Semi-Supervised Deep Learning Approach for Transportation Mode
I[dentification Using GPS Trajectory Data

Sina Dabiri

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
in
Computer Science and Application

Chang-Tien Lu, Chair
Chandan K. Reddy
Kevin P. Heaslip

December 11, 2018
Blacksburg, Virginia

Keywords: Deep learning, semi-supervised learning, convolutional neural network,
convolutional autoencoder, GPS trajectory data, trip segmentation, transportation mode
identification
Copyright 2019, Sina Dabiri

Semi-Supervised Deep Learning Approach for Transportation Mode
Identification Using GPS Trajectory Data

Sina Dabiri

(ABSTRACT)

Identification of travelers’ transportation modes is a fundamental step for various problems
that arise in the domain of transportation such as travel demand analysis, transport plan-
ning, and traffic management. This thesis aims to identify travelers’ transportation modes
purely based on their GPS trajectories. First, a segmentation process is developed to par-
tition a user’s trip into GPS segments with only one transportation mode. A majority of
studies have proposed mode inference models based on hand-crafted features, which might
be vulnerable to traffic and environmental conditions. Furthermore, the classification task
in almost all models have been performed in a supervised fashion while a large amount of
unlabeled GPS trajectories has remained unused. Accordingly, a deep SEmi-Supervised
Convolutional Autoencoder (SECA) architecture is proposed to not only automatically ex-
tract relevant features from GPS segments but also exploit useful information in unlabeled
data. The SECA integrates a convolutional-deconvolutional autoencoder and a convolutional
neural network into a unified framework to concurrently perform supervised and unsuper-
vised learning. The two components are simultaneously trained using both labeled and
unlabeled GPS segments, which have already been converted into an efficient representation
for the convolutional operation. An optimum schedule for varying the balancing parameters
between reconstruction and classification errors are also implemented. The performance of
the proposed SECA model, trip segmentation, the method for converting a raw trajectory
into a new representation, the hyperparameter schedule, and the model configuration are
evaluated by comparing to several baselines and alternatives for various amounts of labeled
and unlabeled data. The experimental results demonstrate the superiority of the proposed
model over the state-of-the-art semi-supervised and supervised methods with respect to met-
rics such as accuracy and F-measure.

Semi-Supervised Deep Learning Approach for Transportation Mode
Identification Using GPS Trajectory Data

Sina Dabiri

(GENERAL AUDIENCE ABSTRACT)

Identifying users’ transportation modes (e.g., bike, bus, train, and car) is a key step towards
many transportation related problems including (but not limited to) transport planning,
transit demand analysis, auto ownership, and transportation emissions analysis. Tradition-
ally, the information for analyzing travelers’ behavior for choosing transport mode(s) was
obtained through travel surveys. High cost, low-response rate, time-consuming manual data
collection, and misreporting are the main demerits of the survey-based approaches. With the
rapid growth of ubiquitous GPS-enabled devices (e.g., smartphones), a constant stream of
users’ trajectory data can be recorded. A user’s GPS trajectory is a sequence of GPS points,
recorded by means of a GPS-enabled device, in which a GPS point contains the informa-
tion of the device geographic location at a particular moment. In this research, users’” GPS
trajectories, rather than traditional resources, are harnessed to predict their transportation
mode by means of statistical models. With respect to the statistical models, a wide range
of studies have developed travel mode detection models using on hand-designed attributes
and classical learning techniques. Nonetheless, hand-crafted features cause some main short-
comings including vulnerability to traffic uncertainties and biased engineering justification
in generating effective features. A potential solution to address these issues is by leveraging
deep learning frameworks that are capable of capturing abstract features from the raw input
in an automated fashion. Thus, in this thesis, deep learning architectures are exploited in
order to identify transport modes based on only raw GPS tracks. It is worth noting that a
significant portion of trajectories in GPS data might not be annotated by a transport mode
and the acquisition of labeled data is a more expensive and labor-intensive task in compar-
ison with collecting unlabeled data. Thus, utilizing the unlabeled GPS trajectory (i.e., the
GPS trajectories that have not been annotated by a transport mode) is a cost-effective ap-
proach for improving the prediction quality of the travel mode detection model. Therefore,
the unlabeled GPS data are also leveraged by developing a novel deep-learning architecture
that is capable of extracting information from both labeled and unlabeled data. The exper-
imental results demonstrate the superiority of the proposed models over the state-of-the-art
methods in literature with respect to several performance metrics.

Dedication

I dedicate this thesis to my parents and sisters for their
kindness and devotion, and endless support although they were
thousands of miles away from me.

v

Acknowledgments

[would like to thank Dr. Chang-Tien Lu, Dr. Chandan K. Reddy, and Dr. Kevin
Heaslip, who have supported and helped me so much to complete this thesis and
my master’s degree in Computer Science at Virginia Tech. It has also been my
honor to have you as the co-authors of the paper related to this thesis. Obviously,
it was impossible without your wonderful support and cooperation in all aspects.
Thank you a lot!

Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Research components 1
1.1.1 ~ Deep learning 1

1.1.2 GPStrajectories 3

1.1.3 Travel mode detection 3

1.2 Research motivation and general framework 4

2 Related Work 9
2.1 GPS-Based Mode Detection Models 9

2.2 Semi-Supervised Deep Learning Approaches 10

3 Proposed Framework for Travel Mode Detection 13
3.1 Preliminaries 13
3.1.1 Definitions and Problem Statements 13

3.1.2 Motion Characteristics of GPS Points 15

3.2 The Proposed Framework 16
3.2.1 Two-Step Trip Segmentation 17

3.2.2 New Representation for Raw GPS Segments 18

3.2.3 Semi-Supervised Convolutional Autoencoder (SECA) Model 19

vi

3.24

Parameter Tuning and Scheduling

4 Experimental Results

4.1 Experimental Setup

4.1.1
412
4.1.3

4.2 Performance Comparison Results

SECA Evaluation

4.2.1
4.2.2
4.2.3

4.3 Analysis and Discussion

4.3.1
4.3.2
4.3.3
4.3.4

5 Conclusion

References

Dataset Description and Data Pre-processing

Baseline Methods

Performance Evaluation

Trip Segmentation Evaluation

Overall Performance Evaluation

Balancing Parameters Schedule

Feature Analysis for GPS SE Representation

Analysis of Model Architecture.

Prediction Capability Per Transport Mode

vii

26
26
20
27
29
31
31
33
33
35
35
36
37
38

40

43

List of Figures

1.1

3.1

3.2

3.3

3.4

4.1

Overview of our framework for detecting transportation mode of
GPS trajectories. A raw GPS trajectory of a user’s trip is first par-
titioned into a set of GPS segments with only one transportation
mode. Next, each GPS segment is converted to a 4-channel ten-
sor. The created labeled and unlabeled tensors are then used for
training our proposed SECA model. The trained SECA model is
finally used for detecting the transportation mode(s) of an unseen
GPStrip.

Bearing between two consecutive GPS points. lat and [on repre-
sents the latitude and longitude of a GPS point.

A 4-channel representation for a GPS segment with a shape of
(L M X4) .o

The architecture of our semi-supervised framework, which con-
sists of the convolutional-deconvolutional autoencoder and CNN
classifier. The layers’ parameters are represented by “(filter size)-
(number of filters)” for Conv. and Deconv. layers, and “(pooling
size)” for pooling and unpooling layers. The “Output shape” de-
notes the output size of the corresponding layer, which is shown
only when the output size changes.

Flow for jointly training the supervised and unsupervised compo-
nents of the proposed SECA model, depicted in Fig. 3.3

Precision and recall values for the proposed trip segmentation pro-
cess with different values of the penalty level v.

viil

List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Number of labeled GPS SFE for each transportation mode, num-
ber of unlabeled GPS SFE, as well as the maximum speed and

acceleration associated with each transportation mode. NA: Not
Applicable. 28

Comparison of accuracy values for different supervised and semi-
supervised models with varying amounts of labeled data. All un-
labeled data are used for training. 31

Comparison of weighted F-measure values for various supervised
and semi-supervised models with varying amounts of labeled data.
All unlabeled data are used for training. 32

Comparison of accuracy (Acc.) and F-measure (F1) for our SECA
model while different trip segmentation scenarios are applied. . . . 35

Comparison of accuracy values for different hyperparameter sched-
ules along with different sizes of labeled data. 1 — 0.1: Gradually
decreasing from 1 to 0.1 over training iterations. 36

Comparison of accuracy and weighted F-measure for various fea-
ture combinations. 37

Evaluation of the model configuration of the proposed SECA method
by varying the number of convolutional layers across different
amounts of labeled SE in the training data. 38

Confusion matrix for our SECA model. Prec. and Rec. correspond
to Precision and Recall, respectively. 39

X

Chapter 1

Introduction

This thesis secks to leverage an advance branch of artificial intelligence, called
deep learning, for mining ever-increasing users’ GPS trajectories so as to
detect travelers’ transportation modes, which is a challenging problem in
the domain of transportation. Accordingly, this study is comprised of three core
components: (1) model — deep learning, (2) data type — GPS trajectories, and
(3) application — travel mode detection. Accordingly, this chapter first provides a
general and concise introduction to the above-mentioned three components of this
study, which helps a reader have a better understanding of the current research.
The motivation, knowledge gap in the field, objectives, and main contributions of
this study are then elaborated.

1.1 Research components

1.1.1 Deep learning

Deep learning is an advanced branch of the artificial intelligence that works upon
the representation learning. The core objective of the representation learning,
a.k.a. feature learning, is to transform the raw input into a new set of features
that contain more useful properties for the task-at-hand. Extracted features from
representation learning often results in the better performance of learning algo-
rithms as opposed to feature engineering, where features are manually designed by
humans. The hand-crafted features are subjected to human bias and in need of
expert knowledge. Deep learning algorithms aim to discover the complex represen-
tation out of simpler representations. Deep learning methods are typically based
on artificial neural networks that consist of multiple hidden layers with nonlinear
processing units. The word deep refers to the multiple hidden layers that are used

1

2 Chapter 1. Introduction

for transforming the data representation. Using the concept of feature learning,
each hidden layer of neural networks maps its input data into a new representa-
tion. The succeeding layer tends to capture a higher level of abstraction from the
less abstract concept in the preceding layer. Therefore, a series of hidden layers
increasingly extract more efficient features from the observed data. These high-
level, abstract features obtained through successive layers are meant to be more
informative for the learning task (e.g., classification and regression)[11].

Deep learning architectures are divided into two broad categories: (1) Unsuper-
vised learning approaches including Restricted Boltzmann Machines (RBM), au-
toencoders, word embeddings, and Generative Adversarial Networks (GAN), (2)
Supervised learning approaches including deep neural networks, Convolutional
Neural Networks (CNN), and Recurrent Neural Networks (RNN). A large vol-
ume of published works by the deep learning community has been developed upon
either these individual networks or a combination of them. The primary and active
research fields that have exploited deep learning approaches are computer vision,
natural language processing (NLP), and speech recognition. Some of the spec-
tacular real-world applications of deep learning in these fields include image cap-
tioning, machine translation, text summarization, object classification in images,
adding sounds to silent movies, and text generation. One of the main objectives
of this study is to contribute to this growing area of research by exploring the
potential power of deep learning techniques for resolving challenging problems in
transportation domains.

