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ABSTRACT 

 

 

 In a three paper essay series we address the human impact in SCRM from the 

microeconomic and macroeconomic perspectives. First, using a positivist theory building 

approach, we synthesize behavioral risk management and supply chain risk management 

theory to propose behavioral supply chain risk management as a new topic area. This 

paper is microeconomic in nature and focuses mostly on individuals as the unit of 

analysis in a SCRM context. Second, we introduce cross-impact analysis as a scenario-

based supplier selection methodology. We demonstrate how cross-impact analysis can be 

used to provide supply chain decision-makers with probability estimates of the future 

viability of the members of a given set of possible suppliers in a backdrop of 

macroeconomic risk.  

The third and final paper in the series incorporates the probability estimates resulting 

from a cross-impact analysis exercise into a hybrid stochastic mixed-integer 

programming (SMIP) technique CIA-SMIP. We demonstrate how the CIA-SMIP 

approach can be utilized as a single-source supplier selection model.  

In its totality, this dissertation represents a step towards the theoretical framing of the 

human impact on SCRM into two main distinguishable areas: microeconomic and 

macroeconomic. 
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In this three paper essay series we address the human impact in SCRM from the microeconomic 

and macroeconomic perspectives. First, using a positivist theory building approach, we 

synthesize behavioral risk management and supply chain risk management theory to propose 

behavioral supply chain risk management as a new topic area. This paper is microeconomic in 

nature and focuses mostly on individuals as the unit of analysis in a SCRM context. Second, we 

introduce cross-impact analysis as a scenario-based supplier selection methodology. We 

demonstrate how cross-impact analysis can be used to provide supply chain decision-makers 

with probability estimates of the future viability of the members of a given set of possible 

suppliers in a backdrop of macroeconomic risk.  

The third and final paper in the series incorporates the probability estimates resulting from a 

cross-impact analysis exercise into a hybrid stochastic mixed-integer programming (SMIP) 

technique CIA-SMIP. We demonstrate how the CIA-SMIP approach can be utilized as a single-

source supplier selection model.  

In its totality, this dissertation represents a step towards the theoretical framing of the human 

impact on SCRM into two main distinguishable areas: microeconomic and macroeconomic.
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Introduction 

 

Overview 

As supply chains become more global and complex they are increasingly at risk of being 

adversely affected by random physical phenomena or events and/or human risk behavior (C. S. 

Tang 2006). The majority of supply chain risk management (SCRM) and operations 

management models are centered around protecting the supply chain from the negative effects of 

random physical phenomena or events that cause partial or complete interruptions of the flow of 

goods in the supply chains (Bendoly et al. 2006; Schorsch et al. 2017) . The impact of humans in 

the supply chain is a less studied area of supply chain management (Schorsch et al. 2017). Even 

less prevalent are studies that specifically address the impact of humans in a supply chain risk 

management context (see Ho, Zheng, Yildiz, & Talluri, (2015)).  

Recently, there has been increased interest in the human impact on supply chains (Macdonald 

and Corsi 2013). A growing body of literature exists that addresses the human impact in SCRM 

from different perspectives. A significant portion of these studies is centered around risk taking 

behavior at the individual level (Ambulkar, Blackhurst, & Cantor, 2016; Cantor, Blackhurst, & 

Cortes, 2014; DuHadway, Carnovale, & Kannan, 2018 ) and at the firm level (Bode et al. 2011a; 

Chopra and Manmohan S Sodhi 2004; G. A. Zsidisin and Ellram 2003). A relatively small 

portion of SCRM studies focuses on the impact of human economic at the macroeconomic level 

(Anis et al. 2002; Cao et al. 2016; Erbahar and Zi 2017; Hammami et al. 2014; Hoekman and 

Leidy 1992) This  dissertation, through a three paper series, extends prior research on the impact 



 xiv 

 

of humans in SCRM by highlighting the differences between two main approaches to SCRM: 1) 

microeconomic and 2) macroeconomic (Ho et al. 2015).  

SCRM through a microeconomic lens 

In the first of three papers (Paper 1), we address the need for a unified approach to individual 

risk behavior in SCRM. Therein, we advocate for a bona fide behavioral supply chain risk 

management topic area. We propose that the field be named behavioral supply chain risk 

management (BSCRM). We contribute to the literature by conceptualizing BSCRM as a new 

topic through the synthesis of behavioral risk management and SCRM theory. This paper is 

microeconomic in nature and focuses mostly on individuals as the unit of analysis in a SCRM 

context. This is in contrast with the remaining two studies in the series which view the impact of 

humans through a macroeconomic lens. 

SCRM through a macroeconomic lens  

The second paper’s (Paper 2) primary purpose is to introduce Cross-Impact Analysis (CIA) 

(Gordon and Hayward 1968) as a scenario-based methodology. In this study, CIA is used to 

predict ways in which a supply chain can be adversely affected by independent macroeconomic 

events that are external to it.  CIA is well suited for the purposes of analyzing a set of interrelated 

events. Given a set of interdependent macroeconomic events, CIA provides practitioners with a 

way to systematically reduce the numbers of possible SCRM outcomes into a mathematically 

tractable and thus more manageable set of scenarios. We demonstrate how CIA can be used as a 

tool for supplier selection in a global environment faced with the risk of disruptions caused by 

macroeconomic events. CIA provides supply chain decision-makers with probability estimates of 

the future viability of the members of a given set of possible suppliers in a backdrop of 

macroeconomic risk.  
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The third and final paper in the series incorporates the probability estimates resulting from a CIA 

exercise like the one outlined in Paper 2, into a hybrid stochastic mixed-integer programming 

(SMIP) technique CIA-SMIP. We extend an SMIP model introduced in Sawik, (2018) and 

demonstrate how the CIA-SMIP approach can be utilized as a single-source supplier selection 

model.  

Research agenda   

The three studies, Papers 1, 2 and 3 aim to answer the following research questions respectively: 

1) Should BSCRM be considered its own topic area? 

2) How does human microeconomic activity impact supplier selection in global supply 

chains? 

3) How can we incorporate the human impact into an extant quantitative supplier selection 

model?  

In their totality, the three papers are a step towards the theoretical framing of the human impact 

on SCRM into two main distinguishable areas: microeconomic and macroeconomic. In general, 

we consider microeconomic activity to comprise the human impact that is internal to the supply 

chain. Whereas macroeconomic activity is considered as being external to the supply chain. Both 

microeconomic and macroeconomic events can expose the supply chain to operational and/or 

financial risks. The costly nature of the manifestation of supply chain risk has been confirmed in 

extant literature (Craighead et al. 2007).  Thus, it is in the firms’ interest to understand the 

various types of supply chain risks to which it is exposed, and also know how to mitigate against 

them. With the understanding that risk is unavoidable (Craighead et al. 2007; Sodhi, Son, & 

Tang, 2012),  this dissertation paper series serves to add to the body of knowledge on possible 

ways of minimizing firms exposure to supply chain risks.   
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Chapter 1 

Toward a Behavioral Theory in Supply Chain Risk Management 

Abstract 

We advance the topic area of supply chain risk management SCRM by addressing the lack of a 

clearly defined and unified approach to accounting for human risk behavior in supply chain 

studies. Using a positivist theory-building approach, we begin to develop a meta-theory and 

delineate behavioral supply chain risk management (BSCRM) from SCRM. We find that extant 

studies about behavior in SCRM mostly use the firm as the unit of analysis; even though it is 

individual decision-makers’ risk behavior that is being realized in many SCRM outcomes.  

Our main contributions to the literature are: 1) the conceptualization of BSCRM as a new topic 

and 2) the introduction of a BSCRM framework. We demonstrate how this framework 

synthesizes behavioral risk management with SCRM theory and paves the way for future 

theoretical contributions to this important field. As far as we can tell we are first to suggest the 

unifying term, ‘behavioral supply chain risk management’ (BSCRM).  

1 Introduction 

The role of human risk behavior in determining supply chain risk management (SCRM) outcomes is often 

overlooked. For example, few people recognize the 2007 global financial crisis as a SCRM problem 

(Shefrin, 2016). Aspiration and the exuberant prospect of personal gain drove individual decision-makers 

at Merrill Lynch and other similar investment banking firms to take inordinate amounts of risk leading up 

to the crisis (Shefrin, 2016). The result of these misguided behavioral choices was a concentration of  

high-risk strategy in the one part of the banking supply chain. Namely: the riskiest segment of the housing 

sector. This precarious concentration of risk ultimately proved to be unsustainable and was a direct cause 

of the 2007 global financial crisis (Shefrin, 2016).  
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Without even considering the human fallout and the long-lasting negative effects of the financial crisis, 

the US Treasury Department put the resultant total loss in household wealth in the US alone at $19.2 

billion (Childress, 2012). This realization that the global financial crisis could have been avoided through 

the appropriate management of behavioral risk in the banking supply chain, points to the relevance and 

importance of the human behavior in SCRM.  

The area of SCRM, in general, is becoming increasingly popular and rich with innovative studies 

(Grötsch, Blome, & Schleper, 2013; Ho, Zheng, Yildiz, & Talluri, 2015; Hohenstein, Feisel, & Hartmann, 

2015). However, the consideration of human or individual decision-makers’ behavior in SCRM models 

and frameworks is in its nascent stages (Macdonald & Corsi, 2013)  

In the past there has been an initial tendency for OM researchers to “assume away” the behavioral 

or human factor in their initial OM decision models (Bendoly, Donohue, & Schultz, 2006). In following 

the chronological evolution of other related topic areas in operations management (OM) such as product 

development, process improvement and design and, logistics and supply chain management (SCM), 

studies centered around the mechanistic operational aspect have generally preceded human behavior-

based studies (Bendoly et al., 2006). For example, after a period characterized by an abundance of studies 

based on objective quantitative models, Boudreau et al. (2003) begin to address the behavioral gap in OM 

literature by identifying the common behavioral assumptions made in OM studies. They outline the 

criticality of human behavior when it comes to the success of OM tools and techniques. Bendoly et al. 

(2006) build upon Boudreau et al. (2003) and extol the unrealized potential for the explicit consideration 

of the human impact in OM. In a similar manner, as SCM has matured as a field, there has been increased 

interest in human behavior in the supply chain. For example, in logistics and distribution management, 

Tokar, (2010) highlights the significance of behavioral research as a way of building theory and 

improving the predictive accuracy of extant models. Later on, Schorsch et al. (2017) build upon this study 

and formally introduce a unified behavioral supply chain management (BSCM) framework which 

delineates BSCM as a separate topic area from SCM.   
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We predict that the same chronological turn of events is bound to occur in the SCRM. Our 

literature search reveals that the question of “What risks should be managed in the supply chain?” have 

thus far comprised the bulk of the literature but there is increasing interest in the questions of “Who 

manages supply chain risk?” and “How can they be managed?” However, this research direction is in its 

nascent stages and there is yet to be a unifying BSCRM framework and theory. We contend that applying 

Schorsch et al.'s (2017)  BSCM theoretical framework as a way of closing the behavioral gap in SCRM 

research is insufficient because the risk management in a supply chain setting presents its own set of 

peculiar and distinct problems and challenges. The BSCM framework broadly defines the behavioral 

aspect of individuals while embedded in a SCM context (Schorsch et al., 2017). However, the BSCM 

framework makes no mention of human risk behavior in a SCRM context.  The SCM context is clearly 

differentiated from the SCRM in the literature  (Sodhi, Son, & Tang, 2012). Also, human beings have 

been shown to behave differently when faced with risk (Shefrin, 2016). Thus, it is not an inconceivable 

conceptual leap to assert that there should exist a theoretical delineation between human behavior in a 

SCM context and human behavior in a SCRM context. To that end, this study draws the line between the 

related fields of BSCM and behavioral supply chain risk management (BSCRM).    

We argue that the proposed emergent topic area of behavioral SCRM (BSCRM) cannot be a 

simple add-behavior-to-SCRM-and-stir proposition. Managing people in the backdrop of risk calls for the 

specific application of risk behavior-based theoretical approaches. These differ from some of the popular 

normative behavioral theories prescribed in micro organizational behavior (OB) and management 

literature (Shefrin, 2016). Humans have been shown to display unexpected behavior when faced with risk 

(Shefrin, 2016). For example, the expected utility theory by Von Neumann & Morgenstern (1944)  makes 

the normative assumption that decision framing affects actual choice. However, Tversky and Kahneman 

(1981) show, through the use of behavioral experiments, that the loss or gains framing elicits unexpected 

behavioral responses which were more adequately explained by their own prospect theory. There are 

relatively few studies that consider human behavior in a SCRM setting. Based on this, we make the case 

that BSCRM should be considered as a separate topic area from BSCM.  
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1.1 The scope of behavioral SCRM (BSCRM) 

Drawing from Schorsch et al. (2017), we find defining BSCRM and its scope to be an 

appropriate starting point for theory building.  SCRM is defined as a coordinated approach 

amongst supply chain members aimed at identifying and managing risks to the supply chain in 

order to decrease overall supply chain vulnerability (see Jüttner, 2004; Jüttner, Peck, & 

Christopher, 2003). We adapt this definition and define BSCRM as the management of human 

behavior under uncertainty or risk in order to reduce supply chain vulnerability. Pivotal to our 

BSCRM definition are the characteristics that set supply chains apart from simple traditional 

Business to Business (B2B) transactional arrangements. They include but are not limited to: 

approaches to inventory management; total cost control; increased visibility and information-

sharing; deliberate joint planning amongst its members and interfirm coordination of risk  

(Cooper & Ellram, 1993). Supply chains are highly specialized and distinct entities that 

transcend firm boundaries. They are recognizable as a deliberate effort towards coordination 

(Arshinder et al. 2008) and collaboration (Wagner & Bode, 2008) amongst its firm members in 

all the important aspects of performance, including a common risk outlook (Li et al. 2015). This 

is in contrast to a collection of loosely connected businesses, each with its own different 

organizational culture and appetite for and approach to risk management.  

1.2 Defining and identifying BSCRM studies 

In order for any study to be relevant to BSCRM, it must be primarily considering risk 

management in a supply chain context. We posit that in order to satisfy this requirement, one or 

more of four widely accepted risk management constructs: 1) risk identification, 2) risk 

assessment, 3) risk mitigation, 4) risk response and risk performance measurement (Jüttner et al., 

2003) have to represent the context of the basic argument or research question. Also necessary 
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would be at least one of two supply chain conditions: 1) at least two supply chain firms in an 

exchange relationship (Cooper, 1997) or 2) the individual risk behavior of a decision-maker 

under consideration having a direct and measurable effect on a supply chain risk. For example, a 

plant manager for a critical supplier may increase the whole supply chain’s exposure to risk if 

she decides not to invest in costly plant robustness because doing so may result in a lower end-

of-year bottom line and subsequently a lower annual personal bonus.  

1 Literature review 

Although scarce, the literature is not totally devoid of SCRM studies that take on a 

behavioral angle. Many, like Zsidisin (2003), use behavioral economic theory (Tarde 1902)  to 

present the buyer and supplier as being part of a principle and agent arrangement in which the 

negotiation of interfirm contracts between a principle (the more powerful firm; usually the 

buyer) and an agent (the subordinate or less powerful firm; usually the supplier) is studied. The 

firm is the unit of analysis in this case. Others that adopt the same firm level approach include 

Celly & Frazier (1996), Eisenhardt (1989), Lassar & Kerr (1996), Payan & Nevin (2006), Zeng 

et al. (2015).  The firm level approach to BSCRM is rooted in the idea of a uniform 

organizational approach to SCM. We conjecture that this approach is appropriate and adequate 

for the study of firm behavior in SCM. However, in a SCRM context and when human risk 

behavior is a consideration, the abstraction of BSCRM should be studied at the individual level. 

This is because risk behavior is rooted in psychology (Shefrin 2016) and is thus directly 

attributable to the individual. The unit of analysis should thus be the individual. Studies like 

Parker & Russell (2004) identify behavioral issues such as psychological contracts within 

inter/intra work groups, power and trust as being highly significant managerial issues at the 

individual level. In another study, Thornton et al. (2016) use a broad managerial survey 
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conducted within the U.S. retail industry to suggest that the relationship between organizational 

politics and supply chain orientation is impacted when the top supply chain executive is 

perceived to be politically skilled. Villena et al. (2009) show how employment and compensation 

systems that increase supply chain executives’ risk bearing reduce their willingness to make 

risky decisions thus disincentivizing supply chain integration. The focus of these preceding 

studies is on individuals’ human behavior within supply chains. Thus, they serve as excellent 

reference points because they begin to inform how a BSCRM theoretical framework could begin 

to take shape. Even though they allude to risk taking contexts, the distinction between these 

studies and BSCRM studies is that SCM outcomes like performance or quality, rather than 

supply chain continuity, are what is emphasized. An explicit SCRM orientation is a necessity for 

BSCRM. Specifically, we contend that the management of individual risk behavior in a SCRM 

context has to result in outcomes that are in line with organizational goals.   

A prominent study that adopts a BSCRM stance (and is closest to this research) is Ellis et 

al. (2010). This survey-based study examines the risk perceptions of purchasing managers and 

buyer of direct materials. It draws from exchange theory to show how the individual decisions of 

these frontline individuals can impact supply chain risk. From this study’s results we deduce that 

individual risk decisions are expressed as firm level outcomes. Therefore, the risk behavior of 

even a single employee can expose the supply chain to the risk or disruption or even total failure. 

This is why we assert that there is a need for a theoretical BSCRM framework that can be used to 

derive models that predict the risk behavior of individuals in a SCRM setting.   

  To begin construction of this framework, we make a few key assumptions: 1) we assume 

that at the institutional level there is a uniform SCRM orientation; and 2) based on the 

characteristics of a true supply chain (see Cooper (1997) and Cooper & Ellram (1993)), we 
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assume that one of main goals of member firms in a supply chain is a mutual desire for 

minimization of overall supply chain risk through the inter-firm coordination of their risk 

management efforts across the whole supply chain.  

 As our primary contribution to the literature, we introduce BSCRM as a new topic area 

comprising the study of individuals and individual risk-taking on the organizational production 

frontlines in a SCRM context. On a secondary level, we propose the synthesis of two behavioral 

risk approaches psychological (Kahneman and Tversky 1979) and cognitive (Lopes 1987) with 

SCRM concepts to create a novel BSCRM framework. We hope that our framework will become 

a logical marker or reference point for future researchers as we strive towards a unified BSCRM 

theory.  

