
Indexing Large Permutations in Hardware

Jacob H. Odom

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Peter M. Athanas, Chair

Thomas L. Martin

Joseph G. Tront

May 9, 2019

Blacksburg, Virginia

Keywords: permutations, combinatorics, hardware acceleration, Fisher-Yates,

Knuth-Shuffle

Copyright 2019, Jacob H. Odom

Indexing Large Permutations in Hardware

Jacob H. Odom

(ABSTRACT)

Generating unbiased permutations at run time has traditionally been accomplished through

application specific optimized combinational logic and has been limited to very small permu-

tations. For generating unbiased permutations of any larger size, variations of the memory

dependent Fisher-Yates algorithm are known to be an optimal solution in software and have

been relied on as a hardware solution even to this day. However, in hardware, this thesis

proves Fisher-Yates to be a suboptimal solution. This thesis will show variations of Fisher-

Yates to be suboptimal by proposing an alternate method that does not rely on memory

and outperforms Fisher-Yates based permutation generators, while still able to scale to very

large sized permutations. This thesis also proves that this proposed method is unbiased and

requires a minimal input. Lastly, this thesis demonstrates a means to scale the proposed

method to any sized permutations and also to produce optimal partial permutations.

Indexing Large Permutations in Hardware

Jacob H. Odom

(GENERAL AUDIENCE ABSTRACT)

In computing, some applications need the ability to shuffle or rearrange items based on run

time information during their normal operations. A similar task is a partial shuffle where

only an information dependent selection of the total items is returned in a shuffled order.

Initially, there may be the assumption that these are trivial tasks. However, the applications

that rely on this ability are typically related to security which requires repeatable, unbiased

operations. These requirements quickly turn seemingly simple tasks to complex. Worse, often

they are done incorrectly and only appear to meet these requirements, which has disastrous

implications for security. A current and dominating method to shuffle items that meets these

requirements was developed over fifty years ago and is based on an even older algorithm refer

to as Fisher-Yates, after its original authors. Fisher-Yates based methods shuffle items in

memory, which is seen as advantageous in software but only serves as a disadvantage in

hardware since memory access is significantly slower than other operations. Additionally,

when performing a partial shuffle, Fisher-Yates methods require the same resources as when

performing a complete shuffle. This is due to the fact that, with Fisher-Yates methods,

each element in a shuffle is dependent on all of the other elements. Alternate methods to

meet these requirements are known but are only able to shuffle a very small number of items

before they become too slow for practical use. To combat the disadvantages current methods

of shuffling possess, this thesis proposes an alternate approach to performing shuffles. This

alternate approach meets the previously stated requirements while outperforming current

methods. This alternate approach is also able to be extended to shuffling any number of

items while maintaining a useable level of performance. Further, unlike current popular

shuffling methods, the proposed method has no inter-item dependency and thus offers great

advantages over current popular methods with partial shuffles.

iv

Dedication

This work is dedicated to Samantha and Zoey. They literally stayed by my side through the

entirety of this work and my academic career to provided support through frustrations in the

way only dogs can. In appreciation of their support, the name of the proposed method this

paper introduces, CRGE (kôrgē), was inspired by them.

v

Acknowledgments

First and foremost, I would like to thank my mother, Keena Garns. Without her undeserved

support and trust I would have never been able to start my academic career or be where I

am today. I will be forever grateful and indebted to her for not giving up on me.

I would also like to thank my research advisor Dr. Peter Athanas for his guidance, mo-

tivation and support. He was always willing to set aside time for me and clearly showed his

desire for me to succeed in all areas through his actions.

I would like to thank the National Science Foundation for their Scholarship for Service

program. This program provided me support in pursuing a graduate degree, helped me

discover my passion for information security and connected me with my current employer.

Lastly, thank you to Dr. Thomas Martin and Dr. Joseph Tront for begin accommodat-

ing while serving on my advisory committee.

My appreciation to all mentioned cannot be overstated.

vi

Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Background Mathematics 3

2.1 Definitions . 3

2.2 Notation . 5

2.3 Number Systems and Number Representation 6

2.4 Permutations . 7

2.5 Ideal Permutation Generator . 8

3 Popular Current Methods for Indexing Permutations 10

3.1 Memory-less Approaches . 10

3.2 Memory Dependent Approaches . 12

3.2.1 Fisher-Yates . 12

3.2.2 Knuth-Shuffle . 13

3.2.3 Random-Sort . 14

vii

4 Proposed Method 17

4.1 Visual Representation . 17

4.2 Mathematical Representation . 20

4.3 Proof of Soundness . 20

5 Methodology 22

5.1 Evaluation Method . 22

5.2 Tested Designs . 23

5.2.1 Combinational Designs . 23

5.2.2 Knuth-Shuffle Designs . 24

5.2.3 Knuth-Shuffle Design Cycle Count (Worst Case) 29

5.2.4 CRGE Designs . 30

6 Results 37

6.1 Evaluation of I2P Implementation . 37

6.2 Comparison of Knuth Shuffle Implementations 39

6.3 Comparison of CRGE Implementations . 44

6.4 Comparison of Approaches . 47

6.5 Comparison of AREA (Small n) . 47

6.6 Comparison of AREA (Large n) . 48

6.7 Comparison of Performance (Small n) . 49

viii

6.8 Comparison of Performance (Large n) . 49

6.9 Comparison of Running Time . 50

7 Additional CRGE Uses and Future Work 52

7.1 Partial Permutation Model . 52

7.2 Distributed Model . 53

7.3 High Throughput Design . 54

7.4 Software Implementation . 55

8 Conclusion 56

Bibliography 58

ix

List of Figures

4.1 Example visual representation of CRGE . 18

4.2 Example transformation . 18

5.1 I2P four element permutation circuit [1] . 24

5.2 Knuth-Shuffle naive four element permutation circuit 25

5.3 Knuth-Shuffle RAM output w/initialization four element permutation circuit 26

5.4 Knuth-Shuffle shift register output w/“dirty bit” logic four element permuta-

tion circuit . 28

5.5 CRGE basic “compact” design four element permutation circuit 31

5.6 CRGE precomputational design four element permutation circuit 34

5.7 CRGE shift register design four element permutation circuit 35

6.1 I2P implementation: area vs. n . 38

6.2 I2P implementation: maximum clock frequency vs. n 39

6.3 Knuth-Shuffle implementations: area vs. small n 40

6.4 Knuth-Shuffle implementations: maximum clock frequency vs. small n . . . 41

6.5 Knuth-Shuffle implementations: area vs. large n 42

6.6 Knuth-Shuffle implementations: maximum clock frequency vs. large n 43

6.7 CRGE implementations: area vs. small n . 44

x

6.8 CRGE implementations: maximum clock frequency vs. small n 45

6.9 CRGE implementations: area vs. large n . 45

6.10 CRGE implementations: maximum clock frequency vs. large n 46

6.11 Approach representatives: area vs. small n 47

6.12 Approach representatives: area vs. large n 48

6.13 Approach representatives: maximum clock frequency vs. small n 49

6.14 Approach representatives: maximum clock frequency vs. large n 50

6.15 Approach representatives: worst case running time vs. small n 51

6.16 Approach representatives: worst case running time vs. large n 51

7.1 CRGE partial permutation design . 52

7.2 CRGE distributed design . 53

7.3 CRGE high throughput design . 54

xi

List of Tables

5.1 Worst case cycle complexity to complete and read a permutation for Knuth-

Shuffle designs . 30

5.2 Input/output table of f2 function for CRGE basic “compact” design 32

5.3 Partial element calculated by each computational block by cycle for the CRGE

“compact” design four element permutation 33

xii

Chapter 1

Introduction

A permutation in layman terms is simply a rearrangement or shuffling of a collection of

items. In computing, predetermined and static permutations appear in a multitude of places

ranging from cryptographic standards [2][3] to memory access optimization [4][5]. There

also exists a large range of applications that require producing permutations dynamically

at run-time based on a provided or random-source input. However, efficiently producing

permutations in an unbiased manner can prove to be difficult [6].

Current popular methods of dynamically producing unbiased permutations suffer from major

drawbacks. These drawbacks hinder their ability to efficiently produce large permutations.

The major drawbacks to current methods stem from inter-dependencies between permuta-

tion elements. Within these current methods, elements are computed one at a time, where

each element’s result is dependent on the results of all of the previously computed elements.

This fact has several negative impacts. First, current methods have a complexity growth that

results in computing large permutations requiring an unfeasible amount of resources and per-

formance degradation that makes producing even small permutations inefficient. Secondly,

this inter-dependency requires permutations to be generated and treated as singular objects

instead of as a collection of elements which ultimately limits scale-ability. To mitigate the

complexity issue, current higher performance methods utilize memory. While this use of

memory allows for larger permutations and higher performance, it also ultimately sets an

upper bound on the maximum performance of these methods based on memory access times

1

and delays. These higher performance methods also do nothing to address or eliminate the

inter-dependency issue and thus will always face a scalability problem when large enough

permutations are considered.

To combat the complexity and scalability issues of current methods while also avoiding the

performance penalties of utilizing memory, this thesis propose an alternate approach to dy-

namically producing large unbiased permutations. The proposed approach is able to produce

permutations element by element completely independently of each other. This thesis will

introduce the proposed approach to dynamically generating unbiased permutations and show

the proposed approach does, in fact, produce unbiased permutations. Further, this thesis will

show the proposed approach out performs current popular methods by comparing implemen-

tations on a selected Field Programmable Gate Array (FPGA). Finally, this thesis will also

provide guidance on how to take advantage of the proposed approach’s element independent

nature when producing partial permutations and when scaling to larger permutations that

would otherwise exceed the capabilities of a device.

