mainly due to the fact that malware designers continuously
develop their malwares to penetrate already existing security solutions. As such, the CPS
operator must continuously scan the system to detect new threats which have passed the at-
tack prevention defense lines. This is crucial for stealthy attacks which penetrate the system
(or continuously and repeatedly attempt to target a certain part of the CPS) and run long-
term attacks that cannot be identified using the security solutions already in place. To this
end, a number of algorithms and strategies to detect the presence of such stealthy attacks
have been presented in the literature [69–71,88,89]. For instance, the works in [88] and [89]
introduce detection techniques to detect attacks which can target water supply systems. The
work in [69] proposes a framework to identify measurement corruption, dynamic data injec-
tion attacks, and replay attacks in a power system. Moreover, the authors in [70] leverage
system’s parameter estimation techniques to detect data injection attacks on the power grid.
In addition, the work in [71] advances intrusion detections techniques which can detect real-
time malicious attacks on CPSs.

• Mitigation – Resilience and Robustness: To mitigate the effect of attacks on CPSs, two
major characteristics of the system are studied: its robustness and resilience to potential
attacks. A robust system is designed to withstand attacks or exogenous disturbances without
deviating from its normal state of operation. Complete robustness is not always achievable
or feasible. The resilience of a system, on the other hand, reflects the flexibility of the system
and its ability to temporarily deviate from the defined normal state of operation, to prevent
the overall failure of the system, and to restore normal operation after the attack/contingency
has been eliminated [51, 73, 132]. In this regard, a number of research efforts have focused
on designing defense strategies to mitigate the effects of potential attacks on the system
using robust or resilient designs, such as the works in [51, 82, 91, 92]. In this regard, the
work in [82] presents a study aiming at enhancing the resilience of state estimation in CPSs
against potential attacks; while the work in [51] focuses on the design of a resilient control
for CPSs. In addition the works in [91] and [92] introduce a hybrid robust-resilient approach
to mitigate the effect of physical disturbances and cyber attacks on the operation of a cyber-
physical system. Robustness can be considered to be a pre-attack mitigation strategy while
resilience can be considered to be a mitigating post-attack measure.

After exploring the potential security threats which can target CPSs and the guidelines governing
possible defense methodologies, the next subsection reviews research works which have aimed at
characterizing the threats and advancing solutions for specific CPS applications.
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1.2.3 CPS Security: State-of-the-art in Various CPS Application Domains

The previous subsections have introduced and analyzed the various types of security threats which
can target CPSs as well as the general types of defense methodologies which can be implemented
to face these threats. This subsection provides a review of the CPSs security works based on each
application area.

• Smart Grid: The security of the smart grid has been the main focus of a profusion of re-
search efforts due to the necessity of the continuous availability of electric power for the
functioning of modern societies. These contributions have focused on the two main con-
stituents of the grid: the physical side, with its corresponding control system, and the cyber
supporting infrastructure necessary for the successful and efficient operation of the grid. In
fact, the work in [79] provides a survey of the security threats which can target the smart
grid’s control infrastructure and which are due to the underlying cyber-physical intercon-
nection within the smart grid. In addition, the work in [52] reviews the emerging cyber
threats which can target the smart grid. A large number of works have considered stealthy
data injection attacks on the state estimator of the smart grid – which is responsible for
providing the system operator with an estimation of the real time operating states of the
power system – and analyzed ways of preventing and detecting such attacks as well as their
potential economic and operational effects such as the works in [29, 68, 70, 74–76, 78, 93]
and the references therein. In this regard, the works in [75] and [76] have derived a set of
stealthy data injection attacks which can affect the state estimation outcome of the power
system without being detected by traditional bad data detectors. In addition, the works
in [29, 68, 70, 74, 78, 93] have focused on the characterization of a subset of measurement
units which must be defended to thwart or mitigate the effect of potential attacks on the
power system’s operation [29, 68, 70, 75, 76, 78, 93] or electricity pricing [74]. Moreover,
vulnerability assessment of SCADA systems of the electric power grid is also the main fo-
cus of a number of research works such as in [64,67,77]. The work in [64] has implemented
a testbed which can be used to characterize the security vulnerabilities of SCADA systems.
In addition, the works in [67] and [77] advance a comprehensive vulnerability assessment
of SCADA systems quantifying the extent up to which attacks on the SCADA can affect its
effective functionality. This vulnerability assessment can be used in the design of defense
solutions which can reinforce the security of the SCADA and mitigate the effects of potential
attacks.

• UAVs: The proliferation of the use of unmanned aerial vehicles for various applications –
such as ad-hoc networks, communication in emergency situations, as well as parcel deliv-
ery and time-critical applications – have raised concerns about their security and robustness
facing cyber-physical attacks. In this regard, a number of works have focused on analyzing
and understanding the security of UAVs and UAV-systems within various applications as
explored in [57, 83–87]. In this regard, the works in [83] and [84] provide a comprehensive
overview of security threats which can target UAV systems while the authors in [57] intro-
duce an extensive risk assessment scheme which enables assessing the risks facing UAVs.
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Moreover, the work in [85] provides a demonstration in which a UAV – typically used for
critical operations – was compromised and was subject to the injection of malicious con-
trol commands to manipulate its operation. The authors in [86] investigates the security
of state estimation in UAV systems aiming at detecting attacks which can target the state
estimation process. Furthermore, the authors in [87] introduce a simulation testbed which
can emulate security scenarios that can face UAV systems and allow the derivation of im-
portant insights which can be used in the design of security solutions. In addition, those
developments in UAV technologies have also raised concerns regarding their possible use
for malicious activities such as intruding into secured military perimeters or smuggling il-
licit products [133, 134]. As such, a number of research works [133, 134] have focused
on exploiting UAVs’ vulnerabilities to cyber-physical attacks to develop anti-drone defense
systems to interdict UAVs suspected to carry out malicious activities or intruding into secure
perimeters. These anti-drone systems are surveyed in [133, 134].

• IoT: the Internet of Things provides vast interconnectivity between various components used
in critical applications, urban settings, as well as in automation. Even though such intercon-
nectivity provides vast monitoring and operational abilities, it introduces broad security risks
as evidenced by the Mirai malware. As such, various works have focused on studying the
security aspect of the IoT with the goal of understanding the risks of such interconnectivity,
identifying potential vulnerabilities, and devising appropriate security solutions as surveyed
in [9, 53, 54, 80] and the references therein. For instance, the works in [9] and [53] provide
a comprehensive survey of the security risks facing the implementation of the IoT. These
work review existing communications protocols which can be implemented to enhance the
security of IoT interconnected devices while highlighting their potential shortcomings when
implemented in the context of IoT applications. In addition, the work in [54] discusses
security protocols which can be implemented for IoT security while taking into considera-
tion the significantly limited resources that some IoT devices may possess. In this regard,
small cryptographic key sizes are proposed for securing data exchange between IoT devices
while minimizing the cryptographic computational processing requirements that an IoT de-
vise must perform. As such, this work also highlights the trade-off between the processing
capacity of an IoT devise and the required time span for privacy protection. In addition, in
the wake of the discovery of the Mirai malware, the use of IoT devices as part of a Botnet
of distributed DoS attacks is investigated in [80] while highlighting the need for security
solutions optimized for IoT applications.

• Transportation Systems: Transportation systems have been subject to various security
breaches as reported in [28]. Hence, their security has been the subject of various research
studies such as in [55, 56, 81, 82], among others, focusing on different types of transporta-
tion such as ground transportation [81, 82] and air transportation [55, 56], among others.
For instance, the work in [81] investigates a physical manipulation type of attacks against
antiblock braking systems of cars. The investigated type of attacks manipulates the environ-
ment of the wheel speed sensors and inject data in the breaking system computer to tamper
with its normal functionality causing life-threatening consequences. In addition, the work
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in [82] proposes a robust defense mechanism for thwarting attacks which can target the state
estimators of unmanned ground vehicles. Moreover, the authors in [55] and [56] study the
security of automatic dependent surveillance broadcast (ADS-B) systems. The ADS-B is
a system which collects aircraft related information such as location and speed – while in
flight – and uses such information for flight management. However, this system uses un-
encrypted communication which poses various security threats. In this regard, the works
in [55] and [56] investigate the vulnerabilities of this system and the security threats it intro-
duces to the aviation field. Moreover, the work in [56] proposes the implementation of what
is known as format-preserving encryption to enhance the security of such systems.

• Water Distribution: A surge in security studies of water distribution systems has occurred
following the security breaches exposing the vulnerability of such systems [26, 27]. These
research efforts have ranged from proposing attack detection techniques [88] to proposing
security frameworks of water systems [89] and analyzing security threats and protection
strategies to irrigation systems’ SCADA [135].

• Smart Cities: With the advancements in IoT technologies, smart cities applications have
come closer to potential wide implementation. Accordingly, security threats targeting smart
cities have attracted particular interest in literature. The scope of the works focused on the
privacy, integrity, and availability of information flow as well as on the risk of propagation
of security threats due to the vast number of underlying interconnected systems [58–63].

As discussed in this section, CPSs in their various applications face various types of cyber-physical
threats. As such, devising appropriate and effective security solutions to thwart these threats and
mitigate their effects is necessary for the successful implementation and operation of CPSs. How-
ever, security analyses of CPSs face a number of challenges. Understanding these challenges is
necessary for carrying out a well-informed and effective security analysis. These challenges are
addressed next.

1.3 Challenges of CPS Security Analyses

For numerous years, researchers in the fields of network and information security have been work-
ing on creating secure systems and devising security solutions to prevent or mitigate the effects
of potential cyber attacks [136]. Namely, security protocols, cryptography, risk management, and
information security and privacy have been the center of the research efforts of network security
professionals. On the other hand, researchers in the field of control systems, have also developed
secure, robust, and resilient systems that can withstand exogenous perturbations while preserving
the stability of the system as well as a high level of operation quality [136]. Such cyber security
analyses and robust control designs are at the center of the security analyses of cyber-physical
systems. However, due to the tight cyber-physical coupling in CPSs, such previous analyses, even
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though essential, need to be transformed, updated, and developed, to account for the unique na-
ture of CPSs. In fact, this cyber-physical interconnection introduces a myriad of challenges which
hinder performing accurate security analyses and devising effective security solutions for CPSs.
These challenges are discussed next.

1.3.1 The Human Layer

Humans play an essential role in cyber-physical systems and their decisions – as operators, users,
or administrators and cyber-physical adversaries – are crucial for the operation, protection, and
security of CPSs [1–6, 137]. The role of humans in CPSs is has become more pronounced – as
compared to the case of conventional network security – due to the spread, distributed, and in-
teractive nature of CPSs in which humans continuously interact with these CPSs and make active
decisions with direct effects not only on the operation of CPSs but also on their security [5]. For
example, in transportation systems, a vulnerable vehicle as part of a vehicular platoon [138], if
compromised, can put the whole platoon and the humans involved at risk [139]. Another exam-
ple of the human role in securing CPSs is directly relevant to IoT connected systems. Indeed, an
IoT system contains millions of components which are operated or maintained by a large num-
ber of humans. These humans routinely perform security tasks such as changing the standard
factory passwords of newly bought components, or securing their smart phones or computing de-
vices which directly interact with their IoT devices. Not doing so puts the whole system at risk; a
crucial lesson learned based on the latest Mirai IoT malware [22–24]. The increasing number of
components in CPSs, and the increasing levels of active user involvement, increases the chance of
occurrence of security mistakes whose consequences can have significant effects on the whole sys-
tem. As such, the understanding and heavy integration of the behavioral aspects of humans in CPS
security pose additional challenges to the task of securing CPSs. Indeed, humans and computer
systems observe, reason, make decisions, and report observations differently [5]. Understanding
these differences, and incorporating them in security analyses, are challenging tasks which are
indispensable to advancing the security of CPSs.

1.3.2 Limitation of Conventional Network Security Solutions

The scope of CPS security analyses and solutions greatly differ from conventional network security
due to various aspects as summarized next.

• The physical system: The physical system constitutes the principal part of a CPS, which
typically comprises a dynamic system that must be controlled, stabilized, and optimized [1–
4]. This layer does not, normally, exist in conventional networks and, hence, introduces
new challenges to the security studies of CPSs. For example, a small-scale denial-of-service
attack in a cyber system might not be considered catastrophic while blocking a feedback
control signal from reaching the controlled plant can lead to destabilizing the system. In
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addition, the presence of a largely spread physical realm in cyber-physical systems makes
CPSs vulnerable to a broad range of physical attacks and physical environment manipula-
tions. Such attacks and threats most exclusively target CPSs. Hence, CPSs security analyses
must account for physical threats through which adversaries directly target the physical en-
vironment or physical components of the system to affect its operation. Hence, even though
conventional cyber security solutions may provide valuable tools for the protection of CPSs,
these solutions needs to be reshaped and developed when applied as part of a security solu-
tion to CPSs.

• Risk management and risk diffusion: The analysis of the propagation of attacks and
threats in a cyber-physical system is different than that corresponding to conventional net-
work systems. For instance, the study of how computer worms and viruses propagate in a
cyber system is different than the analysis of the cascading chain of events that the loss of
a physical component, due to a cyber attack, can cause. Hence, security solutions to CPS
security threats must typically account for the potential cascading failures which can occur
within interconnected CPSs.

1.3.3 Limitation of Conventional Reliability Evaluation and Control-Theoretic
Solutions

Security analysis in the physical realm typically represents achieving robustness against physical
failures and exogenous disturbances. Such robustness is achieved using reliability enhancement as
well as robust control system designs.

Reliability and availability [123] evaluation of physical systems is based on the analysis of the
probability of failure of their components (focusing, mainly, on natural failures) and their expected
availability. The goal of such analyses is then to devise techniques and designs to improve the
overall reliability and availability of the system. Such availability improvement techniques include
adding redundancies, improving maintenance processes, and testing for hidden failures. Indeed, a
primary area of focus in reliability analyses comprises devising schemes for optimal addition of
redundancies, to the system, to face stochastic failure events which may occur following defined
stochastic processes. However, due to budgetary constraints, such added redundancies cannot
account for events that are very unlikely to naturally occur. On the other hand, due to the vast
interconnectivity provided by CPSs, an attacker may trigger the occurrence of simultaneous fail-
ures which are very unlikely to naturally take place and, hence, are not accounted for in traditional
redundancy addition schemes and reliability measures. This is corroborated by the latest attack-
induced blackout of the Ukrainian power grid which was caused by simultaneous disconnection of
a large number of substations (an event that is highly unlikely to occur due to natural events) which
have caused a large-scale blackout. As such, since designing a system that is 100% reliable is prac-
tically impossible, and since the increasing number of interconnected, non-redundant, components
leads to reduced overall reliability levels, enhancing the availability of such tightly interconnected
cyber-physical systems, which face menacing security threats, is highly challenging.
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Robust control designs [140] also provide fundamental techniques to preserve the operation of dy-
namic systems subject to exogenous inputs and disturbances. However, these conventional control-
theoretic solutions do not explicitly account for the presence of a cyber layer and its underlying
cyber threats that it can introduce to a CPS. In other words, accounting for the communication layer
security while considering sensors’ output, state estimation, and control inputs, is highly challeng-
ing and has not been typically included in conventional robust control designs. That is, indeed, of
practical importance for CPSs when considering multiple interconnected dynamic systems whose
operation and control require continuous exchange of data using a common communication layer.

1.3.4 Security and Performance Tradeoff

CPS security solutions must be inherently cognizant of the performance of the system. In particu-
lar, these solutions must seamlessly integrate with the CPS with minimal disruption to its operation
and performance. This trade-off between security and performance is very challenging since the
advantages brought-in by CPSs stem from the vast interconnectivity that they introduce between a
very large number of users and components. Hence, insuring the availability of this interconnec-
tivity is essential to achieving the sought CPSs performance. However, insuring the security of the
CPS against attacks, while preserving this interconnectivity, is a significantly challenging task.

Following the overview of CPS security – including reported breaches, studied threats, solutions,
and challenges – which was provided in the previous subsections, we next introduce the limitations
of previous CPS security works and introduce the contributions of our work.

1.4 Contributions

As detailed in the previous sections, CPSs are expected to be central to modern cities, advanced
infrastructure, and interconnected engineering systems. However, as evidenced by recent security
breaches, they are vulnerable to emerging threats targeting their physical and cyber realms. Hence,
there is a growing need to devise security strategies to thwart these threats and mitigate their effects.
These security strategies, to be effective, must account for all aspects of CPSs security. Indeed,
devising security strategies to enhance the security of CPSs with human actors must focus on the
engineering designs of CPSs, highlighting the functional and security interdependence between
their various layers and elements, as well as focus on their underlying multi-agent decision making
processes and human subjective behavior.

1.4.1 Summary of the Shortcomings of Previous Works

The existing body of work [9,29,51–113,141–144] has provided key initial steps towards advanc-
ing methods to thwart emerging CPSs threats. However, this prior art is still lacking at multiple
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fronts. For instance, a large set of these works [51–63] treat the underlying CPS problem as a
typical network security problem without specific regard to the existence of the physical system
and its interconnection with the cyber layer. Hence, the derived solutions and analyses might not
directly apply to CPS security settings as discussed in Section 1.3. Meanwhile, a subset of the
works which do consider the interconnected cyber-physical nature of CPSs [9, 29, 64–89] focus
on the control, reliability, and derivation of specific security solutions without focusing on the
optimality of the provided solutions nor on modeling the multi-agent strategic interactions that
arise within the CPS. Moreover, even though a subset of works [90–98, 98–113] study this multi-
agent optimal decision-making, typically using game-theoretic techniques, the vast majority of
these works [90–98, 98–104] is restricted to zero-sum games which significantly limits the scope
of the analyses and derived solutions. Moreover, zero-sum games do not factor in the heterogene-
ity of the objective functions that can exist between the involved agents. Nonetheless, a subset
of works [105–113] propose more general games’ representations which model and analyze this
complex multi-agent strategic behavior within CPSs security. However, the major drawback of
these works is their underlying assumption that the agents involved always act with full rational-
ity which include considering that the agents always choose optimal strategies, have an objective
perception of their environment, and an objective perception of their skill levels. However, since
CPSs security relies in many cases on humans who can deviate from this full rationality, such
provided analyses may fail to analyze cyber-physical security with human actors since they do
not account for the role of humans and their potential subjective behavior. A number of recent
works [141–144] incorporate the human layer in their CPS security analyses and account to some
extent for their potential bounded rationality. However, these works significantly abstract either
the cyber layers or the physical systems of the considered CPSs. As a result, these works do not
provide a comprehensive security to the entire cyber-physical-human loop.

1.4.2 Summary of Contributions

The main contribution of this dissertation is to provide an in-depth understanding and analyses of
the security of CPSs with human actors and develop novel mechanisms and defense strategies for
securing CPSs in their various application domains. Towards achieving this goal, this dissertation
will develop new mathematical frameworks that allow precise characterization of the threats facing
CPSs and derivation of fundamental security strategies and solutions to thwart such threats and
mitigate their effects; while explicitly incorporating the multi-agent interactions that occur across
a CPS and factoring in the human role in the security analyses.

In this respect, our work brings forward a theoretical foundation of CPSs security with human
factors focusing on the following three tenets:

• Theoretical models for CPS security: Since CPSs are densely interconnected systems, de-
vising a fundamental understanding of the functional and security interdependence between
their various components is essential to quantify the effects of any security breach and assess
the merit of any proposed defense strategy. As such, a primary objective of this dissertation
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constitutes understanding such security interdependence to be able to assess emerging threats
or value potential solutions.

To this end, based on the engineering principles of power systems, communications systems,
and control systems as well as novel mathematical principles of graph theory [145], this
dissertation introduces mathematical CPS security frameworks capable of quantifying i) the
effects of a certain security breach on the system, ii) the effectiveness of a certain imple-
mented defense policy, iii) the security interdependence between the various CPS elements,
iv) the propagation of threats throughout a CPS, and v) the interdependence between the ac-
tions of the agents involved in CPS security and their collective effects on the security state
of the system.

• Multi-agent interaction: CPSs are vastly distributed systems in which various agents (au-
tomated and humans) interact and whose actions, learning, and decisions have direct impacts
on the security and availability of CPSs. As such, understanding the collective interaction
and decision making processes of such multitude of agents as well as characterizing the role
that each agent plays in securing and/or exposing CPSs to security threats are indispens-
able to characterizing the security risks facing CPSs and attempting to defend these systems
against such threats.

Capturing, understanding, and incorporating multi-agent interactions in a security analysis
requires a mathematical framework with the capability of modeling the optimal decision
making of each agent – with respect to other agents – and collectively quantifying the ef-
fect of their distributed behavior – being competitive or cooperative – on the security and
operation of the system. To this end, this dissertation advances new notions from game
theory [136, 146, 147] to model this multi-agent interaction. For instance, clearly, in CPS
security settings, the effectiveness of a defense solution is in its ability to anticipate the po-
tential attacks which can target the system. Hence, the security and availability of a CPS
is subject to the multi-agent interaction between the system defender(s), attacker(s), and, at
instances, users. Our developed game-theoretic frameworks enable an in-deep modeling, un-
derstanding, and analysis of such interactions. As such, this dissertation develops a suite of
new game-theoretic tools, advance novel game-theoretic concepts, and derive specific results
for securing CPSs. The proposed game-theoretic models are, hence, central to our derived
security analyses enabling the advancement of strategies for enhancing the security of CPSs
with human actors.

• Role of the human layer: Humans constitute one of the most prominent components of
CPSs. As users, customers, operators, defenders, and hackers, their behavior and percep-
tions have a direct impact on the security and availability of CPSs. As such, a fundamental
understanding of the way humans behave, make decisions, perceive risks, value outcomes,
build beliefs, and interact in the presence of risk, uncertainty, and complexity – as is the case
in CPS security settings – is vital for devising an in-depth understanding of the threats facing
CPSs and for quantifying the impact of any proposed defense strategy.

Modeling the behavior of humans involved in CPS security settings requires an understand-
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ing of i) the way humans subjectively make decisions, perceive risks, and value outcomes,
ii) the way humans value their skills and cognitive abilities with respect to their peers and
opponents, iii) the way humans make decisions under minimal knowledge of their environ-
ment, and iv) the way in which humans’ beliefs and psychology affect their decision making
processes. In this respect, this dissertation advances and incorporates notions from psychol-
ogy and behavioral game-theory in the CPS security mathematical formulations to capture
the impact of humans’ behavior and decision making on the security of CPSs. In this regard,
the introduced mathematical frameworks for CPS security capture the following aspects of
human behavior and decision making.

– Subjective perception of risks and outcomes: Humans’ perception of the likelihood
of occurrence of events (such as the risk of a successful security breach) and subjec-
tive valuation of their outcomes (i.e. subjective assessment of the consequences that
a breach may trigger) can affect their behavior and decision making processes. For
example, a CPS administrator (or an adversary) may over-weight or under-weight the
level of vulnerability of the CPS to a certain type of attacks as well as have a misled
assessment of the effects that such attacks may have. This, as a result, will have a direct
impact on any implemented security policies (or attempted attacks). Hence, modeling
this subjective assessment of attackers and defenders is essential to gain an advanced
understanding of the decision making processes of the humans involved in CPS secu-
rity settings. This modeling requires mathematical tools with the ability to quantify
this subjective perception of risks and personal valuation of outcomes. As such, this
dissertation incorporates a psychological theory of decision making under risk capable
of modeling this subjective behavior based on a large set of psychological experiments
and empirical observations known as prospect theory [148, 149].

– Subjective perception of skills and qualifications: In a complex decision making
environment faced with large uncertainties, stringent time constraints, and demanding
computational needs, such in CPS security settings, the behavior of humans is highly
affected by the way they perceive their skill levels and cognitive abilities with respect
to the skill levels and abilities of their opponents. In other words, an overconfident
defender can assume that its system is robust/secure enough and that its implemented
defense policies cannot be bypassed or penetrated. This overconfident behavior rep-
resented by this defender’s perception of the superiority of its skills and knowledge
over those of potential attackers can be detrimental to a CPS since it leads to a mis-
conception of the robustness and security level of the CPS. Hence, understanding the
way humans value their skills with respect to others is essential for anticipating the
way they behave in security settings and hence assess the robustness of the CPS to
potential attacks. As such, this dissertation advances and includes notions from cogni-
tive hierarchy theory [150] in the developed mathematical security frameworks. Such
mathematical modeling enables a further understanding of human behavior within CPS
security analyses.

– Subjective behavior under information scarcity: The humans involved in CPS se-
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curity – attackers and defenders – must implement their attack and defense strategies
while faced with a significant lack of information due to the confidentiality involved
in security settings. Hence, due to this lack of information, attackers and defenders
may not always aim at choosing optimal strategies but rather at meeting a specific se-
curity or operational goal or requirement. In this regard, this dissertation captures two
notions of decisions making: satisfaction-based decision making and greedy decision
making. In satisfaction-based decision making, agents aim at meeting a certain preset
requirement; while in greedy decision making, agents always aim at optimizing their
objective function. Under scarcity of information, satisfaction-based decision making
can more practically model and emulate the decision making processes of the humans
involved. As such, in addition to focusing on the greedy approach for decision making,
this dissertation also captures satisfaction-based decision making using the behavioral
framework of satisfaction equilibrium [151, 152] which enables anticipating human
behavior seeking to meet a predetermined target requirement.

Based on the introduced analytical frameworks, this dissertation addresses various emerging CPS
security problems pertaining to general CPSs as well as to specific CPSs application domains
such as the smart electric grid, and IoT and UAV applications. In this respect, the dissertation’s
major contributions addressing these challenges along with the corresponding results are detailed
next. The game-theoretic background needed for the devised analytical frameworks is reviewed in
Chapter 2.

1.4.3 Unified Analysis of Observability and Data Injection Attacks in the
Smart Grid

State estimation is a fundamental process needed for the effective operation of the smart grid.
As such, cyber-physical attacks such as denial-of-service and data injection attacks, which often
target the availability and the integrity of the collected state estimation measurements, can have
detrimental consequences on the operation of the system.

In Chapter 3, a novel graph-theoretic framework is proposed to generalize the analysis of a broad
set of security attacks, including observability and data injection attacks, that target the state es-
timator of a smart grid. First, the notion of observability attacks – denial–of–service attacks on
measurement units which render the system unobservable – is defined based on a proposed graph-
theoretic construct. In this respect, a novel algorithm is proposed to characterize the critical set
of measurements which must be removed along with a certain measurement to make the system
unobservable. It is then shown that, for the system to be observable, these critical sets must be part
of a maximum matching over a proposed bipartite graph. In addition, it is shown that stealthy data
injection attacks are a special case of these observability attacks. Then, various attack strategies
and defense policies, for observability and data injection attacks, are shown to be amenable to anal-
ysis using variations of the formulated maximum-matching problem over a bipartite graph. The
proposed framework is then shown to provide a unified basis for exact analysis of four key security
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problems (among others), pertaining to the characterization of: 1) The sparsest stealthy attack, 2)
The sparsest stealthy attack including a certain specific measurement, 3) A set of measurements
which must be defended to thwart all potential stealthy attacks, and 4) The set of measurements,
which when protected, can thwart any attack whose cardinality is below a certain threshold. A case
study using the IEEE 14-bus system containing a set of 17 distributed measurement units is used
to corroborate the theoretical findings. In this case analysis, stealthy attacks of lowest cardinality
are characterized and shown to have a cardinality equal to 2. In addition, it is shown, for example,
that defending only 3 out of the 17 measurements is enough to thwart any stealthy attack with
cardinality lower than 3, while defending a minimum of 13 measurements is needed to thwart all
possible stealthy attacks.

1.4.4 Data Injection Attacks on Smart Grids with Multiple Adversaries

The stable operation of the smart grid is contingent upon the availability and accuracy of a set of
collected system-wide measurements which enable the estimation of the real-time operating state
of the system. Hence, manipulating the collected data entails distorted automated control actions
which could cause a large-scale blackout. In this respect, data injection attacks have emerged as
a significant threat to the smart power grid [29, 76, 78]. By launching data injection attacks, an
adversary can manipulate the estimation of the real-time state of operation of the system yielding
incorrect operational and control decisions. The goal of such attacks ranges from merely causing
damage to the system to reaping financial benefit from manipulating electricity prices.

Despite the surge of existing literature on data injection [29, 74, 76, 78, 93], all such works assume
the presence of a single attacker and assume no cost for attack or defense. In contrast, in Chap-
ter 4, a framework for the analysis of data injection attacks with multiple adversaries and a smart
grid defender is introduced, while explicitly factoring in the limited resources that the attackers
and defender might have. To study the interactions between the defender and the attackers, two
game models are considered. In the first, a hierarchical game model is proposed in which the
defender acts as a leader that can anticipate the actions of the adversaries, that act as followers,
before deciding on which measurements to protect. The existence and properties of the solution
(i.e. equilibrium) of this game are studied. To find the equilibrium, a distributed learning algorithm
that operates under limited system information is proposed and shown to converge to the game so-
lution. In the second proposed game model, it is considered that the defender cannot anticipate
the actions of the adversaries. To this end, a hybrid satisfaction equilibrium - Nash equilibrium
game is proposed. To find the equilibrium of this hybrid game, a search-based algorithm is in-
troduced. Numerical results using the IEEE 30-bus system are used to illustrate and analyze the
strategic interactions between the attackers and defender. The results show that by defending a
very small set of measurements, the grid operator can achieve an equilibrium through which the
optimal attacks have no effect on the system. Moreover, the results also show how, at equilibrium,
multiple attackers can play a destructive role toward each other by choosing to carry out attacks
that cancel each other out, leaving the system unaffected. In addition, the obtained equilibrium
strategies under both game models are compared while characterizing the amount of loss that the
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defender endures due to its inability to anticipate the attackers’ actions.

1.4.5 Time-critical Network Interdiction Games for Cyber-Physical Secu-
rity of UAV Systems

Unmanned aerial vehicles, popularly known as drones, will play a major role in many smart city
applications such as delivery systems. This role includes delivering consumer goods as well as
time-critical items such as medical supplies to remote areas. Despite this promising outlook, the
effective deployment of such drone-based systems hinges on securing them against cyber-physical
attacks that can jeopardize their mission or use them to intrude into secured perimeters.

In Chapter 5, a novel mathematical framework is introduced for modeling and analyzing the cyber-
physical security of time-critical UAV applications, such as drone delivery. In this regard, a general
UAV security network interdiction game is formulated to model interactions between a UAV op-
erator and an interdictor, each of which can be benign or malicious. In this game, the interdictor
chooses an optimal interdiction strategy specifying the location(s) from which to jeopardize the
drone system by interdicting the potential paths of the UAVs. Meanwhile, the UAV operator re-
sponds by finding an optimal path selection policy that enables its UAVs to evade attacks and
minimize their mission travel time. New notions from cumulative prospect theory (PT) are incor-
porated into the game to capture the operator’s and interdictor’s personal valuations of a certain
achieved mission completion time relative to a defined target time and their disparate subjective
assessment of the cyber-physical risk levels facing the UAVs. The equilibrium of the game, with
and without PT, is then analytically characterized and studied. Novel algorithms are then proposed
to reach the game’s equilibria under both PT and classical game theory. Simulation results show
that the operator’s and interdictor’s bounded rationality will significantly impact their equilibrium
strategies and the expected mission completion times. In this regard, the results show that the
bounded rationality of the players is more likely to be disadvantageous to the UAV operator. In-
deed, the results show that the more distorted the perceptions and valuations of the operator are,
the higher its achieved expected mission completion time. For example, under full rationality, the
operator can achieve an expected mission completion time that is up to 30% lower than the one
achieved under subjective probability perceptions.

1.4.6 Diffusion of Threats in Cyber-Physical Systems

Due to the interconnectivity between the cyber and physical components of a CPS, threats can
propagate from the cyber layer to the physical system components. In fact, entry points in the
cyber layer can be leverage by a malicious attacker to inflict damage to the physical system. For
instance, the likelihood of a cyber node being compromised by an attacker induces a probabilistic
risk of failure on all physical components connected to this compromised cyber node. As such, un-
derstanding the propagation and diffusion of such threats – from the cyber to the physical side, and
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vice versa – is indispensable to quantifying the effects of potential security breaches and devising
accurate defense solutions which factor in such probabilistic diffusion of risks.

To this end, Chapter 6 presents a general model for CPSs that captures the diffusion of threats
from the cyber layer to the physical system using graph-theoretic techniques. In addition, a game-
theoretic approach is proposed to capture the strategic decision making of a defender and an at-
tacker within this interconnected CPS. In this game, the attacker launches cyber attacks on a num-
ber of cyber components of the CPS to maximize the potential harm to the physical system while
the system operator chooses to defend a number of cyber nodes to thwart the attacks and mini-
mize potential damage to the physical side. The proposed game explicitly accounts for the fact
that both attacker and defender can have different computational capabilities and disparate levels
of knowledge of the system which can limit their rational decision making behavior. To capture
such bounded rationality of the attacker and defender, a novel approach inspired from the behav-
ioral framework of cognitive hierarchy theory is developed. In this framework, the defender is
assumed to be faced with an attacker that can have different possible “skill levels” reflecting its
knowledge of the system and computational capabilities. To solve the game, the optimal strategies
of each attacker type are characterized and the optimal response of the defender facing these dif-
ferent types is computed. This general approach is applied to smart grid security considering wide
area protection with energy markets implications. Numerical results show that a deviation from the
rational equilibrium (i.e. the Nash equilibrium defined in Chapter 2) strategy is beneficial when the
bounded rationality of the attacker is considered. Moreover, the results show that the defender’s
incentive to deviate from the Nash equilibrium decreases when faced with an attacker that has a
high computational capability.

1.4.7 Distributed Storage for Enhanced Smart Grid Resilience

The proliferation of distributed generation and storage units is leading to the development of local,
small-scale distribution grids, known as microgrids (MGs). In this regard, in the event of a loss of
generation capacity due, for example, to cyber-physical attacks or other emergency events, there
is a potential in using the distributed stored energy in the MGs to compensate for this loss in
generation by supplying the power grid’s most critical loads. As such, each MG operator (MGO)
must devise an energy management and energy trading strategy aiming at deciding their optimal
level of power to be stored for emergency events and the level of power which could be routinely
traded under non-emergency operating conditions.

In Chapter 7, the problem of optimizing the energy trading decisions of MGOs is studied using
game theory. In the formulated game, each MGO chooses the amount of energy that must be
sold immediately or stored for future emergencies, given the prospective market prices which are
influenced by other MGOs’ decisions. The problem is modeled using a Bayesian game to account
for the incomplete information that MGOs have about each others’ levels of surplus. The proposed
game explicitly accounts for each MGO’s subjective decision when faced with the uncertainty of its
opponents’ energy surplus. In particular, the framing effect of prospect theory is used to account
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for each MGO’s valuation of its gains and losses with respect to an individual utility reference
point. The reference point is typically different for each individual and originates from its past
experiences and future aspirations. A closed-form expression for the Bayesian Nash equilibrium
is derived for the standard game formulation. Under prospect theory, a best response dynamics
algorithm is proposed to find the equilibrium. Simulation results show that, depending on their
individual reference points, MGOs can tend to store more or less energy under prospect-theoretic
valuations compared to classical game theory. In addition, the impact of the reference point is
found to be more prominent as the emergency price set by the power company increases.

1.4.8 Chapters Outline

These studied research topics and advanced contributions are extensively explained and detailed
in their corresponding chapters in the body of the dissertation. In this regard, this dissertation is
organized as follows. Chapter 2 introduces the fundamentals of game theory highlighting its valu-
able impact to CPS security analyses. Chapter 3 provides a unified graph-theoretic framework for
the analysis of observability and data injection attacks which can target the smart grid. Chapter 4
focuses on stealthy data injection attacks on the smart grid which with the potential presence of
multiple adversaries. Chapter 5 introduces a novel framework for the analysis of cyber-physical se-
curity of time-critical UAv applications. In addition, Chapter 6 introduces an analytical framework
for analyzing and modeling the diffusion of threats in CPSs as well as enabling the derivation of
optimal defense strategies. Moreover, Chapter 7 introduces a game-theoretic framework in which
distributed energy storage is leveraged to enhance the resilience of the smart grid against emer-
gency events. Finally, Chapter 8 provides a summary of these contributions and concludes the
dissertation. Moreover, it provides an outlook on a number of open problems and research direc-
tions which can be taken to further expand the current contributions.

Prior to providing an in-depth analysis of each of these research topics, we provide, in the next
chapter, an overview of game theory highlighting the advantages that it brings to CPSs security
analyses.

Here, we note that the notations used in the subsequent chapters are specific to the chapter in which
they are introduced and are not shared with other chapters.

1.5 List of Publications

As a byproduct of the above contributions, thus far, this dissertation has made the following key
contributions:
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• A. Sanjab, W. Saad, and T. Başar, “Graph-Theoretic Framework for Unified Analysis of
Observability and Data Injection Attacks in the Smart Grid”, submitted, 2018.

• Y. Hu, A. Sanjab, and W. Saad, “Dynamic Psychological Game Theory for Secure Internet
of Battlefield Things (IoBT) Systems”, submitted, 2018.

• A. Sanjab, W. Saad, I. Guvenc, A. Sarwat, and S. Biswas, “Smart Grid Security: Threats,
Challenges, and Solutions”, submitted, 2018.

• W. Saad, A. Sanjab, Y. Wang, C. Kamhoua, and K. Kwiat, “Hardware Trojan Detection
Game: A Prospect-Theoretic Approach”, in IEEE Transactions on Vehicular Technology,
vol. 66, no. 9, pp. 7697-7710, Sept. 2017.

• A. Sanjab and W. Saad, “Data Injection Attacks on Smart Grids With Multiple Adversaries:
A Game-Theoretic Perspective”, in IEEE Transactions on Smart Grid, vol. 7, no. 4, pp.
2038-2049, July 2016.

Conference Publications:
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Chapter 2

Game Theory for CPS Security

Securing CPSs against emerging threats requires not only an in-depth knowledge of the system, its
vulnerabilities, and its interdependencies, but also an understanding of the interactions, learning,
and decision making processes of the agents involved, such as attackers and defenders, which can
be automated systems or humans. In fact, attacks are typically carried out by intelligent adversaries
who learn from their experience and adapt to their environments. Indeed, adversaries engage in a
continuously evolving dynamic decision making process [153] to actively design a certain cyber-
physical attack. As such, an attack mechanism, that has a forceful impact, is one that is designed
to consider potential defense mechanisms, that it may face, while devising the best possible attack
strategy. Similarly, an effective defense strategy is one that accounts for potential attack strategies
that it can face when devising corresponding defense mechanisms, developing security software
tools, or reinforcing the security infrastructure of the CPS. Indeed, defense mechanisms must con-
sider potential types of threats that they may face, possible infiltration points, as well as potential
attack strategies in their design of defense strategies and mechanisms.

Hence, a comprehensive modeling of the interactive multi-agent decision making processes, in
a CPS security settings, is indispensable to understanding the security state of a CPS and devis-
ing effective defense mechanisms. To this end, as corroborated by its successful applications in
various engineering fields [147], such as wireless communication, power systems, and transporta-
tion systems, as well as various non-engineering fields, such as economics, political science, psy-
chology, and biology, game theory [136, 146] provides powerful analytical tools and quantitative
frameworks for the modeling and analysis of complex distributed multi-agent decision making pro-
cesses in CPS security settings, which allow anticipating possible attacks strategies and developing
fool-proof defense mechanisms and algorithms.

In this regard, in a typical CPS security setting, an operator (defender) aims at choosing a defense
strategy, while typically constrained by limited resources, to minimize the potential damage to
the system that a possible attack may cause. Mathematically, the defender must, hence, solve an
optimization problem in which the objective function captures the damage that an attack can cause
to the system while the constraints depend on the system model, operating conditions, and defense

30
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budget. However, in this case, the value function (i.e. value of the objective function) is not only
dependent on decision variables controlled by the defender itself, but also on decision variables
controlled by the attackers; since the achieved security level of a system is not only dependent on
the implemented defense policy but also on the attack carried out. Similarly, an attacker typically
aims at choosing the optimal attack strategy to maximize the inflicted damage to the system or
a certain profit made from this attack (which can be financial, political...). However, as in the
case of the defender, the level of the caused damage to the system is not only dependent on the
attack strategy but also on the defense decisions. As such, an intelligent active attacker is one
that investigates and learns potential defense mechanisms that it can face and incorporates such
knowledge in the design of its optimal attack strategies. In this regard, game theory provides the
necessary mathematical tools which enable the modeling and analysis of such multi-player CPS
security optimization problems and allow the characterization and the enhancement of the security
state of the CPS. Hence, this provides a distinct advantage over one-player optimization analyses
of CPS defense strategies since it enables accounting for and predicting the attacker’s behavior
as part of the game-theoretic CPS security analyses. Such game-theoretic models enable, hence,
an effective design of defense policies which explicitly factor in intelligent attack mechanisms.
Indeed, a game-theoretic defense (attack) “strategy” is one that designs the best defense solution
(attack policy) to each possible attack (defense mechanism) that it might face.

Therefore, game theory enables the modeling and anticipation of the decision making processes
of the agents involved in CPSs security settings. Such agents can correspond to purely automated
mechanisms or to humans. In this regard, classical game theory assumes that the players involved
are fully rational. In other words, it is assumed that the players are fully objective and always
choose the strategies that maximize their payoffs. This would mostly hold for automated mecha-
nisms. However, CPS security settings incorporate a large number of humans such as operators,
engineers, administrators, users, and hackers. In this regard, as has been observed in a number
of empirical analyses and psychological experiments, when faced with risk, uncertainty, limited
information, and extreme complexity – as is the case in CPS security settings – humans tend to
act with bounded rationality; relying on subjective perceptions and assessments rather than on ob-
jective analyses. Hence, this bounded rationality must be incorporated in the developed security
games to capture the way in which humans behave and make decisions in a CPS security setting.
This subjective behavior modeling and incorporation in CPS security analyses is one of the major
contributions of this dissertation.

As such, this chapter focuses on introducing the fundamentals of game theory, their potential use
in CPS security settings, as well as on introducing psychological mathematical models which can
be used to account for the subjective behavior of humans in CPSs security analyses. As such, this
chapter is organized as follows. Section 2.1 provides an overview of the fundamentals of game
theory. Section 2.2 introduces the concept of CPS security games motivating the use of game the-
ory in CPS security settings. Moreover, Section 2.3 and Section 2.4 introduce various types of
games which are of main interest to this dissertation and provide an overview of recent research
works which have implemented these types of games for CPS security analyses. In addition, Sec-
tion 2.5 introduces mathematical models which enable modeling the potential subjective behavior
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of humans in CPS security analyses.

2.1 Game Theory - A Brief Overview

Game theory provides a set of mathematical tools and quantitative frameworks used to analyze
interdependent decision making between entities, referred to as players, with interconnected, con-
flicting or aligned, interests [146, 154]. A game in its standard form consists of the following
elements:

1. Players: The players are the entities participating in the game who make decisions and
whose decisions affect the outcome of the game.

2. Strategy space: A strategy space of a player is the set of alternatives that this player has and
from which it must choose a certain strategy. Here, a strategy is a decision rule that each
player seeks to develop.

3. Utility functions: The utility function of a player is the objective function of this player
which depends on its own chosen strategy and on the strategies chosen by the other players.

Hence, in a game, each player chooses a strategy, from a number of alternatives, aiming at maxi-
mizing a benefit or minimizing a loss that is generally captured by a utility function which not only
depends on the player’s own strategy but also on the strategies chosen by the opponents.

Various game types have been introduced and studied since the first contributions in the field of
game theory and strategic decision making. Some of the game types which are of particular interest
to the work in this dissertation are summarized next [146, 154].

• Noncooperative vs. cooperative: In an noncooperative game, players are assumed not to
have the ability to communicate and potentially cooperate. Noncooperative games typically
model competitive interactions in which the interests of the set of players are fully or partially
conflicting. In noncooperative games, players are assumed not to have the ability to coordi-
nate and communicate. Hence, if a cooperation is beneficial for the players, this cooperation
must be self-enforcing without the need or the existence of any coordination between these
players. On the other hand, in a cooperative game, players can communicate, cooperate, and
form coalitions. As such, in a cooperative game framework, players have the ability to form
agreements which can affect their strategic choices as well as their resulting achieved utility.

• Static vs. dynamic: In static games, the players typically choose their actions simultane-
ously, or equivalently, without observing each others’ current or previous actions. In this
respect, in static games, the players typically play once and independently of each other;
without being influenced by actions and game outcomes which occurred at previous time
periods. Hence, the notion of time, or game history, is absent in static games. On the other
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hand, dynamic games are games in which players make decisions in a sequence over time
and in which the decision taken by a player, at a time period, depends on its acquired in-
formation of the game in its current and previous time stages (which can include a player’s
own previous actions, opponents’ previous decisions, and previous states of the game itself).
Hence, in dynamic games, each player must choose a decision rule (i.e. a strategy) which
specifies the action to be taken depending on quantities that are not fully controlled by the
player itself. This leads to a clear distinction between a strategy (which is a decision rule)
and an action.

• Zero-sum vs. nonzero-sum: Zero-sum games typically consider two players whose objec-
tives are completely conflicting. A profit for a player causes an equal loss to its opponent.
Thus, under zero-sum games, the summation of the utility functions of the players is iden-
tically zero. If the summation of the utility functions is equal to a constant value, the game
is known as a constant-sum game. A constant-sum game can typically be transformed to
a zero-sum game. In zero-sum games, one player is typically a maximizer – whose goal
is to maximize its gain – and the other player is a minimizer – whose goal is to minimize
its loss. Games which do not have the zero-sum (or constant-sum) property are known as
nonzero-sum games.

• Complete vs. incomplete information: Complete information implies that the players have
a complete knowledge of the structure of the game (such as the game rules, the set of players,
and the strategy spaces and utility functions of the players). Otherwise, the game is of
incomplete information.

• Deterministic vs. stochastic games: A game is deterministic if its outcome is solely dic-
tated by the strategies chosen by the players. A stochastic game is one in which the outcome
depends on the player’s strategies as well as the “state” of the game, which is probabilisti-
cally influenced by the players’ decisions. In stochastic games, based on the players’ actions,
the game transitions probabilistically from one state to the other. As such, a player’s strategy
typically seeks to specify an action to be taken at each possible state of the game.

Classical game theory assumes that the players involved are fully rational. Rationality of the play-
ers typically reflects that the players are purposeful, which indicates that each of them always seeks
to optimize a given utility function, without making mistakes, based on objective observations of
the game environment and structure. When players deviate from this full rationality assumptions,
they are known to act with bounded rationality.

These various types of games can be used in CPS security analyses based on the security settings
and the entities involved. In the next section, the use of game theory for CPS security analyses is
explored.
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Figure 2.1: Illustrative representation of defense vs. attack in CPS security settings.

2.2 Security Games: Securing Cyber-Physical Systems

A number of research works have used game theory to model the decision making processes of
defenders and adversaries in conventional network security applications as surveyed in [155] and
the references therein. However, the coupling between the physical and cyber layers in CPSs, as
well as the more pronounced presence of the human layer, pose new challenges that game-theoretic
models must consider. In this section the concept of CPS security games is introduced.

In this respect, CPS security games model the interdependent decision making processes and
strategic interaction between attackers, aiming at attacking a given CPS, and defenders aiming
at defending that system. An illustration of such interaction is provided in Fig. 2.1.