In order to arrive at our contribution, we made some conceptual leaps. Conceptual leaps 

are often a necessary process in the building of nascent theory (Klag and Langley 2013). In 

particular, we used abductive reasoning to derive new insights (Klag and Langley 2013). We 

argue that the unit of analysis in behavioral SCRM should not be the supply chain or even the 

firm behavior because: 1) it is individuals that make SCRM decisions; neither supply chains nor 

their member firms, as entities, can make decisions that affect supply chain risk, and 2) the 

theoretical concepts of behavioral risk and behavioral risk management are linked to individual 

psychology and individual bias (Kahneman and Tversky 1979; Lopes 1987) . Thus, we specify 

the individual as the unit of analysis. We believe that the idea of the individual operating in and 

affecting change in a vast SCRM backdrop rises to the level of an interesting and significant 

contribution. This behavioral approach to theory- building in SCRM will open the door for much 

needed empirical studies (experimental or survey-based) grounded in both behavioral risk 

management theory and the supply chain context.           
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In the ensuing sections we present our theoretical foundation and framework. First, we 

deduce from contingency theory (Fiedler 1972) and also prospect theory (Kahneman and 

Tversky 1979) that human behavior is shaped by managerial and risk contexts. We then assert 

that individual decision-makers will not necessarily be rational in uncertain environments where 

the prospect of gain or loss plays a key role (Kahneman and Tversky 1979). Ultimately, we argue 

that SCRM decisions that require direct human input are, reflect in part, driven by the risk 

orientation and appetite of the individual decision-maker. We adopt a positivist approach and use 

our SRCM and behavioral risk management theoretical building blocks to construct some 

preliminary propositions based on evidence from the literature. We follow this with a general 

discussion of our findings and an overview of the managerial implications of our study. We 

conclude the paper with a study on limitations and suggestions for future research. 

2 Theoretical foundation    

Researchers in the past have studied behavior in SCRM through a variety of theoretical 

lenses. For example, agency theory (Mitnick 1975; Ross 1973) has been used to form hypotheses 

about inter-firm relationships. The basic argument is that a focal powerful buying firm can play 

the role of the principal and the supplier plays the role of the subordinate agent (Zsidisin & 

Ellram, 2003).  The underlying hypothesis is that purchasing firms are likely to use their power 

and/or trust in this context to encourage or coerce an alignment of their suppliers’ risk appetites 

with that of their own as risk options become more prevalent (Li et al., 2015; Zsidisin & Ellram, 

2003). Other theories have also been used in behavioral SCRM studies. For example, 

contingency theory has been used to demonstrate that supplier insolvency risk can be reduced 

through the implementation of mechanistic management control systems, a rational cognitive 

approach and the deliberate maintenance of buyer supplier relationships (Grötsch et al. 2013). 
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Resource dependency theory (RDT) has been applied in strategic purchasing (Paulraj and Chen 

2007) and in sustainability and SCRM (Bode et al. 2011) to explain relationships between 

institutional risk and supplier management. In another example, Hult et al. (2010) extend real 

options theory to assert that managerial decisions are based on creating and then exercising or 

not exercising certain opportunities in an inter-firm setting. 

Overall, in most SCRM related studies the unit of analysis is the aggregate behavior 

supply chain or the firm. However, few studies like Grötsch et al., (2013) consider individual 

behavior along with overall firm behavior as units of analysis. We are specific about the unit of 

analysis because it is important in that it is inextricably tied to our definition of BSCRM which 

proposes a micro OB approach. While there are many excellent extant studies that allude to 

behavior in SCRM, and even propose associative theories, the vast majority examine the issue 

from a macro OB B2B perspective. The gap we identify is that individual actions, which are the 

bedrock of behavioral economic theory, are rarely considered (Tokar 2010). As pointed out by 

Bendoly et al. (2006), when quoting Croson & Donohue (2002), aggregated assumptions made 

about behavior within supply chains may end up being too simplistic and too grounded in 

rationality. These generalizations may fail to account for the intent, action and responses (IAR) 

of individual decision-makers who are the actual difference-makers in OM (Bendoly et al., 

2006). The IAR classification system (Bendoly et al., 2006) provides a useful framework for the 

categorization and subsequent retesting of behavioral assumptions of extant SCM models. 

Bendoly et al. (2006) and  Tokar (2010) argue that the accuracy of many extant OM models can 

be improved by the incorporation of behavioral economics theory. Using this logic, behavioral 

risk theory should be used to inform and improve the predictive efficacy of extant SCRM 

models. 
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3 The ‘risk’ in Supply chain risk 

Note that the word ‘risk’ in our definition of BSCRM has a dual purpose in that it pertains to 

both behavioral risk and supply chain risk which are two different concepts with two different 

meanings.  When we consider risk in SCRM, we will be referring to risk in an objective 

operational and strictly classical Bayesian statistics sense (i.e. the probability of risk 

manifestation is event-driven). The realization of supply chain risk is usually operational and is 

marked by the occurrence of an event that is unfavorable to supply chain functionality. The event 

set is theoretically finite and quantifiable with some type of probability distribution rooted in 

both the present the prior (Flam 2014). Thus, in this instance the spurious likelihood (Flam 2014) 

of quantifiable risk events will more aptly be calculated using standard Bayesian statistical 

techniques. The risk in supply chain is often portrayed through the SCRM theoretical framework 

outlined below. 

SCRM frameworks, in general, address the following risk management constructs: 1) risk 

identification (Christopher and Peck 2004; Jüttner et al. 2003; S. M. Wagner and Bode 2008; Wu 

et al. 2006); 2) risk assessment (Blackhurst et al. 2008; Gaudenzi et al. 2011; Harland et al. 2003; 

Samvedi et al. 2013); 3) risk mitigation (Chang et al. 2015; Craighead et al. 2007; C. Tang 

2006); 4) risk response (Fisher 1996; Ponomarov and Holcomb 2009; Su et al. 2014) and risk 

performance outcomes and measurement (Hendricks and Singhal 2014, 2005; Sheffi and Rice 

2005; Zobel 2014). We use these constructs as specific contexts in which individuals make 

decisions that affect the risk level of supply chain.   

3.1.1 The ‘risk’ in behavioral risk  

Behavioral risk, in contrast to operational risk, is subjective and rooted in psychological theory 

because it is based on human biases and centered around the probability of negative outcomes 
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that can precipitate from them (Shefrin 2016). On the surface, the probability distribution 

functions in behavioral risk management can be considered binomial in nature. That is, from a 

management perspective there are basically two possible outcomes: 1) an individual will either 

conform to organizational protocols and behave in a manner that is acceptable risk-wise or 2) go 

rogue and assume a level of risk that is misaligned with organizational mandate. The problem is 

human risk behavior is highly dependent on context and situation along with the subject’s unique 

perceptions and attitudes towards risk.  Thus, simply scaling up or aggregating human risk 

behavior to arrive at a discrete probability value of errant SCRM behavior in a Bayesian sense is 

impractical because the Bayesian approach does not allow for probabilities to be associated with 

unknown parameters. (Everitt and Skrondal 2010). The frequentist approach to inference, for 

which the result is either a “true or false” conclusion from a significance test, may yield better 

results. Therefore, experimental methods for testing will be more appropriate (Everitt and 

Skrondal 2010). 

3.1.2 Behavioral Risk Management    

 Behavioral risk management is defined as the process of institutionalizing and mitigating the 

subjective bias and judgmental risk of decision makers at the firm or institutional level (Goto 

2007). The study of behavioral risk management is divided into two general camps, 

psychological and cognitive (Shefrin 2016). These two schools of thought are not necessarily 

mutually exclusive. In fact, they are complimentary in many ways  (Shefrin 2016). However, 

they still remain distinct from each other.  

3.1.3 Psychological view 

The psychological context presents peoples’ risk behavior as being the result of balancing 

three psychological needs based on fear, hope and aspiration (Lopes 1987). Lopes (1987) states 
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that, individual risk behavior is governed by: “1) the need to assuage fear by providing security 

2) The need to offer hope by providing upside potential and 3) the need to succeed by achieving 

a predefined aspiration or goal.”. Lopes named the framework SP/A (for security, potential and 

aspiration) theory and we refer to the psychological school of behavioral risk management 

thought as SP/A.  

3.1.4 Cognitive view 

   The cognitive viewpoint is based on prospect theory (Kahneman and Tversky 1979). 

Prospect theory is centered around individual’s subjective and often erroneous perceptions of 

gain and losses in risky situations (Kahneman and Tversky 1979). It asserts that : “1) people 

interpret risk through the lenses of gains and losses relative to some reference point and 2) 

people tend to replace subjective possibilities with uncertainty weights which are reflective of 

their attitudes towards uncertainty and just degrees of belief “ (Kahneman and Tversky 1979). 

The replacement of uncertainty weights with subjectivity and also the misspecification of an 

appropriate reference point by individuals often results in errors in judgment and subsequently, 

negative SCRM outcomes. It is these individual deviations from supply chain overall risk 

management objectives and goal that supply chain risk managers at the strategic or firm level 

should aim to maintain a handle on.  

4 Integrating the theoretical risk behavior approaches and the SCRM framework  

The link between the two types of risk, and the key to this study, is that risk behavior lies at the 

core of operational risk (Shefrin 2016). This means that negative SCRM outcomes can usually be 

traced back to human risk behavior. For example, in a well-documented example, a fire in a 

Philips plant in 2000 interrupted the operations of two major customers: Ericsson and Nokia. 

Nokia decisions-makers chose to quickly find an alternative source and was up and running in 
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three days. On the other hand,  Ericsson lost about a month’s worth of production and extensive 

market share while waiting for Philips to recover (Chopra and Sodhi 2014). The difference in the 

actions, or lack thereof of decision-makers in this example resulted in two opposing outcomes. 

Thus, we hypothesize a causal relationship between risk behavior and some SCRM outcomes.  

We believe that the case can be made that individual risk behavior can result from 

misappropriation, by the individual, of a supply chain’s desired appetite for risk as it relates to 

one of the four aforementioned SCRM constructs (identification, assessment, mitigation and 

response). An individual may deliberately or subconsciously act in a specific errant manner when 

it comes to: 1) accurately identifying supply chain risk, 2) correctly assessing the risk 3) 

mitigating the risk in the most efficient manner and 4) appropriately responding to supply chain 

risk. Through a reconciliation of these two definitions of risk we assert that risk behavior is an 

antecedent to the SCRM constructs. In so-doing we arrive at a basic but coherent framework for 

the elaboration of BSCRM theory.  

For the remainder of the paper, we will use extant literature to formulate theoretical arguments 

and propositions that will serve to reconcile the two behavioral risk theoretical viewpoints in a 

SCRM context. We consider some (not all) behavioral realities in the backdrop of each of the 

individual commonly accepted SCRM framework constructs using a series of propositions. We 

regard our arguments and propositions not as replacements, but as qualitative complements to 

extant SCRM models. Our ultimate aim is to contribute towards significantly increasing their 

robustness, predictive accuracy and overall usefulness (Tokar 2010).   

 Risk identification, assessment and supply chain risk behavior  

The risk identification and assessment stages are often presented together in the literature. They 

are both critical to SCRM success (Neiger et al. 2009). Most SCRM approaches use 
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organizational level objectives to identify and assess risk. Some approaches solve the problem of 

visibility or risk by establishing a clear link between risk minimization and increased firm 

performance (Gaudenzi and Borghesi 2006; Ritchie and Brindley 2007).  Yet others are aimed at 

providing mechanisms for real-time risk identification (Carbonara and Pellegrino 2017). Other 

risk identification studies use mathematical models to quantify risk (Ambulkar, Blackhurst, & 

Grawe, 2015; Hendricks & Singhal, 2005). Increasing supply chain visibility has been suggested 

as a way to improve managers’ ability to identify and assess risks.  The literature on supply chain 

risk behavior in a risk identification context is sparse. A notable example is the investigation by 

Zsidisin & Wagner, (2010) into the relationship between managers’ risk perceptions and supply 

chain disruption occurrence. (DuHadway et al. 2018) also discuss the relationship between 

organizational communication and supply chain risk perception. They concluded that managers 

ability to acknowledge risk is positively related to the levels of communicated risks.   

Risk identification and assessment are extremely vulnerable to judgement bias (Shefrin 2016) . 

From a psychological or SP/A perspective, the individual’s ability to accurately identify and 

assess supply chain risk will be correlated to an individual’s ‘risk style’ (Ingram and Bush 2013). 

Ingram and Bush hypothesize that there are four distinct risk styles: 1) conservators for whom 

fear is a dominant emotion and set their aspiration level to a point of zero loss. 2) maximizers 

whose focus is on accepting more risk to achieve gains 3) managers who use cost benefit 

analyses to balance cost and rewards 4) pragmatists are different from the other three in that they 

adopt an uncertainty perspective (Shefrin 2016). Pragmatists are most comfortable in situations 

which afford them the greatest flexibility (Shefrin 2016). From a prospect theory perspective, 

supply chain risks will have low risk aversion coefficients (Shefrin 2016). They are governed by 

hope and will more likely quickly forget instances of unfavorable events (Shefrin 2016).  
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To tie the concepts of risk behavior and supply chain risk identification and assessment together, 

we assert that conservators are the most compatible risk type to the dominant organizational 

approach to risk identification and assessment. However, because conservators are prone to the 

hot hand fallacy (Shefrin 2016), we propose that they may tend towards being maximizers when 

placed in settings where there are long periods devoid of negative supply chain events. 

According to risk compensation theory, humans tend to become complacent over time in the 

absence of adverse consequences for their action (Hedlund 2000). Furthermore, the overall 

attitude towards risk of the manager is guided by company communicated goals (DuHadway et 

al. 2018; Macdonald and Corsi 2013).  In light of this we come up with the following 

propositions. 

P1.  Managers’ propensity to fail to identify supply chain risk will increase over time in the 

absence of unfavorable supply chain events.   

P2. Managers are more likely to be conservators in settings where organizational level objectives 

are used as a basis for identifying and assessing supply chain risk. 

 

The propositions are an important preliminary step toward theory-building and will later be used 

as a basis for constructing hypotheses in future studies.  

 Risk mitigation, response and supply chain risk behavior 

Much of the behavioral research in this context is centered around a buyer/suppliers relationship 

context with trust and dependence being two prominent factors that govern risk behavior (see 

Bode, Wagner, Petersen, & Ellram, 2011). The firm is the unit of analysis and it can either adopt 

a bridging or buffering strategy to mitigate risk (Bode et al., 2011; Mishra et al., 2016). While 

this dyadic firm-level approach has resulted in some excellent research studies, it assumes that 
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the firm is an entity that is capable of making decisions. This is contrary to the assertion made by 

Bendoly et al. 2006 that it is individuals, not firms, who ultimately make decisions in OM 

settings. Our viewpoint is more aligned with Bendoly et al.’s proposition.  

Prominent studies like Bode et al, (2011) observe and measure supply chain  risk mitigation 

behavior at the firm level. However, it is clear in this study that it is the process by which 

individual decision-makers arrive at these decisions on behalf of the firm that is pertinent. 

Establishing the unit of measurement is key. By identifying the individual as the unit of analysis, 

SP/A and prospect theory can be applied to propose a relationship between human risk behavior 

and supply chain risk management. Risk mitigation can be costly to a firm. Therefore, it is not 

surprising that, in praxis, many decision-makers’ compensations are tied to their firm’s bottom 

line. According to Lopes (1987) most individuals will be governed by aspiration in situations 

where there is a high probability for payoff. If the risk of high impact supply chain disruption is 

low, then supply chain managers will be drawn to the prospect of high personal compensation if 

revenues that could be used for mitigation is preserved and shown as a positive on the bottom 

line. According to prospect theory, individuals will be more likely risk seekers even if the 

probability of a high payoff is marginally increased (Kahneman and Tversky 1979). This means 

that managers will again more likely pick the alternative that is likely to line their own pockets. 

Considering that high impact and cost supply chain disruptions are often of the low probability 

variety, we would expect managers to be risk-seeking and less likely to invest in supply chain 

risk mitigation. In light of this we formulate the following proposition: 

P3. Managers faced with low probability high impact supply chain disruption risk are less likely 

to invest in supply chain risk mitigation than managers faced with high probability low impact 

disruption risk even if the expected cost of both scenarios is the same over a set period of time.         
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 Risk performance outcomes, their measurement and risk behavior 

With regards to risk performance outcomes and risk behavior, there appears to be a significant 

gap in SCRM literature. Extant research focuses on SCM and uses the firm as the unit of analysis 

(Wagner & Bode, 2008). However, we contend that manager’s behavior is driven not only by the 

risk management structures (see Shefrin (2016)) of the firm but also by two other factors: 

namely, their individual biases and the firm’s internal risk management orientation. We assert 

that that if a firm incentivizes a SCRM orientation, then it may be more likely that its decision 

makers will adopt the same outlook; especially if their compensation is tied into their adherence 

to firm-backed risk management strategy and performance. Using SP/A, we posit that fear of loss 

or no gain will drive managers to seek the security that comes from adhering to firm risk 

management outlook.  Thus, we propose: 

P4 Managers in companies with strong risk management orientations will more likely be 

pragmatists whose risk appetite will, on average, align with that of the firm’s or supply chain’s 

objectives.  

5 Discussion 

The purpose of this study was to address the behavioral gap in SCRM literature by advancing the 

study of human risk behavior in a supply chain setting. The delineation and classification of any 

new field of research from an extant one is not a trivial matter (Sodhi & Tang, 2012) because 

classification is a necessary step in understanding a research area (Lambert 2015). Defining and 

unifying the topic area of SCRM will open the door to a consistent approach to managing risk in 

supply chains (Sodhi & Tang, 2012). In that spirit, we originate the term Behavioral SCRM 

(BSCRM) with the aim of delineating a new behavioral risk management-focused sub-area of 

SCRM.  
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The aim of this paper was to provide a foundational framework upon which to organize, 

categorize, and originate future behavior-based SCRM literature at the micro OB level. BSCRM 

studies are scattered across different areas such as Corporate Social Responsibility (CSR) 

(Gallear et al. 2014), Sustainability (Busse et al. 2016) Strategy (Ireland and Webb 2007) and 

even Marketing/Operations (Aust and Buscher 2012). Even the small number of behavioral 

studies in SCRM seldom explicitly identify risk behavior as a key term. We delineate BSCRM 

from SCRM and provide a theoretical foundation upon which future behavior based SCRM 

studies can be originated. Our main contribution to the literature is the BSCRM theoretical 

framework which synthesizes aspects of behavioral risk management theory with SCRM theory. 

We identify the individual decision-maker as the unit of analysis and deliberately advance the 

notion that it is individual, not firms, that make supply chain decisions. However we concede 

that firms may be able to influence or ‘debias’(Lopes 1987; Shefrin 2016) individual decision 

makers’ risk perceptions. This could be achieved through well-thought out institutional risk 

management structures that reward them for being in line with the firm’s risk management 

strategy and goals.  

The argument can be made that ERP system decision models and parameters can also 

influence SCRM outcomes. However, it is still human beings who are ultimately responsible for 

setting and adjusting the decision models and algorithms therein. ERP systems are just as good 

as the decision makers who operate and program them. This line of reasoning is based on the 

well-known computer science concept of garbage in, garbage out (GIGO). While these decisions 

could be somewhat regulated based on decision models and algorithms within ERP systems, the 

uniqueness of some disruption scenarios could make it difficult for programmers and analysts to 

preemptively account for every possible scenario and contingency. The exact time and nature of 
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disruption event is extremely difficult to predict (Cantor et al. 2014).When the ERP system 

decision models are poised to contribute towards an undesirable but unavoidable outcome, the 

onus would be on humans to make the decision to override them before the negative occurrence. 