To the best of my knowledge, deep learning has emerged in transportation appli-
cations since 2014. Huang et al. [13] and IU et al. [14], for the first time, demon-
strated that deep learning approaches can achieve higher performance accuracy
for predicting traffic flow, compared to the existing state-of-the-art. Afterward,
several studies have been published on applications of deep learning in various
transportation fields including traffic state prediction, signal timing, traffic acci-
dent, and transport mode inference. However, much of the current literature in
the application of deep learning in transportation domains pays particular atten-
tion to improving the accuracy of traffic flow and speed prediction models. Due
to complex nature of the traffic flow process, researchers have been motivated to
use deep learning algorithms that can represent traffic features in high levels of

1.1. Research components 3

abstractions without prior knowledge. The examples of deployed architectures
for learning traffic features include stacked autoencoder [23], deep belief network
[13], combination of a linear model with deep neural network [26], long short-term

memory (LSTM) network and a combination of CNN and LSTM [37].

1.1.2 GPS trajectories

Global Positioning Systems (GPS) is a well-established positioning tool that record
spatiotemporal information of users/vehicles while moving in a traffic network.
Devices equipped with these technologies (e.g., drivers’ smart phones) can track
moving objects’ locations indexed in time to create their trajectory data. A GPS
trajectory, also called movement, of an object is constructed by connecting the
GPS points of its GPS-enabled device. A GPS point, here, is denoted as (z,y, t),
where x, y, and t are latitude, longitude, and timestamp, respectively [4].

Such spatiotemporal data are worthy inputs for a variety of transport-domain ap-
plications including vehicle fleet management, human mobility behavior, traffic
state estimation, identification of significant locations, traffic demand analysis,
trajectory mining, and traffic incident detection [4]. For instance, the GPS trajec-
tories obtained from on-board devices in transit vehicles are leveraged for detecting
any traffic violation and improving the disposition of clients’ orders in taxi com-
panies [24]. Analyzing the people’s mobility under a large street network leads to
understand and predict the traffic distribution, using a number of GPS recorded
points in each street link. Mining vehicles and humans’ trajectories uncovers typ-
ical movement styles, frequent routes, and mobility behavior in the road network
[21]. Anomaly behavior detection (e.g., fraudulent taxi behavior) is another appli-
cation example of analyzing drivers’ trajectories [22].

1.1.3 Travel mode detection

Travel mode, an important aspect of users’ mobility behavior, is referred to a spe-
cific way used by a traveler to travel from an origin to a destination in a traffic net-
work. Major travel modes are enumerated as car, bus, train, walking, and bicycle.
Identifying users’ travel modes is a key step towards many transportation-related

4 Chapter 1. Introduction

problems including transport planning, transit demand analysis, auto ownership,
and transportation emissions analysis. In particular, such valuable information
has the following advantages for users, transportation agencies, and application
systems:

« Users Inferring the distribution of motion modes on various traffic routes
helps users to not only utilize an appropriate mode for a specific journey but
have a better understanding of their own life pattern.

« Transportation agencies (1) The mode distribution can identify regions
with high auto dependency and encourage public transport ridership by im-
proving transit systems [6]. (2) Suitable policies such as High-Occupancy-
Vehicle (HOV) lanes can be taken during the peak-period congestion accord-
ing to existing mode shares [3]. (3) Since transportation mode is a type of
travel behavior, it helps to mine the people’s mobility behaviors and social
patterns. Such information helps decision makers to provide appropriate ser-
vices for citizens.

« Application systems Discovering congested/uncongested traffic condi-
tions and proper modes for various origin-destination empower traffic man-
agement systems to smooth urban mobility [41].

1.2 Research motivation and general framework

The mode of transportation for traveling between two points of a transportation
network is an important aspect of users’ mobility behavior. Identifying users’
transportation modes is a key step towards many transportation related problems
including (but not limited to) transport planning, transit demand analysis, auto
ownership, and transportation emissions analysis. Traditionally, the information
for modeling the mode choice behavior was obtained through travel surveys. High
cost, low-response rate, time-consuming manual data collection, and misreport-
ing are the main demerits of the survey-based approaches [36]. With the rapid
growth of ubiquitous GPS-enabled devices (e.g., smartphones), a constant stream
of users’ trajectory data can be recorded. A user’s GPS trajectory is constructed
by connecting GPS points of their GPS-enabled device. A GPS point contains

1.2. Research motivation and general framework 5)

the information of the device geographic location at a particular moment. Mining
trajectory data, which contain rich spatio-temporal information regarding human
activities, provokes several transport-domain applications such as incident detec-
tion, mobility pattern extraction, and transport mode inference [4]. In this study,
we aim to predict a user’s transportation mode purely based on their GPS trajec-
tories.

A majority of models for learning transportation modes from GPS tracks consists
of two steps: (1) extracting features from GPS logs, (2) feeding features to a
supervised learning method for the classification task. Unlike many other data
sources, the GPS-based trajectory does not contain explicit features for inferring
transportation modes, which calls for feature engineering. Much of the current
literature has generated hand-crafted features using the descriptive statistics of
motion characteristics such as maximum velocity and acceleration [38, 41, 42].
After creating a pool of manual attributes, a wide range of traditional supervised
mining algorithms has been used for performing the classification task including
rule-based methods, fuzzy logic, decision tree, Bayesian belief network, multi-layer
perceptron, and support vector machine [36].

However, the feature engineering not only requires expert knowledge but also in-
volves biased engineering justification and vulnerability to traffic and environmen-
tal conditions. For example, one may use the maximum speed of a GPS trajectory
as a discriminating feature. The immediate criticism is that the maximum veloc-
ity of a car might be equal to bicycle and walk modes under a congested traffic
condition. The other expert may choose the top three velocities and accelerations
of the user’s GPS trajectory as a potential solution for lack of information about
traffic conditions. Nonetheless, another specialist might critique this solution by
asking why not using the top four velocities or why not the minimum instead of
maximum? Automated feature learning methods such as deep learning architec-
tures is a remedy to the above-mentioned shortcomings. Recently, researchers have
shown an increased interest in leveraging deep learning algorithms for addressing
challenging transportation-related problems [5, 36].

Figure 1.1 depicts the overview of our framework for identifying the transporta-
tion mode(s) of a GPS trajectory related to a user’s trip. Since travelers might
commute with more than one transportation mode for making a single trip, the

6 Chapter 1. Introduction

| @ GPS Point

__

Trip GPS Trajectory

=)

S

§ i Y
é Walk Segment ; Bus Segment
9599 ¢ Q¢

R \—Y—) \‘Change Point

Qi

= Car Segment

= gm

=

% © | GPS Points Jerk |

E ; GPS Points Acceleration |

3 GPS Points Speed

g

C

5

2

D e ;
(: i |Labeled and Unlabeled GPS Segment Tensors ‘

Training Semi-Supervised Convolutional
Autoencoder (SECA) Model

iy

‘ Unseen GPS Trajectory ‘ ‘ Mode Detection -
i v A

‘ Trip Segmentation ‘

: v

‘ 4-Channel GPS Tensor H Trained SECA ‘

Figure 1.1: Overview of our framework for detecting transportation mode of GPS trajecto-
ries. A raw GPS trajectory of a user’s trip is first partitioned into a set of GPS segments with
only one transportation mode. Next, each GPS segment is converted to a 4-channel tensor.
The created labeled and unlabeled tensors are then used for training our proposed SECA
model. The trained SECA model is finally used for detecting the transportation mode(s) of
an unseen GPS trip.

Model Training

Online Mod(etec;)n\

first step is to partition the GPS trajectory of a trip into segments, in which ev-
ery GPS segment contains only one transportation mode. Next, features of each
GPS segment is automatically extracted using a deep learning framework based
on Convolutional Neural Network (CNN). Accordingly, one of our main challenges
is to convert the raw GPS segment into an adaptable layout for CNN schemes.
First the basic motion characteristics of every GPS point in a segment including
relative distance, speed, acceleration, and jerk are computed [3]. This results in

1.2. Research motivation and general framework 7

generating a sequence of numerical features for every type of motion characteris-
tic. Next, the computed motion sequences are concatenated to create a 4-channel
tensor for every GPS segment, where every sequence is equivalent to a channel in
an RGB image. Such a new representation not only yields a standard arrangement
for the CNN scheme but also describes the kinematic motion of a transport mode.
Furthermore, in contrast to the hand-designed approaches, our proposed represen-
tation involves all GPS points of a user’s trajectory rather than a small subset
in the hand-designed approaches such as GPS points with maximum velocity or
acceleration. Finally, the transportation mode of a GPS segment is inferred by
training a CNN-based deep learning architecture on the converted GPS segments.

Moreover, almost all the current research work on travel mode identification has
built their models using only labeled trajectories. Nonetheless, a significant por-
tion of trajectories in GPS data might not be annotated since the acquisition of
labeled data is a more expensive and labor-intensive task in comparison with col-
lecting unlabeled data. Using the unlabeled data in addition to the labeled ones
allows us to capture more properties of the data distribution, which can potentially
further improve the decision boundaries and provide a better generalization on un-
seen records [18]. Thus, our main objective in this paper is to improve the CNN
classifier by leveraging the power of deep unsupervised learning algorithms such as
Convolutional AutoEncoder (Conv-AE). A deep SEmi-Supervised Convolutional
Autoencoder (SECA) architecture, that integrates Conv-AE and CNN classifier,
is proposed. Both components are simultaneously trained by minimizing a cost
function that is a linear combination of unsupervised and supervised losses. Tun-
ing the hyperparameters that connect these losses is the most challenging part of
our training procedure. The key contributions of this work are summarized as
follows:

+ Developing a two-step segmentation process. Due to the inherent
need of CNN-based models for having a fixed-size input, the GPS trajectory
of a trip is first uniformly partitioned into the GPS segments with a fixed size.
Afterward, for the first time in this domain, a discrete optimization algorithm
is deployed to detect the points where the transportation mode changes. The
output of this step is a pool of GPS segments with only one transportation
mode.

8 Chapter 1. Introduction

+ Designing an efficient representation for raw GPS trajectories.
A new procedure is developed for converting a raw GPS segment, which is
a sequence of GPS points, to an efficient and appropriate representation for
using in deep learning architectures. The proposed representation contains
the information of all GPS points in the GPS Segment and allows the very
deep architecture and training algorithm to extract discriminating and high-
level features for the task at-hand.

+ Developing a novel deep semi-supervised convolutional autoen-
coder (SECA) architecture. A deep semi-supervised model is proposed
to leverage both unlabeled and labeled GPS trajectories for predicting trans-
portation modes. The model contains Conv-AE and CNN classifier for un-
supervised and supervised learning, respectively.

+ Building an effective schedule for tuning balancing parameters.
Since the main objective is to simultaneously training the unsupervised and
supervised components of the SECA model, a novel and efficient schedule is
proposed for varying the balancing parameters that combine reconstruction
and classification losses.