In a CPS security game, the players constitute attackers and defenders while the strategy spaces
constitute the potential attack or defense strategies that can be, respectively, carried out or imple-
mented. Such possible attack and defense strategies depend on the underlying CPS. The utility
function of the attacker typically captures a level of damage than can be caused to the system or a
certain financial, strategic, or political benefit that the attacker can reap from such attacks. As for
the defender, the utility function typically reflects the level of damage that an attack can inflict on
the system or deviations from normal operating state of the system, due to an attack, that must be
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minimized (in this case the utility function is a cost function).

In such CPS security games, the attack and defense strategies are subject to a number of constraints.
Two of the main constraints can be summarized as follows:

• Practicality constraints: A CPS defender’s goal must not exclusively be to protect the sys-
tem from potential threats. It must also meet the CPS’s performance requirements. Indeed,
a maximum cyber-physical security can be potentially achieved using a complete discon-
nection of all forms of wireless communication and Internet connectivity from the physical
system. However, even though such a strategy can enhance the security of the CPS, it de-
prives it from the operational and economic advantages that such communication systems
provides. Equivalently, designing a robust control system against an extremely wide range
of possible disturbances can make the system unable to meet all the performance require-
ments of its intended application [92]. Therefore, security solutions must ensure the security
of CPSs while meeting their performance requirements and offering a high quality of opera-
tional service.

• Feasibility restrictions: The attackers and defenders have limited resources which they can
use to implement their attack or defense strategies. These resources can comprise monetary
resources, skills, computational capacity, and time, among others. Thus, the attackers’ and
defenders’ strategies must abide by their corresponding recourse limits.

The nature of the strategic interactions between the various attackers and defenders depends on
the application domain in which they are interacting, the amount of information that each has, the
objective of each, and their respective constraints.

Next, various types of games of complete and incomplete information, which are fundamental for
CPS security games and which are of particular interest to the current work, are introduced along
with a survey of some of the research works in literature which have focused on these types of
games.

2.3 Complete Information CPS Security Games

In this section, CPS security research contributions are considered in which deterministic games
of complete information are considered. These games can be static or dynamic. However, next,
the static type of such games is explored since it provides the needed insights.
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2.3.1 Static Noncooperative Games

Zero-sum Games

Given that an attacker and defender have, typically, opposing objectives, a number of research
works [93, 103, 104] have modeled their strategic behavior as a zero-sum game. Letting sa denote
a strategy chosen by the attacker from a strategy set SA and sd denote a strategy chosen by the
defender from a strategy set SD, the utility functions of the attacker, UA(sa, sd), and the utility
function of the defender, UD(sa, sd), are such that:

UD(sa, sd) = −UA(sa, sd). (2.1)

Since, when optimizing its payoff, an attacker causes a worst payoff for the defender, and vice
versa, each of the two may seek to choose the best worst-case payoff that the opponent may cause.
This is known as a minimax strategy, security strategy, or prudent strategy. In this respect, an
attacker aiming at maximizing a damage, UA(sa, sd), to the system and a defender minimizing that
damage have the following respective objectives:

s∗a = max
sa

min
sd

UA(sa, sd), s∗d = min
sd

max
sa

UA(sa, sd). (2.2)

Zero-sum games have been used to model CPS security problems in a variety of applications
such as in [91, 93–104, 104]. For instance, the work in [93] considers data injection attacks on a
power system state estimation using a zero-sum game in which the attacker aims at increasing a
power flow estimate over a transmission line while the defender (i.e. smart grid operator) aims
at decreasing that estimate. In addition, the authors in [104] consider jamming attacks on CPS
state estimators in which a sensor and the attacker play a zero-sum game where the attacker aims
a maximizing a cost function related to estimation quality while the defender aims at minimizing
this cost function. The work in [103] introduces a defense framework against Stuxnet-like malware
in which a zero-sum game is used to model the interaction between the attacker and the network.
In this zero-sum game, the adversary aims at maximizing the impact of its data injection on the
system performance while the network aims at decreasing this effect.

Nonzero-sum Games

In addition to zero-sum games, general (nonzero-sum) static noncooperative games modeling the
strategic interaction between attackers and defenders have also been used in literature such as
in [106, 108, 156, 157], among others. In such games, even though their objectives are conflicting,
the attackers’ and defenders’ utilities are not limited to the case in which they are perfectly oppos-
ing. For example, a defender’s objective can correspond to minimizing the potential damage to the
system that the attacker may cause while the attacker’s objective can correspond to maximizing a
financial profit that it can reap from this attack. In this case, the utility function of the defender
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reflects the damage to the system while the utility function of the attacker reflects its financial ben-
efit. Hence, even though these objectives are conflicting, the utilities of the attacker and defender
do not necessarily sum to zero.

Various research works have modeled CPS security problems using static noncooperative games.
In [156], a static noncooperative game between an attacker and a defender over a CPS is intro-
duced in which the attacker aims at compromising a number of system resources, in the cyber
and physical systems, aiming at causing a system collapse while the defender aims a keeping the
number of uncompromised resources over a given threshold to insure the operation and survival of
the system. In addition, the work in [106] studies advanced persistent threats while simultaneously
considering stealthy attacks and insider threats. In this regard, a noncooperative game is proposed
to model the strategic interaction of three players – an attacker, a defender, and an insider which
can choose to help either the attacker or defender. In [157], security risk management of a smart
grid with interconnected communication and power systems is considered. In this regard, a non-
cooperative game between an attacker and a defender is formulated in which the defender aims
at protecting a set of communication equipment while the attacker aims at compromising a set of
communication devices to inflict the highest possible damage to the grid. The work in [157] also
considers a Stackelberg game. This type of games is introduced in Section 2.3.2.

Equilibrium Analysis

In such games, each of the attacker and defender aims at choosing its best response strategy given
the strategies chosen by the opponent. The best response strategy, sa∗ ∈ SA, of an attacker to
strategy sd ∈ SD by the defender is one that satisfies the following relation; assuming the attacker
maximizes a utility function given by UA(sa, sd):

UA(sa
∗
, sd) > UA(sa, sd) ∀sa ∈ SA. (2.3)

On the other hand, the best response strategy, sd∗ ∈ SD, of a defender to a strategy sa ∈ SA by the
attacker satisfies the following relation; assuming the defender minimizes a cost function given by
UD(sa, sd):

UD(sa, sd
∗
) 6 UD(sa, sd) ∀sd ∈ SD. (2.4)

An equilibrium of the game is achieved when the attacker’s and defender’s best response strategies
intersect. In that situation, given that each is playing a best response, none of the attacker or
defender have any incentive to deviate from this best-possible strategy. Such an equilibrium state
is known as a Nash equilibrium and is defined as follows:

Definition 1. An attack strategy, sa
∗
, and a defense strategy, sd

∗
, constitute a Nash equilibrium if:

UA(sa
∗
, sd

∗
) > UA(sa, sd

∗
) ∀sa ∈ SA, (2.5)

UD(sa
∗
, sd

∗
) 6 UD(sa

∗
, sd) ∀sd ∈ SD, (2.6)

while considering the attacker to be a maximizer and the defender to be a minimizer.
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Given that under such a Nash equilibrium strategy profile each of the attacker and defender choose
an optimal strategy with respect to the strategy of the opponent, any unilateral deviation from this
Nash equilibrium, by any of the attacker and defender, will not lead to an improve in its achieved
utility. As such, none of the attacker nor defender has any incentive to unilaterally deviate; hence,
the game is at equilibrium.

Attackers and defenders may choose to pick their strategies based on a realization of a probability
distribution over their decision (i.e. action) spaces. In this case, rather than choosing a certain
action deterministically, a player’s strategy would correspond to choosing a probability distribution
over its set of possible actions. Such a probability distribution specifies the likelihood of choosing
each of the actions in its action space. Such probabilistic strategies are known as mixed strategies;
while deterministic strategies are known as pure strategies. Let σa ∈ ΓA and σd ∈ ΓD denote the
probability distributions, i.e. mixed strategies, over the action spaces SA and SD of, respectively,
the attacker and defender – where ΓA and ΓD are the set of such possible distributions – the concept
of best response can be extended to mixed strategies as follows. Let EA

u denote the expected utility
of the attacker (to be maximized), the attacker’s best response mixed strategy, σa∗ , to a defender’s
mixed strategy, σd, satisfies:

EA
u (σa

∗
,σd) > EA

u (σa,σd) ∀σa ∈ ΓA. (2.7)

Similarly, let ED
u denote the expected cost of the defender (to be minimized). Then, the defender’s

best response mixed strategy, σd∗ , to an attacker’s mixed strategy, σa, satisfies:

ED
u (σa,σd

∗
) 6 ED

u (σa,σd) ∀σd ∈ ΓD. (2.8)

The notion of Nash equilibrium can be also extended to incorporate mixed strategies. In this regard,
the game is at equilibrium when each of the players, attacker and defender, chooses a best response
mixed strategy with respect to the best response strategy of the opponent. In that case, the game
is at equilibrium since none of the attacker nor defender has any incentive to deviate from these
mixed strategies. Such an equilibrium under mixed strategies is known as a mixed strategy Nash
equilibrium and is formally defined as follows:

Definition 2. An attack mixed strategy, σa
∗
, and a defense mixed strategy, σd

∗
, constitute a mixed

strategy Nash equilibrium if:

EA
u (σa

∗
,σd

∗
) > EA

u (σa,σd
∗
) ∀σa ∈ ΓA, (2.9)

ED
u (σa

∗
,σd

∗
) 6 ED

u (σa
∗
,σd) ∀σd ∈ ΓD, (2.10)

while considering the attacker to be a maximizer and the defender to be a minimizer.

2.3.2 Stackelberg Games

A Stackelberg game is a type of games involving hierarchy between the players, i.e. leader(s) and
follower(s). In this regard, a leader chooses its strategy and the follower(s) respond to the leader’s



Anibal Sanjab Chapter 2. Game Theory for CPS Security 39

strategy [146]. Accordingly, the leader should have the capacity to anticipate the potential response
of the followers before choosing its strategy.

In a CPS security context, an attacker can be modeled as a leader targeting a component of the CPS
while the defender can observe that an attack has targeted the system and respond accordingly.
Thus, in this application, the defender can be modeled as a follower. It is important here to note
that the attacker should be able to anticipate the way in which the defender will respond to this
attack and takes this anticipation into consideration when choosing its attack strategy. In other
applications, a defender can be modeled as a leader while the attacker can be a follower. In this
regard, the defender can choose to enhance the robustness of its system by implementing new
security measures. An attacker can observe the occurrence of such security reinforcements and
respond accordingly.

We consider a game in which the defender is a leader and the attacker acts as a follower. In addition,
consider that the defender aims at minimizing a cost function, Ud(sa, sd), and the attacker aims at
maximizing a cost function Ua(sa, sd). In this regard, the optimal reaction set, Ra(sd) ⊂ SA, of
the attacker to a chosen strategy sd by the defender is the set of optimal attack strategies that the
attacker can implement when the defender chooses a defense strategy sd. This optimal reaction set
is, hence, defined as follows:

Ra(sd) = {ζa ∈ SA : Ua(ζa, sd) ≥ Ua(sa, sd), ∀sa ∈ SA}. (2.11)

Based on the definition of this optimal reaction set, the Stackelberg equilibrium of the game is
defined as follows:

Definition 3. The strategy pair (sa
∗
, sd

∗
) in which the defender is a leader and the attacker is a

follower is a Stackelberg equilibrium of the game if:

UD(Ra(sd
∗
), sd

∗
) 6 UD(Ra(sd), sd) ∀sd ∈ SD. (2.12)

and

sa
∗ ∈ Ra(sd

∗
), (2.13)

while considering the attacker to be a maximizer and the defender to be a minimizer.

One should note that some games involve multiple leaders and/or multiple followers. In this regard,
the group of followers can play, for example, a static noncooperative game in response to the static
noncooperative game played by the group of leaders. This case is studied, for instance, in [158].

Multiple research works have used Stackelberg games to study CPS security problems such as
in [110, 113, 157], among others. For instance, the authors in [157] consider a model in which the
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attacker reacts to security measures implemented by the defender and, hence, model the attacker
as a follower and the defender as a leader in a Stackelberg model. Moreover, the work in [110]
considers a CPS in which state measurements and control signals are subject to coordinated jam-
ming by adversaries. A two-level Stackelberg game is considered in which the control jammer is a
follower of the system operator which in turn is a follower of the measurement jammer. In [113],
the authors study the security of networked 3D printers using a Stackelberg game model. This
work considers that the control design of the printing process is subject to physical disturbances
while the cyber layer – connecting users to 3D printers – are subject to cyber attacks. In this re-
gard, the integrity of the commands sent to the 3D printers is based on the outcome of the attacker
vs. defender game at the cyber layer. As such, in the Stackelberg game formulation, given that
the physical system receives commands from the cyber layer, the physical system is modeled as a
follower to the attacker vs. defender cyber game.

This section has explored a number of complete information CPS security games. Next section
will focus on games of incomplete information in which each of the attacker and defender might
have a limited knowledge about its opponent.

2.4 Incomplete Information CPS Security Games

In security settings, each player may not have complete information about the properties of other
players. The strategic interactions between the players in such settings can be captured using
Bayesian games. In Bayesian games, each player i is assumed to have a “type”, ti, from a number
of possible types Ti, and the realizations of the types of each player follow a joint probability
distribution which is usually known by all the players. When the game is played, each player
i knows its own type, ti. Given its type, each player chooses a strategy that optimizes its payoff
given its belief over the distributions of the types of all other players [136,154]. A player’s strategy,
si, is one that associates an action with every one of its possible types, ti. An optimal strategy si∗

is such that each si∗(ti) maximizes the player’s expected payoff given the beliefs over the types
of all other players. For example, consider one defender and one attacker (this example can be
readily generalized to multiple defenders and multiple adversaries) and consider that the defender’s
type is td, the set of possible types of the attacker is denoted by T A, and the joint probability
density function of the defender’s and attacker’s types is given by Pr(td, ta). The defender’s optimal
defense strategy, sd∗(td), is one that solves (assuming the defender aims at minimizing an expected
cost):

min
sd∈Sd

∑
ta∈T A

Pr(ta|td)UD((sa
∗
(ta), s

d), (ta, td)), (2.14)

where Pr(ta|td) denotes the probability of the attacker being of type ta given that the defender is of
type td and follows from Bayes’ rule:

Pr(ta|td) =
Pr(td, ta)∑

t′a∈Ta
Pr(td, t′a)

. (2.15)
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The game is at equilibrium when all the players play their optimal strategies (specifying each
player’s optimal action for each one of its possible types) with respect to each other follow-
ing (2.14) [154]. This equilibrium is known as a Bayesian Nash equilibrium.

Different versions of Bayesian-based games can also be used in the case of dynamic games with
imperfect information, i.e. dynamic games in which a player does not have a perfect observation
of the previous sequence of play and game states. In such games, the beliefs are built over the
potential histories of the games (i.e. over the sequence of actions which could have been chosen
by the players in past time periods). Such beliefs typically follow from Bayes’ rule.

One of the most famous applications of Bayesian games to CPS security problems is the popular
Bayesian Stackelberg security model implemented at the Los Angeles international airport [159].
In this model, the defender acts as leader and aims to choose a scheduling strategy for security
checkpoints and canine patrols while facing many types of adversaries which act as followers.
An additional application of Bayesian games to CPS security is presented in [160] in which the
interaction between a service provider and clients, who can be of the benign or attacker types, is
modeled using a Bayesian game model. In a nutshell, the advantages of using Bayesian games
consist in their ability to capture the incomplete information that the attacker or defender can have
about the properties of its opponents.

The assumption of rationality of the players, attackers and defenders, is essential to all the previ-
ously presented game-theoretic models. This underlying assumption can be accurate in the case
where the agents involved in the CPS games are automated systems. However, many humans are,
in fact, involved in CPS security settings such as operators, hackers, users and engineerings. The
strategic behavior of these humans is highly affected by their environment, their perceptions, and
the uncertainty and risk they face in CPS security settings. Such factors may lead humans to de-
viate from the notion of full rationality. As such, the underlying assumption of full rationality
constitute the main limitation of the the CPS security game models surveyed so far in this chap-
ter. Indeed, such bounded rationality should be carefully studied and incorporated in the security
analyses model to improve the accuracy and the applicability of the obtained solutions.

Therefore, next section introduces various quantitative mathematical frameworks which allow cap-
turing human decision making under uncertainty (using prospect theory and cumulative prospect
theory), human subjective perception of skills levels (using cognitive hierarchy theory), and human
decision making under scarcity of information (using the concept of satisfaction equilibrium), and
proposes and motivates the need for the incorporation of such behavioral frameworks in security
analyses. Indeed, one of the contributions of this work consists in bringing notions from psy-
chology and behavioral decision making into the analyses of CPS security to allow the derivation
of effective security solutions which explicitly account for the prominent human layer in cyber-
physical systems.
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2.5 Game-Theoretic Techniques with Bounded Rationality

When faced with risk, incomplete information, extreme complexity, and tight constraints (such
as time and computational capacity) humans tend to act with bounded rationality [148, 149, 161].
Hence, the behavioral aspect of humans involved in CPS security settings must be incorporated in
the decision making models within CPSs security analyses. This section introduces a number of
fundamental mathematical principles, which are based on psychological experiments and empirical
observations, and which can be used to model the bounded rationality and subjectivity of players
in CPSs security.

2.5.1 Prospect Theory

Classical Prospect Theory

In their seminal work [148], Kahneman and Tversky noted that – when faced with risk and uncer-
tainty – humans’ decision making processes drift from full rationality assumed by the convention-
ally used principles of expected utility theory (EUT) (used for example in the derivation of mixed
best response strategies as in (2.3) and (2.4) and hence deviate from the full rationality assumed in
classical game-theoretic models. To this end, they proposed an alternative theory of choice which
they labeled prospect theory (PT) and which can predict, more closely, the decisions that humans
would make when faced with different probabilistic alternatives (i.e. gambles). Prospect theory is
a Nobel prize-winning theory (Nobel prize in economic sciences in 2002) which has gained wide
acknowledgment and is considered to have drastically advanced the field of behavioral economics.

A prospect is a gamble g1 , (x1, p1; ...;xn, pn) with n possible outcomes, where each outcome
xi can occur with a probability pi. Decision making analysis aims at predicting the choice that
humans would make when faced with different prospects. EUT is a conventionally used theory to
model such decision making under uncertainty whose tenets can be summarized as follows:

• Expectation: the main principle behind EUT is assuming that a prospect is valued based on
its expected value; and hence, a decision maker would choose the prospect which yields the
highest expected outcome. The expected value of a prospect g1 is denoted by U(g1) and is
defined as follows:

Ug1 , U(x1, p1; ...;xn, pn) =
n∑
i=1

piu(xi), (2.16)

where u(xi) is the utility that a decision maker experiences from receiving an outcome xi.
This expectation principle entails an axiom known as the substitution axiom which states
that; if a gamble g1 is preferred to a gamble g2, then weighing all the outcomes of each
gamble with the same probability does not change this order of preference. In other words,
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let � denote a preference relation where g1 � g2 implies that g1 is preferred to g2, the
substitution axiom is stated as follows:

g1 � g2 ⇒ (g1, p) � (g2, p). (2.17)

• Asset integration: The second principle of EUT states that a decision maker values a prospect
as acceptable if the expected utility resulting from this prospect exceeds the original value of
the decision maker’s assets w, i.e. original state of wealth. This condition is mathematically
expressed as follows:

U(w + x1, p1; ...;w + xn, pn) > U(w). (2.18)

• Risk aversion: The third principle of EUT states that a decision maker has a diminishing
marginal utility which translates into risk aversion since the value of an additional unit of
gain decreases with an increase in wealth. This is mathematically modeled using a concave
function of wealth, u(.), i.e.:

u′′(w) < 0, (2.19)

where u′′(.) denotes the second derivative of u(.) with respect to the wealth level w.

However, various experiments and empirical observations, as described in [148, 149], have shown
that decision making under uncertainty does not typically abide by the tenets of EUT. To this end,
to more accurately capture decision making under risk, prospect theory was proposed in [148] as
an alternative theory of choice which describes and predicts the way humans make decisions under
uncertainty.

Prospect theory models and predicts more closely the way humans subjectively value outcomes and
the probability of their occurrence. In this regard, PT experiments have shown that humans typi-
cally value outcomes subjectively as gains and losses with respect to a certain subjective reference
point rather than as an absolute quantity. This effect is known as the framing effect. In addition,
PT has observed that humans do not typically perceive probabilities objectively but weight the
probability of occurrence of outcomes subjectively. This effect is known as the weighting effect.
Here, the word “typically” is used to reflect that, statistically, the vast majority of humans follows
these decision making traits.

In this regard, the observations leading to the framing effect are summarized next.

• Outcomes as gains and losses: PT has shown that humans do not perceive outcomes as
absolute quantities. In fact, they typically perceive outcomes as gains and losses with respect
to a certain reference point which, for example, can represent their original state of wealth.

• Risk aversion in gains – risk seeking in losses: Based on such observation of outcomes as
gains and losses, PT experiments have shown that humans are risk averse when it comes to
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gains and risk seeking when it comes to losses. In other words, experiments have shown
that humans would typically prefer a sure gain over a larger probable one (up to a certain
extent) even if the expected value of the probable gain exceeds that of the sure gain. On the
other hand, experiments have shown that when it comes to losses, humans typically prefer
probable outcomes over sure ones (up to a certain extent) even if the expected value of the
sure loss exceeds that of the probable one.

• Losses loom larger than gains: PT experiments have shown that humans typically exaggerate
losses. Losses are typically perceived to be much larger then they really are. In other words,
one can think about the following experiment: if one is presented with a game in which a
coin is tossed and the participant would loose $1 if “heads” is the outcome of the toss and
wins $x if the outcome of the toss is “tails”. How large should x be for such a game to be
attractive to a player. PT experiments have actually shown that for this game to be attractive
x falls in the range of $2− $3.

As such, to model this valuation of outcomes, a value function, v(.), must replace the wealth
function u(.) in (2.16). This value function has been derived to capture the various empirical
observations and is defined as follows:

v(X) =

{
Xβ+

, x ≥ R

−λ(−X)β
−
, x < R

for β+, β− ∈ (0, 1) and λ > 1, (2.20)

where X is defined with respect to a reference point R. In other words, if x is an outcome of a
prospect, then X = x−R.

This value function is plotted in Fig. 2.2. It is concave in gains and convex in losses to reflect
risk aversion in gains and risk seeking in losses. The parameters β+ and β− shape the concav-
ity/convexity of this function. The value of these parameters are typically derived based on the
application. Moreover, the value function in (2.20) incorporates the loss factor λ which represents
the exaggeration of losses with respect to gains.

The weighting effect, on the other hand, models the way humans typically perceive the probability
of occurrence of events subjectively. In this respect, PT experiments have shown that humans
typically overweight low probabilities and underweight high probabilities. At its extreme (i.e.
when the perception of probabilities is most distorted) this probability weighting would have the
following effect. Rather than observing a continuum of probabilities, humans tend to perceive
three states of likelihood: 1) outcomes that would never occur (probability of occurrence is 0), 2)
outcomes that will certainly occur (probability of occurrence is 1), and 3) all other outcomes are
almost equally likely to occur. This weighting effect is captured by a weighting function, ω(.),
which takes an objective probability as input and returns a subjective decision weight as output.
Two weighting functions are most commonly used: 1) the weighting function proposed in [149],
the mathematical expression of which is given in (2.21) and associated plot is given in Fig. 2.3, and
2) the weighting function proposed in [162], known as the Prelec function, whose mathematical
expression is given in (2.22), and which is plotted in Fig. 2.4.
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Figure 2.2: Prospect-theoretic value function

ω+(pi) =
pi
γ

(piγ + (1− pi)γ)1/γ
. (2.21)

ω(pi) = e−(−ln(pi) )
γ

. (2.22)

The rationality parameter, γ ∈ [0, 1], in (2.21) and (2.22) reflects the degree of subjectivity of a
player. A lower γ implies that a decision maker has a more subjective (distorted) perception of
probabilities. In this respect, for γ = 1, ω(pi) reduces to the objective probability, pi.

Here, we note that a number of alternative weighting functions have also been derived in literature
and are discussed thoroughly in [163].

Based on these framing and weighting effects, in contrast to the predictions of EUT in (2.16),
a decision maker values a gamble (x1, p1; ...;xn, pn) based on its personal subjective valuation
captured by the following valuation function, V (.):

V (x1, p1; ...;xn, pn) =
n∑
i=1

ω(pi)v(xi), (2.23)

where v(.) follows the value function in (2.20) and ω(.) follows the weighting function in, for
instance, (2.21) or (2.22).
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Figure 2.3: Weighting function.

Cumulative Prospect Theory

Cumulative prospect theory (CPT) was introduced in [149] as an extension to the fundamental
concepts of prospect theory introduced in [148]. In this regard, CPT can account for prospects
that have large number of outputs. CPT admits the same framing effect, captured by the value
function shown in (2.20), but admits a different method for probability weighting. In this regard,
rather than weighting individual probabilities, CPT weights cumulative probabilities of occurrence
of outcomes. The underlying mathematical framework of CPT is presented next.

Considering prospect g(xi, pi), which lists every possible outcome xi and its associated probability
of occurrence pi. In cumulative prospect theory, the value of every outcome xi, denoted by v(xi), is
defined with respect to a reference point R, as shown in (2.20). As such, based on the signs of each
v(xi), prospect g can be split into two prospects: a negative prospect, g−, and a positive prospect,
g+. In this respect, g− contains the outcomes valued as losses, and g+ contains the outcomes
valued as gains. In addition, let each of the two prospects be ranked in ascending order based on
the values, v(xi). As such, consider that g− is composed of m terms, which we index from −m
to −1, and g+ is composed of n terms, which we index from 1 to n. Under cumulative prospect
theory – different to the valuation under classical prospect theory in (2.23) – the valuations V (g+)
and V (g−) of the positive and negative prospects are given by:
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Figure 2.4: Prelec weighting function.

V (g+) =
n∑
i=1

π+
i v(xi), (2.24)

V (g−) =
−1∑

i=−m

π−i v(xi). (2.25)

As such, the valuation, V (g), of prospect g is given by:

V (g) = V (g+) + V (g−). (2.26)

Here, π+
i and π−i capture the decision weights. However, in CPT, these weights are defined based

on the cumulative probability of occurrence of their corresponding outcomes, xi. In this regard,
π+
i and π−i are defined as follows:
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π+
i = ω+(

n∑
j=i

pi)− ω+(
n∑

j=i+1

pi), (2.27)

π−i = ω−(
i∑

j=−m

pi)− ω−(
i−1∑
j=−m

pi). (2.28)

Here, ω+(.) and ω−(.) are the weighting functions, each of which follows the weighting func-
tion expression in (2.21), but may contain different parameter values for the positive and negative
prospects. In this regard, ω+(.) and ω−(.) are defined as follows:

ω+(p) =
pγ

+

(pγ+ + (1− p)γ+)1/γ+
, (2.29)

ω−(p) =
pγ
−

(pγ− + (1− p)γ−)1/γ−
. (2.30)

As shown in (2.27) and (2.28) the decision weights under CPT are defined based on cumulative
rather than individual probabilities. Indeed, in the positive prospect,

∑n
j=i pi is the probability that

a certain outcome is at least as good as the obtained outcome, xi; while
∑n

j=i+1 pi is the probability
that an outcome is strictly better than xi. Moreover, in the negative prospect,

∑i
j=−m pi is the

probability that an outcome is at least as bad as the obtained outcome, xi; while
∑i−1

j=−m pi is the
probability that the outcome is strictly worse than xi.

Prospect Theory for CPS Security Games

In CPS security games, the preferences and behavior of the players must be accurately modeled
and incorporated in the game formulation. In fact, CPS security settings incorporate various un-
certainties such as: i) uncertainty about the system due to its complexity, ii) uncertainty about
the opponent types and possible strategies, and iii) uncertainty pertaining to the probability of
occurrence of natural events, natural failures, or likelihood of attacks, among others. As such,
attackers and defenders make strategic decisions under uncertainty and high risk which can lead to
their deviation from the fully rational behavior. To this end, prospect theory provides established
quantitative tools to model such subjective behavior. As such, we propose the incorporation of
the principles of prospect theory in our formulated CPS security games to account for the way in
which human agents in CPS security settings make decisions under risk.

In fact, due to the uncertainty that the attackers and defenders face while interacting in a CPS
security setting, each of them will have its own perception of what the other can do. Indeed,
as shown in [153] through working with pen testers, adversaries carefully study their target and
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anticipate defensive actions that could be taken. The weighting framework of prospect theory can,
hence, include this subjective perception of the players in a game-theoretic model for CPS security.
Framing, on the other hand, reflects a subjective perception of an attacker’s or defender’s own
utility. In fact, different attackers can have different reference points to assess the damage that they
can cause to the system. For example, an individual attacker manipulating some meter readings in
its own basement has a different reference point than a state coordinated attack on a national power
grid. The same logic also applies for defenders. This framing process can also capture whether an
attacker or defender is risk seeking or risk averse and incorporates their attitudes towards taking
risks in the security analyses.

In this respect, prospect theory provides the necessary mathematical tools to model a wider variety
of strategic behaviors that the players involved in CPSs security settings may admit. In fact, the
incorporation of prospect theory in games provides a more general analysis as compared to restrict-
ing the players, as is the case in classical game theory, to the fully rational behavior (or equivalently
to follow the tenets of expected utility theory). Mathematically, the subjective nonlinear valuation
and weighting, proposed by PT, significantly influences the equilibria of the associated games and
can affect their existence, properties, and efficiency which entails various technical challenges in
terms of the derivation and analysis of these equilibria.

A number of recent research works have used classical prospect-theoretic tools for applications in
smart grids [164, 165], wireless communication [166, 167], and security [168–170]. For instance,
the work in [168] and [169] proposed a prospect-theoretic model for the analysis of advanced
persistent threats targeting could storage systems. Prospect theory was used to model the subjec-
tive perception that the attacker and defender have on one another. The work in [170] proposes
a prospect-theoretic model to study jamming in cognitive radio networks. Hence, even though
prospect theory has been applied in few instances for cyber security analyses, the use of this the-
ory, and specially cumulative prospect theory, as a fundamental and holistic tool for CPS security
analyses is still largely unexplored.

Prospect theory, hence, enables the modeling and prediction of decision makers’ subjective percep-
tion of outcomes and of their likelihood. However, PT does not capture the disparate cognitive and
computational skills that each player, attacker or defender, might have and the players’ subjective
beliefs about their skills as compared to their opponents. This cognitive hierarchy and subjective
perception of skills is captured using cognitive hierarchy theory which is introduced and detailed
next.

2.5.2 Cognitive Hierarchy Theory

In conflicting and competitive situations, an entity incorporates predictions of what competitors
would do, how would they think and act, in their decision making frameworks. This same decision
process also applies in CPS security situations in which defenders and attackers aim at investigating
the nature, behavior, and skills of their opponents before implementing their attack or defense
strategies. In fact, as stated in [153], adversaries carry out a reconnaissance phase in which they
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deeply learn about the system they are targeting, including its operator, before launching their
attack. Moreover, in CPS security applications, attackers and defenders might have different skill
levels. These skills can reflect actual technical attack/defense skills or they can reflect a level
of knowledge of the system being attacked. In fact, many recent reports claim that worms can
infiltrate in systems to learn about that system in preparation to issue future attacks [33, 47]. As
such, understanding, capturing, and modeling such skills levels in CPS security analyses generates
fundamental insights towards understanding attackers’ behavior which enables deriving accurate
and efficient defense strategies.

To this end, cognitive hierarchy theory (CHT) [150] is a behavioral game-theoretic framework,
which enables differentiating players based on their skill levels and reasoning abilities. In this
framework, each player considers its own strategy to be the most sophisticated and presumes a
ranking of the sophistication level of other players’ strategies [150]. In fact, under cognitive hi-
erarchy theory, a player assumes k potential levels of thinking (i.e. levels of sophistication) and
regards herself to be at the highest step, i.e. step k. Then, this player anticipates the fraction of
players corresponding to each of the lower steps. Hence, each player assumes having the most
sophisticated strategy (level k) and presumes a probability distribution over the skill levels of its
opponents; these skill levels range from 0 to k − 1. This player will then play a best response
strategy against the set of opponents based on the associated perceived skills levels. In this regard,
each player chooses its action based on its belief about the skill levels of its opponents. However,
such beliefs can be distorted which can be due, for example, to overconfidence based on which an
attacker (defender) assumes that its attack (defense) strategy is the most sophisticated strategy and
considers that the opponent can never guess this strategy and can never properly respond to it.

Cognitive hierarchy can be highly beneficial in modeling the security interaction between attackers
and defenders, in CPS security applications. In fact, in certain security scenarios, the defender
(being a system operator) may have the highest knowledge of the system and can rank possible
attackers based on their possible level of knowledge about the system and its security. Hence, the
defender can design its security strategy based on its perception of the fraction of attackers at each
level of knowledge. In addition, an attacker can anticipate – based on a performed reconnaissance
phase – the way in which the defender would design its defense strategy, based on which a more
sophisticated attack strategy could be devised. The use of cognitive hierarchy for the analysis of
CPS security situations is still unexplored. As such, our work provides a novel incorporation of
such beliefs over skills levels and cognitive skills in security analyses.

Using cognitive hierarchy theory allows, hence, capturing the disparate skill levels that the at-
tacker(s) and defender(s) may possess and their subjective perceptions of such skill levels. Here,
PT and CHT both assume that the defender and attacker has a certain knowledge level about the
defender (which they subjectively perceive) which they can exploit in the design of their, respec-
tive, defense and attack strategies. However, in a number of practical CPS analyses, even such a
minimal knowledge might not be available to the attacker or defender due to the confidentiality
involved. Hence, next, a mathematical framework modeling human behavior under such scarcity
of information is introduced and investigated.
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2.5.3 Satisfaction Equilibrium

Due to the high level of confidentiality involved in CPS security settings, an attacker might not
be able to acquire the needed information about the system and about the potentially implemented
defense policies in order to accordingly choose its optimal attack strategy; the attack strategy which
maximizes, for example, the inflicted damage on the system. Similarly, the defender might not have
the means to learn about the attackers, their presence, and their potential attack strategies in order
to be able to choose the defense strategy which minimizes, for example, the deviations from the
standard operating state which can be caused by an attack. Hence, the attacker and defender may
not always aim at choosing a best response strategy since the needed knowledge for the derivation
of such best response strategy may not be available or even obtainable (for example, an attacker
or defender may not have enough knowledge about the strategy spaces of the opponents or even
about their existence).

Under such information scarcity, it is reasonable for a defender to aim at meeting a certain per-
formance requirement rather than at maximizing performance or minimizing damage; since such
optimal solutions may not be obtainable. As such, in CPS security analyses, if the achieved CPS
performance is within the desired range of a certain operation requirement, the defense strategy
can be considered to have achieved the defender’s goal. Similarly, an attack that causes a certain
guaranteed minimum damage to the system, can be considered to meet the attacker’s goal. In other
words, if an attack strategy induces a level of degradation in system performance which surpasses
a certain threshold, such attack strategy can be considered to have met the attacker’s goal.

Such targeted goal-oriented security behavior can be captured using the tools of satisfaction equi-
librium [151, 152]. In the satisfaction equilibrium framework, rather than having an objective
function, a player would admit a satisfaction function which indicates if the chosen strategy meets
the performance requirement. Hence, in a CPS security setting, the defender’s satisfaction func-
tion indicates whether the chosen defense strategy guarantees that the deviation from the normal
operating state, or potential caused damage to the system, is below a certain required limit. As for
the attacker, its satisfaction function would indicate whether an attack strategy guarantees that the
inflicted damage to the system is above a certain required threshold. In this respect, assuming that
the defender requires the deviation from the nominal operating state, rd(.), to be below a threshold
ζd, for an attacker strategy sa and defender strategy sd, the satisfaction function hd(.) would hence
take the following form:

hd(sa, sd) =

{
1, if hd(sa, sd) ≤ ζd

0, otherwise.

As such, when a player’s – attacker or defender – requirement is met, this player is satisfied and
has no incentive to deviate from its chosen strategy. Hence, the game has reached a satisfaction
equilibrium which is formally defined as follows:

Definition 4. For an attack strategy sa ∈ SA and defense strategy sd ∈ SD, and denoting the
satisfaction functions of the attacker and defender, respectively, by ha(.) and hd(.), these attack
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and defense strategy are at a satisfaction equilibrium if:

ha(sa, sd) = 1 and hd(sa, sd) = 1. (2.31)

The concept of satisfaction equilibrium have been implemented in wireless communication [171–
173]. For instance, the works in [171] and [172] used a satisfaction equilibrium framework for
quality of service provisioning in self-configuring networks in which radio devices aim at meeting
a minimum quality of service requirement. In addition, the work in [173] proposed a framework
based on satisfaction equilibrium for distributed power allocation while meeting a minimum signal
to interference plus noise ratio. However, incorporating the concepts of satisfaction equilibrium in
security analyses remains unexplored.

The mathematical concept of satisfaction equilibrium enables the modeling of a unique trait of the
bounded rationality of human behavior in security games. Satisfaction equilibrium, in fact, en-
ables capturing and modeling the decision making processes of the attackers and defenders when
faced with scarce information about the system or about one another; a condition whose occur-
rence is highly likely in confidential CPS security situations. Hence, our work presents a novel
incorporation of this concept in the analysis of security situations.



Chapter 3

Graph-Theoretic Framework for Unified
Analysis of Observability and Data
Injection Attacks in the Smart Grid

3.1 Introduction

With the integration of information and communication technologies in power systems, new se-
curity concerns have emerged due to the potential exploitation of this cyber layer to infiltrate and
compromise the underlying physical system. Indeed, in recent years, various studies have focused
on analyzing the security of emerging cyber-physical power systems [39, 74, 75, 91, 120, 174, 175]
and the effect of potential cyber attacks on the various operational components of the grid, ranging
from power system state estimation [75], to electricity markets [74, 174, 175] and power system
dynamics and control [91, 120].

Such attacks can become more pronounced when they target critical power system functions such
as state estimation. In this regard, the power system state estimation is an integral smart grid pro-
cess in which system-wide measurements are collected and processed to estimate the global state
of operation of a power system [176]. State estimation is the basis for various grid operational de-
cisions such as congestion management, economic dispatch, contingency analysis, and electricity
pricing [122]. As a result, the critical importance of state estimation to the sustainable operation of
the grid makes it a primary target of possible cyber-physical attacks [39]. Such attacks may target
the availability of the collected measurements as well as their integrity.

In this respect, intercepting a subset of the collected measurement data using availability attacks
(such as denial-of-service attacks) can render the power system unobservable (i.e. not fully observ-
able), a state in which the collected measurements do not provide enough independent equations
to estimate the states. Such cyber-physical attacks, to which we refer as observability attacks
hereinafter, will make the operator partially oblivious to the real state of operation of the system,
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leading to uninformed operational decisions. Beyond observability attacks, data injection attacks
(DIAs) have emerged as a malicious type of integrity attacks which aim at manipulating the col-
lected state estimation data, leading to inaccurate state estimation outcomes that result in misin-
formed operational decisions with potentially detrimental consequences [39, 75, 174]. As shown
in [75], such DIAs can stealthily target the power system state estimation process – manipulating
the collected measurements and altering the state estimation outcome – while being undetectable
by the system operator using traditional bad data detection mechanisms. Hence, due to their po-
tential danger to system operation, such stealthy data injection attacks (SDIAs) and observability
attacks have been the focus of various recent research efforts [29, 30, 177–181].

3.1.1 Related Works

In this regard, the works in [177] and [178] focused on computing a security set which comprises
the minimum set of measurements which must be attacked in addition to a certain specific measure-
ment in order to make the system unobservable. Moreover, the work in [30] focused on computing
the cardinality of the smallest set of meters which when attacked render the system unobservable.
The authors in [179–181] extended such observability problems to studying SDIAs. In this regard,
these works focused on characterizing the sparsest stealthy attack containing a certain specific
measurement. In addition, the work in [29] focused on characterizing a set of measurements to
defend so that no attack which concurrently manipulates a set of meters whose cardinality is be-
low a certain threshold can be stealthy. Hence, this latter analysis focuses on the defense against
resource-limited attackers. As such, these works have focused on formulating and studying mathe-
matical problems whose solutions enable anticipating potential sophisticated attacks – which con-
stitutes a first step towards deriving corresponding defense mechanisms – and designing optimal
defense strategies to thwart such attacks and mitigate their potential effect.

The computational complexity of these problems [29,30,177–181] has led to limiting the analysis
of their solutions to special, often approximated, cases or required the use of heuristics and relax-
ation techniques which led to suboptimal solutions. For example, for characterizing the sparsest
observability attacks containing a specific measurement, the work in [177] focused on the special
case of measurement sets of low cardinality while the work in [178] derived an approximate so-
lution that is based on the solution of a min-cut problem. In addition, with regard to the analysis
of the sparsest SDIAs containing a certain measurement [179–181], the work in [179] focused on
deriving an upper-bound on this stealthy attack set while the work in [180] used min-cut relaxation
techniques to approximate the sought solution. Moreover, the work in [181] proposed a heuristic
algorithm which can approximate the solution of the studied problem while an exact solution was
found for the special case in which power flows over all the transmission lines and power injections
into and out of every bus are assumed to be measured. To defend against a resource-limited data
injection attacker, the authors in [29] used an l1 relaxation method for characterizing the set of
meters to defend to thwart SDIAs launched by attackers whose attack space is limited by a certain
cardinality threshold. Other related security works are also found in [78, 182–186].
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Therefore, this rich body of literature [29, 30, 78, 177–186] employs heuristics and approxima-
tion techniques to numerically approximate the solutions to these fundamental observability at-
tacks and SDIA problems rather than analytically characterizing their solutions. As such, there
is a need for an analytical framework which allows modeling and studying such data availability
and integrity attacks and enables an analytical characterization of mathematical solutions to such
widely-studied security problems. In addition, the fact that these works [29, 30, 177–181] studied
correlated problems but from different perspectives highlights the need for a unified framework
using which solutions to such correlated observability attacks and SDIA problems can be studied
and derived.

3.1.2 Contributions

The main contribution of this chapter is a novel unified graph-theoretic framework that enables
a global detailed modeling and understanding of observability attacks and SDIAs. As a result,
this framework provides a unified tool for analyzing various widely-studied observability attacks
and SDIA problems such as those studied in [29, 30, 177–181], among others. In addition, the
proposed framework enables the characterization of exact analytical solutions to such security
problems, instead of relying on numerical approximations or heuristics. This will enable a funda-
mental analysis and modeling of potential attack strategies and the derivation of defense strategies
which can thwart and mitigate the effect of such observability attacks and SDIAs. In this regard,
our proposed framework is based on a shift in the modeling of observability attacks and SDIAs
from a linear algebra frame of reference to a graph-theoretic perspective. As a result, based on this
proposed framework, such attacks can be modeled and analyzed by requiring only power system
topological data, namely, the power system 1-line diagram and the location of deployed measure-
ment units without the need for neither line parameters data nor the exact knowledge of power flow
levels throughout the system.

To build the proposed framework, we first begin by introducing a graph-theoretic basis of observ-
ability attacks and, then, we prove that SDIAs are a special case of such observability attacks. In
this respect, we introduce an algorithm providing a step-by-step approach for building critical sets,
a set of measurements – containing a certain specific measurement – which, when removed, render
the system unobservable. We then prove that for a DIA to be stealthy, the attacked measurements
should strictly result in leaving critical sets unmatched as part of a maximum matching over an
introduced bipartite graph. As such, a graph-theoretic model of SDIAs is then introduced based
on which the solutions to various well-studied SDIA problems are analytically characterized. In
particular, we show that our developed framework can be readily applied to characterize analytical
solutions to various SDIA problems such as, but not limited to: 1) Finding the stealthy attack of
lowest cardinality, 2) Finding the stealthy attack of lowest cardinality, including a specific mea-
surement, 3) Finding a set of measurements which when defended can thwart all possible stealthy
attacks, and 4) Finding a set of measurements to defend against a resource-limited attacker, among
others. A case study using the IEEE 14-bus system, with 17 distributed measurement units, is con-
sidered throughout the chapter to showcase the developed analytical concepts. In this case study,
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we characterize the sparsest SDIAs which can successfully target the system and show that the
cardinality of such attacks is equal to 2. In addition, the performed case analysis on the IEEE 14-
bus system shows that defending a characterized set of 13 (out of 17) measurements is necessary
to prevent any successful SDIAs, while defending only 3 measurements is enough to thwart any
stealthy attack of cardinality lower than 3. This, hence, enables the defender to build on some
acquired knowledge regarding the resources of the adversaries to derive a corresponding defense
strategy.

In this respect, the derived analytical results and presented case study showcase the importance of
the proposed framework for studying various correlated observability attacks and SDIA problems
and pave the way for further analyzing additional emerging problems in that field.

The rest of the chapter is organized as follows. Section 3.2 introduces state estimation and power
system observability. Section 3.3 introduces our proposed graph-theoretic foundation of observ-
ability attacks and shows its impact on modeling and analyzing such data availability attacks. Sec-
tion 3.4 introduces the proposed graph-theoretic framework for modeling SDIAs, as well as studies
and solves various well-studied SDIA problems. Section 3.5 concludes the chapter and provides
an outlook detailing the impact of the proposed framework on studying future observability and
data injection attacks.

3.2 State Estimation and Observability

We next provide an overview of state estimation and of the algebraic and topological concepts of
observability in power systems. This overview provides background material which is useful for
the analysis that follows.

3.2.1 State Estimation Process

Consider a power system state estimation process which uses various measurements collected from
across the system to estimate the voltage magnitudes and phase angles at every bus in the system,
known as the system states [176]. Let z ∈ Rm (m being the number of measurements) be the vector
of collected measurements, which includes power flow levels (real and reactive) over transmission
lines, power (real and reactive) injected in or withdrawn from certain buses, as well as bus voltage
magnitudes. In addition, let x ∈ Rn be the vector of system states. The relationship between the
measurements and the states directly follows from the linearized power flow equations [176]:

z = Hx+ e, (3.1)

where H ∈ Rm×n is the measurement Jacobian matrix and e ∈ Rm is the vector of random
errors that typically follows a Gaussian distribution, N(0,R), where R is positive definite. Here
m ≥ n, that is the dimension of x cannot be larger than the dimension of the measurement vector,
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z. Further, we assume that H is a full-rank matrix. Using a maximum-likelihood estimator – a
weighted least squares estimator (WLS) for a Gaussian error vector e – an estimate of the states,
x̂, will be:

x̂ = (HTR−1H)−1HTR−1z. (3.2)

This estimate of all the states provides visibility of the steady-state operating conditions of the
system, based on which various operational decisions are performed [176].

3.2.2 Power System Observability

The observability of the power system consists of the ability to uniquely determine its states based
on the collected set of measurements [176]. Observability, hence, requires the collected measure-
ments to provide enough independent equations to allow the estimation of the state vector, x. In
this respect, the power system is observable1 if and only if the measurement matrix H is of full
column rank [176], which was our initial assumption. This is known as algebraic observability.
Due to the P − θ, Q − V decoupling2 in power systems [122], the observability analysis can be
decoupled by separately studying the observability of voltage phase angles, using real power mea-
surements, and the observability of voltage magnitudes, based on reactive power measurements.
Since the two analyses are identical, we focus here on phase angle observability. To this end, we
consider z ∈ Rm to be a vector of real power measurements (bus injections and line flows), and
the state vector x ∈ [−π, π]n to be the vector of voltage phase angles (in radians). Here, n = N−1
for a power system with N buses given that the phase angle of the reference bus is fixed and is
taken to be the reference with respect to which all other phase angles are calculated [176].

