

Chapter 1. Introduction

 8

• [24] J. Graf, “Optimal Trust Strategies,” invited lecture delivered to the

National Academy of Sciences for the National Academies Study on Secure and

Reliable Microelectronics for AF Systems, Washington, DC, June 19, 2018.

Chapter 4. Experiment. In this chapter, we present an experiment conducted to

demonstrate the practical value of the game, illustrating the construction of player

strategies, the use of game variables, the design of our game solving tool, and its automated

solving functions.

Chapter 5. Results. In this chapter, we discuss the results of this experiment as well as

the GameRunner software we created for exploring game solutions and directing defensive

responses. We use GameRunner to explore several “what-if” scenarios that emerge from

the game in the experiment. We include an analysis of whether we can be confident that

this approach provides value. The discussion in Chapters 4 and 5 were published as:

• [9] J. Graf, W. Batchelor, S. Harper, R. Marlow, E. Carlisle, and P. Athanas, “A

Practical Application of Game Theory to Optimize Selection of Hardware Trojan

Detection Strategies,” manuscript submitted to the Journal of Hardware and

Systems Security, 2019.

• [10] R. Marlow, S. Harper, W. Batchelor, and J. Graf, “Hardware Trojan Detection

using Xilinx Vivado,” in 2018 IEEE National Aerospace and Electronics

Conference, 2018.

Chapter 6. Ongoing Work and Applications. In this chapter we discuss the continuing

work that has resulted from the above-documented research and results. This includes

exploration of subrational game play and applications to a variety of new domains of

microelectronics security. While many publications are planned related to this work as it

continues, the following papers have been published thus far based on the work described

in this chapter:

• [3] J. Graf and P. Athanas, “How Threats Drive the Development of Secure

Reconfigurable Devices,” in 2008 IEEE National Aerospace and Electronics

Conference, 2008, pp. 239–245.

Chapter 1. Introduction

 9

• [7] J. Graf, “Towards system-level adversary attack surface modeling for

microelectronics trust,” in 2016 IEEE National Aerospace and Electronics

Conference (NAECON) and Ohio Innovation Summit (OIS), 2016, pp. 474–477.

• [8] J. Graf, “OpTrust: Software for Determining Optimal Test Coverage and

Strategies for Trust,” in GOMACTech 2017 Proceedings, March 2017.

Chapter 7. Conclusions. In this chapter, we present our concluding thoughts and

speculation about future directions.

1.3 Related Contributions

Prior to this work, the author has made other contributions to the field of secure

microelectronics. A subset of this work is cited in this publication, and is collected here

for the committee’s consideration:

• [10] J. Graf and P. Athanas, “A key management architecture for securing off-

chip data transfers,” in Field Programmable Logic and Application, ser. Lecture

Notes in Computer Science, J. Becker, M. Platzner, and S. Vernalde, Eds.

Springer Berlin Heidelberg, 2004, vol. 3203, pp. 33–42.

• [12] A. J. Mahar, P. M. Athanas, S. D. Craven, J. N. Edmison, and J. Graf,

Design and Characterization of a Hardware Encryption Management Unit for

Secure Computing Platforms,” in 39th Hawaii International International

Conference on Systems Science (HICSS-39 2006), CD-ROM / Abstracts

Proceedings, 4-7 January 2006, Kauai, HI, USA, 2006.

• [13] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J.

Suris, M. Bucciero, and J. Graf, “Wires on demand: Run-time communication

synthesis for reconfigurable computing,” in 2007 International Conference on

Field Programmable Logic and Applications, Aug 2007, pp. 513–516.

• [14] J. Graf, J. Hallman, and S. Harper, “Trust in the FPGA Supply Chain using

Physically Unclonable Functions,” in GOMACTech 2010 Proceedings, March

2010, paper 22.4, pp. 317–319.

Chapter 1. Introduction

 10

• [15] J. Graf, S. Harper, and L. Lerner, “Ensuring Design Integrity through

Analysis of FPGA Bitstreams and IP cores,” in Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA),

2012.

• [16] J. Graf, S. Harper, and L. Lerner, “The Integrity of FPGA Designs:

Capabilities Enabled by Unlocking Bitstreams and 3rd-Party IP,” in

GOMACTech 2012 Proceedings, March 2012, paper 18.3, pp. 201–204.

• [17] J. Graf, S. Harper, J. Hallman, and B. Knight, “Managing Risk to Field

Programmable Gate Array Trust: A Deployment Framework for DoD

Instruction 5200.44,” in GOMACTech 2014 Proceedings, March 2014, paper

6.1, pp. 77–80.

• [18] S. Baka, J. Hallman, S. Harper, and J. Graf, “Trust and Reuse of 3rd-Party

IP,” in GOMACTech 2014 Proceedings, March 2014, paper 2.4, pp. 25–28.

• [19] K. Urish and J. Graf, “Mitigation of Space-Reliability Reduction Trojans

in FPGA Designs,” in GOMACTech 2015 Proceedings, March 2015, paper 7.1,

pp. 91–94.

• [20] J. Graf and A. A. Sohanghpurwala, “Private Verification for FPGA

Bitstreams,” in GOMACTech 2017 Proceedings, March 2017.

• [21] S. Harper, J. Graf, W. Batchelor, T. Dunham, and P. Athanas, “Introducing

a Trust Metric Foundation and Deriving Trust-for-Buck,” in GOMACTech 2019

Proceedings, March 2019.

1.4 Summary of Sponsorship

This work has been sponsored by the United States Air Force under a series of Small

Business Innovative Research contracts awarded to the Graf Research Corporation:

• AF161-150, Optimal Strategies for Cloud-Based Trust Assessment, Phase 1,

contract FA8650-16-M-1808, June 14, 2016 – March 13, 2017; $149,998;

Principal Investigator: Jonathan Graf.

• AF161-150, Optimal Strategies for Cloud-Based Trust Assessment, Phase 2,

contract FA8650-17-C-1148, September 28, 2017 – December 30, 2019, $749,740;

Principal Investigator: Jonathan Graf.

 12

Chapter 2. Background

Security in the context of FPGAs is a term whose meaning is as broad as the applications

served by the devices. FPGAs are growing in resources and complexity, driven by demand

from a burgeoning array of new applications. From the simple low-power traditional

FPGAs whose silicon is dedicated almost exclusively to programmable logic to the

emerging FPGA Multi-Processor System on Chip (MPSoC) device class, FPGAs continue

to realize their promise for novel processing architectures in a variety of domains. Recently,

the same-die close coupling of heterogeneous processing structures with hardened security

resources has created the potential for FPGAs to serve a wide variety of new security

applications. Modern FPGAs provide cryptographic accelerators, physically unclonable

functions (PUFs), and hardware random number generators (HRNGs). On the MPSoC high

end, these features are combined on the same die with programmable FPGA fabric, central-

processing units (CPUs), graphics processor units (GPUs), digital signal processors

(DSPs), and programmable input-output (IO) resources. This pairing of processing and

security resources raises the possibility of using them to create tightly integrated, custom

secure processors for future high-security networked applications. FPGAs with these

features hold the potential of revolutionizing the security posture for high-security Internet

of Things (IoT) applications such as autonomous vehicles, intelligent energy grid devices,

home automation, various industrial and commercial control systems, and the datacenter.

Within these applications, FPGAs can provide their embedded security features to a variety

of security application domains, including information assurance, mission assurance, and

cyber-physical systems security.

Chapter 2. Background

 16

hardware Trojan threat, research has grown into many areas, which are summarized in the

following sections.

2.1.1.2 IC Hardware Trojans

The portion of integrated circuit trust that relates directly to FPGA bitstream trust is the

concern of logical hardware Trojan insertion at design time. Hardware Trojans are

generally defined as having both a trigger circuit and a payload circuit. The trigger “starts”

the payload when an event is detected. The event detected by the trigger could be a signal

transition, the present state of a state machine, an external influence, or a series of

sequential states across multiple timeframes. Notably, the trigger could simply be the

power-on of the device, in which case there would be no additional circuitry for the trigger

and the payload circuit will always be active.

The traditional HTH taxonomies of [29] and [30] are constructed based on six hardware

Trojan attributes:

1. Insertion Phase

2. Abstraction Level

3. Activation Mechanism

4. Effects

5. Location

6. Physical Characteristics

As we will see, in this work, we use taxonomies such as these as organizing principles

that subdivide the attack surface upon which adversaries and defenders play their games.

Both we and others have created HTH example circuits that fit into these taxonomies,

providing ample circuits for experimentation. For example, the trust-HUB.org website,

founded on the work of Salmani et al [37] and extended by others [38], contains benchmark

circuits organized by the above attributes. This repository of circuits is used for

benchmarking hardware Trojan detection methods through the use of common circuits. It

allows any user to simply “dial-up” a circuit of interest by supplying its desired attributes.

It should be noted that this feature may be used just as easily by an adversary as by a

researcher. The circuits in the repository are, in some cases, quite sophisticated and

specifically designed to evade detection.

Chapter 2. Background

 17

2.1.1.3 IC Trojan Countermeasures

The most straightforward strategy to prevent hardware Trojans is to control every aspect

of the design and manufacturing process. However, the costs involved make this strategy

available only to wealthy companies and governments. For example, this is the primary

strategy of the Defense Microelectronics Activity (DMEA) Trusted Foundry Program [39].

Since owning custom fabrication facilities and controlling all the personnel, software, and

equipment in the microelectronics supply chain is beyond the means of most designers,

alternative means of preventing IC Trojans is desired. For those who want to have access

to the latest manufacturing processes but cannot afford to own their own leading edge fabs,

potential exists in an emerging area of research called split-manufacturing, where a portion

of IC manufacturing takes place in an untrusted fab with access to the latest silicon process

technologies, leaving final metallization to be accomplished in a trusted facility. See for

example the work of Vaidyanathan et al [40] and the other performers funded by the

ongoing Intelligence Advanced Research Projects Agency “Trusted Integrated Chips”

program [41]. However, since this requires two fabs (one contracted, one controlled) and

coordination between the two, such an approach is still beyond the reach of most IC

designers. Further, since it has no analog to FPGA Trojans in the bitstream, this document

focuses on other prevention strategies.

If complete control over the process is not available, one proposed strategy has been to

make it difficult to insert a hardware Trojan in the first place by either making the circuit

hard to understand or leaving little room in the circuit for a Trojan to be inserted. Recent

circuit obfuscation techniques include those proposed by Roy et al. [42], whose EPIC

method inserts random gates to obfuscate circuit function; Chakraborty et al., whose

methods obfuscate the data flow in circuits [43] [44]; Li et al. who apply structural

transformations to the circuit that are unlocked by a secret key [45]; and Zhang et al [46],

who use muxes whose paths are determined by the resolution of on-chip Physically

Unclonable Functions (PUFs).

One challenge to using these methods to prevent hardware Trojan insertion is that they

significantly increase the complexity of circuit test and often cost circuit area, making

adoption impractical. Another challenge is that the introduction of re-organized circuits,

randomized gates, re-mapped dataflow, and novel physical features introduce risks to yield.

Chapter 2. Background

 18

This limits adoption due to the risk designers take in using an obfuscated netlist that puts

other design goals (e.g., timing, area, performance) at risk. While some studies, such as

those by Rajendran et al. [47], have shown that these obfuscation methods show some

promise to preventing the reverse engineering of netlists protected by these methods, more

recent literature disagrees. In general, the use of obfuscation is a departure from traditional

security doctrine, wherein obfuscation and scrambling techniques are eschewed in favor of

more mathematically provable techniques [48]. In the context of software obfuscation,

Barak et al demonstrated that mathematically perfect obfuscation is theoretically

impossible under general circumstances [49]. By a similar argument, Shamsi et al [50]

argue that circuit locking – a popular obfuscation technique – can never be perfectly

implemented. Machine-learning techniques have proven effective against a variety of

circuit obfuscation strategies [56]. Nonetheless, research is ongoing and may yield future

advances. A less costly strategy for preventing hardware Trojans in VLSI devices is

simply to fill the circuit with “filler cells” and associated digital-signature-based self-

authentication methods to prevent an adversary’s ability to add any new circuitry, per the

work of Xiao et al [48][52].

