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1. Introduction 

The determination of the influence exerted on the analytic 

character of a real function f EC"" by the signs of its derivatives 

is a problem of long standing interest in classical analysis [5]. 

Most investigations of the problem have centered on extending the well 

known theorem of S. Bernstein (Widder [20]) which asserts that a 

function f e c"" with all derivatives non-negative on an interval I is 

necessarily real-analytic there; i.e., f is the restriction to I of 

a complex function analytic in a region containing I. 

The scope of this dissertation is the study of analogous posi-

tivity results essociated with linear differential operators of the 

form 

It 

(Ly) (t) = a2 (t)y (t) + a1 (t)y '· (t) + a0 (t) y(t), 

where a2 (t), a1 (t) and a0 (t) are real-analytic in some interval I and 

where az(t) > 0 forte I. co We shall call a function f e C L-positive 

at t 0 E I if it satisfies the "uniform" positivity condition Lkf(t)~O, 

t EI, k = O, 1, 2, ••• , plus the "pointwise" positivity condition 

(Lkf)' (t 0 )>0, k = O, 1, 2, . 

Our principal result is thnt L-positiv:f.ty of f implies analyticity of 
II 

f in a neighborhood of t 0 • If Ly= y , this reduces to Bernstein's 

theorem. 

1 
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We shall prove our result using a generalized Taylor Series 

Expansion known as the L-series. The L-series expansion about t = t 0 
0) 

for a function f e C is: 

(lo 

l 
k = 0 

0) 

The "L-basis" functions {~n(t)}n=O are defined by: 

' 1~0 = L~1 = O, ~o(t 0 ) • 1, ~o (t 0 ) = O, ~1(t 0 ) e O, 

(1.1) Va 2 ( t 0 ) h ' ( t 0 ) = 1 

' and L~n+Z = ~nt ~n+z(t 0 ) = ~n+z(t 0 ) = 0, n > O. 

Our technique will be to show that L-positivity off implies the con-

vergence of the above series to f(t). Then we observe that the 

analyticity of az, a1 , and a0 implies the analyticity of the ~'sand 

thus, in view of uniform convergence of the series, the analyticity 

of the sum, f(t). 

We shall also show that the same condition~ on a2 , a1 and a0 allow 

any function f, analytic in a neighborhood oft , to be represented by 
0 

0) 

an L-series. If a2 (t) = 1, the sequence {nl~ (t)} 0 provides a here-n n= 
tofore unobserved example of a Pincherle basis. 



2. A Brief Survey of the Literature 

The results we obtain have several analogs in a vast literature 

on the subject of positivity. To give an overview of one portion of 

the literature, we now present some typical results. 

The prototype of the results we mention is the theorem of S. 

Bernstein (Widder [ZO]). 

Theor!.:!!!_ (Bernstein): m (k) A function fEC (a,b) having f (x) con-

tinuous for xc[a,b) and k = O, 1, 2, ••. which satisfies the condi-

tion f(k)(x)~O for xc[a,b) and k = O, 1, 2, ••• , can be continued 

analytically into the complex disc lz-al<b-a. 

The concept in Bernstein's theorem has been extended basically 

in two directions. One extension has been to restrict the number of 

sign changes of the derivatives in an interval rather than requiring 

the derivatives all to be non-negative. The other mode of extension, 

which was taken in this dissertation, has been to require non-negativity 

only of certain derivatives or to require non-negativity of the func-

tions resulting from the repeated application of certain linear differ-

ential operators to a given function. 

An early result of the first type is due to G. Polya and N. 

Wiener [16]. Using a Four:ler series argument they were able to prove 

the following theorem. 

Theorem (Polya and Wiener): Let f(x) be a real valued periodic 

function of period 2n defined for all real values of x and possessing 

3 
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derivatives of all orders. Let Nk denote the number of changes of sign 

of f(k)(x) in a period and consider the order of magnitude of Nk as 

k-+co. 

(I) If Nk = 0(1), f(x) is a trigonometric polynomial. 

(II) If Nk = O(k 0) where o is fixed, O<o<~, f(x) is an entire 

function of finite order not exceeding (l-o)/(1-20). 

(III) ~ If Nk • o(k ), f(x) is an entire function. 

G. Szego [19] developed a new proof of this theorem and strengthened 

other results in the Polya and Wiener paper. Further generalizations 

of this result, including analogous results for certain second order 

differential operators have been developed by E. Hille [12]. 

Results of the second type fall roughly into two cases: (1) 

analyticity resulting from restrictions on the signs of a certain 

sequence of derivatives of a function, and (2) analyticity resulting 

from the non-negativity of functions obtained by the repeated appli-

cation of certain linear differential operators to a given function. 

Typical of Case 1 are the theorems of D. V. Widder [20] and 

R. P. Boas [4]. Widder's result is stated in terms of completely 

convex functions. 

Definition: A function f(x) is completely convex in an interval 

(a,b) if it has derivatives of all orders there (which are continuous 

on [a,b]) and if, in that interval, (-l)kf( 2k)(x)>O for k=O, 1, 2, • 

Theorem (Widder): If f(x) is completely convex in an interval 

(a,b), it may be extended analytically into the z-plane to an entire 

function f(z). 
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Boas proved the following theorem. 

Theorem (Boas): Let n1 , n2 , ••• be an increasing sequence of 

integers. Let feCw(-1,1) be such that, for all p, f(np)(x)>O for 

XE(-1,1). If the 

analytically into 

np+l ratio~ is bounded, then f may be extended 
np 

a complex neighborhood of (-1,1). 

The simplest illustration of this result is the case f( 2n)(x)>O, 

n • O, 1, 2, ••• , -l<x<l, with the conclusion that f continues 

analytically into a finite complex neighborhood of (-1,1). This 

differs rather dramatically from the case of alternating signs in 

Widder's theorem where f extends to an entire function. 

For Case 2, the main result is a theorem due to J. K. Shaw [17]. 

Shaw's theorem is stated in terms of L-E po::iitive functions. 

Definition: Let Ly= -(p(x)y '(x))' + q(x)y(x) where p and q 

are real-analytic on [a,b] and p(x)>O on [a,b] (so that the lead 

coefficient of Lis negative). Let By= ay(a) + a'y'(a) and 
a 

Bby = 8y(b) + 8'y'(b). 
ex, 

A function feC [a,b] is L-B positive if 

k (L f)(x)>O for xe!a,b], k = O, 1, 2, • • • • 
and 

Theorem (Shaw): If the eigenvalue problem Ly= ~Y, By= a 

Bby = 0 is self-adjoint and has only positive eigenvalues, then each 

L-B positive function f(x) is the restriction to [a,b] of a function 

analytic in come complex neighborhood of [a,b]. 

Thus the results for the case a2(t)<O, at least for self-adjoint 

operators, are more or less complete. In contrast, our techniques 

are restricted to, and use in a crucial way, the hypothesis a2(t)>O. 
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Moreover, we do~ require any assumptions about self-adjointness. 

The principal tool used in our proofs is the L-series, which 

appears to have been developed first by M. K. Fage [9, 10]. He derived 

a number of its properties and proved a theorem equivalent to our 

Theorem 1 on Pincherle bases (see also the comments at the beginning 

of the next section). Subsequently, the L-series has been investi-

gated by a number of Soviet mathematicians. Most of these studies 

have been concerned with obtaining estimates of the L-basis functions 

(I. F. Grigorcuk [11] and N. I. Sidenko [18]) and with extending to 

L-series certain phenomena, in particular quasianalyticity, which 

are associated with Taylor series (V. G. Hryptun [llf]). 

Finally, we observe that L-positive functions need not resemble 

absolutely monotonic functions nor, in fact, any class of functions 

for which a sequence of derivatives, f(nk), is non-negative on an 

interval. For example, we observe that the function F(x) =~is 
l+x2 

F" trivially L-positive for the operator Ly = y" - (F)y, but the 

zeros of successive derivatives cluster everywhere on the real axis. 



3. Definitions, Preliminary Results and Examples 

Let L be an n-th order linear differential operator defined on 

I, an open interval of regular points of L, by 

(Ly)(t) = ~(t)y(n)(t) + an_ 1(t)y(n-l)(t) + ... + a0 (t)y(t)teI 

where an(t) is normalized so that an(t)>O tel. One may define the 

L-series based at t 0 eI (termed an initial value series by the author) 
ca 

for frC as 

ca n-1 
l l (Lkf)(p)(to) (~ )P ~nk+p(t) 
k=O p=O 

where L~p(t) = o, (Van(t 0 ) l ~;j)(t 0 ) = 15jp O~p, j~n-1 

and L~n(k+l)+p(t) = ~nk+p(t) 
(j) 

~n(k+l)(to) = O 

k = o, 1, 2, 

0 ~p ,j <n-1 

As was mentioned in Section 2, the L-series, with a0 (t)=l, 

appears to have been introduced by M. K. Fage, who derived a number of 

its properties under the assumption that the ai's satisfy certain 

smoothness conditions. In the case of analytic coefficients, he shows 

that every function analytic at t 0 admits a convergent L-series repre-

sentation in a nei2hborhood of t 0 • Some of the lemmas in this section may 

also be found in Fage's paper. However, since Fage's work is available 

7 
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only in Russian, we will provide our own, independent proofs. More-

over, our approach also leads to a new proof of the representation of 

analytic functions. The result is obtained as a corollary to a theorem 

of Boas [3] on Pincherle bases. 

Hereafter, all statements and proofs will be given for the 

second order case, n = 2. All of the results of the present section 

have obvious analogs for general n. Thus, from now on L will be a 

second order operator with a2(t)>O. 

The L-series is closely associated with the initial value prob-

lem for L. If r(t) is a real, continuous function in a neighbor-

hood of t 0 , the problem 

(3.1) 

has the (unique) solution 

t 
(3. 2) y(t) = y0 cj>0 (t) + Y0

1 Va2(te) 4>1 (t) + [c(t,T) r(T) 
0 

of t 0 • The function 
1 cj> (T) 4>1(t) - cj>l(T) 4> ( t) 

(3. 3) G(t.r) 0 0 = a2 (T) I I 

cj>O (T) <j>l (T) - <1>1 ('r) cp (T) 
0 

is the Green's function for the initial value problem. 
t 

dT 

Define the operator G by ( Gr) (t) = f G(t, T) • r('r) dT and its 
to 

iterates G11 by Gnr = G(c;n-1r), n = 2, 3, 4, ••• and G0r = r. Note 

that 

(3.4) LGr = r 

and that the solution (3.2) may be expressed as 

(3.5) 
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00 

Let fEC (I). If we let r(t)=(Lf)(t) and take as initial conditions 

' ' Yo=f(t 0 ) and Yo =f (t 0 ) then the solution of (3.1) is y(t)=f(t). 

Then (3.5) becomes 

an identity for all f. The same identity will, of course, hold for 

Lf: 

Combination of these two identities yields: 

f(t) = f(t 0 H0 (t) + f 1 (t 0 )Vaz(t 0 ) <ti1 (t) 

+ Lf(t 0 )G~0 (t) + (Lf)' (t 0 ) v'az(to)G~ 1 (t) + G212f(t) • 

Repetition of this process yields the finite L-series 

(3.6) 

valid for each positive integer n. 