An alternative measure of observability, which is equivalent to algebraic observability, is proposed
in [187] and uses graph-theoretic techniques to introduce the concept of topological observability.
In this regard, let the power system 1-line diagram be represented as a graph G(N ,L) in which
the set of vertices N , |N | = N , represents the set of buses of the power system while the set of
branches L, |L| = L, represents the set of lines. One key result that was shown in [187] and that
will be of relevance to our work is the following:

Remark 1. A power system is observable if and only if the set of measurements can be assigned
to the edges of the power system graph, following a set of assignment rules, in a way to form a
spanning tree over this graph.

In this respect, letM be the set of measurements and let f(.):M→ L be an assignment function
defined as follows.

1Otherwise, when this observability condition is not met, the power system is dubbed unobservable.
2P denotes real power, θ denotes voltage phase angles, Q denotes reactive power, and V denotes voltage magni-

tudes.
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Definition 5. f(.): M → L is a measurement assignment function which assigns measurements
inM to lines in L following a set of assignment rules defined as [187]:

1. If l1, l2 ∈ L and l1 6= l2, then f−1(l1) 6= f−1(l2). In other words, a measurement cannot be
simultaneously assigned to two different lines.

2. If m is a measurement over a transmission line l, then m can only be assigned to l.

3. If m is an injection measurement over bus η ∈ N , then m can only be assigned to an
unmeasured line l that is incident to η.

If such a measurement assignment that yields a spanning tree over the power network G can be
found, the power system will be observable (and vice versa). Fig. 3.1 shows an example of mea-
surement assignments over the IEEE 14-bus system. This figure shows the tree branches (marked
in solid red lines) to which measurement where assigned as part of the measurement assignment
function. The measurements that were assigned to each one of these branches are identified using
dashed arrow lines originating from the assigned measurement and pointing to the line to which this
measurement is assigned. This tree is formed of branches {1, 2, 4, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19}
and spans the whole vertex set N of the power system graph G, and hence, is a spanning tree.
As a result, since this measurement assignment yields a spanning tree, then the available set of
measurements renders the system observable.

Various algorithms of low complexity have been proposed to find and build such a spanning
tree [187–189]. In this regard, the work in [187] proposes an algorithm to find a spanning tree
over G, which will be used in some of the derivations in the following sections. This algorithm
starts by processing flow measurements by assigning each flow measurement to its correspond-
ing branch to form disjoint tree components. Then, injection measurements are assigned to lines
in a way to connect these tree components to form one spanning tree. Here, we highlight one
type of injection measurements, namely, boundary injections, which will play a crucial role in our
derivations.

Definition 6. A boundary injection is an injection measurement over a bus incident to lines whose
flow is measured and lines whose flow is not measured [187].

Boundary injections play a major role in connecting these tree components. Indeed, for a bus
which is not incident to a measured line to be connected to the spanning tree, it has to be reachable
from a boundary injection through a series of measurement assignments [187]. As such, boundary
injections are considered to be sources and unmeasured buses are considered to be sinks which
must be connected to these sources following the set of measurement assignment rules.

We next build on the foundation of topological observability to present a graph-theoretic frame-
work for modeling and studying the security of the smart grid facing observability attacks and
SDIAs. This framework is based on our proposed concepts of critical sets and observability sets,
which we define and derive in the next section.
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Figure 3.1: IEEE 14-bus system with measurement assignment.

3.3 Observability Attacks

The sustainable and efficient operation of the power system requires an accurate observability of
all its states [176]. Security attacks that target this observability can cause a limited (or partial)
monitoring ability for the operator over the power system which can lead to incorrect operational
decisions. Hence, studying and modeling attacks which can target the full observability of the
system is indispensable for the sustainable operation of the grid. In this respect, we define a cyber-
physical attack, dubbed observability attack, that consists of launching availability attacks against
a set of measurements to make the system unobservable. We next study this type of attacks by
introducing and characterizing what we define as critical sets and observability sets and prove
that the well-studied stealthy data injection attack is a subset of our defined observability attacks.
This latter finding will provide us with a unified set of tools to solve various widely-studied SDIA
problems.
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3.3.1 Critical Sets

Understanding and modeling observability attacks requires an in-depth understanding of the effect
of the loss of any bundle of measurements on the observability of the system. In this regard, we
next introduce a structured method for identifying, for each measurement m, the set of additional
measurements including m (denoted as the critical set of m), which when removed renders the
system unobservable. To this end, we first characterize the set of potential measurements to be in-
vestigated, for each measurement m, and then provide the necessary discussion and introduce the
underlying method for characterizing the critical set of m. In this process, we show that character-
izing such a critical set requires solving a maximum matching problem over a developed bipartite
graph. Then, a detailed algorithm is introduced to provide a step-by-step method for characterizing
such critical sets.

LetMC ⊆M be the set of measurements which are part of the assignment function, i.e., the mea-
surements assigned to form a spanning tree over the power network. We refer to measurements not
part ofMC as unassigned measurements. Such unassigned measurements are, hence, by defini-
tion redundant measurements. We consider that the system is originally observable. Hence, such
a spanning tree and its corresponding set of assigned measurements exist. We also let T (N ,B) be
the spanning tree whose set of branches are captured by the set B ⊆ L. B, in essence, represents
the set of lines to which measurements were assigned as part of the assignment function f(.). For
example, as previously mentioned, in Fig. 3.1, the branches of the spanning tree are represented in
solid red lines.

Consider an assigned measurement m ∈ MC . Since m is assigned, its removal will split the
tree T into two spanning trees T m1 (Nm

1 ,Bm1 ) and T m2 (Nm
2 ,Bm2 ) spanning subgraphs Gm1 and Gm2 ,

respectively, such that N = Nm
1 ∪ Nm

2 and B = Bm1 ∪ Bm2 ∪ {f(m)}. Fig. 3.2 provides an
illustrative example of the two spanning trees created by the deletion of the flow measurement
over line 2 (we denote this flow measurement by F2). Fig. 3.2 represents the same system shown
in Fig. 3.1 and will be used throughout this work to provide a practical example of the defined
concepts and analytical derivations.

To investigate observability, we define a set of measurements for each measurement m ∈ MC ,
which we refer as the critical set of m and we denote by Cm, as follows:

Definition 7. For a measurement m ∈ MC , the critical set of m, denoted as Cm ⊆ M, is a set of
measurements which can be used to reconnect T m1 and T m2 when m is deleted.

Consequently, when m is removed, any m′ ∈ Cm can be used to reconnect T m1 and T m2 . For
convenience, we consider m to be part of its own critical set Cm. Let Lm be the set of lines
connecting a bus in T m1 to a bus in T m2 . In addition, let Nm

1,2 ⊆ Nm
1 and Nm

2,1 ⊆ Nm
2 be the set of

nodes in, respectively, Nm
1 and Nm

2 which are connected to a node in, respectively, Nm
2 and Nm

1 .
An example of these notations is provided in Fig. 3.2. Lm is, hence, formally defined as:

Lm = {l ∈ L | l = (η1, η2), η1 ∈ Nm
1,2, η2 ∈ Nm

2,1}. (3.3)
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Figure 3.2: Critical set of the flow measurement over line 2, F2, of the IEEE 14-bus system.

We next introduce the set of rules that should be followed to build the critical set of a certain
measurement, following which, we provide a structured algorithm for building such critical sets.

Based on the measurement assignment rules described in Section 3.2.2, a necessary condition for
a measurement m′ to be in Cm is for it to be either a line flow measurement over a line l ∈ Lm or
an injection measurement over a bus η ∈ {Nm

1,2 ∪ Nm
2,1}. We denote this set of measurements, for

a measurement m, byMm. Here, for convenience3, we considerMm not to include measurement
m. The measurements inMm are the only measurements which can be assigned to a line in Lm,
and hence, are the only measurements with the potential of reconnecting T m1 and T m2 . An example
of the setMm for m := F2 is shown in Fig. 3.2.

The measurements inMm can be split into three different categories: 1) flow measurements over
lines in Lm, which we denote asMm

F ,4 2) unassigned injection measurements over buses inNm
1,2∪

3Given that m is always considered to be part of its critical set Cm, m is always added to Cm after investigating the
measurements inMm.

4Such measurements are unassigned measurements. In fact, if m is a line measurement, lines in Lm would form a
loop with f(m) and hence cannot be part of the original spanning tree. Moreover, if m is an injection measurement,
Mm

F would be an empty set since, otherwise, based on the spanning tree building method described in Section 3.2.2
and originally presented in [187], one of the measurements inMm

F would have been assigned to a line in Lm, and m
would not have been part ofMC . As a result, measurements inMm

F are redundant.
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Figure 3.3: The three categories of measurements inMm.

Nm
2,1, and 3) assigned injection measurements over buses in Nm

1,2 ∪ Nm
2,1, i.e., measurements in

Mm ∩MC . A representation of this partition is shown in Fig. 3.3

In this regard, not all measurements in Mm are necessarily in Cm. In fact, for m′ ∈ Mm to
be in Cm, it must be redundant. Namely, m′ must be assignable to a line in Lm to reconnect
T m1 and T m2 , without causing any disconnections within either T m1 or T m2 . In this respect, if
m′ ∈ Mm is unassigned, i.e m′ /∈ MC , m′ would be part of Cm. For example, consider the
injection measurement over bus 4 in Fig. 3.2, which we denote by I4. Measurement I4 is inMF2

and is a redundant measurement since it was not assigned to any line as part of the original tree
T . Hence, when F2 is removed, I4 can be assigned to line 7 to reconnect T F2

1 and T F2
2 without

causing any disconnection in T F2
2 , in which it is located. Hence, I4 ∈ CF2 .

As a result, since the measurements inMm
F and the unassigned injection measurements over buses

inNm
1,2 ∪Nm

2,1 (which are the first two categories of measurements inMm, as shown in Fig. 3.3) are
redundant, they are part of Cm. Now, whenm′ ∈Mm is assigned as part of the original assignment
function, i.e., m′ ∈Mm∩MC (which corresponds to the third category of measurements inMm,
indicated in Fig. 3.3), then additional investigation is needed to determine whetherm′ is redundant,
and hence, whether it can be considered in Cm.

In this regard, consider that m′ ∈Mm is assigned to a line l′, that is f(m′) = l′ ∈ B. If m′ is to be
reassigned to a line l ∈ Lm, T m1 and T m2 will be reconnected, but since m′ was originally assigned
as part of the original tree, another portion of the tree gets disconnected by this reassignment of m′

to l instead of l′. Hence, m′ can be part of Cm if another measurement can be used to reconnect the
subgraph which was disconnected by the reassignment of m′ from l′ to l. For example, consider
the injection measurement over bus 13 in Fig. 3.2, which we denote by I13. I13 has been assigned
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to line 12 as part of the original spanning tree. Hence, if I13 is assigned to line 20 to reconnect
T F2
1 and T F2

2 after measurement F2 is removed, it cannot be assigned to line 12 anymore which
will split T F2

1 into two subtrees, one formed by buses {12, 13} and line 19 and the other subtree
composed of buses {6, 10, 1, 5} and lines {13, 10, 1}. We denote these two subtrees as T F2

1,1 and
T F2
1,2 , respectively. In this respect, if another measurement can replace I13 in reconnecting T F2

1,1 and
T F2
1,2 , then I13 can be assigned to line 20 and, hence, should be part of CF2 . To this end, consider

the injection measurement over bus 12, denoted by I12, which was not part of the original spanning
tree assignment. I12 can be assigned to line 11 to reconnect T F2

1,1 and T F2
1,2 in case I13 is reassigned

to line 20 instead of line 12. Hence, I13 is indeed redundant, resulting in I13 ∈ CF2 . To generalize
the analysis in this example, we next provide a general discussion of measurements inMm ∩MC

(i.e., the third category of measurements in Mm, shown in Fig. 3.3) which allows determining
whether a measurement in this set is part of Cm.

More generally, consider m′ ∈ Mm ∩MC to be a measurement assigned to a branch l′ = f(m′)
in T m1 , and letMm

1 be the set of measurements in Gm1 . Reassigning m′ to l ∈ Lm instead of l′,
to reconnect T m1 and T m2 , will split T m1 into two subtrees T m1,1 and T m1,2. These trees, respectively,
span subgraphs Gm1,1 and Gm1,2. LetMm

1,1 andMm
1,2 be the sets of measurements in Gm1,1 and Gm1,2. m′

can be reassigned to l only if some measurement inMm
1 can reconnect T m1,1 and T m1,2. Hence, this

corresponds to finding a measurement assignment that connects the two subtrees T m1,1 and T m1,2. As
discussed in Section 3.2.2, two subtrees can be interconnected by using a measurement assignment
if the processing of an unassigned boundary injection in one of them reaches a node in the other.
We denote such unassigned boundary injections as backup boundary injections, which we formally
define as follows:

Definition 8. A measurement m′′ ∈ Mm
1 \ {Mm

1 ∩Mm} is a backup boundary injection for a
measurement m′, if m′′ can be used to reconnect T m1,1 and T m1,2 generated by the reassignment of
m′ ∈ Mm ∩MC to a line l ∈ Lm instead of its original line assignment f(m′) = l′. The set of
all such backup boundary injections for this measurement m′ ∈ Mm ∩MC is referred to as the
backup boundary injection set of m′ and is denoted by Imb−m′ .

Since the algorithm in [187] is based on connecting subtrees – to build a full spanning tree – by
starting from an unassigned boundary injection in a certain subtree (as a source) to reach a node in
another subtree (as a sink), this algorithm can be employed to locate a backup boundary injection
for a measurement m′ ∈ Mm ∩ MC . To this end, to find a backup boundary injection of m′,
we run the algorithm in [187] by starting from an unassigned boundary injection in either T m1,1
or T m1,2 and checking whether the algorithm reaches a bus in T m1,2 or T m1,1, respectively. As such,
using the spanning tree building algorithm provided in [187, Fig. 1], one can identify the backup
boundary injections for each injection measurement in m′ ∈ Mm ∩MC . Here, we note that a
backup boundary injection cannot be an injection measurement inMm, since if m′′ ∈ Mm and
m′′ is unassigned, m′′ will itself be part of Cm, as previously discussed. For example, consider the
injection measurements on buses 2 and 4 of Fig. 3.2, denoted by I2 and I4, respectively. I2 is an
assigned injection measurement inMF2 . I2 can be assigned to line 3 instead of line 4 to reconnect
T F2
1 and T F2

2 . However, this will split bus 2 from the rest of T F2
2 . I4 is an unassigned boundary
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Figure 3.4: Illustration of a maximum matching over the injection measurements - backup bound-
ary injections bipartite graph.

injection in GF2
2 and can reconnect bus 2 to T F2

2 by assigning I4 to line 4. However, I4 is itself an
injection at a bus in N F2

2,1 . Hence, I4 is an unassigned injection inMF2 , and is as a result part of
CF2 . Thus, it cannot be considered a backup boundary injection for I2.

Therefore, an assigned injection measurement m′ ∈ Mm ∩MC is a redundant measurement and
is, as a result, part of Cm if it has a nonempty boundary injection set Imb−m′ . However, a boundary
injection may be part of multiple backup boundary injection sets. In this regard, based on the
measurement assignment rules, an injection measurement can be assigned to only one line at a time.
In relation to backup boundary injections, an unassigned boundary injection can act as a backup
boundary injection for only one measurement inMm∩MC , at a time. Hence, if two measurements
m1 andm2 inMm∩MC have only one and the same backup boundary injection, only one of them
can be in Cm, concurrently. As a result, due to this one-to-one assignment requirement between
backup boundary injections and injection measurements inMm∩MC , finding this assignment can
be performed by solving a maximum matching problem over a bipartite graph5, as the one shown
in Fig. 3.4. We refer to this graph as the injection measurements - backup boundary injections
bipartite graph.

In this bipartite graph, the left-side nodes denote the injection measurements inMm ∩MC and
right-side nodes denote the union of their backup boundary injections,

⋃
m′∈Mm∩MC

Imb−m′ , in which

each node represents one backup boundary injection. In this bipartite graph, an edge exists be-
tween a node m′ ∈ Mm ∩MC , on the left-side of the graph, and a boundary injection m′′, on the
right-side of the graph, if m′′ ∈ Imb−m′ . Here, we note that a boundary injection can be simultane-

5A matching over a graph is a subset of edges sharing no vertices. A maximum matching is a matching having the
maximum possible number of edges [145].
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ously part of different backup boundary injection sets. Hence, finding the injection measurements
in Mm ∩ MC which are part of the critical set of m, Cm, requires solving a maximum match-
ing problem over this bipartite graph, which is a problem whose exact solution can be obtained
efficiently6. As a result, the matched left-side nodes in this maximum matching over the injec-
tion measurements - backup boundary injections bipartite graph are the injection measurements in
Mm ∩MC which will be part of the critical set of m, Cm.

Based on these introduced rules for building critical sets, Algorithm 1 provides a structured step-
by-step method for building the critical set, Cm, for each measurement m ∈MC .

3.3.2 Example and Case Analysis

As an example of characterizing the critical sets of the various measurements in a power system, we
consider the IEEE 14-bus system in Fig. 3.1. In this example, we refer to an injection measurement
over bus k as Ik and a flow measurement over line k as Fk. We first consider the measurement over
line 2, F2, for which we find the critical set CF2 using Algorithm 1.

From Fig. 3.2, we can see that removing F2 will result in splitting the original spanning tree
into two trees, T F2

1 (N F2
1 ,BF2

1 ) and T F2
2 (N F2

2 ,BF2
2 ), such that N F2

1 = {1, 5, 6, 10, 12, 13} and
N F2

2 = {2, 3, 4, 7, 8, 9, 11, 14} are the sets of nodes of the two trees and BF2
1 = {1, 10, 13, 12, 19}

and BF2
2 = {4, 6, 8, 15, 9, 16, 17} are their sets of branches. In addition, N F2

1,2 = {1, 5, 10, 13},
N F2

2,1 = {2, 4, 11, 14}, LF2 = {2, 3, 7, 18, 20}, andMF2 = {F2, I4, I11, I2, I1, I5, I13}. Now, for
characterizing the critical set of F2, we explore the setMF2 .

The first measurement inMF2 is F2. F2 is a flow measurement7. Hence, F2 ∈ CF2 .

The second and third measurements in MF2 are I4 and I11. I4 and I11 are unassigned injection
measurements, i.e. I4 /∈ MC and I11 /∈ MC . Hence, {I4, I11} ⊆ CF2 . Indeed, I4 can be assigned
to line 7 to reconnect T F2

1 and T F2
2 , while I11 can be assigned to line 18 for that purpose.

I2 is the fourth measurement inMF2 and the last remaining injection measurement on Nm
2,1 to be

explored. I2 is an assigned measurement, originally assigned to line 4 as part of the spanning tree
T . Since I2 ∈ MC , assigning I2 to lines 2 or 3 to reconnect T F2

1 and T F2
2 will disconnect bus

2 from the rest of T F2
2 . Hence, we next characterize the backup boundary injection set of I2, i.e.

IF2
b−I2 . The only unassigned boundary injection in GF2

2 that is not part of MF2 is I7. However,
using the algorithm in [187, Fig. 1], we can observe that starting from I7, the algorithm does not
reach bus 2. Hence, bus 2 cannot be reconnected to the rest of T F2

2 using any unassigned boundary
injections over buses in GF2

2 . Hence, IF2
b−I2 = ∅, and as a result F2 /∈ CF2 .

Similarly, exploring I1 and I5 – the fifth and sixth measurements inMF2 – which are both assigned

6The solution of a maximum matching problem over a bipartite graph can be efficiently obtained in polynomial
time by transforming the matching problem into a max-flow problem, which can be solved in polynomial time using
various known algorithms such as Ford-Fulkerson [145].

7F2 is the only flow measurement inMF2 .
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Algorithm 1 Critical sets step-by-step procedure
Input: Power system 1-line diagram G(N ,L), measurement setM, spanning tree T (N ,B), set

of assigned measurementsMC , assignment function f(.):M→ L
Output: Critical set Cm for all measurements m ∈MC

1: for m ∈MC do
2: Characterize T m1 , T m2 , Nm

1,2, Nm
2,1, Lm,Mm

3: Initialize Cm
4: InitializeMm

test
5: Add m to Cm
6: for m′ ∈Mm do
7: if m′ is a flow measurement then
8: Add m′ to Cm
9: end if

10: if m′ is an injection measurement then
11: if m′ /∈MC then
12: Add m′ to Cm
13: end if
14: if m′ ∈MC then
15: Characterize its backup boundary injection set Imb−m′
16: Add m′ toMm

test
17: end if
18: end if
19: end for
20: Solve maximum matching over the injection measurements - backup boundary injections

bipartite graph
21: for m′ ∈Mm

test do
22: if m′ is a matched node as part of the maximum matching then
23: Add m′ to Cm
24: end if
25: end for
26: end for
27: return Critical set Cm for all measurements m ∈MC

measurements, i.e. {I1, I5} ⊆ MC , shows that they both have empty backup boundary injection
sets8, i.e. IF2

b−I1 = ∅ and IF2
b−I5 = ∅. Hence, neither I1 nor I5 are part of CF2 .

The only remaining measurement inMF2 is I13. I13 is an assigned measurement, I13 ∈ MC . As
previously discussed in Section 3.3.1, when I13 is reassigned to line 20 to reconnect T F2

1 and T F2
2 ,

8If I1 or I5 are to be reassigned to lines 2 or 3, respectively, to reconnect T F2
1 and T F2

2 , each of these reassignments
will split T F2

1 into two subtrees which cannot be reconnected using the unassigned boundary injection I12, as can be
shown by a run of the algorithm in [187, Fig. 1]. Here, we note that I12 is the only unassigned boundary injection in
GF2
1 .
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Table 3.1: Critical sets of the measurements inMC .
Measurement (m ∈MC) Critical Set (Cm)

F2 {F2, I4, I11, I13}
F8 {F8, I4, I7, I9}
F9 {F9, I4, I7, I11, I13}
F15 {F15, I7}
I1 {I1, I4, I11, I13}
I2 {I2, I4, I11, I13}
I3 {I3, I2, I4}
I5 {I5, I11, I13}
I6 {I6, I11}
I9 {I9, I11}
I13 {I6, I12, I13}
F17 {F17, I9, I13}
F19 {F19, I6, I12}

the subtree containing buses 12 and 13 and line 19 gets disconnected from the rest of T F2
1 . Hence,

we next characterize the backup boundary injection set of I13, i.e. IF2
b−I13 . To this end, I12, the only

unassigned boundary injection measurement in GF2
1 , can be assigned to line 11 to reconnect the

two subtrees, and is the only boundary injection which can do so. Hence, IF2
b−I13 = {I12}.

As a result, the injection measurements - backup boundary injections bipartite graph is composed
of only I13 on the left-side connected to IF2

b−I13 = {I12} on the right-side. Hence, I13 is matched to
the backup boundary injection I12. As a result, I13 ∈ CF2 .

The processing ofMF2 is thus complete, resulting in CF2 = {F2, I4, I11, I13}.

Similarly, Algorithm 1 can be carried out to characterize the critical sets of all of the measurements
inMC in the IEEE 14-bus system in Fig.3.1. The results are listed in Table 3.1.

We next discuss the value of critical sets with regard to understanding and analyzing observability
attacks. We also introduce the concept of observability sets, a generalization of critical sets, which
provides a holistic modeling of observability attacks.

Notation: We use the following notation in the derivations that ensue. For the Jacobian matrixH ,
we let H(−K)+(K′) correspond to H but with the removal of the rows corresponding to measure-
ments in K and the addition of rows corresponding to measurements in K′.

3.3.3 Observability Sets

Next, in Theorem 1, we show that the derived critical sets are indispensable for modeling observ-
ability attacks.
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Theorem 1. For m ∈MC , removing its critical set, Cm, renders the system unobservable.

Proof. By topological observability, we know that a system is observable if and only if a spanning
tree could be formed using an assignment function. Whenm is removed, the original spanning tree
T is split into two disjoint trees T m1 and T m2 , spanning subgraphs Gm1 and Gm2 , respectively. By
definition of Cm, the only way to reconnect T m1 and T m2 is to use measurements in Cm. Hence, if
all measurements in Cm are removed, then T m1 and T m2 cannot be connected using an assignment
function, which implies that a spanning tree cannot be formed, implying that the system is not
observable. As such, removing a critical set renders the power system unobservable.

Based on Theorem 1, the critical measurements9 of a power system can be characterized using
critical measurement sets, as shown in the following corollary.

Corollary 1. m is a critical measurement if and only if its critical set is Cm = {m}.

Proof. By definition, if m is a critical measurement, removing it will render the system unobserv-
able. Hence, if the critical set of m is such that Cm ⊃ m, then removing m would not affect the
observabilty of the system since any other measurement m′ ∈ Cm \ {m} can be used to replace m
and reconnect the tree. As such, Cm ⊃ {m} ⇒ m is not a critical measurement, which proves the
contrapositive: m is critical⇒m is the only element in its critical set, i.e. {m} = Cm. Conversely,
if m is the only element in its critical set, its removal constitutes removing a complete critical set,
which by Theorem 1 renders the system unobservable. As a result, Cm = {m} ⇒ m is a critical
measurement. Thus, m is critical if and only if Cm = {m}.

In addition, removing a full critical set decreases the rank of the Jacobian matrix by 1. This is
shown in Theorem 2, which will be proven next. However, we first present the following prelimi-
nary lemma, which is essential for the proof of Theorem 2.

Lemma 1. Let m ∈ M be an injection measurement over a bus η that is assigned to a line l,
f(m) = l. Then, replacing m by a hypothetical line flow measurement m′ over line l will not
affect the rank of matrix H . In other words, let H(−m)+(m′) be the the Jacobian matrix with the
removal of the row corresponding to measurement m and the addition of the row corresponding to
the hypothetical measurement m′, then rank(H) = rank(H(−m)+(m′)).

Proof. Since m is assigned, i.e. is part of the original spanning tree measurement assignment,
removing it will split the original spanning tree into two subtrees T m1 and T m2 . By the definition of
the critical set Cm, any measurement in Cm could replacem to reconnect T m1 and T m2 . Ifm′ existed,
it would have been part of Cm because m′ can reconnect T m1 and T m2 . Hence, replacing m by m′

will not affect the connectivity of the spanning tree and, hence, rank(H) = rank(H(−m)+(m′)).

Theorem 2. For m ∈MC , removing its critical set, Cm, results in rank(H(−Cm)) = rank(H)− 1.

9In power systems, a critical measurement is a single measurement which when removed renders the system
unobservable [176].
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Proof. Since the system is originally fully observable, rank(H) = N − 1. Now, letMm
1 andMm

2

be the measurement sets in subgraphs Gm1 and Gm2 , respectively, and letH(−Cm)
1 andH(−Cm)

2 be the
Jacobian matrices of Gm1 and Gm2 , respectively, composed of measurements inMm

1 \ {Mm
1 ∩ Cm}

and Mm
2 \ {Mm

2 ∩ Cm}. Since T m1 and T m2 respectively span Gm1 and Gm2 , this implies that
rank(H

(−Cm)
1 ) = N1 − 1 and rank(H

(−Cm)
2 ) = N2 − 1. In addition, let m′ ∈ Mm

1 \ {Mm
1 ∩

Cm} be an injection measurement over a bus in Nm
1,2. Since m′ ∈ Mm

1 \ {Mm
1 ∩ Cm}, then

m′ is assigned to a certain branch b′ = f(m′) ∈ T m1 ; otherwise, m′ would have also been in
Cm. By Lemma 1, m′ can be replaced by a hypothetical line flow measurement over b′ without
affecting the rank of H(−Cm)

1 . As such, let H(−Cm)′

1 be the same as H(−Cm)
1 but replacing any

row corresponding to an injection measurement in Nm
1,2 by its corresponding hypothetical line

flow measurement. The same can be done to form Jacobian matrix H(−Cm)′

2 from H
(−Cm)
2 . By

Lemma 1, rank(H
(−Cm)′

1 )=rank(H
(−Cm)
1 ) = N1−1 and rank(H

(−Cm)′

2 )=rank(H
(−Cm)
2 ) = N2−1.

Now, let us return to H(−Cm). By rearranging its elements to include first the measurements in
Mm

1 \ {Mm
1 ∩Cm} then the elements ofMm

2 \ {Mm
2 ∩Cm},H(−Cm) can be written asH(−Cm) =[

H
(−Cm)
1

H
(−Cm)
2

]
. In this respect,

rank(H(−Cm)) = rank
([ H(−Cm)

1

H
(−Cm)
2

])
= rank

([ H(−Cm)′

1 0

0 H
(−Cm)′

2

])
= (N1 − 1) + (N2 − 1)

= N − 2 = rank(H)− 1.

Therefore, Theorem 2 shows the effect of the removal of a single critical set on the rank of the
Jacobian matrix. Theorem 1 and Theorem 2 provide a necessary condition for observability of
the power system under observability attacks. In fact, the contrapositive of Theorem 1 states that
if a power system is fully observable, then the investigated observability attack (i.e. the removal
of measurements) did not result in removing a full critical set. Next, we extend this concept to
account for the interconnection between multiple critical sets.

In fact, for a measurement m′ to be in the critical set of a measurement m, i.e. m′ ∈ Cm, the
critical set of m′, Cm′ , must contain measurements other than m′, i.e. Cm′ ⊃ {m′}. Otherwise,
m′ would not be redundant. For example, consider injection measurements I6 and I9. Removing
I6 and I9 will render the system unobservable – even though I6 and I9 do not form a critical set –
since CI6 = {I6, I11} and CI9 = {I9, I11}. As such, if I6 is removed, I11 can be used to replace
I6 since I11 ∈ CI6 . However, if I9 is also removed, even though I11 ∈ CI9 , I11 cannot be used to
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replace I9 since I11 has already been used as a replacement to I6. Therefore, removing I9 and I6
does render the system unobservable. Indeed, rank(H−(I6)−(I9)) = 12 < N − 1 = 13.

This concept can be extended to the interconnection between multiple critical sets. For example,
consider F2, I1, I2, and I5 and their critical sets shown in Table 3.1. We can see that F2, I1, and I2
have critical sets sharing measurements I4, I11, and I13. Hence, if F2, I1, and I2 are removed, I4,
I11, and I13 are assigned, one to each of these measurements, to preserve system observability and,
hence, cannot be used as part of further critical sets in case further measurements are removed.
Hence, since CI5 = {I5, I11, I13}, removing F2, I1, I2 and I5 will render the system unobservable,
even though {F2, I1, I2, I5} is not a critical set.

In this respect, the concept of critical sets must be further developed to yield a general graph-
theoretic concept of observability attacks. This development is provided as follows. We build a
bipartite graph in which each left-side node represents one of the critical sets of the power system,
and each right-side node represents one measurement of the system. An example of this bipartite
graph is shown in Fig. 3.5. In this respect, an edge is drawn between a critical set Ci and a
measurement j if j ∈ Ci. We refer to this bipartite graph as the critical sets - system measurements
bipartite graph. Based on this formulation, a general concept of observability is established in
Theorem 3.

Theorem 3. If the system is observable, then a maximum matching over the critical sets - system
measurements bipartite graph includes all critical sets.

Proof. We prove this theorem by proving its contrapositive which is the following: if a maximum
matching does not include all critical sets, then the system is not observable.

The contrapositive can be proven as follows. If one critical set is not matched to any measurements,
then this critical set cannot be used to connect two subgraphs of the system. Since these two
subgraphs can only be connected by this critical set, then there is no measurement assignment
which will connect these two subgraphs. As a result, a spanning tree cannot be formed, implying
that the system is not observable.

This proves the contrapositive of this theorem and, hence, proves the theorem.

Theorem 3 can be used to fully characterize observability attacks as follows. An observability
attack is one in which measurements are removed (i.e. nodes from the right-side of the critical
sets - system measurements bipartite graph) such that a maximum matching over the bipartite
graph does not include all critical sets (i.e. nodes on the left-side of the critical sets - system
measurements bipartite graph), which renders the system unobservable. This, as a result, provides
a general analytical characterization of observability attacks and enables an analytical prediction
of the effect of the removal of a subset of measurements on the observability of the system. For
example, such characterization allows analytical derivation of various security indices related to
observability attacks such as finding the observability attack of lowest cardinality, or finding the
minimal set of measurements to remove in addition to a certain measurement to make the system
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unobservable. This, as a result, provides analytical tools which are necessary to further assess the
vulnerability of a system against observability attacks as well as derive defense strategies to thwart
such attacks. Indeed, in what follows, we focus on stealthy data injection attacks – proving that
they are a subset of observability attacks – and show how our provided analytical characterization
of observability attacks enables solutions of various widely-studied stealthy data injection attack
problems. To this end, we introduce sets of measurements, dubbed observability sets, as follows,
which are valuable for the analysis of data injection attacks which ensues.

Definition 9. An observability set S ∈ M, is a set of measurements such that strictly removing
S leads a maximum matching over the critical sets - system measurements bipartite graph not to
include a certain critical set.

The term “strictly” in this definition reflects that adding any measurement s ∈ S , which was
removed, back to the right-side of the bipartite graph will result in reincluding the previously
unmatched critical set in the maximum matching. A union of observability sets is, then, defined to
be a set of measurements composed of a number of observability sets such that, when each of these
sets is successively removed, each such removal leads to excluding one additional critical set from
being part of a maximum matching over the critical sets - system measurements bipartite graph.
Adding back any of the removed measurements to the right-side of the bipartite graph will result
in reincluding one of the unmatched critical sets in the maximum matching. These observability
sets play a crucial role in characterizing stealthy data injection attacks, as will be shown next.

We next introduce stealthy data injection attacks and prove that they are a variant of our introduced
observability attacks. This enables further studying and solving various problems related to SDIAs
using our developed analytical tools.

3.4 Stealthy Data Injection Attacks

3.4.1 Stealthy Data Injection Attacks

Recalling the measurement-state equation in (3.1), data injection attacks aim at replacing the mea-
surement vector, z by a manipulated measurement vector za = z+a, where a ∈ Rm is the attack
vector, resulting in a new state estimate x̂a. However, typically, the state estimation process is run
in conjunction with what is known as a bad data detector and identifier (BDD). The BDD aims
at detecting and identifying the presence of outliers in the collected data set, so that such outliers
can be removed preventing them from affecting the estimation outcome. Such BDDs rely on the
statistical analysis of what is known as measurement residuals, r, defined as [176]:

ẑ = Hx̂ = Sz, r = z − ẑ = (In − S)z = Wz, (3.4)

where S = H(HTR−1H)−1HTR−1 andW = In − S.
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A statistical analysis on the residuals enables analysis of the magnitudes of the errors associated
with each measurement, and hence, allows the identification of outliers [176]. Regarding data
injection attacks, when data is added to certain measurements, the adversary aims at keeping the
residuals unchanged, so that the attack cannot be detected by the BDD. Indeed, as shown in [76],
an attack vector that falls in the column-space of the Jacobian matrix H , i.e. a = Hc, cannot be
detected by residual statistical analysis. Indeed, for a = Hc,

ra = W (z + a) = r +Wa

= r + [In −H(HTR−1H)−1HTR−1]Hc

= r +Hc−Hc = r. (3.5)

As such, given the weighted least squares state estimation equation in (3.2), the attack vector
a = Hc generates an arbitrary new state estimate x̂a = x̂ + c by choosing the constant vector
c without inducing any changes to the residual vector, as shown in (3.5). Such DIAs are, hence,
stealthy and are referred to as stealthy DIAs. The ability of SDIAs to stealthily manipulate the
state estimates poses various challenges to the operation of the grid. Hence, understanding and
modeling such attacks is indispensable to the secure and sustainable operation of power systems.

To this end, we next introduce a holistic graph-theoretic modeling of SDIAs that is based on the
graph-theoretic modeling of observability attacks introduced in Section 3.3.

3.4.2 Graph-Theoretic Modeling of SDIAs

The observability attacks and observability sets introduced in Section 3.3 provide the basis for a
graph-theoretic interpretation of SDIAs as will be shown in Theorem 4. However, before introduc-
ing and proving Theorem 4, we introduce a preliminary lemma which will be used in the proof of
Theorem 4.

Lemma 2. If a DIA is stealthy (i.e. a = Hc), then removing the attacked measurements renders
the system unobservable.

Proof. Since the attack vector a is stealthy, then a = Hc. Since H is of full rank, then the only
solution to Hc = 0 is c = 0. Hence, a = Hc has zero and nonzero elements for c 6= 0. Now,
if all of the rows ofH corresponding to nonzero elements of a are removed to form matrixHnew,
then, this results in anew = Hnewc = 0 for c 6= 0. Hence, Hnew is not of full rank and the power
system whose Jacobian matrix is given by Hnew is unobservable. Therefore, when the attack is
stealthy, removing the attacked measurements renders the system unobservable.

Here we note, that the result of Lemma 2, provides a one directional relation stating that if a = Hc,
i.e. the attack is stealthy, then the removal of the nonzero elements of a, i.e. the attacked mea-
surements, causes the system to be unobservable. However, the reverse direction does not always
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hold true. Indeed, the reverse statement of Lemma 2 states that, if removing a set of measurements
renders the system unobservable, then this guarantees that a stealthy DIA can be constructed which
targets all of these measurements, and only these measurements. We next provide a counter ex-
ample which proves that this reverse statement does not hold true. In this regard, we consider the

Jacobian matrixH to be represented as follows: H =

[
H0

H1

]
. We letM0 andM1 represent the

subset of measurements corresponding to the rows of H0 and H1, respectively. ConsiderM0 to
contain one critical measurement, i.e., one row ofH0 is independent of all of the other rows ofH .
As such, removing the subset of measurementsM0 renders the system unobservable. In addition,
consider two measurements m0 ∈ M0 and m1 ∈ M1 such as m0 measures the power flow from
bus i to bus j and m1 measures the power flow from bus j to bus i (i.e., m0 and m1 are installed
on the same transmission line but measure the flow in two opposite directions). In this regard, let
h0 and h1 correspond to the rows of m0 and m1 in, respectively, H0 and H1. Then, we have10

h0 = −h1. As a result, one cannot find a stealthy attack vector a =

[
a0

a1

]
=

[
H0

H1

]
c, in

which all the elements of a0 are nonzero and all the elements of a1 are zero, since if h0c 6= 0, then
h1c 6= 0, due to the fact that h0 = −h1. This implies that for the attack to target all the measure-
ments inM0 and be stealthy, this attack must also target measurements inM1. Otherwise, this
attack must be limited to a strict subset ofM0 and may not target all the measurements inM0.
As a result, even though removing the measurements inM0 renders the system unobservable, one
cannot necessarily construct a stealthy attack vector that only targets all the measurements inM0.
Hence, this provides a counter example of the reverse statement of Lemma 2 proving that this
reverse statement does not always hold true.

Theorem 4. A DIA is stealthy if and only if the attacked measurements constitute a union of
observability sets.

Proof. We begin by proving that when the attacked measurements (i.e. nonzero elements of the
attack vector a) constitute a union of observability sets, then a is stealthy (i.e. a can be repre-
sented as a = Hc). As shown in Theorem 3, when an observability set (equivalently, a union of
observability sets) is removed, the system is unobservable. Hence, consider an observability set S
which has been removed. LetH(−S) be the system’s Jacobian matrix without the measurements in
S and let C be the critical set which cannot be part of a maximum matching over the critical sets -
system measurements bipartite graph when S is removed. Since the system is unobservable when
removing S, H(−S)y = 0 for a y 6= 0. However, the addition of any measurement s ∈ S will
reinclude C in the maximum matching over the critical sets - system measurements bipartite graph,
and hence, reconnect the tree. As such, let H(−S)+(k) correspond to H(−S) with the addition of a
row corresponding to a measurement k ∈ S . In this regard, since the system is rendered observ-
able, H(−S)+(k) is of full rank and H(−S)+(k)y will have one nonzero element corresponding to
the row of H(−S)+(k) pertaining to the added measurement k. This procedure can be repeated for

10Since Pij = −Pji, where Pij and Pji are the real power flow from bus i to bus j and from bus j to bus i,
respectively, over the same transmission line.



Anibal Sanjab Chapter 3. Observability and Data Injection Attacks in the Smart Grid 74

all k ∈ S. As such, adding the rows corresponding to S back to the Jacobian matrix results in
b = Hy in which only the elements of b corresponding to measurements in S are nonzero. As a
result, a = b is an attack vector in which only the observability set S is attacked and is proven to
be stealthy.

Now, we prove that, when an attack is stealthy, i.e. a = Hc, then the nonzero elements of a
correspond to a union of observability sets. In this regard, from Lemma 2, we know that removing
the nonzero elements of a = Hc will render the system unobservable, which implies that the
nonzero elements of a contain at least one observability set. Let S denote this observability set,
and let H(−S) be the system’s Jacobian matrix without the measurements in S. Removing S will
lead to two subsystems each of which is fully observable (i.e. it will split the spanning tree, T ,
into two subtrees each of which spans its own subgraph). LetH1 andH2 be the Jacobian matrices
of each of these two subsystems (we denote these subsystems as subsystem 1 and subsystem 2)
and let a1 and a2 correspond to the portions of a (excluding the measurements of the previously
removed observability set) corresponding to the measurements in H1 and H2, respectively. In
addition, let c1 and c2 correspond to the portions of c pertaining to nodes in subsystem 1 and
subsystem 2, respectively. Now, if ai for i ∈ {1, 2} has nonzero elements, this implies that
removing these elements will make subsystem i unobservable, which implies that the nonzero
elements of ai contain an observability set. Following this same logic, removing this observability
set will subsequently split subsystem i into two subsystems, each of which is observable. This
process can be continued recursively until no measurement m corresponding to a nonzero element
of a remains. Hence, this shows that when a = Hc, then the nonzero elements of a correspond
to a union of observability sets.

This proves both directions of the theorem, and hence, concludes the proof.

Theorem 4 provides an analytical graph-theoretic modeling of SDIAs using the fundamentals of
observability attacks introduced in Section 3.3. This enables a fundamental understanding of
SDIAs since it allows the characterization of the subset of measurements which would be com-
promised as part of an SDIA and hence enables defense against such attacks. In addition, this
analytical characterization of SDIAs enables a more in-depth analysis of such integrity attacks and
allows a unified derivation of analytical solutions to a wide-range of well-studied problems in this
field, as will be explored in Section 3.4.3.

Example 1. As an illustrative example of the result11 in Theorem 4, we consider the IEEE 14-bus
system, shown in Fig. 3.1, whose line transmission data can be found in [190]. We consider the
stealthy attack a = Hc with c = [1, 0, ..., 0]T , which corresponds to having the attack vector
equal to the first column of the Jacobian matrix H given by H(:, 1) = [ −16.9, 0, 0, 0, −16.9,
33.37, −5.05, −5.67, −5.75, zeros(1, 8) ]T . This attack consists of attacking measurement indices
{ 1, 5, 6, 7, 8, 9} which correspond to {F2,I1,I2,I3,I4,I5}. In this respect, we next verify whether
this attack is stealthy, following Theorem 4. To this end, Fig. 3.5 shows a portion of the critical sets

11In this example, we index the measurements in Fig. 3.1 from 1 to 17 in an incremental manner based on the
following order (F2, F8, F9, F15, I1, I2, I3, I4, I5, I6, I7, I9, I11, I12, I13, F17, F19 ).
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Figure 3.5: Critical sets – system measurements maximum matching and SDIAs.

- system measurements bipartite graph that is relevant to the attacked measurements. The post-
attack portion of Fig. 3.5 marks the nodes corresponding to measurements {F2,I1,I2,I3,I4,I5}, on
the right-side of the bipartite graph, as attacked (following the attack vector a). As a result, all the
edges connecting these nodes to the critical sets on the left-side of the bipartite graph are removed.
Then, building a maximum matching over the post-attack bipartite graph shows that, indeed, not all
the critical sets are matched. Hence, the removed measurements lead to a maximum matching that
does not include all critical sets. Furthermore, the addition of a node corresponding to any of the
attacked measurements, i.e. {F2,I1,I2,I3,I4,I5}, would lead to reincluding one of the unmatched
critical sets {CF2 , CI3 , CI5} in the maximum matching. This implies that the attack consists of a
union of observability sets which implies that the attack is, indeed, stealthy.

3.4.3 Unified Solution to Diverse SDIA Problems

Theorem 4 provides a basis for studying various SDIA problems from a graph-theoretic perspec-
tive. Indeed, this representation provides a unified approach for characterizing analytical solutions
to various widely-studied SDIA problems. In this regard, we next present a set of such SDIA
problems and show that the derivations leading to Theorem 4 enable the understanding and char-
acterization of analytical solutions to these problems.

SDIA analyses can be categorized based on whether the focus is on modeling the attack or the
defense strategies. As such, we first present two problems focusing on modeling attack strategies
followed by two problems focusing on the derivation of defense strategies to thwart SDIAs.
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Modeling SDIA Attack Strategies

Modeling SDIA attack strategies enables a vulnerability assessment of the system and allows an-
ticipating sophisticated attack strategies which can target the system. This, in turn, allows the
derivation of adequate defense strategies to thwart such attacks. As such, solving SDIA problems
focusing on modeling the attack strategies is indispensable to understanding such attacks and, as a
result, defending the system against them. We next focus on two problems which aim at modeling
potential attack strategies.

Problem 1: If measurement k ∈ M is attacked, what is the minimal set of measurements which
must be attacked along with k for the attack to be stealthy? In other words, Problem 1 seeks the
solution to the following optimization problem:

min
c
||Hc||0,

subject to: H(k, :)c = 1. (3.6)

Problem 1 has been proposed in [179] and studied in [180] and [181]. However, the derived
solution in [180] is based on an approximate relaxation method while the solution in [181] focuses
on the special case assuming that the measurement set consists of all injection measurements at all
buses and all line flow measurements at all transmission lines, which limits its generality. Instead,
here, we provide a general analytical characterization of the solution to this problem using our
developped graph-theoretic framework.

The solution to this problem enables a vulnerability assessment of each measurement against
SDIAs since it shows, for each measurement, what is the minimum number of measurements
which must be additionally compromised to potentially launch an SDIA against the system. This
can represent a security index of that measurement following which, a measurement with a lower
(higher) security index is more (less) vulnerable to SDIAs. In other words, a measurement which
has a low security index is more easily targeted by SDIAs since the adversary would not need to
comprise a large number of additional measurements to lunch the stealthy attack. Such knowledge
can be used to improve the security of the system, by adding redundancy or incorporating security
defense mechanisms at the meters which are deemed the most vulnerable to SDIAs.

The analytical graph-theoretic solution to Problem 1 is characterized in Theorem 5.

Theorem 5. The stealthy attack of smallest cardinality containing measurement k corresponds to
attacking the measurements of the critical set of lowest cardinality which contains k.

Proof. First, we show that the attack containing the critical set of lowest cardinality containing k
is, indeed, stealthy. Then, we prove that this attack corresponds to the stealthy attack containing k
that has a minimum cardinality.

By Theorem 4, for the attack to be stealthy, the removal of the attacked measurements must lead a
maximum matching over the critical sets - system measurements bipartite graph not to include all
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the critical sets (i.e. all the left-side nodes of the bipartite graph). In other words, the attack must
be composed of a union of obseravbility sets. In this respect, removing the critical set containing
k that is of smallest cardinality is, indeed, stealthy since removing a whole critical set will discon-
nect the node corresponding to this critical set (on the left-hand side of the critical sets - system
measurements bipartite graph) from the right-side of the bipartite graph which prevents this critical
measurement from being part of a maximum matching.

Next, we prove that there are no stealthy attacks containing k that have a smaller cardinality. In
this regard, for an attack containing k to be stealthy, it must prevent a critical set, in which k exists,
from being part of a maximum matching over the critical sets - system measurements bipartite
graph. To this end, a critical set would be excluded from a maximum matching in two cases: 1) if
all the measurements corresponding to this critical set are attacked, or 2) if all the measurements
corresponding to this critical set are part of a different matching, which assigns these measurements
to other critical sets.