The reluctance of managers to override ERP systems in the face of risk is an expression of risk 

behavior in its own right. In the end, blame cannot be placed on ERP systems when SCRM 

outcomes negatively affect a firm in a major way.       

6 Managerial Implications  

As supply chains have become central to their member firms’ competitive advantage strategies, 

there has be an increasingly urgent need for more studies that help companies achieve even 

greater supply chain efficiency (Marley et al. 2014).  Much of the literature in SCRM has 

focused on how to decrease risk in the supply chain through increased efficiency and supply 

chain optimization. The majority of the literature is centered on production-based deterministic 

approaches to supplier risk management. However, there is growing interest in the human 

behavior aspect of SCRM (Macdonald and Corsi 2013). What is missing is a theoretical 

framework upon which to develop future studies.  

One of the peculiarities of human risk behavior in SCRM that may set it apart and make 

it interesting and worthy of study, is that individual behavior and attitude towards supply chain 

risk may not be necessarily predictable and consistent. The supply chain presents yet another 

level of abstraction which further complicates decision-making. In some instances, supply chain 

goals may often appear to be in conflict with firm objectives and individual goals. For example, 

certain individual managers at the firm level may be less likely to invest in programs to reduce 

supply chain risk because SCRM programs are often cost centers whose programs may never be 

used (Sodhi & Tang, 2012). Since “nobody gets credit for fixing problems that never happened” 
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the prospect of monetary gain for individuals responsible for managing risk in the supply chain is 

generally cost-based (Repenning & Sterman, 2002; Sodhi & Tang, 2012). Lack of individual 

incentive for investment in SCRM programs is probably why many firms are caught flat-footed 

when disaster strikes. Similarly, when we consider the irrational exuberance displayed by 

bankers in the banking supply chain example given at the beginning of this article, individuals 

were not just indifferent to supply chain risk, they sought it! It is reasonable to conclude that the 

sales professionals’ behavior was almost certainly purely driven by the prospect of monetary 

gain. It is unlikely that SCRM and its associated cost was an important consideration for them. 

However, their behavior still negatively impacted supply chain viability and functionality. 

Despite the highly individualized nature of human risk behavior, adopting a behavioral 

risk management approach as a supplement to classical SCRM models, which tend to be at the 

inter-firm level, could improve their efficacy. In order to facilitate this, we assume that those 

responsible for overall institutional risk management in each organization will have a SCRM 

orientation and know their decision-makers on the supply chain frontlines well enough to know 

their general individual dispositions towards organizational and personal risk. Those employees 

whose risk appetites and agendas are deemed, over time or through psychoanalytical testing, to 

be more malleable and aligned with the organization’s SCRM strategy and orientation could be 

identified and groomed for positions that would require them to make SCRM-related decisions 

on a regular basis. To elaborate even further, using agency theory and bridging (Bode et al., 

2011), buyer firms could create SCM structures that incentivize the same approach to the 

selection of supply chain decision-makers at the first or even second tier of the supply chain.  

Another application of BSCRM in praxis could be based on risk management structures 

and their use towards ensuring alignment of organizational supply chain risk appetite with 
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individual perceptions and attitudes. Both prospect theory and SP/A imply that an individual 

must perceive some appreciable measure of intrinsic value or gain from adopting a certain stance 

towards risk. We postulate that if an employees’ personal compensation is correctly aligned with 

their firms’ SCRM strategy it means that their individual biases, as it pertains to risk taking, will 

more than likely coincide with organizational goals. Thus, we would advise companies to 

consider more than just the bottom line when it comes to compensation for such individuals.     

The banking industry example illustrates how human risk behavior in one part of a supply 

chain can result in negative outcomes that cascade or “ripple” across the whole supply chain 

(Ivanov et al. 2014). Despite the differences in the performance measures, i.e., cost-based vs 

revenue-based, personal gain seems to be a common theme. What is undeniable, and the point of 

this article, is that unbridled human risk behavior at different levels of the organization can result 

in supply chain risk outcomes for better or for worse.   

7 Study Limitations and Future Research  

We are aware that our study has some limitations. For example, we realize and acknowledge that 

our overview of the literature was by no means exhaustive. No study of this nature can never be 

truly complete because there is always more related research that can be included (Boell and 

Cecez-Kecmanovic 2010). Our approach is meant to serve as a generalized overview of the 

BSCRM concept and to, hopefully, serve as a useful springboard for future researchers. We 

believe our study adequately achieves this goal. The framework we propose allows for the 

elaboration of theory in BSCRM because researchers could use it as a foundation for testing 

other relevant behavioral risk theories. We are not suggesting that future researchers limit their 

focus to SP/A and prospect theory alone. However, we do prescribe the use of the risk 

management framework and its constructs to provide SCRM context. In the same vein, we 
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acknowledge that the examples of the behavioral realities we provided in conjunction with our 

propositions are by no means exhaustive. This, of course, also applies to the propositions 

themselves. Our examples were perfunctory demonstrations of our theory building 

approach/technique. We are certain that numerous future different, more sophisticated and 

innovative hypotheses exist and will in future result from our suggested basic framework.     

The other limitations of this study are based on the characteristic of supply chains. For 

example, we assume that those responsible for risk management strategy and the appointment of 

personnel to key SCRM-related positions have perfect knowledge regarding how to identify 

optimum levels of supply chain risk at any given time supply chain risk at the institutional and 

inter-firm level. This was a necessary assumption to make in order to illustrate our point. The 

silver lining is that we recognize that this assumption opens up the door for even more future 

research in which we may examine the factors that may influence SCRM strategies at the 

corporate level. For example, we could examine factors that lead this particular set of decision-

makers to behave in ways that increase supply chain risk. We could also do away with the 

assumption of perfect knowledge and examine whether factor such as increased visibility or 

maybe executive compensation structures may have a debiasing effect. We also assumed perfect 

supply chain visibility and that supply chain actors were always in synch with their external 

counterparts when it came to supply chain strategy at the inter-organizational level. We did not 

consider the psychological effect of disruption events on individuals nor did we consider the 

frequency of such events. Our aim was to isolate the behavioral or human factor in a SCRM 

environment. 

For future research, we will develop the propositions in this study into testable 

hypotheses. We will also use behavioral experiments to empirically test or retest behavioral 
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theories in conjunction with the SCRM framework to provide new insights or confirm previous 

assumptions and conclusions. For example, through a theory elaboration approach (Fisher and 

Aguinis 2017), agency theory could be paired with prospect theory (see (Kahneman and Tversky 

1979) ) to describe the risk behavior of supply chain agents in uncertain environments. Or 

conversely, resource dependency theory (Pfeffer and Salancik 1978) and behavioral economic 

theory (Tarde 1902) could be applied to describe how principals can better manage individuals’ 

risk appetite and avoid the theoretical pitfalls associated with rent-seeking behavior (Buchanan et 

al. 1983). The actor-network theory (Latour, 1996, 2005) could be used explain the applicability, 

and also the limitations, of prospect theory in a supply chain network setting with multiple 

echelons. 

 In the end, we see this study as an incremental step towards a more practical approach to the 

management of risk in supply chain that involves elements of diverse areas such as psychology, 

organizational behavior, behavioral risk management and operations research. We believe our 

approach will result in new and novel solutions that will help to complement and increase the 

accuracy of SCRM models and the efficiency of supply chains in general.    
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Chapter 2 

Supplier Selection: A Futures Approach Using Cross-Impact Analysis 

Abstract 

Global supply chains are under increasing threat from economic disturbances such as sudden 

increases in tariffs, unexpected interest hikes from government or the world bank, or increases in 

oil prices, to name a few. This enhanced threat has implications for a global firm’s selection of 

future suppliers. This study introduces Cross-Impact Analysis (CIA) as a way to analyze and 

quantify supplier risk. In scenario prediction, the analysis of all the possible scenarios that could 

be generated from a given cascading event set often becomes mathematically intractable due to 

the large number of possible event combinations. We demonstrate how CIA’s scenario-building 

approach can be used to reduce the number of possible future scenarios in order to provide 

practitioners with an easier-to-understand predictive tool.  Using CIA, we show how the number 

of plausible economic disruption risk scenarios is systematically reduced from a possible 2N 

distinct outcomes and N2N-1 pathways that span the range of none of the events occurring to all 

of them occurring in a given time frame to just N outcomes and N2 pathways. This gives 

practitioners an additional analytical method to inform selection decisions in the face of future 

disruption risk.  

1 Introduction 

Choosing the right supplier can be a critical decision for many global supply chain executives. 

One CEO of a large supplier to Ford Motor Company whom we interviewed said, “once some of 

our supplier-buyer relationships are established, they are more or less set in stone. Neither 
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inventory storage or switching suppliers is an option. When disruptions occur, we just roll with 

the punches! Choosing the right supplier at the beginning is very important for us”. The problem 

is that in general, supplier selection models offer two basic methods of alleviating the risk of 

supplier outage: (1) Supplier redundancy, and/or (2) inventory buffering (Hult et al. 2010).  

Supplier redundancy or multi-sourcing allows a firm to source the same product from multiple 

suppliers and shift flow of product from one supplier to another in the event of a supplier 

becoming incapacitated (Chopra and ManMohan S. Sodhi 2004). Inventory buffering dampens 

the effect of supplier disruption through the accumulation of inventory at the buyer site (Bode et 

al., 2011). This strategy can help maintain the normal delivery of service to the end customer 

while giving the supplier time to recover.  

Both multi-sourcing and inventory buffering, either singularly or in conjunction with each 

other, represent the basic prescription for the amelioration of supplier risk across the breadth of 

SCRM literature (Sodhi and Tang 2012). However, there are cases when neither of the two 

methods is economically feasible leaving the firm fundamentally unprotected for supply chain 

disruptions.:  

1.1 Cases when multi-sourcing is infeasible 

In large scale manufacturing, an extremely high cost of assets to total cost (COA/TC) ratio of 

establishing a supplier site can make it next to impossible to achieve economies of scale with a 

multi-sourcing strategy. In some cases, strict governmental regulation concerning product safety 

and quality may call for a very high level of production precision and coordination.  Such 

sustained precision can only be attained through a very close, exclusive, long-term relationship 

between buyer and supplier (Marucheck et al., 2011). Also, these types of relationships require 

heavy time and financial investment. Simultaneously, inventory may be extremely expensive to 
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both buy and store. Establishing more than one supplier site may result in an intolerably high 

amortized cost of production (Wilson 2007). 

1.2 Cases when inventory buffering is infeasible 

 A finite demand horizon may obviate the option of inventory buffering when per-unit 

inventory cost is so high that it is highly uneconomical to have any leftover inventory at the end 

of a planning period (Schwarz 1972). Some of the main modular components of automobiles 

such as engines are good examples of this. Thus, the scenario described above is very common in 

the automobile industry. 

A requisite single-sourcing strategy leaves a firm faced with a choice of only one from a set of 

possible suppliers. Despite the possible devastating consequences of choosing the wrong 

supplier, the literature offers little in the form of supplier risk assessment for the initial stages of 

supply chain construction and configuration.  

The problem with determining the probability of risk of disruptions at a new supplier site is 

often two-fold. First, the buyer may not have enough information on the supplier to gauge its 

ability to consistently satisfy demand. Secondly, there may be limited knowledge regarding the 

supplier’s exposure to exogenous disruptive events. We assume that the supplier will, for the 

most part, be reliable and consistently satisfy demand. Thus, we are only interested in 

quantifying the supplier’s exposure to exogenous events. Many exogenous events do not happen 

in a vacuum but are interrelated. The problem is that disruptions and their triggering events can 

be notoriously difficult to forecast and quantify (Simchi-Levi et al. 2014). Many have no known 

probability distribution; rendering statistical methods used for forecasting ineffective (Sawik 

2018).  
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The ripple or cascading effect of supply chain disruption events due to the interrelatedness of 

endogenous supply chain risks has received attention in recent times (see (Ivanov et al. 2014; 

Samvedi et al. 2013; Simchi-levi et al. 2015). Many exogenous factors are not directly related to 

the supply chain’s functionality. However, they can be part of a set of interrelated events that 

culminate in the manifestation of a supply chain disruption risk in a domino-like fashion. An 

example of this would be a major natural disaster like hurricane Katrina. The storm interrupted 

between 10 and 15% of US gasoline production and subsequently raised both domestic and 

international oil price (Ivanov et al. 2013), which in turn resulted in increases in transportation 

costs, increasing many global supply chains’ variable costs.  

The threat of disruption to supply chains is real and managers would be well served to prepare 

for plausible disruptions scenarios. However, it is almost impossible to predict supply chain 

disruption outcomes because the number of possible events that could negatively affect a supply 

chain is infinite. Furthermore, if we consider that these events are interrelated and can cascade in 

different sequential combinations, the sheer number of possibilities makes attempts to optimize 

supplier selection using the normal linear model mathematically intractable. This is why there is 

a general absence of models that attempt to accomplish this.  To address this gap in the literature, 

we introduce Cross-Impact Analysis (CIA) as a new way for supply chain practitioners to 

systematically generate and analyze a set of plausible post-disruption scenarios before 

committing to investment in expensive supply chain configurations.  

CIA is a powerful tool that takes a set of future events and calculates the causal impact that 

any given event may have on others in the set while simultaneously considering the relative 

probabilities of such events (Bañuls and Turoff 2011). The power of CIA is that it allows 

practitioners to systematically reduce a set of possible interrelated disruption events into a 
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mathematically manageable number without sacrificing functionality and efficacy. CIA has been 

widely-used in other fields such as Political Science and Economics for generating and analyzing 

scenarios (Bañuls and Turoff 2011). However, our exhaustive literature search reveals that it has 

received very limited attention in Operations Management (OM) and SCRM. The only instance 

of CIA use in OM we found was (Menck et al. 2014) who use CIA in production system 

planning. Their focus is on the internal operations of factories and the future impact of decisions 

made in the present on production systems and the employees involved in the planning process. 

They do not consider, as we do, the inter-organizational SCRM context.  

In this paper, we show how CIA can be used to forge the missing link between the probability 

of exogenous disruptive events and their cascading nature. CIA has been used in conjunction 

with other techniques such as Interpretive Structural Modeling (ISM) and Analytical Hierarchy 

Process (AHP) to improve its functionality (see Bañuls and Turoff, 2011and Lee and Geum, 

2017). However, it has not yet been used in a SCRM setting. Thus, we present this study as an 

introduction to one potential use of CIA in SCRM. We answer the following pressing research 

question: Can a futures approach be used to model supplier failure in global supply chains faced 

with various and unpredictable exogenous risks?  

The rest of the paper is as follows: Section 2 comprises the literature review. Section 3 

describes the methodology and presents some numerical results from a realistic SCRM scenario. 

Section 4 contains a discussion of our findings, practical applicability and limitations of the 

methodology, and a brief which proposes future derivative research questions and studies.   

2 Literature Review 

Supplier selection solutions in the literature can generally be divided into three main 

categories: (1) multi-criteria decision-making techniques like analytical hierarchy process 
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(AHP), analytical network process (ANP), technique of order performance by similarity ideal 

solution (TOPSIS), etc. (Samvedi et al. 2013). (2) Mathematical programming techniques such 

as Linear programming (Chopra and Sodhi 2014; Ravindran et al. 2010) and (3) more recently 

artificial intelligence and machine learning techniques such as neural networks (Kim et al. 2014; 

Kuo et al. 2010; Zhang et al. 2016) and decision trees (Ruiz-Torres et al. 2013; Ruiz-Torres and 

Mahmoodi 2007) have started to become more prevalent in the literature. 

 Mathematical multi-objective programming (MMOP) techniques represent the majority of 

supplier selection multi-criteria models in the literature between 2008 and 2012  (Chai et al. 

2013; Chopra and Sodhi 2014). MMOP techniques are well suited for supplier selection because 

the objectives of supply chain effectiveness and efficiency often contradict one another 

(Heckmann et al. 2014). For example, the simultaneous objectives of reducing costs and 

increasing supply chain responsiveness after disruption are in contradiction with each other 

because the latter may require extensive investment in additional or redundant infrastructure 

(Sawik 2018).  

 Mathematical models, such as MMOP, optimize some unexpressed utility function over a 

feasible region (Olson 1988). The problem is that using mathematical models in this way can 

result in an impractically large number (sometimes infinite) of feasible solutions (Olson 1988). 

Also, MMOPs are, by nature, quantitative and cannot account for qualitative factors except 

maybe through the expression of arbitrary aspiration levels which cannot accommodate 

subjective attributes.  The advent of analytical techniques such as the widely-used AHP 

overcome some of this deficiency. These techniques are decision-maker driven and allow for 

subjective risk quantification (Olson 1988). They also can expedite the decision-making process 

by producing an initial linear approximation of the MMOP analysis (Olson 1988). They provide 
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decision makers with a smaller and more manageable set of alternatives from which to choose 

(Samvedi et al. 2013).  

More recently, artificial intelligence (AI) techniques such as neural networks and decision 

trees have gained prominence. They also boast the ability to provide the user with a smaller set 

of alternatives.  AI decision models are advantageous because they can be easily “trained” by 

front line practitioners using historical data (Guo et al. 2009).  AI models are particularly helpful 

in the ranking of suppliers and supplier portfolios (see Guo et al. 2009 and Zhang et al. 2016).  

Both AI and analytical techniques such as AHP have proved useful for quantifying the weight, or 

relative importance, of risks in a supply chain. Their main shortfall is that they assume 

independence of supply chain disruption risks. They would be inadequate for situations in which 

disruption risks are dependent on one another (see Samvedi et al. 2013) and thereby have a 

propensity to cascade in a domino-like manner across a supply chain network (Ivanov et al. 

2014).  

ANP is an improvement upon AHP. ANP accounts for interdependencies and provides a 

systematic way to deal with all kinds of feedback and interactions. Another similar analytical 

technique that has been used in SCRM to address the assumption of independence, is interpretive 

structural modeling (ISM) which provides support for risk managers in identifying supply chain 

risks and their interdependencies (Pfohl et al. 2013).  However, while ISM and ANP have proven 

useful for risk identification in terms of consequences, they do not account for the respective 

probabilities of dependent events in a dynamic or temporal model (Pfohl et al. 2013). Event 

dependency is an important consideration that should not be ignored when considering the 

potential effect of supply chain disruption events which are stochastic in nature.  
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The complexity and diversity of the real world exposes the shortfalls of the aforementioned 

methods in this condensed literature review (Chai et al. 2013). The quest for an all-encompassing 

method for dealing with various supplier selection issues such as group aggregation, uncertain 

information fusion, classification, prediction, and clustering has resulted in the advent of more 

complete and comprehensive solutions that integrate multiple techniques (Chai et al. 2013). For 

example, Samvedi et al. 2013  combine the AHP and TOPSIS to quantify and consolidate supply 

chain risk values into a comprehensive risk index.   