The remainder of this paper is outlined as follows. In Chapter 2 any relevant background

mathematics required to thoroughly understand the problem and proposed alternate ap-

proach is provided while establishing the mathematical notation used within. In Chapter

3 an overview of currently established approaches to the problem is provided. In Chapter

4 the proposed approach is introduced and formal verification of the proposed approach is

provided. In Chapter 5 the used representative implementations for each approach and the

methodology used to evaluate and compare the performance of each approach’s represen-

tative implementations is described. In Chapter 6 an analysis of the results is presented.

Chapter 7 provides guidance on extending the proposed method to any sized permutations

and capitalizing on its benefits for generating partial permutations. Lastly, Chapter 8 con-

tains a reflection on everything covered throughout this thesis and concluding remarks.

2

Chapter 2

Background Mathematics

This chapter provides any relevant background information necessary to understand any

presented mathematics. This thesis attempts to make no assumptions on the level of back-

ground mathematical knowledge of the reader. However, the goal of this chapter is to only

provided the cursory level of information required to follow discussed topics and not nec-

essarily to serve as a thorough reference. Therefore, a dedicated reader seeking a deeper

understanding in a particular area my still need to consult outside resources.

2.1 Definitions

This section provides definitions to relevant mathematical terms used throughout this thesis.

It mostly serves as a quick and convenient reference for the remainder of this chapter.

Definition 2.1. Set: Any collection of objects specified in a well-defined manner.

Definition 2.2. Element: An item in a particular set.

Definition 2.3. Domain: The input set for which a function is defined.

Definition 2.4. Codomain: The set into which all of the output of the function is con-

strained to fall.

Definition 2.5. Mapping: A more general term for a function. Commonly used when the

domain or codomain may or may not be a subset of C.

3

Definition 2.6. Bijection: A mapping in which every element in the domain induces exactly

one element in the codomain and for every element in the codomain there is exactly one

element in the domain from which it is induced.

Definition 2.7. Permutation: A specific ordered arrangement of a set. Often defined as a

bijection mapping from a set to itself.

Definition 2.8. Group: A set G with an operation ∗ that satisfies the following:

1. ∀a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. There is an element e ∈ G such that ∀a ∈ G a ∗ e = a = e ∗ a. Call this element e the

identity element of G.

3. ∀a ∈ G, there is an element a−1 ∈ G such that a ∗ a−1 = e = a−1 ∗ a. Call this element

a−1 the inverse of a.

Definition 2.9. Mapping Composition: Given mappings f : A 7→ B and g : B 7→ C the

composite mapping operator applied to f and g denoted as g◦f results in a mapping A 7→ C

defined as:

(g ◦ f)(x) = g(f(x)) ∀x ∈ A

Definition 2.10. Cartesian Product: The Cartesian product of two sets A and B denoted

as A×B is the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B.

Definition 2.11. Modulo Operation: The modulo operation maps Z × Z 7→ Z. Given

(a, b) ∈ Z× Z the modulo operation is denoted a mod b and is defined as the unique r such

that a = qb+ r where q, r ∈ Z and 0 ≤ r < b.

4

2.2 Notation

This section contains and defines any mathematical notation used throughout this thesis.

{} Unordered set∗

() Order set

∈ Element of

∀ For All

S Uppercase letters distinguish a set

Z The set of integers {...,−2,−1, 0, 1, 2, ...}

C The set of complex numbers

N The set of natural numbers {1, 2, ...}

f Lowercase letters distinguish a function or mapping

σ Specifically used for naming a mapping representative of a permutation. In a con-

text where multiple permutations are discussed, subscripts are used to differentiate

permutations.

Zi
∗∗The group formed from the set {0, 1, ..., i−1} with the ∗ operator defined as given

a, b ∈ {0, 1, ..., i− 1} a ∗ b = (a+ b) mod i

∗ This is not to be confused with the common Verilog and circuit notation. Within these

contexts, {} will refer to concatenation as one would expect.
∗∗ i ∈ Z

5

2.3 Number Systems and Number Representation

While the origins of the modern number system are debated, it’s adoption is mostly credited

to Leonardo of Pisa during the thirteenth century [7, p. 277-280]. The Hindu-Arabic number

system, as the modern number system is commonly referred, is a base ten positional system.

The base, or radix, refers to the number of different symbols required to represent all numbers

while the term positional refers to the fact that the order or position of these symbols

determines their value [8, p. 36].

Any computer scientist or engineer is likely to be familiar with several other alternative based

positional systems such as base two binary, base eight octal and base sixteen hexadecimal.

With a positional system one can uniquely represent any value by:

n = dk · bk + dk−1 · bk−1 + ...+ d2 · b2 + d1 · b+ d0 (2.1)

where n is the value to represent, b is the base, ∀i di ∈ {0, 1, ..., b− 1} and k is minimal.

One can even go a step farther and define a positional system in a more general way, such

that each digit has a separately defined base. Such a positional system is referred to as a

mixed radix system. To be able to represent a value in a mixed radix system Equation 2.1

must be generalized to:

n = dk · Πk−1
i=0 bi + dk−1 · Πk−2

i=0 bi + ...+ d2 · Π1
i=0bi + d1 · b0 + d0 (2.2)

Where ∀i bi is the base of di. It is easy to verify that Equation 2.2 is consistent with

Equation 2.1 and one’s intuitions. However, for Equation 2.2 to uniquely represent values,

for all i > 0 bi ≥ bi−1 must be true. The Mayan Number System provides an example of

a mixed radix number system that fails to meet this requirement and results in non-unique

6

value representation [7, p. 7-8][9]. Using Equation 2.2, consider a mixed radix system where

every digit’s base is one greater than its position resulting in:

n = dk · Πk−1
i=0 (i+ 1) + dk−1 · Πk−2

i=0 (i+ 1) + ...+ d2 · Π1
i=0(i+ 1) + d1 · 1 + d0 (2.3)

n = dk · Πk
i=1i+ dk−1 · Πk−1

i=1 i+ ...+ d2 · Π2
i=1i+ d1 · 1 + d0 (2.4)

n = dk · k! + dk−1 · (k − 1)! + ...+ d2 · 2! + d1 · 1! + d0 · 0! (2.5)

Where ∀i di ∈ {0, 1, ..., i}. The mixed radix system under consideration and presented in

Equation 2.5 was named the Factorial Number System by Knuth [10, p. 192]. The Factorial

Number System provides a convenient way to number, or index, permutations and will be

used as such throughout this thesis. You may notice that d0 can only ever be zero thus

cannot convey any meaningful information about a value. As such, d0 will be excluded when

representing a value in the factorial number system when the digit is not directly referenced.

The following notation will also be used when referring to a number in the factorial number

system: digits will be separated by commas and d1 will carry the subscript “!”. For example,

to represent the number 13 one would write 2, 0, 1! since 13 = 2 · 3! + 0 · 2! + 1 · 1!.

2.4 Permutations

Put simply, a permutation is a bijection mapping from a set to itself. Often the symbols σ or

π are used to label a mapping that represents a permutation. For the context of this thesis,

only permutations on the set {0, 1, ..., n− 1} where n is the number of elements to permute

are considered. Working with permutations of this set easily extend to permutations of any n

element set by composing the permutation with an additional bijection mapping. Restricting

considered permutations to permutations on the set {0, 1, ..., n− 1} offers a convenient way

7

to represent a permutation as the ordered set (σ(0), σ(1), ..., σ(n)). As such, the ordered set

(σ(0), σ(1), ..., σ(n)) and the actual mapping σ will be considered to be equivalent and will

be used interchangeably as convenient. The set of all n element permutations will be refer

to as Sn. The permutation (0, 1, .., n − 1) ∈ Sn is the identity permutation as it makes no

change to the order of the elements to which it is applied. One can verify that the set Sn

forms a group with the operation ∗ defined as the composite mapping operator where e is

the identity permutation.

2.5 Ideal Permutation Generator

For this thesis an ideal permutation generator will be defined as follows:

Definition 2.12. Ideal Permutation Generator: Any mapping with a co-domain of Sn that

also holds the following properties:

1. Truly unbiased: Given an unknown arbitrary element of the domain, every

permutation in Sn must be equally likely to be the resulting permutation.

2. Deterministic: The permutation generator should always produce the same

permutation for a particular input.

3. The domain is minimal: There is no ideal permutation generator with a

smaller domain.

4. Elements of the domain can easily be produced: For any n, an element

of the domain can be produced or generated with constant complexity.

8

The presented definition of an ideal permutation generator is important for and focused at

applications. In efforts to not exclude certain applications of permutations; the definition

was made as restrictive as possible. It is also typically easier to relax constraints than it

is to apply them. Therefore, one could possibly modify an ideal permutation generator to

operate in an advantageous manner when one or more requirements are not strictly needed.

The opposite, typically, would be significantly more difficult or impossible. For example,

in Section 3.2.3 the reader will see the deceptive difficulties in achieving both properties 1

and 2. One can also note that properties 1, 2 and 3 together imply an ideal permutation

generator is a bijection mapping. Thus, it is possible to show a given method is an n element

ideal permutation generator if and only if it is a bijection mapping to Sn and an arbitrary

element of the domain can be generated in constant time and memory. This fact will be

used when proving a permutation generator is ideal.