In the first case, considering attacking all the measurements in a critical set, then attacking the
critical set that has the fewest number of measurements – as stated in this theorem – corresponds
to the minimum cardinality attack.

As for the second case, if a measurement k′ in a critical set containing k is matched – as part of a
maximum matching – to another critical set (we denote this set by Cp), then measurement p must
be attacked since, otherwise, Cp would have been matched to p sparing k to be matched to another
critical set to maximize the cardinality of the matching. In other words, matching a critical set
Cp with a measurement k′ 6= p while p is not attacked is contradictory to the assumption that this
matching is maximum. As a result, for a critical set C, such that k ∈ C, to be discarded from
the maximum matching, every measurement in C must be matched to another critical set. This
implies that at least one measurement of each of these critical sets is attacked. Thus, the number
of attacked measurements will be at least equal to the number of measurements within C for the
attack to be stealthy. Consequently, the stealthy attack containing k that has the lowest cardinality
corresponds to attacking only the measurements within the critical set containing k that has the
lowest cardinality.

Solving Problem 1 will also facilitate solving another key SDIA problem, referred to as Problem
2, and stated as follows.

Problem 2: What is the SDIA with the lowest cardinality? In other words, which SDIA is a solution
to:

min
a
||a||0,

subject to: a = Hc. (3.7)

Similarly to Problem 1, the solution to Problem 2 also provides a vulnerability assessment of the
system against SDIAs. In fact, Problem 1 focuses on finding the security index associated with
each measurement. On the other hand, Problem 2 focuses on the system as a whole by focusing on
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finding, in general, the sparsest data injection attack which can target the system and be stealthy.
This corresponds to a security index for the whole system. Indeed, this security index reflects the
amount of effort that an attacker must put to potentially launch an SDIAs against the system. A
low security index shows that, even when manipulating a small set of measurements, the attack
can be stealthy. In contrast, a high security index reflects the robustness of the system against
SDIAs since the attacker would need to concurrently manipulate a large number of measurements
to potentially launch a successful SDIA.

The solution to Problem 2 is provided in Proposition 1.

Proposition 1. The stealthy attack with the lowest cardinality corresponds to attacking the smallest
critical set.

Proof. This proof follows directly from the proof of Theorem 5. Indeed, since the stealthy attack
containing measurement k that is of smallest cardinality corresponds to the critical set of lowest
cardinality containing k, then searching for the global stealthy attack of lowest cardinality can be
limited to only critical sets. Based on this fact, the stealthy attack of lowest cardinality is the one
in which the measurements in the critical set of lowest cardinality are the only measurements that
are attacked (the only measurements having nonzero corresponding elements in the attack vector
a).

Here, we note that the solutions to Problem 1 and Problem 2 may not be unique.

Example 2. For example, by inspecting the critical sets in Table 3.1, we can solve Problem 1
and Problem 2 for the IEEE 14-bus system shown in Fig. 3.1. With regard to Problem 1, the results
of Theorem 5 can be readily applied to find the minimum stealthy attack containing a certain
measurement k. For example, the minimum stealthy attack containing measurement I4 corresponds
to attacking CI3 = {I3, I2, I4}, since that is the critical set of smallest cardinality containing I4.
As for Problem 2, the stealthy attack of lowest cardinality is one in which either CF15 = {F15, I7},
CI6 = {I6, I11}, or CI9 = {I9, I11} are attacked. As such, the minimum possible cardinality of a
stealthy attack for this IEEE 14-bus system is 2. To find such a stealthy attack, the basis of the null
space can be found for matricesH−(C

F15 ),H−(C
I6 ), orH−(C

I9 ). We refer to these vectors as nF15 ,
nI6 , and nI9 , respectively. As a result, these stealthy attack vectors of minimum cardinality can be
obtained as αHnF15 , αHnI6 , or αHnI9 , where α is a scalar multiplier.

Modeling SDIA Defense Strategies

The knowledge acquired from our introduced graph-theoretic framework enables the derivation of
adequate defense policies which can thwart potential SDIAs. In this regard, next, two fundamental
widely-studied problems for defending the system against SDIAs are presented and investigated in
Problem 3 and Problem 4.

Problem 3: What is the minimum set of measurements that need to be protected (i.e. made immune
to SDIAs) to guarantee no SDIAs can be successful?
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The solution to this problem enables finding a minimum-cost defense strategy to thwart all potential
SDIAs. Hence, this makes the system robust against all possible SDIAs. However, even though
the solution to this problem provides the minimum-cost defense strategy (assuming that protecting
each measurement is equally costly), for a practically large power system with several thousand
buses, such a defense strategy is likely to exceed any practical security budget.

The solution to Problem 3 is presented in Theorem 6.

Theorem 6. The minimum set of measurements that must be protected to guarantee that no SDIAs
can be successful corresponds to protecting all measurements inMC , i.e. all measurements that
are part of the original assignment function forming the spanning tree over the power system.

Proof. By Theorem 4, for an attack to be stealthy, it must lead to a critical set not to be matched as
part of a maximum matching over the critical sets - system measurements bipartite graph. Hence,
to guarantee that no attack can be stealthy, all critical sets must be guaranteed to be matched.
Thus, the minimum number of measurements to be protected must be at least equal to the number
of critical sets, which is equal to the number of measurements inMC . In this regard, protecting
every measurementm ∈MC results in protecting the minimum possible number of measurements
which guarantees that Cm can be matched to m for all m ∈ MC , hence, guaranteeing that no
stealthy attack can be successfully carried out.

This proof can also be carried out equivalently using the techniques of linear algebra. Indeed,
protecting all the measurements inMC will guarantee that these measurements will be part of the
Jacobian matrix H . Since these measurements form a spanning tree over the power system, their
rows in H are linearly independent. As such, let HC be the Jacobian matrix corresponding only
to measurements in MC , then HCc = 0 has no solution other than c = 0. The rows of HC

are a subset of the rows of H . As such, one cannot find an attack vector a = Hc such that all
the elements of a corresponding to the rows of HC are zero. Hence, one cannot find a stealthy
attack a = Hc which does not attack the measurements in MC . As a result, protecting these
measurements will guarantee that no stealthy attack can be carried out.

Here, the minimum defense set, solution to Problem 3, might not be unique. In other words, the
setMC might not be the only minimum set of measurements which, when defended, makes the
system immune to SDIAs. However, characterizing a solution to this problem provides important
information regarding the size of investments needed to make a power system immune to SDIAs.
In this regard, regardless of how high the number of measurements in an N -bus system is, the
number of measurements that must be protected to render the system immune to SDIAs is always
equal to N − 1. As such, by assessing the costs of reinforcing the security of each measurement
unit, the solution to Problem 3 enables the calculation of the cost needed to make the system
robust against SDIAs. However, as the solution implies, for practical power systems, securing this
number of measurements might exceed practical budget constraints.

Example 3. Applying the results in Theorem 6 to our treated IEEE 14-bus system case analysis,
protecting the measurements in the first column of Table 3.1 is the set of measurements of minimal
cardinality which when protected renders the IEEE 14-bus system in Fig. 3.1 immune to SDIAs.
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Theorem 4 and the solutions to Problem 1, Problem 2, and Problem 3 can be used to solve Problem
4 which was proposed in [29] and which is presented next. The solution to Problem 4 in [29]
was derived based on an l1 relaxation of the corresponding optimization problem which leads to
approximate, rather than generally accurate solutions.

Problem 4: What is the minimum set of measurements to protect as to force the attacker to manip-
ulate at least τa measurements to stay stealthy?

As discussed in Problem 3, making the system completely robust against SDIAs may be very costly
and exceed any practical budgetary constraints. As a result, rather than considering all theoretically
possible SDIAs, the solution to Problem 4 focuses on defending the system against a large subset
of practical SDIAs in which the attacker’s limited resources prevents its attack vector’s cardinality
from exceeding τa. In other words, an attacker might not be able to concurrently comprise more
than τa measurement units. This, hence, enables defending the system against a practically large
subset of potential SDIAs. In addition, the solution to this problem allows using the knowledge
about the resources of potential attackers – which can be potentially acquired from historical data
– to compute adequate defense policies against such attacks.

The solution to Problem 4 is presented in Proposition 2.

Proposition 2. A minimum set of measurements to protect so that no attack with cardinality
||a||0 < τa can be stealthy, corresponds to protecting one distinct measurement from each crit-
ical set whose cardinality is less than τa.

Proof. Solving Problem 4 entails ensuring that all critical sets of cardinality smaller than τa are
part of the maximum matching. Hence, when one distinct measurement in each of these sets is
secured, it is ensured that these critical sets will be part of a maximum matching over the critical
sets - system measurements bipartite graph. As a result, additional measurements would need
to be attacked to target critical sets of higher cardinality, if a stealthy attack were to be found,
which would require the attacker to manipulate more than τa measurements. Hence, the solution
to Problem 4 is a direct result of Theorem 6 but by considering critical sets that have cardinality
smaller than τa rather than all critical sets, as is the case in Theorem 6. As such, the rest of the
proof of Proposition 2 follows directly from the proof of Theorem 6.

This result is very important since it allows the defender to build on some knowledge that it has
about the capacity and resources of the attacker, to build a corresponding defense policy. In other
words, knowing that the attacker does not have the capacity to concurrently manipulate more than
τa measurements enables the defender to focus on defending a smaller set of measurements rather
than aiming to thwart any theoretically possible SDIA. This can lead to a significant reduction
in the needed resources for such a defense since, as shown in the solution of Problem 3, the lat-
ter defense policy requires committing a large volume of resources which can exceed practical
constraints.

Example 4. For our studied IEEE 14-bus system, consider that τa = 3. This indicates that a set
of measurements to protect must be found to ensure that no attacker can have a successful stealthy
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attack by attacking less than 3 measurements. The critical sets that have cardinality lower than 3
are CF15 , CI6 , and CI9 which all have a cardinality of 2. Now, we consider a distinct measurement
in each of these three sets, such that I7, I6, and I9. As a result, {I7, I6, I9} is a minimum set of
measurements which, when defended, no stealthy attack vector of cardinality less than τa = 3 can
be successfully launched.

As such, showing that SDIAs are a subset of our introduced observability attacks, enables using our
proposed graph-theoretic framework to model, understand, and thwart such types of cyber-physical
attacks. Indeed, the four problems that we have discussed show the way in which our developed
framework enables analytical characterization of the solutions to these various well-studied SIDA
problems. Such analytical characterization allows assessing the vulnerability of the system against
SDIAs as well as deriving adequate defense strategies.

3.5 Summary and Future Outlook

In this chapter, we have introduced a novel graph-theoretic framework which enables a fundamen-
tal modeling of observability attacks targeting power systems and have proven that the widely-
studied stealthy data injection attacks are a special case of such observability attacks. Based on
this proposed framework, we have characterized the analytical solutions to various central ob-
servability and data injection attack problems. These solutions aim at capturing potential attack
strategies as well as suggesting defense policies to thwart such attacks. In this respect, we have
shown that our derived framework enables characterization of the sparsest stealthy attack as well
as the sparsest stealthy attack including a certain measurement. With respect to defense policies,
we have shown that our graph-theoretic framework enables the analytical characterization of the
minimum measurement set which when defended guarantees thwarting any potential stealthy at-
tack as well as the minimum set of measurements whose defense guarantees that no attack below
a certain cardinality can be stealthy.

The proposed graph-theoretic framework provides a general analytical tool using which a wide
set of key observability attacks and data injection attacks problems can be modeled and analyzed,
and is not limited to the set of problem examples which are studied in this chapter. For example,
the problem of characterizing the sparsest stealthy attack containing a certain measurement can be
extended to studying the sparsest stealthy attack containing a certain set of measurements. Using
our proposed framework, a solution approach can be investigated to potentially derive analytical
solutions to this critical problem. The solution of this problem enables a risk assessment of the
power system by quantifying the risk of having a vulnerable set of measurements and the way that
such a vulnerability can be leveraged by an intelligent malicious attacker. Along the same lines,
for security assessment, a central problem is quantifying the sparsest stealthy attack possible when
a certain set of measurements is defended. The solution to this problem enables assessment of the
effectiveness and impact of an implemented defense strategy. This problem has been formalized
in [29]. However, the proposed solution approach in [29] relied on an l1 relaxation of the original
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optimization problem formulation which leads to approximate numerical solutions. However, our
introduced graph-theoretic framework can be used to attempt the characterization of analytical
solutions to this problem.

Beyond these one-sided attack and defense problems, the ability to analytically characterize at-
tack and defense policies using the proposed framework allows studying problems that involve
interactions between attackers and defenders from a game-theoretic perspective. Such analyses
can account for the opponent’s potential attack or defense strategies when designing, respectively,
defense policies or attack vectors. As a result, such analyses allow the modeling and investi-
gation of practical competitive attack vs. defense settings. This enables studying the effects of
sophisticated observability attacks and data injection attacks on the system as well as the impact
of proposed defense strategies within various application domains such as electricity markets, con-
gestion management, and contingency analysis, among others, while also taking the application of
our framework beyond the domain of power systems which motivated this study.



Chapter 4

Data Injection Attacks on Smart Grids with
Multiple Adversaries

4.1 Introduction

With the evolution of the traditional power system to a more interactive CPS, data injection attacks
have recently emerged as an exceedingly malicious type of cyber-attacks which can target the grid.
Using data injection, malicious adversaries can target the state estimator of a power system, by
targeting a number of measurement units, in order to alter the estimate of the real-time system
state [29, 76].

Data injection can significantly impact the overall well-being of the power system by targeting the
state estimator, an integral component of the grid which is used by the system operator to moni-
tor, protect, control, and economically operate the system [29, 76]. Using data injection attacks,
malicious adversaries can achieve a variety of goals that range from compromising the security of
the grid to impeding the real-time operation of the system or making financial profit through en-
ergy prices manipulation. Data injection attacks are inherently challenging due to their stealthiness
which makes the task of detecting them highly challenging [29]. In fact, data injection attacks can
modify the estimation process while remaining unnoticed by the operator.

Recently, data injection attacks have attracted significant attention [29, 74, 76, 78, 93]. The work
in [76] introduces a data injection scheme that can evade detection when compromising a number
of measurements. The authors in [29] propose an optimal data injection scheme and derive an
optimized subset of measurements that can be defended to face this attack. The work in [78]
targets coordinated attacks and discusses efforts for detecting those attacks. An analysis of the
economic effects of data injection on energy markets is discussed in [74]. In [93], a zero-sum game
is formulated between an attacker and a defender in which the attacker modifies an estimated line
flow to manipulate prices.

83
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While interesting, this existing body of literature [29, 74, 76, 78, 93] has primarily focused on data
injection attacks with a single attacker and assume no cost for attacking or defending the system.
However, in practice, due to their potential profitability and stealthiness, data injection attacks can
occur concurrently from multiple adversaries that can target various state estimation sensors. Due
to the networked nature of the smart grid, the manipulation of measurements in one part of the
system, by an adversary, has an overall effect on the system as a whole. Hence, an attack executed
by one attacker does not only impact the grid’s performance, but it also affects the benefits of
the other attackers. Such an interdependence can be, on the one hand, beneficial to the grid for
cases in which the different simultaneous attacks mitigate the severity of one another. On the other
hand, multiple attacks can lead to a more severe combined effect on the electric grid thus further
impacting its overall performance. Clearly, there is a necessity for a strategic modeling framework
to analyze and understand these interdependencies between attackers. Remarkably, to our best
knowledge, no work has previously analyzed the case of multiple adversaries.

The main contribution of this chapter is to introduce novel game-theoretic approaches to analyze
data injection attacks that involve a defender and multiple adversaries. In this regard, two ap-
proaches are proposed. In the first approach, we formulate the problem as a Stackelberg game in
which the defender (i.e. grid operator) acts as a leader having the ability to anticipate the actions of
the adversaries, which act as followers, prior to selecting a subset of measurements to defend. The
defender’s goal is to reduce the effect of potential attacks on the system while optimizing a utility
that captures both the benefits and costs of the chosen defense strategy. In response to the leader’s
strategy, the attackers play a noncooperative strategic game in which each attacker chooses its op-
timal attack scheme in order to maximize the tradeoff between the benefits, obtained from prices
manipulation, and costs associated with the attack. We prove the existence of a generalized Nash
equilibrium for the attacker’s game and we study the existence and properties of the overall game’s
Stackelberg equilibrium. To solve the game, we propose a distributed learning algorithm which we
prove to converge to a solution of the game using limited information that can be available to the
players. In the second approach, it is assumed that the defender cannot anticipate the actions of the
adversary. To this end, we use the framework of satisfaction equilibrium [151] through a proposed
hybrid satisfaction equilibrium - Nash equilibrium game model. In this approach, rather than an-
ticipating the attackers’ response and playing a strategy that optimizes its objective function, the
defender seeks a defense strategy that meets a certain performance constraint. We introduce an
equilibrium concept of this game and propose a search algorithm to find this equilibrium.

The performance of the proposed frameworks is assessed via numerical simulations using the IEEE
30-bus test system. Through the numerical analysis, we simulate the strategic interactions between
the attackers and defender over the test system. We show that by defending a minimal number of
measurements, the grid operator can enforce an equilibrium in which the attackers have no effect
on the system. In addition, our results shed the light on the adversarial behavior in between the
attackers. The results show that, at equilibrium, the attackers can choose attack strategies that
cancel each other out resulting in no effect on the grid. In addition, we analyze the equilibrium
of the hybrid game and compare the obtained solution to the Stackelberg one. In this regard, we
define a “price of information” index which compares the utility achieved by the defender under
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the Stackelberg model and the hybrid model. Hence, it reflects the loss that the defender can be
subject to due to lack of information about the potential reactions of the attackers to the different
defense strategies available to the defender.

The rest of this chapter is organized as follows. Section 4.2 presents the system model and problem
formulation. Section 4.3 introduces the formulated Stackelberg game and associated solution.
Section 4.4 introduces our proposed hybrid model and its solution concept. Section 4.5 provides
numerical results while a summary of the work in this chapter is presented in Section 4.6.

4.2 System Model and Problem Formulation

4.2.1 Energy Markets

Competitive energy markets’ architectures are often based on day ahead (DA) and real time (RT)
markets [191]. In the DA market, the system operator issues hourly-based locational marginal
prices (LMPs), µDA, for the next operating day based on the DA energy bids submitted by the
participants [191]. The market clearing process is performed by the grid operator through the
solution of a linearize Optimal Power Flow (DCOPF) which returns the optimal dispatch for each
of the generators participating in the market and the DA LMP at each bus. The most commonly
used DCOPF formulation is as follows [191]:

min
P

G∑
i=1

Ci(Pi), (4.1)

s.t.
N∑
i=1

(Pi −Di) = 0, (4.2)

Pmin
i 6 Pi 6 Pmax

i ,∀i ∈ {1, · · · , G}, (4.3)

N∑
i=1

(Pi −Di)χl,i 6 Fmax
l ,∀l ∈ {1, · · · , L}, (4.4)

−
N∑
i=1

(Pi −Di)χl,i 6 Fmax
l , ∀l ∈ {1, · · · , L}, (4.5)

where N,G and L represent, respectively, the number of buses, generators, and transmission lines.
Ci corresponds to the offer of generator i while Pi and Di are, respectively, the power injection
and load at a bus i. Thus, Pi = 0 (Di = 0) corresponds to the case in which no generator (or load)
is connected to bus i. The upper and lower limits on generator i’s output are denoted by Pmin

i and
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Pmax
i . Constraints (4.4) and (4.5) place a limit, Fmax

l , on the level of power that can flow over line
l. A reference direction is assigned to the power flow over each transmission line. In this regard, a
power flow opposing its assigned reference direction is represented by a negative quantity. Hence,
constraints (4.4) and (4.5) correspond to the thermal limit of a line in its reference and opposite
directions respectively. X is the generation shift factor matrix which defines the sensitivity of the
power flow over each line, F , to changes in power injection, P , at each bus:

F (L×1) = X(L×G) × P (G×1). (4.6)

Therefore the sensitivity of the flow over line l to a change in power injection at bus i is denoted
by χl,i.

In the RT market, actual real-time operating conditions estimated using the state estimator, in lieu
of the predictions in DA, are used through an ex-post model to compute the RT LMPs, µRT [191].
An incremental DCOPF is used to compute the RT LMPs and can be formulated as follows [191]:

min
∆P

G∑
i=1

CRTi (∆Pi), (4.7)

s.t.
N∑
i=1

(∆Pi) = 0, (4.8)

∆Pmin
i 6 ∆Pi 6 ∆Pmax

i , ∀i ∈ {1, · · · , G}, (4.9)

N∑
i=1

(∆Pi)χl,i 6 0, ∀l ∈ C+, (4.10)

−
N∑
i=1

(∆Pi)χl,i 6 0,∀l ∈ C−, (4.11)

where CRT
i is the RT offer of generator i which is computed using its RT power output and its

associated offer curve [191]. C+ (C−) is the set of congested lines which flow is in (opposite to)
their reference directions. ∆Pmax

i and ∆Pmin
i define a bandwidth which is employed to allow for

solution tolerance. In practice, here, we typically [192] set ∆Pmin
i = −2 MW and ∆Pmax

i =
+0.1 MW. A proposed alternative to using this feasibility bandwidth is also available in [192].

Thus, the DA and RT LMPs at each bus, i, are computed using the DA and ex-post DCOPFs.
The generated LMPs reflect, both, the incremental cost of energy at bus i and the congestion cost
associated with the contribution of this bus to the system congestion. A line is said to be congested
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if the flow of power over it reaches its maximum limit. The DA and RT LMPs at bus i are given
by:

µDAi = λ0 +
L∑
l=1

(λDA,−l − λDA,+l )χl,i, (4.12)

µRTi = λ0 +
∑
l∈Cl

(λRT,−l − λRT,+l )χl,i. (4.13)

Cl , {C+ ∪ C−} is the set of congested lines, in RT, obtained using the state estimator. Cl ⊆ L
where L = {1, · · · , L} is the set of all lines. λ0 corresponds to the Lagrange multiplier associated
with the energy balance constraints (4.2) and (4.8). λDA,+l and λDA,−l are the Lagrange multipliers
corresponding, respectively, to constraints (4.4) and (4.5) for line l ∈ L whereas λRT,+l and λRT,−l

are the Lagrange multipliers corresponding, respectively, to constraints (4.10) and (4.11) for line
l ∈ Cl. When l ∈ L but l /∈ Cl, λRT,+l = λRT,−l = 0. Moreover, when l ∈ C+, λRT,−l = 0; while
when l ∈ C−, λRT,+l = 0.

Computing the RT LMPs relies on the ex-post DCOPF formulation which depends on the output
of the state estimator. Hence, data injection attacks targeting the state estimation affects the LMPs
in (4.13). Next, we introduce the data attack model.

4.2.2 State Estimation and Data Injection Attacks

A power system state estimator uses multiple power measurements collected throughout the grid to
estimate the system states [176]. The relation between the measurement vector, z, and the vector
of system states, θ, in a linearized state estimation model (DC SE) is expressed as follows:

z = Hθ + e, (4.14)

whereH is the measurement Jacobian matrix and e is the vector of random errors assumed to fol-
low a normal distribution, N(0,R). Using a weighted least square (WLS) estimator the estimated
system states are given by [176]:

θ̂ = (HTR−1H)−1HTR−1z = Mz. (4.15)

Using the estimated states, an estimate of the measurement vector, ẑ, and residuals, r, can be
calculated as follows [176]:

ẑ = Hθ̂ = Sz, r = z − ẑ = (In − S)z = Wz, (4.16)

where In is the identity matrix of size (n×n), and n is the total number of collected measurements.
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When data injection attacks are concurrently carried out byM attackers in the setM = {1, . . . ,M},
the collected measurements are modified through the addition of their corresponding attack vectors
denoted by {z(1), z(2), ...,z(M)} resulting in the following altered measurements and residuals:

zatt = z +
M∑
i=1

z(i), ratt = r +W
M∑
m=1

z(m). (4.17)

In the case in which the measurement errors e follow a normal distribution, the WLS estimator
is a maximum likelihood estimator of location of the system states [176]. However, the WLS
estimator has a zero robustness against outliers. To overcome this drawback, outliers’ detection
and identification mechanisms are used so that the final state estimate is only based on “good
data”. The measurement residuals give an indication of the real and unknown measurement errors.
By replacing the expression of z from (4.14) in the expression of r in (4.16), the residuals can be
expressed in terms of the true errors as follows [176]:

r = We (4.18)

Thus, an analysis of the residuals allow for the detection and identification of bad data (outliers).
In this respect, bad data detection corresponds to determining whether the collected measurement
set contains bad data or not. On the other hand, bad data identification corresponds to identifying
which measurements may contain bad data. One should note here that outliers can stem from data
injection as well as other reasons such as meter biases or communication link failures [176].

Bad data detection is typically performed using a test known as the Chi-squares test over the sum
of the squares of the residuals [76,176]. In fact, when the measurement errors vector e is assumed
to follow a normal distribution, ||r||22 =

∑n
i=1 r

2
i follows a χ2 distribution with n − Nθ degrees

of freedom where Nθ is the number of states to be estimated [176]. Hence, for a measurement set
to be considered free from bad data, the residuals must satisfy ||r||2 ≤ τ where τ is a detection
threshold [76, 176]. In this respect, in the presence of M attackers, and since ||ratt||2 = ||r +
W
∑M

m=1 z
(m)||2 as shown in (4.17), each attacker m ∈ M should regulate Wz(m) to keep the

effect of the attacks on the residuals low to minimize the chance of being detected as outliers [76].

In the case where the Chi-squares test indicates the presence of bad data, various bad data identi-
fication and elimination tests can be employed such as the largest normalized residual test, or the
hypothesis testing identification (HTI), among others, to identify and eliminate the outliers [176].

In our model, each attacker m ∈ M aims at manipulating RT LMPs, µRT , to make financial
benefit via virtual bidding. Using virtual bidding, entities that do not own any physical generation
nor load can engage in the energy market settlements by submitting so-called virtual supply and
demand offers. Since these energy offers are virtual, an entity offering to buy (sell) virtual power
at a given bus in DA is required to sell (buy) that same amount of power at the same bus in RT.
Using such virtual bids, the grid operator aims at promoting liquidity in the energy market while,
on the other hand, virtual bidders aim to reap financial profit from possible mismatch between
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the DA and RT LMPs [191]. Using a data injection attack, a virtual bidder can, thus, manipulate
the RT LMPs to create a lucrative mismatch with respect to their DA counterparts. On the other
hand, to achieve pricing integrity, the system operator aims at protecting the system against such
attacks. The strategic interactions between the attackers and the defender (i.e. system operator) are
modeled and analyzed next.

4.3 Attackers and Defender Strategic Interaction

Data injection attacks involve interactions between M attackers, which are virtual bidders, and
one defender consisting of the grid operator. The defender chooses a set of measurements to
secure against potential attacks aiming at decreasing the aggregate effect of the multiple attacks
on the system. Securing measurements to block data injection attacks is discussed in [29] and
the techniques that can be implemented for securing those measurements are referred to in [29,
93], and [193]. In [29] and [193], protection of measurements is performed through encryption
of the associated sensors while, in [93], protection of measurements is performed through the
implementation of a set of highly secured measurement units which are assumed to provide more
robustness against data attacks. In any case, in practice, attackers can have the ability to detect or
watch which measurements are secured by the defender. In fact, a placement of new measurement
units can be physically noticeable by the attackers while encrypting the measurement sensors’
outputs can also be observed by a hacker attempting to read these outputs.

After observing which measurements are secured, each of the M attackers can choose, accord-
ingly, to carry out a data injection attack over a subset of measurements. Given the networked
nature of the electric grid, the actions and payoffs of the different attackers are interconnected thus
motivating a game-theoretic approach [146].

Hence, given that the defender acts first and the attackers react to the observed defender’s action,
the interaction between the defender and attackers is hierarchical. Thus, we formulate a single
leader, multi-follower Stackelberg game [146] between the defender and theM attackers to capture
and analyze the strategic interaction between the two. In this game, the defender acts as a leader
who selects a set of measurements to defend while the adversaries interact with one another using
a followers noncooperative game to identify the optimal attack in response to the strategy of the
defender. By observing or predicting the ways in which the attackers react to its defense strategy,
the leader chooses its optimal defense action. Next, we first analyze and solve the followers game
and then find the Stackelberg solution.

4.3.1 Attackers’ Noncooperative Game Formulation

We formulate a strategic noncooperative game to analyze the optimal decision making of the M
attackers in response to any arbitrary defender strategy. This game is formulated in its normal form
as follows: Ξ = 〈M, (Z(i))i∈M, (Ui)i∈M〉, whereM is the set of M attackers, Z(i) is the set of
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actions (attack vectors z(i) ∈ Z(i)) available to attacker i ∈ M, and Ui is the utility function of
attacker i. Thus, each attacker, m ∈ M, selects an attack vector, z(m) ∈ Z(m) that maximizes
its utility Um. Let Km denote the subset of measurements that m can attack. Then, Z(m) can be
represented by a column vector with elements equal to 0 except for those in Km which can take
values within a compact range reflecting the range of magnitude of the attack.

The utility function of each attacker reflects the financial benefit obtained by virtual bidding. Using
virtual bidding, each attacker m buys and sells Pm MW at, respectively, buses im and jm in DA
while, conversely in RT, attackerm sells and buys Pm MW at, respectively, buses im and jm. Thus,
the goal of attacker m ∈M is to optimize the following (Problem 1):

max
z(m)∈Z(m)

Um(z(m), z−(m))=
[
(µRTim −µ

DA
im )+ (µDAjm −µ

RT
jm )
]
Pm−cm(z(m)), (4.19)

s.t. ‖Wz(m)‖2 +
M∑

l=1,l 6=m

‖Wz(l)‖2 6 εm, (4.20)

where cm(z(m)) is the cost of attack, and z−(m) denotes the strategy vector of all players except
m. The number of measurements that can be attacked concurrently by m as well as the attack
levels (the level of modification of a measurement) are limited by Z(m). Since ||ratt||2 = ||r +
W
∑M

m=1 z
(m)||2 ≤ ||r||2+ ||Wz(m)||2+

∑M
l=1,l 6=m ||Wz(l)||2, m ∈M chooses z(m) as in (4.20),

where εm is a chosen threshold, to minimize the chance of the attack of being detected as outliers.

4.3.2 Attackers’ Game Analysis

Due to the networked nature of the electric grid, the m attackers’ actions are interdependent. In
fact, by altering a set of measurements, an attacker manipulates the whole estimation outcome and,
thus, affects the actions as well as the payoffs of the other attackers. In the event of concurrent
attacks by M attackers, the resulting estimates, ẑatt, are computed as follows:

ẑatt = ẑ +
M∑
m=1

Sz(m) ⇒ ∆ẑ =
M∑
m=1

Sz(m), (4.21)

where ∆ẑ represents the change in the generated estimates due to the M attacks. Likewise, the
overall change in the measurement residuals due to the M attacks can be expressed as follows:

∆r = W

M∑
m=1

z(m). (4.22)

Consequently, the various attackers in the system can impair the ability of attacker m to success-
fully manipulate a targeted measurement zi as expressed in Remark 2.

Remark 2. Depending on the targeted measurements, the collective impact of theM attacks can be
either constructive for the attackers by helping each one of them to achieve its goal, or destructive,
attenuating the global effect of these attacks on the system.
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In fact, considering the case of two attackers in which attacker 1’s (attacker 2’s) aim is to increase
the estimated flow, ẑi (ẑj), over a line li (lj) in order to create a false congestion. The objective of
attacker 1 (attacker 2) is, hence, to achieve ∆ẑi > Fmax

li
− ẑi (∆ẑj > Fmax

lj
− ẑj). Following from

(4.21), the change introduced to ẑi and ẑj by the two attacks is stated as follows:

∆ẑi = si,iz
(1)
i + si,jz

(2)
j , ∆ẑj = sj,jz

(2)
j + sj,iz

(1)
i , (4.23)

where si,j denotes element (i, j) of matrix S. When the measurement errors are independent and
identically distributed (i.e. R = σ2In), S is a symmetric matrix. This property can be proven
based on (4.15) and (4.16) through showing that ST = S whenR = σ2In. Since S is symmetric,
si,j = sj,i. In the event where si,j < 0, both attackers’ actions attenuate the effect of one another.
In fact, since si,j < 0, z(2)j (z(1)i ) reduces ∆ẑi (∆ẑj) preventing it from causing any congestion
over line li (lj). In the contrary, if sij > 0, each of the attackers’ actions would assist the other in
achieving its objective. This result can be trivially generalized to the case of M attackers.

Moreover, the payoffs of the different attackers (i.e. virtual bidders) are also significantly interde-
pendent. In fact, as shown next, an attacker can collect financial benefit or endure loses due to the
strategies played by other attackers.

Remark 3. The payoff of each attacker, m, is dependent on the chosen attack strategies of other
attackers. Thus, based on its virtual biding nodes, m can achieve a positive or negative payoff
depending on attacks carried out by other attackers.

In this regard, following from (4.19), attacker m’s payoff in the presence of M attackers is gov-
erned by:

ζm = (µRTim − µ
DA
im ) + (µDAjm − µ

RT
jm ). (4.24)

Replacing the expressions of the DA and RT LMPs from (4.12) and (4.13) in (4.24) yields:

ζm=

L∑
l=1

[(χl,jm−χl,im)×((λ
DA,−
l − λDA,+l )+(λRT,+l −λRT,−l ))]. (4.25)

As a result, following the sign of (χl,jm − χl,im), determined by the choice of virtual bid nodes im
and jm, an attack modifying the congestion status of a line l between DA and RT can introduce a
positive or negative payoff to attacker m.

4.3.3 Attackers’ Game Solution

The attackers’ payoff in (4.19) is a function of DA and RT LMPs. These LMPs are indirectly con-
trolled by the attack vector, z(m), which can control the existence of congestion over transmission
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lines and hence eventually affect the LMPs in (4.12) and (4.13). Thus, (4.19) can be rewritten
using (4.12) and (4.13) as:

Um(z(m), z−(m)) = ζm Pm − cm(z(m)), (4.26)

where ζm is given by (4.25). By dropping Pm for being a constant, the objective of attacker m is
hence to

max
z(m)∈Z(m)

ζm − cm(z(m)). (4.27)

We define the two sets of lines L+
m and L−m such that L+

m = {l ∈ L|χl,jm − χl,im > 0} and
L−m = {l ∈ L|χl,jm − χl,im < 0}. Moreover, let LR and LO, such that L = {LR ∪ LO}, be the
sets of lines over which the power flows in, respectively, the reference and opposite to reference
directions.

Attacker m seeks to congest or decongest lines in a way that maximizes (4.27). In this regard, for
a line l ∈ L+

m, i.e. χl,jm − χl,im > 0, attacker m profits from creating a congestion over l in the
reference direction, causing λRT,+l to be positive. Thus, m aims at creating a congestion over a
line l ∈ {L+

m ∩ LR}. Similarly, for l ∈ L−m, m benefits from causing a congestion over line l in
the direction opposite to its reference direction, causing λRT,−l to be positive. Accordingly, m aims
a creating a congestion over a line l ∈ {L−m ∩ LO}. Combining these two observations, attacker
m aims at creating congestions over lines l ∈ {(L+

m ∩ LR) ∪ (L−m ∩ LO)}. In a similar manner,
an attacker would also seek to remove congestion from a line l in order to set its λRT,+l or λRT,−l

to zero in a way that maximizes (4.27). To this end, m aims at removing congestions from lines
l ∈ {(L+

m ∩ LO) ∪ (L−m ∩ LR)}.

However, due to the presence of measurement errors, an attacker cannot be completely certain that
its attack will lead to the creation or removal of congestion over a given line. In fact, given the
estimated states in the presence of attack, θ̂

att
, the power flow estimates, F̂

att
, can be obtained using

the linear matrix denoted by HF relating the power flows to the system states: F̂
att

= HF θ̂
att

.
Using the expressions of θ̂ given by (4.15),

F̂
att

= HFM (z +
M∑
i=1

z(i)) = F̂ +HFM
M∑
i=1

z(i). (4.28)

Replacing z by its expression given by (4.14) and noting thatMH reduces to the identity matrix,
F̂

att
can be expressed as:

F̂
att

= HFθ +HFMe+HFM

M∑
i=1

z(i). (4.29)

HFθ represents the true flow denoted by F t. Given that e ∼ N(0,R), F̂
att

is also a random
variable that is also Gaussian distributed with the following expected value and variance:

E[F̂
att

] = F t +HFM

M∑
i=1

z(i), V [F̂
att

] = HFMR. (4.30)
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Given that F̂
att

is a vector of random variables, attacker m aims at altering the expected value
of F̂

att
to achieve, with highest possible probability, the intended congestion creation or removal

to maximize (4.26). In other words, to create (or remove) a congestion over a line l, attacker m
designs its attack so that E[F̂ att

l ] > Fmax
l + δm (or E[F̂ att

l ] 6 Fmax
l − δm) and aims at maximizing

this δm to increase its chances for achieving its congestion. Thus, attacker m aims to solve the
following optimization problem where SF ,HFM (Problem 2):

max
z(m),δkm ,αkm

∑
km∈{L+m∪L−m}

(δkm − γαkm)− cm(z(m)) (4.31)

s.t. ‖Wz(m)‖2 +
M∑

l=1,l 6=m

‖Wz(l)‖2 6 εm, (4.32)

F̂km + SFkmz
(m) +

∑
p∈M\{m}

SFkmz
(p) > Fmax

km + δkm − αkm

∀km ∈ {L+
m ∩ LR}, (4.33)

F̂km + SFkmz
(m) +

∑
p∈M\{m}

SFkmz
(p) 6 −(Fmax

km + δkm) + αkm

∀km ∈ {L−m ∩ LO}, (4.34)

F̂km + SFkmz
(m) +

∑
p∈M\{m}

SFkmz
(p) 6 Fmax

km − δkm + αkm

∀km ∈ {L−m ∩ LR}, (4.35)

F̂km + SFkmz
(m) +

∑
p∈M\{m}

SFkmz
(p) > −(Fmax

km − δkm)− αkm

∀km ∈ {L+
m ∩ LO}, (4.36)

0 ≤ δkm 6 βFmax
km ∀δkm , 0 ≤ αkm 6 β′Fmax

km ∀αkm , (4.37)

where z(m) ∈ Z(m). The constraints in (4.37) put some limits on the variables δkm and αkm relative
to the corresponding flow limit Fmax

km
where β and β′ correspond to the fraction of Fmax

km
that δkm

and αkm can take respectively. Thus, attacker m aims at maximizing δkm to increase the chance of
creating congestions over lines km ∈ {(L+

m ∩ LR) ∪ (L−m ∩ LO)} and removing congestions from
lines km ∈ {(L+

m ∩ LO) ∪ (L−m ∩ LR)}.

On the other hand, due to resource limitation, an attacker cannot concurrently achieve all its fa-
vorable congestions. Thus, the αkm variables are relaxation variables to ensure feasibility of the
optimization problem. However, this relaxation is accompanied with a penalty factor, γ, present in
the objective function which reflects a decrease in the objective function of the attacker for the case
in which a beneficial congestion creation or removal is not performed. Hence, when such a con-
gestion manipulation is feasible, this penalty factor ensures that the attacker has a high incentive
to perform this congestion manipulation.

Moreover, similarly to (4.19), cm(z(m)) is the cost associated with the attack. This cost function
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can be represented as a scaled norm of the attack vector, where κm is the scaling factor and ml is
the length of vector z(m):

cm(z(m)) = κm

ml∑
i=1

(z
(m)
i )2. (4.38)

Following this formulation, one can see that the constraints of the optimization problems of each
of the attackers are coupled. In other words, the strategy space of each attacker depends on the
strategies selected by the other attackers. Games in which the constraints of the different players
are coupled are known as generalized Nash equilibrium problems (GNEP). A widely used solution
concept of these games is known as the generalized Nash equilibrium (GNE) which is defined as
follows [194]:

Definition 10. In a game of N players in which the control variable, i.e. strategy, of each player
i ∈ {1, ..., N}, is denoted by xi ∈ Rni and utility function is denoted by Ui : Rn1+...+nN → R, a
GNE is a state of the game in which each player aims at

max
xi

Ui(x
i,x∗,−i) s.t. (xi,x∗,−i) ∈ X , (4.39)

where x∗,−i denotes the optimal strategies of all other players except for player i and X is the
shared strategy space in between the N players. In other words, as a response to optimal chosen
actions of other players, a player aims at choosing the strategy, in the restricting subset dictated
by the choice of the other players, that maximizes its own utility.

We next prove the existence of a GNE for the attackers’ game.

Theorem 7. The attackers’ game has at least one GNE.

Proof. Since δkm and αkm are linear functions and −cm(z(m)) is a summation of strictly concave
functions, as shown in (4.38), each attacker’s utility function given in (4.31) is a continuous and
strictly concave function over the attackers’ strategy profile. Moreover, Zm is a convex and com-
pact set, and as shown in (4.37), the sets in which δkm and αkm lie are also compact and convex.
Thus, since a GNEP having compact and convex action sets as well as continuous and quasi-
concave utility functions has at least one GNE [195] [196, Theorem 4.1], our attackers’ game has
at least one GNE.

The solution to GNEP problems can be obtained using a number of widely adopted solution con-
cepts that are available in literature [194, 196, 197] where the applicability of each technique de-
pends on the characteristics of the utility functions and action spaces. Given the strict concavity
of the utility function of each attacker’s problem and the convexity of the action space, such tech-
niques converge to a GNE for our derived formulation.
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4.3.4 Defender’s Side Analysis

Under a given equilibrium of the followers, the leader (grid operator) selects a defense vector a0

that determines which measurements are to be made secure and able to block potential attacks.
The objective of the defender is to minimize a cost function capturing the variation between the
DA and RT LMPs, on all N buses in the system, as follows:

min
a0∈A0

U0(a0,a−0)=PL

√√√√ 1

N

N∑
i=1

(µRTi −µDAi )2+c0(a0), (4.40)

s.t ‖a0‖0 6 B0, (4.41)

where c0(a0) is the cost of defense, PL is the total system load and B0 is the limit on the number
of measurements that the operator can defend simultaneously. In (4.40), µRTi depends on the
strategies taken by the defender, a0, and attackers, a−0 , {z(1), z(2), ...,z(M)}.

The Stackelberg solution concept is adequate for games with hierarchy in which the leader en-
forces its strategy and the followers respond, rationally (i.e. optimally), to the leader’s strat-
egy [146]. We denote the optimal response of the attackers to action a0 played by the defender by
Ratt(a0) , {z(1)∗(a0), z

(2)∗(a0), · · · , z(M)∗(a0)}. This optimal strategy denotes the equilibrium
strategy profile of the attackers as a response to the defender’s strategy. In this regard, a∗0 ∈ A0 is
a Stackelberg equilibrium if it minimizes the leader’s (i.e. defender’s) utility function U0. In other
words,

U0(a
∗
0,Ratt(a∗0)) 6 U0(a0,Ratt(a0)) ∀a0 ∈ A0. (4.42)

A Stackelberg equilibrium is guaranteed to exist and be unique if the optimal response of the
followers is unique in response to every action of the leader. However, Theorem 7 proves the
existence of at least one GNE for the attackers’ game. Hence, the followers can have multiple
optimal responses to a leaders strategy. In this case, the leader can rank the GNEs corresponding
to each strategy based on their impact on its utility and retain the one that leads to the worst utility
(i.e. maximal utility given that the defender is a utility minimzer). The leader then selects the
policy that minimizes this maximal utility. This is known as a hierarchical equilibrium (HE) [146].
In other words, a0 ∈ A0 is a hierarchical equilibrium strategy for the defender if:

max
a−0∈Ratt(a∗0)

U0(a
∗
0,a−0) = min

a0∈A0

max
a−0∈Ratt(a0)

U0(a0,a−0). (4.43)

4.3.5 Distributed Learning Algorithm

Here, we provide a methodology for finding a hierarchical equilibrium of the defender-attackers
game as defined by (4.43).
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We first consider the attackers subgame. To find an equilibrium that can be reached by the attackers,
we propose a distributed learning algorithm, based on the framework of learning automata that
was first analyzed in [198]. The main drivers behind this algorithm are as follows. First, this
algorithm is fully distributed in the sense that each attacker is only required to know its own action
space, and not the shared one, and the observation of its own payoff after choosing an action.
In this regard, knowledge of the action spaces of other attackers or even their existence is not
required. Second, since the attackers’ game might admit multiple GNEs, the use of this algorithm,
emulating practical smart grids security settings, enables the characterization of the GNE(s) that
can be actually reached in practice.

The proposed learning algorithm is shown in Algorithm 2. In this algorithm, each attacker m
first initializes a strategy vector q(m) containing a probability distribution over its attack space1.
For instance, q(m)

z(m)(t) corresponds to the probability that attacker m chooses attack z(m) at time
instant t. Then, at time instant t, each attacker chooses an attack randomly and independently from
its attack space following the probability distribution available through its strategy vector. The
collection of the attackers’ actions at time instant t results in a payoff for each attacker denoted by
rm(t). rm(t) is a positive normalized value which corresponds to a mapping from [Umin

m , Umax
m ] →

[0, 1] where Umin
m and Umax

m are the minimum and maximum achievable utilities by m. Based on
the payoff that it receives at time instant i, each attacker, m ∈ M, updates its strategy vector as
follows:

q(m)(t+ 1) = q(m)(t) + b rm(t)(e(m)(t)− q(m)(t)), (4.44)

where b is an arbitrarily small positive constant and e(m)(t) is a column vector of length equal to the
size of the action set of attacker m. e(m)(t) is a vector whose elements are equal to 0 except for the
element corresponding to the action that was selected at time instant t. The element corresponding
to the selected action will have a value of 1. Thus, given that the jth attack was selected by attacker
m at time instant t; then, e(m)

j (t) = 1 and e(m)
k (t) = 0 for k 6= j. This updating scheme is known as

a linear reward-inaction (LR−I) scheme [198]. Hence, with every iteration, the strategy vector of
each attacker is updated and the algorithm repeats until each of the attackers’ strategy vectors has
all elements equal to 0 except for one element which is equal to 1. Such a strategy vector shows
which of the strategies is to be chosen by each attacker. The collection of these attacks (having a
probability of 1 each) corresponds to the game’s equilibrium. This algorithm has been discussed
in [198,199] where it has been proven that, for an arbitrarily small b, this algorithm asymptotically
converges to a pure strategy Nash equilibrium (PSNE) when the game admits a PSNE.

Definition 11. Following the notations of Definition 10 a PSNE is a state of the game in which
each player aims at

max
xi

Ui(x
i,x∗,−i) s.t. xi ∈ Xi, (4.45)

where, on the contrary with GNEP, Xi is player i’s own strategy space which is independent of
other players.

1This algorithm requires decritization of the action space of the attackers; our discretization approach is provided
in Section 4.5.
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Algorithm 2 Distributed Learning Automata
Input: Number of attackers M

Action space of each attacker Z(m)

Output: Strategy vector of each player q(m)

1: Initialize q(m)(0)
2: while Not Converged do
3: Randomly select z(m)(t) based on q(m)(t)
4: Collect payoff rm(t)
5: Update strategy vector

q(m)(t+ 1) = q(m)(t) + b rm(t)
(
e(m)(t)− q(m)(t)

)
6: Check Convergence
7: if Converged then
8: Break
9: end if

10: end while
11: return Strategy vector q(m)

Thus, the main difference between a GNE and a PSNE is that the GNE is an optimal action profile
in which each action does not violate coupled constraints with other players. Thus, given that
Algorithm 2 is guaranteed to converge to a PSNE, proving that this PSNE will never violate the
coupled constraints is enough to prove the convergence to a GNE.