In general, maximizing efficiency has long been the most addressed objective of supplier 

selection models. The problem is that pure cost- and/or waste-based objectives are only tactical 

and retroactive in nature (Heckmann et al. 2014).  Forward-looking methods that are temporal or 

predictive in nature (especially models that may be capable of  predicting supplier failure over 

multiple future periods) have received very little attention in the literature (Heckmann et al. 

2014). We respond to this by proposing the use of futures-oriented techniques such as CIA to 

help model more realistic dynamic supply chain models. The aim and the scope of this study is to 

provide an introduction to the use of CIA in SCRM. We demonstrate how CIA can be used to 

assist in the design of capital-intensive global supply chains so as to minimize the probability of 

supply chain disruption. In so doing, we address the following research gaps in the literature as 

identified by Heckmann et al., (2014):  

1. The lack of techniques addressing effectiveness-driven objectives 

2. The need for complex context sensitive approaches that incorporate qualitative 

and subjective decision-making.  

3. Integration of time-aspects and their potential impact on qualitative models  
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3 Methodology 

3.1 Problem description 

To provide context, and for illustrative purposes, we briefly describe a typical supplier selection 

problem: A focal firm (a major supplier to the automotive manufacturing industry) with many 

suppliers of its own wins a bid to become the sole provider of an important assembled part such 

as an automobile engine. The engine is supplied to the automobile manufacturer under a strict 

Make-To-Order (MTO) agreement. The focal firm is required to fully satisfy the demands of its 

important customer through a just-in-time (JIT) delivery of customer orders over the next decade 

or face sanctions in the form of fines or even the eventual loss of business. The focal firm can 

choose to source a critical component needed to assemble the engine from a set of 10 potential 

suppliers each located in a geographical region across the globe. We assume that once the focal 

firm settles on a supplier to fulfill all the demand for this particular critical component, the 

supplier-buyer arrangement cannot be revoked or replaced until the end of time T; the entire time 

horizon under consideration.  

Following the structure of general supplier selection models, let I be a set of potential 

suppliers each located in one of the sets of different geographical regions R across the globe. We 

then let K be the set of components needed in the assembly of the focal firms’ product to be 

delivered to its customer based on prevailing demand.   

Each supplier would be responsible for the production and delivery of a single component k 

K. The focal firm will need to select a subset of suppliers from I and allocate to each a 

percentage of the total demand  for k of its customer to minimize the probability of disruption 

over time T. We propose three supply chain disruption categories depicted in Table 1low-impact 

(L), high-impact (H), and total-impact (X). We assume that the product being delivered to the 
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end customer: 1) is substitutable and 2) that successive quarters of delayed delivery of the final 

product will cause the end customer to balk and purchase a competitor’s product. We also 

assume a very long product life cycle and tendency towards brand loyalty such that this nature of 

customer substitution results in practically a permanent loss of market share.  

Note that suppliers can easily overcome low-impact disruptions (L) with the production 

deficit made up immediately in the next period. However, there is a per-period penalty cost, Ct 

from the customer which is associated with the delay that the focal firm incurs. Additionally, we 

assume that for any supplier, more than one low impact disruption in a period will result in a 

delay of product flow of one period for which the supplier cannot make up. 

Table 1 Disruption intensity categories 

Disruption Category Expected Effect on Supply Chain Functionality  

Low-Impact (L) Flow of goods is briefly disrupted but the supplier can make up the slack. 

High-Impact (H) Flow of goods is disrupted for a period of more than six weeks resulting in some loss of market share 

Total-Impact (X) Supplier is insolvent as a result of a disruption and goes out of business for good   

 

The estimated probability of supplier i experiencing a low-impact disruption is denoted by 𝑝𝑖
𝐿 

and 𝑝𝑖
𝐻 is the estimated probability of supplier i experiencing a high-impact disruption. The 

objective for the focal firm is to satisfy demand 𝐷𝑡 for each period t while minimizing 𝐸(𝑋) =

∑ 𝐶𝑡 𝑡  T , the expected value of the losses incurred over total period T. The expected value can 

also be represented by 

 𝐸(𝑋) = ∑ 𝑝𝑖
𝐿 𝐶𝑡 + ∑ 𝑝𝑖

𝐻 𝐶𝑡 + ∑ 𝑝𝑖
𝑋 𝐶𝑡 which is the expected penalty cost with respect to 

𝑝𝑖
𝐿 , 𝑝𝑖

𝐻  and 𝑝𝑖
𝑋.  

A high-impact disruption, H, may result in a loss of market share commensurate to the 

proportion of components that the affected supplier is responsible for delivering. For example, if 
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supplier i is responsible for delivering half the required quantity of component k during each 

production period, then the ability of the firm to deliver to the customer is degraded by 50% 

assuming the final assembly of the part only requires one of k. In this case we assume that the 

supplier is responsible for satisfying 100% of the demand for k. This presents a problem for the 

both the final manufacturer and the focal firm. Let 𝑝𝑖
𝑋 be the estimated probability of the total 

elimination of a supplier as node in the supply chain network. Total loss could be due to a 

particularly devastating disruption event. Examples of this include permanent supplier 

insolvency due to a class action lawsuit or a freak environmental disaster event like radioactive 

fallout that renders the region uninhabitable and permanently unproductive. We assume that the 

probability of a total loss of supplier due to insolvency is so minute that it set a zero.   

Note that solving a mathematical optimization model based on 𝐶𝑡 . will be the subject of future 

studies. Our focus in this paper is to provide a new methodology for systematically calculating 

the probabilities of disruption. Many supplier selection models assume that the decision maker 

has some knowledge about the probability of disruption. The problem is that in praxis there is 

often no known probability distribution for many disruptive events; rendering their 

approximation normal statistical inference techniques mathematically intractable. To tackle this 

deficiency, we propose the use of CIA to determine the values of 𝑝𝑖
𝐿, 𝑝𝑖

𝐻 and 𝑝𝑖
𝑋 for any given 

supplier i . Having a more robust measure for  𝑝𝑖
𝐿, 𝑝𝑖

𝐻 and 𝑝𝑖
𝑋 is, obviously, a critical step 

towards equipping practitioners with the ability to build more realistic scenarios that could be 

used to determine the vulnerability of different proposed supply chain configurations. Thus, 

singular purpose and scope of this study is to introduce CIA as an analytical methodology for 

estimating the values of 𝑝𝑖
𝐿 , 𝑝𝑖

𝐻  and 𝑝𝑖
𝑋 .      
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1.3 Determining probabilities using Cross-impact Analysis   

CIA is a futures-oriented scenario-building technique introduced by Gordon Hayward in the 

late 1960s. Before CIA, the Delphi method of collating expert judgment was an overwhelming 

favorite for scenario building. A drawback of the Delphi method is that it offers no way of 

obtaining meaningful quantitative subjective measures of the respondents’ view of causal 

relationships amongst future events (Turoff 1971a)  Also, along with many other forecasting 

methods, its shortfall is its inability to identify potential relationships between the forecasted 

events and that forecast might well contain mutually reinforcing or mutually exclusive terms 

(Gordon and Hayward 1968). CIA allows for the adjustment of the expected probability of each 

item in the set on the basis of perceived interdependencies amongst the items (Gordon and 

Hayward 1968). To be parsimonious, we do not go into the great detail concerning the history, 

evolution and formulation of the CIA methodology. Instead, we provide a brief practical 

illustration of the technique in a global supply chain context. A more in-depth discussion and 

analysis of the origins of the CIA technique, can be found in (Gordon 2004; Gordon and 

Hayward 1968; Turoff 1971a).   

4 Cross-Impact Analysis in a supply chain setting  

The primary aim of CIA is to forecast events based on the idea that event occurrence is not 

independent (Bañuls and Turoff 2011). We assume, like Turoff, (1971), that each event occurs 

only once during the event time frame. . We then proceed with the CIA by following the steps 

below which are outlined in (Bañuls and Turoff 2011). Initially, a group or individual must come 

up with a set of interrelated events that can be matched with a set of exogenous events that are 

not influenced by the interrelated set (Bañuls and Turoff 2011).  In our numerical example we 

consider a supplier i to be associated its own peculiar set of exogenous events that can directly, 
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or indirectly in a domino-like fashion, trigger a supply chain disruption event. This set represents 

a user’s initial worldview. CIA will involve the iterative perturbation of this world view in the 

manner described below.  

 

1. 

 

Derive an initial event for a supplier i and estimate the subjective probability that an 

event will occur some time during the time horizon T (in the numerical example we 

pick a period of ten years). Then perturb the estimator’s worldview in the manner 

described below:  

a) Set a probability threshold (for example, 0.5) and ask the estimator to assume that 

events with probabilities above the threshold will happen with certainty. Then ask the 

estimator to re-estimate the probability that the rest of the other events will occur under this 

assumption. 

b) Ask the estimator to assume that events with probabilities above the threshold will not 

occur. Then ask the estimator to re-estimate the probability that the rest of the other events 

will occur under this hypothesis. 

2. 

 

The result is a set of n(n-1) estimates for the n events. A computer can be used to 

generate a complete structural model of the estimates. 

3. 

 

In a group setting, the individual is encouraged to first experiment with the model to 

reach consistency with their own estimates. Each individual’s final estimates are then 

used to compile a collaborative model through an averaging process. 

4. 

 

If the event set is interdisciplinary in that it traverses many professional areas, users 

may instead be advised to only estimate the probabilities related to their own area of 

expertise. This can be facilitated through a group decision process such as Delphi.    
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The successful choice of the initial event set is entirely dependent upon the knowledge of the 

individual. Therefore, our recommendation is that the initial event set be compiled through 

something like a Delphi process by a group comprising supply chain and other relevant subject 

matter experts. We constructed the initial event set using our own expertise and judgment. 

Following this process, participants are able to estimate the influence (causality) resulting 

from the assumptions made about the occurrence or non-occurrence of events.  Causality is 

measured using a correlation coefficient 𝐶𝑖𝑘 which represents the impact of the 𝑘𝑡ℎ event on the 

𝑖𝑡ℎ event. A positive 𝐶𝑖𝑘 means that event k enhances the probability of event i whereas a 

negative 𝐶𝑖𝑘 implies that event k inhibits or reduces the probability of event i. We can calculate 

𝐶𝑖𝑘using a variation of the Fermi-Dirac or logistic distribution function by asking subjects about 

the probabilities (Pi) as determined by the following relationship (Bañuls and Turoff 2011; 

Turoff 1971a): 

 

                                      𝑃𝑖 = 
1

[1 + 𝑒𝑥𝑝(−𝐺𝑖 − ∑ 𝐶𝑖𝑘𝑃𝑘𝑖≠𝑘 )]
 (3.1) 

 

where: 

 

 𝑃𝑖 is the probability of the occurrence of the 𝑖𝑡ℎ event, (i = 1,2,3…,n) 

𝐺𝑖 (the gamma factor) effect of all the events not explicitly specified in the model. 

𝐶𝑖𝑘 impact of the 𝑘𝑡ℎ event on the 𝑖𝑡ℎ event (positive ⇔ enhancing, negative ⇔ inhibiting). 

 

𝐺𝑖 is a constant of integration for all the n differential equations for 𝑃𝑖  when they are all 

integrated as a solution set (Bañuls and Turoff 2011). It is equivalent to the sum of individual 
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products of 𝐶𝑖𝑘 ∗ 𝑃𝑖𝑘. Thus it accounts for the effect of all external events not specified in the 

model. This allows us to infer that it contains all the other influences of the outcome for any 

given 𝑃𝑖 value which is the sum of all which were not made explicit in the events given in the 

model (Bañuls and Turoff 2011).  Once a model is established, the initial probabilities can be 

varied to assess the degree of influence that it has on the occurrence of the events (Bañuls and 

Turoff 2011). Internal measures exist that can determine if there are events that are missing and 

should have been included in the initial event set. For further details of this see (Turoff 1971a).  

5 A numerical example     

In this section we provide a SCRM-oriented numerical example of a completed CIA exercise. 

We propose a scenario whereby a supplier to a large manufacturer wins a bid to become the sole 

provider of an important assembled part such as an automobile engine that is needed by the 

automobile manufacturer under a strict Make-To-Order (MTO) agreement. We consider this 

major supplier to be the focal firm in a three-tier supply chain. The focal firm is required to fully 

satisfy the demands of its important customer through a just-in-time (JIT) delivery of customer 

orders over the next decade or face sanctions in the form of fines or even the eventual loss of the 

customer’s business. The focal firm can choose to source a critical component needed to 

assemble the engine (such as the main engine block) from a set of 10 potential suppliers each 

located in a geographical region r where r ∊ R. We assume that once the focal firm settles on a 

supplier to fulfill the demand for this critical component, the supplier-buyer agreement cannot be 

revoked or replaced with another until the end of T = 10 years, the duration of the demand 

horizon for the product under consideration. The selection of a sole supplier in a context like this 

is critical. For example in recent news Ford Motor Company was forced to halt production of its 

flagship F150 truck due to supplier failure while it reconsidered options (Krisher 2018).  
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1.2.1  Determining the initial event set.  

The first step in the cross-impact analysis is determining an appropriate event set. This is 

usually done by committee through a Delphi process.  For our example we consider a potential 

US-based supplier. We assume that historic empirical data and expert opinion pinpoint economic 

policy and its interrelated events as the main antecedent for the success and failure for firms in 

this particular geographical region. With this knowledge, supply chain strategists, (along with 

other appropriate subject matter experts) will be asked to predict the supplier’s probability of 

being negatively affected by a supply chain disruption during the next ten years.  

Table 2 Disruption event set 

 Event        Description 

 Number (Ei)  

1 The US presidency changes hands and political parties more than once (Successive 1 term presidencies)   

2 There is a marked increase in worldwide natural disasters and freak devastating weather occurrences 
3 Advances in alternative clean energy sources exerts downward pressure on oil prices at the rate of 4% 

decrease a year 

4 Labor activists successfully lobby for a minimum federal wage increase of 80%  
5 National automobile safety standards are tightened  
6 Loses class action lawsuit due to multiple personal injury incidents resulting from product defect 
7 National demand for cars weakens by 10% 
8 Regulatory barriers to autonomous vehicle commercialization are removed  
9 A general port strike on the east coast interrupts the flow of goods by ship into the US  
10 Washington DC experiences a major terrorist attack similar to the 2001 September 11 attacks on New 

York City   

11 The US experiences at least a 4% annual decline of real GNP for the time frame  
12 High Disruption - Plant production is halted for a continuous period of more than six weeks 
13 Low Disruption - Plant production is halted only for brief periods (Slack made up by normal inventory 

management)   

14 Complete Disruption – Production is permanently halted    

 

The initial event set (see Table 2), or current “world” view, for this or any supplier should 

correspond with its particular geographical region’s main disruption threat based on expert 

knowledge and past data. Each event is either a direct economic policy change or an event that 

can be reasonably associated with economic policy changes. Following this, we can refer to 

events in the event set by their number. For our application of CIA in SCRM, we consider events 

12, 13 and 14 to be a special category of SCRM-related events. Event 12, 13 and 14 are 

manifestations of different levels of supply chain disruption whose occurrence is triggered 
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directly or indirectly by the rest of the events in the set. In our example of a US-based focal firm, 

we assume that a large proportion of the values of  pi
L, pi

H and pi
X is, indirectly or directly, driven 

by economic policy changes and the business environment. Ultimately, the novelty of this study 

is that we consider the cascading nature of events occurring outside of the supply chain that 

negatively affect its performance. The focal firm is negatively affected when its supplier is 

unable to deliver components on time.   

6 The Cross-Impact matrix and disruption prediction 

    The CIA process results in a cross-impact matrix A (see Table 3). A quick analysis of the 

cross-impact matrix shows that E10 (major terrorist attack) has a relatively strong (2.54) causal 

influence or enhancing effect on E14 (total disruption). While there may be nothing a firm can do 

to prevent a terrorist attack, they can either choose not to locate a potential supplier in a region 

where such attacks may be likely to cause a complete supplier outage or create a business 

continuity plan for that supplier containing contingency measures if an attack were to occur. In 

an enhancing linkage such as that between a supplier outage and a terrorist attack, the terrorist 

attack is considered to have a positive Hahn-Strassman effect on supplier outage in that it creates 

the conditions that enable a supplier outage to happen (Gordon and Hayward 1968). A terrorist 

attack necessitates that effort be expended to counteract its negative effect on firm performance. 

The amount of effort needed to counteract events that enhance a negative supply chain outcome 

could then be used as a measure a measure of risk mitigation costs and incorporated into a multi-

objective optimization model as a parameter and/or a constraint.   

The output of the cross-impact matrix gives the user an opportunity to reassess whether the 

causal relationships make sense. If not, the user can then go back and adjust the initial 

probabilities in the original event set until she is satisfied with the final results. Had this exercise 
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been part of a group or Delphi process, all the participant’s estimations will then be averaged to 

come up with a new, and  

presumably better, cross-impact matrix.  This interaction will result in new probabilities for 

the initial event set. 

 

Table 3 Cross-impact matrix  

 
 

When finalized, the CIA results could be presented in manner such as we suggest in Figure 1 

below. Figure 1 represents a plausible future world view based on the user’s understanding of 

the present context. The given time frame is 10 years. Figure 1 presents the overall probabilities 

assigned to events in the set and the resulting CIA outcomes or predictions. Of particular interest 

are events 12, 13 and 14 which represent 𝑝𝑖
𝐻 , 𝑝𝑖

𝐿, and 𝑝𝑖
𝑋, respectively. This approach provides 

results for the impact of high-level economic issues. The assumption is that the experts who 

ultimately quantify the relative impact of event types are competent at this activity. Their 

assessment will be based on previous data and the expert’s idea of the causal relationships 

between the different types of events. One possibility that could increase the efficacy of this 

approach would be to use event studies methodology to provide more robust numerical input.  
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In this case, the output indicates that it is highly unlikely that a US supplier will become 

insolvent due to projected changes in the economic environment within the next ten years. 

Events 3, 4 and 5 are predicted to almost certainly happen. The strategist can then use this insight 

to help decide whether to initiate a contractual relationship with this supplier. The user’s 

understanding of the current context is greatly enhanced through the CIA process because the 

resulting outcome considers the interrelatedness of the factors or events. 

Figure 1 Summary of probability estimates 

 

Instead of considering the event probabilities in isolation, the practitioners can now view them 

more holistically and objectively in through a cascading effects lens. This reduces bias by 

preventing the practitioner from arbitrarily weighing one factor over another. The user can 
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choose to use a scale to determine probability level like in Figure 2 below.  

Figure 2 Probability thresholds 

Level of probability Probability value  

Very Probable   𝑃𝑖  ≥  .75 

Probable  .75 ≥ 𝑃𝑖 ≥  .50 

Neutral (could go either way) 𝑃𝑖 =  .50 

Improbable  .25 ≤ 𝑃𝑖 ≤ .50 

Very Improbable  
 

𝑃𝑖  ≤  .25  

2 Discussion 

2.1 Prediction with CIA vs. Bayesian Statistics  

Skeptics in SCRM with their roots in Bayesian theory may still doubt the efficacy of the CIA 

method because they may still view it as a predictive tool in the classical probability sense. 