From the definition of the functions {</in(t)}~=Z' (1.1), it is clear 

that they may be realized as 

or recursively as 

Thus, the finite L-seriee mny be expressed as: 
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II 
The case Ly= y yields the familiar Taylor expansion about 

t = t 0 • Moreover, the general L~series has many properties in common 

with the Taylor expansion. The lemmas which we shall now prove will, 

in addition to their utility, serve to illustrate the similarities 

between the two expansions. 

To simplify the discussion we shall prove the lemmas and 

theorems under the restriction a2 (t) = 1. The results for the case 

a2(t)>O may be obtained by a change of independent variable. 

Definition: A right neighborhood of t 0 , N(t 0 ), is an open 

fnterval of the form (t 0 , t 0 + b) for some b>O. 

Lemma 1: For each n>l, 4>n(t) is a positive, monotonically in-

creasing function fort in some right neighborhood, N0 (t 0 ), of t 0 • 

Proof: Let b0 >0 be the largest number such that (i) 4>0 (t) > 0 
f I 

for te(t 0 , t 0 + b0 ), (ii) $0 (T)$ 1 (t) - $1(T)$ 0 (t)>O in the triangle 

t 0 ~ T~ t< t 0 of: b0 and (iii) (t 0 ,t 0 + b0 )cI. We shall show that N0 (t 0 ) 

exists and, in fact, may be chosen as (t 0 ,t 0 +b 0 ). 

To establish positivity we shall make use of the Green's function 

$ (T) 4>1 (t) - $1(T) <i> (t) 
(3.10) G(t,T) = 0 0 

' I 
cp ( T) 

0 
cpl (T) - $ (T) 

0 
$1(T) 

showing that it is non-negative for t 0 .::_ T .::_ t< t 0 + b0 and drawing 

' the conclusion from that fact. The denominator, 4>0 (T)cpl (T) 

' - cp0 (T) q,1 (.-), is simply the Wronskian of <ji0 and h and must always 
f I 

be of one sign. Since $0 (t 0 )cp1 (t 0 ) - $0 (t 0 )cp1 (t 0 ) = 1 • 1-0·0 = 1>0, 
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' ' we must have lj>0 (T)lj>1 (T) - lj,0 (T)~1(T)>b for all T under consideration. 

Consequently, the sign of G(t,T) is determined solely by the expres-

sion in the numerator. 

Let gt(T) = lj>0 (T)lj>1(t) - ~1(T)~ 0 (t) where te(t 0 , t 0 + b0 ) is 

fixed. We will argue that St(T) > 0 for t 0 <T<t. We begin by observing 

that St (t 0 ) = lj>l (t) >O and St (t) = o. (The assertion that lj>l (t) > 0 for 

t 0 <t<t 0 + b0 is a consequence of the interlacing property of zeros of 

independent solutions of the homogeneous equation Ly~ 0 (see, for 

example, Birkhoff and Rota [2]). Specifically, if there existed a 

t*e(t 0 , t 0 + b0 ) such that lj>1 (t~) = O, the vanishing of lj,1 at t 0 and 

t* would force lj,0 to vanish between these two points, contradicting 

the choice of b0 ). Suppose that there is a T*E(t 0 , t) such that 

gt(T*) = O. Since, for fixed t, St(T) is a solution of the homogeneous 

equation, (Ly)(T)=O, which vanishes at T•T* and T•t 1 it must be that 

lj>0 (T), an independent solution, vanishes between T=T* and T=t (by the 

interlacing property again). This contradicts the choice of h0 • 

Positivity of the lj>'s follows from noting that lj>0 (t)>O and 

lj>1 (t)>O for te(t 0 , t 0 + h 0 ) and recalling that (3.8)may be expressed 

as 

(3 .11) 
t 

4'n(t) = f G(t,T)<Pn-2(T) dT 
to 

n = 2, 3, 4, •••• 

The application of a trivial induction argument shows that lj>n(t)>O 

for t 0 <t<t 0 + b0 and n = 2, 3, 4, ••• 
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' To establish monotonicity we shall show that <l>n(t)>O for 

te:(t , t +b ) and n > 2. Differentiating both sides of (3.11) and 
0 0 0 -

using G(t,t) = 0 we have 

' t a 
<l>n (t) = f atG(t,T)<l>n-2(T)dT 

to 
Explicitly, this is 

' ' 
' cj, (t) = n 

ft <l>o(T)cj>l(t) - <l>1(T)cj>o(t) 

to <l>o(T)<l>{(T) - <l>1(T)cj>~{T) 

We have already observed that the denominator, the Wronskian, is 

positive and, by the choice of b0 , we are assured that the numerator 

is positive for t 0 <t<t<t 0 + b0 • It has just been shown that 

<1>n_2 (T)>O for t 0 <T<t0 + b0 • Therefore, it must be true that 

' <l>n (t)>O for te:(t 0 , t 0 + b0 ) and n>2. 

"" 
If l 

n=o 

If N0 (t 0 ) is defined to be (t 0 , t 0 + b0 ), the proof is complete. 

There are three corollaries to the proof of Lemma 1. 

Corollary 1: For t~T~t~t 0 +b 0 , G(t,T)~O. 

CorolleE.I_ 2: If f(t)~O for te:N0 (t 0 ), then Gnf(t)~O for all n 

and te:N0 (t 0 ). 

Corolla~ 3: 

Lemma 2: Let {an};=o be a sequence of non-negative real numbers. 

an <t>n(t*) converges for some t*e:N0 (t 0 ), then r an<l>n(t) con-

verges uniformly for O<t - t 0~t* - t 0 • 

Proof: By Lemma. 1 we have 
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Therefore l an~n(t) converges uniformly for te:[t 0 ,t*] by the Weierstrass 
n 

M-test. 

Lemma 3: There exist positive constants c1 (<1) and c2 (~1) 

and a right neighborhood, N1 (t 0 ), of t 0 such that 

c1 2 (t-.)~G(t,T)~Cz 2 (t-T) for t,Te:N1(to), T~t. 
G(t T) Proof: Consider the quotient~ - • By the discussion in t-T 

Lemma 1, we know that G(t,T)>O for t 0 <T<t<t 0 + b0 so 

G(t,T) > O 
t-'r 

fort <T<t<t 0 + b 
0 0 

Pick b1>0 so that b1<b0 • Define the open triangle Tin the (t,T) 

plane by T "' { (t, T) I t 0 <T<t<t 0 + b1}. (Note that the choice of b1 
G(t,T) forces T to be bounded). Since ~o and ¢1 are continuous, t-T is 

continuous int.and T for (t,T)e:T. 

Define C1 and Cz by 

(3 .12) ( 
G(t,.,1/2 

Cl = inf t-T . 
( t' T) e:T 

and ( 
G(t,T))l/Z 

Cz - sup t-T 
(t,T)e:T 

The lemma will be proved once we show that O < · c1 .::., 1 .::., c2 < 00 • The 

function is well defined and positive on the sides of T which coincide 

with the lines T=t and t=t +b 1 • Thus, any difficulties must occur 
0 0 

on the hypotenuse, which coincides with the line T =t. Thus, questions 

concerning the positivity of c1 and finiteness of c2 may be answered 

by showing that 

lim 
(t* ,.*)·+(t, t). 

existR and is positive. 

G(t*,•*) 
t*-T* 



14 

From (3.10), the denominator of G, the Wronskian, will not 

affect the existence of the limit or its positivity. Therefore, the 

existence and properties of the limit depend entirely upon 

(3.13) 
4>0 (T*H1(t*) - 4>0 (t*)4>I(T*) 

t* - T* 
Adding and subtracting a term of the form 4>0 (T*)4>1(T*) in the numera-

tor, we may express (3.13) as 

(3.14) 

Thus, the limit of (3.13) may be obtained by taking the limit of 

(3.14). In taking the limit of (3.14) we need only be concerned with 

the limits of 

4>1 (t*) - h (T*) 
t* - T* 

and 4>o (t*) - 4>o (T*) 
t* - T* 

Examining the first of these, we have 

t* 
4>1(t*) = 4>1(t) + f <1>1 ' (x)dx, 

t 
and 

T* 1 

4>1(T*) = 4>1(t) + £ 4>1 (x)dx. 

t* ' 
Then 4>i (t,.:) - <t,1 (T1() = f <t,1 (x)dx. 

T* 
By the Mean Volue Theorem for integrals we hnve 

t* ' ' f 4>1 (x)dx = h (xt*'r *) (t* - T*) 
T* 



where ltt:*T* is between t* and ·T*. 

Then 

lim 
(t*,T*)-+-(t,t) 

By similar reasoning we have 

lim 
(t*,T*)+(t,t) 

15 

I 4'o (t) 

Therefore the limit of (3.14), and thus of (3.13), is 

I I 
4io(t)4il (t) - 4'1(t)4'0 (t) • 

Therefore lim 
(t*, T,c)+(t, t) 

G(t*,T*) = l 
t* -T* • 

Thus the boundedness of Cz and the positivity of C1 have been shown. 

Furthermore, it is clear that C~l and C~l. 

By the definition of Cl and C2 we have 

c12<G(t,Tl < Cz2 
- t-T -

which implies that 

To complete the proof define N1(t 0) = (to, t 0 + b1). 

Remark: Note that C1 and Cz can be made arbitrarily close to 1 

by taking b1 sufficiently smnll. Also, note that the only requirement 

made of 4'i is 4'iECl(I) rather than analyticity. 

Lemma 4: There exist positive constants d1 (~1) and dz (~1) 

such that 
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c1n(t-to)n c2n(t-to)n 
(3.15) d1 nl ~ cl>n(t) ~ d2 n! 

for n • O, 1, 2, ••• and tEN1 (t 0 ). 

Proof: Before embarking on the proof we need to make some 
" observations. If G(t,T) is defined by G(t,T) = t-T and if the integral 

,. 
operator G is defined by 

" t 
(Gy) (t) = J(t-T)y(T)dT, 

to 

one may easily verify that 

t ( 2n-1 
(G11y) (t) = J t-~ y (T)dT 

t 0 (2n-1)! 

(T-to)P 
In particular, if y(T) = p! then 

(Gily)(t) = J (t-T)2n-1 (T-to)P dT = 
t 0 (2n-1)! pl 

(t-to)2n+p 
(2n+p) ! 