Property 4 mainly serves to eliminate any trivial or naive generators from being considered

ideal. For example, consider an identity permutation generator where the domain is Sn

and the generator simply returns any input permutation. It is easy to verify that such

a generator would satisfy the first three requirements. However, such a generator would

be unproductive, useless and off loads the entirety of the computational complexity of the

generator into producing an item in its domain. Thus, Property 4 was included to eliminate

any such generators from being considered ideal.

9

Chapter 3

Popular Current Methods for

Indexing Permutations

This chapter serves to introduce the contemporary methods of generating unbiased permu-

tations discussed in this thesis. Where applicable, relevant background information is also

provided. For each method that is later evaluated, a justification is provided to show the

method meets the requirements of Definition 2.12 and thus qualifies as an ideal permutation

generator within the context of this thesis. Additionally, an example of a commonly misused

method that fails to meet the requirements of an ideal permutation generator is presented

to demonstrate common pitfalls when designing an ideal permutation generator.

3.1 Memory-less Approaches

Memory-less approaches simply refer to methods of producing unbiased permutations that,

by design, do not fundamentally rely on memory to operate. In other words, it would

be possible for the design to be implemented solely with combinational logic capable of

functioning properly, albeit at a relatively low clock frequency, over a single clock cycle.

While these methods are functional distinct from the memory based methods to be discussed

in Section 3.2, fundamentally all current popular methods of generate unbiased permutations

follow a similar logical approach. Generally, these approaches can be divided into a series

10

of logical blocks. Starting with an identity permutation, at each block a remaining element

is selected based upon the input index. This selected element is removed and the remaining

elements are passed to the next block. The order the elements are selected and removed

defines the generated permutation.

Memory-less approaches offer several distinct advantages. Since they are able to function as

pure combinational logic they can be implemented as a relatively simple circuit. They can

also be used in instances where memory or even a clock are impractical or unfeasible, such

as extremely low power devices or where no continuous or reliable source of power exists.

Of course the same properties that provide advantages in certain situations are also the

source of disadvantages in others. The nature of the designs requires similar or identical

logic to be implemented a large number of times. This causes a high complexity growth in

terms of area. Likewise, commonly, components are used in the logic that scale poorly as the

number of inputs increases. This not only exacerbates the area growth but also adversely

affects delays resulting in an undesirable time complexity growth.

Since there is a wide range of ways one could implement this selection and removal process

in digital logic, it could be argued that there are nearly an endless number of distinct ways

to implement a memory-less approach. To constrain and focus this thesis, a single memory-

less design was selected that provides a clever implementation of the selection process and

properly conveys the typical memory-less approach. It should be stressed that this choice was

made with the intentions of showcasing a strong representative of memory-less approaches.

Therefore, this thesis operates under the implied assumption that an arbitrarily selected

memory-less approach would result in similar conclusions being drawn and they are not a

result this choice.

To represent current combinational designs, the design described in [1] (I2P) was selected.

11

I2P uses a repeated block structure that can be extended to generated permutations for any

size n. Each block in I2P takes the current state of the calculated permutation and an index

[0, nr! − 1] where nr is the number of permutation elements yet to be computed. At each

block, based on the input index, a remaining element is selected and moved to the top of the

remaining elements, while the remaining elements above the selected element are shift down

to fill the space. It should be clear that I2P makes a bijection mapping from [0, n! − 1] to

Sn. I2P takes an input index in the range [0, n!− 1] that can be generated in constant time

with constant memory. Therefore, one can conclude I2P is an ideal permutation generator.

3.2 Memory Dependent Approaches

Naturally, an alternate approach to generating unbiased permutations while mitigating the

complexity issues of purely combinational circuits is to utilize sequential logic. A single

instance of the set of values to permute is stored in memory. Algorithmically, the memory

contents are manipulated over several cycles. The result is the memory holding a permutation

of the originally stored values.

3.2.1 Fisher-Yates

Originally published in 1938, [11] contains a memory dependent method of producing a

random permutation labeled as Example 12. However, it is more commonly referred to as

simply Fisher-Yates after the authors’ names. The method centers around randomly selecting

and removing an entry from a list. This procedure is repeated on the remaining values of the

list until the list contains one entry, which can simply be removed. The permutation is the

list of entries in the order they were removed. This method, when implemented as originally

12

described, is intended to be performed by hand utilizing a table of previously produced

random values. This, however, is very impractical for all but the smallest of permutations.

To mitigate this issue, larger sets are first randomly divided in a number of bins. Each bin

containing more than one value has its values permuted as before. The order of the bins

and the order of their values is the resulting permutation. This process can also be repeated

recursively so that at any one stage the number of bins and maximum number of values in a

bin doesn’t exceed a set threshold. This method, however, can result in requiring an input

larger than the theoretical minimum and is thus not ideal.

3.2.2 Knuth-Shuffle

In 1964, Richard Durstenfeld proposed an improvement to Fisher-Yates known by its pub-

lished name, Algorithm 235 [12]. However, Durstenfeld’s method is most commonly known

from its use in Knuth’s work [10, p. 145-146] and as such is often referred to as the Knuth-

Shuffle even though this implies incorrectly crediting Knuth with its creation. The method

is an improvement of Fisher-Yates, optimizing the method for a computer implementation.

The method differs from Fisher-Yates by instead of removing a value from the list, the value

is simply swapped with the value at the ending index. The ending index starts at the end

of the list and is decreased each swap. When the ending index is the first item in the list

the algorithm terminates and the list contains a permutation of its values. The advantage

Knuth-Shuffle has over Fisher-Yates in a computer implementation is it is optimal in mem-

ory usage. The potentially wasted space discarded values would occupy in the list is shifted

to the end and used to hold the resulting permutation. For this reason, Knuth-Shuffle is

categorized as an in-place shuffle and is known to be optimal in software.

Due to its prevalence, uses of Knuth-Shuffle in the past few years are easy to find in image

13

encryption [13][14][15], file encryption [16], steganography [17], block ciphers [18] and com-

munications [19][20]. While variations of the Fisher-Yates algorithm offer efficient ways to

produce an unbiased permutation, like most circuits that utilize memory, when implemented

in hardware they are ultimately hindered by memory access times and delays. Even when

high performance memory is used, such as on chip Block RAM, one can expect critical paths

to always be found in memory to memory paths.

Similarly, as with I2P, it should be clear that Knuth-Shuffle is a bijection mapping from an

index value in the range [0, n!− 1] expressed in the factorial number system to Sn. Likewise,

such an input value can be generated in constant time and memory. Therefore, Knuth-Shuffle

is an ideal permutation generator.

3.2.3 Random-Sort

The misleading simplicity of Fisher-Yates and Knuth-Shuffle may cause the reader to believe

that producing an ideal permutation generator is fairly straight forward. To demonstrate

this is not the case, consider the random sort, an alternative method that is commonly but

erroneously cited as being deterministic and unbiased. As it will soon be clear to the reader,

attempts to overcome this method’s short comings ultimately exacerbate the issue and fail.

While a formal analysis and complete critique of random sort could fill a paper in its own

right, this thesis only aims to show how deceptively difficult it is to achieve the properties

in Definition 2.12.

The random sort method is extremely straight forward. For each element in the set you wish

to permute you assign a random key value. The elements of the set are then sorted based

on their key values. It should be clear that this does in fact produce a permutation. One

can also show that with this method every permutation is possible:

14

Proof. Assume this is not the case and some permutation in Sn is not produced by random

sort, call it σ̄. Since a group can be defined from Sn and σ̄ ∈ Sn we have σ̄−1 ∈ Sn. Assign

key values to the elements of the permuted set according to σ̄−1 such that the first element’s

key is σ̄−1(0), the second’s key is σ̄−1(1) and so forth. Sorting the keys will produce σ̄, a

contradiction.

∴ random sort produces all permutations in Sn.

When one attempts to show this method is unbiased though, issues quickly arise. To see

this, first consider S2. Since computing resources are limited, one must set a bound on the

range of random values used for keys. The actual bound has no bearing on the argument,

just the fact that it exists is all that is important. Thus, consider random values on the

arbitrary range [0,m − 1] and consider the elements to permute as a and b with random

keys ka and kb. If ka < kb then the result is (a, b). If kb < ka then the result is (b, a). If

ka = kb, for now assume the sort does not swap the elements as they are already sorted and

thus the result is (a, b). Counting the number of values for kb that produce (a, b) one finds 1

when ka = 0, 2 when ka = 1, ..., m when ka = m− 1. This gives a total of Σm
i=1i key pairs.

Counting the number of values for kb that produce (b, a) one finds m−1 when ka = 0, m−2

when ka = 1, ..., 0 when ka = m − 1. This gives Σm−1
i=1 i total key pairs. Therefore, when

given a random input (a, b) is more likely than (b, a). The same issue exists if the sort swaps

on equal keys except (b, a) will be more likely than (a, b).