However, CIA by itself does not provide the user with a predictive measure in the strictest 

classical sense of “frequency” probability  (Gordon and Hayward 1968). However, when 

combined with contingency theory, the CIA approach possesses some magnitude of statistical 

predictive power. This can be the case if the occurrence of one or more events in the set is within 

the power of the decision-maker. In another example, the decision-maker may be absolutely 

certain that an event may or may not occur in future. In SCRM, prior knowledge of when a 

disruptive event will occur is not the norm. Thus, for the most part, CIA can be regarded as a 

consistency analysis tool that simplifies the supply chain strategist’s task by drastically reducing 

what would be an infeasible amount of information into a more palatable quantity. Events in the 

CIA are defined by two important properties:  

1. They are strictly non-recurrent, i.e., can only happen once in the time horizon under 

consideration  

2. They can be transient, i.e., they may not even happen at all. 
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Because of the property of non-recurrence, it is not possible to derive an event’s associated 

probability distribution function. However, it becomes more feasible to apply the concept of 

subjective probability for an event that occurs only once (Turoff 1971). Given a set of N non-

recurrent interrelated events, there exists 2N distinct scenario outcomes and N2N-1 outcomes that 

span the range of none the events occurring and all of them occurring in a given time frame 

(Turoff 1971). Interestingly, human beings on their own are not even capable of estimating the 

outcomes of event sets where N is a single digit number in a meaningful manner. Even for a 

mere N = 4 events, a decision maker would have to decide amongst 32 possible outcomes and 

512 possible distinct transition paths.  In reality, human beings estimate these probabilities by 

subconsciously analyzing non-recurrent and transient relationships of this nature on a daily basis 

(Turoff 1971).  Sometimes these rudimentary estimates may even be used to make important 

decisions such as selecting a long-term supply chain partner. The power of CIA lies in its ability 

to limit the user to N2 outcomes or questions for N interrelated events(Turoff 1971a). 

7 Managerial implication 

The main practical implication of our study is that we provide strategist tasked with building 

inflexible supply chains with a useful tool with which they can better prepare for 

unpredictability. Some researchers have stated that predicting and then avoiding disruptions are 

impossible tasks, especially in the case of exogenous events. Their basic approach to SCRM has 

been to assume that disruptions are an inevitability and that SCRM should focus on mitigation 

and business continuity in the advent of disruptions. We partially agree with this assertion 

because no one can ever completely and accurately predict the future. However, we contend that 

practitioners should at least try to take steps to understand their business environments and the 

possible impact on their firms’ performance when exogenous events do occur.   
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8 Limitations 

        For this study, we arbitrarily picked economic policy as being a major potential 

disruptive factor in the US. This may not necessarily be reflective of reality. Furthermore, the 

process of deciding which types of exogenous disruptive events to include in the event may be 

more complicated than just choosing a single risk category such as economic events. Since we 

acknowledge that the event set is crucial to the estimation of risk, we deem this aspect to be a 

limitation of this particular study. We do point that the approach of considering a different 

context for each geographical region is correct and has been supported in SCRM risk 

management contingency theory literature (see Sodhi and Tang, (2014)). Thus, potential 

suppliers in different geographical areas will most likely have a unique event set (Sodhi and 

Tang 2014). To arrive at plausible and useful event sets, we suggest a contingency theory 

approach whereby the user with the help of other experts would consider the context in which the 

strategy is to implemented (S. M. Wagner and Bode 2008). Events 12, 13 and 14 in Table 3 will 

be common in all the event sets. It is a comparison of these across all the summary outputs for all 

the potential suppliers under consideration that arm the strategist with a better idea of the relative 

exposure to disruption risk of each site.   

Another limitation is that the actual outcome of CIA can only be analyzed in the aftermath of 

the predicted event set and not before. With each event set being unique, it may be difficult to 

generalize the results of the exercise. What is undeniable however is that CIA greatly reduces the 

complexity of analysis by limiting the user to N events and N2 event pathways as opposed to a 

possible 2N distinct outcomes and 𝑁2𝑁−1 pathways that span the range of none of the events 

occurring and all of them occurring in a given time frame.  
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9 Conclusion 

The objective of this research was two-fold: (1) to demonstrate modeling of supply chain 

disruptions caused by exogenous eventswhen it is assumed that events do not happen in a 

vacuum but rather are triggered by other events. (2) to reduce the complexity practitioners can 

face when deciding amongst a great number of possible pathways. We were able to accomplish 

both objectives by introducing CIA as a potential analytics tool in SCRM. We show how the 

causal relationship between exogenous events can be analyzed resulting in a prediction of supply 

chain outcomes. In future research we will demonstrate how both efficiency and effectiveness 

goals can be simultaneously achieved through the hybridization of CIA with a stochastic MMOP 

supplier selection technique. The output of the CIA matrix could be used to reduce uncertainty 

by providing informed probability estimates, as opposed to random distributions. Another 

research direction could encompass defining the linkages between the cost of mitigation and 

supply chain outcomes in the aftermath of exogenous disruptive events. For example, the effort 

necessary to fend off the negative effects of a certain disruption could be calculated as a function 

of its probability and disruption-enhancing effect. Ultimately, a futures approach should provide 

the practitioner with a better understanding of future disruption mitigation costs and outcomes. 

The analyst may be able to better predict the performance of different mitigation strategies, i.e., 

the extent to which a particular mitigation strategy will enhance or inhibit the occurrence of a 

particular disruption type. In other future studies, strategists could elect to base the risk 

assessment of a supplier on the results of just one CIA exercise using just one event set. 

However, we recommend that this process be repeated with other types of disruption threats. The 

results of the analyses would then be aggregated to derive a more complete composite risk 

profile index for a particular site with an appropriate weighting of individual disruption types. 



 47 

 

Overall, we hope that this study will motivate SCRM researchers to delve into futures-oriented 

research. 
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Chapter 3 

Supplier Selection Under Disruption Risks: A Hybrid Cross-Impact Analysis/Stochastic 

Mixed-Integer Approach. 

Abstract 

Global supply chains are becoming more vulnerable to increased supply chain-related cost due to 

supplier operational failure and that increase component costs due to political/macro-economic 

disturbances. In this paper we address the shortage in the literature of mathematical supplier 

selection models that account for both types of supply chain risks. Using a combined Cross-

Impact Analysis and Stochastic Mixed-Integer Programming approach, we introduce a single-

source supplier selection model that accounts for both operational and political/economic 

disruption risk. Our computations indicate that a model considering the probability and impact of 

future political/macro-economic events can result in the selection of a different supplier from 

that of a model that only considers costs borne from supplier operational delays. We hope that 

our model will motivate researchers to adopt mixed-methods approaches and incorporate 

political/economic risk into future global supplier selection mathematical models  

1 Introduction 

In 2018, President Trump sparked a series of tariff wars that caused many company executives to 

reconsider the composition of their supplier portfolios in order to minimize supplier risk 

exposure (Conerly 2018). The idea that supplier risk-related costs are an important consideration 

during the selection of an optimal supplier portfolio is not new (see de Boer et al., 2001; Chen et 

al., 2006; Kuo et al., 2010; Li and Zabinsky 2011; Ruiz-Torres et al., 2013). The broad view in 

the literature is that decreased on-time delivery rates due to supply chain-related disruptions 
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increase cost of production. In essence, supplier risk is realized when a firm is fined by its 

customer for failing to deliver on time (Sawik 2011). Such a delay is often due to failure of the 

supplier’s own supplier to deliver necessary components in a timely manner. Increase in variable 

costs due to the manifestation of supply chain risk has been used to quantify supplier selection 

risk in stochastic supplier selection models (see Sawik 2011). However, the literature does little 

to account for increased supply chain-related costs resulting from disruptive external economic 

events; for example, tariff wars. Such external events do not necessarily result in delays in the 

supply chain. However, they have been shown to increase supply chain costs. For example, in 

retaliation for similar measures imposed by the Trump administration, Canada hit steel imports 

with a 25% tariff in mid-2018 (Allix 2018). The Trump administration also imposed a 25% steel 

import tariff on Mexico; along with a 10% general worldwide aluminum import tariff  (Allix 

2018).  

Tariffs can result in abrupt and unexpected changes in supply chain costs. Unexpected increases 

in costs realized from economic disturbances like tariffs are a special type of supply chain 

disruption that is often overlooked in the literature. We differentiate between two types of supply 

chain disruption costs: 1) operational costs, which result from fines imposed on a firm for failure 

to deliver on time, and 2) non-operational or economic costs, which are a result of external 

global or regional economic events. We define the threat of economic event or disturbances to 

the supply chain as economic disruptions risk. In this case our definition of economics is based 

on the broad definition of economics i.e. “the academic study of the production, distribution, and 

consumption of goods and services” (Merriam-Webster 2015). In particular, we focus on the 

impact on the supply chain of human-driven events on the macroeconomic level. Examples of 

this are possible government policy changes in influential countries such as the United States that 
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may affect global market efficiency. Disruptive external economic events may not necessarily 

result in a slowdown of the supply chain. However, they are an important supply chain risk 

consideration because they can negatively affect supply chain efficiency. 

 To illustrate the main idea in this study, we use the special case of a firm with a single source 

supplier strategy. The problem of supply chain risk is interesting to study in such a setting 

because the problem of supplier risk is exacerbated when a firm is unable to spread the risk of 

non-delivery across a portfolio of suppliers. Despite this danger, some firms may still prefer 

single-sourcing in order to increase supply chain flexibility (Chappell 2018) or for achieving 

efficiencies borne from buyer-supplier collaboration (Bode et al., 2011) and/or economies of 

scale. Our own investigative interviews with actual supply chain professionals and industry 

executives reveal that sometimes these two generally accepted and prescribed methods are not 

always practical or economically viable.  

In one case, the Chief Executive Officer of a major supplier to one of the top three automobile 

manufacturers described to us how certain buyer-supplier relationships may involve extremely 

critical high-cost components such as engine blocks. He said that in the automobile industry it is 

not uncommon for supplier sites to have extremely high Cost of Assets to Total Cost (COA/TC) 

ratios.. Thus, an extremely high COA/TC ratio can render mitigative strategies such as dual or 

cross sourcing economically infeasible. Furthermore, he added that the extremely high unit cost 

of production of a single specialized component may necessitate a strict make-to-order demand-

driven Just-in-time (JIT) production and delivery process. He added, “once a buyer picks a 

supplier, it has to hope that the probability of future disruption of this supplier is minimal for the 

complete duration of a product’s life cycle.”  
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In cases, where buyer supplier production activities are highly co-dependent and integrated, 

buyers often invest financial and human capital into supplier resiliency in a bid to reduce 

supplier operational risk (See Colicchia and Strozzi 2012; Jüttner 2004; Kleindorfer and Saad 

2009). This practice is common in the automobile industry. In Japan, these types of exclusive, 

closely-integrated buyer-supplier partnerships borne from long-standing relationships are 

generally known as keiretsu (Matsuo 2015). A prominent example of this is Toyota’s supplier 

structure strategy: Despite parts shortages in the aftermath of the Tohuku earthquake/tsunami 

catastrophe, Toyota announced that it would continue to stick to its single sourcing strategy 

because the benefits of doing so significantly outweighed the negatives (Chappell 2018). Toyota 

cited the reliance on some of 150 critical single-source suppliers with whom it had a very close 

collaborative relationship and who could not be easily replaced due to their very high 

engineering capabilities (Chappell 2018). In a similar move, Tata Motors, India’s largest auto 

maker, announced a new one-part one-vendor strategy aimed at cutting cost through economies 

of scale achieved from close and exclusive long term collaborative supply chain buyer-supplier 

partnership (Fintech 2013). 

Long-term collaborative partnerships typically involve extensive interfirm integration and 

investment into human and sometimes physical capital (Bode et al., 2011). Thus, once fully 

established, efficacious collaborative buyer-supplier relationships are usually not easily or 

readily replicable (Friedl and Wagner 2012). The problem arises when a single-source supplier is 

disrupted in some way. In the case of operational disruptions, the buyer may have no choice but 

to invest, at great expense, to help the supplier regain full production capacity. In the interim, 

demand may remain unsatisfied and market share could be permanently lost as customers balk at 

waiting times and begin to defect to competitors’ substitute products. In the case of economic 
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disruption, the buyer may have to absorb the resultant increased costs and forgo the ability to 

find a cheaper alternative source.  

It becomes obvious that for long-term single-sourcing buyer-supplier relationships, selecting the 

right supplier from the start is an extremely important decision that could save a buyer from the 

negative effects of supplier disruption in the long-run. Single sourcing dependency exposes the 

buying firm to an elevated level of risk (Burke et al. 2007). Despite this fact, there is a lack of 

research dedicated to sole supplier selection under external economic risk and uncertainty (Cao 

et al., 2016; Hammami et al., 2014). More specifically, there is need for supplier selection 

mathematical models which also quantify the impact of macro-economic disruptions on supply 

chain. 

 The problem of the macroeconomic impact of human activity on supply chains has been studied 

extensively in the field of economics. Some examples of the macroeconomic effect of trade 

policy on global supply chains can be found in literature on vertically linked product trade policy 

schemes and cascading trade protection (Erbahar and Zi 2017). Cascading trade protection 

occurs when countries administer forms of protection such as import tariffs (Anis et al. 2002)  

and anti-dumping (AD) law  (Hoekman and Leidy 1992) to protect local industry from foreign 

competition. While these studies address global supply chain efficiencies, they are more focused 

on the broad benefit of government policy to a particular country’s firm in general. Relatively 

few studies focus on the SCRM activities of individual firms. While the macroeconomic effect is 

prevalent in economics and trade policy journals, it is not as well addressed in SCRM. To be 

precise, and as outlined in the literature review section, there are very few SCRM studies that 

specifically consider the potential risks that macroeconomic activity poses to supply chain 

viability when firms are faced with supplier selection decisions. To contribute towards 



 53 

 

addressing this void in SCRM, we introduce a single-source supplier selection model that assists 

in decision-making in the face of both operational and economic disruption risk.  

We propose the dual use of Cross-Impact Analysis (see Gordon and Hayward, 1968) , a futures-

oriented scenario generation technique, and Stochastic Mixed-integer Programming (SMIP) in a 

robust hybrid CIA-SMIP model. The CIA component can enhance the ability of practitioners to 

predict economic disruption risk. We illustrate this new technique using an example of a focal 

firm (a first-tier supplier) which must decide on a single-source supplier from a set of potential 

partners, all in different global regions. Using this example, we formulate and solve a dynamic 

stochastic mixed integer programming (SMIP) model in which the risk of operational disruption 

is measured using an extant SMIP model developed in (Sawik 2018). As our contribution, we 

adapt one of Sawik’s (2018) SMIP models to include consideration for economic disruption risk 

using the scenario-generation capabilities of the CIA technique. The CIA-SMIP technique 

combines the two approaches most commonly used in optimization under uncertainty: (1) 

stochastic optimization where random parameters have known distributions and (2) robust 

optimization where the probabilities and distributions are unknown (Snyder and Daskin 2006).  

In SCRM, robust optimization often utilizes scenario generation to find solutions that, on 

average, perform well while allowing for some periods of bad performance (Snyder and Daskin 

2006). The problem is that supply chain decision-makers are often evaluated ex post, i.e., after 

the cost of their decisions have been actualized (see Snyder and Daskin 2005). Thus, a side effect 

of ex post evaluation is that decision-makers are incentivized to use robust optimization to seek 

minimax regret solutions that have the appearance of effectiveness regardless of the situation 

(Snyder and Daskin 2006) i.e., their models will assume the worst-case scenarios and be overly 

conservative every time. This tendency could result in lost opportunities.   
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Another general concern in robust optimization under uncertainty has to do with the sheer 

number of possible scenarios. Because of their random nature and interrelatedness, analyzing the 

set of events that result in supply chain disruption requires the generation of multiple scenario 

configurations. Unfortunately, the mathematical tractability necessary to determine dominance 

relationships is quickly diminished as the number of possible scenarios under consideration 

increases (Gutierrez and Kouvelis 1995).  

CIA can be categorized as a special type of robust technique. It has some distinct advantages 

over other robust techniques in that it accounts for the interrelatedness of risk factors. It also 

provides a systematic approach to reducing the number of possible scenarios into a more 

manageable and plausible set. Other robust techniques exist in the literature, but they do not 

possess some of CIA’s advantages. For example, Häntsch and Huchzermeier (2013) use a robust 

approach that incorporates scenario building. However, their approach does not consider the 

interrelatedness of the factors they consider. Furthermore, it neither provides a systematic 

replicable approach to scenario generation nor does it explain how the number of scenarios was, 

or could be, reduced.  

In this paper, we show CIA’s approach to scenario building can be incorporated into an extant 

SMIP model. Therein, we demonstrate CIA’s ability to reduce an otherwise mathematically 

intractable number of possible outcomes resulting from a combination of plausible future events 

to a more manageable set of plausible scenarios in an uncertain supply chain risk management 

environment. Our CIA-SMIP approach is designed to help decision-makers in firms that employ 

single-sourcing strategies to correctly choose the supplier that presents the lowest long-term 

overall supply chain risk. The rest of this study comprises the following sections: Section 2 is a 

literature review of our general topic area; in Section 3, we present the proposed CIA-SMIP 
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model formulation used to solve the supplier selection problem; Section 4 comprises a detailed 

computational example; and lastly, Section 5 contains the conclusion and suggestions for future 

research.   

2 Literature Review 

The supplier selection problem has received much attention in the literature. Dickson (1966) 

conducted a groundbreaking survey in this area and found that there were three main criteria 

used in supplier selection decision-making: the ability to meet quality standards, the ability to 

deliver the product on time, and performance history. Many tools and approaches have been 

subsequently developed based on these criteria to address supplier selection under uncertainty.  

In general supplier selection literature can be classified into 3 categories (De Boer et al., 2001; 

Wu et al., 2006): 

1) A conceptual approach that highlights supplier selection strategies  

2) Empirical studies that examine relationships between attributes of the supplier selection 

process  

3) An analytical approach that presents models used to solve the supplier selection problem 

In this is paper we present an analytical model. Thus, we concentrate our literature review on this 

approach. More precisely, we present an analytical model for the final selection of a supply chain 

partner (Wu and Barnes 2011). Whereas some supplier selection decision models address 

different stages of the supplier selection process such as formulation of criteria and supplier 

qualification, the majority of supplier selection models fall under the final selection category 

(Wu and Barnes 2011).  

A variety of approaches that can be found in the literature to address that final selection of a 

supplier. They include: Mathematical programming; Analytical hierarchical/ network process 
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(AHP) and (ANP); Fuzzy Set Approach; and combined methods which do not necessarily fall 

neatly into any particular category (Wu and Barnes 2011). 