Theorem 8. When applied to Problem 1, Algorithm 2 is guaranteed to asymptotically converge to
a GNE when the step size b is chosen to be arbitrarily small.

Proof. For a strategy z(m)∗ to be a best response strategy (BR) for attacker m, it needs to satisfy
the property Um(z(m)∗ , z−(m)) ≥ Um(z(m), z−(m))∀z(m) ∈ Z(m). A PSNE is hence a state of the
game in which all players play BR strategies with respect to one another. Thus, a strategy that is
not a BR strategy cannot be a PSNE strategy.

However, a strategy z(m) that violates the residual threshold constraints in (4.20) cannot be a BR
strategy. In fact, consider the case in which attacker m attacks only one measurement zi and its
attack is denoted by z(m)

i . If this attack violates the residual threshold of zi, zi will be identified as
outlier and discarded from the measurement set. Thus, from (4.27), this results in

Um(z
(m)
i , z−(m)) = ζmPm − cm(z(m))

< ζmPm = Um(0, z−(m)).

Thus, z(m) is not a BR since not launching an attack at all returns a higher Um. Hence, all actions
that violate the coupled constraints are dominated by the alternative of not carrying out an attack at
all and hence cannot correspond to BR strategies. As a result, a PSNE is guaranteed not to violate
the coupled constraints in (4.20) and hence this PSNE is a GNE of the game. Since all PSNEs
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are GNEs and that algorithm 2 asymptotically converges to a PSNE for a small b it, as a result,
converges to a GNE of our game.

To be able to choose a hierarchical equilibrium strategy, a defender needs to anticipate the worst
case GNE of the attacker to each defense strategy. This anticipation can be done through: i)
repeating the learning algorithm of the attackers, Algorithm 1, starting from different initial con-
ditions to find all possible GNEs from which worst case GNEs can be extracted, ii) using one of
the various algorithms tailored to find solutions of GNE problems [194, 196, 197], iii) analytical
derivation based on its full knowledge of the cyber-physical system model, energy market model
and available past data.

When being able to anticipate all worst case GNEs of the attackers, the defender chooses the strat-
egy that results in the best worst case GNE. This strategy and its corresponding GNE corresponds
to the HE of the game.

4.4 Game Model under Limited Information

Thus far, we assumed that the defender can anticipate all worst case GNEs of the attackers. How-
ever, in some instances, the defender does not have enough knowledge to anticipate the reaction
of the attackers. Thus, it cannot seek a strategy that minimizes its utility when the reaction of the
followers to any of its actions is unknown. As a result, we employ the framework of satisfaction
equilibrium (SE) [151, 172]. Under the satisfaction framework, rather than minimizing its objec-
tive function (4.40), given a number of measurements that can be defended concurrently, b0, the
defender aims at keeping the overall changes in the LMPs at all buses under a desired threshold
Γ0:

r0(a0,a−0) =
N∑
i=1

(µRTi − µDAi )2 ≤ Γ0. (4.46)

Given our hierarchical model, we present a hybrid SE-Nash model in which the defender aims
at choosing an action that satisfies its performance requirement given potential reaction of the
attackers while the attackers observe the action of the defender and play a noncooperative game
in which each attacker aims at maximizing its utility. Extending the SE logic to the attackers
game, an attacker is satisfied by playing one of its BR strategies facing the actions chosen by other
attackers and the defender. We denote an equilibrium of this hybrid model as a hybrid hierarchical
equilibrium (HHE).

Definition 12. A strategy profile (a∗0, z
(1)∗ , ...,z(M)∗) is an HHE if r0(a∗0,a

∗
−0) ≤ Γ0

and Um(z(m)∗ , z−(m)∗) > Um(z(m), z−(m)∗) ∀z(m) ∈ Z(m) and m ∈ {1, ...,M}.

With a proper choice of Γ0 this game is guaranteed to have at least one HHE. In fact, if none of the
actions available to the defender leads to meeting its satisfaction level then either the satisfaction



Anibal Sanjab Chapter 4. Data Injection Attacks on Smart Grids with Multiple Adversaries 99

threshold needs to be increased or more resources should be employed so that a larger number of
measurements can be concurrently secured. When the leader chooses an action that satisfies (4.46)
it has no incentive to deviate from it. The attackers will respond to this strategy by playing a
GNE. Hence, the attackers would also have no incentive to deviate from this GNE. As a result, the
satisfaction strategy of the defender and its GNE response by the attackers correspond to an HHE
of this hybrid game.

Given the lack of knowledge about the adversaries, the defender has to learn the action(s) that
insure the satisfaction of its constraint through trial and observation. To this end, to find a strategy
that satisfies its performance constraint, the defender can adopt the following search algorithm:

i) For a maximum number of iterations, N0, the defender starts by choosing an action from
its strategy space A0 following a uniform probability distribution f 0 over this action space.
The followers observe this action and react by playing a noncooperative game whose GNE
is obtainable via Algorithm 1.

ii) The leader observes if the action it had taken led to the satisfaction of its performance con-
straint. If this is the case, the strategy is hence deemed satisfactory and the leader has no
incentive to deviate from it. The followers response to the leader’s satisfaction action is a
GNE and hence the followers have no incentive to deviate from their response as well. Thus,
this results in an equilibrium.

iii) If the action that the defender had chosen did not lead to the satisfaction of its constraint,
another action is randomly chosen from its strategy space and the process repeats.

This algorithm will eventually find a HHE since, for a large number of iterations and given that at
least one action exists in its action space that satisfies the defender’s threshold, this action would
eventually be randomly chosen with a probability that is extremely close to 1. Assume the number
of vulnerable measurements to be equal to V and that the defender secures b0 < V measurements
concurrently. Its action space has then a cardinality |A0| = V !/(b0!(V − b0)!). Assume that n0

of the alternatives achieve r0 ≤ Γ0. Choosing uniformly between the alternatives, the probability
of choosing an action that satisfies the defender is equal to p0 = n0/|A0|. Thus, the probability
of not finding a satisfaction action in N0 iterations, i.e. trials, is given by (1 − p0)N0; and hence,
the probability of finding a satisfaction action in N0 iterations is given by p∗0 = 1 − (1 − p0)N0 .
Moreover, the expected number of iterations needed to find a satisfaction equilibrium strategy is
equal to µ0 = 1/p0 while the variance of that number is equal to v0 = (1 − p0)/p

2
0. Hence,

significantly increasing Γ0 will typically increase n0 leading to an increase in p0 and p∗0 and a
decrease in µ0 and v0. As a result, one can see the conflicting effect between the quality of the
found solution, reflected by how low the satisfaction threshold Γ0 is, and the speed of finding a
solution. Reducing the required satisfaction quality leads to finding a solution faster while a higher
satisfaction quality requirement (lower Γ0) leads to a slower identification of a solution.
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Table 4.1: Attackers’ Virtual Bidding Configuration

Attacker VB Bus 1 VB Bus2 Target Line
Attacker 1 Bus 3 Bus 4 Line 4
Attacker 2 Bus 4 Bus 12 Line 15
Attacker 3 Bus 6 Bus 7 Line 9

4.5 Numerical Results and Analysis

For performance evaluation, we consider three data injection attackers and one defender interacting
over the IEEE 30-bus test system which represents a segment of the American Electric Power
System [200, 201].

In our numerical setting, each attacker is assumed to have a subset of measurements comprising
three measurements that it can attack. In particular, attacker 1 can attack line flow measurements
over lines 3, 4 and 7, attacker 2 can attack line flow measurements over lines 14, 15 and 16, and
attacker 3 can attack line flow measurements over lines 5, 9 and 11. The attack level on any of the
measurements is assumed to have one of the following power levels (in MW): {−3.5, 2, 0, 2, 3.5}.
The amount of virtual power that each attacker sells or buys is assumed to be equal to 100 MW
and its attack cost is as shown in (4.38) where κm = 0.25. The DA and RT virtual bidding (VB)
information of the different attackers are shown in Table 4.1. In this table, VB Bus 1 corresponds to
the bus at which an attacker sells energy in DA (respectively buys in RT) and VB Bus 2 corresponds
to the bus at which this attacker buys energy in DA (respectively sells in RT). The target line column
corresponds to the line connecting the two VB buses which the attacker aims to congest. In our
simulations, we assume that the system experiences no congestion in DA and that each attacker
primarily aims at creating a fake estimated congestion over its target line so as to reap financial
benefit2.

On the other hand, the defender decides on a subset of measurements to secure out of all the
measurements in the system. In our simulations, we assume that a measurement device is placed
on every bus and every line in the system so that every power injection and every line flow is
measured.

In Fig. 4.1 we show the effect of each attacker’s optimal attack, when no defense or other attackers
are present in the system, on the RT LMPs. As can be seen from Fig. 4.1, assuming that only one
attacker attacks at a time, the action of attacker 3 yields the most detrimental effect on the system.
This can be also seen from Fig. 4.2 in which the impact of each of the attacks on the system is
shown. The global effect of any attack on the system is captured by the defender’s utility function
given in (4.40). Fig. 4.2 shows indeed that the attack of 3 has the highest global effect on the

2Since our main focus is on the attackers’ and defender’s strategies, it is assumed that all market participants abide
by their DA schedules and, except for the attacks and defense, no change in system conditions occurs between DA and
RT. Thus, in case of no attacks, the DA and RT LMPs match.
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Figure 4.1: System LMPs under a unique adversary’s optimal attack with no defense

system followed by that of attacker 1 and of attacker 2 respectively. In fact, the defender’s loss
under the attack of attacker 3 is equal to $44.69 as compared to $11.61 under that of attacker 1 and
$5.74 under that of attacker 2.

Fig. 4.3 shows the effect that a congestion over the target line of attacker j has on the payoff of
attacker i denoted as Ui,j . Accordingly, Fig. 4.3 shows how the attack of an attacker affects the
payoffs of the others. To this end, the attackers appear to be in a perfectly conflicting situation
since fulfilling the purpose of an attacker i results in a negative payoff to all other attackers.

Next, we consider the strategic interactions between the three attackers and the defender based
on our Stackelberg model. In this regard, we find the HE of the game, and the underlying GNE
of the attackers, when the defender defends an increasing number of measurements as shown in
Table 4.2. We, namely, treat the cases in which the number of measurements that can be defended
concurrently, B0, is 0, 1 and 2. The attackers’ optimal strategies are represented in a vector con-
taining their respective optimal attack levels (in MW) such that for attacker 1 the attacked levels
correspond to additive power flows over (line 3, line 4, line 7), for attacker 2 to additive power flows
over (line 14, line 15, line 16) and for attacker 3 to additive power flows over (line 5, line 9, line 11).

Given that a congestion occurring over line 9 has the largest impact on the system, one can intu-
itively expect the defender to secure the measurement over that line when only one measurement
can be secured (i.e. B0 = 1). Indeed, from Table 4.2, we can see that the HE corresponds to the
defender defending line 9 and the attackers carrying out their optimal equilibrium response. For
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Figure 4.3: Loss to attacker i due to congestion over the target line of attacker j.

the case in which the defender can defend up to two measurements concurrently, i.e. B0 = 2, one
expects the defender to secure the measurements of the two lines, lines 4 and 9, which congestion
has the largest impact on the system (we refer to this defense, in this context, as the critical de-
fense). However, the HE of the game corresponds to the defender defending lines 4 and 5 instead.
In fact, by defending those two lines the attackers’ optimal response yields no effect on the system
hence leaving the RT LMPs unaffected. This is a representation of the analysis provided through
Remark 2 in which multiple attackers’ attacks can cancel each other out.

Fig. 4.4 provides a comparison between the LMP manipulation outcome under the HE strategy as
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Table 4.2: Stackelberg Game Solution for B0 = {0, 1, 2}

B0 Secured Measurements Attacker 1 Attacker 2 Attacker 3
0 - (2,3.5,3.5) (0,0,0) (3.5,3.5,0)
1 line 9 (0,3.5,2) (0,0,0) (0,0,0)
2 lines 4 and 5 (0,0,0) (0,2,0) (0,3.5,-3.5)
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Figure 4.4: Comparison between HE and critical line defense strategies

compared to the critical defense strategy. It can be clearly seen that the HE strategy (i.e. Stackel-
berg solution) completely prevents the manipulation of the RT LMPs and, hence, is a significantly
better strategy than critical defense. In fact, the attackers’ optimal response to the critical defense
strategy resulted in a successful manipulation of the RT LMPs leading to a 3% root mean square
deviation (RMSD) from the DA LMPs where

RMSD =

√√√√ 1

N

N∑
i=1

(µRTi − µDAi )2. (4.47)

Fig. 4.5 shows the defender’s HE utility for different numbers of concurrently defended mea-
surements. This figure shows that the attackers have a very large impact on the system when no
defensive actions are taken. In fact, the aggregate effect of the attacks on the system LMPs, at
equilibrium, with no defensive actions is $306. However, when B0 = 1 (defender is able to secure
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one measurement), the HE of the game shows that the global effect of the multiple data injections
attacks on the system drops significantly to $11.6. Moreover, when B0 = 2 (defender is able to
secure two measurements concurrently), the HE of the game shows that the defender’s equilibrium
strategy completely protects the system against attacks and achieves a zero overall effect of the
attacks on the system.

We next consider our proposed SE-Nash framework and we define the price of information (PI) to
be an index reflecting the loss that the defender endures due to its lack of information about the
possible reaction of the attackers to its defense strategies. The PI is defined as follows:

PI = UHHE
0 − UHE

0 . (4.48)

The PI hence reflects the difference between the utility achieved under the SE-Nash framework
and the one achieved under the Stackleberg model (corresponding to minimum possible utility).

We consider first that the defender can only defend one measurement at a time. Given that there
are 9 vulnerable measurement units in the system, the defender has 9 options to choose from.
Considering that the defender would be satisfied by having RMSD ≤ 10%, we run the search
algorithm described in Section 4.4 and the HHE we obtained is similar to the one we obtained
using the Stackelberg model for B0 = 1. Thus, in this case, PI = 0. Following this HHE, the
defender defends the line measurement over line 9 and the attackers’ GNE corresponds to that
shown in Table 4.2 for B0 = 1. This strategy generates an RMSD = 6.1% < 10% hence meeting
the performance requirement.

Next, we consider the case in which the defender secures 2 measurements concurrently. Thus, the
defender has 36 options to choose from. We consider two different performance requirements. In
the first, the defender seeks to have RMSD ≤ 5%. Running the search algorithm yields an HHE
dictating the defense of lines 4 and 9 which corresponds to the critical defense defined previously.
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This HHE results in RMSD = 3% < 5% and a PI = $5.74. The second considered performance
requirement seeks to have RMSD ≤ 10%. In this regard, our search algorithm led to an HHE
under which lines 5 and 9 should be defended. This HHE results in RMSD = 6.1% < 10% and a
PI = $11.61.

4.6 Summary

In this chapter, we have studied the problem of data injection attacks on the smart grid in the pres-
ence of multiple adversaries. The strategic interactions between the defender and the attackers
have been modeled using a Stackelberg game and a hybrid satisfaction equilibrium - Nash equilib-
rium game. In these games, the grid operator acts as the leader and the attackers act as followers
which play a noncooperative strategic game in response to each defender’s strategy. The costs of
attack and defense have been integrated in the utility functions of the players. We have proven the
existence of a generalized Nash equilibrium of the attackers’ game, studied the existence and prop-
erties of the equilibria of the Stackelberg and the hybrid games and proposed learning algorithms,
and proved their convergence, to compute the games’ solutions. Numerical results have shown the
critically important role of the defender in protecting the grid and the potential conflicting interac-
tion between the multiple adversaries. Our results also highlight the potential loss that the defender
can incur due to a lack of information about the actions of the attackers.



Chapter 5

Time-Critical Network Interdiction Games
for Cyber-Physical Security of UAV Systems

5.1 Introduction

Recent developments in unmanned aerial vehicle (UAV) technology have led to its adoption in a
variety of commercial, recreational, and military applications such as telecommunications, surveil-
lance, delivery systems, rescue operations, and intelligence missions [12,13,202–208]. Due to their
ability to reach relatively inaccessible locations (such as natural disaster sites as well as remote
mountains, valleys, and forests) and their capacity to travel without being restricted to predefined
pathways, UAVs can effectively carry out time-critical missions [12, 209–211].

5.1.1 Prior Art and its limitations

One prominent time-critical UAV application is drone delivery systems [206, 212–217] which can
be used to deliver consumer parcels [206, 212–214] (with Amazon Prime Air [212] and Google’s
Project Wing [206] being key examples) as well as emergency medical products [209–211].

However, the practical deployment of drone delivery systems can be hindered by their vulnera-
bility to a myriad of cyber and physical attacks [83, 85, 133, 218, 219]. On the physical side, to
avoid conflict with manned and commercial aviations, the altitude of UAVs is typically limited
to around 400 ft [212], putting them in the range of hunting rifles and firearms which can tar-
get them (in an similar manner to such attacks which have targeted, for example, power system
equipments [44]). Moreover, UAVs are vulnerable to a variety of cyber threats as demonstrated
in [83, 85, 133, 218, 219]. For example, the work in [83] provided a general overview of cyber
attacks which can target the confidentiality, integrity, and availability of UAV systems. The au-
thors in [218] focused on the security of the communication links between ground control and
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unmanned aircrafts. Moreover, the work in [85] provided a demonstration in which the authors
successfully launched a man-in-the-middle attack against a typical UAV used by law enforcement
agencies for critical applications. Meanwhile, the authors in [219, 220] investigated GPS spoof-
ing attacks to manipulate the trajectory of an autonomous UAV while the work in [133] surveyed
various detection and localization techniques as well as cyber-physical attacks which can be used
against UAVs.

On the other hand, the ability of drones to reach secure or private locations has raised concerns
regarding their possible usage for executing malicious missions. In fact, a number of recent re-
search works, such as [133] and [134], studied on the risks of potentially using UAVs to execute
nefarious missions such as targeting a public, political, or military figure in a secure perimeter,
intruding into a military security perimeter, smuggling illicit products, or gaining unauthorized ac-
cess to personal property. This has led to the development of what is knows as anti-drone systems
whose goal is to defend against such intruding drones using developed surveillance technologies
and cyber-physical defense mechanisms [133,134]. The interactions between intruding drones and
anti-drone systems is clearly a highly time-critical application of UAVs.

Security analyses of these two time-critical UAV applications involve: a) a UAV aiming to achieve
a mission (benign or malicious) in the shortest possible time and b) an interdictor (malicious, e.g.,
in drone delivery systems, or benign, e.g., in anti-drone systems) whose goal is to interdict and
delay the UAV and compromise its mission. The highly intertwined decision making processes of
these two scenarios motivates the need for a holistic strategic analysis which can capture this un-
derlying interdependent decision making processes and identify optimal interdiction and security
strategies. However, prior art [83, 85, 133, 134, 218–220], and references therein, has somewhat
remarkably ignored such interactive time-critical situations and, instead, has either provided qual-
itative analyses or focused on specific and isolated security experiments, rather than on a rigorous
study.

5.1.2 Summary of Contributions

The main contribution of this chapter is to develop the first comprehensive framework for the
modeling and analysis of the cyber-physical security of time-critical UAV applications. We pose
the general problem as a network interdiction game between a UAV operator (benign or malicious)
and an interdictor (malicious or benign). In this game, the interdictor chooses the optimal attack
locations along the area which can be traversed by the UAV to interdict the UAV, via a cyber or
physical attack, with the goal of delaying the UAV and compromising its mission. On the other
hand, the UAV acts as an evader that chooses the best path selection policy from its origin to its
destination, while evading attacks and minimizing its total expected travel time (hereinafter called
the expected delivery time) needed to complete the mission.

In this regard, we consider both deterministic and probabilistic interdiction strategies. Under de-
terministic interdiction, we derive and analyze the Stackelberg equilibrium (SE) of the game. We
then show that a probabilistic interdiction strategy gives rise to a leader-follower structure in which
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the UAV’s problem corresponds to solving a Markov decision process (MDP) and the interdictor’s
problem corresponds to setting the parameters of this MDP. In this regard, we characterize the
SE of the game under mixed interdiction and propose practical algorithms to solve the underlying
UAV operator’s and interdictor’s problems.

This analysis is carried-out under full rationality of the UAV operator and the interdictor. This
is an underlying assumption in classical game theory which implies that all the agents involved
assess outcomes and observe probabilities objectively and equally. However, in practice, time-
critical UAV applications have two features, a) time criticality, and b) uncertainty, which can lead
to a bounded rationality of the involved players. Indeed, a common feature in time-critical UAV
applications is the strict goal of accomplishing a mission within a target delivery time. Delays in
such applications can have tragic consequences ranging from inability to reach victims on time, in
emergency scenarios, to increasing customer dissatisfaction in commercial applications. Equiva-
lently, in anti-drone systems, both the anti-drone and UAV owners wish to complete their mission
as quickly as possible, with the slightest delays being the difference between the success or failure
of the mission. Given this time criticality, the merit of an achieved delivery time must valued rela-
tive to the target delivery time, rather than as an absolute quantity. Moreover, due to the bounded
rationality of the agents involved, this valuation can be performed subjectively and differently by
the UAV operator and the interdictor. In addition, the choice of interdiction and path selection
strategies is influenced by various underlying uncertainties which stem, for example, from the
probabilistic risk levels of a certain path and the likelihood with which a carried cyber-physical at-
tack is successful. Hence, due to these uncertainties, the likelihood of achieving a certain delivery
time can be assessed differently by the interdictor and UAV operator.

To capture these bounded rationality factors in our game, we use tools from cumulative prospect
theory (PT) [148, 149]. PT enables modeling the bounded rationality in the decision making pro-
cesses of the interdictor and UAV operator by capturing a) the subjective perceptions of the risk
levels involved (such as the subjective perception of the likelihood with which a certain attack is
successful or a certain delivery time is achieved), and b) the subjective assessment of an achieved
delivery time relatively to a reference target delivery time. In this respect, we consider both deter-
ministic and probabilistic strategies in the PT game analysis. In this regard, we analytically derive
the SE of the deterministic PT game and propose solution algorithms which allow numerically
identifying the SE of the PT game under mixed interdiction.

We then complement our theoretical analysis with extensive simulations. Our simulation results
provide several key insights pertaining to the effects of the incorporation of PT in our game for-
mulation on the resulting equilibrium strategies and achieved expected delivery times:

• By increasing the target delivery time, the interdictor becomes more prone to choosing risk
seeking interdiction strategies while the UAV operator becomes less prone to taking the risky
paths.

• At low values of the target delivery time, the PT achieved expected delivery time is lower
than that of the conventional game; while for relatively high values of the target delivery
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time, the PT achieved expected delivery time exceeds that of the conventional fully rational
game.

• A more distorted perception of the probabilities with which a successful attack occurs leads
the UAV to choosing risky paths which result in delays in the expected delivery times. In-
deed, our results show that a rational path choice by the UAV can lead to achieving a 30%
decrease in expected delivery time as compared to the expected delivery time achieved under
PT.

• The PT bounded rationality of the player is in general disadvantageous to the UAV operator
leading to expected delivery times which exceed the pre-set target delivery times.

The rest of this chapter is organized as follows. Section 5.2 presents the system model and for-
mulates the proposed network interdiction game with fully rational players. Section 5.3 and Sec-
tion 5.4 study the game under deterministic and probabilistic interdiction strategies, respectively.
Section 5.5 introduces the incorporation of cumulative prospect theory in the proposed network
interdiction game. Section 5.6 and Section 5.7 formulate and analyze the PT games under deter-
ministic interdiction and probabilistic interdiction strategies, respectively. A number of numerical
results are presented in Section 5.8 while Section 5.9 concludes the chapter.

5.2 System Model and Problem Formulation

5.2.1 System Model

Consider a drone system in which a UAV, controlled by an operator, executes a critical mission
requiring it to travel from a source location O to a destination location D with minimum time,
referred to as the delivery time. Meanwhile, an interdictor seeks to interdict the UAV’s flight by
choosing a certain area or location, among a number of “danger points” (such as i and j in Fig. 5.1),
along its path from O to D to launch a cyber-physical attack. The interdictor’s attacks [83,85,133,
218, 219] include physical attacks against the UAV (such as being targeted by a rifle or a military
defense system) as well as cyber attacks (such as de-authentication or GPS spoofing attacks) which
cause the UAV operator to lose control of the drone leading to its capture or destruction.

This model readily captures the two use cases of Section 5.1: a) The case in which the UAV is a
benign player and the interdictor is malicious, as is the case in a drone delivery system and b) The
case in which the interdictor is an anti-drone system seeking to stop a rogue (or malicious) drone
from reaching its destination.

A danger point represents a location along the possibles paths between O and D, from which
the UAV is exposed to possible cyber-physical attacks. Such points can represent points of high
altitude, which allow line-of-sight and spatial proximity (e.g., high hills, high-rise buildings, etc.)
between a potential attacker and the UAV. As a result, the set of danger points between O and D
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O D
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Figure 5.1: Danger points along a certain path from source (O) to destination (D).
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Figure 5.2: Origin to destination security graph.

correspond to inevitable locations along the drone’s flight path that are susceptible to attacks by a
malicious interdictor or an anti-drone system.

The set of danger points between O and D define a security network represented by a graph
G(N , E), as shown in Fig. 5.2, in which the set of vertices, N , is the set of N danger points
between O and D, and the set of edges, E , such that |E| = E, being the set of connections between
these danger points. Given that, in practice, the UAV’s travel from origin to destination may not be
restricted to predefined airways1, there can be an infinite number of paths which connect O to D.
However, each one of these paths will go through a number of danger points that may be shared
among different paths. This infinite set of possible O to D paths can, from a security viewpoint, be
represented by the set of danger points that each path traverses. Given the time-critical nature of
the considered UAV applications, the defined set of edges E in the security graph G will comprise
the shortest paths between each two danger points.

For two neighboring points i and j connected by edge ek ∈ E , we let t(i, j) be the time that the
UAV needs to travel from i to j over ek. Hence, t(.) : N ×N → R is a function which returns the
travel time needed by the UAV to travel between two connected nodes. We let pn be the probability
with which an attack launched from point n ∈ N is successful given that, in practice, an attack

1Here, our model can also accommodate future scenarios in which the UAV’s flight may be regulated and, as a
result, restricted to a defined set of paths.
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carried out at n ∈ N might not always be successful. Without loss of generality, we consider that
for any n ∈ N \ {O,D}, pn 6= 0; and for n′ ∈ {O,D}, pn′ = 0.

We define H as the set of H simple paths (containing no repeated vertices2) from the origin, O,
to destination, D over the security graph G. For each path3 h ∈ H, we define a distance function
fh(.) : h → R, which takes an input node n ∈ h and returns the time needed by the UAV to
reach n ∈ h from O following path h ∈ H. For example, in Fig. 5.2, fh′(5) = t2 + t6 where
h′ , (1, 3, 5, 8, 10).

On this security graph G, the UAV acts as an evader who aims at finding the best travel policy,
and as a result a path selection strategy, to reach D from O at a minimum delivery time, while the
interdictor aims at finding the best interdiction strategy (a choice of danger points from which to
launch an attack) to intercept/delay the travel of the UAV.

5.2.2 Game-Theoretic Problem Formulation

In this network interdiction game, the UAV, denoted as player U , must find the best possible path
to take over G to reach D from O with minimum time while accounting for the presence of the
interdictor (player I). In case the UAV is successfully compromised by the interdictor from a node
n ∈ N , the UAV operator must resend a new UAV with the same mission from node O, which
leads to both financial losses and delayed delivery time. Hence, a successful attack by the inter-
dictor at node n can be mathematically modeled as if the UAV had returned to the point of origin
from which it needs to travel again to its destination. Hence, with the goal of minimizing delivery
time, the UAV operator may not always choose the shortest O-to-D path if this path is suspected to
be risky. As such, the path selection strategy must account for possible interdiction strategies so as
to successfully accomplish the O-to-D mission in a minimum delivery time. Similarly, the inter-
diction strategy must anticipate the possible paths that may be taken by the UAV to maximize this
delivery time. To model and analyze the intertwined decision making processes of the interdictor
and UAV operator, we next introduce a novel time-critical network interdiction game.

The proposed time-critical network interdiction game architecture over graph G is formally de-
fined as follows. The set of players is P , {U, I}. The interdictor moves first and chooses an
interdiction strategy x ∈ X which is a probability distribution over the set of danger points, N ,
where xn (i.e. element n of vector x) specifies the probability with which to launch an attack from
node n ∈ N while satisfying

∑
n∈N xn = 1. We refer to this probabilistic choice of x as a mixed

interdiction strategy. A special case for the choice of x consists of restricting x to the case in
which xn = 1 for an n ∈ N and xn = 0 for n ∈ N \ n. This, hence, corresponds to choosing

2Loops are naturally dismissed by a UAV operator aiming at minimizing delivery time.
3A path is a sequence of nodes and edges which connect O to D. Here, we represent a certain path h ∈ H by the

set of its constituents nodes. For example, h , {1, 4, 6, 9, 10} constitutes a path from O to D in Fig. 5.2 in which O
and D are numbered as nodes 1 and 10 respectively. Thus, we mathematically consider h to be a subset of nodes, i.e.
h ⊆ N . In this respect, the notation n ∈ h represents a node n that is in subset h, i.e., a node n that is traversed by
path h.
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a deterministic interdiction strategy to which we refer as a pure interdiction strategy. Based on
the interdiction strategy x, U chooses a travel policy (i.e. a path selection strategy). This requires
U to choose the next node to go to from each possible node at which it can be situated. In other
words, if the UAV is at node n, denoting the set of neighboring node of n over graph G by Ng(n),
the UAV’s travel policy must specify which node n′ ∈ Ng(n) to go to from each possible node
n ∈ N . Such a policy will result in a certain O-to-D path. Hence, the goal of U is to choose the
best possible path h ∈ H to minimize the expected delivery time while that of the attacker is to
maximize this expected delivery time.

For analyzing the resulting time-critical network interdiction game, we next separately study the
games under pure interdiction and mixed interdiction strategies.

5.3 Game Analysis under Pure Interdiction Strategies

5.3.1 Game Formulation under Pure Strategies

Under pure strategies, the interdictor chooses to be located at node n (the strategy space of I is,
hence,N ) while the UAV seeks to choose an O-to-D path h ∈ H. If h ∈ H contains node n, when
traveling from O-to-D along path h, it will traverse all danger points n′ ∈ h, n′ 6= n without any
risk of being attacked. However, when the UAV reaches n, it may continue its path with probability
1 − pn, i.e., the probability with which the attack launched from n is not successful, or it may be
sent back to O with probability pn, i.e., the probability with which the attack launched from n is
successful.

Let ta be the re-handling time, which is the time needed by the operator to send a new UAV, if the
original one was compromised. Then, the possible delivery times which can occur when n ∈ h
and their probability of occurrence will be:

Tk = fh(D) + k[fh(n) + ta], (5.1)

τk = (1− qn)kqn = pknqn, (5.2)
for k ∈ N0,

where qn = 1− pn, Tk is the kth possible delivery time, and τk is the probability of occurrence of
Tk. Hence, based on the possible delivery times and their likelihood, defined respectively in (5.1)
and (5.2), the expected delivery time, denoted4 by Ed(h ⊃ n), when the interdictor is located at n
and the UAV takes path h containing n is presented in Proposition 3.

4The expected delivery time for a node n chosen by I and a path h chosen by U will be denoted by Ed(n, h).
Additionally, with a slight abuse of notation, we occasionally denote Ed(n, h) by Ed(h ⊃ n) or Ed(n ∈ h) to
highlight that node n is part of the chosen path h, or that h contains n, and Ed(n /∈ h) to highlight that n is not part of
path h.
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Proposition 3. The expected delivery time for each pair of interdiction and path selection strate-
gies (n, h), which consists of interdictor choosing node n and the UAV taking path h, is given
by:

Ed(n, h) =

fh(D), if n /∈ h, (5.3)
pn

1− pn
(fh(n) + ta) + fh(D), if n ∈ h. (5.4)

Proof. First, we consider the case in which n is not part of h. If the UAV chooses a path h which
does not contain the node n at which the interdictor is located, then the UAV cannot be successfully
attacked and, hence, the expected delivery time, Ed(n /∈ h), will be simply given by

Ed(n /∈ h) = fh(D). (5.5)

Second, we consider the case in which h contains node n, i.e. h ⊃ n. By inspection of (5.1),
one can see that fh(D) appears in every possible delivery time outcome, while (fh(n) + ta) is
multiplied by the number of times the UAV had been successfully attacked at n before it was
successfully able to traverse n. This latter component of (5.1) corresponds to the number of failures
that the UAV experiences before the first success in traversing n. Consider being successfully
attacked at n to be a failure of the UAV in traversing n, which can occur with probability pn, and
consider traversing n to be a success for the UAV, which can occur with probability qn = 1 − pn,
then the expected delivery time will be:

Ed(h ⊃ n)=(expected # failures before 1st success)(fh(n)+ta) + fh(D). (5.6)

The number of failures before the first success follows a geometric distribution whose mean is
given by:

µ =
1− qn
qn

=
pn

1− pn
. (5.7)

As a result,

Ed(h ⊃ n)=(expected # failures before 1st success)(fh(n)+ta)+f
h(D)

=
pn

1− pn
(fh(n) + ta) + fh(D). (5.8)

Detailed and formal derivations leading to (5.8) are given next.

Given the possible outcomes in (5.1) and their probability of occurrence in (5.2), the expected
delivery time is given by:

Ed(h ⊃ n) =
∞∑
k=0

[fh(D) + k(fh(n) + ta)](1− qn)kqn. (5.9)
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In this regard, let A =
∑∞

k=0 f
h(D)(1− qn)kqn and B =

∑∞
k=0 k(fh(n) + ta)(1− qn)kqn, which

results in Ed(h ⊂ n) = A+B. We next compute A and B.

A =
∞∑
k=0

fh(D)(1− qn)kqn

= fh(D)qn

∞∑
k=0

(1− qn)k. (5.10)

Now,
∑∞

k=0(1− qn)k is a geometric series of the form
∑∞

k=0 ar
k with a = 1 and r = 1− qn < 1.

Hence,

A = fh(D)qn(
1

1− (1− qn)
) = fh(D).

B =
∞∑
k=0

k(fh(n) + ta)(1− qn)kqn

= (fh(n) + ta)qn

∞∑
k=0

k(1− qn)k

= (fh(n) + ta)qn(1− qn)
∞∑
k=0

k(1− qn)k−1

= (fh(n) + ta)qn(1− qn)
d

dqn
(−

∞∑
k=0

(1− qn)k), (5.11)

where the interchange between the summation and differentiation in the last step can be performed
due to the uniform convergence of the geometric series represented by the summation term. Now,∑∞

k=0(1− qn)k = 1
1−(1−qn) = 1

qn
as has been shown in the computation of A. Hence,

B = (fh(n) + ta)qn(1− qn)
d

dqn
(−

∞∑
k=0

(1− qn)k)

= (fh(n) + ta)qn(1− qn)
d

dqn
(− 1

qn
)

= (fh(n) + ta)qn(1− qn)(
1

q2n
)

= (fh(n) + ta)
1− qn
qn

= (fh(n) + ta)
pn

1− pn
.

(5.12)

Hence,

Ed(h ⊂ n) = A+B = fh(D) +
pn

1− pn
(fh(n) + ta). (5.13)
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Hence, the pn
1−pn (fh(n) + ta) term in (5.4) can be viewed as a delay penalty, which the UAV would

endure for taking the risk of traversing a risky danger point at which the interdictor is located.

In this regard, the goal of the interdictor is to choose an interdiction strategy (which consists of
choosing a node from which to launch an attack) to maximize this expected delivery time while
the goal of the UAV operator is to choose the best O-to-D path to minimize the expected delivery
time. Hence, we have a zero-sum network interdiction game.

5.3.2 Equilibrium in Pure Strategies

In our network interdiction game, the interdictor moves first, choosing a certain node from which
to attack the UAV, and then the UAV operator responds by choosing the path it wishes to take. As
such, for each choice n ∈ N by the interdictor, U can identify the best reaction strategy h = ρ(n)
specifying the best path to take when I chooses n. Hence, this gives rise to a hierarchical game
structure whose equilibrium concept, known as the Stackelberg equilibrium [146], is defined as
follows:

Definition 13. A strategy pair (n∗, h∗) constitutes a Stackelberg equilibrium of the network inter-
diciton game if

Ed(n
∗, h∗ = ρ(n∗)) ≥ Ed(n, ρ(n)) for all n ∈ N , (5.14)

and

ρ(n) = argmin
h∈H

Ed(n, h), (5.15)

where Ed(n, h) is as given in (5.3) and (5.4).

Under this hierarchical structure, the interdictor’s problem reduces to the following problem:

n∗ = argmax
n∈N

Ed(n, ρ(n)). (5.16)

In this regard, denoting a shortest O-to-D path by hs, the SE of our network interdiction game can
be analytically characterized as shown in Theorem 9.

Theorem 9. The interdictor’s SE strategy, n∗, is given by:

n∗ = argmax
n∈{n1,n2}

(
Ed
(
n1, ρ(n1)

)
, Ed
(
n2, ρ(n2)

))
, (5.17)

where

n1 = argmax
n∈Nhs

pn
1− pn

(fhs(n) + ta) + fhs(D), (5.18)
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Nhs = {n ∈ hs|
pn

1− pn
(fhs(n) + ta) + fhs(D) ≤ fhn(D)}, (5.19)

with hn being a shortest O-to-D path not containing node n, and

n2 = argmax
n∈hs\Nhs

fhn(D). (5.20)

The UAV operator’s SE strategy is given by

h∗=ρ(n∗)=

{
hs, if n∗ = n1; (5.21)
hn2 , if n∗ = n2. (5.22)

In addition, the resulting SE expected delivery time is

Ed(n
∗, h∗)=


pn∗

1− pn∗
(fhs(n∗) + ta) + fhs(D),

if n∗ = n1; (5.23)
fhn2 (D), if n∗ = n2. (5.24)

Proof. We first prove that choosing a node n /∈ hs is a dominated strategy for the interdictor. In
fact,

If n /∈ hs ⇒ ρ(n) = hs

⇒ Ed(n /∈ hs, ρ(n))=fhs(D) ≤ Ed(n, ρ(n)) ∀n ∈ N ,

since fhs(D) is the shortest possible expected delivery time. Hence, the interdictor should always
choose a node n that is part of a shortest O-to-D path, hs.

For each n ∈ hs, we let hn denote a shortest O-to-D path not containing node n. Then, for n ∈ hs,

ρ(n)=

{
hs, if

pn
1−pn

(fhs(n)+ta)+f
hs(D)≤fhn(D); (5.25)

hn, otherwise. (5.26)

Condition (5.25) indicates that U will still choose the shortest path even when the interdictor is lo-
cated at n, since the expected delivery time of the risky shortest path is still better than the delivery
time resulting from choosing the best alternative, i.e., deviating to the shortest path not containing
node n. On the other hand, condition (5.26) states that the delay incurred by the presence of the
attacker at node n ∈ hs leads U to deviate from the shortest path; choosing the best alternative,
i.e., the shortest path not containing n.

In this respect, we let Nhs denote the set of nodes that are part of hs but are such that
pn

1−pn (fhs(n)+ta)+f
hs(D) ≤ fhn(D). Nhs is formally defined in (5.19).
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Hence, the two possible alternatives for the optimal choice of I are n1 and n2 defined as:

n1 = argmax
n∈Nhs

[ pn
1− pn

(fhs(n) + ta) + fhs(D)
]
, (5.27)

and

n2 = argmax
n∈hs\Nhs

fhn(D). (5.28)

By the definition of n1 and n2 in respectively (5.27) and (5.28), U prefers n1 over any other
n ∈ Nhs , and U prefers n2 over any other n ∈ hs \ Nhs .

As a result, if I chooses n1, the resulting expected delivery time will be:

Ed(n1, ρ(n1) = hs) =
pn1

1− pn1

(fhs(n1) + ta) + fhs(D). (5.29)

If I chooses n2, the resulting expected delivery time is given by

Ed(n2, ρ(n2) = hn2) = fhn2 (D). (5.30)

The interdictor will, hence, choose the best out of the two alternatives, n1 or n2 as follows:

n∗ = argmax
n∈{n1,n2}

(
Ed
(
n1, ρ(n1)

)
, Ed
(
n2, ρ(n2)

))
, (5.31)

which will result in SE stratgies of U and resulting expected delivery times as stated in (5.21)-
(5.23).

This SE of the game characterizes the optimal interdiction and path selection strategies when the
interdictor chooses deterministically the danger point from which to target the UAV. The SE high-
lights that selecting the shortest path, even if it contains the interdicted node, may still be the
optimal path since it may result in an expected delivery time that is lower than all other alternative
paths. This can occur, in particular, if the shortest path length, fhs(D), is significantly shorter than
the possible alternatives (as captured by the definition of Nhs in (5.19).

Next, we analyze the case in which the interdictor chooses a probabilistic interdiction strategy. In
that case, we provide the corresponding game formulation and analyze the resulting game equilib-
rium.



Anibal Sanjab Chapter 5. Time-Critical Network Interdiction Games for UAV Security 118

5.4 Game Analysis under Mixed Interdiction Strategies

In this section, we analyze the time-critical network interdiction game under a more general prob-
abilistic choice of interdiction5. Here, the interdictor may prefer to choose a probabilistic (i.e.
mixed) interdiction strategy to possibly prevent U from predicting their exact actions and, hence,
potentially achieving a better outcome.

In this respect, an interdictor’s mixed-strategy vector, x = [x1, x2, ..., xN ] ∈ X specifies the proba-
bility, xn, with which the interdictor plans to launch an attack on the UAV from each node n ∈ N .
Next, we show that when I chooses a mixed interdiction strategy x, U ’s choice of optimal path
turns into a Markov decision process (MDP) problem whose transition probabilities result from
the choice x by I .

Consider the case in which I had chosen strategy x ∈ X and the UAV was at node n, at time
t0, and then decides to go to a neighboring node j ∈ Ng(n). As such, U reaches node j at time
t0 + t(i, j), at which point it could be subject to an attack. The probability with which the UAV is
successfully attacked at node j, Pr(successfully attacked at node j) can be computed as:

Pr(successfully attacked at node j) = xjpj. (5.32)

As a result, if the UAV has reached node i at time t0 and then decided to go to node j next, it
can either reach node j at time t0 + t(i, j) and not be successfully attacked at j (with probability
1−xjpj), or it can be brought back to the origin when reaching node j (i.e. if subject to a successful
attack) with probability xjpj . This latter case implies that the UAV would reach node O at time
t0 + t(i, j)+ ta with probability xjpj . This security problem can then be modeled as an MDP [221]
whose transition probabilities depend on the security graph, G, and on the choice x of I . We define
the set of states of this MDP to be the set of nodes N of G. The UAV operator can then decide to
go from a node n to any of its neighboring nodes (i.e. next potential states). However, its transition
to this state is stochastic, since if the attack is successful, instead of going to a neighboring node,
the UAV transitions to state O.

The state transition probabilities denoted by M
(
i, j; (x, k)

)
, specifying the probability of transi-

tioning from state i to state j when the attacker chooses a mixed interdiction strategy x and the
UAV operator chooses action6 k (i.e. chooses to move from node i to node k ∈ Ng(i)) determinis-
tically, is defined as:

M
(
i, j; (x, k)

)
=


(1− xkpk), for j = k, (5.33)
xkpk, for j = O, (5.34)
0, for j ∈ N \ {O, k}. (5.35)

5Here we note that given the hierarchical structure of our game, considering mixed path selection policies by U
would not yield any advantage regarding the achieved expected delivery time as compared to the optimal deterministic
path selection policy. As such, we limit our analysis to deterministic path selection.

6Hereinafter, in the MDP analyses choosing action k ∈ Ng(i) refers to the UAV operator choosing to move its
UAV from state (i.e. node) i to a neighboring node k ∈ Ng(i).
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The instantaneous cost to U (reward to I) from a state transition from i to j when I chooses x and
U chooses to move to node k, can be expressed as follows:

r
(
i, j;

(
x, k ∈ Ng(i)

))
=
{
t(i, k), for j = k, (5.36)
t(i, k) + ta, for j = O. (5.37)

For every transition between two states, the UAV accumulates additional delivery time as expressed
in (5.36) and (5.37), until the UAV reaches D and the game ends. The goal of U is hence to
minimize this expected cumulative delivery time. Therefore, the choice of a mixed-strategy by
the interdictor, x, defines7 an MDP with transition probabilities as defined in (5.33)-(5.35) and
instantaneous reward/cost structure as shown in (5.36) and (5.37).

The goal of U is to choose the best MDP policy to minimize its expected accumulated delivery
time. In this regard, a policy πx specifies, for each node n ∈ N \ {D}, the next node n′ ∈ Ng(s)
to which to go. Hence, at each state n, the set of feasible actions is given by Ng(n), and a policy
constitutes choosing the action to take from each possible state. An optimal policy for U is thus
a policy which minimizes the expected cumulative delivery time. We note that, given the state
transitions in (5.33)-(5.35), a policy πx practically results in one realizableO-to-D path denoted by
hπx . This is due to the fact that under the MDP policy πx, only the nodes of a certain path will ever
be reached. Hence, a policy reduces to a path selection strategy. Given the equivalence between
a policy πx and its resulting O-to-D path hπx , we next use the two notations interchangeably
depending on whether the emphasis is on a general policy πx or on its resulting path hπx .

We define Eπx(s;x) to be the value of the state s when U follows policy πx for the MDP induced
by the interdictor’s mixed strategy, x. In other words, Eπx(s;x) is the expected time that the
UAV needs to reach D from s when policy πx is followed. Based on the transition probabilities
and instantaneous reward structures in (5.33)-(5.37), we can express the values of the states, for a
given policy πx, recursively; as follows:

Eπx(s;x)=
∑

s′∈{πx(s),O}

M
(
s, s′;

(
x, πx(s)

))[
r
(
s, s′; (x, πx(s))

)
+Eπx(s′;x)

]
. (5.38)

Of particular interest to our analysis is the value at the origin of the MDP, i.e. Eπx(O;x), which
constitutes the expected delivery time when following policy πx. In this respect, for a given choice
x by the interdictor, the goal of the UAV operator is to find a policy π∗x which minimizesEπx(O;x).

To this end, we define Eπ∗x(s;x) to be the optimal value at s – the minimum expected time for the
UAV to reach D from s – resulting from the choice of optimal policy π∗x. We can now define the
so-called Q-value of each state s, denoted by Qπ∗x(s; (x, k)), to be the expected time for the UAV

7Hence, hereinafter, we refer to this MDP as the MDP induced by x.
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to reach D from s when U chooses action k when at state s (i.e. chooses to go to node k ∈ Ng(s)
when at node s) and then follows the optimal policy π∗x afterwards. Hence, Qπ∗x(s; (x, k)) will be:

Qπ∗x(s; (x, k))=
∑

s′∈{k,O}

M
(
s, s′; (x, k)

)
[r
(
s, s′; (x, k)

)
+Eπ∗x(s′;x)] (5.39)

=
(
1−xkpk

)(
t(s, k)+Eπ∗x(k;x)

)
+xkpk

(
t(s, k)+ta+Eπ∗x(O;x)

)
. (5.40)

The Q-values at each state can be used to derive Bellman’s equation for this MDP as follows:

Eπ∗x(s;x) = min
k∈Ng(s)

Qπ∗x(s; (x, k)) (5.41)

= min
k∈Ng(s)

∑
s′∈{k,O}

M
(
s, s′; (x, k)

)
[r
(
s, s′; (x, k)

)
+ Eπ∗x(s′;x)]. (5.42)

Based on the recursive definition of the Bellman equation, the expected delivery time achieved for
an interdiction strategy x and an MDP policy πx inducing a path hπx=( O, n1, n2, n3, ..., nr, nl,
nk, nm, D), containing m+ 2 ordered nodes, is derived in Proposition 4.