+ Conducting an extensive set of experiments for performance
evaluation and comparison. The results reveal that our SECA model
outperforms several supervised and semi-supervised state-of-the-art baseline
methods for various amounts of labeled GPS segments. Furthermore, the per-
formance results demonstrate the superiority of the proposed trip segmenta-
tion process, the designed representation for GPS segments, the schedule for
varying hyperparameters, and the model structure by comparing with several
alternatives.

The rest of this thesis is organized as follows. Existing works on both mode de-
tection methods and deep semi-supervised schemes are listed in Chapter 2. The
preliminaries and details of the proposed travel-mode-detection framework are ex-
plained in Chapter 3. Our experimental results are reported in Chapter 4. Finally,
the thesis is concluded in Chapter 5.

Chapter 2

Related Work

To date, several studies have deployed various data sources (e.g., GPS, mobile
phone accelerometers, and Geographic Information System) or a combination of
them for inferring users’ transportation modes [9, 20]. In this chapter, we re-
view the studies that have utilized the GPS data for designing a mode detection
model since this is the primary focus of this paper. A comprehensive and system-
atic review of existing techniques for travel mode recognition based on GPS data is
available in [36]. The paper provides an excellent comparison of various approaches
in three categories including GPS data preprocessing, trip/segmentation identifi-
cation, and travel mode detection. After reviewing GPS-based detection models,
we will also briefly discuss various semi-supervised deep learning architectures that
have been studied in the literature for different applications.

2.1 GPS-Based Mode Detection Models

As mentioned earlier, feature extraction and classification are two major tasks
in the GPS-based mode detection frameworks. Since the classification is often
performed by traditional supervised algorithms (e.g., support vector machines,
decision trees, etc.), the feature-extraction design is the primarily discerning factor
among various mode detection frameworks.

In two seminal studies by Zheng et al. [41, 42], a supervised framework based
on hand-crafted features was proposed. Using the commonsense knowledge of the
real world, a trip is first partitioned into segments by detecting the walk segments.
Then, a set of manual yet robust features were identified for every segments and
fed into machine learning algorithms (e.g., decision trees) for the classification
task. Features were divided into basic and robust groups. The basic group pri-
marily contains descriptive statistics of velocity and acceleration of all GPS points

9

10 Chapter 2. Related Work

while the robust group is composed of the heading change rate, stop rate, and
the velocity change rate. They demonstrated that the robust features are less
vulnerable to traffic conditions; however, using a combination of basic and robust
features results in higher accuracy. Xiao et al. [38] generated new features by
computing more descriptive statistics such as mode and percentile. The number
of features were further augmented by introducing local features through profile
decomposition algorithms. Méenpééd et al. [25] found that spectral features of
speed and acceleration are significantly effective based on statistical tests while
auto- and cross-correlations, kurtoses, and skewnesses of speed and acceleration
were not useful. Nevertheless, research on semi-supervised mode inference is really
scarce, Rezaie et al. [29] performed a semi-supervised label propagation method,
yet based on a limited number of hand-crafted features including speed, duration
and length of a trip, as well as the proximity of a trip start and end points to the
transit network.

A small body of literature has sought to integrate hand-crafted and automated
features that are extracted using deep neural networks [3, 7, 34]. After convert-
ing a raw GPS trajectory into a matrix with the image format, a type of deep
learning algorithm is employed to obtain high-level representations for the classi-
fication task. Nonetheless, to the best of our knowledge, none of the deep learning
approaches for mode detection has been built upon simultaneously using both la-
beled and unlabeled trajectories. Furthermore, no optimization technique has been
exploited for trip segmentation.

2.2 Semi-Supervised Deep Learning Approaches

Semi-supervised frameworks based on deep learning algorithms (e.g. recurrent and
convolutional neural networks, and autoencoders) have been exploited for a variety
of tasks, mainly in computer vision and natural language processing fields [15, 28].
Existing literature on semi-supervised deep-learning architectures falls into two
major groups: (1) Two-step process, in which the network is first trained in an
unsupervised fashion as the pre-training step, and then the supervised component
of the model is tuned using the labeled data. (2) Joint process, in which both the
unsupervised and supervised components (i.e., the entire network) are concurrently

2.2. Semi-Supervised Deep Learning Approaches 11

trained.

One technique for the pre-training phase is to sequentially train the network layers
[2]. Each layer is pre-trained with an unsupervised learning algorithm such as
autoencoders and Restricted Boltzman Machine as a separated block while its
input is the output of the previous layer. Indeed, the layer-wise unsupervised
training strategy helps optimization by finding a good initial set of weights near
a good local minimum, which sets the stage for a final training phase [8]. In the
next stage, the deep architecture is fine-tuned by performing a local search from a
reasonable starting point. Another pre-training strategy is to train the network in
its entirety, rather than greedy layer-wise training, and then fine-tune the model
using weights obtained from the first phase as an initialization. Using the obtained
weights in the first step as a starting point for the supervised learning gives rise to
a better stabilization and generalization of the model.

As mentioned earlier, one of the main objectives in the pre-training step is to
prepare a good initialization for the supervised training and avoid a poor general-
ization of the model. However, with advances in initialization and regularization
schemes for deep learning architectures [10, 31], pre-training strategies are getting
replaced with joint training strategies. The fundamental idea of joint strategies
is to optimize a hybrid loss function, that is a combination of unsupervised and
supervised components, with the goal of simultaneously preserving reconstruction
and discrimination abilities. While a type of classifier (e.g., multi-layer percep-
tron or softmax function) forms the supervised part, variants of autoencoders have
been widely utilized for performing the unsupervised task. Variational autoen-
coders [18], convolutional-deconvolutional autoencoders [40], autoencoders based
on a Ladder network [28], and recursive autoencoders [30] are typical examples of
autoencoders that have been used in deep semi-supervised networks. A substitute
for autoencoders is to add an entropy regularization upon unlabeled data into the
supervised loss function. At each training step, the unlabeled data are annotated
using the updated weights in the previous iteration [19]. A balancing parameter
can be used in the hybrid loss function to trade off the supervised and unsuper-
vised parts of the objective function [30, 40]. In Chapter 4, the effect of balancing
parameter(s) in the ultimate performance of joint training strategies is examined.

In addition to be designed for a new application with a unique model configuration,

12 Chapter 2. Related Work

our SECA model is trained using a new schedule for tuning balancing parameters.
Unlike similar approaches in literature, the proposed schedule considers a separate
balancing parameter for each of unsupervised and supervised components.

Chapter 3

Proposed Framework for Travel Mode
Detection

This chapter divides into two main sections: (1) introducing the preliminaries
required to comprehend the proposed travel-mode-detection framework, and (2)
elaborating the details of all steps in the proposed framework.

3.1 Preliminaries

In this section, first, the trip segmentation and mode detection problems are de-
scribed and then, we show how to compute the motion characteristics of each GPS
point. The motion features of GPS points are then used for both creating an in-
put layer in our SECA model and hand-crafted features in the standard machine
learning algorithms.

3.1.1 Definitions and Problem Statements

Before describing the formal statements of the two problems, the notions of GPS
trajectory and GPS segment are defined.

Definition 1 (GPS Trajectory). A user’s raw GPS trajectory T is defined
as a sequence of time-stamped GPS points p € T, T = [p1,...,pn]. Fach
GPS point p is a tuple of latitude, longitude, and time, p = [lat,lon,t], which
identifies the geographic location of point p at time t.

T is divided into trips it the time interval between two consecutive GPS points
exceeds a pre-defined threshold (e.g., 20 minutes) [42]. Also, the user might com-
mute with more than one transport mode in a single trip. For instance, one may

13

14 Chapter 3. Proposed Framework for Travel Mode Detection

travel to work by first driving to a parking lot, then taking a bus, and finally walk-
ing toward their workplace. As a result, a trip is partitioned into multiple GPS
segments when the transportation mode changes.

Definition 2 (Change Point). A change point, denoted as CP, is defined
as the place in a trip in which users change their transportation mode. A trip
may contain zero, one, or multiple change points.

Definition 3 (GPS Segment). A GPS segment is a sub-division of a user’s
trip, which s traveled by only one transportation mode y € Y, where Y 1is
a set of transportation modes (such as bike and car). A GPS segment is
denoted as SE = [p1,--- ,pul, where M is the number of GPS points that
forms SE.

Accordingly, the trip segmentation problem is defined as follows:

Problem 1: Trip Segmentation The trip segmentation problem is defined
as detecting the change points C'P in the GPS trajectory of a user’s single
trip. GPS segments SEs with a unique transportation mode are the output
this problem.

The mode detection is a multi-class classification problem that secks for predicting
the correct transportation mode for a given SE. However, the raw SE needs to
be transferred to an appropriate format before feeding into a machine learning
algorithm. Either a set of hand-crafted features (for traditional machine learning
algorithms) or a proper layout (for deep learning architectures), represented as X,
will need to be designed. The first step for generating X is to compute the motion
characteristics of GPS points in each SE, which is described in the next section.

Problem 2: Mode Detection Given the training data {(Xi,y;)}i_, for n
samples of SE;, the mode detection problem is defined as building the optimal
classifier for estimating the transportation mode of a user’s SE based on its
features X.

The trained model is then deployed to estimate users’ transport modes while trav-
eling in transportation networks. For an unseen trip, a trip is first segmented into
a set of S E’s using the proposed trip segmentation technique. Then, the mode for

3.1. Preliminaries 15

cach SE is estimated. Consecutive segments with the same detected modes are
concatenated together.

3.1.2 Motion Characteristics of GPS Points

Several motion features can be computed for every GPS point based on their geo-
graphic coordinates and timestamps. The relative distance between two consecu-
tive GPS points in a SE (e.g., p1 and ps), can be computed using the widely-used
Vincenty’s formula [33]. The Vincenty’s formula is a common and accurate method
for computing the geographical distance between two points on the surface of a
spheroid. The time interval between two successive GPS points is another motion
quantity that can be simply computed. Having the relative distance and time
interval, other fundamental kinematic motions including speed, acceleration, and
jerk are computed to provide more information about a user’s motion. Speed is
the rate of change in distance that shows how fast a user is traveling. Acceleration
is the rate of change in speed that shows how fast a user is changing their speed.
Jerk, the rate of change in acceleration, is a significant factor in safety issues such as
critical driver maneuvers and passengers’ balance in public transportation vehicles
[1]. Jerk has been used in mode detection models for the first time in [3]. These
motion features for a GPS point p; are calculated based on the following equations:

RD,, = Vincenty(p:[lat,lon], ps[lat, lon]) (3.1)
Aty = palt] — pilt] (3.2)

Sp = JZZZ 1 (3.3)

Ap, = % (3.4)
PR o

where RD,,, At, ., Sy, Ay, and Jp, represent the relative distance, time interval,
speed, acceleration/deceleration, and jerk of the point pi, respectively. Analo-

gously, the above-mentioned formulae are used to calculate the motion features of
other GPS points in a SE.