In mathematical programming, goal programming has been applied to attain multiple goals for 

different levels of performance (Hajidimitriou and Georgiou 2002). Multi-objective 

programming (MOP) is used to help decision-makers during the negotiation stage (Cakravastia 

and Takahashi 2004). Wu et al., (2010) propose a stochastic fuzzy multi-objective programming 

model that takes supply chain risk factors into consideration.  Another subcategory of MOP that 

is common in the literature is integer programming. An example of this is Zhang and Zhang 

(2011) who address a supplier selection and purchase problem under stochastic demand by 

applying a Mixed Integer Programming technique incorporating a branch-bound algorithm.  

Distinct from MOP are AHP and ANP.  Examples of these include: Tam and Tummala (2001) 

who applied an AHP-based model to in a real setting to select a vendor for a telecommunications 

system.  Chan (2003) uses AHP to identify buyer-supplier interactions and to validate data 

collection methods in order to select the best possible suppliers. AHP however falls short in that 

it may be too simplistic and fails to account for the complexity presented by hierarchical 

relationships between factors under consideration (Wu and Barnes 2011). ANP is used to address 

this deficiency in for example (Coulter and Sarkis 2006) who propose a strategic model for 

partner selection that accounts for more complex relationships and also the possibility of bi-

directional hierarchical relationships. 

Fuzzy set models have also been used in final supplier selection literature and have been applied 

to both MOP and AHP techniques. They have been particularly useful for accounting for 

uncertainty and imprecision in supplier selection. For example, Sarkar and Mohapatra (2006) 

introduce a fuzzy MOP supplier selection model that measure the imprecision of suppliers’ 
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subjective characteristics. Bevilacqua et al., (2006) introduce a fuzzy algorithm that evaluates 

that importance of product features in supplier selection.  

There are models in the literature that do not belong to any of the aforementioned categories.  

These models are mostly set in dynamic decision-making settings. Examples include Lau and 

Wong (2001) who use different technologies such as manufacturing resource planning (MRPII)  , 

computer aided design (CAD) and computer aided process planning (CAPP) to solve the supplier 

section problem in dynamic networks; and Crispim and De Sousa (2010) propose an integrated 

approach for ranking virtual enterprises as prospective partner in a dynamic environment using 

TOPSIS (a technique for ordering preferences) in a dynamic environment.   

Almost all the aforementioned approaches to supplier selection propose methods are operations-

based in nature. Specifically, most of the  research we describe is concentrated around 

operational supplier selection metrics such as quality and timely delivery. We found few 

analytical models that consider the uncertainty of supply chain viability as result of factors other 

than supplier operability such as increased cost due to external economic factors. We also found 

no stochastic model that simultaneously addresses internal operational and external non-

operational supply chain risk. Furthermore, we found no studies that simultaneously consider the 

cascading effect of human-driven economic events that are external to the supply chain but may 

nonetheless threaten supply chain efficiency. This is what we introduce in this study  

There are several studies such as  Ruiz-Torres and Mahmoodi (2007)  that consider economic 

factors exist in the literature. For example, Gutierrez and Kouvelis (1995) show, using a robust 

approach, how a buying firm’s performance could be hedged against global supplier disruption 

caused by changes in macroeconomic parameters. They use realizable exchange rates as their 

unit of measurement and attempt to hedge the firm’s performance against the worst-case 



 58 

 

scenario. Kasilingam and Lee (1996) propose a stochastic mixed integer programming model to 

select vendors and determine order quantity. Bollapragada et al., (2004) examine system 

inventory dynamics and propose a decomposition approach using an internal service level to 

independently determine near-optimal stock levels for productions components under demand 

uncertainty. Berger and Zeng (2006) use a decision tree approach to determine the optimal size 

of its supply base in the presence of risks. They focus on operational interruptions that occur 

when suppliers are unable to meet the buying firm’s demand levels and offer exact and 

approximate optimal solutions for various scenarios. 

 Ruiz-Torres and Mahmoodi (2007) also utilize a decision tree approach to determine an optimal 

number of suppliers in the presence of supplier failure risks. Their study is different from 

previous research in that they consider partial failure and the possible operating cost gains that 

can be accrued from using less reliable suppliers. Sawik (2011) presents a study on supplier 

selection under disruption risk and proposes a method that uses two measures of risk: value-at-

risk and conditional value-at-risk for order allocation optimization in a multiple vendor scenario. 

Li and Zabinsky (2011) identify supplier selection as an important strategic decision and propose 

a two- stage stochastic programming and chance constrained hybrid model to determine the 

minimal set of suppliers and optimal order quantities with consideration for business volume 

discounts. Ruiz-Torres et al., (2013) also use decision trees to model supplier failure and 

prescribe mitigation strategies. They consider all the possible states of nature when one or more 

suppliers fail. Their contribution is the consideration of contingency planning in the decision 

process in order to minimize the total network costs.  

Most of the aforementioned methods use past empirical data to predict future events. The 

problem is that cascading events can result in unexpected outcomes. The reality is that the future 
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does not present itself in a manner such that these models can be conveniently superimposed 

onto strategic plans. Scenarios and conditions differ across different time periods. This means 

that past mitigation strategies may prove ineffective as new and different problems occur. Thus, 

there is need, in the literature, for more forward-looking futures-oriented predictive techniques 

that account for the possibility of multiple possible scenarios and their resultant outcomes. To 

address this gap, we draw inspiration from studies like (Gutierrez and Kouvelis 1995) who 

introduced a robust approach to international sourcing by developing supplier networks in such a 

way that hedges the firms’ performances against the worst contingency in terms of foreign 

exchange rates shock over a planning horizon. They presented an algorithm that resulted in the N 

best sourcing networks to the international sourcing problem. Our approach is different from 

(Gutierrez and Kouvelis 1995)  in that we also consider operational risk and the additional 

constraint of the single-source supplier. For this we utilize a widely accepted Stochastic Mixed 

Integer approach outlined in Sawik (2018). The result is a hybrid model that we contend is more 

robust than each the two techniques on their own. Our ultimate goal is to minimize future overall 

supply chain risk by choosing the single best sole source for a component in the presence of 

uncertainty and incomplete information.               

3       Formulation of Model 

We consider a three-echelon customer driven global supply chain very similar to one proposed 

by (Sawik 2018) in which comprises a customer, a buyer and a supplier. The buyer is the focal 

firm. The buyer can source a single critical component from a set of potential suppliers 𝐼 =

{1, … , 𝐼  ̅} located in different geographic regions across the globe (see Table 1 for notations 

used). The buyer must pursue a single-source strategy for this component over a 30 month 

planning horizon (five six-month planning periods). The product is to be manufactured and 



 60 

 

provided by the buyer to meet customer demand over the entire planning horizon. The 

satisfaction of customer demand is contingent upon on the on-time delivery of the critical 

component to the buyer.  

Using the general format in Sawik (2018), let  𝐼 = {1, … , 𝐼  ̅} be the set of potential suppliers, 𝐽 =

{1, … , 𝐽 ̅} the set of 𝐽 ̅customer orders for the product, and 𝑇 = {1, … , �̅� } the set of planning 

horizons. Then let 𝑏𝑗 and 𝑑𝑗 be the size and due date of customer order 𝑗 ∈  𝐽 respectively. Let 𝑏𝑗 

be the number of units of product ordered and  𝑑𝑗 the latest period of their completion required to 

deliver the product to the customer by the required date.  

We use 𝑎𝑗 to describe the unit requirement for the critical part of the product in customer order 

𝑗 ∈  𝐽.̅ The total demand for all parts is 𝐴 =  ∑ 𝑎𝑗𝑏𝑗𝑗 ∈𝐽 . In the same vein, the total demand for all 

products can be written as  𝐵 =  ∑ 𝑏𝑗𝑗 ∈𝐽 . Orders for parts are presumed to be placed at the 

beginning of the planning horizon and customer demand is known ahead of time. Let 𝑜𝑖 be the 

unit purchasing price of components from supplier 𝑖 ∈ 𝐼. Under normal conditions, the supplier 

can deliver the components needed in any given period on time and with a negligible defect rate. 

All the parts ordered from a supplier are delivered in a single delivery. The order takes a constant 

𝜏𝑖 periods to prepare and transport from supplier to buyer such that components ordered from 

supplier 𝑖 ∈  𝐼 are delivered in the period 𝜏𝑖  and then can be used for the assembly of the product 

in period 𝜏𝑖 + 1 , at the earliest (Sawik 2018).  

3.1 Disruption Risks 

The selection of a supplier comes with two types of disruption risks that may increase production 

costs for the buyer. The main contribution of this study is that we simultaneously measure 

additional cost borne from delays in the supply chain and also increased component cost arising 

from external economic factors. We define risk borne from delays as operational risk and risk 
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resulting from increases in component cost as economic risk. The events that result in the 

realization of either type of risk may be the same. For example a seaport strike may result in the 

delay of product delivery and result in the focal firm being fined accordingly by its customer. 

However, the port strike could result in an increase in component cost only if the focal firm uses 

air to transport the component instead.  Note that what we actually measure in the end is the 

effect on supply chain operability or cost of the event and not the event itself. We achieve this by 

adapting a risk-neutral calculation of supplier-caused operational risk for a single-sourcing 

strategy introduced in Sawik (2018) to include an economic risk component. We define supplier-

caused operational risk as the risk of increased production costs due to delays in the delivery of 

necessary production components for a supplier. This risk is realized when the buyer is fined by 

the customer for each order and unit that is late. The incurred costs are based on a contractual 

agreement that stipulates penalty cost for each delayed order delivery.  

The second type of risk is political economic risk which is calculated using the CIA 

methodology. This risk encapsulates the political and economic disruption risks that affect global 

factor markets which is expressed as  𝐷𝑖
𝐶𝐼𝐴, a constant or a cost factor by which the total cost 

(including operational risk-related costs) of ordering from a certain supplier is multiplied over a 

given planning horizon. This constant is always greater than one because economic risk can 

never be less than or equal to zero. Economic disruption risks do not necessarily manifest or 

present themselves as slowdowns or retardations in supply chain operability. They are, instead, 

expressed as per unit real increases in component costs due to things like currency fluctuations, 

increases in transportation costs due to increased oil prices, increases in the cost of imports due 

to changes in tariffs, etc.  
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3.1.1 Calculating Operational Risk (Sawik 2018)  

The method for the calculation of operational risk is found in Sawik (2018). Below we briefly 

describe the SPS1_E(c) model and present its basic equation and refer the reader to Sawik 

(2018) (see p.g 112)  for a more detailed and complete explanation.  The suppliers are located in 

𝑅 disjoint geographic regions. Let 𝐼𝑟 ⊆ 𝐼 be the subset of suppliers in region 𝑟 ∈ 𝑅 = {1, … , �̅�} 

where ⋃  𝐼𝑟 = 1 𝑟 ∈𝑅 . Let  𝑝𝑖
𝑜 be the probability of operational disruption caused by localized  

phenomena such as fires, plant failure, freak weather occurrences or earthquakes for supplier 𝑖, 

i.e.  is the probability that the parts are delivered without disruptions and 𝑝𝑖
𝑜 is the probability 

that parts are not delivered. 

Along with the local disruptions of each individual supplier, there are potential regional disasters 

that may result in correlated regional disruption of all suppliers with a probability of  𝑝𝑟𝑜. 

Furthermore, global disaster super events such as worldwide environmental catastrophes that 

may affect all suppliers, regardless of region, with a probability of 𝑝∗𝑜.  𝑝𝑟𝑜 and 𝑝∗𝑜 can be 

interpreted as affecting the operations of supply chains. They are special and separate types of 

operational disruption not to be confused with 𝑝𝑖
𝑜, which strictly refers to local disruptions at 

each site because they negatively affect internal supply chain operability and result in the 

inability of the supplier to deliver components on time. The aforementioned events are assumed 

to be independent. 

 In this study, a buyer must source all or part of any given order j from only one supplier  over 

the entire planning horizon. In any disruption scenario S, zero or more suppliers can be disrupted 

and their ability to deliver parts will be disrupted for that period. 𝑇he probability that disruption 

scenario 𝑠 occurs is 𝑃𝑠
𝑜, where 𝑠 ∈ 𝑆 = {1, … , �̅�} corresponding to a unique subset 𝐼𝑠 ⊆ 𝐼 of 

suppliers who deliver parts without interruption. For each scenario 𝑠 ∈ 𝑆, the supplies from 
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every supplier 𝑖 ∈ 𝐼\𝐼𝑠 can be disrupted either by a local, regional or global disruptive event. 

The probability of 𝑃𝑠
𝑜is presented in Sawik (2018) as:  

 

 𝑃𝑠
𝑜 =  {

(1 − 𝑝∗𝑜) ∏ 𝑃𝑠
𝑟𝑜              

𝑟∈𝑅
𝑖𝑓 𝐼𝑠  ≠ ∅

𝑝𝑟𝑜 + (1 − 𝑝∗𝑜) ∏ 𝑃𝑠
𝑟𝑜              

𝑟∈𝑅
𝑖𝑓 𝐼𝑠  ≠ ∅

} (2) 

 

Where 𝑃𝑠
𝑟𝑜 is the probability of realizing disruption scenario 𝑠 for suppliers 𝐼𝑟.  

𝑃𝑠
𝑟𝑜 =  {

(1 − 𝑝𝑟𝑜) ∏ (1 − 𝑝𝑖
𝑜) ∏ 𝑝𝑖

𝑜

 𝑖 ∈ 𝐼𝑟\𝐼𝑠

 
 𝑖 ∈ 𝐼𝑟 ⋂ 𝐼𝑠

𝑖𝑓 𝐼𝑟 ⋂ 𝐼𝑠  ≠ ∅

𝑝𝑟𝑜 + (1 − 𝑝𝑟𝑜) ∏ 𝑝𝑖
𝑜                               

 𝑖 ∈ 𝐼𝑟
𝑖𝑓 𝐼𝑟 ⋂ 𝐼𝑠  ≠ ∅

} (3) 

 

. 

In risk-neutral decision making, the effectiveness of the supply portfolio can be measured by the 

expected cost per product (see equation (3)), of parts ordering 
∑ 𝑒𝑖𝑢𝑖𝑖∈𝐼

𝐵
 , and purchasing of parts 

(∑ 𝑃𝑠
𝑜(𝑠∈𝑆  ∑ 𝐴𝑜𝑖𝑢𝑖𝑖∈𝐼𝑠

)/𝐵),  where the producer is not charged with ordered and undelivered 

parts, plus two types of penalty costs 1) penalty cost of delayed orders 

∑ 𝑃𝑠
𝑜

𝑠∈𝑆  (∑ ∑ 𝑔𝑗𝑏𝑗(𝑡 − 𝑑𝑗)𝑤𝑗𝑡
𝑠 )/B𝑡∈𝑇:𝑡>𝑑𝑗𝑗∈𝐽  and 2) cost of unfulfilled (rejected orders) due to 

delays and disruptions of part supplies, ∑ 𝑃𝑠
𝑜

𝑠∈𝑆 (∑ ℎ𝑗𝑏𝑗(1 − ∑ 𝑤𝑗𝑡
𝑠 ))/𝐵𝑡∈𝑇𝑗∈𝐽  (Sawik 2018). 

 

 

 

Table 4  below contains the notation input parameters and indices that will be used throughout 

this paper. 
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In risk-neutral decision making, the effectiveness of the supply portfolio can be measured by the 

expected cost per product (see equation (3)), of parts ordering 
∑ 𝑒𝑖𝑢𝑖𝑖∈𝐼

𝐵
 , and purchasing of parts 

(∑ 𝑃𝑠
𝑜(𝑠∈𝑆  ∑ 𝐴𝑜𝑖𝑢𝑖𝑖∈𝐼𝑠

)/𝐵),  where the producer is not charged with ordered and undelivered 

parts, plus two types of penalty costs 1) penalty cost of delayed orders 

∑ 𝑃𝑠
𝑜

𝑠∈𝑆  (∑ ∑ 𝑔𝑗𝑏𝑗(𝑡 − 𝑑𝑗)𝑤𝑗𝑡
𝑠 )/B𝑡∈𝑇:𝑡>𝑑𝑗𝑗∈𝐽  and 2) cost of unfulfilled (rejected orders) due to 

delays and disruptions of part supplies, ∑ 𝑃𝑠
𝑜

𝑠∈𝑆 (∑ ℎ𝑗𝑏𝑗(1 − ∑ 𝑤𝑗𝑡
𝑠 ))/𝐵𝑡∈𝑇𝑗∈𝐽  (Sawik 2018). 
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Table 4 Notation: selection of supply portfolio and scheduling Indices (adapted from Sawik 2018) 

Symbol Indices 

𝑖 = supplier, i ∈ I 

𝑗 = customer order, j ∈ J 

𝑟 = geographic region, r ∈ R 

𝑠 = disruption scenario, s ∈ S 

𝑡 = planning period, t ∈ T 

𝑎𝑗 = per unit requirement for parts of each product in customer order j  

𝑏𝑗 = size (number of products) of customer order j 

𝐹𝑖 = Tariff costs risk factor (derived from CIA)  

𝐴 = total demand for parts 

𝐵 = total demand for product 

𝑐𝑗 = per unit capacity consumption of producer for customer order j 

𝐶𝑡 = capacity of producer in period t 

𝑑𝑗 = due date for customer order j 

𝑒𝑖 = fixed cost of ordering parts from supplier i 

𝑔𝑖  = per unit and per period penalty cost of delayed customer order j 

ℎ𝑗 = per unit penalty cost of unfulfilled customer order j 

𝐼𝑟 = subset of suppliers in geographic region r 

𝑜𝑖 = per unit price of parts purchased from supplier i 

𝑝𝑖
𝑜 = local operational disruption probability for supplier i 

𝑝𝑟𝑜 = regional operational disruption probability for all suppliers in region r 

𝑝∗𝑜 = global disruption probability for all suppliers α 

𝑝𝑖
𝐻𝑐 = low impact economic disruption probability ⇒ Cost of production is increased 

by  5% ≥  𝑥 ≥ 3% 

𝑝𝑖
𝐿𝑐 = high impact economic disruption probability ⇒ Cost of production is increased 

by  10% ≥  𝑥 ≥ 5% 

𝑝𝑖
𝑋𝑐  = very high impact economic disruption probability ⇒ supplier becomes insolvent 

10% ≤  𝑥 

𝛼 = confidence level 

𝜏𝑖 = delivery lead time from supplier i 
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The complete SPS1_E(c) model is formulated below.  