Randomly deciding to swap on equal keys may seem like a quick and obvious solution how-

ever, this is once again not the case. First, there is the issue of requiring additional input

information to convey the random swaps taken if the method is to be deterministic. Secondly

there are more nuanced implications depending on which sort algorithm is used. Consider

a sorting algorithm like pivot sort and a set of all equal keys. On average, the keys will be

partitioned into equal groups on each side of a pivot element. Due to this, pivot elements

15

will always have a bias away from the ends of the permutation. The only conclusion one can

draw is if permutations are to be unbiased, repeating key values must be excluded. This of

course violates, Property 4 of Definition 2.12. Worse though, even if the requirements are

relaxed severely and one only wishes to have the method be unbiased to a high probabilistic

degree issues are encountered. First, one must use a large range of values, [0,m− 1], for the

keys to avoid repeated values at a high enough rate. One must also have mn − Πn−1
i=1 i be

divisible (or have an insignificant remainder) by n!. These requirements lead to a domain

that uncomprehendingly explodes in size even for small n and still doesn’t manage to be

truly unbiased. Based on this one can conclude that the properties of Definition 2.12 are

essentially mutual exclusive when looking at the random sort method.

16

Chapter 4

Proposed Method

To best describe the proposed method for generating an unbiased permutation from an index,

first a visual representation of the proposed method is presented. This visual representation

accurately portrays one form of the underlying mathematics and is the source for the name

Independent Permutation Element Retrieval Through Cyclic Rotations of Group Elements

(CRGE [kôrgē]). Next, a generalized purely mathematical representation is covered. Finally,

a proof of the proposed method’s soundness as an ideal permutation generator is provided.

4.1 Visual Representation

As stated before, this visual representation is the source of the proposed method’s name. In

addition, this visual representation also provides insight into how the method was developed

as it demonstrates the first iteration of the method’s development. The method was later

generalized into CRGE’s current form as described in the next section, Section 4.2.

For example purposes, consider a permutation for n = 5 and index of 4, 2, 2, 1!, in the

factorial number system. Start with an identity permutation, Figure 4.1a. Then, consider

only the first two elements, and circularly rotate them right by the value of d1 of the index,

Figure 4.1b. Then, repeat with the first three elements using d2 of the index, Figure 4.1c.

This pattern continues, Figure 4.1d, until ultimately rotating the entire permutation using

the most significant digit of the index d4, Figure 4.1e. One could stop now and consider this

17

(a)

(b)

(c)

(d)

(e)

Figure 4.1: Example visual representation of CRGE

Figure 4.2: Example transformation

18

result the desired permutation as it can easily be shown to be an ideal permutation generator.

However, applying an additional transformation to this result ultimately produces a much

more useful method. For the transformation, simply calculate the inverse permutation by

exchanging each element’s value and position. For example, σ(0) in the example has the

value ‘3’, this indicates the value σ(3) in the resulting permutation is ‘0’. The transformation

performed on the example is in Figure 4.2 and shows the final produced permutation.

Understanding the reasoning behind applying the final inverse transformation is key to un-

derstanding how CRGE actually functions. This final inverse transformation is such an

important addition because it provides the insight that now the permutation elements can

be calculated completely independently. It turns out that surprisingly this was always se-

cretly the case, the transformation just makes this fact more apparent.

When calculating an element of a permutation one tends to be concerned with tracking the

values of the element at each step in computing the permutation. Since this is essentially

how all current popular methods compute elements, it can be difficult to deviate from this

way of viewing the problem. But, this is also the cause for the inter-dependency of current

methods since the value of all other elements must be known to track which value a particular

element will hold next. If instead this idea is flipped on its head and what position a value is

at each step is tracked, the values of the remainder of the elements don’t need to be known.

Also, if it is known that the result is in fact a permutation then no two values can be at the

same position and there is no need to be concerned with the position of any other elements

either. Therefore, no knowledge of the rest of the permutation is needed. Of course this

will only compute what element holds a particular value which is the same as computing the

inverse of a permutation! By adding this inverse transformation to the visual representation,

a transformation is ultimately removed from when the calculations based on position instead

of value are done.

19

4.2 Mathematical Representation

CRGE can provide a flexible and generalized mathematical representation of an n element

permutation generator. For the mathematical representation the resulting permutation is

calculated element by element. First, a set of functions is defined:

F = {fi : Zi+1 × Zi+1 7→ Zi+1|i ∈ Z, 0 ≤ i ≤ n− 1}

Where ∀fi ∈ F ∀a1, a2, b1, b2 ∈ Zi+1

1. fi(a1, b1) = fi(a1, b2) =⇒ b1 = b2

2. fi(a1, b1) = fi(a2, b1) =⇒ a1 = a2

Then, given an index in the factorial number system with digits labeled dn−1, ..., d2, d1, d0 a

permutation σ ∈ Sn can be generated with CRGE by σ(i) = fn−1(...(fi+1(fi(i, di), di+1)...), dn−1)

4.3 Proof of Soundness

To prove CRGE is an ideal permutation generator, the same pattern as with the current

popular methods is used. First, it is shown to be a bijection mapping from an integer index

[0, n! − 1] to a permutation in Sn. Then, an argument that CRGE does in fact satisfy

Property 4 of Definition 2.12 is provided.

Proof. Let n ∈ N. We will use induction on n. For each n let F be a set of functions

as defined above, d ∈ {0, ..., n! − 1} with digits in the factorial number system labeled

dn−1, ..., d1, d0 and define σ(i) = fn−1(...(fi+1(fi(i, di), di+1)...), dn−1) for 0 ≤ i ≤ n− 1

20

Suppose n = 2. d = d1 ∈ {0, 1}. Without loss of generality assume d1 = 0. We have

σ0(0) = f1(f0(0, d0), d1) but Z1 = {0} =⇒ f0(0, d0) = 0 means σ0(0) = f1(0, 0). We

also have σ0(1) = f1(1, 0). We know by our definition of f1, σ0(0) ̸= σ0(1) since d1 is held

constant. Let σ0 = (a, b) a, b ∈ {0, 1}, a ̸= b. Also by our definition of f1, if d1 = 1 it must

be the case that σ1(0) = b and σ1 = (b, a). Thus applying CRGE to F forms a bijection

d 7→ S2 when n = 2.

Now assume applying CRGE to F forms a bijection d 7→ Sn and consider the case for n+1.

By assumption for any d if we look at the partial computation of σ(i) for 0 ≤ i ≤ n − 1,

fn−1(...(fi+1(fi(i, di), di+1)...), dn−1) we have a permutation in Sn, call it σp. By the def-

inition of fn since σp is a permutation fn(σp(i1), dn) = fn(σp(i2), dn) =⇒ i1 = i2 also

since n ̸∈ {0, 1, ..., n − 1} we have fn(σp(i), dn) ̸= fn(n, dn) for 0 ≤ i ≤ n − 1. Therefore,

σ(i) = fn(...(fi+1(fi(i, di), di+1)...), dn) is a permutation. We also know by our definition of

fn−1 and fn we have n! · (n+ 1) = (n+ 1)! permutations and applying CRGE to F forms a

bijection d 7→ Sn+1.

Since CRGE is a bijection, one can conclude properties 1, 2 and 3 of Definition 2.12 are

satisfied. To generate an element in the domain of CRGE one simply needs to produce a

value [0, n! − 1] which can be accomplished in constant time and with constant memory.

Therefore, one can conclude CRGE satisfies Property 4 of Definition 2.12 and CRGE is an

ideal permutation generator by definition.

21

Chapter 5

Methodology

5.1 Evaluation Method

To evaluate the performance of CRGE when compared to current popular methods of gen-

erating unbiased permutations, several implementations of current permutation methods

and of CRGE were created. The designs were then compared based on area determined by

percentage of device Adaptive Logic Module (ALM) utilization, performance determined by

maximum operating frequency and speed determined by worst case time to compute then

read a full permutation at various sizes of n. To fairly evaluate each approach, multiple de-

sign implementations were used to compensate for design decisions that may favor particular

metrics at the cost of others.

The Intel Arria 10, model 10AX115N1F45E1SG FPGA, here after refer to as simply the

Testing Device (TD), was the used device for all evaluations. TD was selected based on op-

erating in the fastest class (1) and simultaneously offering a large amount of General Purpose

Input/Output (GPIO) pins (768), ALM (427,200) and total memory bits (55,562,240). TD’s

memory bits are split between M20k RAM Blocks and Memory Logic Array Blocks (MLAB).

Quartus Prime Pro version 18.1.0 was the tool chain used for every build. Each design was

built twice for every value of n, once with tool chain options optimized for performance and

once with tool chain options optimized for area. The values n ∈ {2, 3, ..., 10, 16, 32} were

used to evaluate the designs at small n. For higher n, powers of two greater than 32 where

22

used until a design failed to build. For each design and value of n, the results for performance

and area were taken individually from the better of the two optimized builds.

When evaluating the performance of the designs, clock frequencies that exceeded the maxi-

mum speed of the device were considered valid. This allows for a better comparison of each

implementation’s potential and only impacts the smallest values of n. Also, this allows for

more information to be inferred when considering alternate devices.

5.2 Tested Designs

This section provides a detailed description of every implemented design. Each design was

tested and verified to function correctly through use of automated test benches. Each test

bench instances a design for n = 10 and exhaustively tests every valid index value while

verifying that:

1. The index produces a permutation

2. The produced permutation has not been produced by any previously tested index

3. The resulting permutation is held constant for a random number of cycles

5.2.1 Combinational Designs

As mention in Section 3.1, to represent current combinational designs, I2P was faithfully

implemented. I2P’s repeated block structure, Figure 5.1, leads to an easy to implement

design that can be generated for any size n. The repeated block structure also easily allows

for pipe-lining of the design by storing the state at the end of each block. To maximize

the performance of the tested implementation, pipe-lining was used. The pipe-lined design

23

Figure 5.1: I2P four element permutation circuit [1]

results in a latency of n−1 cycles, and a throughput of one complete n element permutation

per cycle. The index at each block is represented as a single value in the range [0, nr! − 1]

as described above and is sized based on hard coded, predetermined values.