Define positive constants g1, gz, h1 and h2 by 

g1 = inf fo(t), 
t£Nl 

h1 = inf cl> l(t) , 
tENl t-t 0 

Then we have 

and 

gz = sup 4>o(t) 
tENl 

h2 = sup q,l(t) 
tENl t-t 0 
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By Lemma 3 we know that 

One may combine these inequalities to obtain 

Integrating with respect to T from t 0 tot, we obtain 

cf (t-to)2 < •z<t) ~ gzC22 (t-t )2 gl - - 0 
2 2 

Combining this inequality with the estimates on G(t,T) we obtain 

Integrating with respect to T from t 0 tot, we obtain 

Continuing in this fashion yields the inequalities: 

k = o, 1, 2, • 

Application of the same reasoning will show that 

( )2k+l 
h1C12k t-to < ~2k+l(t) 

(2k) I -
~ hzCz2k (t-to)2k+l 

(2k+l)I 
tcN1(to) k = O, 1, 2, •••• 

If d1 nnd dz ore defined by 

d1 = min(g1, b1) and d2 = max (g2 , ~) 
c1 

(d1 ~ 1 since 81.::. 1, dz~ 1 since g2 ~ 1), then the estimates on 

•2k and •zk+l may be expressed together as 
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c1n(t-to)n c2n(t-to)n 
dl nl :5.. ~n(t) :5.. dz nl t£N1<to). 

Remark: Note that 81, gz, h1 , h2 , d1 and d2 can be made 

arbitrarily close to 1 by making b1 sufficiently small. 

Lemma 4 has the following corollaries 

Corollary 1: For each n, ~ (t) m (t-to)n $ (t) 
- n nl n 

where $n is continuous on I and satisfies $n(t 0 ) = 1. 

Proof: The conclusion of Lemma 4, (3.15), may be written as 

d C n n!~n(t) n 
11 :5.. ~ d2C2 

{t-to)n .. 
n-!~n(t) 

Fort~ t 0 , define ~n(t) =(t-to)n 

For these values oft, $n(t) is continuous wherever ~n(t) is. The 

above estimates then say that 

If we define $n(t 0 ) c 1 and recall the remarks following Lemma 3 and 

Lemma l1, we see that $n (t) will be continuous on I. 

Corollary 2: For each n, cj>n(n)(t0 ) = 1. 

Lemma 5: Let {an}~=O be a sequence of non-negative real numbers. 
a, 

If !=o nncj>n(t) converges for O~t-t~t*-t 0 where t*cN1(t 0 ) then~ 

converges for O<(t-t 0 )<C1(t*-t 0). Conversely, if l an(t-to)ncon-
- - n=O n! 

verges for O~t-to.::_Cz(t*-t 0 ) where (Cz(t*-t 0 ) + t 0 ) £N1(t 0 ) then 

A a0 cj>11 (t) conveq>,cn for 0.::_t-t 0 .::_t-A·-t:0 • 

Proof: Suppose thnt l an~ (t) convcrgcn for O<t-t <t*-t ; n n - o_ o 

then, in particular, lan~n(t*) converges. Since t*£N1 (t 0 ) we may 
n 

conclude from Lemma 4, (3.15), that 

n a 0 (t-t 0 ) 
n! 
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c1n(t*-t 0 )n 
O~dlan nl ~ an~n(t*). 

Consequently, convergence 
f C1TI(t*-to)n 
fl an n I which, in 

for O<t-t~C1(t*-t 0 ). 

of l an~ (t*) implies the convergence of n n 
turn, implies the convergence of l a0 (t-to)n 

n n! 

Now suppose that> an(t-to)n converges for O<t-t~Cz(t*-t 0 ) 
ft. n! 

then, in particular, l 8n(c2 (t-t 0 )) n/n! converges. Since C2!_1 
n 

and 02 (t*-t 0 ) + to) e:Nl (t 0 ) we have t*e:N1 (t 0 ). So we may conclude 

from Lemma 4, (3.15), that 

O<an~n(t*)~d28nc2n(t*-to)n. 
nl 

Therefore, b an~n(t*) converges. By Lemma 2 we may conclude that 

l Rn~n(t) converges for O~t-t 0 <t*-t 0 • 
n 

Definition: Nz(t 0 ) is the largest right neighborhood of t 0 , 

contained in N0 (t 0 ), such that ~1(t)~~ 0 (t) for te:Nz(t). 

Lemma 6: ~Zk+l(t) ~ ~2k(t) for te:N2(t 0 ) and k = O, 1, 2, •••• 

Proof: Let b2>0 be such that N2(t 0 ) = (t 0 , t 0 + bz). Since 

Nz(t 0 ) C N0 (t 0 ), we know (from Corollary 1 of Lemma 1) that G(t,r).::_O 

for t 0~T~t~t 0 + b2• Therefore it must be true that 

Integrating from t 0 tot we have 

tdlz (to) 

A trivial induction argument produces the general result. 



20 

Lemma 7: Let {an}~=O be a sequence of real numbers. If 

fan<Pn(t*)l<M for all n and some t*e:N1(t 0 ), then}: an<Pn(t) converges 
n 

absolutely for O~t-t 0 <~ (t*-t 0 ) 

of [t 0 , ~ (t*-to) + t 0 ). 

and uniformly on closed subintervals 

Proof: Let O<t-t 0 <t*-t 0 • 

Therefore, 

uniformity 

C1 l an<Pn(t) converges absolutely for O~t-t 0 <"Cz(t*-to). 
n 
of convergence follows from Lenrrna 2. 

00 

Lemma 8: If l an<Pn(t*) converges for some t*e:N1(t 0 ) then 
n=O 

~ Cl l an+q<Pn(t) converges for O~t-t 0 <"Cz (t*-t 0 ), q = 1, 2, 3, •••• 
n 

The 

Furthermore, the convergence is absolute and uniform on closed sub-

intervals of [t 0 , t 0 t Cl (t*-t 0 )). 
c2 

Proof: In view of Lemma 7, we may assume, without loss of 

generality, that an.::_0 for all n. 

By Lcmm;:i 4 we hnvc 

(C1(t*-to)) 0 
d1 nl 2 <Pn(t*). 
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The convergence of l an~n(t*) implies the convergence of 
n 

(C1(t*-to))n which, in turn, implies the convergence of 
n! 

(3.16) la+ (C1(t~-to))n+q 
n n q (n+q) ! q = 1, 2, 3, •••• 

To exploit the convergence of (3.16) we first observe that 

(C1(t-t 0 ))n (C1(t-t 0 ))n+q. (n+q)! 
an+q nl = an+q (n+q)! n!(C1(t-to))q, 

and then note that 

(n+q) I = 
nl (n+q)(n+q-1) ••• (n+l)<(n+q)q. 

Thus 
(Cl (t-to)) n+q 

• a n+q (n+q)! 

The convergence of (3.16) implies the convergence of 

, (C1(t-t 0 ))n+q 
ft an+q (n+q)I 

and of 'a • (n+q)q • (Ci(t-to))n+q, O_<t-t0 <t*-to• fi n+q (n+q)I 

, (C1(t-to))n Therefore fi 8n+q nl converges for O,.::_t-t0 <t*-t 0 • 

We may now argue that convergence of this series implies the con-

vergence of la+ (t-to)n 
n n q n! for 0<t-t 0 <-.l. (t*-t 0 ) which, by Lemma 5, - ~l 

implies the convergence of I an+q~n(t) for 02t-to<cr12 (t*-to). Since 
C1 1 
-rrn < we see that the convergence asserted in the statement of 
I., 2 - "C"i"Cz ' 
the lemma har. been provC'd, Furl 110.rmore, by Lcmm<1 2, the convergence 

C:1 is uniform on closed subintervals of [t 0 , CZ (t*-t 0 ) + t<:>)• 
co 

Lemma 9: Let f(t) =}: an~n(t) 
n=O 

t*EN1(t 0 ). Then LPf(t) = l an+2p~n(t) 
n 

p = o, 1, 2, •• • • 

for 

for 

02 t-t 0~t*-t 0 where 
c1 O<t-to<c 2 (t*-t 0 ) and 
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Proof: By Lemma 7, the series for f(t) converges absolutely for 

O<t-t 0 <Cl (t*-t 0 ), which allows the terms of the series to be grouped 
- c2 Cl 

in any desired fashion. In particular, we may write, for O<t-to<c 2 (t*-t 0 ), 

co 

co 

p-1 
= l a2k4>2k (t) + azk+14>2k+l (t) · 

k=O 

p-1 

co 

+ l azk+2pGP4>zk(t) + azk+2p+lGP4>2k+1Ct) 
k=O 

= l azk4>zk(t) + azk+14>2k+1Ct) 
k=O 

+ Gp(I a2k+2p4>zk(t) + azk+2p+14>2k+1<t)) • \k=O 

The last step is justified by Lemma 8, which guarantees the uniform 

convergence of the series upon which Gp operates. 

Operating on both sides of the above equation with LP and 

recalling (3.4) we obtain 

co 

Cl 
for O<t-t 0 <"cz (t*-t 0 ). 
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00 

Lemma 10: If f(t) = l 8ntn(t) for O<t-t~t*-t 0 
n•O 

' ' where t*£No(t 0 ) then f (t) = l antn ·(t) 
n 

c1 for O~t-t 0 < "C'2 (t*-t 0 ). 
t 

Proof: Since tn(t) = I G(t,tHn-2 (t)dt n=2, 3, 4, ••• 
to 

' t 
then.,~ (t) = J ~ G(t,t)$n-2(t)dt. 

to t 

By Corollary 3 of Lemma l,we have 

,k G(t,t)~O 

and 

Define the non-negative function M(t), t£[t 0 , to+ b0 ], by 

a 
M(t) = sup at" G(t,t). 

to~t~t 

Then 

By Lemma 1, tn_ 2 (t) is a monotonically increasing function of 

T£No(to) for n>2, so 

f $n-2(t)dt~(t-t 0 )~n-2(t) for t£No(t 0 ), n>2. 
to 

' Therefore O<tn (t)<M(t)(t-to)$n-2(t), t£No(t 0 ), n>2. 

00 

By Lemma 8, l an$n-2(t) converges uniformly for O~t-to{} (t*-t 0 ). 
n=3 2 

\' , Cl Therefore l an$n (t) converges uniformly for O<t-to<c 2 (t*-t 0 ) and 
n 

term by term differentiation of the series for f is justified. 
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, ; , c1 
Therefore f (t) ml an~n (t) for O~t-t 0 <c2 (t*-t 0 ). 

n:O 

Since N1 (t 0 ) C N0 (t 0 ), the results of Lemmas 9 and 10 may be 

combined as: 
co 

Lemma 11: Let f(t) ml an~n(t) for O~t-t 0~t*-t 0 
n=O 

co 

for O<t-t 0 <Cl (t*-t 0 ) and p = O, 1, 2, •••• - c2 
Lemma 11 has the following important corollary. 

Corollary (Uniqueness of coefficients); Let f(t) 

for O<t-t 0~t*-t 0 , where t*£N1(t 0 ). Then 

co 

= l an~n(t) n=O 

- k k ' a2k - L f(t 0 ) and a2k+l = (L f) (t 0 ), k = O, 1, 2, •••• 

Lemmas 1 through 11 have described the local (in a neighborhood 

of t 0 ) properties of the set {~n(t)}~=O, the mode of convergence of 

the L-series, and the behavior of the L-series under certain term-by-

term operations. The reader should note that no use has been made of 

the analytic properties of the coefficients of L. Indeed, the above 

lemmas (with the exception of Corollary 2 of Lemma 4) have been proved 

under the assumption that the ~'s are twice continuously differentiable, 

which does not require analyticity of the coefficients. However, the 

generality which could be so obtained will not be of any consequence 

in this paper. 
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At this point, we want to turn our attention away from the 

abstract and focus on some specific examples of L-series. Much of 

our effort will be directed toward actually generating the set 

{~n(t)};=O for a particular example. For this purpose (3.8) is 

ill-suited and inefficient. Rather, the generating function, g(t,A)t 

often offers the most sensible means for explicit determination of 

the set {~n(t)}n=O • 
00 

Definition: The generating function is g(t,A) = r!s(t)An. 