In this document, the HTH countermeasures of primary interest are HTH detection

strategies.3 Contrary to the efficacy controversies of prevention countermeasures,

detection strategies are well attested. Furthermore, they can be made widely available and

do not change the design. These may be divided into those that can be applied during

design and those that are applied after the device is manufactured. This document focuses

on those that may be applied by the designer themselves at design time, since those methods

translate directly to the challenge of FPGA Trojan detection.

Within the category of detection methods, some have focused on reverse engineering

circuits to expose their contents for examination. This has utility, for example, in the case

of 3rd-Party IP evaluation or post-manufacturing ASIC evaluation. For example, REFSM

was developed by Meade et al. [53]. It helps to extract control logic from a flattened netlist

and permit the partitioning of the circuit. Another such top-down functional analysis tool,

3 While we focus on detection strategies, the models we develop are equally applicable to

any HTH countermeasure strategy.

Chapter 2. Background

 19

developed by Li et al. [54], mines data gathered from functional simulations to extract

knowledge of functions. Other reverse engineering-oriented work attempts to develop new

solutions (or circumventions) of the subgraph isomorphism problem – the common NP-

complete graph theoretic challenge of searching for small circuit patterns within a larger

circuit. For example, see Bouchaour el al. [55]. These methods can raise the abstraction

level of the composition of the circuit, exposing implementation details along the way.

Charaborty et al [56] demonstrated how machine learning can be brought to bear to assist

in determining the function of circuits. Quijada et al [57] demonstrate automated extraction

techniques from Scanning Electron Microscope (SEM) based circuit delayering for the

purpose of post-manufacturing Trojan assessment. Circuit reverse engineering methods

are revisited in the FPGA trust section.

Other Trojan detection methods that apply to design-stage evaluation rely instead on

verification techniques to find hardware Trojans. For example, the FANCI technique of

Waksman et al. [58] seeks to find Trojans based on models of Trojan triggers. It uses a

Boolean functional analysis to determine which circuitry appears stealthy in its behavior

when subjected to traditional logic simulation. They define stealthy to mean “nearly

unused.” Similarly, the VeriTrust method from Zhang et al. [59] seeks to find only the

trigger portion of the hardware Trojan using the assumption that it will not be activated. A

limitation of both FANCI and VeriTrust is that they only look at one sequential stage of a

circuit at any given time. That is, they only evaluate the combinational logic between two

register stages. Taking advantage of this feature, Zhang et al [60] showed that stealthy

implicitly-triggered circuits can be developed that escape FANCI, VeriTrust, and their

more simplistic predecessors. Their DeTrust technique spreads the trigger circuitry across

both combinational logic blocks and multiple sequential levels to allow its function to blend

in with the rest of the good circuitry in the design. The same paper suggests improvements

to FANCI and VeriTrust that may account for these even-stealthier triggers, but the

techniques must be applied over at least as many sequential stages of the circuit as the

Trojan trigger has been spread over. This can be a computationally expensive prospect,

making it impossible to guarantee that it can be completed for any given circuit. Salmani

[140] proposed another method for circuit detection based on static controllability and

Chapter 2. Background

 20

observability calculations, processed by a machine learning analysis, which has the

advantage of being computationally inexpensive.

Notably, this snapshot of the state-of-the-art is typical of the past decade of hardware

Trojan and Trojan detection method development. Just as in any domain of cybersecurity,

the adversary creates a method to which the defender reacts. The adversary reacts again

with an improvement. The cycle continues.

2.1.1.4 FPGA Trust

Trojans that are purely logical – along with their related detection methods – are the

same for FPGAs as they are for any general IC. Just as with ICs in general, Trojans

implemented out of the FPGA’s logic resources may be inserted via modified 3PIP, altered

HDL, altered netlists, or via malicious EDA tools. Thus, the above discussion of logical

HTHs for ICs applies to FPGAs as well. However, there are notable differences between

Trojans that must be physically realized in a traditional IC and those that will be realized

as components of an FPGA bitstream. Those differences also demand a different

perspective on detection methods in FPGAs, with most of the difference expressed in the

unique manner in which FPGA circuits are created: by applying a programming bitstream

to a set of programmable logic resources.

To illustrate this, let us consider an adversary who makes use of the now-common

advanced persistent threat (APT) style of network attack to gain access to the defender’s

network.4 On this network, the defender is producing a design for realization in either an

ASIC or an FPGA. If that design is to be realized in an ASIC, the economies that drive

ASIC markets indicate it will be implemented in many systems. The hardware Trojan they

insert might risk accidental discovery simply because of how many systems might use that

processor. This may deter the adversary from their goal for risk of discovery. Furthermore,

the adversary faces the challenge that they are inserting their Trojan at design time. Unless

the fab responsible for manufacturing the ASIC is also complicit in the act, they run the

risk that the fab will discover the Trojan. Fabs use many testing techniques that are

undisclosed to their users to ensure yield, which adds further discovery risk for the

4 A version of this discussion was published in [7].

Chapter 2. Background

 21

adversary. Finally, even if the Trojan in the ASIC makes it all the way through the fab, the

adversary has no means of testing the implemented Trojan to ensure it works prior to its

deployment on a large scale.5 An adversary may be able to overcome these hurdles, though

it is outside the scope of this work to speculate about how. It is, however, worthwhile to

note that fewer of the above hurdles exist for an adversary wishing to insert a Trojan in an

FPGA.

FPGAs are used for designs focused on specific applications whose smaller deployment

base does not economically justify the manufacture of an ASIC. These applications can be

large Internet routers, industrial control systems, defense systems, or cyber-physical

systems. The adversary may target these systems with greater specificity if their entry

point is a specific FPGA design used in those systems. Returning to the adversary with an

APT-enabled network entry point, for an FPGA design, they are able to see every aspect

of that design. The attack surface available to this type of adversary is illustrated in Figure

2. If they have access to the design systems, they are able to access not only the 3PIP, HDL,

netlists, and placelists (just as in the ASIC case) but also the final deployment format: the

bitstream. Quite often for FPGAs, all of these files reside on the same workstation. From

these available choices – which represent the attack surface – the adversary may select the

most appropriate point of Trojan insertion and the associated style of change based on what

their goal might be. Thus, the adversary may not only insert the Trojan in the system, but

– given an APT with the common feature of data exfiltration – they may also retrieve the

bitstream with the Trojan in it for testing. Since FPGAs are commodity devices, the

adversary can purchase the specific commodity FPGA for which the bitstream is destined

to program and test their Trojan in the actual design and ensure it is working. The unique

ability for adversaries to select a highly-specific target, the fact that there is no fab involved

in the deployment process, and the fact that the Trojan can be tested “remotely” prior to

deployment make FPGAs a unique target for Trojans. In these ways, FPGA bitstreams

during the design step are similar to software in that they are vulnerable to comprehensive

exploitation over-the-wire by a sufficiently advanced adversary.

5 Unless, again, they have cooperation with an insider at the fab.

Chapter 2. Background

 22

Figure 2. Attack Surface Available to the APT-Enabled Adversary

The bitstream itself presents an additional component of the attack surface to the

adversary. Several papers have demonstrated that the bitstream is subject to reverse

engineering. Note and Rennaud [61] produced the first bitstream reverse engineering tool,

though their approach was not comprehensive in understanding all features of the

bitstream.6 Significant improvements were subsequently shown by Bergeron et al. [65],

6 Prior to Note and Rennaud, several authors published design tools that performed

bitstream-level manipulations and leverage detailed knowledge of the bitstream format.

Examples include the Xilinx JBits design framework demonstrated by Guccione and

Patterson [62][63], the alternate wire database of Steiner and Athanas [64], and the wires-

on-demand runtime communications synthesis technique of Athanas et al. [13] (to which

the author was a contributor). While these design tools contained knowledge of bitstream

function, this section is concerned not with design tools but with tools explicitly developed

to reverse engineer the bitstream into a general netlist format.

Chapter 2. Background

 23

Benz et al. [66], and Ding et al. [67]. Notably, Ding et al. demonstrate a repeatable

distributed computing approach to bitstream reverse engineering to address the

computational complexity of the endeavor. Thus, even after the design is completed, a

hardware Trojan may be inserted. That is, given the above described APT-enabled

adversary, they may simply wait for the designer to finish their work on a Trojan-free

bitstream, then modify that bitstream directly with their changes.

Swierczynski and Fyrbiak [68] demonstrated that this scenario is not mere speculation.

They demonstrated an attack – on a bitstream protected by vendor-provided encryption, no

less – that not only decrypted it but also searched for an insertion point and inserted a

Trojan directly in the bitstream. What is notable about this attack is that their knowledge

of the bitstream was sufficient that they did not need to reverse engineer it to a netlist to

accomplish the attack. Furthermore, they demonstrated re-encrypting the bitstream with

the discovered key to ensure it could re-deploy and be properly decrypted and authenticated

to the target system. Thus, the APT-based over-the-wire attack on FPGA systems is

realistic.

Methods that protect FPGA systems from hardware Trojans may similarly take

advantage of the fact that FPGAs are implemented by programming bitstreams. Trimberger

[69] was the first to publish the idea that verification techniques combined with software

that understands the FPGA bitstream format could potentially enhance the trustworthiness

of FPGA designs. In a related approach that was fully realized in practice, the technology

that resulted from the FPGA tasks on the aforementioned DARPA TRUST program and

its successor the DARPA IRIS program were published by Graf et al in [14][15][16][17].7

The technologies described include the Change Detection Platform (CDP) and Functional

Derivation Platform (FDP). Collectively, this software could evaluate FPGA designs in

any of the above-mentioned formats – HDL, netlist, placelist, and even the final bitstream

itself. After assigning a “golden reference” to represent the expected Trojan-free designs,

7 The author served as principal investigator for the FPGA tasks of the DARPA TRUST

program and as co-PI (with Dr. Scott Harper) for the FPGA tasks of the DARPA IRIS

program. The summary here is drawn entirely from the referenced publications, which

were approved for public release by DARPA as cited in each publication.

Chapter 2. Background

 24

these platforms compared the design under test (DUT) to that reference and expose any

differences. The theory of operation was that any differences exposed are assessed as

potential hardware Trojans. Hardware Trojans were modeled loosely as changes from

expectation, whether bit-level changes (in the bitstream), structural changes (in the

placelist), or logical changes (in the netlist). In this approach, conversion from the bitstream

format was automated, resulting in a placelist and associated implementation details. Those

resulting files were evaluated for differences from expectation using methods that evaluate

structure, simulate behavior, and use formal Boolean logic equivalence testing, assertion-

based verification, and model checking. In the event that the golden reference was the

original HDL source, this process was relatively straightforward. However, the system was

also designed to be able to use HDL simulation models as golden references.

In these cases, the platform made use of advanced circuit partitioning and mapping

techniques to break both the DUT and the golden reference into equivalent subcircuits to

increase the granularity of behavioral evaluation and make assessment runtime tractable.