16 Chapter 3. Proposed Framework for Travel Mode Detection

The rate of change in the heading direction of different transportation modes varies.
For example, cars and buses have to move only alongside existing streets while
people with walk or bike modes alter their directions more frequently [41]. Bearing
rate is a motion attribute for quantifying the heading change among modes. As
depicted in Fig. 3.1, bearing measures the angle between the line connecting
two successive points and a reference (e.g., the magnetic or true north). The
bearing rate, which can be used as another motion feature, is the absolute difference
between the bearings of two consecutive points.

;) N

s s
! . i
5 ~~~‘0‘9«>- !
: L e, :
i 623? . ! %) !
e : :
1 %} 1 v 1
E o y :‘
\ , lon] P,[lat, lon]

P,[lat, lon]

Figure 3.1: Bearing between two consecutive GPS points. lat and lon represents the latitude
and longitude of a GPS point.

3.2 The Proposed Framework

In this section, first, a two-step process is proposed to divide the GPS trajectory
of a user’s trip into the segments with only one transportation mode. Next, an
efficient representation for each GPS segment is designed. The overall architecture
of our semi-supervised framework is also explained in detail. Finally, an effective
strategy for training our network is proposed.

3.2. The Proposed Framework 17

3.2.1 Two-Step Trip Segmentation

Our proposed method for partitioning a user’s trip into segments with a unique
transportation mode consists of two parts. Considering the basic CNN requirement
for having all input samples with a fixed size, all GPS trajectories need to be either
truncated or padded to a fixed size for both offline learning and online inference
at the end. Accordingly, we flip this requirement into the first step of our trip
segmentation. Thus, a GPS trip is first uniformly partitioned into segments with
a fixed number of GPS points, denoted as M. Our observation indicates that a
majority of GPS segments contains one or two transportation modes after this
uniform-size segmentation, which dramatically improves the performance of the
overall segmentation process. In the online mode detection, consecutive segments
with the same predicted transportation mode are merged together.

However, the uniform-size segmentation in the first step does not guarantee that
every fixed-size GPS segment contains only one transportation, which calls for
the second segmentation step. Assuming the fixed-size GPS segment SE =
[p1,- -+, pu] as asignal, we aim to detect a number of change points, K, with their
positions, CP = [C'Py,--- ,CPx]|, where the statistical properties of the signal
change. Note that every change point belongs to SE = [p1,--+ ,pa]. To this
end, SE is first converted into a multivariate time series {Y;} € RM*9) where
d is the number of motion features introduced in Section 3.1.2. Our observation
indicates using only speed and acceleration features for creating {Y;} results in a
better performance. A common approach for detecting the change points from a
time-series signal is to minimize the following objective function [16]:

K+1

C(CP) = Z[C(Ycﬂq—i-l:CPi)] +7/f(K) (3.6)

1=1

where CPy = 0 and CPg1 = M. cis a cost function that measures the homo-
geneity in the sub-segments. We choose the mean-shift model, as one of the most
studied cost function used in the change point detection literature [32]. For a GPS
sub-segment {Y;}; on a time interval I between two consecutive change points,
the mean-shifts is defined as follows:

18 Chapter 3. Proposed Framework for Travel Mode Detection

(Y1) = 3 I1Y: - YIB 37)

tel
where Y is the mean of {Y;}er.

Since the number of change points K is unknown in our problem (i.e., a trip might
be performed with various number of transportation modes), a penalty function
f(K) is used in Eq. 3.6 to constrain the number of change points. We choose a
linear penalty function as /K. The penalty level v makes a balance between the
decrease in the cost function when more change points are allowed. Accordingly,
solving the optimization problem in Eq. 3.6 is dependent on the choice of the
penalty level v, not a pre-defined number of change points.

A wide range of search algorithms have been proposed to solve the discrete change
point detection optimization problem, formulated in Eq. 3.6 [32]. Our choice of
the search algorithm is the Pruned Exact Linear Time (PELT) method, which has
been recently proposed in [16]. PELT leverages the advantages of alternative search
algorithms, which are exact solution and low computational complexity achieved
through a combination of optimal partitioning and pruning. Under the assumption
that change points are spread throughout the signal rather than confined to one
portion, the PELT algorithm discards many points along the signal through its
pruning step. This results in dramatically reducing the computational cost to on
average O(n) while keeping the ability to detect the optimal segmentation. The
detailed algorithm can be found in [16].

If PELT finds a change point in a GPS SE, the SE is partitioned into two or more
sub-segments. After converting each SE into a 4-channel tensor, as described in
the following section, all short sub-segments are padded with zero values to have
a fixed-size M before feeding into our SECA model.

3.2.2 New Representation for Raw GPS Segments

Since the core component of our proposed framework is a convolutional network,
we will need to first convert GPS segments into a format that is not only compatible
with CNN architectures but is also efficient in representing the fundamental motion
characteristics of a moving object. As explained earlier, the motion features utilized

3.2. The Proposed Framework 19

in this study are relative distance (RD), speed (), acceleration (A), and jerk
(J). For every type of motion feature, a sequence can be created by placing the
corresponding value for every GPS point of a S E in chronological order, where the
feature value is computed using Eqs. (1)-(5). Such a sequence can be seen as a
1-d channel. Stacking these channels turns a raw GPS S E into a 4-channel tensor.
In Chapter 4, we demonstrate the superiority of such a configuration compared to
other possible feature combinations.

By padding the short segments with zero values, all GPS SFEs are mapped into
a 4-channel tensor with the shape of (1 x M x 4). We select M as the median
size of all GPS segments obtained based on the true change points, which results
in the best final performance. Figure 3.2 illustrates the 4-channel arrangement for
a GPS SE. Note that our proposed layout utilizes the information of all GPS
points and allows the very algorithm to extract the efficient features for the mode
detection. This is in contrast to the feature-engineering methods that leverage
the information of a limited subset of the GPS segment such as points with the
maximum speed and acceleration. Finally, values of each channel are individually
scaled into the range [0,1] using the min-max normalization.

Relative Distance [RDy, RD,, ..., RDy.;, RDy,]

==
Speed Channel [S1: Sy o s Smar Sy] .

I:II:II:I B /
Acceleration Channel [AL A, ..., Ay Ay] AN

':::IF' (1 x M x 4) GPS Segment

Jerk Channel [Ji,do oo Iy Iu]_

Figure 3.2: A 4-channel representation for a GPS segment with a shape of (1 x M x 4)

3.2.3 Semi-Supervised Convolutional Autoencoder (SECA) Model

As can be seen in Fig. 3.3, our semi-supervised architecture combines two main
components: (1) a CNN classifier, which takes in only the labeled trajectories,
denoted as X; € REMx4) and (2) Convolutional-deconvolutional AutoEncoder

20 Chapter 3. Proposed Framework for Travel Mode Detection

(Conv-AE), which takes in both labeled and unlabeled trajectories, denoted as
Xeomp = (X; 4+ X,,) € REMxD) X and X, correspond to the 4-channel tensors
of labeled and unlabeled GPS segments, respectively, which are created based on
the procedure described in the previous section.

3.2.3.1 Convolutional-Deconvolutional AutoEncoder Autoendocer is an unsu-
pervised learning technique that aims to learn an efficient latent representation by
reconstructing the input at the output layer. Autoencoder consists of two parts:
(1) the encoder function that maps the input data into the latent representation
h = f(X), and (2) the decoder function that reconstructs the original data from
the latent representation X = g(h). The latent representation h often contains
more useful properties than the original input data X [11]. In our framework, the
functions f and g are deep convolutional and deconvolutional networks, respec-
tively.

As shown in Fig. 3.3, the encoder function f consists of two sets of layers, where
each set has two convolutional layers followed by a max pooling layer. The input
to the encoder is X .. Since the spatial size of X, is small in our application,
a small filter size (1 x 3) is used for all convolutional layers while stride is equal to
1. The number of filters starts from 32 in the first set of convolutional layers, and
then increase by a factor of 2 (i.e., 64) for the second set. The padding setting of
convolutional layers is configured so as to preserve the spatial dimension after each
convolution operation. The filter size of the max-pooling layer is (1 x 2) with the
stride 2. According to the mentioned settings, the spatial size reduces by a half size
of the previous layer only after max-pooling layers and remains unchanged after
convolutional layers. The convolved neurons are activated by the Rectified Linear
Unit (ReLU) function. The tensor h is the output of the last layer in the encoder
part. Note that we do not use a fully-connected layer as the last layer to force the
latent representation h into a vector form. Based on our experimental observation,
collapsing the latent representation h with 3 dimensions into a 1-dimension vector

deteriorates the performance of the model. The tensor h in Fig. 3.3, for instance,
has the shape size h € R(1%62x64),

The decoder function g has the same number of layers as the encoder and performs
the inverse operations (i.e., unpooling and deconvolutional) so as to generate an
output with the same size of the input in the corresponding layer in the encoder

3.2. The Proposed Framework

—

21

/ GPS Trajectory X GPS Trajectory X \
(1x248x4) (1x248 x 4)
v
Outputshape: — ¢ony(1x3)-32 Deconv(1x3)-32
(1x248 x32) "
Output shape:
C 1x3)-32 =
onv()1) Deconv(1x3)-32 (1 x 248 x 32)
Output shape: Output shape:
Pool(1x2 put shape:
LS) (x124%32) ool(1x2) Unpool(1x2) 1 s sag x6a)| o
= 2 Output sh X :
% S utput shape: 2
s — A (1 x 124 x 64) Con"(le)'M Deconv(1x3)-64 &
@
% i Output shape:
Z Conv(lxj,)-64 Deconv(1x3)-64 (1 x 124 X 64)
Output shape: Output shape:
(1 62 X 64) Poolilx2) Unpool(1x2) (1% 124 X 64)
Latent Latent
Representation h Representation h
K (1% 62 x 64) (1% 62 x 64) /
Softmax layer

Figure 3.3: The architecture of our semi-supervised framework, which consists of the
convolutional-deconvolutional autoencoder and CNN classifier. The layers’ parameters are
represented by “(filter size)-(number of filters)” for Conv. and Deconv. layers, and “(pooling
size)” for pooling and unpooling layers. The “Output shape” denotes the output size of the
corresponding layer, which is shown only when the output size changes.

part. For example, in Fig. 3.3, the tensor h € R1*62x64) jg first passed into the

unpooling layer, which generates a tensor with the size (1 x 124 x 64). Afterwards,
the output feature map from the unpooling layer is fed into a deconvolutional layer,
which results in a tensor with the same shape (1 x 124 x 64). Except for the last
layer, the activation function for all deconvolutional layers is ReLU. Proceeding
with the same operations, the last deconvolutional layer produces an output with
the same shape of the original input, denoted as Xcomb e RIXMx4) ~ GQince the
input layer X ,mp has been normalized into the range [0, 1], the sigmoid function
is deployed as the activation function of the last deconvolutional layer.

As Xeomp and Xeomp are composed of continuous-valued features, we use the

22 Chapter 3. Proposed Framework for Travel Mode Detection

squared Euclidean distance as the loss function for the Conv-AE. Accordingly,
the reconstruction error for every SE is computed as follows:

Conv—AFE A 2
l =D (& —) (3.8)

i
where z; and x; are the corresponding elements of the matrices X omp and Xeomp,
respectively. The above error is averaged across the training batch in each iteration.