We observe that in the special case of the Taylor series expan-

sion about t = to the generating function is g(t,A) = exp ((t-t 0 )A). 

Then the generating function is an entire function of order 1 and type 

(t-t 0 ). This description of the generating function is almost true 

in the general case. More precisely we have the following. 

Lemma 12: The generating function, g(t,A), is an entire function 

of A of order 1 and type at most C2(t-t 0 ) and at least Cl(t-t 0 ) for 

te:Nl(t 0 ). 

Proof: By Lemma 4 we have 

(C1(t-t 0 ))nlAln 
and so d1 nl 

This implies that, for all complex A, 

O> 

d1exp(C1(t-to)IAI) ~ l ~n(t)IAln ~ d2exp(C2(t-t 0 )IAI), 
n=O 

te:N1(to). 
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Consider each half of the inequality. From 

we see that g(t,~) has order at most 1 and type at most C2(t-t 0 ). 

If A is real and positive the other half of the inequality becomes 

d1exp(C1(t-to)A)~~n(t)An 
n=O 

So g(t,A) has order at least 1 and type at least C1(t-t 0 ). 

The generating function would, of course, be of little value 

without a practical scheme for its computation. That scheme is con-

tained in the following. 

Lemma 13: The generating function, g(t,A), may be realized as 

the solution of the initial value problem 

2 ' Ly= A y, y(t 0 ) = 1, y (t 0 ) = A. 

Proof: By (3.5) the solution for this problem is 

This is a linear Volterra integral equation for y which we can solve 

by means of the Neumann series (successive substitutions, see Cochran 

[7]) to obtain 

00 

A2kGk(~0 + A~1)(t) y(t) = I ~o 
M 

= l A2k(Gk~ )(t) + A2k+l(Gk~1)(t) 
k~O 0 

00 

~ l An$n(t) = g(t,A). 
n=O 
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Remark: The fact that g(t,A) is an entire function of A may 

also be deduced from the properties of the resolvent kernel of 

G(t,T) (Cochran [7]). 

Remark: In the case a2(t) t 1, g(t,A) may be obtained by solving 

With the aid of the generating function we will examine some 

specific examples of L-series. The reference for all definitions and 

properties of special functions used in the exampleo is Abramowitz and 

Stegun [1]. 

Example 1: The simplest example of an L-series is the Taylor 

series expansion about the point t = t 0 • For this example,· the above 

lemmas yield either trivial or well known properties of the Taylor 

series. 
II 

Example 2: Let Ly= y + y and t 0 = O. 

~1(t) = sint. The Green's function is 

cosTsint - costsinT 
G(t,T) = COSTCOST - (-sin,)sinT 

Then +o(t) = cost and 

= cos,sint - costsinT = sin(t-T). 

The generating function is obtained by solving the initial value 

problem 

to obtain 

y II + y -· iy ' y ( 0) == 1, y I ( 0) C A ' 

g(t ,A) = A sin ( ./N2 t) 
./1 - A2 

+ cos 
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The generating function splits naturally into even and odd functions 

of A. This implies that 

{,2k(t) }k=O is generated by cos ( v'1 - A2 t) 

and h2k+l (t) }k-=O is generated by A sin ( v'1 - A2 t) 
../1 - A2 

To obtain the t's we make use of the familiar expansions 

m m 2 
cos~ I:: r (-l)nzn and sinz = r (-l)nz n 

n=O (2~)! --Z- n=O (2n+l)! 

to expand the components of the generating function. The resulting 

series are rearranged to obtain expansions in terms of powers of A, i.e., 

and ASin<,_M t) = r 
\/I-X2 k=O (I 1.P+k) 

p=O \ k 
m 

Therefore '2k(t) = l 
p=O 

(p+k) (-l)Pt2p+2k 
k (2p+2k)I 

(-l)Pt2p+2k+l) 
(2p+2k+l) I 

2k+l 
A • 

m /.r. ( l)Pt2p+2k+l 
and '2k+iCt) == l ~ptk) (2p+2k+IJ! , k = o, 1, 2, •••• 

p=O 

By means of a Gamma function identity (Legendre's duplication 

formula) and some simplifications we may express the ,'s as 

and 

where J"(t) is the Bessel function of the first kind of order \I 

defined by the series 



~ (-l)P( 2t)2p+v 
Jv(t) • l 

p=O plf(p+v+l) 

II 

29 

Example 3: Let Ly= y -y and t 0 = O. Then <j>0 (t) = cosh t and 

<1>1(t) = sinh t. The Green's function is 

cosh.sinht - coshtsinhT G(t,T) = ~~~~~~~~~~~ 
coshTcoshT - sinhTsinhT 

= sinh(t-T). 

The generating function is obtained by solving the initial value 

problem 

II 2 t y -y = A y, y(o) = 1, y (o) = A, 

to obtain 

sinh ( v:;;;;1 t) 
g(t,A) = A Vl+A2 + cosh (Vl+A2 t). 

As in the previous example, the generating function splits naturally 

into even and odd functions of A. Thus 

and 

{<j>2k(t) }k=O is generated by cosh ( v'1+A2 t) 

{<j)zk+1Ct)}k=O is generated by A sinh ~A 2 t) 
Vl+A2 

To obtain the <j>'s we make use of the Maclaurin expansions for 

d sinhz coshz an z to expand the components of the generating function. 

The rcsultinc nrricn arc rcnrrnnRc<l to obtain expansions in terms of 

powers of A from which one may rend off the q,'s. This procedure 

yields 



and 

ex, 

c!>2k<t> = I 
p==O 
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(t>+k) t2p+2k 
k (2p+2k) ! 

=; (P+k) t2p+2k+l 
cl>2k+1<t) l k 

p=O {2p+2k+l)! 

By means of the same Gamma function identities used in the pre-

vious example we may express the cj>'s as 

cl> (t) "" fi' {!)k+l/2 I (t) 
2k kl 2 k-1/2 

and cl>2k+1Ct) = Vrr (.!)k+l/2 I (t) k! 2 k+l/2 

where I\,(t) is the modified Bessel function of the first kind of 

order v defined by the series 

ex, (~l2p+v 
1v(t) = I pl r(p+v+l) • 

p=O 

Example 4: 2 II Let Ly= t y and t 0 = 1. (Note that in this 

example a2(t) = t2 so that we shall have to make use of (3.3) and the 

second remark following Lemma 13.) Then cj>0 {t) = 1 and cl>i(t) = t-1. 

The Green's function is 

G(t,T) 1 1•(t-l)-l"(T-l) 
= :;°1 l•l - O•l 

t - T =--

The generating function is obtained by solving the initial value 

problem 

2 II t y = ' y(l) = 1, y (1) = A 

to obtain 
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The generating function may easily be expanded in powers of A to yield 

00 
(logt)n g(t,A) = l An. 

n=O nl 

Therefore ~n(t) = (logt)n for all n. 
n! 

Remarks on the Examples: There are two basic observations that 

we want to make, one involving the asymptotics of the ~'sand the 

other concerning the region of convergence (in the complex plane) of 

the L-series. 

~'s 

In examples 2, 3, and 4 we see that 
(t-t )n and the Taylor polynomials, 0 , 

n! 

the similarity between the 

as developed in the lemmas 

is truly of a local, rather than global, nature. (Although the lemmas 

have not been proved herein for a2 (t) t 1, the results in that case are 

similar to those stated in the lemmas.) 

significantly different from t 0 , ~n(t) no 

In general, when tis 
(t t )n longer resembles - o • 

nl 
This point is brought out dramatically by the examples. Making use of 

the well known asymptotics for Bessel functions 

( ) ( 2 ) 1/2 ( ~ 'If 'If ) (1) J" t = "1ifr cos t-z - 7+ + 0 t t+oo 

and I"(t) = (2'1Tt)-l/Z et (1 + O(~)) t+ 00 

We Rec thnt the +'a of Exnmple 2 oscillate with an nmplitude that 

grows as a power oft as t +"" while the +'s of Exnmple 3 grow 

exponentially as t + 00 • On the other hand, in F.xample 4, +0 (t) 

= <1gyt)ll which, for a given n, grows more slowly than t as t + 00 • 
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The especially simple form of the $'sin Example 4 allows one 

to observe an interesting contrast between the region of convergence 

of the Taylor series expansion about t 0 and the region of convergence 

of the L-series expansion about t 0 (the regions mentioned are regions 

in the complex plane). This contrast is readily brought out by con-

sidering the expansion of the function f(t) = t 112 about the point 

t • 1. (The branch cut is taken along the negative real axis and the 

branch chosen is the one which produces positive values for tl/2 when 

tis positive.) As is well known, the Taylor series converges inside 

a disc of radius 1 centered at t = 1. Since 

Cl) 

tl/2. el/2 logt = l 
n=O 

(l)n (logt)n 
2 nl 

(the branch of logt is chosen to make logt real when tis positive) 

we see that the L-series for f converges to f(t) in the entire complex 

t plane with the negative real axis deleted. 



4. Expansion of Analytic Functions 

In this section we will prove the first of our major results, a 

theorem on the expansion of analytic functions. In part, the result 

is motivated by consideration of the corollary to Lemma 4 which says 
n that, for each n, nl~ (t) is asymptotic to (t-t) as t+t. Since n o o 

{ n}oo the set (t-t 0 ) n=O is the best known basis for the expansion of 

functions analytic in a (complex) neighborhood oft , one is led to 
0 

speculate on the possibility of expanding analytic functions in terms 

of a set of functions which are, in a suitable sense, "sufficiently 

like " h f i {( )n}oo t e unct ons t-t 0 n=o· The possibility of expansion in 

terms of such a set was first established by S. Pincherle (Boas (3]) 

and such expansion sets are termed Pincherle bases. 

Definition: Let z be a complex number. A Pincherle basis 
0 

at z0 is a set of functions {gn(z)}:=O' analytic at z~, having, for 

all n, the form 

(4.1) 
00 

where h (z) = l y(n) (z-z )k, (lz-z l<r, r >O), 
n k=l k o o o o 

which has the property that any function f(z), analytic in a neighbor-

hood of z0 , mny be cxpnn<lc<l us 

f(z) = l Cngn(z), for lz-z 0 l<r 1,(r 1~_r0). 
n 

Our result, Theorem 1, will say that the set 

33 
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a Pincherle basis at t 0 £I. (If Ly= y" + a1(t)y' + a0(t)y, where 

a1 and a0 are analytic in lt-t 0 l<R, and if r(t) is analytic in 

lt-t 0 l<R, then any solution of Ly= r is analytic in lt-t 0 l<R (Cod-

dington and Levinson [8]). In view of (1.1), this implies that 

each~ (t) is analytic in lt-t l<R.) The proof will use a theorem n o 
on Pincherle bases due to Boas [3]. To state Boas' theorem we need 

a definition. 