Proposition 4. The MDP value at the origin, Eπx(O;x), for a mixed interdiction strategy x and
MDP policy πx, inducing path hπx = (O, n1, n2, n3, ..., nr, nl, nk, nm, D), is given by:

Eπx(O;x) = t(nm, D) +
1

1− xDpD

[
g(nk, nm, nD)

+
1

1− xnmpnm

(
g(nl, nk, nm) + ...+

1

1− xn3pn3

(
g(n1, n2, n3)

+
1

1− xn2pn2

(
g(O, n1, n2) +

1

1− xn1pn1

g(O, n1)
))
...

)]
︸ ︷︷ ︸
m brackets

, (5.43)

where g(.) is a function which takes either 2 or 3 inputs (2 or 3 consecutive nodes of a path hπx ,
respectively) and which we define as follows (considering k, m, and n to be three consecutive
nodes of a path hπx):

g(k,m, n) = xnpn(t(m,n) + ta) + t(k,m), (5.44)
g(m,n) = xnpn(t(m,n) + ta). (5.45)
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Proof. Consider a policy πx such that πx(ni) = nj . Based on the transition probabilities in (5.33)-
(5.35) and instantaneous reward structures in (5.36) and (5.37), the values of each two consecutive
nodes, ni and nj (nj being reached from ni based on πx), are such that:

Eπx(ni;x) = (1− xnjpnj)
(
t(ni, nj) + Eπx(nj;x)

)
+ xnjpnj

(
t(ni, nj) + ta + Eπx(O;x)

)
.

(5.46)

Consider πx to induce a certain path hπx = (O, n1, n2, n3, ..., nr, nl, nk, nm, D). The expression
in (5.46) can be used to relate the values of each two consecutive nodes of hπx . As such, knowing
that Eπx(D;x) = 0 for each possible policy 8 and using the recursive expression in (5.46) applied
for the consecutive nodes of hπx , the expression of Eπx(O;x) = Ehπx (O;x) given in (5.43) can
be obtained.

To solve the game, we define the SE in mixed strategies, as follows:

Definition 14. A strategy pair (x∗, π∗x∗) constitutes a mixed interdiction Stackelberg equilibrium
(MSE) of the network interdiction game if

x∗ = argmax
x∈X

Eπ∗x(O;x). (5.47)

where

π∗x∗ = argmin
πx∗∈P

Eπx∗ (O;x∗). (5.48)

This MSE can be also equivalently defined in terms of x∗ and the optimal path induced by π∗x∗ ,
i.e., (x∗, h∗ = hπ∗

x∗
).

Next, we derive the MSE strategies in our game.

5.4.1 UAV’s Problem Solution

The operator’s problem consists of computing the optimal policy (or optimal path) for the MDP
induced by x. This can be achieved using known methods such as value iteration and policy
iteration methods [221]. Indeed, for obtaining the values at each state (i.e. node) resulting from a
policy πx (known as policy evaluation), Eπx(O;x) can be computed as shown in (5.43) and then
used to find Eπx(s;x) for each s ∈ S by starting from D (whose value is Eπx(D;x) = 0) and
moving backwards while applying (5.46). As such, using policy iteration [221], which is known to
converge in finite-time to the optimal policy [221], starting from a certain MDP policy, the policy

8Eπx(D;x) = 0 since the expected delivery time starting from D is equal to 0 since the UAV had already reached
its destination.
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evaluation and policy improvement steps, defined next, can be sequentially taken to converge to
the optimal policy.

The policy iteration method follows the three steps below, i.e. 1) policy evaluation, 2) policy
improvement, and 3) convergence test.

1. Policy evaluation: starting from a certain policy πkx, evaluate Eπkx(s;x) for all s ∈ S. This
can be done as follows:

(a) Find path hπkx from O-to-D which results from policy πkx,

(b) Knowing hπkx , compute Eπkx(O;x) as shown in (5.43),

(c) After computing Eπkx(O;x), and knowing that Eπkx(D;x) = 0, compute Eπkx(s;x) for
every s ∈ S following (5.46).

2. Policy improvement: for each s ∈ S, compute policy πk+1
x (s), as follows

πk+1
x (s)=argmin

j∈Ng(s)

∑
s′∈{O,j}

M(s, s′; (x, j))(r(s, s′; (x, j))+Eπk(x)(s
′;x)). (5.49)

3. Convergence test: repeat until πk+1 = πk.

Next, we propose an alternative method for identifying U ’s problem solution which consists of
searching over all the possible O-to-D paths. This method is dubbed the all-paths method and can
be carried out by the following steps:

1. Find all possible paths,H, from O to D

2. Evaluate Eh(O;x) for each path h ∈ H using (5.43).

3. Find the optimal path h∗ which solves:

h∗ = argmin
h∈H

Eh(O;x). (5.50)

4. Optional step: after computing Eh(O;x), and given that Eh(D;x) = 0, compute Eh(s;x)
for every s ∈ S as shown in (5.46).

Note that the last step of the all-paths method is not required. It is only included in case one wishes
to compute the resulting optimal values at all of the states of the MDP.

The all-paths method does not seek to find the optimal action to be taken from each possible state,
but rather an optimal O-to-D path. This equivalently corresponds to determining the next node
to go to from only a subset of nodes (which collectively form a path). This approach is practical,
since under a certain policy πx, the nodes that are not part of hπx will never be reached.
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Figure 5.3: Phases-connected security graph with A = 5 phases.

Our proposed all-paths method is also guaranteed to converge after H = |H| iterations. In this
respect, if the security graph, G, can be split in phases in which each two consecutive phases form
a complete bipartite graph9 (as is the case in Fig. 5.2 and Fig. 5.3), H grows linearly in the number
of nodes, Ni, in a given phase. Indeed, in a phase-connected graph with A phases, the total number
of O-to-D paths is given by:

H =
A∏
i=1

Ni. (5.51)

For example, in Fig. 5.3, A = 5 and H = 1× 3× 2× 3× 1 = 18.

Hence, for phase-connected G, the number of needed iterations in the all-paths search method
grows linearly in the number of nodes in a certain phase and each iteration is search-free and is
only limited to arithmetic operations which can be efficiently performed. Here we note that having
a phase-connected security graph is a condition that can typically occur in practice. In fact, in
the security graph G, the nodes represent danger points from which a cyber-physical attack can
be launched against the UAV. These danger points represent locations such as high hills or high
buildings which provide line of sight and spatial proximity to the UAV. Hence, when representing
G by an interconnection of phases, this reflects the case in which the UAV goes from one set
of danger points to the other (for example between sets of hills and sets of high buildings) with
relatively safe conditions in between.

9We refer to such graphs as phase-connected graphs
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5.4.2 Interdictor’s Problem Solution

From the interdictor’s side, after predicting the reaction π∗x for a chosen interdcition strategy x ∈
X , I aims at solving the optimization problem defined in (5.47). The main challenge with solving
this problem resides in the discontinuous changes in the objective function which can be induced
by a slight modification to the chosen strategy x. This due to the fact that a minimal change to the
chosen x can lead to a complete modification of the resulting optimal reaction MDP policy of U ,
i.e. π∗x, leading to discontinuous changes to the objective function. Hence, due to the discontinuity
of the objective function in (5.47), finding an exact globally optimal solution to the interdictor’s
problem may not be guaranteed. The search for such a global optimum can be done using heuristic
methods such as pattern search based methods [222].

In its most standard form [222], pattern search methods involve repetitive local exploratory searches
and pattern moves. The exploratory searches look for improving local search directions, while pat-
tern moves consist of attempted larger moves in potential enhancing directions. Hence, such a
search method is promising for solving I’s problem since local exploratory searches can find small
perturbations to x which improve the objective function and which may not induce a modification
in the resulting optimal MPD policy, π∗x, while pattern moves allow exploration of changes to x
whose magnitudes result in changes to π∗x, and hence, sudden changes to the objective function.

Hence, by using pattern search based methods10 an achievable solution to the interdictor’s problem
can be obtained which leads to what we consider an achievable MSE in which the solution of (5.47)
is obtained using a pattern search method while the solution of (5.48) is exactly characterized using,
for example, the policy iteration method or the all-paths method.

5.5 Game Analysis under Cumulative Prospect Theory

As established in Section 5.3 and Section 5.4, given that the interdiction strategy and the suc-
cess of a certain launched attack are stochastic, the decision regarding the optimal interdiction
and path selection strategies are carried out under uncertainty. Indeed, every chosen interdiction
strategy and path selection strategy will give rise to a prospect: A set of possible achievable de-
livery times each of which can occur with a certain probability. In fact, when I chooses x and U
chooses path h = (O, n1, n2, n3, ..., nr, nl, nk, nm, D), and let kni ∈ N0 be the number of times the
UAV is successfully attacked at node ni ∈ h \ {O,D}, then the possible achieved delivery times
T ′(kn1 , kn2 , ..., knm) and their associated probability of occurrence, τ ′(kn1 , kn2 , ..., knm), will be
given by:

10Here, for the numerical solutions parts of our analysis, we use the pattern search method provided as part of the
optimization toolbox of MATLAB, which uses a pattern search method that uses an adaptive mesh.
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T ′(kn1 , kn2 , ..., knm)=fh(D)+kn1 [f
h(n1)+ta]+kn2 [f

h(n2)+ta]+...+ knm [fh(nm)+ta], (5.52)

τ ′(kn1 , kn2 , ..., knm)=[(1−xn1pn1)(1−xn2pn2)...(1−xnmpnm)][xn1pn1 ]
kn1 [(1−xn1pn1)(xn2pn2)]

kn2

× ...× [(1−xn1pn1)(1−xn2pn2)× ...× (1−xnkpnk)xnmpnm ]knm . (5.53)

The expression in (5.52) and (5.53), respectively reduce to (5.1) and (5.2) when considering pure
interdiction (i.e. xn = 1 and xn′ = 0 for all n ∈ N \ {O,D, n}).

As such, the previous analyses in Section 5.3 and Section 5.4 have considered that the uncertainty
is managed by I and U in a fully rational and objective manner. In other words, possible delivery
times are considered to be absolute quantities which are assessed objectively and similarly by both
players, and the probabilities of occurrence of these outcomes (for example, the probability of
success of a launched attack, pn) are equally and objectively perceived by I and U . As such,
under full rationality, I and U assess a certain pair of strategies (x, h) by computing the expected
value of their resulting prospect, i.e., Ed(x, h) and Ehπx (O;x). This full rationality assumption is
considered in expected utility theory (EUT) and is widely used in classical game-theoretic (CGT)
analyses [146].

However, given the time criticality of the studied drone applications (which must execute certain
missions within a target time period), a certain achieved delivery time can be assessed subjectively
and differently by U and I with respect to their chosen target delivery times, rather than as an
absolute objective quantity. For example, in medical drone delivery applications, an achieved
delivery time of T o + to when the target delivery time is T o is typically observed as a to delay
whose impact is subjectively assessed based on the criticality of the medical emergency situation.
In addition, the perception of probabilities by U and I can be distorted and deviate from the rational
objective perception. For example, the risk level of a certain chosen path or the probability of a
successful attack can be perceived subjectively and differently by I and U . Indeed, as has been
shown in a number of psychological empirical studies as well as behavioral experiments [148,
149], when faced with risk and experiencing uncertainty (similarly to our time-critical network
interdiction game), the decision making processes of individuals can significantly deviate from
full rationality. Essentially, when making decisions under uncertainty, individuals have been found
to subjectively evaluate outcomes and perceive probabilities [148, 149].

Therefore, choosing an optimal strategy does not rely only on the expected value of the prospect
it generates but rather on the subjectively assessed value of this prospect, which results from the
way a delivery time is individually assessed with respect to the reference delivery time, and the
way the different probabilities are subjectively perceived. Hence, the full rationality assumption in
CGT cannot account for such subjective assessments of delivery times and distorted perception of
probabilities.

To this end, to capture the interdictor’s and UAV operator’s potential subjective perceptions (i.e.
bounded rationality), we incorporate the principles of cumulative prospect theory [148] in our
game formulation. PT is a Nobel prize-winning theory which provides an alternative theory to
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decision making which has been shown to more accurately model and predict decision makers’
subjective behavior, preferences, and valuations, as compared to EUT. Indeed, using PT, the sub-
jective perception of the likelihood of occurrence of a probabilistic delivery time and the subjective
evaluation of this delivery time with respect to a reference point becomes central to the decision
making processes of I and U .

In a nutshell, considering a prospect g(φi, ηi), listing each possible outcome φi and its probability
of occurrence ηi. In our analysis, each φi is a possible delivery time T ′ in (5.52) and ηi is its
corresponding probability, τ ′i , in (5.53). Under PT, the value of an outcome φi, denoted by v(φi),
with respect to a reference point R, is given by [149]:

v(φi) =

{
(φi −R)β

+

, if φi ≥ R, (5.54)

−λ(−(φi −R))β
−
, if φi < R, (5.55)

where λ is known as the loss multiplier and β+ and β− are constant parameters which shape the
value function.

Based on the sign of v(φi), g can be split into a negative prospect g− and positive prospect g+.
For a maximizer (minimizer), the values in g− correspond to losses (gains) and the values in g+

correspond to gains (losses). Consider that g− contains m terms, indexed from −m to −1, and
g+ contains κ terms, indexed from 1 to κ. In addition, consider that each of the two prospects
are ranked in ascending order based on the values, v(φi). Under cumulative prospect theory, the
valuation of the positive and negative prospects, V (g+) and V (g−), are given by [149]:

V (g+) =
κ∑
i=1

π+
i v(φi), (5.56)

V (g−) =
−1∑

i=−m

π−i v(φi), (5.57)

resulting in the valuation of prospect g, denoted by V (g), and which is given by

V (g) = V (g+) + V (g−). (5.58)

In this regard, π+
i and π−i are decision weights defined based on the cumulative probability of

occurrence of outcome φi as follows:
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π+
i = ω+(

κ∑
j=i

ηi)− ω+(
κ∑

j=i+1

ηi), (5.59)

π−i = ω−(
i∑

j=−m

ηi)− ω−(
i−1∑
j=−m

ηi), (5.60)

where ω+ and ω− are the weighting functions associated with the positive and negative prospects,
respectively, and are defined as follows (for a certain objective probability η):

ω+(η) =
ηγ

+

(ηγ+ + (1− η)γ+)1/γ+
, (5.61)

ω−(η) =
ηγ
−

(ηγ− + (1− η)γ−)1/γ−
, (5.62)

where γ+ ∈ (0, 1] and γ− ∈ (0, 1] are known as the rationality parameters. The higher the value of
the rationality parameter, the closer are ω+(η) and ω−(η) to the rational probability η.

The expressions in (5.59) and (5.60) showcase the way decision weights are formed from cumula-
tive probabilities of outcomes in a prospect. In fact, for a maximizer,

∑κ
j=i ηi corresponds to the

probability that the outcome is at least as good as φi while
∑κ

j=i+1 ηi corresponds to the probability
that the outcome is strictly better than φi. Equivalently,

∑i
j=−m ηi corresponds to the probability

that the outcome is at least as bad as φi while
∑i−1

j=−m corresponds to the probability that the out-
come is strictly worse than φi. Hence, these decision weights reflect the subjective perception of
the probability of occurrence of the outcomes in a prospect.

Consequently, we will formulate our network interdiction game under cumulative prospect theory
(which we call the PT game). We will also split our analysis of the PT game into two parts; the first
focusing on pure interdiction strategies and the second on mixed interdiction. For each one of the
two cases, we will investigate the resulting PT game as well as define and derive the equilibrium
points of these games. In each of the two cases, we first derive the different PT valuations, by I and
U , of each prospect which results from a certain pair of interdiction and path selection strategies.
Based on these valuations, the equilibrium concepts for the introduced games are defined and then
the equilibrium strategies are characterized.

Here, we note that the notations of the constants used in (5.54), (5.55), (5.61), and (5.62), i.e.
λ, β+, β−, γ+, and γ−, will be constituently used in the analyses that ensues but will be indexed
by I and U depending on the player to which they refer.
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5.6 PT Game Analysis under Pure Strategies

5.6.1 PT Game Formulation under Pure Strategies

As discussed in Section 5.6.1, when U chooses path h and I is located on node n ∈ h, the possible
outcomes, Tk, and their associated probability of occurrence, τk, for k ∈ N0, are as described,
respectively, in (5.1) and (5.2). However, as PT predicts, the valuation of these outcomes as well
as the perception of their probability of occurrence can be evaluated subjectively and differently
by U and I . In this regard, when U chooses a path containing n, the possible outcomes Tk and
their probability of occurrence result in the following prospect, g(n ∈ h), in which the outcomes
are ordered from lowest to highest, and is expressed as

g(n ∈ h) =
(
fh(D), qn; fh(D) + (fh(n) + ta), (1− qn)qn;

. . . ; fh(D) + k(fh(n) + ta), (1− qn)kqn; . . .
)
. (5.63)

The interdictor and the UAV operator evaluate each possible outcome of this prospect subjectively,
as shown in (5.54) and (5.55). In this regard, the valuation, vIk, that the interdictor gives to the kth

possible outcome, Tk = fh(D) + k(fh(n) + ta), is as follows:

vIk=

{
(∆Ik)

β+
I , if ∆Ik≥0, (5.64)

−λI(−(∆Ik))
β−I , if ∆Ik<0, (5.65)

where

∆Ik = fh(D) + k(fh(n) + ta)−RI . (5.66)

Given that the interdictor aims at maximizing the expected delivery time, achieving an expected
delivery time that exceeds its reference expected delivery time (when ∆Ik > 0), is seen as a gain.
On the other hand, when the achieved expected delivery time is lower than the reference point
(∆Ik < 0), the interdictor evaluates this outcome as a loss and values it accordingly.

Equivalently, the valuation, vUk , that the UAV operator gives to the kth possible outcome, Tk, is as
follows:

vUk =

{
λU(∆Uk)

β−U , if ∆Uk>0, (5.67)

−(−(∆Uk))
β+
U , if ∆Uk≤0, (5.68)

where

∆Uk = fh(D) + k(fh(n) + ta)−RU . (5.69)
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Since U aims at minimizing the expected delivery time, ∆Uk ≥ 0 is evaluated as a loss since it
reflects the case in which the expected delivery time exceeds the target delivery time (i.e. U ’s
reference point RU ). On the other hand, ∆Uk < 0 is viewed as a gain since it reflects the case in
which the expected delivery time is below the target delivery time.

Next, based on PT principles, we derive the valuations that I and U give to each possible choice
of pair of pure interdiction and path selection strategies (n, h). We denote these valuations by
VI(n, h) and VU(n, h) for, respectively, I and U .

Proposition 5. The cumulative prospect-theoretic valuation that I assigns to a strategy pair (n, h)
is given by

VI(n, h) =

{
VI(gI(n ∈ h)), if n ∈ h; (5.70)
VI(gI(n /∈ h)), if n /∈ h. (5.71)

with

VI(gI(n ∈ h))=

k−I∑
i=0

−λI(−∆Ii)β
−
i

(
ω−I
(
1−pi+1

n

)
−ω−I

(
1−pin

))
+

∞∑
i=k+I

(∆Ii)
β+
I

[
ω+
I

(
(pn)i

)
−ω+

I

(
(pn)i+1

)]
, (5.72)

where k−I and k+I are such that: ∆Ik < 0 for k ≤ k−I , ∆Ik > 0, for k > k+I , and k+I = k−I + 1;

and

VI(gI(n /∈h))=

{
(fh(D)−RI)

β+
I , if fh(D) ≥ RI ;

−λI(−(fh(D)−RI))
β−I ,if fh(D)<RI . (5.73)

Proof. We first start by considering the case in which n ∈ h. In this case, incorporating I’s
valuation of each possible outcome, based on (5.64) and (5.65), in prospect g(n ∈ h), leads to the
following prospect, gI(n ∈ h):

gI(n ∈ h)=
(
−λI(−∆I0)β

−
I , qn;−λI(−∆I1)β

−
I , (1−qn)qn; . . . ;−λI(−∆Ik−I )β

−
I , (1− qn)k

−
I qn;

(∆Ik+I
)β

+
I , (1− qn)k

+
I qn; . . . ; (∆IkI )

β+
I , (1− qn)kIqn; . . .

)
, (5.74)

such that ∆Ik < 0, for k ≤ k−I , and ∆Ik > 0, for k > k+I ; while ∆Ik is as defined in (5.66) for
k∈{0, 1, ..., k−I , k

+
I , ...,∞}..
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gI(n ∈ h) can be further split into a negative prospect, g−I (n ∈ h), which includes the elements
of gI(n ∈ h) with ∆Ik < 0 (i.e. for k ∈ {0, ..., k−I }), and a positive prospect, g+I (n ∈ h), which
includes the elements of gI(n ∈ h) with∆Ik > 0 (i.e. for k ≥ k+I ). The negative prospect includes
the outcomes that I values as losses, while the positive prospect includes outcomes that I values
as gains. g−I (n ∈ h) and g+I (n ∈ h) are expressed as:

g−I (n ∈ h)=
(
−λI(−∆I0)β

−
I , qn;−λI(−∆I1)β

−
I , (1−qn)qn; . . . ;−λI(−∆Ik−I )β

−
I , (1− qn)k

−
I qn

)
.

(5.75)

g+I (n ∈ h)=
(

(∆Ik+I
)β

+
I , (1− qn)k

+
I qn; . . . ; (∆IkI )

β+
I , (1− qn)kIqn; . . .

)
. (5.76)

We next consider the way I values this prospect by incorporating not only its subjective valuation
of outcomes but also its cumulative weighting of the probability of occurrence of each of these
outcomes. We let VI(gI(n ∈ h)) denote the PT value that I gives to prospect gI(n ∈ h), which
results from the PT valuation of the negative and positive components of gI(n ∈ h),

VI(gI(n ∈ h)) = VI(g
−
I (n ∈ h)) + VI(g

+
I (n ∈ h)). (5.77)

VI(g
−
I (n ∈ h)) =−

[
λI(−∆I0)β

−
I

][
ω−I (qn)− 0

]
−
[
λI(−∆I1)β

−
I

][
ω−I
(
qn+(1−qn)qn

)
−ω−I (qn)

]
−

...−
[
λI(−∆Ik−I )β

−
I

][
ω−I
( k−I∑
i=0

qn(1−qn)i
)
−ω−I

( k−I −1∑
i=0

qn(1−qn)i
)]
, (5.78)

where ∆i is as defined in (5.66) for i ∈ {0, 1, ..., k−I }.

Hence,

VI(g
−
I (n ∈ h)) =

k−I∑
i=0

[
− λI

(
(−∆Ii)β

−
i

)(
ω−I
( i∑
j=0

qn(1−qn)j
)
−ω−I

( i−1∑
j=0

qn(1−qn)j
))]

.

(5.79)

However, based on geometric series:

i∑
j=0

qn(1− qn)j = 1− (1− qn)i+1 = 1− pi+1
n , (5.80)
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and

i−1∑
j=0

qn(1− qn)j = 1− pin. (5.81)

Replacing (5.80) and (5.81) in (5.79) results in

VI(g
−
I (n ∈ h))=

k−I∑
i=0

−λI(−∆Ii)β
−
i

(
ω−I
(
1−pi+1

n

)
−ω−I

(
1−pin

))
. (5.82)

A similar analysis can be carried out to obtain the expression of VI(g+I (n ∈ h)). In this regard,

VI(g
+
I (n ∈ h)) =

[
(∆Ik+I

)β
+
I

][
ω+
I

( ∞∑
i=k+I

(1−qn)iqn
)
−ω+

I

( ∞∑
i=k+I +1

(1−qn)iqn
)]

+...

+
[
(∆IkI )

β+
I

][
ω+
I

( ∞∑
i=kI

(1−qn)iqn
)
−ω+

I

( ∞∑
i=kI+1

(1−qn)iqn
)]

+... (5.83)

=
∞∑

i=k+I

(∆Ii)
β+
I

[
ω+
I

( ∞∑
j=i

(1− qn)jqn
)
− ω+

I

( ∞∑
j=i+1

(1− qn)jqn
)]
. (5.84)

In addition,

∞∑
j=i

(1− qn)jqn=qn

( ∞∑
j=0

(1−qn)j−
i−1∑
j=0

(1−qn)j
)

=qn

( 1

1−(1−qn)
−1−(1−qn)i

1−(1−qn)

)
=(1−qn)i = pin. (5.85)

Hence, the result in (5.85) can be used to simplify the expression in (5.84) leading to

VI(g
+
I (n ∈ h))=

∞∑
i=k+I

(∆Ii)
β+
I

[
ω+
I

(
(pn)i

)
−ω+

I

(
(pn)i+1

)]
. (5.86)

Hence, computing VI(g−I (n ∈ h)) and VI(g+I (n ∈ h)) as in (5.82) and (5.86), respectively, allows
computation of the value that I assigns to prospect g(n ∈ h), resulting from choosing a node n
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that is part of path h taken by U . This computation can be done as shown in (5.77) and results in

VI(gI(n ∈ h))=

k−I∑
i=0

−λI(−∆Ii)β
−
i

(
ω−I
(
1−pi+1

n

)
−ω−I

(
1−pin

))
+

∞∑
i=k+I

(∆Ii)
β+
I

[
ω+
I

(
(pn)i

)
−ω+

I

(
(pn)i+1

)]
, (5.87)

where k+I = k−I + 1.

Now, we consider the case in which n /∈ h. When the chosen path h taken by the UAV does not
include the interdiction node n, the resulting delivery time does not result in a probabilistic prospect
but is rather deterministic and equal to fh(D) with a probability equal to 1. This deterministic
prospect is formally represented as

g(n /∈ h) = (fh(D), 1). (5.88)

As PT predicts, this achieved delivery time, when n /∈ h, is subjectively valued by I depending
on whether it is larger than its target delivery time RI (gain scenario) or smaller than its target
delivery time (loss scenario). Hence, the value that I associates to prospect gI(n /∈ h), denoted by
VI(gI(n /∈ h)), is:

VI(gI(n /∈h))=

{
(fh(D)−RI)

β+
I , if fh(D) ≥ RI ;

−λI(−(fh(D)−RI))
β−I ,if fh(D)<RI . (5.89)

Hence, the valuation, VI(n, h), that the interdictor assigns to a strategy pair (n, h), in which the
interdictor is located at node n and U takes path h, is given by

VI(n, h) =

{
VI(gI(n ∈ h)), if n ∈ h; (5.90)
VI(gI(n /∈ h)), if n /∈ h. (5.91)

Proposition 6. The cumulative prospect-theoretic valuation that U assigns to a strategy pair (n, h)
is given by

VU(n, h) =

{
VU(gU(n ∈ h)), if n ∈ h; (5.92)
VU(gU(n /∈ h)), if n /∈ h. (5.93)

with
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VU(gU(n ∈ h)) =

k−U∑
i=0

−(−∆Ui)β
+
U

(
ω+
U (1−pi+1

n )−ω+
U (1−pin)

)
+

∞∑
i=k+U

λU(∆Ui)
β−U

(
ω−U
(
(pn)i

)
−ω−U

(
p(i+1)
n

))
, (5.94)

where k−U and k+U are such that: ∆Uk < 0 for k ≤ k−U , ∆Uk > 0 for k ≥ k+U , and k+U = k−U + 1;

and

VU(gU(n /∈h))=

{
−(−(fh(D)−RU))β

+
U , if fh(D)≤RU ;

λU(fh(D)−RU)β
−
U , if fh(D) > RU . (5.95)

Proof. We first start with the case in which n ∈ h. Incorporating U ’s valuation of each possible
outcome, based on (5.67) and (5.68), in prospect g(n ∈ h), leads to prospect gU(n ∈ h) defined as
follows:

gU(n ∈ h) =
(
− (−∆U0)

β+
U , qn;−(−∆U1)

β+
U , (1− qn)qn; ...;−(−∆Uk−U )β

+
U , (1− qn)k

−
U qn;

λU(∆Uk+U
)β
−
U , (1− qn)k

+
U qn; ...;λU(∆UkU )β

−
U , (1− qn)kU qn; ...

)
, (5.96)

such that ∆Uk < 0 for k ≤ k−U and ∆Uk > 0 for k ≥ k+U ; while ∆Uk is as defined in (5.69) for
k∈{0, 1, ..., k−U , k

+
U , ...,∞}.

Prospect gU(n ∈ h) can be split into a negative (for ∆Uk ≤ 0) and a positive prospect (for
∆Uk > 0), denoted by g−U (n ∈ h) and g+U (n ∈ h), respectively. In this case, the negative prospect
represents a gain for the UAV operator, since it corresponds to delivery times that are shorter than
the target delivery time, while a positive prospect is a loss for the UAV operator, since it corre-
sponds to delivery times that are longer than the target delivery time. The negative and positive
prospects are then defined as

g−U (n ∈ h)=
(
−(−∆U0)

β+
U , qn; ...;−(−∆Uk−U )β

+
U , (pn)k

−
U qn

)
(5.97)

and

g+U (n ∈ h)=
(
λU(∆Uk+U

)β
−
U , (pn)k

+
U qn; ...;λU(∆UkU )β

−
U , (pn)kU qn; ...

)
. (5.98)

The PT valuation that U assigns to VU(g−U (n ∈ h)) can be computed as follows:
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VU(g−U (n ∈ h))=

k−U∑
i=0

[
− (−∆Ui)β

+
U

(
ω+
U

( i∑
j=0

(pn)jqn
)
−ω+

( i−1∑
j=0

(pn)jqn
))]

=

k−U∑
i=0

−(−∆Ui)β
+
U

(
ω+
U (1−pi+1

n )−ω+
U (1−pin)

)
, (5.99)

where the second equality holds since
∑i−1

j=0(pn)jqn = 1− pin, as has been shown in (5.81).

In addition, the PT valuation that U assigns to VU(g+U (n ∈ h)) can be computed as follows:

VU(g+U (n ∈ h))=
∞∑

i=k+U

[
λU(∆Ui)

β−U

(
ω−U
( ∞∑
j=i

(pn)jqn
)
−ω−U

( ∞∑
j=i+1

(pn)jqn
))]

=
∞∑

i=k+U

λU(∆Ui)
β−U

(
ω−U
(
(pn)i

)
−ω−U

(
p(i+1)
n

))
, (5.100)

where the second equality holds since
∑∞

j=i(pn)jqn = pin as shown in (5.85).

Therefore,

VU(gU(n ∈ h)) = VU(g−U (n ∈ h)) + VU(g+U (n ∈ h))

=

k−U∑
i=0

−(−∆Ui)β
+
U

(
ω+
U (1−pi+1

n )−ω+
U (1−pin)

)
+

∞∑
i=k+U

λU(∆Ui)
β−U

(
ω−U
(
(pn)i

)
−ω−U

(
p(i+1)
n

))
, (5.101)

where k+U = k−U + 1.

Now, we consider the case in which n /∈ h resulting in a deterministic prospect g(n /∈ h) =
(fh(D), 1). This deterministic prospect is valued by U as a gain, in case fh(D) ≤ RU , and as a
loss in case fh(D) > RU . Hence, the valuation, VU(g(n /∈ h)), that U assigns to g(n /∈ h) is:

VU(gU(n /∈h))=

{
−(−(fh(D)−RU))β

+
U , if fh(D)≤RU ;

λU(fh(D)−RU)β
−
U , if fh(D) > RU . (5.102)

Hence, the valuation, VU(n, h), that U assigns to a strategy pair (n, h), in which the interdictor is
located at node n and U takes path h, is given by

VU(n, h) =

{
VU(gU(n ∈ h)), if n ∈ h; (5.103)
VU(gU(n /∈ h)), if n /∈ h. (5.104)
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As shown in (5.72) and (5.94), VI(g(n ∈ h)) and VU(g(n ∈ h)) correspond to infinite summations,
i.e. infinite series. Hence, to compare between possible pairs of strategies (n, h), based on their
valuations VI(n, h) and VU(n, h), and identify the equilibrium strategy pair, it is necessary for
these sums to converge. We next show in Proposition 7 and Proposition 8 that VI(g(n ∈ h)) and
VU(g(n ∈ h)) are convergent series.

Proposition 7. VI(g(n ∈ h)) is a convergent series.

Proof. For proving the convergence of VI(g(n ∈ h)), we next prove that VI(g+I (n ∈ h)), defined
in (5.86), converges. In this regard, we prove that VI(g+I (n ∈ h)), which is composed of positive
terms, converges using what is know as the ratio test. Following the ratio test, for a series

∑∞
n=1 an

with positive terms an, L is defined as L = lim
n→∞
|an+1

an
|. In this respect, if L < 1, then

∑∞
n=1 an

converges.

As such, we refer to the kth term of VI(g+I (n ∈ h)) by V I+

k , which is given by

V I+

k = (∆Ik)
β+
I

[
ω+
I

(
(pn)k

)
−ω+

I

(
(pn)k+1

)]
. (5.105)

where

ω+
I (pkn) =

p
kγ+I
n

(p
kγ+I
n + (1− pkn)γ

+
I )1/γ

+
I

. (5.106)

In this respect,

L= lim
k→∞

V I+

k+1

V I+
k

=
p
(k+1)γ+I
n −p(k+2)γ+I

n

p
kγ+I
n −p(k+1)γ+I

n

=
p
γ+I
n −p2γ

+
I

n

1−pγ
+
I
n

=p
γ+I
n < 1

⇒ VI(g
+
I (n ∈ h)) converges ⇒ VI(g(n ∈ h)) converges.

Proposition 8. VU(g(n ∈ h)) is a convergent series.

Proof. To prove the convergence of VU(g(n ∈ h)), we prove that VU(g+U (n ∈ h)), defined
in (5.100), converges using the ratio test (similarly to the test carried out in Proposition 7).

As such, we denote the kth term of VU(g+U (n ∈ h)) by V U+

k , which is given by

V U+

k = λU(∆Uk)
β−U

[
ω−U
(
(pn)k

)
−ω−U

(
(pn)k+1

)]
. (5.107)

where

ω−U (pkn) =
p
kγ−U
n

(p
kγ−U
n + (1− pkn)γ

−
U )1/γ

−
U

. (5.108)
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In this respect,

L = lim
k→∞

V U+

k+1

V U+

k

= p
γ−I
n < 1

⇒ VU(g+U (n ∈ h)) converges ⇒ VU(g(n ∈ h)) converges.

Hence, under PT, the pure-strategy equilibrium of the game is based on the personal valuations,
VI(n, h) and VU(n, h), that I and U respectively assign to the prospect resulting from the choice
of any strategy pair (n, h). This is in contrast to the game under full rationality in which both
players assess a strategy pair equally and objectively based on the resulting expected delivery time,
Ed(n, h). As such, under PT, the game becomes a nonzero-sum game which introduces additional
challenges for identifying the equilibrium strategies. In this regard, we next identify and analyze
the SE of our PT game.

5.6.2 PT Game Equilibrium in Pure Strategies

Equivalently to the analysis in Section 5.3.2, U can optimally react to a decision n that had been
taken by I . However, under the PT game, this optimal reaction is based on the valuation VU(n, h)
rather than the expected delivery time Ed(n, h). In this PT game, we denote the choice of a path
h ∈ H by U , as an optimal reaction to a node n ∈ N that had been chosen by I , by ρPT(n). ρPT(n)
is formally defined as:

ρPT(n) = argmin
h∈H

VU(n, h), (5.109)

where VU(n, h) is as derived in Proposition 6.

Equivalently to the SE for the fully rational game in Definition 13, an SE for the PT game (SE-PT),
is defined as follows.

Definition 15. A strategy pair (ñ∗, h̃∗) constitutes a Stackelberg equilibrium of the PT game if

VI(ñ
∗, h̃∗ = ρPT(ñ∗)) ≥ VI(n, ρ

PT(n)) for all n ∈ N , (5.110)

where VI(n, h) is as defined in (5.70) and (5.71) for, respectively, h ⊃ n (i.e. n ∈ h) and n /∈ h,
and ρPT(n) is as defined in (5.127).

As such, the interdictor’s problem corresponds to choosing ñ∗ which solves:

ñ∗ = argmax
n∈N

VI(n, ρ
PT(n)). (5.111)
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Following a similar logic used for the derivation of the SE in Theorem 9, the SE-PT can be analyt-
ically characterized as shown in Theorem 10.

Theorem 10. The interdictor’s SE-PT strategy, ñ∗, is given by:

ñ∗ = argmax
n∈{m1,m2}

(
VI(m1, ρ

PT(m1)), VI(m2, ρ
PT(m2))

)
, (5.112)

where

m1 = argmax
n∈Mhs

VI(n ∈ hs), (5.113)

Mhs = {n ∈ hs|VU(n ∈ hs) ≤ VU(n, hn)}, (5.114)

hn is the shortest O-to-D path not containing node n, and

m2 = argmax
n∈hs\Mhs

VI(n /∈ hn). (5.115)

The resulting UAV operator’s SE-PT strategy is given by

h̃∗=ρPT(ñ∗)=

{
hs, if ñ∗ = m1; (5.116)
hm2 , if ñ∗ = m2. (5.117)

Proof. The proof follows similar steps as the proof of Theorem 9. For convenience, a sketch of the
proof is provided next. The complete details of the proof can be generated by following the steps
of the proof of Theorem 9.

U ’s response to a choice n ∈ hs by I will either be hs or hn. I always has an incentive to choose
n ∈ hs, since otherwise, ρPT(n) = hs, which results in the worst possible VI(n, h) to the interdictor.
However, choosing an n ∈ hs might also lead U to deviate from hs and choose the best alternative
hn. Hence, I can split the nodes in hs into two sets,Mhs andN \Mhs . The nodes inMhs consist
of the nodes of hs which are such that, even when I is located at an n ∈Mhs , U still prefers taking
path hs. This will lead to the valuation VI(n ∈ hs) for the interdictor. On the other hand, choosing
a node n ∈ N \Mhs leads U to choosing path hn instead of hs. This will result in the valuation
VI(n ∈ hs, hn 6= hs) for the interdictor.

Hence, m1 and m2 in (5.113) and (5.113) represent the best node that I can choose from each of
the two sets, Mhs and N \ Mhs , respectively. As such, ñ∗ in (5.112) corresponds to choosing
the best of these two alternatives, and h̃∗ in (5.116) and (5.117) correspond to choosing the best
reaction ρPT by U to the choice made by I .

Hence, Theorem 10 analytically characterizes the SE of the PT game, which can be compared to
the SE of the conventional game derived in Theorem 9. This comparison enables us to analyze the
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effect of the players’ subjective PT valuations and decision weights on their chosen equilibrium
strategies. Indeed, a main component of the choice of the SE and and SE-PT strategies is the
characterization of sets Nhs , in (5.19), andMhs , in (5.114). By comparing (5.19) and (5.114), we
can see that Ns relies on the comparison between pn

1−pn (fhs(n) + ta) + fhs(D) and fhn(D) for
each n ∈ hs. On the other hand, Mhs relies on comparing VU(n ∈ hs), which can be obtained
from (5.94), with VU(n, hn), which can be obtained from (5.95). Hence, this difference inNhs and
Mhs enable possible deviation of the SE-PT strategies from the SE strategies.

Next, we formulate, analyze, and characterize equilibrium solutions to the PT game considering
mixed interdiction strategies.

5.7 PT Game Analysis under Mixed Interdiction Strategies

5.7.1 PT Game formulation under Mixed Interdiction

In Section 5.4, we introduced and analyzed the time-critical network interdiction game resulting
from a probabilistic (i.e. mixed) choice of interdiction strategies. In this regard, the analysis in
Section 5.4 considered fully rational objective players. Next, we incorporate the concepts and
principles of PT into the mixed-interdiction game formulation.

Consider the case in which I chooses x and U chooses a policy that induces path h = (O, n1,
n2, n3, ..., nr, nl, nk, nm, D). Then, the resulting possible delivery times, T ′(kn1 , kn2 , ..., knm),
and their associated probability of occurrence, τ ′(kn1 , kn2 , ..., knm), as given by (5.52) and (5.53)
where kni ∈ N0 is the number of times the UAV is successfully attacked at a node ni ∈ h\{O,D}.

Hence, the interdiction strategy x, by I , and response path h, by U , result in a prospect Γ (x, h)
in which each outcome T ′(kn1 , kn2 ..., knm) occurs with probability τ ′(kn1 , kn2 ..., knm). Under PT,
rather than relying on the expected value of this prospect to compare strategy pairs (x, h) ∈ X×H,
each of I and U generates a personal valuation of this prospect. As a result, their choices of optimal
mixed interdiction and path selection strategies are based on these PT valuations.

In this regard, given (5.52) and (5.53), as well as the value and weighting functions introduced
in (5.54), (5.55), (5.61), and (5.62), we can generate the valuations assigned by I and U , ΞI(x, h)
and ΞU(x, h), to prospect Γ (x, h) by following the steps introduced in Section 5.5 and applied in
Section 5.6.1.

In this respect, we next provide detailed derivations of ΞI(x, h), and ΞU(x, h).

Interdictor’s PT Valuation of Γ (x, h)

Starting with the interdictor’s PT valuation of Γ (x, h), I values each outcome T ′(kn1 , kn2 ..., knm)
of prospect Γ (x, h) based on its reference point RI . Therefore, the valuation that I assigns to
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T ′(kn1 , kn2 ..., knm), denote by ξI(kn1 , kn2 ..., knm), is:

ξI(kn1 , kn2 ..., knm)=


−λI(−(T ′(kn1 , kn2 , ..., knm)−RI))

β−I ,

if T ′(kn1 , kn2 ..., knm) < RI ;

(T ′(kn1 , kn2 , ..., knm)−RI)
β+
U ,

if T ′(kn1 , kn2 ..., knm) ≥ RI . (5.118)

Based on their signs, the different ξI(kn1 , kn2 ..., knm) can be split into (and sorted from low to high)
into a negative vector and a positive vector, denoted respectively by Γ−I and Γ+

I . In this respect,
Γ−I contains κ−I elements while Γ+

I contain an infinite number of elements. We denote the first
element of Γ+

U by Γ+
I (κ+I ) where κ+I = κ−I + 1. We let Γ+

U (i) and Γ+
I (i) denote generic elements

of Γ−U and Γ+
U , respectively.

In addition, we let τ̂−k and τ̂+k denote the probabilities of occurrence of elements Γ−I (k) and Γ+
I (k),

respectively. Therefore, the elements of Γ−I and Γ+
I with their associated probabilities constitute

the negative and positive portions of Γ (x, h), as valued by I , denoted by Γ−I (x, h) and Γ+
I (x, h).

The valuations by I of Γ−I and Γ+
I , denoted respectively by Ξ−I (Γ−I ) and Ξ+

I (Γ+
I ), can be com-

puted as follows:

Ξ−I (Γ−I ) =

κ−I∑
i=1

Γ−I (i)

[
ω−I

(∑
j≤i

τ̂j

)
− ω−I

(∑
j<i

τ̂j

)]
. (5.119)

Ξ+
I (Γ+

I ) =
∞∑

i=κ+I

Γ+
I (i)

[
ω+
I

(∑
j≥i

τ̂j

)
− ω+

I

(∑
j>i

τ̂j

)]
. (5.120)

Therefore, the valuation, ΞI(x, h), that I assigns to prospect Γ (x, h) resulting from the strategy
pair (x, h)) is

ΞI(x, h) = Ξ−I (Γ−I ) + Ξ+
I (Γ+

I ). (5.121)

In an equivalent manner, the UAV operator’s PT valuation of Γ (x, h) can be computed, as shown
next.

UAV Operator’s PT Valuation of Γ (x, h)

With regard to the UAV operator, each outcome T ′(kn1 , kn2 ..., knm) of prospect Γ (x, h) is valued
based onU ’s reference pointRU . In this respect, the valuation thatU assigns to T ′(kn1 , kn2 ..., knm),
which we denote by ξU(kn1 , kn2 ..., knm), is as follows:
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ξU(kn1 , kn2 ..., knm)=


−(−(T ′(kn1 , kn2 , ..., knm)−RU))β

+
U ,

if T ′(kn1 , kn2 ..., knm)≤RU ;

λU(T ′(kn1 , kn2 , ..., knm)−RU)β
−
U ,

if T ′(kn1 , kn2 ..., knm) > RU . (5.122)

The different ξU(kn1 , kn2 ..., knm) can be split into two vectors (with sorted elements from low to
high) based on their signs. We denote the negative vector by Γ−I and the positive vector by Γ+

I . Γ−U
will have κ−U elements and we let Γ−U (k) denote the kth element of Γ−U . On the other hand, Γ+

U has
an infinite number of elements. We denote the first element of Γ+

U by Γ+
U (κ+U) and we let Γ+

U (k)
denote the kth element of Γ+

U .

We let τ̃−k denote the probability of occurrence of element Γ−U (k) of Γ−U , while τ̃+k denote the
probability of occurrence of element Γ+

U (k) of Γ+
U . As such, the elements of Γ−U and Γ+

U , and their
associated probabilities, respectively form the negative and positive portions of Γ (x, h), denoted
by Γ−U (x, h) and Γ+

U (x, h).

The valuation, Ξ−U (Γ−U ), of the negative prospect, Γ−U , can be computed as follows:

Ξ−U (Γ−U ) =

κ−U∑
i=1

Γ−U (i)

[
ω+
U

(∑
j≤i

τ̃j

)
− ω+

U

(∑
j<i

τ̃j

)]
. (5.123)

In addition, the valuation, Ξ+
U (Γ+

U ), of the positive prospect, Γ+
U , can be computed as follows:

Ξ+
U (Γ+

U ) =
∞∑

i=κ+U

Γ+
U (i)

[
ω−U

(∑
j≥i

τ̃j

)
− ω−U

(∑
j>i

τ̃j

)]
. (5.124)

Thus, the valuation, ΞU(x, h), that U assigns to prospect Γ (x, h) is:

ΞU(Γ (x, h)) = Ξ−U (Γ−U ) + Ξ+
U (Γ+

U ). (5.125)

Based on ΞI(x, h) and ΞU(x, h), the equilibrium of the PT game under mixed interdiction can be
defined and characterized as shown next.
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5.7.2 PT Game Equilibrium under Mixed Interdiction

The definition of the SE-PT equilibrium introduced in Definition 15 can be extended to the mixed
interdiction case to form a PT mixed interdiction Stackelberg equilibrium (MSE-PT) defined in
Definition 16.

Definition 16. A strategy pair (x̃∗, h̃∗x̃∗) constitutes a PT mixed interdiction Stackelberg equilib-
rium of the network interdiction game if

ΞI(x̃
∗, h̃∗x̃∗ = ρ̃PT(x̃∗)) ≥ ΞI(x, ρ̃

PT(x)) for all n ∈ N , (5.126)

where ρ̃PT(x) is the optimal reaction of U to x and is given by:

ρ̃PT(x) = argmin
h∈H

ΞU(x, h). (5.127)

In this regard, our solution approach presented in Section 5.7 and which enabled deriving the MSE
of the game (under full rationality) can be also applied to derive the MSE-PT of the PT game.
Indeed, characterizing the MSE-PT requires solving U ’s problem in (5.127) as well as I’s problem
given in (5.126). In this regard, the all-paths method proposed in Section 5.4.1 can guarantee
solving U ’s problem as shown in Lemma 3.