5.2.2 Knuth-Shuffle Designs

For the Knuth-Shuffle designs, three general approaches were implemented. One is a “naive”

approach that simply utilizes a register array for memory. The other two approaches utilize

Block RAM for memory but differ in how they manage output values. One uses a second

dedicated Block RAM to store the output values, resulting in random access to the output

permutation but with a read cycle delay and the limitation of only being able to read element

values one at a time. The second utilizes a large shift register for the output permutation,

and as such does not suffer any of the previous drawbacks but suffers from additional required

area. For each design that utilizes Block RAM two variations of how to initialize the Block

RAM also exist.

24

Figure 5.2: Knuth-Shuffle naive four element permutation circuit

Naive Approach (RAM-less)

Figure 5.2 provides an example circuit of the Knuth-Shuffle naive implementation for n = 4.

The circuit has two inputs, the index and a reset signal. The index is of the form of a flat

array of n − 1 elements each of size ⌈log2 n⌉. The array holds the n − 1 digits necessary to

represent a value [0, n!−1] in the factorial number system. The circuit also has two outputs.

The output permutation of the circuit, Perm Out, is represented as a two dimensional array

for simplification while in reality it is flat. The circuit also outputs a ready signal. This

signal is held low while the permutation is being computed and is driven high during the first

clock cycle the permutation is complete. This signal holds the results of Perm Out constant

until the next reset signal is received and is output to allow for simpler integration into a

larger design along with simpler exhaustive implementation testing. The circuit also features

a counter of size ⌈log2 n⌉.

The functionality of the circuit is straight forward as one would expect with a naive imple-

mentation. On reset, counter is initialized to n − 1 and the permutation is initialized to

25

Figure 5.3: Knuth-Shuffle RAM output w/initialization four element permutation circuit

the identity permutation. On the rising clock edge of every cycle counter is decrease while

the value of the permutation at counter and index[counter] (the index digit associated

with counter’s value) exchange locations. Once counter becomes zero, ready is driven high,

which prevents further updates of counter and Perm Out.

RAM Based with Dedicated RAM for Output Values

Two variations of the Knuth-Shuffle with dedicated RAM output were implemented. One

spends additional clock cycles to first initialize the RAM. The other implementation uses a

“dirty bit” register for each RAM address and initializes values on the fly as needed while

computing the permutation.

Figure 5.3 provides a circuit implementation of Knuth-Shuffle with dedicated RAM and

initialization. The circuit can be deconstructed into several components; counter_init,

counter, a shift register, a simple dual port RAM block and a full dual port RAM block.

The full dual port RAM serves as a scratch pad to store the current state of the remaining

26

permutation as it is computed. The simple dual port RAM stores the completed permutation

as it is computed and provides access to read out the permutation’s elements. On reset,

counter_init is initialized to n− 1 and a hold register is set high. The hold register holds

the remainder of the circuit in a reset state during initialization. During initialization, the

write enable signal to port A of the dual port RAM is held high while it’s address and data

signals are counter_init. Each cycle counter_init is decreased, effectively initializing the

full dual port RAM to the identity permutation. Once counter_init is zero, the next cycle

the hold register is driven low, disconnecting counter_init from the full dual port RAM

and starting the remainder of the circuit.

While the remainder of the circuit is held in reset, the index is stored into the shift register

while counter is initialized to n− 1. Once the circuit starts, it alternates between read and

write cycles. On a read cycle, the values at the address of counter and the address of the

next index digit are read on port A and port B of the full dual port RAM respectively. On a

write cycle several actions happen. First, the shift register and counter are staged to update

for the next read cycle. Secondly, the value from port B is written to address counter in the

simple dual port RAM while the value from port A is written to port B which still points

to the same address as on the read cycle. Once the counter reaches negative one, ready is

driven high and the circuit is held in a read cycle to prevent any further memory writes.

The implementation without initialization is functional identically with the exception of

how the full dual port RAM initialization is handled. The “dirty bit” logic is presented in

Section 5.2.2 and can be easily applied in exchange for the initialization logic discussed here.

As such, full details for the alternate implementation are exclude. It is also important to

note that this design is distinct from the others as it carries additional constraints on its

output permutation. While all other designs offer unrestricted random access to the resulting

permutation, this design is limited to random access to a single element per cycle.

27

Figure 5.4: Knuth-Shuffle shift register output w/“dirty bit” logic four element permutation
circuit

RAM Based with Dedicated Shift Register for Output Values

In an equivalent manner as with Knuth-Shuffle with dedicated RAM output, two variations of

the Knuth-Shuffle with shift register output were implemented. The logic that demonstrates

initializing the RAM block was covered in Section 5.2.2 and can be found within Figure

5.3. It is trivially to apply identical initialization logic in exchange for the “dirty bit” logic

presented here. As such, the initialization implementation will not be covered.

Figure 5.4 provides a circuit implementation of Knuth-Shuffle with a shift register output

that utilizes a “dirty bit” to handle memory initialization on the fly. The circuit can be

decomposed into several main components; the “dirty bit” logic, a shift register for the input

index, a shift register for the output permutation Perm Out, a full dual port RAM block

and a counter. The “dirty bit” logic operates in a simple manner. For each permutation

element, a “dirty bit” register exists. These registers are initialized to zero and are used to

28

track if the values at the element addresses in the RAM block are valid. Whenever an address

is written to, it’s corresponding “dirty bit” is driven high, indicating it is valid. When an

address is read, if the corresponding “dirty bit” is zero, it indicates the address has yet to

be written to and is not valid. For any non-valid address, the correct value is known to be

the value to which it would have been initialized, which is simply the address.

On reset the “dirty bit” registers are all initialized to zero, the counter is initialized to

n− 1 and the index is side loaded into its shift register. As described in Section 5.2.2, the

circuit then cycles between read and write cycles operating in a similar manner. On a read

cycle, the values at addresses counter and the current index digit are read on port A and

port B respectively. On a write cycle, several actions happen. The output shift register,

Perm Out is advanced forward. If the “dirty bit” for the value at address counter is high,

port A is written to Perm Out otherwise, counter is simply written to Perm Out. If the

“dirty bit” for the value at the index digit’s address is high, port B is written to address

A otherwise, the index digit is simply written to address A. The “dirty bit” registers for

counter and the index digit are then driven high, marking them as valid. Lastly, counter

is staged to be decreased and the index shift register is staged to advance for the next read

cycle. Once counter becomes negative one, the ready signal is driven high and the circuit

is held in a read cycle preventing any further updates.

5.2.3 Knuth-Shuffle Design Cycle Count (Worst Case)

Table 5.1 contains the worst case number of cycles required to compute and read out an

n element permutation for each Knuth-Shuffle implementation. The naive implementation

swaps a single element per cycle starting at element n− 1 and ending at element 1, totaling

n − 1 cycles. The initialized implementations spend n cycles initializing the RAM. Each

29

Table 5.1: Worst case cycle complexity to complete and read a permutation for Knuth-Shuffle
designs

Design Cycle Complexity
Naive n− 1
Initialized RAM Output 4n
“Dirty Bit” RAM Output 3n
Initialized Shift Register Output 3n
“Dirty Bit” Shift Register Output 2n

RAM implementation performs a swap every two cycles and must swap n elements, since

element 0 must be manually written to output. In the worst case scenario, one would want

to read elements in order from 0 to n − 1. This requires an additional n cycles to read the

values after the permutation is computed for the RAM output implementations. Totaling

the applicable cycles for each RAM implementation gives the totals shown.

5.2.4 CRGE Designs

For CRGE designs, three alternate approaches were implemented. A basic “compact” ap-

proach that aims to reduce total register utilization by reusing registers used to compute

the permutation to also store the resulting permutation. An approach that builds on the

previous but also includes additional adder logic in aims of speeding up computation. Lastly,

a straight forward approach that simply uses an additional shift register to store the output

permutation.

30

Figure 5.5: CRGE basic “compact” design four element permutation circuit

Basic “Compact” Implementation

Figure 5.5 provides a circuit implementation of the CRGE basic “compact” design for a four

element permutation. For large n, the amount of registers required to store the resulting

permutation alone becomes dominating. Using a similar amount of registers to store in-

termediate values during permutation computation could significantly increase the size of a

resulting circuit. As such, this design aims to minimize register utilization by re-purposing

the registers used to store intermediate values to also hold the resulting permutation. The

circuit can be decomposed into the input index, n − 1 computation blocks, a circular shift

register to store the permutation and a shift register to manage enable bits for the compu-

tation blocks. To understand the computation blocks and the circuit as a whole, first the F

function must be defined as:

fi(x, di) = x− di mod (i+ 1)

31

Table 5.2: Input/output table of f2 function for CRGE basic “compact” design

x d2 Output
0 0 0
0 1 2
0 2 1
1 0 1
1 1 0
1 2 2
2 0 2
2 1 1
2 2 0

It should be clear that this meets the requirements of an F function as outlined in Section

4.2. Thus, based on the results of Section 4.3, produces an ideal permutation generator.

Each computation block computes a specific fi. From left to right the computation blocks

in Figure 5.5 represent f1, f2 and f3. Each fi function can be implemented as a subtractor,

adder and multiplexer (MUX). The subtractor performs x − di while the adder and MUX

perform the mod(i + 1) operation. The result of the subtractor will always be between