(4.2) 

where 

Definition: A common majorant of {hn(z)}:=O (4.1) is a series 

... 
h(z) = l 6k(z-z f (convergent for lz-z 0 l<r 1~r 0) 

k=l O 

I <n>1 yk ~6k fork= 1, 2, 3, ••• and n a O, 1, 2, •••• 

Theorem (Boas): A function f(t), analytic in a disc lt-t l<s, 
0 

may be expanded in terms of the functions Sn(t) (4.1) provided that 

(4.3) 

Note that h(t 0 ) = O. Thus, to show that each f admits a representation 

in terms of the Q_'s in some neighborhood oft, it is sufficient to cu -- 0 

prove that h has a positive radius of convergence. 
... 

To prove Theorem 1 we shall take the set {gn(t)}n=O to be 

(4.4) Sn(t) = nl~nCt) 

for all n. Keeping (4.1) in mind, we shall also take 

(4.5) - 1 = 

for all n and 

"" nl$ (n+k) (t) 
~ n cf 

k=l (n+k) I 
(t-t )k 

0 
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(4.6) (n+k)I 

for all n>O and k>l. The proof will involve the generation of a 

"" common majorant for {hn(t)}n=O and the application of Boas' theorem. 

At this point we shall prove a number of rather technical 

lemmas basically involving estimates on certain of the y's, used in 

the proof of Theorem 1. The lemmas will, again, be proved for the 

case a2 (t) = 1. 

Definition: Let R be the common radius of convergence of the 

Taylor series expansions, about t 0 , of a1 (t) and a0 (t). The real 

number a is defined to be the smallest number such that a>l/R, 

a>l and 

(4.7) 
(j) (°) 

al (to) 3·+1 a J (t ) I I I o o I j+1 
j! :5..0 and jl <a 

for all j ~ O. 

Remark: We shall show later that the important inequality 

(4.8) 

is satisfied for n > 0 and k > 1. 

Lemma 14: If p == O, 1 and k~2, then 

(4. 9) 

~(p+k)(t) l p+k-2 
I P o I , 

(p+k) I :5.. (p+k) (p+k-1) i~O 

(p+k-2-i) a1 (t ) 
{ (i+l) I (p+k-2-i) I 0 

~(i+l)(t) a(p+k-2-i)(t) 

• I ~i+l) I o I + I ~p+k-2-i) I o I· I 
/i) (t ) 
·P ., 0 I}· 

l. • 

Proof: Since ~O and ~l are solutions of the homogeneous equa-

tion we have 
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¢( 2)(t) = -al(t)¢(l)(t) - ao(t)¢ (t) p p p 

for p = O, 1. Applying Leibniz' rule for the successive derivatives 

of a product, we have 

¢ (p+k) (t) 
p 

for k > 2. Division of both sides by (p+k) l and some cancellation 

will yield 

/p+k)(t) p+k-2 (p+k-2-i) 
1 a1 (t) p =- l (i+l) (p+k-2-i)l (4.10) (p+k)l (p+k) (p+k-1) i=O 

¢~i+l)(t) p+k-2 (p+k-2-i) ¢(i)(t) 1 ao (t) 
• l • p 

(i+l)l (p+k)(p+k-1) i=O (p+k-2-i)l il 

To complete the proof we take absolute values of both sides of (4.10), 

apply the triangle inequality to the right side and evaluate the 

expressions at t = t to obtain (4.9). 
0 

Lemma 15: If p = O, 1 and k~l, then 

¢(p+k)(t) 
I p o I k 

(p+k) 1 ~ 0 • 

Proof: By definition of ~O' we have ~(l)(t) = O. 0 0 
By definition 

of ~l we have 

¢i 2)(to) = -al(to)~il)(to) - ao(to)¢1(to) = -al(to). 
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Thus the inequality is satisfied for k = 1. For the case k > 2 we will 

use the inequality {4.9) of Lemma 14 and an induction argument. To 

perform the induction, we assume that 

4> {p+j) {t ) 

I P( )lo l<ojforj=l,2, ••• ,k-l{k_>2). p+j -

/j ) ( t ) a (j ) ( t ) 
By definition of o we have I O j 1 ° I~ oj+l and I ~ 1 ° I ~ oj+l 

for all j (4.7). The use of these estimates in (4.9) implies that 

4>(p+k)(t) p+k-2 I P o I< -,---,-1~-~ l { (i+l)op+k-2-i+l • 0 i+l-p 
(p+k)I - (p+k)(p+k-1) i=O 

P+k-2-i+l i-p + (1 • (1 } 

k-1 
(1 

= --.....----( p + k) ( p + k -1) 

p+k-2 
l {o{i+l) + l} 

i=O 

k-1 
= (p~k) (p+k-1) { ~ (p+k-1) {p+k) + {p"!"k-:-1)} 

k k-1 
(1 (1 

= T + p+k • 

1 (1 Since k ~ 2 and o ~ 1, p+k ~ 2; therefore 

4>(p+k)(t) 
I p 0 

(p+k) I 

and the proof is conipletc. 

Lemma 16: For n > 2 and k > 2 we have 
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nlcp(n+k)(t) 
I n o 

(n+k)l 
(4.11) 

nl<P(n+i)(t) k-2 a(k- 2-i)(t) n!<P(n+i)(t) 
0 I (~+i) I o I + l I ~k-2-i) l o I O I (n~i) l O 

i=O 

(n-2)l<P(n- 2+k)(t) 
I n-2 o I + n(n-l) • (n-2+k) l } • 

Remark: The reader should note that we require n ~ 2. If the 

~n-Z term is suppressed and n is set equal to O, inequality (4.9) 

is not obtained. 

Proof: From (1.1) we have 

for n > 2. By Leibniz' rule we have 

(4.12) 
n+k-2 l ,n+k-2) ao(n+k-2-i)(t)$n(i)(t) + $(n-2+k)(t). 

i=O i n-2 

If we evaluate this expression at t = t , and realize that 
0 

<P(j)(t) = 0 when j n o < n, then we obtain 

cp(n+k)(t) 
n o = -

n+k-2 l cn+k-2) al(n+k-2-i)(to) cp(i+l)(t) 
i=n-1 i n o 

n+k-2 +k- 2 ( ) ( ) ( \ _ ~ (n i ) a n+k-2-i (t) $ i (t) + cp n-2+k\t) 
l O o n o n-2 o 

i=n 
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k-1 
= _ ~ cn+k-2) (k-1-i)( ) ~(n+i)(t) 

i~O n-l+i al to ~n o 

+ /n-2+k)(t ). 
n-2 o 

n! Multiplication of both sides by (n+k)! will yield 

nlcj>(n+k)(t) 
n o ------= (n+k) I 

(4 .13) 

1 
(n+k)(n+k-1) {-

k-2 
l 

i=O 

(k-2-i) ao (to) 
(k-2-i)! 

k-1 (k-1-i)( ) al to 
l (n+l) (k-1-i)! 

i=O 

n!cj> (n+i) (t ) 
n o . ------(n+i) l 

(n-2)! cj>(n-22+k)(t) 
n- o 

+ n(n-l) • (n-2+k) I } • 

n!~(n+i)(t) 
n o 

• --,.(n-+-,i"'")..,.1--

Finally, taking absolute values of both sides of (4.13) and applying 

the triangle inequality on the right we have (4.11) for n > 2 and k > 2. 

Lemma 17: If n > 0 and k = 1, 2, then 

In! cj>!n+k)(to) I k 
< CJ • 

(n+k) l 

Proof: We first note that the cases n = 0 and n = 1 have been 

proved in Lemma 15, so we need only be concerned with the case n > 2 

and will automatically assume that we are dealing with such n for 

the remainder of the proof. In both cases, k = 1 and k = 2, we will 

use an induction argument based upon an inequality similar to (4.11) 

for the case k = 1 and upon (4.11) itself for the case k = 2. 

Case k = 1. First we must derive an inequality that will be 

used in the induction argument. If (4.12) is evaluated at t = t 0 for 
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k = 1, the second sum vanishes (qi(j)(t) = 0 when j < n) and the n o 

first sum reduces to a single term, producing the simple equation 

~(n+l)(t) = -al(t) ~(n)(t) + ~(n-l)(t) n o o n o n-2 o 

= -
(n-1) a1 (t) + ~ 2 (t ). o n- o 

nl Multiplication of both sides by (n+l)l and application of the triangle 

inequality will produce 

(4.14)(n+l) 

I nl ~n (to) I < jal(to) I 
(n+l) I - n+l 

(n-2)! ~(n-2+1)(t) 
n-1 I n-2 o +--n+l (n-2+1)1 

which will play a key role in the induction argument. 

For that argument we shall show that if 

(p+l)l 

is satisfied for p = n-2, then it is satisfied for p = n. So, we 

shall assume that it is true for p = n-2. Recalling from (4.7) that 

la1 (t 0 ) l<a, we may deduce, via (4.14), that 

nl ~(n+l)(t) I n o I < a + n-1 ( n) < 
(n+l) I - n+l n+l O = n+l O O • 

Case k=2. As above, we shall show that if 

pl <jl(p+Z)(t 
I p o) I < 2 

(p+2) I - a 

is satisfied for p = n-2, then it is satisfied for p = n. So, for 

the induction hypothesis, we shall assume that it is satisfied for 
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p • n - 2. Fork• 2, (4.11) becomes 

(n+2)1 
< 1 { 
- (n+2)(n+l) n • 

a (l) (t ) ·1 I nl 4> (n) (t ) 1 o n o 
11 • nl 

1/n+l)(t) I n n o 
• (n+l) I 

I ao~;o> I . I nl 
4>(n)(t) 

+ n o I nl 

+ n(n-1) • I (n-2)1 4>(n-2+2)(t) 
I }. n-2 o 

(n-2+2)1 

We shall now apply, to this inequality, the induction hypothesis, the 

results of the case k a 1, and (4.7) to obtain 

(4 .15) 

nl 4> (n+2> (t ) 
n o 

(n+2) I ~ (n+2~(n+l) { n • a2 + (n+l) •a• a 

2 +a+ n(n-l)a} 

1 2 2 = (n+Z)(n+l) { (n + n + l)a +a} 

< 2 n2+n+2 2 a 2 < a • 
n +3n+2 

(Since a ~ 1) 

Lemma 18: If n ~ 2 and k ~ 2, then 

n(n+k-1) + (1!~k-!·l) (k-1) < 1 
(n·I k) (n+k-1) • 

Proof: The inequality will be proved by a fairly classical 

technique, i.e. working back.wards until we reach an inequality which 
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is obviously true. We will apply to (4.15) the following reversible 

sequence of steps: 

and 

n(n+k-1) + (~k+l)(k-1) < l, 
(n+k)(n+k-1) 

n(n+k-1) + (~k+l)(k-1) < (n+k)(n+k-1), 

(~k+l)(k-1) < k(n+k-1), 

(~k+l)(k-1) < k•n + k(k-1) 

O< k • n + (~k-l)(k-1). 