In the instance that there was no HDL golden model, the system could accomplish a trust

evaluation by relying on a comprehensive derivation of the circuits function (i.e., reverse

engineering), comparing the exposed function to a datasheet, which is treated as the golden

reference. In this case, the platform follows a combined approach of top-down and bottom-

up automated reverse engineering. The theory of operation was that the bottom-up

techniques successively improve the understanding of circuit composition by defining the

interaction and structure of logic primitives, while the top-down approach successively

improved the understanding of device function. At the point of convergence between top-

down and bottom-up methods, the hierarchically-derived circuit composition was mapped

to the known function of the device, leading to a complete knowledge of the system. Then

the known system function is mapped to the set of expectations expressed by the datasheet,

with any differences investigated as potential Trojans. As above in the description of

logical Trojans, a few other researchers have also begun following the route of using

reverse-engineering combined with logical evaluation to expose hardware Trojans

[53][54].

One challenge for any reverse-engineering-based trust method is that despite the

automated nature of some of the underlying methods, a large amount of human intervention

Chapter 2. Background

 25

is needed to guide the effort. This increases the resource expenditure required of the

designer when electing to use a reverse engineering based trust method. Furthermore, the

fact that the design is reverse engineered at all can be problematic. For example, due to

risks to the confidentiality of 3rd-Party IP implementation details and proprietary bitstream

formats, there may be legal limits to using reverse engineering methods for trust.

A new method of bitstream assessment, PV-Bit, was proposed by Graf and

Sohanghpurwala [70] wherein the bitstream of an FPGA is assessed against a trusted

placelist without reverse engineering the bitstream back to source. This would allow

designers to perform their own trust assessment by first producing a trusted placelist using

traditional logical and 3PIP assessment methods, then producing a bitstream, then using

PV-Bit to assess the trustworthiness of the produced bitstream. Such a method only

assesses the final step of the FPGA design process. The optimization of the assessment

methods for logical Trojans is not solved by PV-Bit and thus remains an open question

addressed by this work.

2.1.2 FPGA Anti-Tamper Background

As with the general field of trust, the field of anti-tamper was a concern first considered

with rigor by the US Department of Defense. By the 1990s anti-tamper doctrines and basic

methods were well defined, as Huber and Scott detail in [71]. DoD was concerned that the

IP in their electronic systems remain known only to them, not to their customers or

competitors. Soon thereafter, a few providers of high-value microelectronic systems held

similar concerns, which were addressed by either commodity tamper resistant products

(such as the IBM 4758 [72] or early smart cards) or custom implementations. One famous

example of a custom implementation was from Microsoft, which used hardware anti-

tamper techniques to protect secrets in the original Xbox gaming console. While Anderson

and Kuhn [73][74] demonstrated attacks against smartcards in the late 1990s, it was

Huang’s work in the early 2000s that circumvented the Xbox protections that brought a

larger public consciousness to anti-tamper [75]. Design security and anti-tamper concerns

for FPGAs has been an academic concern as well, as chronicled by Drimer [25].

Nowadays, hardware anti-tamper is a common commercial concern, including among

FPGA vendors Xilinx [76] and Intel [77].

Chapter 2. Background

 26

FPGA anti-tamper is directly related to FPGA trust. If a trusted bitstream can be

produced by a designer, their next task is to secure it while it is fielded. The field of FPGA

anti-tamper is focused on resisting, detecting, responding to, and recording evidence of

adversary efforts to violate the bitstream’s confidentiality (e.g., understand the design) and

integrity (e.g., alter the design). Since the path to meaningful runtime alteration of the

design is first to understand it, this section focuses on the study of maintaining bitstream

confidentiality. The maintenance of bitstream confidentiality is based on methods to

encrypt the bitstream and the challenge an adversary faces with non-public bitstream

formats, and the difficulty of understanding potentially obfuscated integrated circuit

designs.

2.1.2.1 Integrated Circuit Confidentiality

As with the relationship between IC and FPGA Trust, an illustrative starting point for

FPGA confidentiality is to first consider IC confidentiality. For any embodiment – whether

in an FPGA or an ASIC – those wishing to protect their IP from reverse engineering

methods, a variety of circuit obfuscation methods are available. For example, at the

physical level, SypherMedia International [78] offers an ASIC standard cell library that

camouflages the function of its gates. The intention is to frustrate those who might attempt

to reverse engineer a design through delayering and imaging. It is difficult from imaging

alone to discern the difference between, for example, a camouflaged AND and OR gate. If

the camouflaged gates are selectively distributed throughout the standard gates present in

the design, reproducing a circuit for analysis becomes difficult. Since this technique relies

on having the ability to change the physical design library of an ASIC, it does not have a

direct analogy in FPGA design.

IC obfuscation techniques that do work equally well for FPGA designs as for IC designs

include the logical obfuscators that were mentioned in the trust background above. As

such, they offer the same benefits – and significant drawbacks. While the above IC

obfuscation techniques may be used to improve the confidentiality of FPGA bitstream

designs, they typically are not due to the complexity the introduce to the designer and due

to the presence of vendor-provided bitstream confidentiality techniques.

Chapter 2. Background

 27

2.1.2.2 FPGA Bitstream Confidentiality

The assumptions behind FPGA bitstream confidentiality methods have been called into

question due to recent adversarial breakthroughs. The goal of FPGA bitstream

confidentiality is to ensure that the intellectual property contained in the FPGA bitstream

cannot be analyzed by an adversary, either for functional understanding or intellectual

property (IP) theft. Recently, however, techniques have proliferated that are designed to

circumvent vendor-provided encryption functions for SRAM FPGAs. Starting with the

introduction of the Xilinx Virtex-II in 2001, a design was widely considered to be

sufficiently protected if it made use of a symmetric block cipher (such as 3DES or AES)

with a secret key that is only made accessible to the device configurator [79]. That is, the

bitstream was encrypted at all times when it was stored in a non-volatile memory next to

the FPGA, and it was only decrypted by the device itself using the secret key during

configuration. Devices from many vendors followed this formula for more than a decade.

It was thought that an adversary could not steal the configuration bitstream and decipher

its meaning since the adversary only had access to this encrypted version of the bitstream.

The belief was that this method would stop an adversary from even starting the arduous

process of trying to understand the vendor-proprietary bitstream because they had to

overcome a cryptographically-strong mathematical challenge prior to ever gaining access

to the unencrypted bitstream.

What is mathematically perfect on paper often fails in implementation, however. Such

was the case with bitstream encryption. While the symmetric block cipher algorithms were

without fault mathematically, their implementation in silicon betrayed information in side

channels that led to the demise of this IP protection approach. Moradi et al. [80]

demonstrated the use of differential power analysis (DPA) attacks to recover the encryption

key from Virtex-II. The same team of researchers later demonstrated related side-channel

attacks against more relevant ciphers (e.g., AES) and more advanced FPGAs from both

Xilinx and Altera [8180] [82]. Academic and industrial collaborations such as the DPA

Contest [83] ensure that side channel analysis continues to improve. At present,

commercial products, such as the Rambus DPA Workstation Platform [84], may be

purchased to recover the encryption keys from FPGAs. In for many devices, this

workstation is capable of determining the encryption by monitoring the power of a single

Chapter 2. Background

 28

FPGA power-on cycle. It is thus easily possible to recover unencrypted bitstreams for

many FPGA devices whose owners had attempted to protect their design IP via encryption.

Even with an unencrypted bitstream, it was traditionally thought to be difficult to

decipher the design contained inside it due to the proprietary nature of the bitstream format.

However, as mentioned in the trust section, academic research over the past decade has

demonstrated significant progress in automating the translation from a bitstream into a

logical netlist format. At present, the difficulty of deciphering a bitstream should not be

considered an adequate deterrent to the theft of FPGA design IP. Furthermore, as noted in

the cited works, the regular structure of FPGA bitstreams lends itself well to the production

of automated tools that can reliably repeat the process of translating from bitstreams into

logical netlists.

Because FPGA bitstreams can be exploited in this way, secure systems that rely on

bitstream confidentiality as a measure of their security are put at risk. For example, many

systems for securing data transfers (e.g., Graf et al [11]) or securing software executing on

the FPGA (e.g., Mahar et al [12]) assume that their configuration is kept secret to avoid

having their internal key management infrastructure compromised. Thus, a lack of

bitstream confidentiality undermines the core root of trust for many FPGA-based secure

computing platforms.

Notably, FPGA vendors have responded to these concerns. Leading-edge FPGA

devices, such as the Xilinx UltraScale+ [85], Altera Stratix 10 [86], and Microsemi

PolarFire [87], have updated their configuration engines and security infrastructure to

include sophisticated encryption and key generation strategies that resist analysis from all

published DPA attacks as well as related side channel and invasive analysis techniques.

Nonetheless, in most cases, these design security strategies still unravel if the adversary is

able to recover a single key from the device. Thus, the specter still remains that the

advancement of key theft techniques may once again put IP at risk of automated key

recovery and bitstream analysis techniques.

Thus, just as with hardware Trojans during the design process, the designer – assisted

by the vendor – and the adversary continuously trade the advantage back and forth. One

problem within FPGA design confidentiality is that the security for all designs ultimately

rests on the security resources provided by the vendor, meaning that all designs deployed

Chapter 2. Background

 29

on a given family of FPGAs will be put at risk if that FPGA has its configuration security

resources broken and its bitstream deciphered. Despite advances in security and the

ubiquity of bitstream reconfiguration potential in FPGAs, there has yet to emerge a

systematic means of providing security solutions that are unique to each deployed design.

The entire industry rests upon the FPGA vendor security solutions, thus designers remain

vulnerable to the above-described break-once, break-all risk to their bitstream

confidentiality. Furthermore, since a deployed FPGA must store the decryption key – or at

least the means of reconstructing the decryption key – for the bitstream in the system to

facilitate automated device boot-up, side channels and invasive means of recovering that

key remain the adversary’s preferred means to sidestep the mathematical difficulty of

brute-force attempts against any utilized encryption algorithms.

2.1.2.3 Concerns Beyond Bitstream Confidentiality

While bitstream confidentiality is the major anti-tamper concern unique to FPGAs, it

should be notes that all standard IC anti-tamper concerns also apply to FPGAs. The FPGA

realizes the designer’s circuit using its configuration bitstream, and the secrets of that

circuit may themselves be stolen at runtime. For example, the aforementioned data transfer

and secure processor [11][12] solutions rely on encryption cores that are individually

realized in the configurable fabric of the device. The designers of those encryption cores

must concern themselves with the above DPA attacks just as much as the FPGA vendors

do when designing the FPGA configuration encryption cores. Furthermore, the design

inside the FPGA may also wish to consider the fields of glitching and probing attacks that

are becoming ubiquitous and inexpensive. We revisit the idea of glitching to exploit the

design inside the bitstream in Chapter 4.

2.2 Metrics, Strategies, and Games

2.2.1 Models and Metrics for IC Trojans

Modeling a hardware Trojan is an ongoing challenge. The relationship between the

creator of the Trojan (the adversary) and developer of Trojan detection methods (the

defender) is governed not only by novel circuit design and test methods but also by human

incentives and creativity. The adversary may be motivated to accomplish a variety of

Chapter 2. Background

 30

objectives, including but not limited to, controlling the target device, reducing its

reliability, causing it to exhibit aberrant behavior under certain conditions, or causing it to

divulge secrets during operation [29]. The adversary has an array of means to accomplish

said goals in that the Trojan may be inserted at any of a variety of points in the design cycle

of the device and may manifest itself in any of a variety of physical embodiments that

accomplish the desired effects in the circuit. Because of the spectrum of potential Trojans

available to a creative adversary, it is difficult to describe a useful formal abstraction of a

Trojan that can be used by defenders to measure the efficacy of detection methods. Thus,

Trojan detection methods lack the mathematical tools employed in related fields that seek

to detect unwanted effects in circuits. For example, in circuit defect testing, a fault model

might be employed to model stuck-at-0/1 faults or bridging faults [1]. These models allow

developers of automated test pattern generation (ATPG) software to formally quantify the

benefits of novel methods with respect to their efficacy (e.g., fault coverage) and

performance [89]. Thus, in fault testing, novel methods can be quickly and formally

measured and compared to determine whether they do or do not make a contribution to the

state of the art. This is not the case for IC Trojans.