  

Minimize  

 ∑ 𝑒𝑖𝑢𝑖

𝑖∈𝐼

/𝐵 + ∑ 𝑃𝑠
𝑜(

𝑠∈𝑆

 ∑ 𝐴𝑜𝑖𝑢𝑖

𝑖∈𝐼𝑠

)/𝐵)

+ ∑ 𝑃𝑠
𝑜

𝑠∈𝑆

 (∑ ∑ 𝑔𝑗𝑏𝑗(𝑡 − 𝑑𝑗)𝑤𝑗𝑡
𝑠 )/B

𝑡∈𝑇:𝑡>𝑑𝑗𝑗∈𝐽

+ ∑ 𝑃𝑠
𝑜

𝑠∈𝑆

(∑ ℎ𝑗𝑏𝑗(1 − ∑ 𝑤𝑗𝑡
𝑠 ))/𝐵

𝑡∈𝑇𝑗∈𝐽

 

(4) 

 

 

 

 

Table 5 Variables: selection of supply portfolio and scheduling (from Sawik 2018) 

                First stage variables 

𝑢𝑖 = 1, if supplier i is selected; otherwise 𝑢𝑖= 0 (supplier selection) 

                Second stage variables 

𝑤𝑗𝑡
𝑠  

1, if under disruption scenario s customer order j is scheduled for period t; 

otherwise 𝑤𝑗𝑡
𝑠  = 0 (production scheduling) 

 

In order to ensure selection of a maximum of one supplier, we introduce the constraint  

𝑢𝑖 shown in Table 2, an order-to-period assignment constraint, 𝑤𝑗𝑡
𝑠 . That is, for each disruption 

scenario s, and each customer order j is scheduled during the planning horizon (∑ 𝑤𝑗𝑡
𝑠 = 1)𝑡∈𝑇 , 

or unscheduled and rejected (∑ 𝑤𝑗𝑡
𝑠 = 1)𝑡∈𝑇 . For a more detailed explanation of this model which 

includes the other constraints, we direct the reader to Sawik (2018).   
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3.1.2 Measuring Non-Operational (Cost) Risk Using Cross-Impact Analysis   

So far we have outlined the calculation of operational supplier risk in a supplier selection model 

as proposed by (Sawik 2018). Instead of just considering operational risk we now consider 

political-economic risk. We define political-economic risk as risk of increased production costs 

as triggered by changes in the regional or global political and economic environment.  This type 

of disruption event does not necessarily cause an interruption of the flow of goods in the supply 

chain but rather an increased cost of the component to the buyer.  

Let 𝑝𝐻𝑐, 𝑝𝑀𝑐and 𝑝𝐿𝑐 represent the probability of occurrence of high impact, medium and low 

impact economic disruption that cause increases in the cost of component sourced from suppliers 

for the buyer. Economic disruption which result in increased supply chain-related costs  can 

happen when, for example, human induced global political/economic events trigger currency 

value fluctuations (Gutierrez and Kouvelis 1995), introduction or increase in costs related to 

import tariffs or when the buyer has to ship cargo using air as opposed to sea during a sea 

port/harbor strike; as opposed to operational disruptions which are random occurrences that 

directly result in delays in the supply chain we consider economic disruptions to be deterministic 

in nature.  We posit that cost increases resulting from economic disruptions cascading 

culmination of preceding events that either enhance the or inhibit the occurrence of subsequent 

events. This is why we propose the use of a deterministic methodology like CIA to determine the 

magnitude of the causal relationships between such events and thus estimate their conditional 

probabilities.  

3.1.3 Calculating Economic Event Probabilities Using CIA  

The CIA method is an analytical approach to the calculation of probabilities of an item  in a 

forecasted set (Gordon 2004). A set of future plausible events is usually generated through a 
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literature search and conducting interviews with experts in the field. In this study (for illustrative 

purposes), our event set is adapted from the Chartered Institute of Procurement and Supply 

(CIPS) report on the global supply chain risk index (Ganguli 2018). Using the provided list of 

global supply chain political-economic risks, we derive a plausible set of future events for each 

region in the supply chain based on our knowledge and expert opinion. We suppose that the 

setting is in January 2016 and the supplier under consideration is located in the Asia-Pacific 

region. We consider a total time period 𝑇 of ten years to correspond with the projected life cycle 

of the product in question, implying that production of this product and its related inputs will be 

halted after ten years.  

The event sets are situational and unique to each supplier based on its global location. Each event 

is assigned initial probabilities, 𝑃𝑖, i = 1, 2, …, 14, of occurrence sometime within any period t ∈

𝑇 , 𝑡 = {1, … ,10}.  For this example each period represents a year beginning with 2016. The 

general idea is that events in a well-defined set should influence or cause each other by some 

degree or magnitude. We estimate the influence (causality) resulting from the assumptions made 

about the occurrence or non-occurrence of events and thus calculate 𝑝𝐻𝑐 , 𝑝𝑀𝑐, and  𝑝𝐿𝑐. Causality 

is measured using a correlation coefficient 𝐶𝑖𝑘 which represents the impact of the kth event on the 

ith event. The events are not necessarily timestamped. 𝐶𝑖𝑘  simply represents a quantification of 

how the occurrence of one event k will affect the probability of occurrence of another event i. A 

positive 𝐶𝑖𝑘  means that event k enhances the probability of event i, whereas a negative 𝐶𝑖𝑘 

implies that event k inhibits or reduces the probability of event i. We can calculate 𝐶𝑖𝑘  using a 

variation of the Fermi-Dirac or logistic distribution function by asking subjects about the 

probabilities (Pi) as determined by the following relationship (see Bañuls and Turoff 2011; 

Turoff 1971): 
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                                      𝑃𝑖 = 
1

[1 + 𝑒𝑥𝑝(−𝐺𝑖 − ∑ 𝐶𝑖𝑘𝑃𝑘𝑖≠𝑘 )]
 (5) 

 

where 

𝑃𝑖 is the probability of the occurrence of the i-th event, (i = 1, 2, 3…n) 

𝐺𝑖 (the gamma factor) the effect of all the events not explicitly specified in the model. 

𝐶𝑖𝑘 impact of the kth event on the ith event (positive ⇔ enhancing, negative ⇔ inhibiting). 

 

9.1.1.1 The Cross-Impact Matrix  

The cross-impact matrix (see Table 3) is a tabular representation of all the possible relationships 

between the events in a given event set.  It contains the values for each  

𝐶𝑖𝑘 which are calculated using the likelihood measure depicted in (Turoff 1971b). Each 𝐶𝑖𝑘 

represents the impact of the kth event on the ith event. The 𝐶𝑖𝑘 values in the body of the table, in 

essence, represent the marginal utility factors that relate the utility of the kth event to the ith event 

(Turoff 1971b). The last column in Table 3, called the G-vector which contains the 𝐺𝑖 values, is 

a constant of integration for of the n differential equations for 𝑃𝑖 that allows us to collect all other 

influences for 𝑃𝑖 that are not explained by the causal relationships (Bañuls and Turoff 2011). The 

result of calculating all the 𝐶𝑖𝑘′𝑠  can be tabulated and displayed a cross-impact matrix such as 

the one below; which we obtained for our computational example. The diagonal would present 

the overall probabilities (OVP) for each event which are calculated using Equation 4. The OVP’s 

we used for our computational example are shown in Table 4.   
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Table 6 Cross-impact Matrix with G vector 

 k 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 G vector 

1 OVP 0 0.44 0.44 0 -0.44 0 0.44 1.39 -0.44 0 -0.2 0 -0.81 4.50 

2 -0.85 OVP 0.41 0 -1.79 -1.79 -1.79 -0.85 0 -1.79 -0.44 0 0 0 0.61 

3 0 1.25 OVP 0 0.41 0 -0.41 -0.41 0 -0.81 0 0 0 0 -1.49 

4 0 0 -0.41 OVP 0 0 0 0 0 -1.39 -0.44 0.44 0 0 -1.16 

5 0 0 0 0 OVP -0.54 0.44 0 0 0 0 0 0 0 0.50 

6 0 0.81 0 0 1.25 OVP 0.81 0 0.41 0 0.44 0 0 0 1.61 

7 -0.44 -0.85 1.79 0.41 0 0 OVP 0 -0.44 0.44 0 0 0 0 1.13 

8 1.79 0 1.39 0 1.79 -0.44 -0.44 OVP 0 1.25 -0.44 0 0 0 -1.05 

9 0.41 0.44 0 0 0.44 0 0.44 0 OVP -1.35 0 0 0 0 -2.14 

10 1.59 0 0 0 0 0 0 0 0 OVP 0 0 0 0 -0.50 

11 -0.44 0 -0.85 0 0.54 0 -0.44 0.54 -0.98 -1.35 OVP 0 0 -0.09 0.38 

12 0.44 0.41 -0.44 0 0.41 0 0 0.44 0 1.39 -0.85 OVP 3.04 0 -0.60 

13 0 -1.69 0 0 -0.54 0 0 0 0.54 0 -0.54 0.85 OVP 0 -1.53 

14 -0.38 -1.35 -0.44 0.81 -0.54 0 0.54 0.98 0.44 2.54 -1.35 2.1 0.12 OVP -1.36 

 

We refer the reader to Turoff (1971) for a more detailed explanation of the calculation. The 

conditional probability  𝑃𝑖 of occurrence of each event is calculated using Equation. 4. 

Calibration of the cross-impact matrix is an iterative process whereby the probability of each 

event is assumed to be 1 and then 0 while holding the rest of the events constant. This answers 

the question “If event m occurs (or does not occur) for certain, what is the new probability of n?”  

The resultant new CIA-derived probabilities of events are checked for consistency and adjusted 

until the participants are satisfied with the results. Consistency of probability estimates can be 

checked using the rules governing conditional probabilities. One such rule is that there are limits 

to the range of overlap of conditional probabilities (Gordon 2004). Gordon (2004) gives the 
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following example: Consider two events, m and n, each with initial probabilities of occurrence of 

0.6 and 0.5 respectively. Then imagine 100 hypothetical futures in which these events may or 

may not occur. It can be inferred that it is likely that m will occur 60 times and n will occur 50 

out of the 100 futures. This implies that there is an overlap of at least 10 futures in which both m 

and n occur. Therefore, 𝑃(𝑛|𝑚)  can never equal zero because if n never occurred when m 

occurred the possible overlap of 10 events would not be possible. Thus, either the original 

estimate of the probability of n is estimated without any thought to the 0.6 probability of 

occurrence of m or  𝑃(𝑛|𝑚)  ≠ 0. One of the preceding judgments incorrect because both being 

true leads to inconsistency (Gordon 2004). It is left up to the participants to decide whether the 

initial estimate of P(n) fully accounts for the influence of m or if 𝑃(𝑛|𝑚) needs to be adjusted 

upwards. Therein lies the power of CIA. The learning process that occurs during the building of 

the cross-impact matrix is one of the reasons why this method is so beneficial (Gordon 2004).      

9.1.1.2 The Event Set   

In this study (for illustrative purposes),  we derive a plausible event set based on the Chartered 

Institute of Procurement and Supply (CIPS) report on the global supply chain risk index (Ganguli 

2018). Using the provided list of global supply chain political-economic risks, we derive a 

plausible set of future events for each region in the supply chain.. In this example, the event set 

for a supplier i in country X in the Asia-Pacific region is used to generate a cross-impact matrix; 

the results of which are presented in Table 3.   We use 𝑝𝑖, to denote the original probability 

estimate for event 𝑖, whereas 𝑝𝑖
∗  is the probability estimate for the occurrence of event 𝑖 after at 

least one iteration of the CIA estimation process. When faced with several choices of possible 

suppliers, the decision-maker will generate a CIA for each one. The output of each CIA will then 
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become one of the inputs for the final CIA-SMIP model (see Section 4: Computational 

Example).  

9.1.1.3 Events of interest 

We draw the reader’s attention to events 𝐸12, 𝐸13 and 𝐸14   We designate these events to be our 

events of interest. The rest of the event set comprises enhancing (or inhibiting) events for  𝐸12, 

𝐸13 or 𝐸14. We assume that these three events are mutually exclusive and will occur last in the 

“chain of causality” (Gordon 2004) from a temporal standpoint. 𝑝𝐻𝑐 and 𝑝𝐿𝑐 𝑝∗𝑐   are the CIA-

generated conditional probabilities for events  𝐸12, 𝐸13 and 𝐸14, respectively. 𝐸12, 𝐸13 and 𝐸14  

have associated probabilities 𝑝𝐻𝑐 , 𝑝𝑀𝑐and 𝑝𝐿𝑐, respectively, which are used to calculate 

additional cost parameters in optimization models by converting them to economic disruption 

probability multipliers 𝐷𝑖
𝐶𝐼𝐴 where 𝑖 ∈ 𝐼.  

To calculate 𝐷𝑖
𝐶𝐼𝐴, we weight the stated increase in the cost of production by the calculated CIA 

probabilities 𝑝𝐻𝑐 , 𝑝𝑀𝑐 , and 𝑝𝐿𝑐.  We assume that 𝐷𝑖
𝐶𝐼𝐴 > 1 is a constant equal to 1 when the 

probability of political-economic disruption is equal to 0 and that 𝐷𝑖
𝐶𝐼𝐴 > 1 when we add to it the 

weighted probability factor accordingly (see Table 5). The weighted probability factor is 

calculated by multiplying the event’s respective OVP by the estimated percentage increase in 

cost. 
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Table 7 Cross-Impact Analysis of Event Set for Asia -Pacific Region in January 2016 

SUMMARY OF PERTURBED OUTCOMES FOR CROSS IMPACT ANALYSIS 

 

i 

 

PROBABLE EVENTS (Ei) ORIGINAL 

PROBABILITY 

𝒑𝒊 

CIA 

PROBABILITY 

𝒑𝒊
∗ 

RESULTING 

OUTCOME 

1 US presidency changes hands next year    .99 1.00 Medium 

probability 

2 Revision or cancellation of global trade agreements 

such as NAFTA and Trans-Pacific Partnership (TPP)   
0.6 1.00 Very high 

probability  

3 Increased tariffs on all US imports originating from 

Asia  
0.5 1.00 Very high 

probability  

4 Lower-for-longer oil prices  0.4 1.00 Very high 

probability  

5 Increased regional political turmoil   0.7 1.00 Very high 

probability  

6 Increased Banking-sector stresses  0.4 1.00 Very high 

probability  

7 US demand for cars weakens by 10% 0.6 0.54 Medium 

probability 

8 Britain’s exit for EU is hard and sharp 0.3 0.00 Very low 
probability 

9 A general seaport strike on the east coast 0.3 0.29 Low 

probability 

10 The US experiences a major terrorist attack similar to 

the 2001 September 11 attacks on New York City   
0.1 0.00 Very low 

probability 

11   air delivery of critical component is necessary.  0.3 0.31 Low 

probability 

12 Low impact economic disruption - Cost of production 

is increased by ≥25% but ≤50% 
0.5 0.53  (𝑝𝐿𝑐) Medium 

probability 

13 Medium impact economic disruption - Cost of 

production is increased by ≥50% 
0.5 0.52  (𝑝𝑀𝑐) Medium 

probability 

14 High impact economic disruption - Cost of production 

is increased by ≥2000% (arbitrarily large number to 

indicate supplier insolvency) 

0.1 0.00  (𝑝𝐻𝑐) Very low 

probability 

 

The values shown in Table 5 were derived in this manner.  

Table 8 Values for Economic Disruption Multiplier 

Disruptive Event Percentage increase in 

cost 

CIA probability (𝒑𝒊
∗) Disruption 

probability 

multiplier 

High impact 2000% 0.00   (𝑝𝐻𝑐) 1 

Medium impact 35% 0.53   (𝑝𝑀𝑐) 1.19  

Low impact  12.5% 0.52    (𝑝𝐻𝑐)  1.07 

  

In cases where 𝑝𝐻𝑐, 𝑝𝑀𝑐and 𝑝𝐿𝑐 are decidedly different, we propose an arbitrary heuristic 

whereby if there is more than ten percentage points difference between them, the higher of either 
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𝑝𝑀𝑐 or 𝑝𝐿𝑐 will be used for the calculation of the model’s 𝐷𝑖
𝐶𝐼𝐴 .  For our computational example, 

we propose the consideration of high impact only if the probability exceeds 0.50 (i.e. the 𝐷𝑖
𝐶𝐼𝐴  

for supplier i ≥ 0.50 we predict with certainty that that supplier will become insolvent and it is 

disqualified from consideration because of the arbitrarily high percentage increase in production 

cost). This is a similar approach to the Big M method sometimes used in in the Simplex method 

in linear programming. In the case where there is not a discernible difference between the 

probabilities, we default to the medium impact probability. 

Future studies may improve upon the use of a heuristic to assume the occurrence or non-

occurrence of event with more robust statistical techniques and that also employs the use of past 

empirical data to make this determination. For the time being, our aim is strictly to show how 

this disruption economic probability data can be formulated and incorporated into a stochastic 

optimization model. In this example we choose 1.19 (medium impact event) as the economic 

disruption multiplier for global supplier i under consideration in the preceding CIA calculation 

example. 

1.1.1 Combined CIA-SMIP Model Formulation 

In this section we introduce our proposed model. We demonstrate how Sawik’s SPS1_E(c) can 

be hybridized into a CIA-SMIP model. The normalized functions are defined as:  

 

𝐸𝑐 = 𝐷𝑖
𝐶𝐼𝐴(∑ 𝑒𝑖𝑢𝑖

𝑖∈𝐼

/𝐵 + ∑ 𝑃𝑠
𝑜(

𝑠∈𝑆

 ∑ 𝐴𝑜𝑖𝑢𝑖

𝑖∈𝐼𝑠

)/𝐵)

+ ∑ 𝑃𝑠
𝑜

𝑠∈𝑆

 (∑ ∑ 𝑔𝑗𝑏𝑗(𝑡 − 𝑑𝑗)𝑤𝑗𝑡
𝑠 )/B

𝑡∈𝑇:𝑡>𝑑𝑗𝑗∈𝐽

+ ∑ 𝑃𝑠
𝑜

𝑠∈𝑆

(∑ ℎ𝑗𝑏𝑗(1 − ∑ 𝑤𝑗𝑡
𝑠 ))/𝐵

𝑡∈𝑇

    

𝑗∈𝐽

 

(6) 
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where 𝐷𝑖
𝐶𝐼𝐴 = (1 +  Γ), Γ 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑜𝑠𝑡 

 

The multiplication of the first two terms of Sawik’s SPS1_E(c) by the CIA-derived 

multiplicative factor 𝐷𝑖
𝐶𝐼𝐴  is our addition to the model and main contribution to literature. The 

multiplicative factor has the potential to enhance the predictive capabilities of Sawik’s 

SPS1_E(c) because it explicitly accounts for the possibility of economic disruptions which are 

not expressed in extant supplier selection models that are based on mathematical modeling. 

Secondly, the factor operationalizes the idea of economic disruption in a mathematical model. As 

demonstrated in the CIA calculations, arriving at plausible value of the multiplier is not a trivial 

exercise.   

4 Computational Example  

We present a computational example as an application for the CIA-SMIP approach for the 

selection of potential global suppliers, order quantity allocation and the scheduling of customer 

orders in single-sourcing strategy. We evaluate the impact of the economic disruption multiplier 

by comparing the optimization of expected cost using the SMIP approach (Sawik 2018) to that of 

the CIA-SMIP.  The parameters used in the example model were drawn from Sawik (2018) with 

the exception of a few numerical modifications and the addition of the economic disruption 

multiplier. The parameters used in the model are: 

 

• 𝐼,̅ the number of suppliers was 5 and the number of disruption scenarios considered was 5.  