Since the last inequality is obviously true for n ~2 and k ~2, we 

may reverse the order of the steps to prove (4.15). 

This completes the task of proving the lemmas required for 

the proof of Theorem 1. Thus, we are now in a position to state and 

prove Theorem 1, one of our main results. 

Theorem 1: m 
The set of functions {nl~n(t)}n=O forms a Pincherle 

basis at t = t 0 • 

Proof: The proof will consist of an induction argument to show 

that (4.8) is valid for n > 0 and k ~ 1, then applying Boas' theorem 

utilizing the majorant 

m 

h(t) = l 
k=l 

1 which has radius of convergence-. The notation used in the proof is 
0 

defined by equations (4.1), (4.2), (4.4), (4.5) and (4.6). In the 

course of the proof, the reader may find it helpful to consult Table 1 
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n-3 
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Table 1 

Taylor Coefficients of the Functions { h (t)} n 

k=l k=2 k=3 k=4 

cj,(l)(t) 
cj,(2)(t) cj,(3)(t) cj,(4)(t) 
0 0 0 0 0 o 

21 31 41 0 0 

4>(2)(t). 
1 0 

cj,(3)(t) 
1 0 

cj,(4)(t) 
1 0 

/5) (t ) 
1 0 

2 ! 31 41 51 

21 4> (3) (t ) 
2 0 

21 /4) (t ) 
2 0 

21 -i,<5\t > 2 0 
2! cj,(6) (t ) 

2 o 
3! 41 .. 51 · · - 61 

31 cj,(4)(t) 
3 0 

31 cj, (5) (t ) 
3 0 

31 cj, (6) (t ) 
3 0 

31 cj,(7)(t) 
3 0 

41 51 61 71 

41 /5\t ) 4 0 
41 cj, (6) (t ) 

4 0 
. 41 /7) (t ) 

4 0 
41 4>(8)(t) 

4 0 
51 61 7! 81 

. 

k=5 

cj, (5) (t ) 
0 0 

51 ... 

/6) (t ) 
1 0 ... 

61 

214>(7)(t) 
2 0 ••• 

71 

31 4i<8>(t) 
3 0 ••• 

81 

41 /9\t ) 4 0 ••• 

91 
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which lists the first few Taylor coefficients of the first few h 's. n 

Inequality (4.8) has already been established for the first two 

rows of the table (Lemma 15) and the first two columns of the table 

(Lemma 17). Thus, the proof of the theorem hinges upon the proof of 

the inequality for the remainder of the table (n ~ 2, k ~ 3) • 

We enumerate the entries in Table 1 by the following rule. If 

n > 0 and k ~ 1, assign to the pair (n,k) the integer 

µ(n,k) E (n+k)~n+k-1) _ n. 

This is the "standard" enumeration of positive integer pairs. We 

shall prove (4.8) by induction on µ(n,k). If (n,k) is given we 

assume that 

I ml <1>!m+j) (t 0 ) I .· j 
(m+j) I < o 

whenever m + j < n + k, or when m + j = n + k but m > n. Then by 

(4.11), (4.7) and the induction hypothesis, we have 

nl <I> (n+k) (t ) 
n o 

(n+k)l 
1 k-l k-i i 

< { l (n+i) o • o - (n+k)(n+k-1) i=O 

k-2 
+ l ok-1-i • oi + n(n-1) • ok } 

i=O 

= 1 { /· (n • k + (k;l)k ) 
(n+k)(n+k-1) 

k-1 k + o (k-1) + n(n-l)J } 

Ok k 
~ (n+k) (n+k-l) { n • k + 2(k-1) + (k-1) + n(n-1)} 

(Since a z._ 1) 
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= 
0
k (n(n+k-1) + (~1) (k-1)) 

(n+k)(n+k-1) 

k 
< 0 t 

the last step being a consequence of Lemma 18. 

This completes the proof of (4.8) and, by virtue of our remarks 

at the beginning of the section, Theorem 1. 

Remark: The series h(t) may be expressed in closed form as 

o(t-t) 
0 1 

h(t) = 1-o(t-t) 
.o 

for lt-t 0 I <-

Then, for s > O, h(s+t) = ~ < 1 ifs o 1-os 
theorem, a function f(t) analytic in the 

expanded as 

0:, 

0 

1 1 < 20 . Therefore, by Boas' 
1 disc lt-t I < s < -2 may be 

0 O 

0:, 

(4 .16) f(t> ... I b g (t) = 
n n l b n! <I> (t) = n n l a ¢, (t) n n n=O 

where a = b • nl for all n. n n 

n=O n=O 

There is an immediate corollary to the proof of Theorem 1. 

Corollary: If n > 0 and if lt-t 0 I 
lt-toln 

(4.17) 1 
n! 

1 
< - then o' 

We want to make two observations on the results developed so 

far. The first observation concerns the analyticity of the sum of a 

conveq~cnt L-scrfcs an<l the second concerns the explicit form of the 

coefficients a in (4.16). n 

Remark: The corollary implies that the convergence of an 

L-series in a disc centered at t will cause the same L-series 
0 
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to be uniformly convergent in a slightly smaller disc centered at t 0 • 

(Briefly, the argument involves realizing that the series must con-

verge for some real t* > t , applying the first half of Lemma 5 and 
0 

then appealing to the above corollary.) Since all of the ~'s are 

analytic in some fixed neighborhood oft , the uniform convergence 
0 

of the series implies that the sum of the series is analytic in a 

neighborhood of t 0 • This, in turn, implies that the only functions 

which are expandable in an L-series are those which are analytic in 

a neighborhood of t 0 • For functions of a real variable, this means 

that any function expandable in an L-series may be extended into the 

complex plane to a function analytic in a complex neighborhood of 

t • 
0 

Remark: The previously noted uniform convergence implied by 

(4.17) permits the term-by-term differentiation of (4.16) an arbi-

trary number of times (Hille [13]). Thus, we will be justified in 

applying Land its iterates term-by-term and in differentiating the 

resulting series. In consequence of this, we may deduce a complex 

analog of Lemma 11 and conclude that the coefficients in the expan-

sion (4.16) are given by 

for k = 0, 1, 2, • • • • 

The results of th:l.s section have, until now, been obtained 

under the restriction that a2 (t) = 1. We now wish to remove that 

restriction. 
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Theorem l': Let (Ly)(t) = a2 (t)y"(t) + a1 (t)y' (t) + a0 (t)y(t) 

where a2, a1 and a0 are real-analytic on I and a2(t) > 0 for ttI. If 

f(t) is analytic in a (complex) neighborhood oft, then in some neigh-o 

borhood oft f may be expanded as 
0 

co 

f(t) = r a' (t) 
n=O n n 

k (L f) ' ( t ). for k = 0, 1 , 2, • 
0 

Proof: The basic idea in this proof is the introduction of a 

change of independent variable which will transform the problem to 

one for which Theorem 1 applies. The new independent variable will 

be such that Ly is transformed into an expression with 1 as the co-

efficient of the second derivative term. We shall see that changing 

to the variable T, defined by 

(4.18) 
t 

T = I 
t 

0 

. .. 

will accomplish this. (The branch of vz is the one which is positive 

when z is positive. This allows T to be real when tis.) This change 

of variable is invertible. Indeed, we see that in a neighborhood 

of t 0 , Tis an analytic function oft and T(t 0 ) = O, so we may apply 

the Inverse Function Theorem (Hille [13]) to conclude that tis an 

analytic function of T :In a ndchl,orhood of T = O. Thus, if p(t) is 

an analytic function oft in a neighborhood oft= t, then P(T) = 
0 

p(t(T» is an analytic function of Tin a neighborhood of T • O. 
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We shall now verify that this change of variable proves 

Theorem 1'. Define the functions A0 , A1 , A2 and Y by 

(4.19) 

and Y (T) .. y ( t (T)) • 

By the chain rule we have 

y' (t) dY dT dY 1 1 dY = - • -=-. = . -dT dt dT /a 2(t) {A2(T) dT 

and y"(t) d ( ) dT -- y'(t). -dT dt 

' 
1 • iY 1 A2 (T) dY ... 

dT2 - 2 dT• A2(T) (A2 (T)) 2 

If we apply these facts to the transformation of Ly, we have 

Ly= a2(t)y"(t) + a1(t)y'(t) + a0(t)y(t) 

Formally, the operator LT is of the proper form. Indeed, A0 (T) is 

obviously real analytic in a neighborhood of T = 0 and, since A2 (T) 
dY is nonzero in a neighborhood of T = O, the coefficient of dT is 

also real analytic in a neighborhood of T=O. Therefore, we are 

justified in invoking all of our previous results in the discussion 
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Before proceeding any further we must define the set of func-

' I 

LT4>0 = LT4>l • O, 4>0 (0) = 1, 4>0(0) = o, 4>1(0) = o, 4>1(0) = 1 

' and L 4> = 4> 2, 4> (O) • 4> (O) = 0 for n > 2. T n n- n n -

These are simply the L-basis functions for LT. The reader should 

note that if the change of variable, t+T, is introduced in (1.1) the 

above equations are obtained. That is, ~n(T) = ¢n (t(T)) for all n. 

Since f(t) is analytic in a neighborhood oft , then F(T) = 
0 

f (t(T)) is analytic in a neighborhood of T=O. Therefore, we may 

invoke Theorem 1 and the remarks following it to conclude that 

co 

F(T) = l 
k=O 

in a neighborhood of T=O. Inverting the change of variables we 

obtain 

co 

f(t) = }: Lkf(t 0 )¢ 2k(t) + Ja 2 (t 0 ) (Lkf)'(t 0 )¢ 2k+l(t) 
k=O 

in a neighborhood oft • 
0 

Some Consequences of Theorem 1 (and 1 1): With the results of 

Theorem 1 1 in hand, one may derive an interesting integral representa-

ticn for analytic functions and a generalization of the Laurent 

expansion. 

Integral Representation: We shall derive an integral represen-

tation which reduces to the Cauchy Integral Formula when Ly= y". 

Although we have not proved herein the analog of Lemma 5 for the case 
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a2 (t) t 1 the result is basically the same as the one stated. Thus 

we assert that, if f is analytic in a neighborhood oft, the series 
0 

2k+l ,. 
(Lkf)'(t) z • f(z) o (2k+l)l 

converges uniformly for lzl sufficiently small. We define the func-

·tion 

~ m n! 
g(t,z) = l tn (t) n+l 

n=O z 

(which is simply the Laplace transform of g(t,A) with respect to A) 

and note that in view of the asymptotics of the t's, the series 

converges for lt-t I sufficiently small. 
0 

Let A be an annulus in the z plane centered at z = 0 which is 
,.. 

such that the series defining f(z) converges for all zeA. Choose 
,. 

r > 0 so that the series which defines g(t,z) converges for zeA 

whenever lt-t I < r. 
0 

If C is a circle contained in the interior of A and centered 

at z • O, then we may apply the complex convolution to evaluate the 

integral~ f (z);(t,z)dz and obtain 

m 1 ,. ,. 
2ni ~ f(z)g(t,z)dz = l Lkf(to)$2k(t) + /a2Cto) (Lkf)'(to)$2k+l(t) 

k=O C 

= f(t). 