A further difference between methods to detect Trojans and methods to test for faults is

the actor that places the effect in the circuit. Faults are typically emergent effects of

imperfect manufacturing methods. Thus, fault detection methods do not concern

themselves with a guiding hand that employs one or more strategies. For hardware Trojans,

attention must be paid to an intelligent adversary who can strategically develop and insert

any of a variety of Trojans in order to accomplish their desired end. A human intelligence

driven by human incentives is the adversary; the Trojan is the means to their end.

Furthermore, the adversary must be thought of as having knowledge of the Trojan detection

methods a reasonable defender might employ along with a comprehensive understanding

of the attack surface (i.e., where the Trojan is inserted in the design) available to them.

This said, some hardware Trojan models have been created, each with a narrowly-

limited scope in terms of taxonomic classification of the Trojan type and the attack surface

available to the adversary. All formal models made to date focus on logic circuits with a

trigger circuit, a limited representation of possible Trojans. The model used by FANCI and

VeriTrust makes the assumption that the primary outputs of the circuit will be affected by

Chapter 3. Security Economics and Game Theory

 47

𝑈𝑈𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷) = [𝑃𝑃𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷) − 𝑃𝑃𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷0)]𝐿𝐿 − 𝑍𝑍𝐷𝐷(𝜎𝜎𝐷𝐷) −

𝑍𝑍𝐹𝐹𝐴𝐴(𝜎𝜎𝐷𝐷)[𝑃𝑃𝐹𝐹𝐴𝐴(𝜎𝜎𝐷𝐷) − 𝑃𝑃𝐹𝐹𝐴𝐴(𝜎𝜎𝐷𝐷0)].
Eq. 2. Defender
Utility Function

That is, the utility for the defender of electing a given strategy considers the value of

their loss subject to the selected strategy’s reduction in the probability of incurring that loss

with respect to the “do nothing additional” strategy, less the cost of deploying the strategy,

less the cost of a false alarm subject to the selected strategy’s increase in the false alarm

probability with respect to the “do nothing additional” strategy.

3.4 Step Games

As illustrated in Figure 4, an additional consideration for both players in our game is

where in the ASIC or FPGA design cycle their interaction takes place. The design and

deployment cycle of these devices may be divided into a sequence of subgames, each

represented by a step game, Γ<step>, for each step in the design cycle. The illustration has

separate step games for malicious changes to specification, logical synthesis, third-party

IP (3PIP), physical synthesis, FPGA programming, ASIC mask generation, ASIC

fabrication, and device deployment. The early steps of design cycle are similar for each

device style. At the point of physical synthesis, the steps diverge to the unique design

concerns related to the physical embodiment of each device type.

The step division in the figure is has utility – as we will illustrate. However, alternative

divisions may be possible as well. In any division, however, games can be used

sequentially to determine the set of protections to apply during that design and deployment

stage to optimally protect that part of the process. One way of treating this selection is to

consider all of the available HTH attack and countermeasure strategies – from writing the

specification to deploying the finished devices – in one large game for every design. The

complexity of such a large game leads to difficulties in drawing conclusions related to what

a designer should do at each step of the process. An alternative is to zoom in on each step

of the design cycle and treat them as separate decision points at which the adversary and

defender must consider whether and how to attack or defend. This work concentrates on

this latter approach, adopting the term step games to describe the adversary/defender

interaction at each point in the design cycle.

Chapter 3. Security Economics and Game Theory

 52

problem to more easily serve the math. If we do the latter, we are simply setting up a math

problem to conjecture about, not producing a model of the world about which we can draw

conclusions. Thus, we seek first to properly describe the problem for rational players with

correct utility functions; after this, we will consider irrationality.

3.5.2 Computing Game Solutions

When using game theory to reason about security, some researchers reduce the

strategies available to players to two (a binary game) to allow a simpler formal

mathematical discussion of the game variables and their relationships; see for example

[127]. As our goal in this work is to demonstrate a practical application of game theory to

a diverse set of real-world strategies available to the HTH adversary and defender, the

resulting games are quite large. These large games do not lend themselves easily to

discussion using either by-hand solving or formal mathematics without over-constraining

the assumptions and reducing the fidelity of the utility function model. Thus, we have

adopted an approach that allows us to solve and analyze large games using a powerful

multi-threaded symbolic solver engine and a novel approach to visualizing the solutions to

the games. While our future work will explore formal analysis of simplified variants of

our games, for now, the software described in Section 4.3 below contributes to

straightforward discussion of large complex games.

3.6 Example Trust Game

Before we explore more complex games with computed solutions in the next chapters,

it is illustrative to consider a simple game which can be solved by hand. This allows the

opportunity to develop an intuitive sense of the mechanics of game theoretic solutions in

the context of HTH detection. For the purposes of this exercise, we simplify our adversary

function by assuming that 𝑃𝑃𝑆𝑆(𝜎𝜎𝐴𝐴) = 1 for all adversary strategies and 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷) = 1 for

all adversary/defender strategy tuples. This results in the simplified adversary utility

function of Eq. 3. The utility function for the defender remains the same in this game

construction.

Chapter 3. Security Economics and Game Theory

 53

𝑈𝑈𝐴𝐴(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷) = {[1 − 𝑃𝑃𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷)]𝑃𝑃𝑆𝑆(𝜎𝜎𝐴𝐴)}𝐺𝐺 − 𝑍𝑍𝐴𝐴(𝜎𝜎𝐴𝐴) −

𝑃𝑃𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷)𝑍𝑍𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓(𝜎𝜎𝐴𝐴).
Eq. 3. Simplified

Adversary
Utility Function

To solve the game by hand, we are going to set up the game in a table. This arrangement

is called normal form. To arrange in normal form, as in Table 1, we need to resolve the

utility functions for each player under every possible strategy tuple available. As we will

see, this arrangement allows a person to reason quickly about optimal play for simple

games.

Table 1. The Trust Game in Normal Form

 σD0 σD1 ⋯ σDn

σA0 UA(σA0,σD0), UD(σA0,σD0) UA(σA0,σD1), UD(σA0,σD1) ⋯ UA(σA0,σDn), UD(σA0,σDn)

σA1 UA(σA1,σD0), UD(σA1,σD0) UA(σA1,σD1), UD(σA1,σD1) ⋯ UA(σA1,σDn), UD(σA1,σDn)

⋮ ⋮ ⋮ ⋱ ⋮

σAm UA(σAm,σD0), UD(σAm,σD0) UA(σAm,σD1), UD(σAm,σD1) ⋯ UA(σAm,σDn) UD(σAm,σDn)

In order to produce this arrangement, we need to play the “Trust game” with an example

scenario by setting the values for the utility functions, then resolving them.

3.6.1 Playing the Trust Game

In our hypothetical scenario, the adversary’s goal is to cause the defender’s device to

fail early by inserting a Trojan into a netlist representation of the design. Their intention is

to create reliability concerns in the market for the defender’s device, allowing the adversary

to capture a portion of that market with their rival device. The potential loss incurred by

the defender is proportional to their lost market share, which we estimate as L =

$10,000,000. The desired gain for the attacker is proportional to the fraction of the

defender’s lost market share that their rival device might gain, which we estimate to be G

Chapter 3. Security Economics and Game Theory

 54

= $2,000,000. We estimate that the defender has a process for resolving false alarms that

incurs cost ZFA = $50,000.20

For our final fixed cost, we assume we only have a minimal ability to incur a penalty on

the adversary. We set Zfind = $100,000. We will assume that the adversary and defender

each have four strategies. While taxonomies of Trojans and Trojan detection methods can

likely yield games involving many more strategies for both players, such games often

require commensurately more complex solution concepts, so we treat those in the following

chapters when we have our automated solver. A simple game such as this suffices to

illustrate the value of the approach.

The four strategies available to the adversary in this example are to do nothing, to use a

simple failure circuit that is triggered by an expected binary value using a comparator, to

use a more stealthy failure circuit, and to make a fully-customized 0-day circuit. The costs

associated with each strategy are listed in Table 2. Given the expense of σA3, intuition might

indicate that the attacker would be unlikely to spend half the cost of their expected gain,

G, on a Trojan; however, it remains for our game to determine if that is a rational, optimal

choice.

Table 2. Example Adversary Strategies and Costs

Strategy Description ZA(σA)

σA0 No Trojan $0
σA1 Triggered Trojan $115,000
σA2 Stealthy Trojan $200,000
σA3 0-Day Trojan $1,000,000

For the defender, we consider the case where they have just developed a new detection

method called Magic Detector. As we will see, Magic Detector is an order of magnitude

more expensive than the next best method, and it improves the detection probability against

the stealthiest Trojans, though only marginally. The defender does not know whether this

small detection probability improvement is worth the cost. The defender’s four strategies

are to do nothing in addition to standard test and verification, to additionally perform an

20 In future chapters, we produce additional estimates that are justified more

comprehensively. In this section, values are notional for the purpose of illustration.

Chapter 3. Security Economics and Game Theory

 55

advanced simulation-based detection technique, to perform an advanced Boolean logic

equivalence (BLE) testing technique in addition to the additional advanced simulation, or

to use the Magic Detector in conjunction with all of the above. The defender costs are

shown in Table 3.

Table 3. Example Defender Strategies and Costs

Strategy Description ZD(σD)

σD0 No Additional Trojan Detection $0
σD1 Advanced Simulation $50,000
σD2 Advanced BLE + Sim $100,000
σD3 Magic Detector + BLE + SIM $1,000,000

We assume that empirical testing21 has been performed to pit the adversary and defender

strategies against each other and determine the likely resulting probabilities of detection,

as in Table 4. We also assume that the adversary and defender are using the same estimated

PD values, though our model can accommodate the condition when they are using different

values.

Table 4. Table of PD(σA,σD) Values

 σD0 σD1 σD2 σD3
σA0 0 0 0 0
σA1 0.5 0.6 0.99 0.99
σA2 0.25 0.5 0.9 0.95
σA3 0.01 0.05 0.25 0.4

Further, we assume that the false alarm rates drop for the defender as more methods are

employed in conjunction with one another, as shown in Table 5.

Table 5. Table of PFA(σD) Values

σD0 σD1 σD2 σD3
0.005 0.0001 0.00005 0.00001

21 The next chapters illustrate how this testing will take place.

 59

Chapter 4. Experimental Game

We constructed an experiment to demonstrate the value of game-assisted reasoning

about hardware Trojan countermeasures. Our purpose was to establish a realistic game

scenario – including reasonable players, economic variables, and available strategies – then

allow the empirically-derived metrics to complete the utility functions for each player.

This chapter introduces the game scenario and a variant, the experimentation performed

using actual Trojan/countermeasure interactions, and the software we developed to

automate various processes, including an automated game solver and results visualization

tool called GameRunner.

4.1 Game Scenario: Defender and Adversary

We consider the game in which a defender is attempting to produce a trusted FPGA

design that consists partially of defender-written hardware description language (HDL)

code and partially of 3rd-Party IP cores (3PIP) purchased by the defender. We model the

adversary as a rival who seeks to undermine the defender’s product and, as a result, gain

some of the market the defender loses as a result of the HTH.22 We use the pragmatic

Advanced Persistent Threat (pAPT) adversary model, a variant of the APT adversary

introduced in Chapter 2. The pAPT adversary is an APT adversary who behaves rationally.

We assume that the pAPT adversary already has access to the network and computer

22 Note that this game represents only one of the many scenarios that can be explored using

our utility functions.

Chapter 4. Experimental Game

 74

and BOOL. Section 5.2 discusses the combinations in more detail. It also includes a

summary of these results and the analysis of the games that result when using those PD and

PFA values.