−i and i. If this result is negative then adding (i + 1) is equivalent to performing the

mod(i+ 1) operation otherwise, since i < i+ 1 taking no action is equivalent to performing

the mod(i + 1) operation. For blocks where i = 2k − 1 for some integer k the adder and

MUX can be optimized away. In such blocks, if the subtractor result is negative then adding

i + 1 = 2k is the equivalent to flipping the value’s sign bit, thus simply ignoring this bit is

equivalent to performing the mod (i+1) operation. To further demonstrate the functionality

of the computation blocks, Table 5.2 provides the output of f2 for every possible input. On

reset, the permutation is initialized to the identity permutation and the enable bits are all

initialized to one. Each cycle, the computation blocks calculate a portion of an elements

F function for an element currently located at static locations in the output permutation

and the elements in the permutation rotate right circularly, effectively moving through each

block required to calculate its F function. At the same time the enable bits are shifted

32

Table 5.3: Partial element calculated by each computational block by cycle for the CRGE
“compact” design four element permutation

Cycle f1 Block f2 Block f3 Block
1 f1(1) f2(2) f3(3)
2 f1(0) f2(f1(1)) f3(f2(2))
3 disabled f2(f1(0)) f3(f2(f1(1)))
4 disabled disabled f3(f2(f1(0)))
5 disabled disabled disabled

right with a zero shifted in to disable the computation blocks in order, allowing already

computed elements to bypass the blocks unmodified. Once all enable bits have shifted out,

the ready signal is driven high and future updates are prevented. At this point all elements

have rotated through the entire permutation and arrived back at their correct position. To

better understand this behavior Table 5.3 contains the partial elements calculated by each

block each cycle. For compactness, the di values passed to each function are omitted.

Precomputational Optimizations

Figure 5.5 provides a circuit implementation for the CRGE precomputational design for

a four element permutation. In the CRGE “compact” design the critical path through a

computational block is two adders and a MUX. The CRGE precomputational design aims to

reduce this critical path to a single adder and a MUX, hopefully increasing the performance

of the design.

This design is identical to the previously described “compact” design except for the F func-

tion used. In light of this, only the F function and optimization will be discussed here while

Section 5.2.4 should be consulted for any additional details. The F function used in the

CRGE precomputational design follows:

fi(x, di) = x+ di mod (i+ 1)

33

Figure 5.6: CRGE precomputational design four element permutation circuit

Similar to the case with the CRGE basic design, due to the possible ranges of x and di, the

mod(i + 1) operation equates to subtracting i + 1 if x + di exceeds i and taking no action

otherwise. In attempts to reduce the critical path in a computation block, with the CRGE

precomputational design both possible actions for the mod(i + 1) operation are computed

in parallel and later which action was correct is decided. Outside of the computation block,

on reset di − (i + 1) is calculated and stored. Within the computation block, x + di and

x + (di − (i + 1)) are computed in parallel. If the result of x + (di − (i + 1)) is positive, it

indicates the mod (i+1) operation would have resulted in a subtraction and x+(di−(i+1))

is the correct value. Otherwise the mod(i + 1) operation would have taken no action and

x + di is the correct value. This process is further optimized through the realization of if

x+ (di − (i+1)) is positive there will be a carry to its most significant bit to unset the sign

bit. Therefore, the sign bit in di − (i + 1) is simply ignored and only a check for a carry

34

Figure 5.7: CRGE shift register design four element permutation circuit

out in x + (di − (i + 1)) is done. Following this logic, since the sign bit of di − (i + 1) is of

non-concern this operation can be optimized. For example, in Figure 5.6 d2 − 3 is replaced

with d2 + 1. It can be easily verified that, when viewed from the two least significant bits,

these operations are equivalent. Following similar logic in Section 5.2.4, the computation

blocks where i = 2k − 1 for some integer k can be optimized in an equivalent way to the

CRGE basic design.

Dedicated Shift Register for Output Values

Figure 5.7 provides a circuit implementation for the CRGE shift register design for a four

element permutation. The computational blocks in this design are identical to those of the

basic “compact” implementation. Thus, the computational blocks will not be covered here

but can be reference in Section 5.2.4. The CRGE shift register design implementation is quite

straight forward. The output of each computation block is stored as an intermediate value

which serves as input for the following computation block. The f0 function is represented

simply as a MUX that returns zero after any non-reset cycle. The final computation block,

whose output is completed elements, is stored in a shift register instead of an intermediate

35

value. This shift register stores the computed permutation and serves as the output for the

design. On reset, the intermediate values are initialized to represent the identity permutation

and the output shift register is initialized to zeros except a single bit of the first element.

Once this set bit reaches the final element of the shift register, it marks the final needed

computation cycle. This sets the ready register on the next cycle which prevents further

updates to the shift register.

36

Chapter 6

Results

This chapter provides the evaluation results of the area required and performance of each

evaluated design. First, each approach is evaluated separately to compare implementations.

Then, the best performing implementations for each metric and approach are used to compare

the approaches. In all cases, performance and area are evaluated separately for small n and

large n.

6.1 Evaluation of I2P Implementation

Figure 6.1 provides a graph of required area, based on the percent of device ALMs used, at

n ∈ {2, 3, ..., 10, 16, 32, 64} for the I2P implementation. The required area results for I2P are

similar to those reported in [1], varying by at most three ALM for n < 16. However, this the-

sis’ implementation requires significantly fewer ALMs at n ≥ 16. No explicit implementation

details are provided in [1], so it can only be speculated that these discrepancies arise from

possible differences in tool chain versions, placement effort or hardware differences between

the Stratix IV and Arria 10. Figure 6.1 does clearly indicate I2P has unmanageable growth

in resource requirements for larger n as one would expect to find with any combinational

approach. At n = 16 the design requires less than 1% of the boards total resources. By

doubling n to 32, resource usage at least doubles to 2%. Another doubling of n to 64 causes

resource usage to increase nearly ten fold to 21%. At n = 128, the build fails once the tool

37

Figure 6.1: I2P implementation: area vs. n

chain realizes the design will require in excess of 150% of the boards resources. This appears

to be a cut off in the tool chain where the developers believed there is no amount of effort

that would be productive in fitting the design. Figure 6.2 provides a graph of maximum clock

frequency at n ∈ {2, 3, ..., 10, 16, 32, 64} for the I2P implementation. The results here follow

a fairly similar trajectory as with the results in [1]. This thesis’ implementation significantly

outperforms the authors’ of I2P for all n; however, the margin significantly decreases as n

increases. For the smallest n, this thesis’ implementation exceeds [1] by over 475%. This

advantage decreases to slightly over 260% at n = 8 and ultimately is only near 140% at

n = 32. Although the authors of [1] fail to report on n = 64, if this trend continues, the

results would continue to converge. It is easier to explain this difference in performance as

a result of differences in hardware as the transistor size of the Stratix IV is twice that of the

Arria 10.

Based on the level of correlation between the presented results and the results reported in

[1], the implementation used in this thesis appears to be a fair representative of I2P on the

Stratix 10.

38

Figure 6.2: I2P implementation: maximum clock frequency vs. n

6.2 Comparison of Knuth Shuffle Implementations

Figure 6.3 provides a graph of required area, based on the percent of device ALMs used at

n ∈ {2, 3, ..., 10, 16, 32} for every Knuth-Shuffle implementation. Clearly, as one may have

expected, the naive approach’s required area grows significantly faster when compared to

implementations that utilize Block RAM. Although insignificant, it is interesting to note at

the smallest n the naive implementation is actually smaller than some of the Block RAM

implementations.

Several trends with the Block RAM designs can also be noted. The designs with initialization

are consistently smaller than their counterparts without initialization. This result should not

be surprising as initializing the Block RAM uses both simpler logic and fewer registers than

the “dirty bit” approach. When paired by initialization method, the shift register output

designs are consistently and significantly larger than the Block RAM output designs. Again,

this result should be expected as a shift register utilizes ALMs while a Block RAM does

not. Figure 6.3 does seem to imply one results that may not have been expected. Since

39

Figure 6.3: Knuth-Shuffle implementations: area vs. small n

the “dirty bit” Block RAM output design is consistently larger than the initialized shift

register output design, it seems the “dirty bit” logic is larger than a shift register capable of

storing the entire permutation. Figure 6.4 provides a graph of maximum clock frequency at

n ∈ {2, 3, ..., 10, 16, 32} for every Knuth-Shuffle implementation. For n < 8 the naive design

is actually the fastest. This can be attributed to the fact that all the Block RAM designs

are limited by the theoretical maximum RAM speed of 730 MHz [21]. Since the speed of the

RAM designs remain nearly constant as n increases it is a further indication that RAM speed

is the limiting factor in these designs. Also, the initialized Block RAM designs are faster

than their “dirty bit” counterparts. As with the area results, this should be expected. Also,

when paired by initialization method, the shift register output designs are faster than the

Block RAM output designs. This can be attributed to RAM to RAM writes exacerbating the

bottle neck in clock speed the RAM already causes. As with the area results, again Figure

6.4 seems to imply something interesting about the designs. The initialized Block RAM

design and the “dirty bit” shift register output design have near identical results. This could

indicate that the performance cost of the “dirty bit” logic is similar to the performance cost

40

Figure 6.4: Knuth-Shuffle implementations: maximum clock frequency vs. small n

of the Block RAM’s limiting RAM to RAM write. Figure 6.5 provides a graph of required

area, based on the percent of device ALMs used at n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 14} for every

Knuth-Shuffle implementation. The first thing that can be noted about these results are

the naive implementation stops at n = 2048. While the total resource usage at this point

is only at 11%, the Quartus tool chain still failed to complete any larger builds. The issue

the tool chain faces with the naive implementation is with routing congestion. With routing

effort exceeding 2.5, build attempt time becomes nearly unmanageable. At the same time,

the tool chain is unable to reduce wire utilization below 150% between multiple regions.