Thus, we have the integral representation 

1 A " 

f(t) • 2ni t f(z)g(t,z)dz 
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which, in the case Ly=y", reduces to Cauchy's integral formula. 

Generalized Laurent Expansion: We shall now derive an expansion 

which is a generalization of the classical Laurent expansion. The 
1 derivation is based upon the expansion of the Cauchy kernel, ~t' in Z-

an L-series. 

The Cauchy kernel is an analytic function oft for tiz and, 

in particular, for O _::. I t-t O I < I z-t O I . Thus, by Theorem 1', we have 

co 

(4.20) 1 --= z-t l C (z)<I> (t) 
n=O n n 

fort in some neighborhood oft. (The coefficients, C (z), are o n 
1 polynomials in~ of degree n+l for all n.) 

0 

The Cauchy kernel is also an analytic function of z, so by 

Theorem l' we have 

co 

(4.21) 1 --= z-t - l C (t)<j, (z) 
n=O n n 

for z in a neighborhood oft. 
0 

The derivation will involve the careful use of both of these 

expansions for the Cauchy kernel. We choose the constant r so that 

}:c (z) <I> (t) 
n n n 

converges for lt-t 0 I < lz-t 0 I <rand let A be an annulus, 

A= {w:r 1 < lw-t 0 j < r 2}, ~here r 2 <rand r 1 > 0. Let c1 and c2 

* * be circles centered at t 0 with radii r 1 and r 2 respectively, where 

* * r 1 < r 1 < r 2 < r 2 • If f(t) is analytic for tcA then we may repre-

sent fas 
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f(t) = _1_ 9 f(z) dz - _..!.._ ~ f(z) dz 
2ni z-t 2ni z-t 

cz c1 

* * for r 1 < lt-t 0 I < r 2• Now replace the Cauchy kernels by their L-series 

expansions, using (4.20) in the integral over c2 and (4.21) in the 

integral over c1• Then we have 

If we define the constants a and S by n n 

C (t). n 

a = 211 9 f(z)C (z)dz and S = ~ 1 f(z) ~ (z)dz, n n n n 2ni f n 
cz cl 

then the expansion may be written as 

CIO C10 

f(t) = la~ (t) + l SC (t) 
n=O n n n=O n n 

In the case Ly=y" this reduces to the classi-

cal Laurent expansion for f. 



5. Analyticity of L-Positive Functions 

In this section we shall prove our other major result, L-

positivity of a function f implies analyticity off. For the con-

venience of the reader we shall repeat the definition of L-positivity. 
00 Definition: A function f(t)EC (I) is termed L-positive at 

t 0 EI if it satisfies the two positivity conditions, Lkf(t) ~ O, 

tEI, k = o, 1, 2, • and (Lkf)'(t) > O, k = O, 1, 2, • 
0 -

We will prove two forms of Theorem 2, first a weak version, 

and then a strong version. The weak version, which requires 
k (L f)'(t) ~ 0 on an interval, will be used to prove the strong ver-

sion. As in Theorem 1 we will do the proof with the restriction 

a2 (t) = 1, then remove the restriction by an appropriate change of 

independent variable. The proof itself will depend very heavily 

upon a theorem on generalized convexity proved independently by M. M. 

Peixoto [15] and F. F. Bonsall [6]. To state the theorem, we shall 

impose a condition on I, which, until now, has been an arbitrary 

open interval on the real line. We shall require that I be such that 

* * if t EI and ~(t) is a solution of Ly= 0 satisfying ~(t) = 0 then~ 

does not vanish at any other point of I. ( For example, if Ly = y" + y 

this condition will force the length of I to be less than 1r. This 

restriction will pose no problem since the results being proved are 

of a local nature.) 

53 
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Theorem (Peixoto-Bonsall): Let f(t)£C 2(I) and Lf(t) > 0 for· 

for t 0 ~ t ~ t 1• (The functions ~O and ~l have their usual meaning 

(1.1).) 

Remark: For the case Ly= y", this becomes the familiar result 

that if f"(t) ~ 0 for td, then for t 0 ~ t ~ t 1 , the graph of f(t) 

lies below line joining the points (t 0 , f(t 0 )) and (t 1 , f(t 1)). 

Remark: In view of the remark following Theorem 1, we need 

only show that L-positivity off will imply that f is r~presented 

by its L-series. 

Theorem 2 (Weak Version): Let f(t)£Cm(I) be.such that 

Lkf(t) > 0 and (Lkf)'(t) > 0 for all t£1 and k = O, 1, 2, •• Then 

there exists£> 0 such that 

a, 

f(t) = k~OLkf(to)~2k(t) + (Lkf)'(to)t2k+l(t) 

for tc[t, t +£]. 
0 0 

Proof: We will start by considering the finite L-series 

for tF.:N3 (t 0 ), where N3(t 0 ) = (t 0 , t 0 +b3) is the intersection of the 

right neighborhoods N (t ), N1 (t) and N2(t ). By the hypotheses 
0 0 0 0 

and by Lemma 1 we have Lkf(t 0 )~ 2k(t) > 0 and (Lkf)'(t 0 )~ 2k+l(t) .::_ 0 
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for t&N3(t 0 ) and for all k. By the hypothesis, Ln+lf(t) ~ O, and by 

Corollary 2 of Lemma 1 we have 

for t&N3 (t 0 ) and for all n. Therefore, 

is a series of non-negative terms which is bounded above by f(t) for 

t&N3 (t 0 ). · This forces the series to converge as n + 00 • Consequently, 

we may allow n to tend to infinity in the finite L-series and obtain, 

GO 

f(t) = l Lkf(t 0 )t 2k(t) + (Lkf)'(t 0 )t 2k+l(t) + R(t) 
k=O 

where R(t) • lim <,11+lLn+lf(t). The proof of the theorem, then, will 
n-+oc» 

simply involve showing that R(t) = 0 fort in some right neighborhood 

of t 0 • This will be accomplished by obtaining some estimates on 
....n+l n+l u L f(t) and showing that the estimates tend to Oas n + ao. 

n+l n Since L f(t) = L(L f)(t) ~ O, for t&I, the Peixoto-Bonsall 

Theorem implies that 

(5.1) 

for t 0 .::_ t .::_ t 1 where t 1 is an arbitrary, but fixed, number in N3(t 0 ). 

By Corollary 1 of Lemma 1, we know that G(t,T) ~O for t 0 .::_T.::_t.::_t1• 
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Thus we may operate repeatedly on both sides of (5.1) with G, and use 

(3.7), to obtain 

(5.2) 

for t 0 ~ t ~ t 1 and for all n. Our goal is to show that each term on 

the right side of (5.2) tends to Oas n + m. 

The convergence of the L-series forces lim Lnf(t )4>2 (t) m 0 o n n-+oo 

for te: [t 0 , t 1 ]. 

and for all n. 

By Lemma 6 we have <1>2 +l(t) < <1>2 (t) for t < t < t 1 · n - n o- -

Thus we have 

n Consequently, it is true that lim L f (t 0 )4>2n+l (t) = 0 for tc ~ t ~ lj_ 
n-+oo 

Thus the only term of (5.2) that can possibly present any difficulties 

fort 
0 

(5.3) 

~ t ~ t 1 and for all n. Finally, we apply Lemma 4 to obtain 

( c2 (t-t >) 2n 
Lnf(t1)<f>2n(t) ~ Lnf(tl)d2 (2n)!o 

for t 0 ~ t ~ t 1 . Thus, the problem has been reduced to showing that 

. n (c2(t-to))2n !: L f(t 1) (2n) ! = 0 

fort sufficiently close tot • 
0 

The technique for showing this will involve consideration of 

the L-series expansion for f about t = t 1 and deduction of the above 

limit from the convergence of that expansion. 
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n n By the hypotheses we have L f(t) .::, 0 and (L f) '(t) .::, 0 for 

tE(t 1 , t 0 +b3), so we may repeat the arguments used at the beginning 

of the proof to conclude that the L-series expansion, about ts t 1 , 

for f, converges in some right neighborhood of t 1 . In the remainder 

of the proof we will identify quantities associated with the expan-

* sion about t = t 1 by 

implies that 

Then the convergence of the expansion 

fort in some right neighborhood of t 1• By means of Lemma 4, we have 

* ( c~ (t-t 1>) 2n * 
dl (2n)I ~ ~2n(t) 

in a right neighborhood of t 1. Then (5.4) implies that 

( C *ct-t )\ 2n 
lim L nf ( t.. ) " 1 1 '/ = O n-+<>o ~i (2n)I 

fort in a right neighborhood of t 1 • Let b* > t 1 be an arbitrary, 

but fixed, number such that 

Then for O < t-t 0 ~Ewe have, 

from (5.3), 



58 

and the last quantity has limit Oas n + co. 

Therefore, limGI\nf(t) = 0 for O < t-t _< E, and we have the 
- 0 

expansion 

for O < t-t < E. 
0 

n-+m 

Theorem 2 (Strong Version): Let f be L-positive at t EI. 
0 

Then there exists an E > 0 such that 

for O < t-t < E. 
- 0 

Proof: Take N3(t 0 ) and t 1 as in the proof of the weak version. 

Precisely the same arguments used at the beginning of that proof may 

be applied here to conclude that 

CCI 

f(t) = k!OLkf(t 0 ), 2k(t) + (Lkf)'(t 0 )'zk+l(t) + R(t) 

for t 0 .=:._ t .=:._ t 1 , where R(t) = lim GnLnf(t). If we define 
n-+oo 

A 

f(t) = f(t) - r Lkf(t ), 2k(t) 
k=O 0 

then, of course, 

00 

(5.5) f (t) = kIO (Lkf), (to)$2k+l (t) + R(t) • 

Our method consists of applying the weak version of the theorem 

to show that 
co 

f(t) = I (Lkf)'(t 0 ), 2k+l(t). 
k=O 
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To satisfy the hypotheses of the weak version we must show that 

Lkf(t) > 0 and (Lkf)'(t) > 0 for all k and fort sufficiently close 

tot. In view of Lemma 11 and the L-positivity off it is sufficient 
0 

to show that LkR( t) ~ 0 and (L ~) ' ( t) ~ 0 for all k and for t suf-

ficiently close tot. 
0 

To establish the inequality L~(t) ~Owe shall use the equation 

(5.6) R(t) = f(t) - kIO ~kf(to)q2k(t) + (Lkf)'(to)q2k+l(t)), 

P cl 
Claim: L R(t) ~ 0 for p = O, 1, 2, ••• and O < t-t 0 < C2 (t 1-t 0 ). 

p C1 
We operate on both sides of (5.6) with L, for O ~ t-t 0 < C2(t 1-t 0 ), use 

Lemma 11 to justify operating term by term with LP, and obtain 

(5. 7) 

The proof of the claim will be complete if we can show that the right 

hand side of (5.7) is non-negative. To accomplish this, we shall first 
p 

apply L to the finite L-series (3.6) to obtain 

(5.8) 

By hypothesis, Lqf(t) > 0 and (Lqf)'(t) > 0 for all q, so that the 
- 0 -

left side of (5.8) is non-negative, the remainder is non-negative, and 

each term of the series is non-negative. 