Lemma 3. The all-paths method is guaranteed to find ρ̃(x) for each interdiction strategy x ∈ X .

Proof. Finding ρ̃(x) corresponds to identifying the path h which solves:

h = argmin
h∈H

ΞU(x, h). (5.128)

As such, by following steps 1 to 3 of the all-paths method, and considering ΞU(x, h) instead of
Eh(O;x), the all-paths method performs an exhaustive search over all possible O-to-D paths and
returns path h which results in the minimum ΞU(x, h); and hence solves (5.128).

The interdictor’s problem corresponds to solving the following optimization problem.

x̃∗ = argmax
x∈X

ΞI(x, ρ̃
PT(x)). (5.129)

Similarly to I’s problem in Section 5.4.2, obtaining an exact global solution to I’s PT problem
in (5.129) cannot be guaranteed due to the non-convexity and discontinuity of the objective func-
tion stemming from the sudden changes to ρ̃PT(x) which can be triggered by minimal changes to
x. Hence, for obtaining a solution to (5.129), we propose using a pattern search based method, as
discussed in Section 5.4.2.
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Figure 5.4: Paths lengths, fh(D), and node risk probabilities, pn.

5.8 Numerical Results

For performing numerical analyses, we consider the graph shown in Fig. 5.2 which is composed of
N = 10 nodes and E = 18 edges. For ease of reference, we number the 18 paths, from 1 to 18, as
follows: [1, 2, ..., 18] , [(2, 5, 7), (2, 5, 8), (2, 5, 9), (2, 6, 7), (2, 6, 8), (2, 6, 9), (3, 5, 7), (3, 5, 8),
(3, 5, 9), (3, 6, 7), (3, 6, 8), (3, 6, 9), (4, 5, 7), (4, 5, 8), (4, 5, 9), (4, 6, 7), (4, 6, 8), (4, 6, 9)]. Here,
given that node 1 (O) and node 10 (D) are part of each path, and for convenience, a path (1, i, j,
k, 10) is referred to by (i, j, k). In addition, the travel times ti, for i ∈ {1, ..., 18}, in Fig. 5.2 have
been drawn from a uniform distribution in the interval [2, 8]; which resulted in [t1, t2, ..., t18] ,
[6.89, 3.46, 7.58, 4.1, 3.18, 3.51, 5.7, 4.84, 4.11, 6.99, 5.51, 5.3, 7.5, 3.72, 6.54, 6.52, 4.28, 5.41].
We then chose the attack success probabilities as p= [0, 0.3, 0.5, 0.4, 0.6, 0.3, 0.4, 0.8, 0.4, 0].
The length of each path h, fh(D), and the risk probability at each node, pn, are shown in Fig. 5.4.
Fig. 5.4 shows that path 8, i.e. (3, 5, 8), is the shortest path followed by paths 11, i.e. (3, 6, 8),
and path 9, (3, 5, 9); while node 8 is the most risky node followed by nodes 5 and 3, respectively.
The re-handling and processing time is considered to be ta = 5. Moreover, regarding the PT
parameters of I and U , unless stated otherwise, we consider RI = RU = 20, λI = λU = 2.5,
β−I = β+

I = β−U = β+
U = 0.6, and γ−I = γ+I = γ−U = γ+U = 0.5.

We will first take the reference points (which represent, for example, a target delivery time) of
both players to be equal to R, i.e. RI = RU = R, and ranging from 10 to 35. The resulting
equilibrium interdiction strategies (i.e. I’s equilibrium strategies) are shown in Fig. 5.5, and U ’s
equilibrium strategies are shown in Fig. 5.6. Fig. 5.5 shows that the MSE interdiction strategy, x∗,
focuses solely on nodes 5, 8, and 9, (with x∗5 = 0.48, x∗8 = 0.31, and x∗9 = 0.21) which are nodes
of significant risk (especially nodes 5 and 8 with p5 = 0.6 and p8 = 0.8) and each one of these
nodes is at least part of one of the three shortest paths, i.e. paths 8, 11, and 9. In addition, U ’s
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MSE strategy, h, corresponds to choosing path 12, which is composed of nodes 3, 6, and 9. Given
that nodes 3 and 6 are not attacked by I at the MSE, and that p9 = 0.4 and x∗9 = 0.2, path 12 is
a relatively safe path. The players’ MSE strategies lead to an MSE expected delivery time that is
equal to around 23, as shown in Fig. 5.7.

Fig. 5.5 highlights the difference between I’s MSE-PT interdiction strategies, x̃∗, and the MSE
interdiction strategies at the different values of R. Fig. 5.5 shows the shift with an increase in R in
the PT interdiction strategy, x̃∗, from mainly targeting the nodes of the last phase before node D
(i.e. nodes 7, 8, and 9), at R = 10, to a more spread out attack strategy targeting a larger number
of nodes, at R = 35. In fact, at small values of R, such as R = 10, all possible delivery times fall
above R. Hence, all possible outcomes are valued by I as gains. Since the PT valuation function,
vI(.) in (5.54) and (5.54), leads I to be risk averse in gains, choosing nodes 7, 8, and 9 is appealing
since any O-to-D path is guaranteed to pass by at least one of these nodes. Clearly, this choice
of x̃∗ is a risk averse choice that guarantees a sure gain. However, when R increases, some of
the possible delivery times will fall below R. Hence, for a choice x by I , and h by U , some of
the outcomes will correspond to gains and some to losses leading I to drift away from a mere risk
averse strategy.

In Fig. 5.6, we show the different MSE-PT strategies of U for the different values of R. Fig. 5.6
shows that at R = 10, U chooses the shortest path, i.e. path 8, at the MSE-PT. This is due to
the fact that, for such a small reference point R, all possible delivery times are greater than R and
are, hence, seen as losses by U . Hence, due to the concavity of the value function for outcomes
greater than RU , and since U is a minimizer, the benefit from any reduction in losses exceeds the
damage caused by an increase in losses of the same magnitude (i.e. this PT property is known as
risk seeking in losses). Hence, taking the shortest path (even if it is risky up to a certain extent)
becomes more appealing to U . When R increases, U ’s MSE-PT strategy will drift away from the
shortest path, particularly at values of R that are high enough to enable certain possible delivery
times to fall below the reference delivery time, R, leading to outcomes that are valued as gains.

Fig. 5.7 shows the resulting expected delivery times, at the MSE and MSE-PT, for the different
values of R. Clearly, for low values of R, the MSE-PT results in a lower expected delivery time
than the MSE. However, for relatively high values ofR, the MSE-PT results in an expected delivery
time that is higher than the expected delivery time at the MSE. In fact, as shown in Fig. 5.7, the
percentage difference in expected delivery time at the MSE-PT compared to the MSE is −7.5%
at R = 15 and +14.4% at R = 30. Indeed, since at low values of R, I takes a risk averse
non-aggressive attack strategy, as shown in Fig. 5.5), and U chooses a risk-seeking shortest path,
as shown in Fig. 5.6, this leads to achieving a relatively short expected delivery time since this
shortest path (i.e. path 8) is not heavily targeted by I at the MSE-PT. However, for higher values
of R, I considers more aggressive interdiction strategies and U considers safer paths which results
in expected delivery times that are higher at the MSE-PT than at the MSE. In addition, the results
in Fig. 5.7 show that at the MSE-PT, except for R = 30 and R = 35, U was not able to achieve an
expected delivery time that is below its target reference delivery time. However, at the MSE, U ’s
expected delivery time is lower than its target delivery time forR ≥ 25. Hence, selecting strategies
based on PT valuations is, based on this comparison, disadvantageous to U .
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Figure 5.5: Equilibrium interdiction strategy for different R = RI = RU .
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Figure 5.6: U ’s equilibrium path selection strategy for different R = RI = RU .

Hereinafter, to characterize the effect of the various PT parameters on the resulting equilibrium
strategies and outcomes, we consider the interdictor to be fully rational (i.e. Ri = 0, λI = 1,
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Figure 5.7: Expected delivery time for different R = RI = RU .

β−I = β+
I = 1, and γ−I = γ+I = 1), while U values outcomes and performs probability weighting

following cumulative prospect theory, with PT parameters similar to the ones used in the previous
simulations, unless stated otherwise. We first study the effect of varying the rationality parameters
of U , i.e. γ−U and γ+U , on the MSE-PT and then study the effects of varying U ’s loss parameter λU .
First, we consider γU = γ−U = γ+U , and we let γU take the following values: 0.25, 0.3, 0.35, 0.5,
0.75, and 0.9.

Fig. 5.8 shows that the MSE-PT interdiction strategy approaches its MSE strategy at higher values
of γU . However, one can see that I’s MSE-PT strategy does not completely coincide with its MSE
even for high values of γU . This is due to the fact that even when U ’s probability weighting is
closer to full rationality, the way U values the possible game outcomes (i.e. the possible delivery
times) is based on its reference point RU and value function. Hence, even with a closely rational
probability weighting, U ’s MSE-PT may not equal its MSE strategy. This can, indeed, be seen
from Fig. 5.9, which shows that even for γU = 0.9, U ’s MSE-PT strategy is different than its MSE
strategy.

Fig. 5.9 shows the way in which U ’s MSE-PT strategy changes with an increase in γU . In this
regard, at lower values of γU , U ’s MSE-PT strategy consists of path 9, i.e. (3, 5, 9), while at higher
values of γU , U ’s MSE-PT strategy shifts to choosing path 11, i.e (3, 6, 8). As can be seen from
Fig. 5.8, at lower values of γU , I’s optimal strategy is focused on nodes 5 and 8 making path 9,
chosen by U at the MSE-PT, highly risky. However, U still chooses this path, at the MSE-PT, since
at such low values of γU , U ’s valuation of probabilities is highly distorted. In fact, the weighting
functions ω+

U (.) and ω−U (.) flatten for lower values of γU . Hence, U would assess different paths
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Figure 5.8: I’s equilibrium interdiction strategy for different values of γU = γ−U = γ+U .

as almost equally risky leading U to choose path 9. However, when γU increases, U ’s perception
of probabilities becomes more rational. Hence, for these values of γU , U can observe that path 9
is highly risky and chooses instead the safer path 11, composed of nodes (3, 6, 8) which are not
attacked with a high probability by I at the MSE-PT.

Fig. 5.10 shows the resulting expected delivery times at the MSE and at the MSE-PT for the various
values of γU . From Fig. 5.10, we can see that the MSE-PT strategies result in expected delivery
times that are longer than the expected delivery time achieved at the MSE. Indeed, for γU = 0.25,
the percentage difference between the expected delivery time at the MSE-PT and that at the MSE
goes up to +21.5%. The reason is that, as shown in Fig. 5.9, for low values of γU , U admits a risky
MSE-PT strategy leading to high expected delivery times. However, with an increase in γU , the
shift in U ’s MSE-PT strategy allows achieving better expected delivery times; which are, however,
still longer than the MSE expected delivery time. Fig. 5.10 also shows an expected delivery time
labeled “Rational response”. This corresponds to U choosing a rational strategy in response to I’s
MSE-PT strategy. In other words, rational response corresponds to choosing the path strategy h∗

which solves (5.50) for x = x̃∗. In this scenario, I assumes thatU admits PT valuations and would,
hence, choose its MSE-PT strategy, x̃∗. However, if U is rather rational, it can take advantage of
its knowledge of x̃∗ to achieve a better expected delivery time. Indeed, the rational response of U
consists of choosing path 11, for γU = 0.25 and γU = 0.3, and path 12, for the higher values of
γU , which result in achieving expected delivery times that are shorter than the expected delivery
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Figure 5.9: U ’s equilibrium path selection strategy for different values of γU = γ−U = γ+U .

times at the MSE-PT and the MSE, as shown in Fig. 5.10. In fact, as can be seen from Fig. 5.10,
at γU = 0.25, choosing the rational response strategy (which corresponds to choosing path 11)
allows U to achieve an expected delivery time that is 30.3% lower than the expected delivery time
achieved at the MSE-PT.

Fig. 5.11 shows the resulting expected delivery times at the MSE and at the MSE-PT, for the various
values of λU ∈ {1, 2.5, 5}. Fig. 5.11 also shows the expected delivery time achieved when U plays
the rational response strategy as a reaction to I choosing its MSE-PT strategy. Fig. 5.11 shows that
the MSE-PT strategies chosen at the different values of λU result in an expected delivery time that
is only slightly higher than the one achieved at the MSE. At higher values of λU , this difference in
expected delivery times decreases. Indeed, at λU = 1, the percentage difference between the MSE-
PT and the MSE expected delivery times is +4.14% while this difference drops to only 1.3% at
λU = 5. However, when U plays a rational response strategy, in response to I’s MSE-PT strategy
(which consists of choosing path 12 for all the three values of λU , i.e. 1, 2.5 and 5), U can achieve
an expected delivery time that is up to 11% lower than the expected delivery time achieved at the
MSE.

5.9 Summary

In this chapter, we have introduced a novel mathematical framework for studying the cyber-
physical security of time-critical UAV applications, such as drone delivery systems and anti-drone
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Figure 5.10: Expected delivery time a) when U plays a rational response to I’s MSE-PT strategy,
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systems. We have modeled the problem using a network interdiction game between the UAV oper-
ator and the interdictor, while considering that either of which is malicious and the other is benign.
In addition, we have incorporated principles from cumulative prospect theory in the game formu-
lation to account for the players’ potential subjectivity and bounded rationality. In this regard,
under pure strategies – for the fully rational game and the cumulative prospect-theoretic game, we
have derived the Stackelbeg equilibrium of the game. In addition, under mixed-strategies, for the
PT and fully rational games, we have characterized the solutions to the optimization problems of
the UAV operator and interdictor and proposed solution algorithms for obtaining these solutions.
Simulation results have highlighted the effects of the cumulative prospect-theoretic parameters of
the players on the resulting game outcomes and equilibrium strategies. In this regard, the results
have shown that the subjectivity of the players is in most results disadvantageous to the UAV op-
erator leading to delays in the expected delivery time which can surpass the target delivery time
predefined by the UAV operator.



Chapter 6

Diffusion of Threats in Cyber-Physical
Systems

6.1 Introduction

Cyber-physical systems are characterized by a tight interconnection between the physical system
and its underlying information and communication layers. Such a cyber-physical interconnection
allows the diffusion of attacks and threats from the cyber layer to the physical system, and from
the physical system to the cyber realm. As such, understanding such threat propagation is vital for
securing these CPSs.

Even though a large number of works, as surveyed in Section 1.2, have recently focused on study-
ing CPSs security such as in [29, 52, 79, 102, 117, 120, 127, 223], no previous works have focused
on such detrimental propagation of threats while devising optimal defense mechanisms which are
cognizant of potential smart strategic attackers which aim at exploiting such diffusion possibilities
to penetrate the system and inflict a wide-scale damage to the CPS.

The main contribution of this chapter is to develop a general framework for analyzing CPS security
– accounting for the propagation of threats throughout the system – in the presence of a strategic
attacker and defender. Given a general CPS model, the problem is formulated as a zero-sum game
between the attacker and defender that are interacting over the cyber side of the CPS. In this game,
the attacker aims at launching cyber attacks on a number of cyber nodes of the CPS to damage
some of the physical components by capitalizing on the diffusion of failures from the cyber to the
physical components. In contrast, the defender aims at defending a number of cyber nodes to stop
such attacks. Since the attacker and defender can have different computational abilities and levels
of knowledge of the CPS, we propose a novel approach to capture such disparate cognitive levels
inspired by the behavioral framework of cognitive hierarchy theory [224]. Our proposed frame-
work considers that the defender can be faced, in practical situations, with an attacker possessing
one of various possible levels of computational abilities and knowledge depth. Thus, choosing a
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Figure 6.1: Cyber-Physical Interconnection.

defense strategy while always assuming that the attacker is a very complex strategic thinker, as in
conventional games [102, 127], is not always optimal. Hence, our bounded rationality framework
assumes that the defender can be faced with an attacker than can have one of many levels of think-
ing reflecting the level of sophistication of its used strategy. To solve this game, we characterize
the various levels of thinking of the attacker and accordingly derive its optimal strategy. Moreover,
the optimal strategy of the defender is chosen to be the one that maximizes its expected payoff
given a probability distribution of the attacker’s thinking levels.

As a case study, we consider a wide area protection scenario in the smart grid. In this study, we
focus on the economic effects that a false disconnection of a transmission line can have on the
system. Our numerical results over the PJM-5 bus system show that the defender can have an
incentive to deviate from its Nash equilibrium strategy knowing that the attacker can be acting
with bounded rationality. Moreover, these results also showcase the effect that the probability of
facing each attacker level has on the optimal attack and defense strategies.

The rest of this chapter is organized as follows. Section 6.2 introduces our general CPS security
model as well as the proposed game with bounded rationality. Section 6.3 presents a case study
focusing on wide area protection of the smart grid illustrating our proposed model and game while
Section 6.4 presents a summary of the chapter.

6.2 System Model and Game Formulation

Consider a CPS composed of Nc cyber and Np physical nodes that are strongly interdependent.
Let C and P be, respectively, the sets of cyber and physical nodes. In this model, security breaches
can spread from the cyber to the physical realms. As illustrated in Fig. 6.1, we let rc,p be the
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interconnection between a cyber node c ∈ C and a physical node p ∈ P . In fact, control laws
governing the operation of the physical system depend on local and remote data collected by cyber
nodes. Such data is sent via communication channels to a supervisory control and data acquisition
system which, in turn, sends control signals back to the cyber nodes initiating a control action over
the physical nodes. In this regard, rc,p is a weight that captures the effect of the data sent by cyber
node c on the control action over physical node p. Accordingly, from a security perspective, rc,p
represents the probability that p fails due to corrupt data sent by c. Hereinafter, we use “failed
node” to refer to a cyber node sending corrupt data. This failure of c can be due to a cyber attack
on this node or to other reasons such as a software bug or a misconfiguration. Hence, rc,p can be
expressed as rc,p = Pr(p fails | c has failed), while

∑
c∈C rc,p = 1.

Let πp be the probability of failure of p ∈ P due to failures of a number of cyber nodes, and κc the
probability of failure of one of the cyber nodes c ∈ C. Accordingly, πp will be given by

πp =
Nc∑
c=1

rc,pκc. (6.1)

We denote by R the matrix of interconnections between cyber and physical nodes, and π =
[π1, ..., πNp ] ∈ RNp and κ = [κ1, ..., κNc ] ∈ RNc the failure probability vectors of the physical
and cyber nodes, respectively. Accordingly, (6.1) can be rewritten in matrix form as follows:

π = κR. (6.2)

Each physical node p is associated with a cost of failure fp. Hence, the expected total loss to the
system, Ef , is given by:

Ef =

Np∑
p=1

πpfp. (6.3)

6.2.1 Game Formulation

In the absence of attacks, the probability of failure of each cyber node is typically small and is only
due to the presence of software bugs or misconfiguration by, for example, maintenance personnel.
Thus, under no cyber attacks κ ≈ 0 and, thus, π ≈ 0. However, when a cyber node c is attacked,
the probability of failure of this node goes up to κc = 1. As a result, as seen from (6.2), this attack
increases the risk of failure of the physical components that are interconnected to c thus increasing
Ef as per (6.3). On the other hand, defending c protects it from failures in which case κc = 0 even
when ck is attacked1. For example, if an attacker induces a malware over a cyber node, when this
node is defended, the malware is detected and eliminated.

1Attack and defense are assumed to be always successful such that an attack on c will certainly lead to its failure
while defending c leads to its non-failure.
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The attacker hence aims at maximizing Ef while the defender, which is the system operator, aims
at minimizing it. To analyze the optimal decision making of each of the attacker and defender, we
formulate a noncooperative zero-sum game [146] Ξ = 〈I, (Si)i∈I , (Ui)i∈I〉. Here, I = {d, a} is
the set of players: defender (d) and attacker (a). Si is the set of actions available to player i ∈ I
which consists of choosing a subset of cyber nodes to defend or attack. Let nd and na be the
number of nodes that can be, respectively, defended by the defender and attacked by the attacker.
Then, we have |Sd| =

(Nc
nd

)
and |Sa| =

(Nc
na

)
. Ui is the utility function of player i ∈ I and is such

that for si ∈ Si,

Ud(sd, sa) = −Ua(sd, sa) = −Ef , (6.4)

where Ef is given by (6.3).

6.2.2 Solution Concept

The most commonly adopted equilibrium concept for such static noncooperative games is the Nash
equilibrium [146] (NE); as defined in Chapter 2 and reintroduced next. In this regard, let γi ∈ Γi
be a probability distribution over the strategy set of player i where Γi is the set of all possible such
distributions. Thus, γi(s) represents the probability of player i choosing strategy s ∈ Si while∑

s∈Si γi(s) = 1. Accordingly, each player’s expected utility is given by:

Ūd(γd,γa) = −Ūa(γd,γa)

= −
∑
sd∈Sd

∑
sa∈Sa

γd(sd)γa(sa)Ua(sd, sa). (6.5)

A best response strategy of a rational player i, γ∗i , is one that maximizes its expected utility facing
its opponent’s strategy, γ−i:

Ūi(γ
∗
i , γ−i) ≥ Ūi(γi, γ−i) ∀γi ∈ Γi. (6.6)

When every player plays a best response strategy against its opponent’s strategy, the game reaches
an equilibrium. Thus, the strategy profile (γ∗i , γ

∗
−i) is a NE of the game when ∀i ∈ I [146]:

Ūi(γ
∗
i , γ

∗
−i) ≥ Ūi(γi, γ

∗
−i) ∀γi ∈ Γi. (6.7)

6.2.3 Notion of Bounded Rationality

The NE as defined in (6.7) assumes that both players are strategic thinkers, act rationally, and have
complete knowledge of the game. However, when faced with risk and uncertainty, individuals are
known to deviate from full rational behavior2 [161].

2Even in the case of automated attack and defense, the high required computational ability and short time to act
can lead to taking sub-optimal decisions.
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In fact, (6.7) requires every player to anticipate the exact cost, fp, caused to the system due to the
loss of each physical component p ∈ P . With this knowledge, the attacker (defender) can rank
the physical components based on the magnitude of their associated fp. Accordingly, each player
can maximize (minimize) the harm caused to the system taking into consideration the defense
(attack) strategy that can be adopted by the opponent. However, cyber-physical systems are known
to be very complex systems. Thus, obtaining such an exact ranking of the costs caused by the
loss of every component, fp, is highly complex. As a result, in practice, the attacker and defender
can build their own perception of the vector of incurred losses f , denoted as f̂

i
for i ∈ I, then

take action accordingly. However, f̂
i

can differ from f . Moreover, the attacker and defender can
have different computational capabilities and thus can generate a different f̂

i
based on their skill

and computational levels. Thus, by following its own perception, a player can deviate from full
rationality while choosing its optimal strategy. Consequently, this bounded rationality can lead to
deviations from the NE strategies.

To model such bounded rationality, we categorize each player based on its level of thinking which
is defined by how close is its perception f̂

i
to the actual f . Thus, high level thinkers are more

intelligent, have better knowledge, and superior computational ability, allowing them to generate
a closer perception to the real f . Such a notion is inspired from the behavioral framework of
cognitive hierarchy theory (denoted here by CH) [224] – defined in Section 2.5.2 – in which it is
shown that human players assume that they have the highest level of thinking, denoted by level
K, and that their opponents’ levels of thinking are distributed over lower levels 0, ..., K − 1. In
a CH model, level 0 thinkers choose an action randomly from their strategy space while higher
level thinkers employ more advanced levels of reasoning to choose their strategies. To model the
proportion of level k thinkers for k ∈ {0, ..., K − 1}, a Poisson distribution, α(k), with mean and
variance denoted by λ is usually assumed [224]:

α(k) =
e−λλk

k!
. (6.8)

Given that the defender in our model is the system operator, it can anticipate with full certainty f .
In contrast, the attacker might have a distorted f̂ which reflects its level of thinking and, as a result,
its chosen strategy. The defender, hence, has to choose its optimal strategy while anticipating the
possibility of facing an attacker that can fall in any category k with a probability α(k).

As a result, the knowledge that the defender has about potential types of the attacker that it can
face can give an incentive for the defender to deviate from its NE strategy. In fact, this anticipation
of the various attacker types would change the best response strategy of the defender from the
NE strategy which assumes that the defender faces only a fully rational attacker. Moreover, since
the attacker acts with bounded rationality based on its thinking level, this attacker chooses the
strategy that it perceives to be optimal based on its own perception following from its f̂ . Thus,
the attacker also has an incentive to deviate from the NE strategy. Consequently, our bounded
rationality framework showcases how in practical situations attackers and defenders can deviate
from the fully rational NE.



Anibal Sanjab Chapter 6. Diffusion of Threats in CPSs 155

~

~

~

~

~
G1

G2

G5

G3

G4

L2 L3

L4

1 32

45

c1 c5

c2

c3

c6

c4

c7

c9

c10

c11c12

c8

p1

p2p3

p6

p5

p4

Figure 6.2: PJM 5-bus System

To give more elaboration of our proposed CPS model, game formulation, and bounded rationality
framework, we next analyze in detail a case study focusing on the concept of wide area protection
of a smart grid with energy markets implications.

6.3 Wide Area Protection in the Smart Grid

6.3.1 Smart Grid Wide Area Monitoring and Protection

In a smart grid, the concept of wide area monitoring, protection, and control relies on system-
wide information sent from a collection of cyber nodes to generate protective actions affecting the
status (i.e. connectivity) of the system’s physical components to prevent the propagation of large
disturbances [7]. The extent to which the information sent by every cyber node affects the status
of each physical component can follow our proposed model in Section 6.2.

Consider the PJM 5-bus system shown in Fig. 6.2. This test system comprises 5 generator units
and 3 loads. All data pertaining to this test system are available in [225]. The cyber nodes C ,
{c1, ..., c12} collect real time data from around the system and send them to the SCADA. The
SCADA processes the data, detects possible disturbances, and sends, in this event, protection
actions requiring the disconnection of a transmission line to stop the propagation of the disturbance.
The transmission lines, P , {p1, ..., p6}, constitute the physical nodes of the system.

Accordingly, one of the purposes of this wide protection concept is to disconnect physical compo-
nents, such as transmission lines, to stop the propagation of a detected disturbance. This is known
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as disturbance isolation. When the protection system successfully isolates a disturbance, as per
its design requirements, the underlying protection scheme is known to be “dependable” [226]. In
addition, the protection system is required to be “secure” which dictates that the system takes pro-
tective actions only in the event of occurrence of anomalies [226]. Thus, falsely disconnecting a
component of the system during normal operation is seen as a security breach.

To this end, a malicious attacker can target the security of the system by compromising a number
of cyber nodes na and manipulating their sent data, to falsely trip a certain transmission line. Here,
κ = [κ1, ..., κ12] is the failure probability vector of the 12 cyber nodes (i.e. probability of a cyber
node sending false data) and π = [π1, ..., π6] is the vector of probabilities of a false disconnection
of a transmission line due to one, or multiple, failures in the cyber system. The degree up to which a
failure on the cyber side leads to a disconnection of a transmission line is captured by the matrixR
in (6.2). Locally collected data give, naturally, a better indication of the real-time operating state of
a transmission line and hence have the most significant effect on the decision of disconnecting that
line. Based on this observation, we build R as follows. As shown in Fig. 6.2, each transmission
line is affected by data sent from 12 cyber nodes 2 of which are locally connected to it. These
local cyber nodes equally share a 50% effect on the decision to disconnect the line while the other
50% is split equally between the 10 remaining cyber nodes. As a result, R, such that π = κR, is
represented as follows3:

ri,j =

{
0.25, if ci is locally connected to pj,
0.05, otherwise.

Next, we focus on the cost of loss, fpi , of each physical component pi ∈ P . A wrongful discon-
nection of a transmission line can have detrimental effects on the operation and stability of a power
system. For example, the 1965 blackout of the Northeast region of the United States and the On-
tario province of Canada was caused by a false trip of a transmission line [227]. As a result of such
incidents, power system operators adopted what is known as the “n − 1 security criterion” which
requires the system to preserve its normal state of operation after the loss of one of its n compo-
nents [122]. Based on this reinforced security requirement, a loss of one transmission line does
not, typically, affect the safety of a system under low stress operating conditions. Thus, we will
focus on another key effect of a false disconnection of a transmission line, namely, the economic
effect.

The economic dispatch of the smart grid is based on the solution of an optimal power flow (OPF)
problem. A typical OPF problem formulation [228] is an optimization problem aiming at mini-
mizing the total generation cost of the system subject to a set of equality and inequality constraints
reflecting the system’s operational requirements and physical limits.

To this end, consider V 0 to be the value function of the original OPF problem, i.e. without loss of
any transmission line, and V pi to be the value function of the OPF with loss of transmission line

3We use this representation of R as a numerical example of our proposed model. Nonetheless, other numerical
representations could have also been equally adopted without affecting the validity of our model and underlying
analyses.
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Figure 6.3: Cost to the system incurred by the loss of each transmission line as expressed in (6.9).

pi ∈ P . The value function of the OPF problem reflects the total cost of generation spent to meet
the load and is normally expressed in $ per hour. Moreover, consider T pi (expressed in hours) to be
the time needed to bring back pi into operation and CRpi (expressed in $) to be the cost of repair
of pi. Then, fpi will be given by:

fpi = (V pi − V 0)T pi + CRpi . (6.9)

6.3.2 Numerical Results

For the considered PJM 5-bus system, to calculate fpi ∀pi ∈ P , we run the optimal power flow
seven different times to compute {V0, V p1 , ..., V p6}. Also, we consider that every disconnected
transmission line needs 12 hours and costs $80, 000 to be brought back into operation4. The results
are shown in Fig. 6.3. As can be seen from Fig. 6.3, disconnecting p3 incurs the highest cost to the
system ($131, 220) followed by p2, p1, p4, p5 and p6, respectively.

In our case analysis, we consider that the attacker (defender) aims at attacking (defending) a given
transmission line, pi ∈ P , by compromising (securing) the two cyber nodes that have the most ef-
fect on this line. In other words, for the considered game, the strategy space of the defender and at-
tacker can be defined as follows: Sd = Sa = {(c1, c5), (c2, c10), (c3, c4), (c6, c7), (c8, c9), (c11, c12)}.
This corresponds to choosing to defend/attack one of the lines in P . Thus, equivalently, Sd = Sa =
{p1, p2, p3, p4, p5, p6}.

4Such numbers are used as an example and are usually specific to the system and to the line’s voltage level and
length.
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Table 6.1: Attacker’s Payoff Ua(sdi , s
a
j ), [Unit: $1, 000]

d
a

p1 p2 p3 p4 p5 p6

p1 -38.82 -141.22 -142.30 -116.71 -110.49 -110.44
p2 -139.60 -38.69 -142.17 -116.58 -110.35 -110.31
p3 -139.50 -140.99 -38.59 -116.48 -110.26 -110.21
p4 -141.82 -143.31 -144.40 -40.92 -112.58 -112.53
p5 -142.39 -143.88 -144.96 -119.37 -41.48 -113.10
p6 -142.39 -143.88 -144.97 -119.37 -113.15 -41.49

The defender and attacker aim at maximizing their expected utility functions, Ūi, given by (6.5).
The payoff Ud(sd, sa) of the defender for the different sd ∈ Sd and sa ∈ Sa is presented in Table 6.1
in which the row player is the defender and the column player is the attacker5. The payoff of the
attacker for the different strategy combinations is the negative of that of the defender given that the
game is of zero-sum type.

When both players are strategic thinkers and have complete information of the game, the NE
in (6.7) can be found using the von Neumann indifference principle [146]. Applying the von
Neumann indifference principle we get the following equilibrium results:

γ∗d = [0.2931, 0.3034, 0.3107, 0.0842, 0.0047, 0.0040], (6.10)
γ∗a = [0.1276, 0.1244, 0.1222, 0.1922, 0.2167, 0.2169]. (6.11)

This optimal strategy leads to Ūd = −$110, 240 and Ūa = $110, 240.

On the other hand, as explained previously, the NE assumes that both attacker and defender act
strategically and have complete information of the game. However, computing f requires the
solution of an OPF which is a complicated optimization problem [229] that requires complete
knowledge of the system. The complexity of finding the solution of the OPF in practical applica-
tions is thoroughly discussed in [229]. To this end, since the defender is the system operator, it has
complete knowledge of the system and has the computational tools that are developed specifically
for the solution of the system’s OPF. On the other hand, the attacker might not have neither the
full knowledge of the system nor the computational capabilities to solve the OPF and compute
fpi ∀pi ∈ P . In this case, the attacker must build a perception of the ranking of fpi , for different
pi ∈ P , to assess which attack strategy is the most harmful to the system. Thus, playing an NE
defense strategy against an assumed fully rational attacker might not be an optimal strategy given
that the attacker can deviate from its NE strategy due to its bounded rationality.

5The defender always has a negative payoff even when the attack is blocked. In fact, with no attack, πc 6= 0 since
cyber node ck can fail due to a software bug or misconfiguration. In our numerical analysis we take πcj = 1/12∀j =
1, ..., 12 prior to attack and defense. πc is small but not equal 0.
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By applying the proposed model of Section 6.2.3, we can investigate deviations from the NE due
to the bounded rationality of the attacker. To this end, we consider that the attacker can take one
of three types reflecting three different “thinking levels” as described in Section 6.2.3. A level
0 attacker, denoted by l0, is one that chooses an attack strategy randomly (following a uniform
distribution) from its strategy set Sa. A level 1 attacker, denoted by l1, cannot generate OPF
solutions but can observe the power flow on each line (requires eavesdropping rather than solving
the computationally demanding OPF). Hence, an attacker l1 builds a perception of the most harmful
line to attack based on the level of power flow on every line. A more loaded line, pi, is associated
with a larger f̂pi . Thus, an l1 attacker targets the line that is the most loaded. A level 2 attacker,
denoted by l2, is considered to have full knowledge of the system and high computational ability
and can hence solve the OPF and compute fpi ∀pi ∈ P . Thus, l2 can compute the exact f and
attacks the line pi with highest fpi .

In our model, the defender performs the highest thinking level since it has the capability and knowl-
edge to think strategically. In fact, through historical data, the defender can build an anticipation
about the potential thinking levels that an attacker may perform. Thus, the defender anticipates
what the attack strategy can be, based on a distribution of possible attacker’s types, and plays a
best response defense strategy that maximizes its expected payoff. On the other hand, the attacker
may not be able to acquire such accurate knowledge about what the defender’s strategy may be.
Thus, the attacker forms a perception of the harm that its attack can have. Then, the attacker bases
its attack on this perception since it assumes that the defender is equally likely to defend any of the
cyber nodes. In other words, the attacker assumes the defender to be a level 0 thinker.

Next, we compute the best response strategy of the defender when faced with an attacker belonging
to one of the three types. γlka corresponds to attacker lk’s attack strategy while γlkd denotes the best
response of the defender against this strategy.

To this end, we first consider l0 which chooses a line to attack randomly. Thus, its strategy is
given by γl0a (sa) = 1/6∀sa ∈ Sa. To determine the best response of the defender facing an
l0 attacker, we show, in Fig. 6.4, the expected utility of the defender when choosing each of its
possible strategies. By checking the values of the achieved expected utility when defending a
line pi (dashed line in Fig. 6.4), one can see that the best response of the defender against an l0
attacker is to choose to defend p3. That is, γl0d (p3) = 1 and γl0d (pj) = 0∀pj 6= p3 which results in
Ū l0
d (γl0d , γ

l0
a ) = −Ū l0

a (γl0d , γ
l0
a ) = −$109, 340.

Considering the case of an l1 attacker, its bounded rationality dictates attacking the line carrying
the highest power flow since a disconnection of such a line is perceived to cause the highest harm
to the system. Let ω be the vector of power flows over lines {p1, ..., p6} with no disconnection of
any of these lines. Running an OPF of the PJM 5-bus system results in the following flows ex-
pressed inMW : ω = [252.38, 187.87, 230.25, 49.21, 24.95, 238.5]. Given that p1 bears the highest
power flow, γl1a consists of attacking line p1 with probability equals to 1. Based on Table 6.1, the
defender’s best response against γl1a is to choose to defend line p1 with probability 1 (γl1d (p1) = 1).
These defense and attack strategies result in Ū l1

d (γl1d , γ
l1
a ) = −Ū l1

a (γl1d , γ
l1
a ) = −$38, 830.

In contrast to l1, an l2 attacker has the ability and the knowledge to solve the OPF and characterize
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Figure 6.4: Defender’s expected utility when defending one of the lines pi ∈ P facing an l0
attacker.

the line with highest fpi . As shown in Fig. 6.3, line p3’s loss is the most harmful. Hence, γl2a
consists of attacking line p3 with probability 1. The best response of the defender to this strategy
can be obtained from Table 6.1 and consists of defending p3 with a probability 1 (γl2d (p3) = 1).
These defense and attack strategies result in Ū l2

d (γl2d , γ
l2
a ) = −Ū l2

a (γl2d , γ
l2
a ) = −$38, 590.

Given that the defender might be faced with an attacker from any of the three types, it aims to
devise an optimal strategy that achieves the best expected utility facing the possible three types.
The probability that the attacker is of level lk is given by α(k) which can follow, for example,
the distribution in (6.8) or any other distribution which can, for example, be obtained from any
empirical analyses or historical data. Here, rather than assuming the distribution in (6.8), we
focus on the case in which the ratio of probabilities of level k + 1 to level k is a constant and we
denote this ratio by τ . Thus, α(1)/α(0) = α(2)/α(1) = τ . Using this relation and noting that
α(0) + α(1) + α(2) = 1, we can express α(0) as: α(0) = 1/(1 + τ + τ 2).

From our derived best response expressions, γl0d , γ
l1
d and γl2d , we know that the defender would

defend line p3 when faced with an l0 or l2 attacker while the defender would defend line p1 when
faced with an l1 attacker. Given the defined probabilities of each attacker’s type, we can calculate
the expected payoff of the defender when faced with an attacker lk , α(0)l0 + α(1)l1 + α(2)l2.
This latter notation means that lk corresponds to a combination of types l0, l1 and l2 with probability
α(0), α(1) and α(2), respectively. Following from the expressions of Ū l0

d , Ū
l1
d and Ū l2

d as well as
from Table 6.1, the expected utility of the defender when defending p1 and p3 can be expressed as
follows:
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Figure 6.5: Defender’s expected utility when facing an attacker which can be of types l0, l1, and l2.

Ūd(p1, lk) = α(0)Ūd(p1, l0) + α(1)Ūd(p1, l1) + α(2)Ūd(p1, l2)

= −109.998α(0)− 38.823α(1)− 142.302α(2)

= −109.998α(0)− 38.823α(0)τ − 142.302α(0)τ 2

Ūd(p3, lk) = −109.336α(0)− 139.489α(1)− 38.823α(2)

= −109.336α(0)− 139.489α(0)τ − 38.823α(0)τ 2

As a result, the defender picks p1 when Ūd(p1, lk) > Ūd(p3, lk), picks p3 when Ūd(p1, lk) <
Ūd(p3, lk), and is indifferent when Ūd(p1, lk) = Ūd(p3, lk). Thus, the defender chooses the strategy,
γlk∗d which results in Ū∗d (γlk∗d , lk) = max

(
Ūd(p1, lk), Ūd(p3, lk)

)
.

Fig. 6.5 shows the optimal expected utility achieved by the defender when playing γlk∗d for an in-
creasing ratio τ . Fig. 6.5 shows that the defender achieves a better expected utility, Ū∗d , when play-
ing γlk∗d against γlka as compared to the NE utility achieved when choosing γ∗d , in (6.10), against
γlka . Thus, given that the attacker can act with bounded rationality in security applications, ac-
counting for this bounded rationality has achieved a better payoff for the defender as compared to
playing the NE strategy. For τ = 0.5, the defender achieves a 78% increase in its expected utility
by choosing γlk∗d instead of γ∗d . This increase drops to 67% for τ = 1 and 55% for τ = 5. The
value of τ gives an indication about the probability of having a lower or higher level attacker. In
fact, τ < 1 indicates that a low level attacker is more probable while τ > 1 indicates that a higher
level attacker is more probable. Thus, the general trend shows that when the probability of a high
level attacker increases, the gain from deviating from the NE defense strategy decreases.

Moreover, it can be seen from Fig. 6.5, that the defender’s optimal strategy is to defend p1 for
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approximately τ < 1 and defend p3 for τ > 1. This implies that when it is more probable to face
a low level attacker, the defender optimally defends against the targeted line, p1. In contrast, when
facing a more intelligent attacker is more probable, τ > 1, the defender’s optimal strategy is to
defend p3 which is the most probable target of a high level attacker.

6.4 Summary

In this chapter, we studied the security of the smart grid in the presence of an attacker and defender.
We have first introduced a general CPS security model showing how attacks can propagate from
the cyber to the physical system. We have then formulated the interaction between attacker and
defender using a game-theoretic model. In addition, we have introduced a bounded rationality
framework inspired by cognitive hierarchy theory that is suitable to model the limited levels of
thinking of the attacker. We have applied our framework to the concept of wide area protection of
the smart grid and its energy markets implications. We have shown that when considering bounded
rationality of the attacker, the defender can achieve a better protection of the system. We have also
shown that when the cognitive level of the attacker increases, the gain from deviating from the NE
defense strategy decreases.



Chapter 7

Distributed Storage for Enhanced Smart
Grid Resilience

7.1 Introduction

The emerging concept of microgrids (MGs) will play a major role in the modernization of the
power grid. Microgrids are small-scale local power grids which are, typically, composed of renew-
able generation units, storage devices, and energy consumers [230]. MGs are managed by various
MG operators (MGOs) and can operate in either connected or islanded modes, and are expected to
bring forth innovative solutions for the smart grid by enhancing power management and providing
energy reserves via storage.

Indeed, the storage capability of MGs can be used to assist in the energy management of the smart
grid as investigated by a number of recent works [231–233]. However, more recently, there has
been considerable interest in using the storage abilities of MGs to enhance the resilience of the
smart grid against emergency events such as natural disasters or cyber-physical security breaches.
In this regard, various academic, industrial, and federal reports [234–236] have proposed leverag-
ing the MGs’ storage capacity to mitigate the effect of loss of generation during emergencies by
meeting the smart grid’s most critical loads. Indeed, distributed storage and generation units, the
integral constituents of MGs, have played an essential role in preserving the operation of hospitals
and police stations, as well as fire fighting and rescue services centers in many recent emergency
situations in the United States [236]. For instance, this has been the case during natural disas-
ters such as hurricanes Katrina and Rita, and the wildfires which interrupted the transmission of
electricity to parts of Utah in 1995 and 2003, as well as in the 2003 North American Northeast
blackout [236]. In addition to the various reports in [234–236] that encourage the use of MG stor-
age to enhance grid resilience, other works such as [237] and [238] have also investigated the issues
related to power quality that might arise when a critical load is supplied by MG energy sources.
However, there is a lack of works that analyze the willingness and ability of MGOs to participate
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in covering the power grid’s critical loads.
To this end, in order to leverage the distributed storage units across MGs, the power companies
must offer significant financial incentives for the MGOs to keep a portion of their energy surplus
in storage for potential emergency use. The MGOs are hence faced with the choice of selling their
excess at the current market price, or storing it and potentially selling it at the significantly higher
emergency price, in the future. Moreover, given the fact that the energy bought in case of emer-
gency is limited, competition will arise between the different MGOs who seek to take advantage
of the incentives offered by the power company for emergency energy.
In this regard, game theory [147] can be used to model the interdependency between MGOs and
predict the outcomes of their competitive behavior. In fact, game-theoretic analysis has been a
popular tool for understanding the interactions between storage owners in smart grid energy man-
agement [231–233]. However, these works do not investigate the aforementioned scenarios in
which storage is used for improving resilience. Moreover, these works typically rely on games
with complete information, which are not practical for smart grid scenarios.
Another key drawback of existing game-theoretic analysis is the assumption that all players are
rational and thus seek to maximize their expected utilities in a similar objective manner. In a real-
life application however, as observed by the experimental studies in [148] and [149], the behavior
of individuals can deviate considerably from the rational principles of conventional game theory.
In this regard, the framework of prospect theory (PT) [148] can be used to model the non-rational
behavior of MGOs in the presence of uncertainty such as renewable energy sources [164], and its
impact on the ability of MGs to meet the power grid’s critical load.
The main contribution of this chapter is to propose a new framework for analyzing the storage
strategy of MGOs in order to enhance smart grid resilience. In this regard, we formulate a non-
cooperative Bayesian game between multiple MGOs to account for the incomplete information of
each MGO regarding the excess of energy of its opponents. In this game, each MGO must choose
a portion of its MG’s energy excess to store so as to maximize a utility function that captures the
tradeoff between selling at the current market price and potentially selling in the future at a sig-
nificantly higher emergency energy price. In contrast to conventional game theory, we develop a
prospect-theoretic framework that models the behavior of MGOs when faced with the uncertainty
of their opponents’ stored energy, which stems from the presence of intermittent renewable energy
sources. In particular, we account for each MGO’s valuation of its gains and losses with respect to
its own individual utility evaluation perspective, as captured via the PT framing effect [148] by a
utility reference point. This reference point represents a utility that an individual MGO anticipates
and it originates from previous experiences and future aspirations of profits, which can differ in
between MGOs [149].
For this proposed game, we derive the closed-form expression for the Bayesian Nash equilibrium
(BNE) for the classical game-theoretic scenario and interpret this equilibrium under different con-
ditions. For the PT case, we propose a best response algorithm that allows the MGOs to reach a
BNE in a decentralized fashion. Simulation results highlight the difference in MGO behavior be-
tween the fully rational case of classical game theory (CGT) and the prospect-theoretic scenario.
Indeed, for certain reference points, MGOs choose to store more energy under PT compared to
CGT, while the case is reversed for other reference points where MGOs noticeably reduce their
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MGs’ stored energy. In addition, the impact of the reference point is found to be more promi-
nent as the emergency price increases. The power company must therefore quantify the subjective
behavior of the MGOs before choosing the optimal emergency energy price, in order to meet the
critical load at minimal cost.
The rest of this chapter is organized as follows. Section 7.2 presents the system model and pro-
vides the Bayesian game formulation. Section 7.3 presents the game solution under classical game
theory, while Section 7.4 introduces the game solution under prospect theory. Section 7.5 presents
and interprets a set of simulation results; while Section 7.6 concludes the chapter.

We note that the results presented in this chapter are based on a collaborative work with Mr.
Georges El Rahi. In this regard, the co-authors have equally contributed to this work in terms
of the problem formulation as well as the presented mathematical models, derivations, and results.

7.2 System Model and Bayesian Game Formulation

7.2.1 System Model

Consider a large-scale smart grid managed by a power company that integrates a set N of N mi-
crogrids, each of which is managed by an MG operator. Microgrids are small-scale distribution
grids which typically include renewable generation units, storage devices, and energy consumers.
Each MG operator manages all energy trades conducted by its own MG. Each MG n ∈ N , man-
aged by its MGO n, includes a storage unit with capacity Qn,max which can be used to store the
excess of energy produced. Given the intermittent nature of renewable energy sources, each MG’s
energy surplus Qn ∈ [0, Qn,max] is unknown beforehand and will vary over time. A positive Qn

indicates that an MG has extra energy while Qn = 0 indicates that no surplus is available. Given
an amount of energy surplus, Qn, an MGO n has the option of selling this stored energy to the grid
at the corresponding retail price, ρ, or saving it for later use in case of emergency, for improved
resilience. In this regard, each MGO will choose a portion αn ∈ [0, 1] of its MG’s Qn to store and
will consequently sell the rest. In case of emergency or blackout, the power company will purchase
the stored energy to cover a certain required critical load Lc, until normal power supply is restored.