Although routing effort could be further increased, it is safe to conclude any resulting design

will have severely degraded performance. Based on this, any larger naive designs will be

assumed to have performance below any set practical threshold. In light of this, it is still

possible to comment on the growth rate of the naive solution. At larger n the area of the

naive solution continues accelerate its rate of divergence from the other designs and remains

to be the largest design for all applicable n.

41

Figure 6.5: Knuth-Shuffle implementations: area vs. large n

For the Block RAM designs, most trends from smaller n continue. As before, the shift

register output designs are larger than the Block RAM output designs. However unlike

before, as n is increased both shift register output designs deviate from both Block RAM

output designs; also, generally, the “dirty bit” designs are still larger than their initialized

counterparts. As n is increased, though, this difference has become less pronounced and

at n = 8192 the initialized shift register design is actually larger than the “dirty bit” shift

register design.

Based on this data, the initialized RAM output design is the best choice for any n when

minimizing resource usage is the primary focus. Figure 6.6 provides a graph of maximum

clock frequency at n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 14} for every Knuth-Shuffle implementation. As

previously addressed, the naive design was only able to produce results up to n = 2048. At

this point the design is already only able to operate at roughly 1
10

to 1
7

of the clock frequency

of all other design. This further supports the previous assumption that at larger n, the

naive design would fail to produce any practical results and pursuing larger n builds is an

unproductive use of computing resources.

42

Figure 6.6: Knuth-Shuffle implementations: maximum clock frequency vs. large n

At larger n, the “dirty bit” designs continue to perform worse than their initialized counter-

parts. As n increases, eventually the RAM is no longer the limiting factor in each design.

This seems to happen first for the “dirty bit” designs as they appear to dip in performance

first and last for the initialized shift register output design as it remains at a constant fre-

quency until n = 1024. While the initialized shift register output design initially continues

to be the best performer, ultimately at n > 1024, the initialized Block RAM output de-

sign becomes the best performer. This seems to coincide with the performance bottleneck

shifting away from the RAM. While initially, one may have assumed the initialized Block

RAM output would be the best performer, one may also find it surprising how long it was

outperformed.

When maximizing clock frequency is a priority; if n ≥ 1024 then the initialized RAM output

design is generally ideal otherwise the initialized shift register output is clearly the best

choice.

43

Figure 6.7: CRGE implementations: area vs. small n

6.3 Comparison of CRGE Implementations

Figure 6.7 provides a graph of required area, based on the percent of device ALMs used

at n ∈ {2, 3, ..., 10, 16, 32} for every CRGE implementation. At the smallest n the resource

requirements for all three designs are fairly consistent. However, for n > 4 the precomputa-

tional design begins to diverge from the other two, growing more steeply. At n > 8 the other

two designs begin to diverge from each other as well, with the basic “compact” design clearly

outpacing the shift register design in growth. Figure 6.8 provides a graph of maximum clock

frequency at n ∈ {2, 3, ..., 10, 16, 32} for every CRGE implementation. At small n the basic

“compact” and the shift register designs follow a very similar trend in performance with the

shift register design generally being the better performer by a small margin. While across

the same n, the precomputational design is clearly the worst performer. At n > 8 though,

the performance of all three designs appears to converge. Figure 6.9 provides a graph of

required area, based on the percent of device ALMs used at n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 13}

for every CRGE implementation. The trend from smaller n continues with the precompu-

44

Figure 6.8: CRGE implementations: maximum clock frequency vs. small n

Figure 6.9: CRGE implementations: area vs. large n

45

Figure 6.10: CRGE implementations: maximum clock frequency vs. large n

tational design being the largest and the shift register design being the smallest. However,

the divergence between the designs originally observed is much less pronounced.

Based on these results, the shift register design is exclusively the best choice for any n when

minimizing resource usage is the primary focus. Figure 6.10 provides a graph of maximum

clock frequency at n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 13} for every CRGE implementation. At

larger n the performance of all CRGE designs is surprisingly close with a few exceptions.

At n = 128 and n = 256 the precomputatal design is the best performer by a reasonable

margin. However, above n = 512 the shift register becomes the clear best performer by a

large margin.

While no design is consistently the best choice for all n when maximizing clock frequency is

a priority, the shift register design is generally the best choice.

46

Figure 6.11: Approach representatives: area vs. small n

6.4 Comparison of Approaches

This section will compare the area and performance between the best representatives of each

approach. For the cases where the Block RAM output Knuth-Shuffle design is the best

representative, an additional Knuth-Shuffle design will be included in the comparison as

well. This is done to account for the additional constraints the Block RAM output design

carries since, it may not always be a viable option even if it is the best design for a given

metric and n.

6.5 Comparison of AREA (Small n)

Figure 6.11 provides a graph of required area, based on the percent of device ALMs used at

n ∈ {2, 3, ..., 10, 16, 32} for the smallest representative implementations at small n for each

approach. Here it is shown how aggressively the combinational approach, I2P, outpaces the

other approaches in growth rate at small n. Granted, one must keep in mind that I2P has

47

Figure 6.12: Approach representatives: area vs. large n

a throughput of one permutation per cycle while the other implementations take multiple

cycles per element.

6.6 Comparison of AREA (Large n)

Figure 6.12 provides a graph of required area, based on the percent of device ALMs used at

n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 13} for the smallest representative implementations at large n for

each approach. These results should be expected. CRGE implemented with a shift register

ranges from about 110% to 190% over the resource cost of the Knuth-Shuffle shift register

output. The disparity in resource utilization is even worst when the CRGE implementation

is compared with the initialized RAM output Knuth-Shuffle and the CRGE implementation

ranges from a 240% to 330% increase in resource utilization.

48

Figure 6.13: Approach representatives: maximum clock frequency vs. small n

6.7 Comparison of Performance (Small n)

Figure 6.13 provides a graph of maximum clock frequency at n ∈ {2, 3, ..., 10, 16, 32} of the

best performing representative implementations at small n for each approach. Here one can

see, outside of the smallest n, CRGE implemented with a shift register out performs all other

approaches. At n ≥ 9, while the CRGE implementation significantly outperforms the naive

Knuth-Shuffle implementation, they appear to degrade in performance at identical rates. It

should also be noted, as n approaches 32, the performance advantage CRGE has over the

shift register output Knuth-Shuffle implementation quickly approaches zero.

6.8 Comparison of Performance (Large n)

Figure 6.14 provides a graph of maximum clock frequency at n ∈ {2x|x ∈ Z, 6 ≤ x ≤ 14} of

the best performing representative implementations at large n for each approach. At n ≥ 256,

the performance of the CRGE implementations finally drops below the performance of the

49

Figure 6.14: Approach representatives: maximum clock frequency vs. large n

initialized shift register output Knuth-Shuffle implementation. However, above n = 1024,

the performance of CRGE implemented with a shift register nearly matches that of the

Knuth-Shuffle shift register output.

6.9 Comparison of Running Time

Together, Figure 6.15 and Figure 6.16 provide graphs of the worst case running time to

compute and read an entire permutation for the best performing representative of each

approach at all n. Surprisingly, even though the initialized shift register output Knuth-

Shuffle performed very well, outperforming most designs at most n, it turns out to perform

far worse than the CRGE implementations and even the naive Knuth-Shuffle when running

time is considered. At n ≥ 64, CRGE is able to compute a permutation in 25% to 45% of the

time it takes the best performing Knuth-Shuffle implementations. While CRGE is unable

to produce permutations above 8192, one can still speculate about the results at higher n.

It appears from Figure 6.16 that if the designs where able to build for larger n, the running

time advantage CRGE provides would only continue to grow.

50

Figure 6.15: Approach representatives: worst case running time vs. small n

Figure 6.16: Approach representatives: worst case running time vs. large n

51

Chapter 7

Additional CRGE Uses and Future

Work

CRGE has several additional advantages over other permutation methods yet to be explored.

Here high-level proposals for additional models that can exploit these additional advantages

are demonstrated.

7.1 Partial Permutation Model

Figure 7.1 presents a high level template for a design to use CRGE to produce partial

permutations. Details specific to a chosen F function were omitted for clarity and flexibility

but should be easy to deduce from a full permutation design. For each of the desired elements

Figure 7.1: CRGE partial permutation design

52

Figure 7.2: CRGE distributed design

in the partial permutation, a block and counter are instanced. The input index is side loaded

into a shift register such that dn−1 = 0 and di = di+1 on each cycle update. A block for

element i takes di in the index as input. On reset, the block also takes i as an input, otherwise

it takes its previous output. The counter is used to adjust the functionality of the block each

cycle to match the functionality of fi, fi+1, ..., fn−1 and may vary in implementation details

based on the specific F function used. For example, to match the functionality of the F

function used in the CRGE shift register design presented in Section 5.2.4 the counter would

serve as the modulus input to the block’s adder. It can easily be confirmed that this design

results in each block computing fn−1(...(fi+1(fi(i, di), di+1)...), dn−1) as desired.