Therefore, we may let m tend to infinity in (5.8) to obtain, 

co 

Lpf(t) = k!OLp+kf(t 0 )~ 2k(t) + (Lp+kf)'(t 0 )~Zk+l(t) + Rp(t) 
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where R (t) = lim Gm+lLm+l+pf. 
p m+a> 

Since cf*lLm+l+pf(t) > 0 it must be 

true that R (t) > O. We may express Rp(t) as p -

and observe that the right side of (5.9) is identical to the right 

side of (5. 7). 

p • o, 1, 2, • 

Claim: 

Therefore, LPR(t) = R (t), and so LPR(t) ~ 0 for p 
C1 •• and O < t-t < -C (t 1-t ). 

- 0 2 0 

P cl 
(L R) 1 ( t) _> O for p = 0, 1, 2, • • • and O < t-t < -C ( t 1-t ) • 

- o 2 O 

In the argument above we have shown that 

m-+co 

Our scheme now will be to show that 

and that (LPR)'(t) = lim d: Gm+lLm+l+pf(t). This will prove the 
Jr<X> 

present claim. 

We know that 

t 
(5.10) c,m-f-lLm+l+pf(t) = f G(t,T)G~m+l+pf(T)dT. 

to 

Differentiating both sides of (5.10) we obtain 

t 
ddt Gm+lLm+l+pf(t) = f 0: G(t,T)G~m+l+pf(T)dt. 

to 
a From Corollary 3 of Lemma 1 we have at G(t,T) ~ 0 for t 0 ~T ~ t ~ t 1 • 

Therefore, 
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for O < t-t < t 1-t and for all m and p. We now need to argue that 
- 0 - 0 

for O < t-t 
0 

sequence 

It will be sufficient to show that the 

is uniformly Cauchy. We note that the sequence is non-increasing as 

m-+c>o (take derivatives of both sides of (5.8) and apply the hypothesis.) 

so that 

for all j ~ O. 

Then we have 

-Jt a~ G(t,.) {G~m+l+pf(.) - Gm+jLm+j+l+pf(.)} d. 
to 

where M = t sup 
t <T<t o--

a atG(t,T). 
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We now estimate the quantity under the integral sign. Observe that 

cf1tm+l+pf(t) converges to Rp+1(t) as m-+a> and that the convergence 

is uniform. Therefore the sequence 

cl 
is uniformly Cauchy for O < t-t 0 < C2 Ct1-t 0 ). Therefore, we have, 

for any &1 > O, 

l (cf1Lm+p+lf (-r) - cf*jLm+j+p+lf (-r)) d-r ~ £1 (t-t 0 ) 

to 

for all m sufficiently large, and for O < t-t 
- 0 

m we then have 

cl 
< -(t -t ) . c2 1 o For such 

ddt cfH"lLm+l+pf(t) - ddt ~j+lLm+j+l+pf(t) ~Mt£1 (t-to) 

cl 
for j > 0 and t-t 0 < C2 (t 1-t 0 ). 

Therefore 

cl 
is uniformly Cauchy for O < t-t 0 < Cz (t 1-t 0 ), and hence 

(LPR)'(t) = lim d~ e,m+lLm+l+pf(t). 
ut+CX> 

P cl 
Therefore (L R)'(t) > 0 for O < t-t 0 < Cz (t 1-t 0 ). 

We observe that, since LPR(t) = lim Gm+lLm+l+pf(t) and 

Gm+lLm+l+pf(t) = 0 for all m, it must be true that LPR(t) a O for 
0 0 

all p. Since 
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...!L G11tHLm+l+pf(t ) = 0 
dt 0 

for all m and p we also have (LPR)'(t) • O. 
0 

This observation, together with (5.5), allows us to conclude 
k" k" k that L f(t) = 0 and (L f)'(t) = (L f)'(t) for all k. Therefore, 

0 0 0 
" the formal L-series for f(t) is 

00 

k~O(Lkf)'(to)t2k+l(t). 

Fort sufficiently close tot , we have, by the claims, 
0 

The weak version of the theorem then implies the existence of an 

e: > 0 such that 
00 

f(t) = l (Lkf)'(t )t 2k+l(t) 
k=O 0 

for t < t < t + e:. Therefore, R(t) = 0 and 
0 - - 0 

00 

f(t) = k!OLkf(to)t2k(t) + (Lkf)'(to)t2k+l(t) 

fort < t < t + e:. This completes the proof of Theorem 2. 
0 - - 0 

The result, L-positivity implies analyticity, has now been 

established for the case a2 (t)= 1. We shall now prove the theorem 

for the general case a2 (t) > O. The method will be to introduce 

a new independent variable which will convert the problem to one 

which cnn be solved by the macM.ncry already developed. 

Theorem 2 1 : Let a2(t) > 0 for tel and let Ly(t) = a2(t)y"(t) 

exists an e: > 0 such that 

If f(t) is L-positive at t El then there 
0 
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00 

f (t) = k~O L kf (to) '2k (t) + J a2 (to) (L kf), (to) '2k+l (t) 

fort < t < t + £. 
0 - - 0 

Proof: We shall use the same change of variable (4.18) and 

notation (4.19) employed in the proof of Theorem l'. Then we have 

Let btl be an arbitrary, but fixed, number such that b > t. Since 
0 

the integrand is positive, Tis an increasing function oft for 

t£[t 0 ,b] and the transformation may be inverted to give t as a func-

tion of T for Tt[O, T(b)]. Let F(T) = f(t(T~ We see that, as in 

the proof of Theorem 1', this change of variables transforms the 

operator L into the operator LT. Then, 

Lf(t) = LTF(T), 

so that, if Lf(t) .::._ 0 for t£[t 0 ,b] then LTF(T) .::._ 0 for Te:[O, T(b)]. 

One may make a trivial induction argument to show that if Lkf(t) .::._O 
k for all k and tt[t 0 ,b] then LTF(T) ~ 0 for all k and for Tt[O,T(b)]. 

Since /a 2 (t 0 ) (Lf) '(t 0 ) = c&('t~F(T)) IT-=O we can argue that 

ddt (L~F (T)) I T=O ~ 0. Therefore, Theorem 1 may be invoked to assert 

the existence of ;e(o, T(b~ such that 

00 

F(T) = l L;F(O)~zk(T) + (LkF)'(0)~ 2k+l(T) 
k=O 

for Te[O,e]. -1" If we invert the change of variable and take e: = T (e) 

we may conclude that 
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OI) 

f(t) • k!OLkf(to)$2k(t) + /a2Cto) (Lkf)'(to)~2k+l(t) 

fort < t < t + E. 
0 - - 0 

Remark: The condition (Lkf)'(t) > 0 has played a very crucial 
0 -

role in the proof of Theorem 2. However, there is reason to suspect 

that its necessity is more a function of the method used than of the 

problem itself. We conjecture that the conclusion of Theorem 2' is 
k still true assuming only L f(t) ~ 0 for tEI. The suspicion is based, 

in part, on some simple examples. 

Consider first the operator Ly= y". k Here L f(t) ~ 0 becomes 

simply f( 2k)(t) ~ O. Then Boas' theorem (Section 2) implies that 

f(t) is analytic in a neighborhood of the interval. A second example 
k involves the operator Ly= y" - y. If L f(t) ~ 0 for all k, then 

Lf ~ 0 implies f( 2)(t) - f(t) ~ 0 or f( 2)(t) ~ f(t) ~ O. Also 

L2f ~ 0 implies (Lf)" - Lf ~ O, / 4>(t) - / 2)(t) - Lf ~ O, and hence 

f( 4)(t) ~ f( 2)(t) + Lf ~ O. Continuing in this fashion, we see that 

all the even derivative~ off are non-negative. Thus f must be 

analytic. 

Thus, while the condition (Lkf)'(t) > O, in conjunction with 
0 -

Lkf(t) ~ O, is sufficient to guarantee analyticity off, it is not 

always necessary. The question of dispensing with the hypothesis 

(Lkf)'(t) > 0 is open and there does not seem to be a way of answer-
o -

ing it in the context of L-series. 
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POSITIVITY PROPERTIES ASSOCIATED WITH 

LINEAR DIFFERENTIAL OPERATORS 

by 

William Randolph Winfrey 

(ABSTRACT) 

The determination of the influence exerted on the analytic 

character of a real function f£C° by the signs of its derivatives 

is a problem of longstanding interest in classical analysis. Most 

investigations of the problem have centered on extending the well 

known theorem of S. Bernstein which asserts that a function f£Cco 

with all derivatives non-negative on an interval I is necessarily 

real-analytic there; i.e., f is the restriction to I of a complex 

function analytic in a region containing I. 

The scope of this dissertation is the study of analogous posi-

tivity results associated with linear differential operators of the 

form 

(Ly) (t) = a2(t)y"(t) + a1(t)y' (t) + ao(t)y(t), 

where a2(t), a1(t) and a 0 (t) are real-analytic in some interval I 
00 

and where a2 (t) > 0 for t £ I. We call a function f £ C L-posi-

tive at t 0 c I if it satisfies the "uniform" positivity condition 

Lkf(t)~O, t £ I, k = O, 1, 2, ••• , plus the "pointwise" posi-

tivity condition (Lkf)'(t 0 )>0, k = O, 1, 2, ••• (L0 f = f, tkf = L 



(1k~lf), k>l). Our principal result is that L-positivity off 

implies analyticity off in a neighborhood of t 0 • If Ly= y", 

this reduces to Bernstein's theorem. 

We prove our result using a generalized Taylor Series 

Expansion known as the L-series. The L-series expansion about 

t = to for a function fgCm is: 

The 

and 

a, 
I Lkf(to)~zk(t) + ~az(t 0 ) (Lkf)'(to)$2k+1Ct). 
k=O 

"L-basis" functions Hn Ct) la, are defined by: 
n=O 

' L$o = Lh = 0, $o(to) = 1, $0 (to) = o, H(to) = 

\/'a2(to)$1(t 0) = 1 

' L~n+2 = $n, $n+z(t 0 ) = $ n+z(t 0 ) = O, n>O. 

o, 

Our technique is to show that L-positivity off implies the 

convergence of the above series to f(t). Then we observe that the 

analyticity of az, a1, and a0 implies the analyticity of the ~'sand 

thus the analyticity of the sum, f(t), of the series. 

We shall also show that the same conditions on a2, a1, and a0 

allow any function f, analytic in a neighborhood of t 0 , to be repre-

sented by an L-series. If az(t) = 1, the sequence {n!$n(t)}m 
n=O 

provides a heretofore unobserved example of a Pincherle basis. 

k ' The problem of dispensing with the hypothesis (L f) ( t ) > 0 
0 -

in our result, L-positivity implies analyticity, is still open and 

does not seem to be solvable by our methods. 
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