4.3 Automation and GameRunner

In order to automate the process of defining, solving, and exploring game solutions, we

developed the concepts alluded to in [8] into a software tool entitled GameRunner, the

architecture of which is illustrated in Figure 7 below. The core of GameRunner is a Python

application that reads a custom JavaScript Object Notation (JSON) file that contains the

data for one or more game scenarios. GameRunner assembles that data to present to the

user in a Graphical User Interface (GUI) or to pass to one of a variety of game solvers. The

user can also make use of the GUI to extract a prescription, which is the game-suggested

mitigation strategy in a format that permits the automation of the tools required to perform

that strategy.35 This prescription presently takes the form of a Jenkins file, which can be

used in conjunction with the open-source Jenkins workflow automation software to run the

software that composes the optimal detection strategy sets [146]. That is, GameRunner

does not simply tell the user what the optimal strategy might be; it also issues a file that

automates the implementation of that optimal strategy.

We selected solvers for our set through a review of computer algebra systems [148],

game-solving software tools [148], and software solver libraries [147] which led us to

believe that the following three were promising:

• The set of solvers provided by Gambit [148], an open-source, cross-platform

C/C++ library for game-theory computation.

• The EEE algorithm as implemented by [151] as a Java application, which we

call, parsing its output by redirecting STDOUT.

35 Note that in deployment, GameRunner is not intended for use by general users. Rather,

an expert would make use of GameRunner to produce prescriptions and more simplified

software would be available to users to select the appropriate prescription without the

requirement of understanding the game theory behind the software.

Chapter 5. Results

 80

Table 12. PD by Adversary and Defender Strategy

 BNCH CSIM SCOA STRC BOOL

DONT 0% 0% 0% 0% 0%

REWR 88% 100% 100% 88% 100%

GATE 50% 50% 50% 100% 100%

ECTR 53% 53% 73% 80% 100%

CCMP 31% 46% 62% 46% 100%

STSQ 13% 13% 60% 27% 100%

GLST 0% 0% 50% 50% 0%

Total 40% 46% 68% 60% 96%

Table 13. PFA by Defender Strategy

BNCH CSIM SCOA STRC BOOL

0% 0% 50% 17% 0%

Table 14 depicts the two-player strategic game that emerges in the Kickstarter economy

at the HDL step. In this table and those that follow, we depict the game in normal form;

each entry in the table represents the tuple that results from calculating

(𝑈𝑈A(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷),𝑈𝑈𝐷𝐷(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷)) for the given defender and adversary strategies. The detection

method efficacy metrics (PD and PFA) are drawn from Table 12 and Table 13, and the

remaining utility function variables are set as described in Chapter 4. This table – as with

all in this dissertation where we depict utility function results – is listed rounded to the

nearest thousand dollars.

 124

Chapter 6. Ongoing Work and
Applications

The games and methods illustrated in this work point the way towards how to develop

industry-guiding recommendations of optimal HTH detection strategies. The experimental

results in this dissertation should not themselves be taken as industry recommendations,

since we tested a limited set of HTH’s and detection methods arranged in a simple

taxonomy in only two steps for the design lifecycle. To accomplish industry-level

recommendations for HTH detection, we continue this research in a variety of new

directions, which are summarized in this chapter. Furthermore, the security economic

utility functions in this dissertation provide a foundation upon which to explore both more

complex utility functions – including those that question the rationality of the players – and

more detailed gameplay models. The work here also enables us to explore

adversary/defender interactions both outside the context of FPGAs – and entirely outside

the context of hardware Trojans. We are beginning to explore software vulnerabilities,

system vulnerabilities, and even fields such as tamper and counterfeiting.

This chapter summarizes our emerging directions first by continuing the narrative

directly from the previous two chapters. We first discuss how are improving the framework

presented in those two chapters in order to create games out of a significant number of

strategies across a significant number of test articles to claim statistical relevance sufficient

to guide industry. Next, we discuss how we are advancing the theory that underlies the

decision making, both by improving the utility functions and game models as well as

Chapter 6. Ongoing Work and Applications

 125

questioning whether alternative decision making processes are possible. Finally, we

explore the applications beyond HTH detection in FPGAs that can be addressed by the

methodologies presented in this work.

6.1 Advancing the Framework

The eventual end of this work is to guide industry in making decisions about optimal

hardware Trojans countermeasures. To approach the ability to make such grand

recommendations, we must be able to produce a basis of well-structured experiments that

mirror industrial concerns and allow us to claim statistical relevance across very large sets

of test articles. This task is not small. To give a brief summary of both planned and in-

progress work to accomplish this end, we briefly describe our approach below.

6.1.1 Hardware Trojan Test Article Database

Continuing our work from [8], we are building a comprehensive set of HTH test circuits.

They are to be held in a database of test articles defined by, at minimum, the following

properties:

• HTH trigger

• HTH payload

• HTH design step insertion point

• Target circuit size

• Target circuit design style

• Target circuit insertion location

Our vision is to create a test article set that has statistically significant representation

in each of these dimensions. This is an immense task. It will result in a database many

orders of magnitude larger than the one tested in this work, and it will require continuous

updating to be current to the latest threats.

The database will permit the study of taxonomies of various types. Taxonomies

will be created by applying labels to the individual database entries, as automated by

software currently in development. I will lead the construction of this tool to explore the

development of an optimal taxonomy. We intend this to be a significantly larger database

than those presently available publicly, such as TrustHub [133,134]. To the maximum

Chapter 6. Ongoing Work and Applications

 126

extent possible, we intend to both borrow from and share with ongoing related efforts, such

as those in the Trusted and Assured MicroElectronics Forum [164]. Part of the database

creation research will include exploration of automated Trojan insertion tools, such as

[165] and [166]. These tools may be useful in quickly populating the database with relevant

test articles.

6.1.2 Automated Detection Method Application

I am presently continuing work described in this document to automate the application

of detection methods to the above database of HTH test articles. Our more advanced

version, currently in-development, will automate the detection method application as a

workflow, permitting not only fully automated detection methods but also those which

require human-in-the-loop interventions and guidance. Furthermore, the ability to track

the order in which detection methods are applied is in development. We anticipate this

order will have an effect on outcomes. The combinations performed in this work did not

consider order. For example, Method A might have a high detection rate but poor false

alarm rates, and Method B might have a poor detection rate but provides concrete evidence

that Method A’s false alarms are, indeed, incorrect. Running these in sequence with

knowledge of prior results may have effects that alter the outcomes of games. Notably,

this will cause our strategy count to increase. Not only will combinations of detection

methods matter, permutations will as well.

The end goal of this task is to automate the application of detection methods in a manner

that realistically captures the ways they would be deployed in industry. We will also be

able to take the key learnings from automating this detection method application to guide

our prescription generation. That is, if we are able to automate test method application

during the development of the test database, we can simply use the workflow for test

method permutation determined to be optimal as a way of applying that test method

permutation in an automated fashion. The workflow from the test automation simply

becomes the prescription.

Chapter 6. Ongoing Work and Applications

 127

6.1.3 A User Software Application

The GameRunner software described in this document is designed to be used by threat

analysts knowledgeable of the game theoretic underpinnings of the tool. Those threat

analysts would use it to produce a database of prescriptions for a variety of contexts.

GameRunner is not designed for the average FPGA and ASIC designers to use directly.

We would rather have another tool that consumes the database of prescriptions and

produces guidance for those designers after the input simple metrics related to the design

they are trying to protect. We want this interface to abstract away the game theoretic

decision engine to avoid requiring digital designers to learn game theory to make use of

our tools. To this end, I have specified another application for users to input information

about their design and threat concerns and simply receive the appropriate prescription.

This application is one among many interfaces presently in development that offer different

views and controls over the data models used in this system. We revisit this application in

the context of its intended deployment framework in the next section.

6.1.4 OpTrust Framework

In addition to determining how to produce the database, automate test methods, and

create a simpler software application for designer/users, I have specified a framework for

how all these tools will interact with the various parties that will use it. The specifics of

the interfaces are still in development, so in this section we refer more abstractly to the

roles played by each party. We refer to the framework that comprises all the various

applications and interfaces as OpTrust.

6.1.4.1 Roles within the OpTrust Framework

A core observation that initially led us to develop separate user roles for OpTrust is that

the utility functions involve models and variables that will likely be determined by different

parties. The first party is a red team capable of using the OpTrust tools for modeling and

measuring the efficacy of the adversary and defender methods, including defining the

opponents’ strategy sets and using GameRunner to experimentally set the probability

values required by the utility functions. The operation of the red team – producing the

databases necessary for GameRunner – is illustrated in Figure 27. The red team is likely

Chapter 6. Ongoing Work and Applications

 128

composed of experts in digital test and verification and HTH detection. Thus, they are

likely not the appropriate party to set the economic variables in the equations. This would

be the role of a group of analysts we refer to as a threat team. We will revisit Figure 27 in

more detail shortly.

Figure 27. Red Team Table Generation

Chapter 6. Ongoing Work and Applications

 129

Threat team experts are capable of quantifying the threat environment, including the

costs of defensive strategies, costs of attacks, cost to the defender of resolving false alarms,

cost to the adversary of detections, adversary financial gain if successful in attacking, and

defender financial loss if adversary is successful. The threat team is also responsible for

creating relative monetary estimates of non-financial strategic outcomes (e.g., how much

the adversary or defender are willing to spend to avoid or gain a particular non-monetary

result). Properly characterized, these threat environment variables will be selectable by

referencing simplifying models I named “Standard Games” that are indexed on levels of

criticality, with each selection involving appropriate changes to the underlying security

economic variables.

In this section, we use examples describing five levels of criticality for simplicity. In

reality, each criticality level will be a complete model of an attacker/defender scenario, and

may be referred to in slightly more complex terms. For example, the user might wish to

select an aggressive adversary, a risk-averse defender, a cost-averse defender, etc., and the

threat team would have to have used the variables in the utility functions to construct those

scenarios in advance. In Section 6.2 we define how our advancements in theory will allow

them to do that. For the remainder of this section, however, we illustrate the framework

principles with the aforementioned simplistic five security levels, envisioning them to

sequentially increase both the criticality of the design being protected and the capabilities

of the adversary as the levels increase from 1 to 5.

The final party – the microelectronics system developer – has the role of creating a

trustworthy design. Their only interaction with OpTrust should be to select the criticality

level of their design and determine the defensive strategies available to them at the point

in the design flow for which they are responsible. This user action is what determines

which prescription they should use. As we will see, the database of prescriptions will have

been pre-computed prior to the user interacting with the OpTrust framework.

Separating the roles in the interface in this way has many benefits. One major benefit

we have already mentioned is that the ASIC or FPGA designer can concentrate on

developing and testing the design without being required to have special knowledge of test

methods, threat modeling, and game theory. Another benefit is that both the red team and

the threat definition team can concentrate on the aspects of the challenge that best fit their

Chapter 6. Ongoing Work and Applications

 130

competencies. A third benefit is that the interfaces themselves – and the information those

interfaces provide access to – may be subjected to different security sensitivities. For

example, a developer might be granted a level of privilege that allows them to receive

guidance about their design without gaining access to all the red team, threat team, and

game theoretic variable data involved in the guidance decision. It perhaps goes without

saying, but a database of all known hardware Trojans organized into a searchable taxonomy

that efficiently pairs to fully automated Trojan insertions tools is not something that should

be released widely, lest it be used by malicious actors to nefarious ends. By separating the

user roles and associated software, highly sensitive data might be used within the software

used by the red and threat teams without exposing it for scrutiny by every designer.