• 𝐽w̅as the number of customer orders which was equal to 5 

• �̅�, the number of geographic regions was 2 

• �̅�, the number of planning periods was equal to 5; 
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• 𝑎𝑗  the unit requirements for parts of products in customer orders were integers in 

• {1, 2, 3} drawn from int(U [1;3]) distribution, for all orders j; 

• the size of customer orders (required numbers of products); were integers in {500, 

1000,…,5000} drawn from 500int(U[1;10]) distribution, for all customer orders j 

• 𝑐𝑗, the unit capacity consumptions of producer were integers in {1, 2, 3} drawn from int(U [1;3]) 

distribution, for all customer orders j; 

• 𝐶𝑡 , the capacity of producer in each period t, was integer drawn from 1000 ┌(2 ∑ 𝑏𝑗j∈J 𝑐𝑗/(�̅�− 

𝑚𝑎𝑥𝑖∊𝐼𝜏𝑖 ))U[0.75; 1.25]/1000]┐ distribution, i.e., in each period the producer capacity was from 

75% to 125% of the double capacity required to complete all customer orders during the 

planning horizon, after the latest delivery of parts;  

• 𝑑𝑗 , the due dates for customer orders, were integers in {1 + 𝑚𝑖𝑛𝑖∊𝐼𝜏𝑖 (𝜏𝑖), ..., T} drawn from 

int(U[2;10]) distribution, for all customer orders j; 

• 𝑒𝑖, the cost of ordering parts were integers in {5000, 6000,…,10000} and integers in {15000, 

16000,…,30000}, respectively for domestic suppliers i ∈ 𝐼1  and for foreign suppliers i ∈ 𝐼2; 

• 𝑔𝑗, the unit daily penalty cost of delayed customer orders was equal to ┌ 𝑎𝑗𝑚𝑎𝑥𝑖∊𝐼 (𝑜𝑖)/350┐for 

all orders j, i.e., was approximately 0.28% of the maximum unit price of required parts; 

• ℎ𝑗 , the unit penalty cost of unfulfilled customer orders was to 2┌ 𝑎𝑗𝑚𝑎𝑥𝑖∊𝐼 (𝑜𝑖)/ ┐for all orders 

j, i.e., was approximately twice as large as the maximum unit price of required parts; 

• 𝑜𝑖, the unit price of parts purchased from supplier i, was uniformly distributed over [11,16] and 

over [1,6], respectively for domestic suppliers i ∈ 𝐼1  and for foreign suppliers i ∈ 𝐼2   

• 𝑝𝑖
𝑜, the local disruption probability was uniformly distributed over [0.005,0.01] for domestic 

suppliers i ∈ 𝐼𝑖  and over [0.05,0.10] for foreign suppliers i ∈ 𝐼2  , i.e., the disruption 

probabilities were drawn independently from U[0.005;0.01] and from             U [0.05;0.10], 

respectively for domestic and foreign suppliers.  

• 𝑝𝑟𝑜 The regional disruption probability was  𝑝1  = 0.001 for domestic suppliers i ∈ 𝐼1  and 𝑝2 = 

0.01 for foreign suppliers i ∈ 𝐼2; 

• 𝑝∗𝑜, the global disruption probability was 0, i.e., no global disaster super event is considered. 

• 𝜏𝑖 , delivery lead time from domestic suppliers i ∈ 𝐼1, were integers in {1, 2} drawn from 

int(U[1;2]) distribution and from international suppliers i ∈ 𝐼1 , were integers drawn {2,3,4} 

drawn from int(U[2:4]) distribution. From a possible 5 suppliers, 2 were domestic (US-based) 

and 3 were international (all located in south-east Asia.) 

• 𝐷𝑖
𝐶𝐼𝐴 , 1.3 based on CIA results. 

 

All the computational experiments were performed using the above data. For all the experiments 

the total demand is A = 25,500 and B = 15,500. Table 6 contains the results for the two objective 

functions; CIA-SMIP and the SMIP.  

Table 9 Risk-Neutral Solutions: CIA-SMIP vs SMIP for Single-Sourcing Strategy 

  

Optimization Technique 

 

CIA-SMIP SMIP 

Expected Cost (per unit)  6.010 5.028 

Selected supplier 3 3 

Number of variables 130 130 
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 In both cases, the models used suggested supplier 3, a less expensive international supplier 

based in southeast Asia. All the southeast Asia suppliers were assigned the same multiplier  

𝐷𝑖
𝐶𝐼𝐴 = 1.3 based on CIA results; whereas US-based or local suppliers had a 𝐷𝑖

𝐶𝐼𝐴 = 1.  

To test the sensitivity of supplier choice to 𝐷𝑖
𝐶𝐼𝐴, we performed a parameter sensitivity analysis 

in order to observe the ranges of the 𝐷𝑖
𝐶𝐼𝐴 in which the selection of supplier 3 would remain 

optimal. As noted previously, the 𝐷𝑖
𝐶𝐼𝐴 value can range from 1 to 2; where 𝐷𝑖

𝐶𝐼𝐴  = 1 represents 

no influence in the model from the 𝐷𝑖
𝐶𝐼𝐴  multiplier and 2 represent the maximal possible 

influence. When 𝐷𝑖
𝐶𝐼𝐴 = 2, the probability of economic disruption is 1. When 𝐷𝑖

𝐶𝐼𝐴  = 1 the 

probability of economic disruption is 0. This implies that the CIA-SMIP and SMIP models are 

equivalent when  𝐷𝑖
𝐶𝐼𝐴  = 1 for both the local and SE regions.  

Table 7 below shows the results of a sensitivity analysis for the SE Asia economic disruption 

multiplier denoted by 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

. The results displayed are for a range [1,2] for 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

  (holding 

a constant local disruption multiplier  𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

= 1). Supplier 3 (in SE Asia) was the optimal 

supplier choice for 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

< 1.5 (approximately).  Supplier 2 (local) was the optimal supplier 

choice for 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

≥ 1.5 (approximately). Supplier 3 (in SE Asia) was the supplier choice for 

the entire possible range of local dis 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

. The rest of the parameters and variable values 

were held constant. As was expected, the minimized cost per unit for each solution increased 

with the probability of economic disruption. The managerial implication of this is that decision-

makers now have a way of systematically taking into consideration the probability of economic 

disruption as one of their supplier choice criteria. It is useful to note that, in this case, the first 

optimization in the sensitivity analysis series of optimizations can also be interpreted as the being 
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the results of the Sawik (2018)’s SMIP formulation, because, at this point, the CIA and SMIP 

models are equivalent. 

What is obvious is that the optimal cost per unit is bound to increase with the 𝐷𝑖
𝐶𝐼𝐴 . Therefore, 

the  purpose of the sensitivity analysis is to determine the point at which a different supplier 

becomes the optimal choice as the value of 𝐷𝑖
𝐶𝐼𝐴 increases.  

Table 10 Sensitivity analysis for DCIA (SE Asia) 

  

A parameter sensitivity analysis was also carried out in order to evaluate the model’s sensitivity 

to the local disruption multiplier (𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

). The baseline disruption multipliers for this 

particular analysis were 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

= 1 and 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

  = 1.3. This was based on the results of the 

CIA exercise. Holding 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

 at a constant 1.3 and increasing the 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

 by .05 for each 

successive optimization, the effect on both minimal cost per unit and supplier selection is shown 

in Table 8 below. 
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Table 11 Sensitivity analysis for DCIA (Local) 

  

The results displayed are for a 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

  range [1,2] (holding a constant SE Asia disruption 

multiplier  𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

= 1.3 ). The value for 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

 is obtained as a result of the CIA 

exercise. In this case, Supplier 3 (in SE Asia) was the optimal supplier choice for 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

<1.65 

(approximately).  Supplier 4 (local) was the optimal supplier choice for 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

≥ 1.65 

(approximately). The rest of the parameters and variable values were held constant. The results 

predictably show that an increase in 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

 will mean that the prescribed optimal choice in 

supplier will always be in SE Asia. What is interesting is that as minimal cost per unit increases, 

the choice of supplier in SE Asia will change from Supplier 3 to supplier 4 above a cost per unit 

of approximately $7.25 per unit. Comparing the sensitivity of the model to 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

 to that of 
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𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

 we find that an increase in 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

 will more quickly result in a change of supplier 

ceteris paribus. Note that this behavior is unique to the mode and its parameters.  

Parameter sensitivity analyses of supplier choice to Total Unit Demand (A) were also conducted 

for the CIA-SMIP and SMIP formulations. Table 9 below contains the results for the sensitivity 

analysis using that CIA-SMIP model formulation.  

Table 12 Sensitivity analysis for Total Units Demanded (CIA-SMIP model) 

 

The optimal supplier selection solutions are tabulated for a range of [20000, 30000] parts 

demanded for 𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

= 1 and 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

= 1.3 . Supplier 2 (local) was the initial supplier 

choice for A ≤ 21500 (approximately) .  Supplier 3 (SE) was the optimal supplier choice for 𝐴 

> 21500 (approximately).  As demand increased, so did the total cost attributable to disruptions. 

Initially, the suppler choice was local. However, as the volume increased, so did the cost 



 81 

 

associated with disruptions. Assumedly, to compensate for this, the optimal supplier choice 

switched from 2 ( a local supplier) to supplier 3 ( a supplier in SE Asia).  

For comparison purposes, a parameter sensitivity analysis of supplier choice to total parts 

demanded (A) was also conducted using the SMIP formulation. Table 10 below shows the results 

for this model.  

Table 13 Sensitivity analysis for Total Units Demanded (SMIP model) 

 

 The optimal supplier selection solutions are tabulated for a range of [20000, 30000] parts 

demanded (holding a constant SE Asia disruption multiplier  𝐷𝑖
𝐶𝐼𝐴(𝐿𝑜𝑐𝑎𝑙)

= 1  and 𝐷𝑖
𝐶𝐼𝐴(𝑆𝐸)

= 1). 

Supplier 3 (in SE Asia) was the optimal supplier choice for Total Demand < 23500 .  Supplier 2 

(local) was the optimal supplier choice for Total Demand  ≥ 24000. The rest of the parameters 

and variable values were held constant. 
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Overall, in considering the sensitivity analyses and their results in totality, it is apparent that the 

key driver of supplier choice is cost per unit. Also apparent is that that the choice of supplier is 

not immediately intuitive and would be very difficult to determine without the aid of this or 

similar models.  When the cost of the possible impact of political-economic disruptions is 

considered, the buyer would face an enhanced probability of increased supply chain risk and cost 

of components over the duration of the planning horizon. This difference in cost may seem 

insignificant if only hundreds of components are ordered over the duration of the planning 

horizon. However, it is useful to consider that finished products like automobiles, for example, 

are made up of thousands of components which, in their totality, the aggregate impact of increase 

in component cost is a very important factor to consider in supplier selection.   

We present a limited number of operational scenarios i ∈ 𝑆, 𝑠 = 1,2,3,4,5 for demonstrative 

purposes. The number of scenarios �̅�,  and scheduling variables 𝑤𝑗𝑡
𝑠  increases linearly in the 

number of disruption scenarios (�̅�) and exponentially in the total number of suppliers (𝐼)̅. 

Therefore, in the complete problem, a total of �̅� =  2𝐼̅  potential scenarios will need to be 

considered. Excel and the add-in Risk Solver Platform were used on a MacBookPro (Retina, 15-

inch, Mid 2014). CPU time for finding optimal solutions was negligible and  ranged in the tenths 

of a second. However, we anticipate longer CPU times to prove optimality for complete models 

that consider all �̅� scenarios.  

 Figure 1 below is a visual depiction of the relationship between political-economic risk  and 

price per part across international boundaries. In this example, political-economic risk is 

negligible for on-shore suppliers (1 and 2) and significantly increased for off-shore (southeast 

Asian) suppliers (3,4 and 5). Generally, there is a negative correlation between price per part and 

overall disruption risk. The connecting lines are not supposed to represent data continuity but 
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rather serve as aids that allow the reader to better visualize the difference in magnitude between 

data points.  Note that the results in this scenario are a function of the event set and the 

assumptions made therein. 

 

 

Figure 3 Supplier Political- Economic Risk Characteristics  

 

The results show that as the economic disruption risk of less expensive off-shore suppliers 

increases, a firm is more likely to choose a less risky on-shore supply chain partner. We also note 

that as demand increases, the average cost of penalty costs decreases. This means that a firm may 

be able to choose a risker off-shore supplier.  This technique provides a decision-maker with an 

estimation of the infection point at which a different choice in suppliers is recommended. It is 

important to note that this case and its variables and parameters is unique. Thus, decisions 

prescribed therein are not universally applicable. What is generalizable is the approach to the 

prediction of future scenarios.  
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5 Conclusion  

We optimized the selection of a single source supplier using a combination of costs accrued from 

operational events that occurred within the supply chain and economic events that occurred 

outside of the supply chain. By adding the costs associated with economic events, we introduce a 

novel dimension to supplier selection optimization models. Any event that threatens supply chain 

efficiency, viability and functionality is, by default, a part of supply chain risk management and 

should be considered in supply chain models. In the special case of single source supplier 

selection, the geopolitical and geo-economic environment of a supplier is a key antecedent of 

risk management outcomes (Sheffi and Rice 2005). An example of such an external 

political/economic event is outlined in the study by Sheffi (2001) on the effects of international 

terrorism on supply chain management in the United States. Sheffi’s (2001) study adopts an a 

posteriori stance towards supply chain risk management. Unfortunately, examining what 

managerial decisions could have been made in the aftermath of a catastrophic event would not be 

a very useful endeavor for an affected firm because such types of events are usually unique in 

nature. The catastrophic events tend not to repeat themselves. Thus, it is safe to assume that each 

future threat will be unique. It is noted that the unavoidable negative economic effects of the 

event on supply chain functionality were beyond the control of the affected. According to Sheffi 

(2005), it was the government’s reaction to the event that created and exacerbated supply chain 

disruptions after September 11, 2001. Current optimization methods are not future-oriented and 

are not capable of predicting plausible scenarios in the face of uncertain futures. We have shown 

how incorporating it is possible using a hybridization example model such as CIA-SMIP could 

be the path to resolving this shortcoming.   
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In general, the outcome for SMIP-based models like the one in this study is dependent on 

parameters like unit cost of product and demand (see Sawik (2018)). This means that the results 

and optimal solutions are unique to each particular case. However, the advantage of the CIA-

SMIP technique is that it allows decision-makers to view and account for the effect of a change 

in economic risk outlook. One of the past criticisms and known limitations of the CIA technique 

is lack of validation or testability in real time. This criticism is mainly due to the tendency for 

critics to apply Bayesian principles for not-yet-existent empirical data is a major problem 

encountered during the CIA exercises. However, it is important to point out that CIA does not 

claim to guarantee particular outcomes. Rather, it is a rather a tool for systematically organizing 

future possible scenarios. 

 One way to outline the advantage of using this systematic approach to mitigating against future 

uncertain scenarios is to contrast this approach to either doing nothing or leaving the fate of the 

firm’s supply chain to ad hoc gut-feel instinct-driven decision-making. Merely estimating the 

probability of disruption is better than doing nothing (Chopra and Sodhi 2014). This is not to say 

that validation of the technique is not possible. The next step will be a validation study in which 

many supplier selection futures are generated and compared with real life supplier selection 

problems that are yet to be encountered. This approach to CIA validation is demonstrated in 

Bañuls et al., (2017). In this study, the impact of multiple risks on project performance was 

predicted using CIA-ISM; a combination of CIA and interpretive structural modeling (ISM). In 

the same manner, CIA-SMIP will be used to predict the correct supplier choice given a set of 

future multiple risks over a set time horizon. In the aftermath of the time horizon, the real-life 

outcomes will be compared with the CIA-SMIP predictions and the efficacy of the technique will 

be empirically measured.    The model we propose in this study serves as an example of how the 



 86 

 

human impact on supply chains and the management of their risk can be systematically evaluated 

on a macro-economic level. The data used as inputs in this model for the CIA part is derived 

from expert opinion. Empirical data and sophisticated statistical techniques could be used to 

bolster expert evaluation and remove a lot of the inherent subjectivity of expert opinion. Future 

researchers could examine ways in which the CIA methodology’s predictive capabilities could 

be improved through machine learning techniques. The overreliance on expert’s opinion and 

analytic capabilities, while reduced in CIA, is still problematic. The model is only as good as the 

accuracy of the data it utilizes. Future studies could utilize empirical data for real world 

examples to test the validity of this approach. The Delphi technique can also be utilized to draw 

on the knowledge of subject area experts to derive a more accurate event set. Future studies may 

also extend the proposed model to also consider multiple sourcing strategies including dual or 

cross-sourcing.      
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Summary 

 

In this dissertation we presented three essays (Papers 1, 2 and 3) that served to develop our 

knowledge about the human impact in SCRM. Paper1, proposed the delineation of studies 

centered around individual behavior in a SCRM context into a new topic area, BCSRM.  Paper 2 

introduced CIA as a new methodology for supplier selection for firms with a single sourcing 

strategy. Paper 3, extended Paper 2 and incorporated the output of CIA into an SMIP model. The 

result was a hybrid CIA-SMIP single source supplier selection model. 

We hope that the three papers represent a step towards a new SCRM theoretical framework 

based on the impact of humans on the supply. Paper 1 is microeconomic in nature and is centered 

on the individual behavior. Papers 2 and 3 adopt a macroeconomic approach and serve to 

illustrate first how external macroeconomic events can result in supply chain disturbances. 

Managerial implications  

Supply chain viability and efficiency is becoming an increasingly important driver of firm 

success (Marley et al. 2014). In the past, SCRM models have been mostly quantitative and 

deterministic in nature. The emphasis was on countermeasures that ensured the uninterrupted 

flows of goods in the advent of operational disruption (Marley et al. 2014; Sheffi and Rice 2005). 

These countermeasures were overwhelmingly operational in nature. They included strategies 

such as buffering, postponement, outsourcing and supplier redundancy (C. Tang 2006). The 

problem is all these strategies were operations-based and lacked consideration of the human 

impact in supply chain. However, human activity and human decision-making have been shown 

to affect SCRM outcomes (Bode et al. 2011; DuHadway, Carnovale, & Kannan, 2018). By 

drawing the practitioner’s attention to the potential benefits of considering the human impact in 
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SCRM both from a micro- and macroeconomic perspective, we hope to: 1) improve their 

understanding of the SCRM and 2) provide them with actionable methodologies such as CIA-

SMIP, for example, to counter the risks posed by human activity in a SCRM setting.  

Future research 

In future, we hope to develop our BSCRM theoretical framework such that we can derive 

testable hypotheses that will inform decision makers about human behavior in a SCRM setting. 

We also aim to incrementally narrow the macro and microeconomic divide in SCRM. As a 

result, we will develop more effective new breed of hybrid models that simultaneously account 

for human behavior, human macroeconomic activity and quantitative SCRM performance 

parameters.  
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