3.2.3.2 CNN-based Classifier Our CNN classifier contains a stack of convolu-
tional layers with one fully-connected layer. The convolutional part is exactly the
same as the encoder function, yet receives X; as the input layer. Therefore, the
flattened latent representation A is directly fed into a softmax layer to generate
a probability distribution over the transportation labels for the GPS segment X,
denoted as P, = {pi1,- - , pi.i }, where K is the number of transportation modes.
Note that using some fully connected layers between the last convolutional layer
and the softmax layer (i.e., deploying a multi-layer perceptron) does not improve
the performance of our network. The widely accepted categorical cross-entropy is
used as the loss function for the CNN classifier. The loss function for every labeled
SFE is formulated as follows:

K
llabeled—classifier — Z Yl i 1Og(pl 2) <39)
=1

where y;; € Y, is a binary indicator which is equal to 1 if the class ¢ is the true
transportation label for the sample X; and 0, otherwise. Y] is the true label for
X, represented as one-hot encoding. Analogous to the Conv-AE, the cross entropy
loss is averaged across the training batch in each iteration.

3.2.3.3 Model Training Our main training strategy is to simultaneously train
the Conv-AE and CNN classifier. The rationale behind this joint training strategy
is to extract useful information from the underlying distribution of the input data
through the Conv-AE, meanwhile enhancing the discrimination ability of the ar-
chitecture using the classifier. As shown in Fig. 3.4, the encoder part of Conv-AE
and the convolutional part of the CNN classifier, which have the same structure,
need to share the same weights. As a consequence, in every weights update, the

3.2. The Proposed Framework 23

latent representation matrix A obtained by the encoder function is equivalent to
the output of the last pooling layer in the classifier. The unsupervised and super-
vised components of our proposed network are jointly learned by minimizing the
following total loss function, which is a linear combination of Egs. (3.8) and (3.9):

lsemi—ae—i—cls _ alC’onv—AE + Bllabeled—classifier (310)

where o and S are the model hyperparameters that make a balance between the
relative importance of the two losses in Eqs. (3.8) and (3.9). The appropriate
schedule for varying values of av and £ over training epochs is an integral part of
our model learning. Details for tuning these two hyperparameters are elaborated in
the next section. Note that we use Adam optimizer as the optimization technique
[17], Glorot uniform initializer for initializing the layers weights [10], and a dropout
regularization with the dropout ratio 0.5 before the softmax layer to overcome
the overfitting problem [31].

3.2.4 Parameter Tuning and Scheduling

Generally, two high-level tactics are applicable for scheduling o and 3 over training
epochs: (1) Placing the initial focus on the unsupervised task and gradually shift
the focus towards the supervised model. In other words, keep the value of « large
and S small over the first epochs, and then slightly decrease v and increase [for
the following epochs. The key motivation behind this strategy is to first learn the
high-level features of GPS trajectories and next refine the learned features to be
more discriminating for the classification task [40]; (2) The second schedule is the
other way around by first assigning more weights to the supervised task and then
increasing the effect of unsupervised learning. This scheme is expected to help
the optimization process in two aspects: (a) to control the influence of unlabeled
samples on the classification performance as the ultimate goal of the model, and
(b) to avoid getting stuck in poor local minima [12].

Our proposed training procedure for scheduling o and S over training epochs
consists of two steps:

+ Setting @ = 1 and B8 = 1: At the first step, both the Conv-AE and
CNN classifier are simultaneously trained while they have the same weights.

24

Chapter 3. Proposed Framework for Travel Mode Detection

Xl; Yl Xcomb

v

CNN conv. layers > Encoder

\/

Latent representation h

/\

Softmax Decoder

A 4

shared weights

A

\ 4 \ 4
flabeled—Classifier €Conv—AE

\/

fsemi—ae+cls

Figure 3.4: Flow for jointly training the supervised and unsupervised components of the
proposed SECA model, depicted in Fig. 3.3

Training continues through several epochs until the validation score drops
down. Training in this step is stopped after two epochs with no further
improvement. Indeed, the main goal in the first step is to obtain the best
possible performance without making any trade-off between reconstruction
and cross-entropy errors. The weights with the best validation score are
restored for the next step.

Setting a € [1,1.5] and B = 0.1: No further improvement is achieved
by the previous setting, which mainly stems from the overfitting problem
and/or getting stuck in local minima. Dramatically reducing the effect of
the supervised component can act like a sharp perturbation and take the
optimization out of local minima. The unsupervised weight can be kept fixed
or marginally increased. In our application, increasing o up to 1.5 yields
nearly the same performance. Continuing training with the new setting gives

3.2. The Proposed Framework 25

another chance to the optimization so as to move towards better local minima.
The same as the first step, the training is stopped when the validation score is
not improved after two consecutive epochs. The optimal weights are restored
for classifying the test set.

In addition to implementing two steps for training, our proposed schedule for
varying balancing parameters differs from similar joint training strategies in the
following three main aspects.

+ Neither fixed values nor annealing strategies are used over training epochs.
In the annealing strategy, the value of a (or) gradually decreases during the
training to transit the focus towards the supervised (or unsupervised) task in
the last training iterations [40].

« Unlike other studies [30, 40], the effect of supervised task, rather than unsu-
pervised component, is significantly reduced in the last training iterations.

« Unlike other semi-supervised systems with joint training schemes [27, 30, 40],
balancing parameters are considered for both unsupervised and supervised
components.

Chapter 4

Experimental Results

In this chapter, we will evaluate the performance of our two-step trip segmentation
and SECA model on large-scale GPS trajectory data. First the dataset along with
the data cleaning and preparation steps are discussed. Then, various supervised
and semi-supervised baseline models that are used for performance comparison
are described. The prediction performance of our model is evaluated using widely-
used classification metrics. The proposed training strategy and the overall model
architecture are also evaluated against several alternative approaches.

4.1 Experimental Setup

4.1.1 Dataset Description and Data Pre-processing

The proposed model is examined and validated on the GPS trajectories collected by
182 users in the GeoLife project. The raw dataset contains 17,621 trajectories with
a total distance of 1,292,951 kilometers and a total duration of 50,176 hours [43].
To the best of our knowledge, this is the only public dataset with GPS trajectories
that have also been annotated with transportation modes. 69 users have labeled
their trajectories with transportation modes while the remaining users left their
trajectories unlabeled. It is worth noting that not all trajectories of those 69 users
were annotated, and the trajectories for which the annotation was missing were
considered to be unlabeled data. Although many kinds of transport modes have
been labeled by the users, only transport modes that constitute significant portion
of the dataset are considered for our analysis. Our transportation mode list is Y =
{walk, bike, bus, driving, train}. The time-interval threshold for dividing a user’s
GPS trajectory T into trips and the maximum number of GPS points in a SE
(i.e., M) are set to 20 minutes and 248, respectively.

26

4.1. Experimental Setup 27

Furthermore, we identify and remove erroneous GPS points that have been gener-
ated due to errors in sources such as satellite or receiver clocks. Every GPS SE is
filtered by the following data processing steps:

+ A GPS point with the timestamp greater than its next GPS point is identified
and discarded.

« For labeled trajectories, a GPS point whose speed and /or acceleration do not
fall within a certain and realistic range of its transportation mode, provided
in Table 4.1, is identified and discarded.

+ For unlabeled trajectories, due to lack of knowledge on transport modes, any
GPS point of a segment that its speed and/or acceleration fall 1.5 times (or
more) the interquartile range either above the third quartile or below the first
quartile is identified and discarded.

« After removing the unrealistic GPS points, a segment with (1) the number
of GPS points, (2) the total distance, or (3) total duration less than specified
thresholds are identified and discarded. In this study, these thresholds are
set to 20, 150 meters and 1 minute, respectively.

The maximum allowable speed and acceleration pertaining to each mode are pro-
vided in Table 4.1, which have been defined using several reliable online sources and
the engineering justification (e.g., existing speed limits, current vehicle/human’s
power).

Using the above-mentioned settings and the true change points, the distribution

of the 4-channel labeled SE among various modes and the number of 4-channel
unlabeled SE' are listed in Table 4.1.

4.1.2 Baseline Methods
We compare the performance of the proposed model with two sets of baseline
methods: (1) supervised algorithms, and (2) semi-supervised algorithms.

With respect to the supervised group, widely used standard supervised algorithms
in the literature of transportation mode detection are deployed for comparison, in-

28 Chapter 4. Experimental Results

Table 4.1: Number of labeled GPS SFE for each transportation mode, number of unlabeled

GPS SE, as well as the maximum speed and acceleration associated with each transportation
mode. NA: Not Applicable.

Mode No. of SE Max. S(m/s) Max. A(m/s?)
Walk 6640 7 3
Bike 3808 12 3
Bus 6051 34 2
Driving 4323 50 10
Train 3287 34 3
Total Labeled 24109 NA NA
Unlabeled 72506 NA NA

cluding K-Nearest Neighbors (KNN), RBF-based Support Vector Machine (SVM),
Decision Tree (DT), and Multilayer Perceptron (MLP). The hand-crafted features
introduced in [41, 42] are passed into these supervised algorithms, as the most
acceptable manual GPS trajectories’” attributes available in the literature. These
features include the GPS segment’s total distance, mean speed, expectation of
speed, variance of speed, top three speeds, top three accelerations, heading change
rate, stop rate, and speed change rate. After calculating motion features of ev-
ery p € SE using Eqs. (1)-(5), these manual-designed features can be simply
computed for a GPS SE using the definitions provided in [41, 42].

In addition, two supervised deep-learning models are also used as baselines: (1)
CNN classifier with the same settings as in the proposed model, (2) Recurrent
Neural Networks (RNN) with the long short-term memory (LSTM) module. The
number of repeating modules is equal to the length of the 4-channel tensor (i.e., M)
while the current input for each module is a feature vector corresponding to every
GPS point p, where the feature vector contains RD,, S,, A, and J,. According
to the hyperparameter tuning analysis, the combination of one LSTM layer with
50 units in each LSTM module yields the best RNN performance. RNN is an
important baseline since it has widely been used for modeling trajectory data in
recent years [35, 39].

With regards to the semi-supervised group, two distinct baselines are used: Semi-
Two-Steps and Semi-Pseudo-Label, which are categorized as two-step and joint

4.1. Experimental Setup 29

training techniques, respectively, as described in Chapter 2.

+ Semi-Two-Steps: First, the Conv-AE is trained on both labeled and un-
labeled trajectories. Then, the labeled data are transformed to the latent
representation using the encoder part. In the second step, the transformed
data are trained using a standard supervised algorithm, which is a logistic
regression (i.e., the softmax layer) in our case. The loss functions for the
Conv-AE and logistic regression are given in Eqs. (3.8) and (3.9), respec-
tively.