6.1.4.2 Separating the Pre-Computation and Developer Environments

To secure sensitive data related to actual threats and hardware Trojans, it is preferable

for the red and threat team data to be inaccessible to the developer. That is, it would be

preferable if the recommendations could be precomputed by GameRunner for use in the

in-development user application. The designer/user should simply receive a table of

recommended detection methods (which we call “prescriptions”) that are calculated based

on the “Standard Games,” which are themselves based on the criticality index from the

threat team. Once each standard game is solved, the GameRunner produces a table of

prescriptions. It is only that table that is provided to the developer in any format. This

saves the developer from the computation time of OpTrust, and it saves the red and threat

teams from having to share the raw information about hardware Trojans and threat

environment assessments with the developer. The developer should just receive the

prescriptions, not all the information in the databases and assessments that led to the

creation of the prescriptions.

This desired structure brings up the fact that the red team and the threat team need to

pre-compute the values for which they are responsible in the OpTrust security economic

equations. We illustrated the red team precomputation process in Figure 27. The red team

should test several HTH-exploited designs from each taxonomic entry described in Section

6.1.1 against each prescription of test methods. Note that every strategy in the defender’s

set of methods is actually itself a permutation of test methods. For example, run

Chapter 6. Ongoing Work and Applications

 134

6.1.4.3 Implementation

The implementation of this framework and its constituent components is not only a large

initial task, it is one that will require ongoing updates. The HTH database, threat team

data, and the defender strategies are all time sensitive based on the activities of the

adversaries and availability of defense methods. It must consistently be updated. The

framework as described here as well as the methods for continuous updates have been

specified and are planned for further refinement and implementation.

6.2 Advancing the Theory

In addition to advancing the framework, we are also exploring possible updates to the

underlying theory of OpTrust. Some of this advancement is related to new applications of

our tools and methods – created to solve the HTH problem – to new domains. That

possibility is treated in Section 6.3. In this section, we consider more generally how the

theoretical underpinnings of GameRunner might be advanced. Such advancement can take

the form of exploring alternatives to the simplifying assumptions we made in constructing

the games of this work:

• Assumption: The players only get one play. Alternative: We could instead consider

multi-play games, such as the ubiquitous Stackelberg security game. We avoided

adding the complexity of multiple plays thus far, since the first stage of any

Stackelberg-modeled encounter would generally take the form of the strategic game

played in this work. We focused in this work on getting that initial encounter right.

With that encounter well modeled, Stackelberg games might be considered next.

• Assumption: The knowledge the game is complete and symmetric. Alternative: We

could instead consider games where the parties are playing with incomplete

information, or those in which one party holds an information advantage over the

other. This latter case may be appropriate if one party can be certain they have a

strategy the other is unaware of, such as a secret detection method.

• Assumption: The knowledge of the game is not perfect. Alternative: In games with

turn-based, rather than simultaneous play, the potential exists for knowledge of

outcomes to be perfect, which we might explore.

Chapter 6. Ongoing Work and Applications

 144

6.3.2 Applications of the General Detection Game

This work has focused on the configurable logic of field programmable gate arrays

(FPGAs). I am developing games that address ASIC, mixed-signal ASIC, eFPGA, analog

components and software/firmware for GPU/CPU and artificial intelligence (AI)

processors. Each of these alternative games will have their own exploit and defense models

for the adversary and defender. However, in each case, we observe that the underlying

utility functions remain the same. The costs and probabilities associated with pitting an

adversary’s exploit strategies against a defender’s detection strategies can be modeled

using the same basic equations given in Eq. 1 and Eq. 2. This observation has led us to

realize that our Trust Game is an instance of a general game we refer to as the Detection

Game. The same security economic framework, the same utility functions, the same

rationality weights, and the same solution concepts can apply to any scenario when an

adversary is attempting to exploit the system and the defender is seeking to detect that

exploit.

We can generalize further if we consider the varieties of what we mean by an “exploit.”

For example, a counterfeit device is a type of exploit where the adversary’s attack is to

produce an illegal copy of a legitimate product. In this case, the defender is not the designer

of that product. Rather, they are the user of it. The adversary is trying to sell the defender

an illegal copy, and the defender is trying to detect it to ensure they are only using genuine

parts. The adversary might have many strategies – remarking/repackaging old parts, theft

of overproduced parts from a fab, or manufacturing new parts from stolen masks. The

defender may try to detect those counterfeits through visual inspection, side channel or

power analytics, or thorough on-tester evaluations. Again, the same utility functions can

apply, since this is another instance of the Detection Game.

Another result of determining that the Trust Game is a general instance of a Detection

Game is that we can use the general Detection Game to reason about and compare

dissimilar exploit strategies across a heterogenous attack surface. This is the type of attack

surface that systems present: exploits of systems may emerge through their software,

processors, firmware, printed circuit boards – or even through exploits of discrete electrical

components such as capacitors or system fans. A Detection Game may be played related

to the specific field of each type of exploit by modeling it as an adversary/defender

Chapter 6. Ongoing Work and Applications

 145

interaction related to that specific component. Additionally, a large Detection Game may

be played across the entire attack surface simply by providing the adversary with all exploit

strategies across the entire attack surface and providing the defender with all the defensive

strategies. Note that, as with the games explored in detail in this dissertation, the defensive

strategies would include permutations of detection strategies, but in this case, those

permutations would select from detection methods that operate across all of the different

components of the system.

As a proxy for a complete microelectronic system, we may consider an abstract model

of the resources on the new class of FPGA Multi-Processor System on-Chip (MPSoC) to

represent the subsystems of a complex microelectronic system. An FPGA MPSoC is quite

complex and may include a variety different CPUs, GPUs, programmable logic resources,

programmable security resources, and AI processing resources. For this simple example,

we consider the system to have three subsystems worth exploiting: the software running

on the CPUs, the bitstream running on the programmable logic, or the underlying ASIC

silicon of the device itself. We consider the adversary to pragmatically consider where

they would like to exploit this system. That is, they wish to optimally exploit. Similarly,

the defender wishes to optimally select a set of exploit detection methods.

In the individual domains of concern, the adversary strategies are hardware Trojans

implemented in the silicon of the device (𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴), hardware Trojans implemented

in the bitstream firmware that configures the programmable logic of the device

(𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴), and viruses that exploit the software running on the CPU (𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴).

Those strategy sets are composed of exploits as below:

• 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴 = �𝜎𝜎𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷0,𝜎𝜎𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷1,⋯ ,𝜎𝜎𝐻𝐻𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷𝐴𝐴�

• 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = �𝜎𝜎𝐵𝐵𝑓𝑓𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝑎𝑎𝐷𝐷𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷0,𝜎𝜎𝐵𝐵𝑓𝑓𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷1,⋯ ,𝜎𝜎𝐵𝐵𝑓𝑓𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝐻𝐻𝐻𝐻𝑎𝑎𝐷𝐷𝑡𝑡�

• 𝑆𝑆𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴 = {𝜎𝜎𝑉𝑉𝑓𝑓𝐴𝐴𝑉𝑉𝐴𝐴0,𝜎𝜎𝑉𝑉𝑓𝑓𝐴𝐴𝑉𝑉𝐴𝐴1,⋯ ,𝜎𝜎𝑉𝑉𝑓𝑓𝐴𝐴𝑉𝑉𝐴𝐴𝑉𝑉}

Notably, at the system level, the adversary may have attack strategies that split the attack

across more than one domain of the system. For example, one portion of the attack might

be a latent, hard-to-activate Trojan in ASIC silicon, and the other portion might be a

software exploit that produces the activation signal. To capture this, we must consider

Chapter 6. Ongoing Work and Applications

 148

in the introduction in the context of hardware Trojan countermeasures – such as circuit

obfuscation – which try to make it hard for the adversary to know how or where to attack.

This prevention paradigm is also descriptive of the problem of tamper. The defender

executes strategies in their design – obfuscating, encrypting, and otherwise protecting their

design – after which they release their design into the wild where the adversary gets the

chance to attempt tamper.50 Another adversary/defender engagement that would benefit

from a Prevention Game formulation is that of preventing counterfeiting. When we

previously treated counterfeiting, it was in the context of detecting counterfeits after they

have been built, which falls within the Detection Game. Many are working on strategies

(such as logic locking) that make it hard to produce a usable a counterfeit in the first place.

These scenarios would be better modeled by a Prevention Game.

We briefly sketch our ongoing approach to a general Prevention Game. The formulation

is quite similar to the detection game, but with important differences. Both the adversary

and defender have sets of discrete strategies, SA and SD, as in the Detection Game. Both

also have their individual null strategies available to them, σA0 and σD0, to represent,

respectively, the adversary’s ability to elect not to attack and the defender’s ability nothing

additional to traditional design practice to prevent the adversary’s goal. The core

probability of interest is now the Probability of Prevention, 𝑃𝑃𝐴𝐴(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷). This probability is

a function of both the strategy of the adversary and the strategy of the defender. The

adversary is seeking gain G, which will be gained by their attack if they are successful, and

the defender is seeking to minimize loss L, which would be lost if the adversary succeeds.

The defender’s cost, 𝑍𝑍𝐷𝐷(𝜎𝜎𝐷𝐷), is dependent only on their own strategy selection whereas the

adversary cost, 𝑍𝑍𝐴𝐴(𝜎𝜎𝐴𝐴,𝜎𝜎𝐷𝐷), considers both their own strategy and that of the defender. The

defender is not detecting, so there is no need to model false alarms. Similarly, the adversary

has no concern of being detected, so attribution probabilities and penalties upon attribution

are not necessary. The resulting utility functions are given below in Eq. 8 and Eq. 9.

50 Our earliest work using game theory in the context of microelectronics security was in

the field of anti-tamper [3].

Chapter 7. Conclusions

 150

Chapter 7. Conclusions

We have presented a practical game theoretic approach to the selection of hardware

Trojan detection strategies. We have demonstrated that utility functions may be

constructed to represent the real-world beliefs of the players in the game, and that games

may be constructed that represent the points in which realistic adversaries might face each

other. We architected and implemented a tool, GameRunner, to solve and explore the

solutions of the large, complex games that result from these interactions. An experiment

was performed on a reasonable data set using well-considered adversaries to demonstrate

both the models and the GameRunner tool. Future work has been defined for how this tool

can be applied at a much larger scale, paving the way for using this methodology to drive

industry-level optimal decision making. This future work includes implementing a

framework, OpTrust, for reasoning across large test article databases, automating detection

method testing, and simplifying the user interface to the system to make it easier for

designers to use. Further ongoing improvements include advancing the theory of the

system to account for new styles of game play with different players and applications to a

wide variety of new domains.

7.1 Final Contribution Summary

The central contributions of this work have been:

1. Security economic models, represented in this work primarily by the adversary

and defender utility functions that underly the Trust Game, that consider the

Chapter 7. Conclusions

 151

effectives of HTH detection methods when faced with Trojans from a taxonomy

of threats, the probabilities associated with various activities of the involved

parties, and the incentives of said parties, modeled as economic values. These

models consider the individual beliefs of the opponents. If one opponent’s

strategy is known, the other can optimize their outcome by choosing the strategy

that resolves their utility function to highest value.

2. A two-person strategic game, the Trust Game, constructed from the

aforementioned utility functions, that allows us to resolve both opponents’

optimal play at the same time through the use of the Nash equilibrium solution

concept. This game accomplishes our main goal in allowing us to solve for the

defender’s optimal strategy in detection-based engagements.

3. An FPGA Trojan game model that includes not only the utility functions but

also a description of the game’s use in context of the design flow for FPGA

bitstreams to consider the entire attack surface available to the adversary. The

concept of step games was introduced to describe the interactions between

adversary and defender at various places in the design cycle. A demonstration

was performed using realistic variables – including representative Trojans and

detection methods – to illustrate how to develop the variables of the utility

functions realistically and apply the game solutions to predict optimal play for

both players.