In order to increase the resilience of the power grid against emergency events, the power company
will encourage the MGOs to store part of their MGs’ excess by offering a price ρc per unit of
stored energy purchased in case of emergency. Typically, ρc must be significantly larger than ρ to
incentivize the MGOs to store the excess. If the total stored energy exceeds the needed Lc, the
power company will no longer purchase the entire energy stored by each MG.

Letα andQ be the vectors that represent, respectively, the storage strategy and the available energy
surpluses of all the MGOs in the set N . In this respect, when αᵀQ > Lc, the power company will
purchase, from each MG n, an amount of energy Dn given by:
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Dn =

(
αnQn −

αᵀQ− Lc
N

)+

, (7.1)

where (q)+ = max(0, q). αᵀQ − Lc is the amount by which the total stored energy exceeds the
required Lc. Let θ be the expected probability of an emergency event occurring. Then, each MGO
n will choose its optimal storage strategy αn to optimize the following utility function:

Un(α,Q) =

{
ρ (Qn − αnQn) + θρcαnQn, if αᵀQ ≤ Lc,

ρ (Qn − αnQn) + θρcDn, otherwise.
(7.2)

Note that, when θρc < ρ, the MGOs will have no incentive to store their MGs’ excess and, hence,
they will sell all the available surplus at the current market price. Thus, hereinafter, we restrict
our analysis to the case θρc > ρ. As seen from (7.2), the driving factor in determining an MGO’s
optimal strategy is the total energy stored by its opponents. In fact, as αᵀQ − Lc increases, so
will the amount of stored energy which will not be bought in case of emergency. Indeed, the MGO
could have instead sold that energy at the current market price and made a profit. Given this trade-
off between selling at the current market price and storing the excess for a potentially higher profit
in case of emergency, each MGO aims at maximizing its utility function by choosing the optimal
storage strategy αn, while also accounting for the actions of its opposing MGs.

Each MGO is typically fully aware of the presence of all N MGs in the power grid and knows
the size of their storage devices. In addition, each MGO knows the exact amount of energy excess
available to its own MG. However, an MGO cannot determine the energy excess of other MGs. In
fact, obtaining such information is not possible especially given the intermittent renewable energy
sources and the time-varying nature of energy consumption. Each MGO thus assumes the excess
of energy Qm of other MGs to be a random variable that follows a certain probability distribution
function fn(Qm) over [0, Qm,max] where m ∈ N \ {n}. We refer to Qn as the type of MGO n
and, to fn(Qm), as MGO n’s belief of another MGO m’s type. In fact, when MGO n chooses a
certain storage strategy αn, it is uncertain of the profit it will gain. This uncertainty stems from
its incomplete information regarding the type of its opponents, originating from the intermittent
renewable energy and the time-varying nature of energy consumption, as well as from randomness
of an emergency event.

Given the competition over the financial incentives offered by the power company for emergency
energy, the MGOs’ actions and utility are highly interdependent thus motivating a game-theoretic
approach [147]. In addition, given the incomplete information of the opponents’ excess of energy
that directly affects the MGOs’ utility, each MGO will maximize its expected utility given its own
beliefs fn(Qm). MGO n’s expected utility, En(α, Qn), will therefore be given by

En(α, Qn) = EQ−n [Un(α,Q)] , (7.3)

where Q−n is the vector that represents the energy excess of all MGs in the set N \ {n}. The
strategic interactions between the various MGOs under incomplete information can be modeled
using Bayesian game models [147].
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7.2.2 Bayesian Game Formulation

We formulate a static noncooperative Bayesian game [147] between the different MGOs in the
set N . In this game, each MGO seeks to maximize its expected utility given its beliefs of its
opponents’ energy excess by choosing its optimal storage strategy. Since the decisions on the
portion of energy to store are coupled, as captured by (2), we adopt a game-theoretic approach.
Formally, we define a strategic game Ξ = {N , {An}n∈N , {Tn}n∈N , {Fn}n∈N , {Un}n∈N} where
N is the set of all MGOs, An is the action space which represents the possible storage strategies
of each player n, Tn is the set of types of MGOs that represent the possible energy surplus for each
their MGs, Fn is the set of beliefs of player n represented by the probability distributions of each
of its opponents’ types, and Un is the utility function of player n defined in (7.2). In order to find
the solution of the proposed game, we first define the two key concepts of best response strategy
and Bayesian Nash equilibrium.

Definition 17. The set of best response strategies of an MGO n ∈ N to the strategy profile α−n,
r(α−n), is defined as

rn(α−n)={α∗n ∈ An|EQ−n [Un(α∗n,α−n,Q)] ≥ EQ−n [Un(αn,α−n,Q)] ,∀αn ∈ An},

where α−n is the vector that represents the storage strategy of all MGOs in the set N \ {n}.

In other words, when the strategies of the opponents are fixed to α−n, any best response strategy
would maximize player n’s expected utility, given its beliefs Fn of its opponents’ types. In our
analysis, we assume that an MGO’s belief fn(Qm) over its opponent’s energy surplus follows a
uniform distribution over the domain [0, Qm,max]. We next define the concept of a pure strategy
Bayesian Nash equilibrium.

Definition 18. A strategy profile α∗ is said to be a pure strategy Bayesian Nash equilibrium if
every MGO’s strategy is a best response to the other MGOs’ strategies, i.e.

α∗n ∈ rn(α∗−n)∀n ∈ N . (7.4)

In the proposed game, at the BNE, no MGO n, can increase its expected utility by unilaterally
deviating from its storage strategy α∗n.

In what follows, we will derive closed-form expressions of the BNEs for the case in which two
MGs are located in the proximity of the critical load. In fact, power supply to the critical load from
distant MGs might not be feasible due to transmission barriers and significant power losses. As
such, given these limitations and the scale of a given microgrid, the analysis for two MGs will be
quite representative.
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7.3 Two-Player Game Solution under Classical Game-Theoretic
Analyses

For the case in which two MGs (N = 2) are capable of supplying the critical load, the expected
utility of MGO 1 given its belief of MGO 2’s type can be written as

E1(α, Q1) =

∫ Q2,max

0

U1(α,Q)f1(Q2)dQ2, (7.5)

where α = [α1 α2] andQ = [Q1 Q2]. For the two-MG case, we have

U1(α,Q) =

{
ρQ1 (1− α1) + θρcα1Q1 if α2 ≤ Lc−α1Q1

Q2
,

ρQ1 (1− α1) + θρcD1 otherwise.
(7.6)

Next, we assume that neither of the MGs owns a large enough storage device to fully supply the
critical load on its own. Under this assumption, D1 will be given by

D1 = α1Q1 −
1

2
(α1Q1 + α2Q2 − Lc) . (7.7)

In order to find the solution of the proposed game, we first derive the best response strategy of each
player which we then use to compute the different BNEs.

7.3.1 Best Response Strategies

The best response strategy of each MGO is characterized next. In fact, we present the following
propositions that analyze MGO 1’s best response for different values of α2.

Proposition 9. The best response of MGO 1, for α2 ∈
[
0, Lc−Q1

Q2,max

]
, is given by r1(α2) = 1. MGO 1

thus maximizes its expected utility by storing its MG’s entire energy excess.

Proof. For α2 ≤ Lc−Q1

Q2,max
, the total stored energy is below the critical load for all types of MGO

2 and all strategies of MGO 1 since α2Q2,max + Q1 ≤ Lc. Thus, MGO 1’s best response is to
store its entire energy excess which is fully sold in case of emergency. In fact, here, E1(α, Q1) =
U1(α,Q) = ρ (Q1 − α1Q1) + θρcα1Q1 since U1(α,Q) is independent of Q2 for this case, as seen
in (7.6). E1(α, Q1) is clearly an increasing function, given that ρcθ > ρ, which is maximized at its
upper boundary (α1 = 1). Thus r1(α2) = 1 for α2 ∈

[
0, Lc−Q1

Q2,max

]
.
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Proposition 10. The best response of MGO 1, for α2 ∈
[
Lc−Q1

Q2,max
, 1
]
, is given by

r1(α2) =


Lcρcθ+(ρcθ−2ρ)α2Q2,max

Q1ρcθ
, if

[
2ρ
ρcθ
− 1
]
α2 >

Lc−Q1

Q2,max
,

1, if
[

2ρ
ρcθ
− 1
]
α2 ≤ Lc−Q1

Q2,max
.

(7.8)

Proof. For the proof of Proposition 2, first, we analyze the expected utility of MGO 1, for α1 ∈[
0, Lc−α2Q2,max

Q1

]
and α1 ∈

[
Lc−α2Q2,max

Q1
, 1
]
, with α2 ∈

[
Lc−Q1

Q2,max
, 1
]
.

a) For α1 ∈
[
0, Lc−α2Q2,max

Q1

]
, the total energy stored is below the critical load Lc for all possi-

ble types of MGO 2. Here, MGO 1’s expected utility is given by

E1,2a(α, Q1) = ρ (Q1 − α1Q1) + θρcα1Q1.

E1,2a is a strictly increasing function given that θρc > ρ, hence, it is maximized at its upper
boundary α∗1,2a = Lc−α2Q2,max

Q1
.

b) For α1 ∈
[
Lc−α2Q2,max

Q1
, 1
]
, given MGO 2’s strategy, the total energy stored is above the critical

load for certain types of MGO 2. MGO 1’s expected utility is given by

E1,2b(α, Q1) =

∫ A

0

U1(α,Q)f(Q2)dQ2 +

∫ Q2,max

A

U1(α,Q)f(Q2)dQ2, (7.9)

with A = Lc−α1Q1

α2
which follows from (5). Under this assumption, f1(Q2) = 1/Q2,max over its

domain and E1,2b is now given by

E1,2b(α, Q1) =
1

Q2,max

∫ A

0

[ρ (Q1 − α1Q1) + θρcα1Q1] dQ2+

1

Q2,max

∫ Q2,max

A

[
ρ (Q1 − α1Q1) +

1

2
θρc (α1Q1 − α2Q2 + Lc)

]
dQ2. (7.10)

By taking the second derivative of (7.10) with respect to the decision variable α1, we get

∂E1,2b

∂2α1

= − Q2
1ρcθ

2α2Qmax,2
.
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The function is strictly concave given that its second derivative is strictly negative. The optimal
solution is, hence, obtained by the necessary and sufficient optimality condition given by

∂E1,2b

∂α1

= 0. (7.11)

(7.11) has a unique solution which is given by

α1,r =
Lcρcθ + (ρcθ − 2ρ)α2Q2,max

Q1ρcθ
.

Given that E1,2b is a strictly concave function and that α1 is restricted to
[
Lc−α2Q2,max

Q1
, 1
]
, α∗1,2b

will be

α∗1,2b =


Lc−α2Q2,max

Q1
, if α1,r <

Lc−α2Q2,max
Q1

,

α1,r, if α1,r ∈
[
Lc−α2Q2,max

Q1
1
]
,

1, if α1,r > 1.

(7.12)

In fact, α1,r is the optimal solution for E1,2b if it belongs to the feasible region of E1,2b. On the
other hand, if α1,r is larger than the upper bound, then E1,2b is a strictly increasing function over
the feasibility set and is maximized at its upper bound α∗1,2b = 1. Finally, if α1,r is smaller than the
domain’s lower bound Lc−α2Q2,max

Q1
, then E1,2b is a strictly decreasing function over the feasibility

set and is maximized at its lower bound. However, the condition α1,r <
Lc−α2Q2,max

Q1
cannot be

satisfied for ρcθ > ρ, and thus Lc−α2Q2,max
Q1

cannot be the maximizer of E1,2b. We can thus rewrite
(7.12) as

α∗1,2b =

α1,r, if
[

2ρ
ρcθ
− 1
]
α2 >

Lc−Q1

Q2,max
,

1, if
[

2ρ
ρcθ
− 1
]
α2 ≤ Lc−Q1

Q2,max
.

(7.13)

We first note that E1,2a = E1,2b for α1 = Lc−α2Q2,max
Q1

which is the maximizer of E1,2a. However,

as previously discussed, E1,2b cannot be maximized at Lc−α2Q2,max
Q1

. Thus, the maximizer of MGO

1’s expected utility, for α2 ∈
[
Lc−Q1

Q2,max
, 1
]
, belongs to the domain

[
Lc−α2Q2,max

Q1
, 1
]
. In other words,

r1(α2) = α∗1,2b for α2 ∈
[
Lc−Q1

Q2,max
, 1
]
.
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Given the previous propositions, an MGO’s best response strategy is thus summarized in the fol-
lowing theorem.

Theorem 11. The best response strategy of MGO 1, r1(α2), is given by

r1(α2) =


1, if α2 ≤ Lc−Q1

Q2,max
,

α1,r, if α2 >
Lc−Q1

Q2,max
and

[
2ρ
ρcθ
− 1
]
α2 >

Lc−Q1

Q2,max
,

1, if α2 >
Lc−Q1

Q2,max
and

[
2ρ
ρcθ
− 1
]
α2 ≤ Lc−Q1

Q2,max
.

(7.14)

MGO 2’s best response strategy r2(α1) is derived similarly and is the same as (7.14) but with
indices 1 and 2 interchanged.

Proof. The proof follows from Propositions 1 and 2.

7.3.2 Derivation and Interpretation of the Game Equilibria

Given the MGOs’ best response function in (7.14), we will compute all possible BNEs for this
game. We will then derive and interpret the conditions needed for each BNE to exist.

Theorem 12. The proposed MGO game admits four possible Bayesian Nash equilibria for differ-
ent conditions that relate the MG parameters, Qn and Qn,max, with power grid parameters ρ, ρc, θ,
and Lc. The strategy profiles (α∗1, α

∗
2), that constitute the four BNEs, are the following:

1) First BNE: (1,1).

2) Second BNE:
(

1,
Lcρcθ + (ρcθ − 2p)Q1,max

Q2ρcθ

)
.

3) Third BNE:
(
Lcρcθ + (ρcθ − 2p)Q2,max

Q1pcθ
, 1

)
.

4) Fourth BNE:
(
α∗1,4, α

∗
2,4

)
is the strategy profile that constitute the fourth BNE, where

α∗1,4 =
−Lρcθ(Q2ρcθ − 2Q2,maxρ+Q2,maxρcθ)

Q1,maxQ2,max (4ρ2 + ρ2cθ
2 − 4ρρcθ)−Q1Q2ρ2cθ

2
,

α∗2,4 =
−Lρcθ(Q1ρcθ − 2Qmax,1ρ+Q1,maxρcθ)

Q1,maxQ2,max (4ρ2 + ρ2cθ
2 − 4ρρcθ)−Q1Q2ρ2cθ

2
.

Proof. The strategy profiles of the BNEs are derived by solving the set of best-response equa-
tions, α∗1 = r1(α

∗
2) and α∗2 = r2(α

∗
1), for the different possible combinations of the best response

strategies.

The conditions under which each BNE is defined are further summarized and interpreted next.
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First BNE

the strategy profile (1,1) constitutes a BNE of the proposed game if any of the following four con-
ditions is satisfied:

a) Lc ≥ Q2,max +Q1 and Lc ≥ Q1,max +Q2. Here, each MGO is aware that the total stored energy
is below the critical load, regardless of the type and strategy of its opponent.

b) Lc ≥ Q2,max + Q1 and 2ρ
ρcθ
− 1 ≤ Lc−Q2

Q1,max
< 1. Here, MGO 1 knows that the total stored energy

is always below the critical load regardless of the type and strategy of its opponent. On the other
hand, MGO 2 is aware that part of its MG’s stored energy might not be sold in case of emergency.
However, ρc is large enough compared to ρ to satisfy the condition under which MGO 2 stores its
MG’s entire excess.

c) 2ρ
ρcθ
− 1 ≤ Lc−Q1

Q2,max
< 1 and Lc ≥ Q1,max + Q2. The analysis of this condition is the same as

condition b) with the order of the players reversed.

d) 2ρ
ρcθ
− 1 ≤ Lc−Q1

Q2,max
< 1 and 2ρ

ρcθ
− 1 ≤ Lc−Q2

Q1,max
< 1. In this case, both MGOs are aware that part

of their stored energy might not be sold. However, ρc is large enough compared to ρ to satisfy the
conditions for which both MGOs store their MGs’ entire excess.

Second BNE

the strategy profile
(

1, Lcρcθ+(ρcθ−2p)Q1,max
Q2ρcθ

)
constitutes a BNE of the proposed game if any of the

following two conditions are satisfied:

a) Lc ≥ Lcρcθ+(ρcθ−2p)Q1,max
Q2ρcθ

Q2,max +Q1 and
2ρ
ρcθ
− 1 > Lc−Q2

Q1,max
. In this case, MGO 1 knows that given MGO 2’s storage strategy, the total

stored energy is always below the critical load. Meanwhile, MGO 2 is aware that, given MGO 1’s
strategy, the total stored energy might exceed the critical load and part of its stored energy might
not be sold in case of emergency. MGO 2 will not store the entire excess given that ρc is not large
enough compared to ρ.

b)
[

2ρ
ρcθ
− 1
]
Lcρcθ+(ρcθ−2ρ)Q1,max

Q2ρcθ
≤ Lc−Q1

Q2,max
,

Lc−Q1

Q2,max
< Lcρcθ+(ρcθ−2ρ)Q1,max

Q2ρcθ
and 2ρ

ρcθ
− 1 > Lc−Q2

Q1,max
. Here, both MGOs know that given their

opponent’s strategy, part of their MG’s stored energy might not be sold. The emergency price ρc
is large enough compared to ρ to satisfy the condition for which MGO 1 stores the entire excess,
however, it is not large enough for MG 2 to fully store its MG’s entire excess.
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Third BNE

The interpretation of the third BNE is similar to that of the second but with index 1 swapped with 2.

Fourth BNE

The strategy profile
(
α∗1,4, α

∗
2,4

)
, defined in Theorem 2, constitutes a BNE which is obtained by

solving the set of equations α∗1 = α1,r and α∗2 = α2,r, in the case where the following condition is
satisfied:

a) α∗2,4
[

2ρ
ρcθ
− 1
]
> Lc−Q1

Q2,max
and α∗1,4

[
2ρ
ρcθ
− 1
]
> Lc−Q2

Q1,max
.

Under this condition, both MGOs know that given their opponent’s strategy, part of their MG’s
stored energy might not be sold. The emergency price ρc is not large enough to satisfy the condi-
tions under which either MGO stores the entire excess.

Our previous analysis assumes that all MG operators are fully rational and their behavior can
thus be modeled using classical game-theoretic analysis. However, this assumption might not
hold true in a real smart grid, given that the operators of the MGs might have different subjective
valuations of the payoffs gained from selling their energy surplus. Next, we will use the framework
of prospect theory [148] to model the behavior of MGOs when faced with such uncertainty and
subjectivity of profits, stemming from the presence of renewable energy and the uncertainty it
imposes on the volume of energy surplus that other MGOs generate.

7.4 Prospect-Theoretic Analyses

In a classical noncooperative game, a player evaluates an objective expected utility. However, in
practice, individuals tend to subjectively perceive their utility when faced with uncertainty [148].
In our model, an MGO’s uncertainty originates from the presence of renewable energy and the
uncertainty it imposes on the volume of energy surplus that the opposing MGOs generate. In fact,
an MGO is uncertain of the portion of its MG’s stored energy that will be sold in case of emergency,
which is directly related to the energy surplus available to its opponents. Since MGOs are humans,
they will perceive the possible profits of energy trading, in terms of gains and losses.

This motivates the application of PT to account for the MGO’s subjectivity while choosing the
optimal energy portion to store. PT is a widely used tool for understanding human behavior when
faced with uncertainty of alternatives. In our analysis, we will inspect the effect of the key notion
of utility framing from prospect theory. Utility framing states that a utility is considered a gain if
it is larger than the reference point, while it is perceived as a loss if it is smaller than that reference
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point. We define Rn as the reference point of a given MGO n. The choice of Rn can be different
between MGOs as it reflects personal expectations of profit from selling the energy surplus. In this
regard, a certain profit, r, originating from a particular energy trade, will be perceived differently by
an MGO used to reaping larger profits as opposed to an MGO that usually generates lower profits.
In fact, an MGO n with historically high profits would have a high reference point, Rn > r, and
will hence consider r to be a loss, whereas, an MGO m with relatively low historical profits would
have a lower reference point, Rm < r and would hence consider r to be a gain. Consequently, to
model this subjective perception of losses and gains we need to redefine the utility function of the
MGOs using PT framing [149]:

V (Un (α,Q)) =

{
(Un(α,Q)−Rn)β

+

if Un(α,Q) > Rn,

−λn (Rn − Un(α,Q))β
−

if Un(α,Q) < Rn,
(7.15)

where 0 < β− ≤ 1, 0 < β+ ≤ 1 and λ ≥ 1.

V (·) is the framing value function that is concave in gains and convex in losses with a larger slope
for losses than for gains [149]. In fact, PT studies show that the aggravation that an individual
feels for losing a sum of money is greater than the satisfaction associated with gaining the same
amount [148], which explains the introduction of the loss multiplier λn. In addition, the framing
principle states that an individual’s sensitivity to marginal change in its utility diminishes as we
move further away from the reference point, which explains the introduction of the gain and loss
exponents β+ and β−.

It is important to note that, as an MGO chooses to store a larger portion α of its MG’s energy, its
potential payoffs will now span a larger range of values. In other words, as an MGO stores more
energy, it will now have the possibility to make higher expected profits by selling more in case of
emergency. On the other hand, by storing more energy, the MGO risks making less profit whenever
its opponent has also stored a significant part of its own energy. These probable payoffs are related
to the type of the opponent. In fact, the MGO would get a maximum profit for the case in which the
opponent’s type is small, i.e. the opponent did not have a significant energy surplus. For the case
in which the opponent’s type is large, a significant part of an MG’s stored energy will not be sold
in case of emergency, resulting in lower possible payoffs for its MGO, compared to smaller values
of α. This concept is key in our PT analysis, given that payoffs are evaluated through comparison
to the reference point. Similarly to our analysis for the CGT case, we will first derive the best
response strategy of the MGOs.

Proposition 11. The best response of MGO 1 under PT, for α2 ∈
[
0, Lc−Q1

Q2,max

]
, is to store its entire

energy excess, similarly to the classical game theory analysis.

Proof. As seen from Proposition 1, for α2 ∈
[
0, Lc−Q1

Q2,max

]
, U1(α,Q) is an increasing function over

its domain. Given that the framing function V (·) is an increasing function as well, MGO 1’s
expected utility, E1,PT(α, Q1) = V (U1 (α,Q)), is thus maximized at its upper boundary of α1 =
1.
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We next derive the expected utility of MGO 1 under PT for α2 ∈
[
Lc−Q1

Q2,max
, 1
]
. MG 1’s expected util-

ity for α2 ∈
[
Lc−Q1

Q2,max
, 1
]

takes different values for α1 ∈
[
0, Lc−α2Q2,max

Q1

]
and α1 ∈

[
Lc−α2Q2,max

Q1
, 1
]
:

Proposition 12. For α1 ∈
[
0, Lc−α2Q2,max

Q1

]
and α2 ∈

[
Lc−Q1

Q2,max
, 1
]
, MGO 1’s expected utility under

PT, EPT,1,2a, is given by

EPT,1,2a(α, Q1) =

{
−λ1 (R1 − U1,2a)

β−1 if α1 ≤ B,

(U1,2a −R1)
β+
1 if α1 > B,

(7.16)

where U1,2a = ρ (Q1 − α1Q1)− θρcα1Q1, and B = R1−ρQ1

Q1(ρcθ−ρ) .

Proof. In Proposition 4, Equation (7.16) follows from the fact that for α1 ≤ B, the original utility,
U1,2a, is below the reference point R1 and is thus perceived as a loss. On the other hand, it is
considered as a gain for α1 > B.

Proposition 13. For α1 ∈
[
Lc−α2Q2,max

Q1
, 1
]

and α2 ∈
[
Lc−Q1

Q2,max
, 1
]
, player 1’s expected utility under

PT is given by

EPT,1,2b(α, Q1) = I1 + I2, (7.17)

where

I1 =


−λ1(Lc − α1Q1)

α2Qmax,2
[R1 − UI,1]β

−
1 if α1 ≤ B,

Lc − α1Q1

α2Qmax,2
[UI,1 −R1]

β+
1 if α1 > B,

(7.18)

UI,1 = ρ (Q1 − α1Q1) + θρcα1Q1, (7.19)

I2 =



Ml

[
(R1 − Umax,2)

β−1 +1 − (R1 − UA,2)β
−
1 +1
]

if C1,

Mg

[
(Ur,2 −R1)

β+
1 +1 − (UA,2 −R1)

β+
1 +1
]

+

Ml

[
(R1 − Umax,2)

β−1 +1 − (R1 − Ur,2)β
−
1 +1
]

if C2,

Mg

[
(Umax,2 −R1)

β+
1 +1 − (UA,2 −R1)

β+
1 +1
]

if C3,

(7.20)

Mg =
−2(

β+
1 + 1

)
ρcθα2

, Ml =
−2λ1(

β−1 + 1
)
ρcθα2

,

Umax,2 = ρ (Q1 − α1Q1) + 1
2
θρc (α1Q1 + Lc −Q2,max),

UA,2 = ρ (Q1 − α1Q1) + 1
2
θρc (α1Q1 + Lc − A), A = Lc−α1Q1

α2
, and
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Ur,2 = ρ (Q1 − α1Q1) + 1
2
θρc (α1Q1 + Lc −Q2,r), where Q2,r is given in (7.25).

Conditions C1, C2, and C3 are given by

C1 : α1 ≤ B, (7.21)

C2 : α1 > B and Q1 (θρc − 2ρ)α1 ≤ θρcα2Qmax,2 − Lcρcθ − 2ρQ1 + 2R1, (7.22)

C3 : α1 > B and Q1 (θρc − 2ρ)α1 > θρcα2Qmax,2 − Lcρcθ − 2ρQ1 + 2R1. (7.23)

MGO 2’s expected utility function is derived in a similar manner as MGO 1’s with indices 1 and 2
reversed.

Proof. Player 1’s expected utility under PT, for α2 ∈
[
Lc−Q1

Q2,max
, 1
]
, and α1 ∈

[
Lc−α2Q2,max

Q1
, 1
]
, is

given by

EPT,1,2b(α, Q1) =

∫ A

0

1

Q2,max
V (ρ (Q1 − α1Q1) + θρcα1Q1) dQ2+∫ Q2,max

A

1

Q2,max
V

(
ρQ1 (1− α1) +

1

2
θρc (α1Q1 − α2Q2 + Lc)

)
dQ2. (7.24)

We denote by I1 the first integral in (7.24), and by I2 the second. As previously mentioned, PT
states that a utility is perceived in terms of gains and losses with respect to the reference point.
Next, we analyze the possible values of both integrals I1 (first integral) and I2 (second integral)
in (7.24) from that perspective. The original utility in I1, UI,1 = ρ (Q1 − α1Q1) + θρcα1Q1, is
only a function of α1 and is independent of Q2. Equation (7.18) follows from the fact that for
α1 ≤ B, UI,1 is below the reference point R1 and is thus perceived as a loss. On the other hand, it
is considered as a gain for α1 > B.

We then assess the possible values of I2. The original utility function in I2, UI,2 = ρ (Q1 − α1Q1)+
1
2
θρc (α1Q1 − α2Q2 + Lc) is considered a loss given that

ρ (Q1 − α1Q1) +
1

2
θρc (α1Q1 − α2Q2 + Lc) < R1,

which can be rewritten as Q2,r < Q2 with Q2,r given by

Q2,r =
2

ρcθα2

[
ρ (Q1 − α1Q1) +

1

2
θρc (α1Q1 + Lc)−R1

]
. (7.25)

Given that MGO 1’s expected utility is taken over MGO 2’s type (Q2), we next analyze I2 for
different values ofQ2. (7.20) follows from the fact that I2 is a loss integral forQ2,r < A. Given that
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the lower bound of I2 is larger than A, then the entire range of Q2 values is as well. The condition
Q2,r < A can be rewritten as C1. On the other hand, I2 is a gain integral for Q2,r > Q2,max which
can be rewritten as C2. Finally, for A < Qr,2 < Q2,max, I2 is split into two parts: a gain integral on
[A,Q2,r] and a loss integral on [Qref2, Q2,max]. A < Q2,r < Q2,max can be rewritten as C3. (7.18)
and (7.20) are obtained by evaluating the integrals I1 and I2 for the described cases.

Given the complex structure of each MGO’s expected utility function with framing, computing the
closed-form expression of the best response strategy is difficult for the PT case. In particular, the
analysis of EPT,1,2b is quite challenging due to the various forms that the function can take under
different conditions as seen in (7.18) and (7.20). Therefore, in order to find the BNE under PT, a
best response algorithm is proposed.

This iterative algorithm dictates that, in response to its opponent’s current strategy, each MGO
sequentially chooses its optimal storage strategy by numerically characterizing, from its action
space, the action that maximizes its expected utility. In fact, given the closed-form expressions
provided in Propositions 3, 4, and 5, an MGO can easily compute its expected utility for each of its
strategies. In this respect, upon convergence, this algorithm is guaranteed to reach an equilibrium
[147]. In fact, at the point of convergence, each MGO is playing the strategy that maximizes
its expected PT utility facing its opponent’s strategy. Hence, the MGOs will reach a BNE from
which none has any incentive to deviate since such deviation would not improve their expected
payoff. Indeed, as observed in our simulations in Section V, the algorithm always converged to an
equilibrium.

7.5 Simulation Results

For our simulations, we consider a smart grid with N = 2 MGs capable of supplying power to one
of the power grid’s critical loads which requires a total of Lc = 200 kWh to remain operational
until regular power supply is restored. We also assume the regular price per unit of energy to
be ρ = $0.1 per kWh. In addition, we take θ = 0.01, and ρc = $11.6 per kWh unless stated
otherwise. The exponents β+ and β− are taken to be both equal to 0.88 and the loss multiplier
λ = 2.25 unless stated otherwise [149]. We simulate the system for two scenarios: CGT, and PT
under utility framing.

Fig. 7.1 compares the effects of different MGO reference points on the total energy stored for both
CGT and PT analysis. In the classical game theory case (β+ = β− = λ = 1), an MGO’s reference
point is irrelevant given that losses and gains are computed in an identical objective manner. For
the PT case, for a reference point below $8, the BNE action profile is not significantly affected
compared to the classical game theory case, since most potential payoffs of the BNE actions are
still viewed as gains above the reference point. As the reference point increases from $8 to $11.5,
the total stored energy will decrease from around 200 to 184 kWh, since some of the potential
payoffs of the current BNE will start to be perceived as losses, as they cross the reference point.
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Figure 7.1: Total stored energy under classical game theory and prospect theory.
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Figure 7.2: Effect of emergency price on PT sensitivity to the reference point.

Given that losses have a larger weight under PT compared to classical game theory, the expected
utility of the current strategy profile will significantly decrease, thus causing the BNE to drift
towards lower storage strategies. The MGOs will exhibit risk averse behavior as they sell more
of their energy at the current risk-free retail market price ρ. In fact, as previously mentioned, by
decreasing α, the minimum potential payoffs are larger, compared to the larger values of α, and
are still above the reference point.

The described behavior is reversed in the [11.5, 13] range where the MGOs start exhibiting more
risk seeking behavior, i.e., storing more energy, to reach a total stored energy of 210 kWh. In fact,
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Figure 7.3: Emergency price needed to cover Lc as a function of λ.

the low risk strategies’ potential payoffs are now fully perceived as losses causing a significant
devaluation of their expected utility values. The BNE will thus go towards higher values of α with
larger maximum payoffs, compared to lower values of α, which are partially still considered as
gains. Finally, when the reference point is above $13.5, most potential payoffs of most strategies
are now perceived as losses and the effect of PT will diminish gradually, and the total energy
stored will reach 202 kWh, identically to classical game theory. It is important to note that the
critical load energy requirements are 200 kWh, which is met with the stored energy of the MGs
under classical game theory but not necessarily under PT analysis. This highlights the need for an
accurate behavioral analysis of the studied system.

Fig. 7.2 shows the effect of changing the emergency price ρc on the role of the reference point in
an MGO’s decision, for λ = 4. For a price of ρc = $10.2 per kWh, the total energy stored does
not vary with the reference point. In fact, the expected future profits gained from storing energy
are close to the profits incurred by selling at the current market price. On the other hand, when the
price is increased to ρc = $11 per kWh, the total stored energy will vary with the reference point
by up to 10% from its original value. In fact, storing energy will now yield significantly higher
expected future profits, compared to selling at the current market price. Thus, an MGO’s risk-
seeking or risk-averse behavior is justified given the increasing uncertainty in profits. Similarly,
when ρc = $12 per kWh, the total stored energy would vary further with the changing reference
point, by up to 17% from its original value.

Fig. 7.3 shows the effect of the loss multiplier λ on the emergency price ρc needed to cover the
critical load for the reference points of $11.5 and $12.5. The effect of framing is more prominent
as the loss multiplier increases. In fact, the MGOs will exhibit more risk averse behavior for the
specified reference points as λ increases, thus prompting the power company to increase the critical
price in order to cover the critical load. In fact, as λ increases, so will the valuation of the MGOs’
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Figure 7.4: Storage strategies at equilibrium for a case with one subjective (PT) MGO and one
rational (CGT) MGO.

losses. To avoid the large losses, the MGOs will decrease the energy stored by their MGs and will
tend to sell more energy at the current risk free market price. This highlights the importance of
behavioral analysis in choosing the proper pricing mechanism in smart grid resilience planning.

Fig. 7.4 illustrates the storage strategies at equilibrium for the case in which one of the MGOs is
fully rational, while the second is subjective. The rational MGO will naturally have no reference
point. Here, both MGs have the same size of storage Qmax = 150 kWh and energy excess available
Q = 120 kWh. As seen in Fig. 7.4, as the reference point of the subjective MGO increases from
$5 to $13, it will exhibit risk averse behavior and decrease the portion of energy it stores, to reach a
value of 0.625. This is similar to the analysis of Fig. 7.1. To respond, the rational MGO will hence
increase the portion of energy stored to reach its maximum of 1, given the lower stored energy of
its opponent. As the reference point increases from $13 to $14.5, the subjective MGO will exhibit
more risk seeking behavior and increase the portion of energy stored to reach its maximum of
1. The rational MGO, will thus decrease its MG’s stored energy, given the storage strategy of its
opponent. Finally, as the reference point increases from $14.5 to $25, the effect of utility framing
will gradually decrease, and the storage strategy of both MGOs will reach a value of 0.88. Given
the negligible effect of PT at the high reference point of $25, both MGOs, rational and subjective,
will have equal strategies at equilibrium and thus similar behavioral patterns.

7.6 Summary

In this chapter, we have proposed a novel framework for analyzing the storage strategy of micor-
grid operators in an attempt to enhance smart grid resilience. We have formulated the problem as
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a Bayesian game between multiple MGOs, who must choose the portion of their microgrids’ ex-
cess to store, in order to maximize their expected profits. The MGOs play a noncooperative game,
which is shown to have four Bayesian Nash equilibria for the two MG case, under different con-
ditions. Subsequently, we have used the novel concept of utility framing from prospect theory to
model the behavior of MGOs when faced with the uncertainty of their opponents’ energy surplus.
Simulation results have highlighted the impact of behavioral considerations on the overall process
of enhancing the resilience of a smart grid by exploiting distributed, microgrid energy storage.



Chapter 8

Conclusions and Open Problems

In this dissertation, we have identified and addressed a number of challenging security problems in
CPSs with human actors. Towards achieving this goal, we have developed a number of mathemat-
ical frameworks which capture the operation and security of the studied CPSs; while accounting
for the multi-agent interactions within CPSs security settings and explicitly incorporating human
decision making processes into the developed frameworks. The performed security analyses have
focused on a number of CPS application domains. In this regard, the developed solutions addressed
various security problems within the smart electric grid such as: 1) Identifying and defending
against observability and data injection attacks which can target the grid, 2) Devising a defense
policy to thwart stealthy data injection attacks which can be carried out by multiple adversaries,
and 3) Enhancing the resilience of the smart grid by leveraging distributed energy storage. In ad-
dition, the developed solutions have also addressed other application areas within the realm of IoT
such as the cyber-physical security of time-critical UAV applications, which include drone deliv-
ery systems and anti-drone defense systems. In these analyses, we have focused, jointly, on the
problem of 1) Finding an optimal path selection strategy for a UAV on a delivery mission to evade
attacks, as well as on 2) Devising an optimal interdiction strategy to maximize the likelihood of
intercepting a drone on a malicious mission, as part of an anti-drone defense system. In addition to
focusing on specific CPSs application domains, this dissertation has also performed a set of anal-
yses addressing general CPSs security problems such as modeling the cyber-physical propagation
of threats within CPSs and devising a security strategy to defend the physical components of the
CPS against attacks that can penetrate the CPS from its vulnerable cyber entry points.

In this regard, we next present a summary of the research work which have been performed in this
dissertation.

182
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8.1 Summary

8.1.1 A Unified Analysis of Observability and Data Injection Attacks in the
Smart Grid

In Chapter 3, we have proposed a novel graph-theoretic framework enabling a fundamental unified
modeling and analysis of observability and data injection attacks which can target the smart power
grid. The proposed framework has introduced a shift in the analysis of observability and data
injection attacks from a linear algebra perspective to a graph-theoretic frame of analysis. This
graph-theoretic modeling has, as a result, allowed a holistic analysis of observability and data
injection attacks requiring only the power system 1-line diagram and the associated locations of
the implemented measurement units. Based on this introduced framework, we have characterized
the analytical solutions to a number of key observability and data injection attack problems, which
have been proposed and studied in literature. The solutions to such problems aim, in particular,
at characterizing the possible optimal attack strategies which can target the system as well as
deriving optimal defense policies to thwart these attacks. For example, we have shown that our
introduced tools allow characterization of the sparsest stealthy attacks (which may or may not
include a certain measurement) which can target the power system. In addition, we have shown
that the proposed graph-theoretic framework enables an analytical characterization of a minimum
set of measurement which when made immune to data injection attacks guarantees thwarting any
stealthy attack which can target the system. In addition, we have also shown that our introduced
framework allows identifying the minimum set of measurements which, when defended, guarantee
that for an attack to potentially be stealthy, it must concurrently compromise a certain number of
measurement units which surpasses a defined threshold.

8.1.2 Data Injection Attacks on Smart Grids with Multiple Adversaries

In Chapter 4, we have primarily focused on stealthy data injection attacks which can target the
smart grid while addressing, in articular, the potential presence of multiple adversaries. In this
regard, a Stackelberg game has been proposed to capture the strategic interactions between the
system operator and the adversaries. In the proposed Stackelberg game, the grid operator – aim-
ing at defending the system against potential data injection attacks – acts as the leader and the
attackers act as noncooperative followers, aiming at choosing their optimal attack strategies in re-
sponse to the operator’s implemented defense policy. The proposed game model has also allowed
the incorporation of the cost of attack and defense in the objective functions of each of the play-
ers. For solving the proposed game, we have proven that a generalized Nash equilibrium of the
attackers’ noncooperative game exists. In addition, we have studied the existence and properties
of the equilibrium point of the Stackelberg game (while also considering the potential scarcity of
information on the potential adversaries). In this regard, to numerically identify the equilibrium
point, we have proposed a learning algorithm which have been shown to successfully converge to
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the sought equilibrium. Using a numerical analysis, we have shown that the system operator can
exploit the competing behavior of potential attackers to successfully defend the system against all
potential attacks. In addition, using our derived numerical results, we have characterized the loss
level that the defender incurs due to information scarcity about the potential adversaries which may
target the system.

8.1.3 Time-critical Network Interdiction Games for Cyber-Physical Secu-
rity of UAV Systems

In Chapter 5, we have developed a novel mathematical framework which enables analysis of the
cyber-physical security of time-critical UAV applications. Time-critical applications include set-
tings such as drone delivery systems and anti-drone systems. The developed framework includes
a UAV operator aiming at choosing an optimal path selection policy to reach its target within a
minimum expected mission completion time and an interdictor aiming at targeting the UAV with
cyber-physical attacks to compromise its mission. In this respect, we have modeled the underlying
security problem as a network interdiction game between a UAV operator and an interdictor, where
each of the operator and the interdcitor can be benign or malicious. In addition, Chapter 5 have
advanced and incorporated principles from cumulative prospect theory in the proposed interdiction
game which allows accounting for each player’s bounded rationality when making decisions under
uncertainty. In this regard, under deterministic strategies, and considering both the fully rational
game and the cumulative prospect-theoretic game, we have characterized the necessary conditions
for the existence of a Nash equilibrium and derived the equilibrium strategies and game outcome.
In addition, when considering a hierarchy in the order of play, we derived the Stackelbeg equi-
librium of the game. In addition, considering probabilistic strategies, and considering the fully
rational and the cumulative prospect-theoretic games, we have proposed solution algorithms for
obtaining the equilibrium strategies of the interdictor and the UAV operator. In addition, we have
run a set of simulation results to highlight and analyze the effects of the bounded rationality of the
players on their chosen equilibrium strategies and, as a result, the game’s outcomes. For example,
the obtained numerical results have shown that the players’ prospect-theoretic bounded rationality
is more likely to be disadvantageous to the UAV operator. In fact, most results have shown that the
players’ bounded rationality leads to delays in expected mission completion times.

8.1.4 Diffusion of Threats in Cyber-Physical Systems

In Chapter 6, we have introduced a general framework which models the way attacks and threats
can propagate from the cyber layer to the physical system in CPSs. In addition, under this threat
propagation model, we have considered a potential attacker aiming at targeting a set of cyber
nodes with the goal of damaging the physical components of the system by exploiting the cyber-
physical propagation of threats. On the other hand, a system defender is considered who aims at
selecting a set of cyber nodes to defend to reduce the damage to the physical system which can
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be caused by cyber attacks. As such, a game-theoretic model is proposed to capture the security
interdependence between the attacker and system defender. In addition, using a behavioral model
inspired from cognitive hierarchy theory, we have modeled the potential bounded rationality of the
attacker by characterizing various levels of skills that the attacker may possess. In addition, the
introduced analytical tools have been applied to study the effects of cyber attacks on wide area
protection in the smart grid and the implications to the electric energy market which these attacks
can entail. In this regard, the generated results have shown the way the attacker’s skills affect its
chosen attack strategy. In addition, the results have highlighted that by accounting for the potential
skill levels of the attacker, the defender can better protect the system against possible attacks.

8.1.5 Enhancing Smart Grid Resilience by Leveraging Distributed Energy
Storage

In Chapter 7, we have developed a mathematical framework in which distributed storage capacity
in the smart grid could be leveraged for meeting the grids’ critical loads in emergency conditions
such as during an attack-induced blackout. Indeed, the proliferation of distributed storage has
raised the potential of leveraging this distributed storage capacity during blackouts to meet the
grid’s most critical loads. However, this distributed storage capacity is typically not run by the
central electric utility but by local entities or microgrids. Hence, financial incentives must be given
to storage capacity owners to save some of their stored capacity for emergency events. Hence,
each storage owner is faced with the option of routinely trading its stored energy within the smart
grid or to store this energy to potentially sell it in the future, during emergency events, at a higher
electricity price. In addition, since the critical load which must be met is limited, each storage
owner has no guarantee that all its stored capacity would be used, since this energy can be also
fulfilled by other storage owners. As such, we have proposed a novel framework for modeling
the decision making processes of storage owners and deriving optimal storage/trading strategies.
The problem has been formulated as a Bayesian game between multiple storage owners in which
each owner aims to choose its optimal portion of storage capacity to keep stored for emergency
events. The game formulation has explicitly accounted for the incomplete information that each
storage owner has about its competitors. In addition, we have incorporated notions from prospect
theory in the game formulation to model the subjective behavior of each storage owner under un-
certainty. In this respect, the equilibrium points of the proposed games have been characterized,
which have shown the equilibrium strategies which must be followed by each storage owner. A
set of simulation results were also introduced and have shown the impact that the subjective de-
cisions of the storage owners have on the likelihood of storing enough energy to meet the critical
load under emergency conditions. This has, hence, highlighted the importance of devising proper
financial incentives, which account for the potential subjective behavior of the storage owners, for
successfully leveraging the distributed energy storage capacity for enhancing the resilience of the
smart grid against emergency events.
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8.2 Open Problems

Cyber-physical systems are projected to become central to modern cities and infrastructure and,
hence, novel security solutions must be continuously devised to protect these systems against the
ever increasing security threats. As such, a number of key open problems which must be investi-
gated are provided next:

8.2.1 General Propagation of Threats in Cyber-Physical Systems

The work presented in Chapter 6 introduced a CPS security framework which can capture the
propagation of threats from the cyber layer to the physical system. However, a more general rep-
resentation of the cyber-physical propagation of threats within CPSs must also account for inter-
and intra-layer threats propagation. In this respect, such a generalized model would capture not
only the propagation of threats between the cyber and physical systems but also the propagation of
threats within each of the cyber and physical realms. Hence, rather than using a bipartite graph to
model the propagation of threats, a more general graph-theoretic and probabilistic representation
is needed. By developing such generalized threat propagation models, analyses of the effects of
a carried out attack can be traced throughout the system and defense strategies can be developed
accordingly. In this regard, the intertwined decision making processes of intelligent attackers and
defenders can be modeled using game-theoretic tools. In addition, due to the underlying complex-
ities in developing such comprehensive threat propagation models, the involved agents may not
always be capable of choosing fully-rational attack and defense strategies. In this respect, captur-
ing such potential bounded rationality in the game-theoretic formulations would allow anticipating
the way different types of adversaries might act (based on their skill levels and knowledge), thereby
allowing the derivation of effective defense strategies.

8.2.2 General Mechanisms to Leverage Energy Storage for Enhancing Smart
Grid Resilience

In Chapter 7, we have investigated leveraging distributed storage for meeting critical loads during
emergency situations. With CPS attacks and emergency events potentially causing blackouts that
cut power supplies to hospitals, police stations, and rescue services, there is an obvious need to have
ready-to-use emergency power which would provide the needed power supplies to such critical
loads until normal power operation has been restored. Distributed storage can provide such ready-
to-use power for meeting local critical loads. In the analysis in Chapter 7, we have looked at regular
and emergency electricity prices being specified by the electric power company without modeling
the strategic decision making of this power company. In this regard, as shown in Chapter 7, the
choice of the regular and emergency power prices have a direct effect on the energy trading and
storing strategies of the storage owners. Hence, when optimally choosing these prices, the utility
power company can maximize the likelihood of meeting critical loads during emergency situations.
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As such, a potential extension of this work consists of modeling the strategic interaction between
the electric power company and the distributed storage units. Based on this modeling, an optimal
and effective choice of electricity prices can be devised, by the power company, to offer effective
incentives to distributed storage owners – which explicitly account for their potential subjectivity
– to participate in such storage management systems for enahncing the resilience of smart grids
against emergency events.

8.2.3 Artificial Intelligence Techniques for Securing CPSs

As has been thoroughly addressed in this dissertation, securing CPSs must account for the various
multi-agent interactions which take place within a CPS. However, with an increased complexity of
the system, and accounting for nonlinearities incorporated by bounded rationality models, analyt-
ically analyzing these multi-agent interactions and interdependencies and mathematically solving
the resulting games becomes an increasingly arduous task. Hence, developing multi-agent learning
algorithms which can learn optimal security-related strategies from successive observations and in-
teractions with the environment, as well as by leveraging historical data, can provide tremendous
help in better understanding the multi-agent interactions and interdependencies within the com-
plex settings of CPSs and in devising security solutions which can be effective in defending CPSs
against the emerging threats.
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