+ Semi-Pseudo-Label: Two CNN classifiers with the same structures and
shared layers are simultaneously trained in a supervised fashion, one on la-
beled and the other on unlabeled data. Pseudo label, Y,;, is the predicted
probability distribution over labels for an unlabeled sample X,;, using the up-
dated weights from the previous training iteration. The overall loss function
for this strategy is defined as follows:

lsemi—pseudo _ alpseudo—classifier + Bllabeled—classiﬁer

K (4.1)
[pseudo—classifier _ _ Z Yul,i 10g(Put i) |
i=1

where y,;; € Y, and py; € Py are the predicted probability for the class i
based on the updated weights in the previous and current training iteration,
respectively. Analogous to our SECA model, a and 8 are the balancing
parameters. Further details about this approach is available in [19].

4.1.3 Performance Evaluation

The performance of our proposed trip segmentation is measured using precision
and recall metrics, which are defined as below in the context of change point
detection:

Precision = % and Recall =

TP
|CP

30 Chapter 4. Experimental Results

where \61\3| and |C'P| are the number of predicted and true change points related
toa GPS SE. TP is the number of true positives. A true change point is consid-
ered as a true positive if a predicted change point is found within a certain margin
from the true change point. We set the margin to 20 GPS points, which is the
same as the minimum of number allowed GPS points in a SE.

The performance of our proposed model is measured using two common classifica-
tion metrics:

« Accuracy - it is computed as the fraction of SEs in the test set that are
correctly classified.

« Weighted F-measure - F-measure for every transportation mode is defined
as the harmonic average of its precision and recall in the test set, as shown
below:

2x Precision x Recall
Precision+Recall

F — measure =

Weighted F-measure is the weighted average of F-measure for each mode, in
which the corresponding weight for each mode is the proportion of SE from
that mode in the test set. For each transportation mode y, precision shows
the fraction of the true S E's with the label y among all S E's that are classified
as y, while recall implies the ability of the model to correctly identify SFE's
with the true label y.

In all our experiments, models are trained and tested using stratified 5-fold cross-
validation and average values (along with the standard deviations) of the results
on all 5-folds are reported. Note that the stratified 5-fold cross-validation is only
applied to labeled data. However, unless stated, the entire unlabeled data are
used for training in semi-supervised models. Using stratified sampling, 10% of
the labeled training data in each fold is selected as the validation set for the
early-stopping procedure used within the deep learning-based models. All the
described data processing and models are implemented within Python program-
ming environment using ruptures for the trip segmentation, TensorFlow for
deep learning models, and scikit-learn for classical supervised algorithms. All

4.2. Performance Comparison Results 31

Table 4.2: Comparison of accuracy values for different supervised and semi-supervised models
with varying amounts of labeled data. All unlabeled data are used for training.

Proportion of labeled SFE in the training data
Model 10% 25% 50% 75% 100%

Supervised-KNN 0.469 (+£0.015) 0.508 (£0.012) 0.549 (+0.014) 0.567 (£0.015) 0.579 (0.015)
Supervised-SVM 0417 (£0.006) 0.460 (£0.005) 0.470 (+0.006) 0.517 (£0.009) 0.532 (40.010)
Supervised-DT 0.661 (+0.014) 0.672 (£0.013) 0.678 (£0.017) 0.689 (£0.012) 0.694 (+0.014)
Supervised-MLP 0.274 (£0.093) 0.309 (£0.107) 0.331 (£0.036) 0.347 (£0.069) 0.354 (40.084)
Supervised-CNN 0568 (£0.044) 0.617 (£0.042) 0.687 (+£0.021) 0.719 (£0.019) 0.741 (40.024)
Supervised-RNN 0425 (£0.032) 0.428(+£0.028) 0.431 (+£0.027) 0.458 (£0.027) 0.461 (40.039)
Semi-Two-Steps 0.544 (£0.019) 0.562 (£0.035) 0.588 (+£0.016) 0.600 (£0.012) 0.605 (&0.015)
Semi-Pseudo-Label ~ 0.580 (+£0.020) 0.663 (£0.023) 0.707 (+£0.021) 0.733 (£0.021) 0.754 (0.018)
SECA (ours) 0.629 (+£0.010) 0.693 (£0.019) 0.732 (+0.017) 0.750 (+£0.016) 0.768 (+0.016)

experiments are run on a computer with a single GPU. The source codes related
to all data processing and models utilized in this study are available at https:
//github.com/sinadabiri/Deep-Semi-Supervised-GPS-Transport-Mode

4.2 Performance Comparison Results

First, the performance of our SECA model is assessed without taking the segmen-
tation process into account. In other words, the labeled GPS SFE's are created
based on the true change points rather than the predicted ones. Next, our pro-
posed trip segmentation is evaluated. Finally, the impact of the segmentation
process on the overall performance is evaluated.

4.2.1 SECA Evaluation

Tables 4.2 and 4.3 provide the performance results of our SECA model and baseline
methods in terms of accuracy and weighted F-measure, respectively. Every model
is trained using various amounts of labeled data so as to investigate the effectiveness
of the models when different amounts of labeled data is used.

Table 4.2 clearly shows the superiority of our SECA model and its training strategy
in comparison with other baselines. Except for 10% labeled data that DT works
better, our semi-supervised model consistently outperforms other methods for all

https://github.com/sinadabiri/Deep-Semi-Supervised-GPS-Transport-Mode
https://github.com/sinadabiri/Deep-Semi-Supervised-GPS-Transport-Mode

32 Chapter 4. Experimental Results

Table 4.3: Comparison of weighted F-measure values for various supervised and semi-
supervised models with varying amounts of labeled data. All unlabeled data are used for
training.

Proportion of labeled SFE in the training data
Model 10% 25% 50% 75% 100%

Supervised-KNN 0440 (£0.017) 0.488 (£0.017) 0.531 (+£0.017) 0.551 (£0.017) 0.564 (40.017)
Supervised-SVM 0.337 (£0.003) 0.385 (£0.008) 0.429 (+0.013) 0.455 (£0.017) 0.476 (40.018)
Supervised-DT 0.662 (+£0.014) 0.672 (£0.014) 0.678 (£0.017) 0.689 (£0.012) 0.695 (40.014)
Supervised-MLP 0.194 (+£0.090) 0.227 (£0.129) 0.269 (+0.043) 0.252 (£0.064) 0.266 (0.094)
Supervised-CNN 0.533 (£0.063) 0.560 (£0.044) 0.678 (+£0.022) 0.710 (£0.020) 0.734 (+0.026)
Supervised-RNN 0.318 (£0.044) 0.325 (£0.039) 0.336 (+0.032) 0.358 (£0.034) 0.369 (40.032)
Semi-Two-Steps 0.512 (£0.026) 0.541 (£0.038) 0.574 (+£0.016) 0.584 (£0.014) 0.589 (40.019)
Semi-Pseudo-Label ~ 0.582 (+£0.020) 0.654 (£0.025) 0.701 (+£0.022) 0.728 (£0.021) 0.749 (+0.019)
SECA (ours) 0.615 (£0.011) 0.683 (£0.019) 0.725 (+0.017) 0.745 (£0.017) 0.764 (+0.017)

percentages of labeled data. With respect to supervised algorithms, it is apparent
that only CNN and DT are competitive as the test accuracy for other traditional
learning methods are considerably low. What is interesting about the result is the
low-quality of MLP and RNN, which also indicates that employing deep learning
architectures does not always result in a better performance compared to shal-
low structures. Comparison between CNN and RNN clearly shows that capturing
the local correlation between adjacent GPS points by the convolution operation
generates more efficient features in comparison with the attempt to learn the long-
term dependency between all GPS points. In comparison between supervised and
semi-supervised algorithms, the results indicate that semi-supervised techniques
perform better than their supervised counterparts. Indeed, modeling the distri-
bution of input data through unsupervised learning techniques with the help of
unlabeled data can potentially ameliorate the generalization ability of the super-
vised task. Focusing on only semi-supervised algorithms, it is obvious that the
prediction quality of joint training strategies (i.e., SECA and Semi-Pseudo-Label)
are significantly higher than the Semi-Two-Steps. Such evidence confirms that,
with aid of efficient initialization techniques, simultaneously training the recon-
struction and classification abilities of a semi-supervised model yields a better
performance compared to disjoint training strategies. For an overall comparison,
our SECA model achieves on average 6.2% higher accuracy compared to other
methods over different amounts labeled data, excluding the supervised algorithms

4.2. Performance Comparison Results 33

(i.e., KNN, SVM, MLP, and RNN), which have not obtained competitive results
in our problem.

Achieving high accuracy is only a positive starting point for having a reliable
classifier. An effective and unambiguous way for evaluating the performance of a
classifier is to use other measures such as precision, recall, and F-measure. As can
be seen in Table 4.3, weighted F-measure for our SECA model is also superior to
all other algorithms. This evidently confirms our findings and reasoning based on
results in Table 4.2.

4.2.2 Trip Segmentation Evaluation

Figure 4.1 shows the performance of our two-step trip segmentation process in
terms of precision and recall for different values of the penalty level v. The results
clearly indicate the effectiveness of our proposed approach by achieving the very
high values of 0.99 and 0.93 for precision and recall, respectively. As expected,
absence of the penalty function in Eq. 3.6 causes overfitting since it allows the
search algorithm choosing more and more change points in order to decrease the
first component in the right side of Eq. 3.6. Predicting a high number of false
change points results in a low precision value. This issue can be controlled by
increasing the value of v in order to constrain the number of predicted change
points. Interestingly, while the precision value is dramatically improving (i.e.,
almost closing to 1) by raising the 7 value, the recall value is dropping down very
slightly. The rationale behind such a behavior is that the number of true change
points in each GPS SFE is very low after implementing the first step of the trip
segmentation process. Our analysis indicates that more than 99% of the GPS SE
contains less than 2 change points after the first step segmentation, which also
implies the importance of the first step. Therefore, using larger values of v forces
the search algorithm to predict a few yet correct number of change points, which
in turn results in high value of both precision and recall.

4.2.3 Overall Performance Evaluation

Table 4.4 shows the accuracy and F-measure results of our SECA model for three
trip segmentation scenarios: (1) Trips are segmented based on the true change

34 Chapter 4. Experimental Results

M Precision M Recall
1.00

0.80 -
0.60 -
0.40
0.20
0.00 -
0 4 8 14 16 20

Penalty Level y

Figure 4.1: Precision and recall values for the proposed trip segmentation process with
different values of the penalty level ~.

points. In other words, we assume the change points are already known, which
leads to have the same result as in Tables 4.2 and 4.3, (2) Trips are uniformly
partitioned into segments with the minimum number of GPS points, which is
20 in our setting. This scenario guarantees that all GPS SFEs have only one
transportation as S Es contains only the minimum allowed GPS points, (3) Trips
are partitioned based on our proposed two-step trip segmentation process, which
represents our whole mode detection framework (i.e., the SECA model followed
by the results of the two-step trip segmentation). As can be seen from Table 4.4,
the overall performance of our proposed framework is degraded by only 4% (on-
average) compared to when the true change points are known. This implicitly
indicates the acceptable performance of our trip segmentation. However, naively
partitioning trips into uniform-size segments with the minimum number of GPS
points (i.e., the second scenario) leads to lose many GPS information in a segment
and in turn making mode detection more difficult for the SECA model. The
performance metrics for the second scenario decreases by on average 10% compared
to the first scenario, which is 6% less than the overall performance of our proposed
framework.