4. Universal microelectronics security game models and a discussion of how other

considerations (such as the rationality of the players) can be applied to well-

structured utility functions to consider specific questions. This illustrated the

broad applicability of the core models used in FPGA Trust Game to other

microelectronics security scenarios, including for varieties of malice (e.g.,

Trojans, tamper, and counterfeiting) and varieties of defensive scenarios (e.g.,

detection and prevention).

5. An automated method of determining and applying the guidance for the optimal

play. This was illustrated by GameRunner, software that provides these features

without requiring the user to understand the underlying game theory of the

decision engine. The game solving engine provides utility for any game

Chapter 7. Conclusions

 152

solution, demonstrating broad applications. In the context of the HTH Trust

Game, the guidance provided may take the form of a prescription of automatable

detection methods, demonstrating a realistic path to an easy application of our

theory to real-world scenarios.

6. Novel visualization strategies for the exploration of game solutions. Again

evidenced in GameRunner, the user may construct scenarios that explore the

reaction of the players to modifications of utility function variables. This

permits users to ask questions in the context of the modeled scenarios and

receive graphical answers without facing the complexities of the game-based

decision engine. Future work was defined to produce more software in the same

vein: game-based decision making software to optimize microelectronics

security strategies for industry.

 153

Appendix A: Detection Method Results

Table 26 lists every benchmark circuit in our dataset, organized by our selected

adversary taxonomy category, along with the results each detection method accomplished

for the circuit. A 0 indicates that the detection method did not find an HTH. This is the

correct answer for every row in which the adversary played the DONT strategy and the

incorrect answer for all other adversary strategies. Conversely, a 1 indicates that the

detection method found an HTH. This is the incorrect answer for every row in which the

adversary played the DONT strategy and the correct answer for all other adversary

strategies. The total number of circuits tested were 63.

In games where the defender’s strategies were combined into sets of multiple

countermeasures, a logical OR function combined the results of the methods. That is, if

any member of the set claimed there was an HTH present, it was marked a 1; else it was

marked 0. As with the individual methods, these values were used in the PD and PFA

calculations.

Table 26. Raw Detection Method Results by Adversary Strategy Taxonomy
Category

Adversary
Taxonomy
Category

Benchmark
Circuit Name BNCH

CSIM
SCOA

STRC
BOOL

CSIM
SCOA

CSIM
STRC

SCOA
STRC

CSIM
SCOA
STRC

CSIM
BOOL

SCOA
BOOL

CSIM
SCOA
BOOL

STRC
BOOL

CSIM
STRC
BOOL

SCOA
STRC
BOOL

CSIM
SCOA
STRC
BOOL

DONT AES-notj-top 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DONT BasicRSA-notj 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1

DONT CEP-gps-notj 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1

DONT PIC16F84-NoTj 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1

Appendix A: Detection Method Results

 154

Adversary
Taxonomy
Category

Benchmark
Circuit Name BNCH

CSIM
SCOA

STRC
BOOL

CSIM
SCOA

CSIM
STRC

SCOA
STRC

CSIM
SCOA
STRC

CSIM
BOOL

SCOA
BOOL

CSIM
SCOA
BOOL

STRC
BOOL

CSIM
STRC
BOOL

SCOA
STRC
BOOL

CSIM
SCOA
STRC
BOOL

DONT RS232-NoTj 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DONT
RS232-

NoTjGate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

REWR
AES-

reversebit1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

REWR
AES-

reversebyte1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

REWR
BasicRSA-

TReverseByte1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

REWR
CEP-gps-Tj-
disable-aes 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

REWR
CEP-gps-Tj-
reversebit1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

REWR
PIC16F84-

TReverseBit1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

REWR
RS232-

TjReverseBit1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

REWR
RS232-

TjReverseBit2 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

GATE AES-T100 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

GATE AES-T200 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

GATE AES-T300 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

GATE RS232-T1800 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR AES-T1200 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR AES-T1500 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR AES-T1700 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR AES-T1900 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

ECTR AES-T2100 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR AES-T900 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

ECTR BasicRSA-T300 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

ECTR BasicRSA-T400 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

ECTR
CEP-gps-Tj-
reset-counter 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

ECTR PIC16F84-T100 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ECTR PIC16F84-T200 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ECTR PIC16F84-T300 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ECTR PIC16F84-T400 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ECTR RS232-T300 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

ECTR RS232-T500 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

CCMP AES-T1000 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP AES-T1300 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP AES-T1800 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CCMP AES-T400 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP AES-T600 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP AES-T700 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP BasicRSA-T100 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

Appendix A: Detection Method Results

 155

Adversary
Taxonomy
Category

Benchmark
Circuit Name BNCH

CSIM
SCOA

STRC
BOOL

CSIM
SCOA

CSIM
STRC

SCOA
STRC

CSIM
SCOA
STRC

CSIM
BOOL

SCOA
BOOL

CSIM
SCOA
BOOL

STRC
BOOL

CSIM
STRC
BOOL

SCOA
STRC
BOOL

CSIM
SCOA
STRC
BOOL

CCMP BasicRSA-T200 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

CCMP RS232-T100 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CCMP RS232-T1300 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

CCMP RS232-T1700 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

CCMP RS232-T400 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

CCMP RS232-T800 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

STSQ AES-T1100 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ AES-T1400 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ AES-T1600 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ AES-T2000 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ AES-T500 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STSQ AES-T800 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ
CEP-gps-AES-

T500 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

STSQ RS232-T1200 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ RS232-T1600 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ RS232-T1900 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ RS232-T2000 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1

STSQ RS232-T600 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ RS232-T700 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ RS232-T900 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

STSQ RS232-T901 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1

GLST
PIC16F84-

TjGlitchState 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1

GLST
RS232-

TjGlitchState 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 156

Bibliography

1. K. C. Y. Mei, “Bridging and Stuck-At Faults,” IEEE Transactions on Computers,

vol. C-23, no. 7, pp. 720–727, Jul. 1974.

2. S. Fazzari, “Hardware Security: A History Lesson,” in Trusted and Assured

MicroElectronics Forum, 2018.

3. Image from https://commons.wikimedia.org/wiki/File:Maginot_Line_ln-

en_svg.svg by Wikimedia user Goran tek-en. Shared under Creative Commons

Attribution-ShareAlike 3.0 Unported (https://creativecommons.org/licenses/by-

sa/3.0/). No changes made.

4. J. Graf and P. Athanas, “How Threats Drive the Development of Secure

Reconfigurable Devices,” in 2008 IEEE National Aerospace and Electronics

Conference, 2008, pp. 239–245.

5. J. Graf, “Toward Optimal Hardware Trojan Detection through Security Economics

and Game Theory,” in GOMACTech, 2016.

6. J. Graf, “Trust games: How game theory can guide the development of hardware

Trojan detection methods,” in 2016 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), 2016, pp. 91–96.

7. J. Graf, “Towards system-level adversary attack surface modeling for

microelectronics trust,” in 2016 IEEE National Aerospace and Electronics

Conference (NAECON) and Ohio Innovation Summit (OIS), 2016, pp. 474–477.

8. J. Graf, “OpTrust: Software for Determining Optimal Test Coverage and Strategies

for Trust,” in GOMACTech, 2017.

https://commons.wikimedia.org/wiki/File:Maginot_Line_ln-en_svg.svg
https://commons.wikimedia.org/wiki/File:Maginot_Line_ln-en_svg.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

Bibliography

 157

9. J. Graf, W. Batchelor, S. Harper, R. Marlow, E. Carlisle, and P. Athanas, “A

Practical Application of Game Theory to Optimize Selection of Hardware Trojan

Detection Strategies,” manuscript submitted to the Journal of Hardware and

Systems Security, 2019.

10. R. Marlow, S. Harper, W. Batchelor, and J. Graf, “Hardware Trojan Detection using

Xilinx Vivado,” in 2018 IEEE National Aerospace and Electronics Conference,

2018.

11. J. Graf and P. Athanas, “A key management architecture for securing off-chip data

transfers,” in Field Programmable Logic and Application, ser. Lecture Notes in

Computer Science, J. Becker, M. Platzner, and S. Vernalde, Eds. Springer Berlin

Heidelberg, 2004, vol. 3203, pp. 33–42.

12. A. J. Mahar, P. M. Athanas, S. D. Craven, J. N. Edmison, and J. Graf, Design and

Characterization of a Hardware Encryption Management Unit for Secure Computing

Platforms,” in 39th Hawaii International International Conference on Systems

Science (HICSS-39 2006), CD-ROM / Abstracts Proceedings, 4-7 January 2006,

Kauai, HI, USA, 2006.

13. P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J. Suris, M.

Bucciero, and J. Graf, “Wires on demand: Run-time communication synthesis for

reconfigurable computing,” in 2007 International Conference on Field

Programmable Logic and Applications, Aug 2007, pp. 513–516.

14. J. Graf, J. Hallman, and S. Harper, “Trust in the FPGA Supply Chain using

Physically Unclonable Functions,” in GOMACTech 2010 Proceedings, March 2010,

paper 22.4, pp. 317–319.

15. J. Graf, S. Harper, and L. Lerner, “Ensuring Design Integrity through Analysis of

FPGA Bitstreams and IP cores,” in Proceedings of the International Conference on

Engineering of Reconfigurable Systems and Algorithms (ERSA), 2012.

16. J. Graf, S. Harper, and L. Lerner, “The Integrity of FPGA Designs: Capabilities

Enabled by Unlocking Bitstreams and 3rd-Party IP,” in GOMACTech 2012

Proceedings, March 2012, paper 18.3, pp. 201–204.

Bibliography

 158

17. J. Graf, S. Harper, J. Hallman, and B. Knight, “Managing Risk to Field

Programmable Gate Array Trust: A Deployment Framework for DoD Instruction

5200.44,” in GOMACTech 2014 Proceedings, March 2014, paper 6.1, pp. 77–80.

18. S. Baka, J. Hallman, S. Harper, and J. Graf, “Trust and Reuse of 3rd-Party IP,” in

GOMACTech 2014 Proceedings, March 2014, paper 2.4, pp. 25–28.

19. K. Urish and J. Graf, “Mitigation of Space-Reliability Reduction Trojans in FPGA

Designs,” in GOMACTech 2015 Proceedings, March 2015, paper 7.1, pp. 91–94.

20. J. Graf and A. A. Sohanghpurwala, “Private Verification for FPGA Bitstreams,” in

GOMACTech 2017 Proceedings, March 2017.

21. S. Harper, J. Graf, W. Batchelor, T. Dunham, and P. Athanas, “Introducing a Trust

Metric Foundation and Deriving Trust-for-Buck,” in GOMACTech 2019

Proceedings, March 2019.

22. J. Graf, “Optimizing Forward Design Trust for FPGAs,” invited lecture delivered to

Single Event Effects Symposium / Military and Aerospace Programmable Logic

Devices Workshop, San Diego, CA, May 25, 2017.

23. J. Graf, “Measuring Trust,” invited lecture delivered to Single Event Effects

Symposium / Military and Aerospace Programmable Logic Devices Workshop, San

Diego, CA, May 24, 2018.

24. J. Graf, “Optimal Trust Strategies,” invited lecture delivered to the National

Academy of Sciences for National Academies Study on Secure and Reliable

Microelectronics for AF Systems, Washington, DC, June 19, 2018.

25. S. Drimer, “Security for Volatile FPGAs,” University of Cambridge Computer

Laboratory Technical Report UCAM-CL-TR-763 [Online]. Available:

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-763.pdf.

26. “Anti-tamper capabilities in fpga designs,” Altera, Inc., White Paper, 2008.