7.2 Distributed Model

Figure 7.2 presents a high level template for a distributed design intended for computing

permutations of very high n. This design is intended to compute permutations where n

is too large for a complete implementation or possibly even a complete index to fit on

a single device. Each device instead follows a design similar to the CRGE shift register

design presented in Section 5.2.4 but only implements a portion. Each device implements

a continuous subset of the blocks and only receives the index digits associated with its

blocks. Instead of a device storing the output of its ending block in a shift register, the

output is provided to the next device where it serves as input to the next device’s first block.

53

Figure 7.3: CRGE high throughput design

The final device outputs the permutation elements as they are computed. To maximize

the performance of the system additional analysis would be required to find an optimal

distribution of blocks between devices. This thesis predicts that attempting to balance peak

performance with minimizing the number of devices required for a particular n could be

achieved by decreasing the amount of total device utilization in proportion to the size of the

largest block on a particular device. This will result in the first few devices implementing a

large number of blocks at or near device capacity and then having the amount of utilization

decrease for subsequent devices as the size of the implemented blocks increases.

7.3 High Throughput Design

Figure 7.3 presents a high throughput CRGE design template for four element permutations.

As with the previous additional CRGE designs, implementation specifics and details were

omitted for clarity and flexibility. Each stage, s, receives the index digits dn−1, dn−2, ..., ds as

input and computes the next fi for each permutation element. Section 4.3 showed f0(0, d0)

must be zero and thus computing element zero starts with f1(0, d1). Although no proper

54

analysis was conducted for this design accurate speculations may still be possible. The

performance should very closely align with that of the CRGE shift register design for the

same n, since they most likely have equivalent critical paths. The resource requirements

are a bit harder to estimate but if one counts the number of block instances one finds

n + (n − 1) + (n − 2) + ... + 2 ≈ n(n + 1)/2. If the case of n = 32 is considered, one can

set a fair upper limit by considering the resource utilization for n = 32 · 33/2 ≈ 512 of the

CRGE shift register design. This will be an over estimate since at n = 512 the blocks are

significantly larger. Using this over estimate, based on the results in Figure 6.11, Figure 6.13

and Figure 6.9 one can predict the high throughput CRGE design should significantly exceed

the performance of I2P and require fewer resources while still meeting the permutation per

cycle throughput I2P offers.

7.4 Software Implementation

While the focus of this thesis has been on reconfigirable hardware implementations, this

limits CRGE’s use on conventional computers that lack specialized hardware. However, with

proper F function selection, CRGE’s design has the potential to lend itself well to vector

processors. Examples of vector processors can be found very commonly in even the most

mundane of modern conventional computers through processor instruction set extensions,

graphical coprocessors, and graphical processing units (GPU). Further research is needed

in this area to determine the performance of CRGE in such environments when compared

with the performance of a software implementation of Knuth-Shuffle. Since Knuth-Shuffle

is the undeniable dominating method in software, it is the only current method needed to

be considered in such a comparison.

55

Chapter 8

Conclusion

This thesis proposed an alternate approach to generating unbiased permutations.

In Chapter 2, the relevant background mathematics required to fully understand the problem

and described solutions was provided. The problem was also clearly defined and constrained

by defining an ideal permutation generator.

In Chapter 3, current popular methods for generating unbiased permutations were covered.

Memory-less approaches along with their advantages and disadvantages were discussed. I2P,

the selected example of a memory-less approach, was described and I2P was confirmed to

qualify as an ideal permutation generator. The history and description of the Knuth-Shuffle

was also provided. The Knuth-Shuffle’s advantages and disadvantages were then discussed

and Knuth-Shuffle was confirmed to qualify as an ideal permutation generator. The chapter

ended by describing the Random-Sort method and demonstrating that it failed to qualify as

an ideal permutation generator.

In Chapter 4 the proposed method, CRGE was presented. First, the chapter described

how CRGE was developed and then provided a formal mathematical description of CRGE.

Lastly, the chapter provided a formal mathematical proof that CRGE was indeed an ideal

permutation generator.

In Chapter 6, the results of the evaluations outlined in Chapter 5 were presented and dis-

cussed. It was shown that outside of a few edge cases the shift register implementation was

56

surprisingly the best CRGE implementation in terms of both area and performance. This

thesis showed that CRGE significantly outperforms I2P in terms of both area and perfor-

mance. Further, this thesis showed that although CRGE has a growth complexity constant

slightly below twice that of Knuth-Shuffle and operates at a clock speed slightly below

Knuth-Shuffle it is able to produce permutations significantly faster than the Knuth-Shuffle

implementations.

In Chapter 7, templates for implementing CRGE to produce partial permutations using

minimal area, to distribute designs for permutations that exceed device resource limitations

across multiple devices and to achieve a throughput of one permutation per cycle were

provided. All such achievements being impossible with Knuth-Shuffle due to the inter-

element dependencies of the Knuth-Shuffle algorithm. Therefore, based on this fact combined

with the results drawn from the data in Chapter 6 this thesis concludes that the proposed

method, CRGE, to be an optimal unbiased permutation generator compared to current

popular methods.

57

Bibliography

[1] J. T. Butler and T. Sasao, “Hardware index to permutation converter,” 2012 IEEE 26th

International Parallel and Distributed Processing Symposium Workshops PhD Forum,

May 2012.

[2] National Institute of Standards and Technology, FIPS PUB 46-2: Data Encryption

Standard (DES). Dec. 1993.

[3] National Institute of Standards and Technology, FIPS PUB 197: Advanced Encryption

Standard (AES). Nov. 2001.

[4] J. Takala and T. Jarvinen, “Stride permutation access in interleaved memory systems,”

11 2003.

[5] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme

to reduce row-buffer conflicts and exploit data locality,” Proceedings 33rd Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO-33 2000.

[6] M. Waechter, K. Hamacher, F. Hoffgaard, S. Widmer, and M. Goesele, “Is your permu-

tation algorithm unbiased for n ̸=2m?,” pp. 297–306, 2012.

[7] D. M. Burton, The history of mathematics: an introduction. McGraw-Hill, 2011.

[8] J. S. Tanton, Encyclopédia of mathematics. Facts On File, 2008.

[9] A. Shell-Gellasch and P. J. Freitas, “When a number system loses uniqueness: The case

of the maya,” Mathematical Association of America, 2012.

58

[10] D. E. Knuth, “Art of computer programming. Volume 2, Seminumerical algorithms”,

pp. 145–146. Addison-Wesley, 1997.

[11] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural, and medical

research, pp. 37–38. Hafner Pub. Co., 1963.

[12] R. Durstenfeld, “Algorithm 235: Random permutation,” Communications of the ACM,

vol. 7, no. 7, p. 420, 1964.

[13] S. Saeed, M. Sarosh Umar, M. Athar Ali, and M. Ahmad, “Fisher-Yates Chaotic Shuf-

fling Based Image Encryption,” arXiv e-prints, Oct 2014.

[14] S. Saeed, M. S. Umar, M. A. Ali, and M. Ahmad, “A gray-scale image encryption using

fisher-yates chaotic shuffling in wavelet domain,” pp. 1–5, May 2014.

[15] T. K. Hazra and S. Bhattacharyya, “Image encryption by blockwise pixel shuffling using

modified fisher yates shuffle and pseudorandom permutations,” pp. 1–6, Oct 2016.

[16] T. K. Hazra, R. Ghosh, S. Kumar, S. Dutta, and A. K. Chakraborty, “File encryption

using fisher-yates shuffle,” pp. 1–7, Oct 2015.

[17] S. Alam, S. M. Zakariya, and N. Akhtar, “Analysis of modified triple - a steganography

technique using fisher yates algorithm,” pp. 207–212, 2014.

[18] M. Tayel, G. Dawood, and H. Shawky, “Block cipher s-box modification based on fisher-

yates shuffle and ikeda map,” pp. 59–64, Oct 2018.

[19] V. Shokeen, M. Yadav, and P. Kumar Singhal, “Comparative analysis of flr approach

based inverse tree and modern fisher-yates algorithm based random interleavers for idma

systems,” pp. 447–452, Jan 2018.

59

[20] M. Yadav, P. R. Gautam, V. Shokeen, and P. K. Singhal, “Modern fisher–yates shuffling

based random interleaver design for scfdma-idma systems,” Wireless Personal Commu-

nications, vol. 97, no. 1, p. 63–73, 2017.

[21] Intel, “Intel arria 10 device datasheet,” November 2018.

60

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background Mathematics
	Definitions
	Notation
	Number Systems and Number Representation
	Permutations
	Ideal Permutation Generator

	Popular Current Methods for Indexing Permutations
	Memory-less Approaches
	Memory Dependent Approaches
	Fisher-Yates
	Knuth-Shuffle
	Random-Sort

	Proposed Method
	Visual Representation
	Mathematical Representation
	Proof of Soundness

	Methodology
	Evaluation Method
	Tested Designs
	Combinational Designs
	Knuth-Shuffle Designs
	Knuth-Shuffle Design Cycle Count (Worst Case)
	CRGE Designs

	Results
	Evaluation of I2P Implementation
	Comparison of Knuth Shuffle Implementations
	Comparison of CRGE Implementations
	Comparison of Approaches
	Comparison of AREA (Small n)
	Comparison of AREA (Large n)
	Comparison of Performance (Small n)
	Comparison of Performance (Large n)
	Comparison of Running Time

	Additional CRGE Uses and Future Work
	Partial Permutation Model
	Distributed Model
	High Throughput Design
	Software Implementation

	Conclusion
	Bibliography