4.3. Analysis and Discussion 35

Table 4.4: Comparison of accuracy (Acc.) and F-measure (F1) for our SECA model while
different trip segmentation scenarios are applied.

Proportion of labeled SE in the training data

10% 25% 50% 75% 100%
Trip Segmentation Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
True Change Points 0.629 0.615 0.693 0.683 0.732 0.725 0.750 0.745 0.768 0.764
Uniform Size 0.536 0.514 0.584 0.572 0.630 0.623 0.646 0.637 0.671 0.664

Two-step Segmentation (ours) 0.600 0.589 0.650 0.641 0.680 0.673 0.704 0.700 0.721 0.717

4.3 Analysis and Discussion

In this section, we assess the quality of our proposed framework in several other as-
pects including the hyperparameter schedule, the data structure for GPS S E's, the
SECA architecture, and the prediction capability for every transportation mode.

4.3.1 Balancing Parameters Schedule

We will now discuss the proposed schedule for tuning the balancing parameters
«a and (. Table 4.5 presents the test accuracy of the SECA model, according to
several schedules for tuning hyperparameters in the loss function. In the schedule
#1, the hyperparameter a gradually decreases from 1 to the minimum value 0.1
while the hyperparameter § is fixed to 1 during training. In fact, this schedule
gradually shifts the focus solely on the supervised component over the training
iterations. Schedule #2 is analogous to the schedule #1, yet with keeping the
focus on the unsupervised task. Schedule #3 maintains the balancing parameters
equal to 1 during the entire training process. Note that the schedules #1, #2, and
#3 have only one stage and the training is stopped when no further improvement
is achieved after two consecutive epochs. Schedules #4 and #5 have two stages.
In the first stage, only one component (i.e., either supervised or unsupervised
component) is trained until the early stopping criterion terminates the training
process. Then, in the second stage, the training continues by reversing the focus
to the part that has not been trained in the first stage. Training at this stage
is stopped until no further improvement is achieved after two consecutive epochs.
From Table 4.5, it can be seen that our proposed schedule for tuning balancing

36 Chapter 4. Experimental Results

parameters improves the model performance more than other alternatives. The
results reveal that deploying an effective tuning schedule can simply increase the
model accuracy. It is worth noting that the schedules #1-#5 are the best examples
with the highest accuracy among many other possible schedules.

Furthermore, the performance measures of Semi-Pseudo Label in Tables 4.2 and
4.3 supports the effectiveness of our proposed hyperparameter schedule. Note
that Semi-Pseudo-Label is the most competitive technique to our approach and
is jointly trained by varying its balancing parameters according to our proposed
schedule.

Table 4.5: Comparison of accuracy values for different hyperparameter schedules along with

different sizes of labeled data. 1 — 0.1: Gradually decreasing from 1 to 0.1 over training
iterations.

Schedule for a and 3 Proportion of labeled data in the training set

stage 1 stage 2 10% 25% 50% 75% 100%

1 g i — 01 NA 0.603 (+0.018) 0.675 (£0.015) 0.709 (+0.008) 0.712 (£0.020) 0.747 (£0.022)
2 ,(/; 11_> 01 NA 0.618 (+0.017) 0.670 (+0.024) 0.715 (+0.015) 0.721 (£0.017) 0.741 (£0.012)
3 g;ll NA 0.625 (+0.018) 0.667 (+0.016) 0.716 (+0.015) 0.734 (£0.019) 0.745 (+0.022)
4 g::(]l Z::ll 0.551 (+0.021) 0.564 (+0.214) 0.703 (+0.028) 0.715 (£0.023) 0.739 (£0.024)
5 210 2511 0.590 (+0.023) 0.671 (£0.022) 0.711 (+£0.025) 0.732 (£0.023) 0.755 (+0.022)
6 (ours) g;ll gz:ol.l 0.629 (4+0.010) 0.693 (£0.019) 0.732 (4+0.017) 0.750 (+0.016) 0.768 (+0.016)

4.3.2 Feature Analysis for GPS SFE Representation

The quality of our proposed layout for representing motion features of a S E, shown
in Fig. 3.2, is rigorously evaluated by tracking the effectiveness of various motion-
feature combinations. Table 4.6 summarizes the performance comparisons when
the input tensor is created using a single or a combination of features, as described
in Section 3.1.2. The number of motion features determines the number of channels
in the tensor. For example, an input tensor with only S information contains one
channel rather than four. First, each feature type is independently examined in
order to detect the most salient feature types, which in turn helps in constructing
better feature combinations. As observed in Table 4.6, speed (.5), relative distance

4.3. Analysis and Discussion 37

(RD), and acceleration (A) are the most effective features when used in a stand-
alone setting. The information obtained from tensors with single features leads to
examine more reliable feature combinations. The combinations of the first two,
the first three, and the first four important features (i.e., RD + S, RD + S + A,
RD + At + S + A, respectively) are the most reasonable initial selections. A 6-
channel tensor with all feature types is another selection in Table 4.6. Nonetheless,
our configuration, that fuses relative distance, speed, acceleration, and jerk, attains
the best performance compared to other potential good configurations. We also
replace the jerk with bearing rate (i.e., RD + S + A+ BR) so as to integrate
the heading direction with kinematic information, but no further improvement is
achieved. It is worth noting that Table 4.6 encapsulates the information for a few
yet potential combinations that have attained the highest accuracy.

Table 4.6: Comparison of accuracy and weighted F-measure for various feature combinations.

Single Feature Accuracy F-measure ‘ Feature Combination Accuracy F-measure
RD 0.529 (£0.119) 0.492 (£0.119) | RD+ S 0.702 (£0.022) 0.691 (£0.023)
At 0.375 (£0.054) 0.352 (£0.087) | RD+ S+ A 0.763 (£0.016) 0.758 (£0.016)
S 0.702 (£0.021) 0.691 (£0.022) | RD+ At+S+ A 0.755 (£0.018) 0.750 (£0.022)
A 0.481 (£0.169) 0.415 (£0.022) | RD+ At+S+ A+ J+ BR 0.752 (£0.026) 0.748 (£0.026)
J 0.275 (£0.000) 0.119 (+£0.000) | RD+ S+ A+ BR 0.752 (£0.018) 0.741 (£0.018)
BR 0.295 (£0.019) 0.178 (£0.056) | RD+ S+ A+ J 0.768 (£0.016) 0.764 (+0.017)

4.3.3 Analysis of Model Architecture

The depth of neural networks is a key hyperparameter in deep architectures. Thus,
the structure of our SECA model is evaluated in terms of depth by steadily in-
creasing its depth through adding convolutional layers. Analogous to the SECA
structure, depicted in Fig. 3.3, the number of filters starts with 32 for the first two
convolutional layers and increases by a factor of 2 after adding every two convolu-
tional layers. Every two convolutional layers are followed by a max-pooling layer.
Other parameters (e.g., filter size) are fixed throughout the network. Table 4.7
shows the average accuracy values in 5-fold cross-validation for our SECA model
with 2, 4, 6, and 8 convolutional layers by varying amounts of labeled SE. The
last column is the average over all amounts of labeled data. It can be seen that
increasing the number of layers up to the 4 layers enhances the model accuracy
by around 1%, whereas adding additional layers does not result in a substantial

38 Chapter 4. Experimental Results

improvement. Accordingly, we stop at a model with 4 convolutional layers (i.e.,
our proposed SECA model) so as to reduce the computation time.

Table 4.7: Evaluation of the model configuration of the proposed SECA method by varying
the number of convolutional layers across different amounts of labeled SE in the training
data.

No. ‘ % labeled SE in the training data
Layers | 10% 25% 50% 75% 100% Average

2 0.621 0.680 0.723 0.741 0.751 0.703
0.629 0.693 0.732 0.750 0.768 0.714
0.629 0.693 0.732 0.750 0.759 0.712
0.629 0.698 0.725 0.743 0.762 0.711

Q0 O W~

4.3.4 Prediction Capability Per Transport Mode

As our last round of evaluation, we delve into the confusion matrix to analyze the
high-level prediction ability of our SECA model for every transportation mode. Ta-
ble 4.8 illustrates the confusion matrix, as well as precision and recall pertaining
to each transportation mode for a test set. As expected, there is a high correlation
between prediction quality and the number of available S E for a mode in the train-
ing set. As shown in Table 4.1, the walk and driving modes constitute the largest
and smallest portions of the GPS S Es, which in turn results in the best and worst
prediction performance for walk and driving modes, respectively. Nonetheless, the
discriminating moving pattern of walk compared to others is another principal
reason in achieving a perfect recall value for the walk mode. In addition to the
lack of labeled driving S E's, the poor performance of the model in estimating the
driving mode stems from several other factors including the possibility for driving
in alternative routes with different speed limits, the presence of various types of
drivers’ behavior, and the flexibility of drivers in maneuvering. On the other hand,
bus and train are the transit modes that must adhere to pre-defined routes and
schedule, which leads to more predictable mobility behavior. Another interesting
yet reasonable finding is that a large portion of false negative S Es for the driving
mode is bus since bus is the most identical mode to car and taxi. Analogously, a
majority of bike SE's has been falsely classified as walk as the moving pattern of

4.3. Analysis and Discussion 39

bike is closer to walk compared to other modes. Such misclassifications calls for
more labeled training SE so as to improve the discrimination ability of our SECA
model.

Table 4.8: Confusion matrix for our SECA model. Prec. and Rec. correspond to Precision
and Recall, respectively.

Predicted Modes
‘Walk Bike Bus Drive Train ‘ Rec.‘

Walk | 1269 43 16 0 0 0.96
Bike 110 ST 66 6 3 0.75
Bus 173 41 927 49 20 0.76

Drive 95 27 159 233 ol 0.61
Train 57 13 60 o8 469 0.71

| Prec. | 0.74 0.82 075 082 0.86 |

True Modes

Chapter 5

Conclusion

In this research, a two-step trip segmentation and semi-supervised convolutional
autoencoder (SECA) model were proposed for identifying transportation modes
from GPS trajectory data, in which modes are categorized into walk, bike, bus,
driving, and train. Since travelers might commute with more than one trans-
portation mode for making a single trip, the GPS trajectory of a trip was first
partitioned into segments using the proposed two-step trip segmentation process
so that every GPS segment carries only one transportation mode. However, the
GPS segment contains only a series of chronologically coordinate points without
any explicit features and meaningful information. Furthermore, the structure of
the raw GPS segment is not adaptable for deep learning algorithms. Accordingly,
a novel representation for GPS segments was designed to not only be adaptable
with the deep learning algorithms but represents fundamental motion character-
istics of a moving object. Afterward, this novel representation was passed into
the proposed SECA architecture for travel mode detection. The SECA model
consists of supervised and unsupervised components for harnessing both labeled
and unlabeled GPS segments, respectively. Both components are simultaneously
trained by minimizing a cost function that is a linear combination of unsupervised
and supervised losses. An optimal schedule was also deployed for varying the bal-
ancing parameters between classification and reconstruction losses. The extensive
experiments demonstrated the superiority of the proposed trip segmentation pro-
cess, the SECA model, the hyperparameter schedule, the representation for GPS
trajectories, and the configuration of the model architecture compared to several
baselines and alternatives.

In summary, this thesis makes the following contribution in the literature of the
travel mode detection:

« A nowvel two-step segmentation process was developed to identify the

40

41

place(s) where a user changes their transportation mode. First, the GPS
trajectory of a trip was uniformly partitioned into the GPS segments with
a fixed size, which also satisfied the inherent need of CNN-based models for
having a fixed-size input. Second, for the first time in this domain, a discrete
optimization algorithm was deployed to detect the points where the trans-
portation mode changes. The output of this step was a pool of GPS segments
with only one transportation mode.

« An efficient representation for raw GPS segments was designed. A new
procedure was developed for converting the raw GPS segment, obtained from
the two-step segmentation, to an efficient and appropriate representation for
using in deep learning architectures. The proposed representation contained
the information of all GPS points in the GPS Segment and allowed the very
deep architecture and training algorithm to extract discriminating and high-
level features for the task at-hand.

« For the first time, a novel deep semi-supervised convolutional autoen-
coder (SECA) architecture was developed. The SECA model was capa-
ble of leveraging both unlabeled and labeled GPS trajectories for predicting
transportation modes. The model contained Conv-AE and CNN classifier for
unsupervised and supervised learning, respectively.

o An effective schedule for tuning balancing parameters was built. Since
the main objective was to simultaneously training the unsupervised and su-
pervised components of the SECA model, a novel and efficient schedule was
proposed for varying the balancing parameters that combined reconstruction
and classification losses.

« An extensive set of experiments for performance evaluation and compar-
ison were conducted. The results revealed that the proposed SECA model
outperformed several supervised and semi-supervised state-of-the-art baseline
methods for various amounts of labeled GPS segments.

Future research should be undertaken to design an end-to-end deep-learning frame-
work for travel mode identification. In this study, the proposed GPS representa-
tion has been built upon motion features such as speed and acceleration of all

42 Chapter 5. Conclusion

GPS points. To accomplish an end-to-end deep-learning architecture, an embed-
ding layer can be designed to directly transform GPS points of a GPS trajectory
into dense feature vectors. Simultaneously, useful properties of the underlying road
network can be also learned using unsupervised graph embedding approaches. Fur-
thermore, the proposed framework in this research is building the trip segmentation
process and the SECA model as two separate tasks. As a future research direc-
tion and along with the goal of developing an end-to-end framework, the two-step
trip segmentation can be implemented as an initial layer of the semi-supervised
deep-learning model. The two tasks are then jointly trained under a unified deep-
learning model.

References

1]

2]

3]

4]

Omar Bagdadi and Andras Varhelyi. Development of a method for detecting
jerks in safety critical events. Accident Analysis € Prevention, 50:83-91,
2013.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in neural information
processing systems, pages 153-160, 2007.

Sina Dabiri and Kevin Heaslip. Inferring transportation modes from gps tra-
jectories using a convolutional neural network. Transportation research part

C: emerging technologies, 86:360-371, 2018.

Sina Dabiri and Kevin Heaslip. Transport-domain applications of widely
used data sources in the smart transportation: A survey. arXiw preprint
arXiw:1803.10902, 2018.

Sina Dabiri and Kevin Heaslip. Developing a twitter-based traffic event de-
tection model using deep learning architectures. Expert Systems with Appli-
cations, 118:425-439, 2019.

Naveen Eluru, Vincent Chakour, and Ahmed M El-Geneidy. Travel mode
choice and transit route choice behavior in montreal: insights from mcgill
university members commute patterns. Public Transport, 4(2):129-149, 2012.

Yuki Endo, Toda Hiroyuki, Nishida Kyosuke, and Kawanobe Akihisa. Deep
feature extraction from trajectories for transportation mode estimation. In
In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 54-66, 2016.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,

Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research, 11(Feb):625-660,
2010.

43

44 REFERENCES

[9] Shih-Hau Fang, Yu-Xaing Fei, Zhezhuang Xu, and Yu Tsao. Learning trans-
portation modes from smartphone sensors based on deep neural network.
IEEE Sensors Journal, 17(18):6111-6118, 2017.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth interna-

tional conference on artificial intelligence and statistics, pages 249-256,
2010.

[11] 1. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press Cam-
bridge, 2016.

[12] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy

minimization. In Advances in neural information processing systems, pages
529-536, 2005.

[13] Wenhao Huang, Guojie Song, Haikun Hong, and Kunqing Xie. Deep architec-
ture for traffic flow prediction: deep belief networks with multitask learning.
IEEE Trans. Intelligent Transportation Systems, 15(5):2191-2201, 2014.

[14] X. TU, Y. ZHU, and X. ZHANG. Deepsense: a novel learning mechanism for
traffic prediction with taxi gps traces. Global Communications Conference

(GLOBECOM).

[15] Rie Johnson and Tong Zhang. Supervised and semi-supervised text catego-
rization using Istm for region embeddings. In Proceedings of the 33rd In-
ternational Conference on International Conference on Machine Learn-
ing - Volume 48, ICML’16, pages 526-534. JMLR.org, 2016. URL http:
//dl.acm.org/citation.cfm?id=3045390.3045447.

[16] Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of
changepoints with a linear computational cost. Journal of the American
Statistical Association, 107(500):1590-1598, 2012.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

http://dl.acm.org/citation.cfm?id=3045390.3045447
http://dl.acm.org/citation.cfm?id=3045390.3045447

REFERENCES 45

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max
Welling. Semi-supervised learning with deep generative models. In Advances
in Neural Information Processing Systems, pages 3581-3589, 2014.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learn-
ing method for deep neural networks. In Workshop on Challenges in Rep-
resentation Learning, ICML, volume 3, page 2, 2013.

Guanyao Li, Chun-Jie Chen, Sheng-Yun Huang, Ai-Jou Chou, Xiaochuan
Gou, Wen-Chih Peng, and Chih-Wei Yi. Public transportation mode detection
from cellular data. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 2499-2502. ACM, 2017.

Miao Lin and Wen-Jing Hsu. Mining gps data for mobility patterns: a survey.
Pervasive and mobile computing, 12:1-16, 2014.

Siyuan Liu, Lionel M Ni, and Ramayya Krishnan. Fraud detection from taxis’
driving behaviors. IEEE Transactions on Vehicular Technology, 63(1):464—
472, 2014.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, Fei-Yue Wang, et al.
Traffic flow prediction with big data: A deep learning approach. IEEE Trans.
Intelligent Transportation Systems, 16(2):865-873, 2015.

George Mintsis, Socrates Basbas, Panos Papaioannou, Christos Taxiltaris,
and IN Tziavos. Applications of GPS technology in the land transportation
system. European journal of operational Research, 152(2):399-409, 2004.

Heikki Méenpaé, Lobov Andrei, and L. Martinez Lastra Jose. Travel mode

estimation for multi-modal journey planner. Transportation Research Part
C: Emerging Technologies, 82:273-289, 2017.

Nicholas G Polson and Vadim O Sokolov. Deep learning for short-term traffic
flow prediction. Transportation Research Part C: Emerging Technologies,
79:1-17, 2017.

Marc’Aurelio Ranzato and Martin Szummer. Semi-supervised learning of com-
pact document representations with deep networks. In Proceedings of the

46 REFERENCES

25th international conference on Machine learning, pages 792-799. ACM,
2008.

28] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. Semi-supervised learning with ladder networks. In Advances in Neural
Information Processing Systems, pages 35463554, 2015.

[29] Mohsen Rezaie, Zachary Patterson, Jia Yuan Yu, and Ali Yazdizadeh. Semi-
supervised travel mode detection from smartphone data. In Smart Cities
Conference (ISC2), 2017 International, pages 1-8. IEEE, 2017.

[30] Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and
Christopher D Manning. Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the conference on empiri-
cal methods in natural language processing, pages 151-161. Association for
Computational Linguistics, 2011.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929-1958,
2014.

[32] Charles Truong, Laurent Oudre, and Nicolas Vayatis. A review of change
point detection methods. arXiv preprint arXiv:1801.00718, 2018.

[33] Thaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations. Survey review, 23(176):88-93, 1975.

[34] Hao Wang, Liu GaoJun, Duan Jianyong, and Zhang Lei. Detecting trans-
portation modes using deep neural network. In IEFICE Transactions on
Information and Systems, pages 1132-1135, 2017.

[35] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. Modeling
trajectories with recurrent neural networks. IJCAI, 2017,

[36] Linlin Wu, Biao Yang, and Peng Jing. Travel mode detection based on
GPS raw data collected by smartphones: a systematic review of the exist-
ing methodologies. Information, 7(4):67, 2016.

REFERENCES 47

[37]

[38]

[39]

[40]

[43]

Yuankai Wu and Huachun Tan. Short-term traffic flow forecasting with
spatial-temporal correlation in a hybrid deep learning framework. arXiv
preprint arXiw:1612.01022, 2016.

Zhibin Xiao, Yang Wang, Kun Fu, and Fan Wu. Identitying different trans-
portation modes from trajectory data using tree-based ensemble classifiers.
ISPRS International Journal of Geo-Information, 6(2):57, 2017.

Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. Trajectory
clustering via deep representation learning. In Neural Networks (IJCNN),
2017 International Joint Conference on, pages 3880-3887. IEEE, 2017.

Yizhe Zhang, Shen Dinghan, Wang Guoyin, Gan Zhe, Henao Ricardo, and
Cari Lawrence. Deconvolutional paragraph representation learning. In Ad-
vances in Neural Information Processing Systems, pages 4172-4182, 2017.

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Under-
standing mobility based on GPS data. In Proceedings of the 10th interna-
tional conference on Ubiquitous computing, pages 312-321. ACM, 2008.

Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation
mode from raw GPS data for geographic applications on the web. In Pro-
ceedings of the 17th international conference on World Wide Web, pages
247-256. ACM, 2008.

Yu Zheng, Fu Hao, Xie Xing, Ma Wei-Ying, and Li Quan-
nan. Geolife GPS trajectory dataset-user guide. 2011. URL
https://www.microsoft.com/en-us/research/publication/
geolife-gps-trajectory-dataset-user-guide.

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research components
	Deep learning
	GPS trajectories
	Travel mode detection

	Research motivation and general framework

	Related Work
	GPS-Based Mode Detection Models
	Semi-Supervised Deep Learning Approaches

	Proposed Framework for Travel Mode Detection
	Preliminaries
	Definitions and Problem Statements
	Motion Characteristics of GPS Points

	The Proposed Framework
	Two-Step Trip Segmentation
	New Representation for Raw GPS Segments
	Semi-Supervised Convolutional Autoencoder (SECA) Model
	Parameter Tuning and Scheduling

	Experimental Results
	Experimental Setup
	Dataset Description and Data Pre-processing
	Baseline Methods
	Performance Evaluation

	Performance Comparison Results
	SECA Evaluation
	Trip Segmentation Evaluation
	Overall Performance Evaluation

	Analysis and Discussion
	Balancing Parameters Schedule
	Feature Analysis for GPS SE Representation
	Analysis of Model Architecture
	Prediction Capability Per Transport Mode

	Conclusion
	References