[Online]. Available: https://www.altera.com/content/dam/altera-www/global/en

US/pdfs/ literature/wp/wp-01066-anti-tamper-capabilities-fpga.pdf

27. “Xilinx design security solutions,” Xilinx, Inc., White Paper, 2016. Available:

http://www.xilinx.com/ products/technology/design-security.html

Bibliography

 159

28. K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware

Trojans: Lessons Learned After One Decade of Research,” ACM Trans. Des. Autom.

Electron. Syst., vol. 22, no. 1, p. 6:1–6:23, 2016.

29. M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy and

Detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 10–25, Jan. 2010.

30. M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware Security: Models,

Methods, and Metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295,

Aug. 2014.

31. “Defense science board task force on high performance microchip supply,” Office

of the Under Secretary of Defense For Acquisition, Technology, and Logistics, Task

Force Report, February 2005. [Online]. Available: http:

//www.acq.osd.mil/dsb/reports/ADA435563.pdf

32. “Technology for trusted circuits,” Defense Advanced Research Projects Agency,

SBIR Phase II, 2007. [Online]. Available:

https://www.sbir.gov/sbirsearch/detail/164119

33. D. R. Collins, “Trust, a proposed plan for trusted integrated circuits,” Defense

Advanced Research Projects Agency, DTIC Report, 2006. [Online]. Available:

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456459

34. D. R. Collins, “Darpa “Trust in ICs” effort,” Defense Advanced Research Projects

Agency, DTIC Report, 2007. [Online]. Available: http://www.dtic.mil/cgi-

bin/GetTRDoc? AD=ADA503809

35. “Trusted Integrated Circuits (TRUST),” Defense Advanced Research Projects

Agency, DARPA BAA, 2007. [Online]. Available: http://www.darpa.mil/program/

trusted-integrated-circuits

36. D. R. Collins, “Program for IEEE international workshop on hardware-oriented

security and trust,” 2008 Design Automation Conference, Conference Program,

2008. [Online]. Available: http://www.engr.uconn.edu/HOST/HOST-2008.pdf

37. H. Salmani, M. Tehranipoor, and R. Karri, "On Design vulnerability analysis and

trust benchmark development", IEEE Int. Conference on Computer Design (ICCD),

2013.

Bibliography

 160

38. B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, M. Tehranipoor, “Benchmarking

of Hardware Trojans and Maliciously Affected Circuits”, Journal of Hardware and

Systems Security (HaSS), April 2017.

39. “Trusted foundry program,” Defense Microelectronics Activity, Tech. Rep., 2016.

[Online]. Available: http://www.dmea.osd.mil/trustedic.html

40. K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building trusted

ICs using split fabrication,” in Hardware-Oriented Security and Trust (HOST), 2014

IEEE International Symposium on, May 2014, pp. 1–6.

41. C. McCants, “Trusted integrated chips (tic): Obtaining world-class performance

without compromising security,” Intelligence Advanced Research Projects Agency,

Tech. Rep., 2011. [Online]. Available: https://www.iarpa.gov/images/files/

programs/tic/08-TIC final.pdf

42. J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of integrated

circuits,” in Design, Automation and Test in Europe, 2008. DATE ’08, March 2008,

pp. 1069–1074.

43. R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-based SoC design

methodology for hardware protection,” 43, vol. 28, no. 10, pp. 1493–1502, Oct

2009.

44. R. S. Chakraborty and S. Bhunia, “RTL hardware IP protection using key-based

control and data flow obfuscation,” in VLSI Design, 2010. VLSID ’10. 23rd

International Conference on, Jan 2010, pp. 405–410.

45. L. Li and H. Zhou, “Structural transformation for best-possible obfuscation of

sequential circuits,” in Hardware-Oriented Security and Trust (HOST), 2013 IEEE

International Symposium on, June 2013, pp. 55–60.

46. J. Zhang, “A practical logic obfuscation technique for hardware security,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp.

1193–1197, March 2016.

47. J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic

obfuscation,” in Design Automation Conference (DAC), 2012 49th

ACM/EDAC/IEEE, June 2012, pp. 83–89.

Bibliography

 161

48. A. Kerckhoffs, “La cryptographie militaire,” Journal des Sciences Militaires, vol.

IX, pp. 5–38, Jan. 1883, pp. 161–191, Feb. 1883.

https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf

49. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.

Yang, “On the (im)possibility of obfuscating programs,” Cryptology ePrint Archive,

Report 2001/069, 2001, http://eprint.iacr.org/.

50. K. Shamsi, D. Pan, and Y. Jin, “On the Impossibility of Approximation-Resilient

Circuit Locking,” in Hardware-Oriented Security and Trust (HOST), 2013 IEEE

International Symposium on, May 2019

51. K. Xiao and M. Tehranipoor, “Bisa: Built-in self-authentication for preventing

hardware trojan insertion,” in Hardware-Oriented Security and Trust (HOST), 2013

IEEE International Symposium on, June 2013, pp. 45–50.

52. K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-authentication

technique to prevent inserting hardware trojans,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 33, no. 12, pp. 1778–1791,

Dec 2014.

53. T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-level

functionality reconstruction,” in 2016 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan 2016, pp. 655–660.

54. W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using behavioral

pattern mining,” in Hardware-Oriented Security and Trust (HOST), 2012 IEEE

International Symposium on, June 2012, pp. 83–88.

55. H. Bouchaour, M. Ouali, and Y. Lebbah, “Towards a method for VLSI circuit

reverse engineering,” in Proceedings of the Third International Conference on

Computer Science and its Applications (CIIA’11), December 2011.

56. P. Chakraborty, J. Cruz, and S. Bhunia, "SAIL: Machine Learning Guided Structural

Analysis Attack on Hardware Obfuscation," in Proc. 2018 Asian Hardware

Oriented Security and Trust Symposium (AsianHOST), Dec. 2018, pp. 56–61.

57. R. Quijada, R. Dura, J. Pallares, et al., "Large-Area Automated Layout Extraction

Methodology for Full-IC Reverse Engineering," Journal of Hardware and Systems

Security (2018) 2: 322. https://doi.org/10.1007/s41635-018-0051-4

Bibliography

 162

58. A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: Identification of stealthy

malicious logic using boolean functional analysis,” in Proceedings of the 2013 ACM

SIGSAC Conference on Computer & Communications Security, ser. CCS ’13.

New York, NY, USA: ACM, 2013, pp. 697–708. [Online]. Available:

http://doi.acm.org/10.1145/2508859.2516654

59. J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification for hardware

trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 34, no. 7, pp. 1148–1161, July 2015.

60. J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust verification with

stealthy implicitly-triggered hardware trojans,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security, ser. CCS ’14.

New York, NY, USA: ACM, 2014, pp. 153–166. [Online]. Available:

http://doi.acm.org/10.1145/2660267.2660289

61. J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proceedings of

the 16th International ACM/SIGDA Symposium on Field Programmable Gate

Arrays, ser. FPGA ’08. New York, NY, USA: ACM, 2008, pp. 264–264. [Online].

Available: http://doi.acm.org/10.1145/1344671.1344729

62. C. Patterson, “High performance DES encryption in Virtex FPGAs using JBits,” in

Field-Programmable Custom Computing Machines, 2000 IEEE Symposium on,

2000, pp. 113–121.

63. C. Patterson and S. A. Guccione, “JBits design abstractions,” in Field-

Programmable Custom Computing Machines, 2001. FCCM ’01. The 9th Annual

IEEE Symposium on, March 2001, pp. 251–252.

64. N. Steiner and P. Athanas, “An Alternate Wire Database for Xilinx FPGAs,” in Field

Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual

IEEE Symposium on, April 2004, pp. 336–337.

65. E. Bergeron, L.-D. Perron, M. Feeley, and J. P. David, “Logarithmic-time FPGA

bitstream analysis: A step towards JIT hardware compilation,” ACM Trans.

Reconfigurable Technol. Syst., vol. 4, no. 2, pp. 12:1–12:27, May 2011. [Online].

Available: http://doi.acm.org/10.1145/1968502.1968503

Bibliography

 163

66. F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse

engineering,” in Field Programmable Logic and Applications (FPL), 2012 22nd

International Conference on, Aug 2012, pp. 735–738.

67. Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file from an FPGA

bitstream: Methodology, architecture and evaluation.” Microprocessors and

Microsystems Embedded Hardware Design, vol. 37, no. 3, pp. 299–312, 2013.

[Online]. Available: http://dblp.uni-

trier.de/db/journals/mam/mam37.html#DingWZZ13

68. P. Swierczynski and M. Fyrbiak, “FPGA Trojans through detecting and weakening

of cryptographic primitives,” Cryptology ePrint Archive, Report 2014/649, 2014,

https://eprint.iacr.org/2014/649.pdf.

69. S. Trimberger, “Trusted design in FPGAs,” in 2007 44th ACM/IEEE Design

Automation Conference, June 2007, pp. 5–8.

70. J. Graf and A. Sohanghpurwala, “Private Verification for FPGA Bitstreams,” in

GOMACTech 2017 Proceedings, March 2017.

71. A. Huber and J. Scott, “The Role and Nature of Anti-Tamper Techniques in US

Defense Acquisition,” in Acquisition Review Quarterly, Fall 1999. Online:

https://apps.dtic.mil/dtic/tr/fulltext/u2/b250068.pdf

72. IBM, IBM 4758 PCI Cryptographic Coprocessor,

http://www.ibm.com/security/cryptocards/

73. R. Anderson and M. Kuhn, “Tamper Resistance-a Cautionary Note,” Proceedings

of the Second Usenix Workshop on Electronic Commerce, pp. 1–11, November

1996.

74. R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”

International Workshop on Security Protocols, 1997.

75. A. Huang, Hacking the Xbox: An Introduction to Reverse Engineering, 2003.

Available online: http://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf

76. Xilinx, “Design Security: Security Throughout the Product Lifecycle,” 2019.

Online: https://www.xilinx.com/products/technology/design-security.html

http://www.ibm.com/security/cryptocards/
http://bunniefoo.com/nostarch/HackingTheXbox_Free.pdf
https://www.xilinx.com/products/technology/design-security.html

Bibliography

 164

77. Intel, “Anti-Tamper Capabilities in FPGA Designs,” 2008.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/

wp-01066-anti-tamper-capabilities-fpga.pdf

78. Syphermedia library. [Online]. Available: http://www.smi.tv/syphermedia library

circuit camouflage technology.html

79. R. Krueger, “Using high security features in Virtex-II series FPGAs,” Xilinx, CA,

Tech. Rep. XAPP766(v.1.0), Jul. 2004. [Online]. Available: http://www.xilinx.com/

support/documentation/application notes/xapp766.pdf

80. A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of FPGA

bitstream encryption against power analysis attacks: Extracting keys from Xilinx

Virtex-II FPGAs,” in Proceedings of the 18th ACM Conference on Computer and

Communications Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp.

111–124. [Online]. Available: http://doi.acm.org/10.1145/2046707.2046722

81. A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-channel attacks on the

bitstream encryption mechanism of altera Stratix II: Facilitating black-box analysis

using software reverse-engineering,” in Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, ser. FPGA ’13. New

York, NY, USA: ACM, 2013, pp. 91–100. [Online]. Available:

http://doi.acm.org/10.1145/2435264.2435282

82. P. Swierczynski, A. Moradi, D. Oswald, and C. Paar, “Physical security evaluation

of the bitstream encryption mechanism of Altera Stratix ii and Stratix iii FPGAs,”

ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 4, pp. 34:1–34:23, Dec. 2014.

[Online]. Available: http://doi.acm.org/10.1145/2629462

83. DPA contest. (2016) [Online]. Available: http://www.dpacontest.org/home/

84. DPA workstation. (2016) [Online]. Available:

 https://www.rambus.com/security/ dpa-countermeasures/dpa-workstation-

platform/

85. Virtex UltraScale plus. (2016) [Online]. Available:

http://www.xilinx.com/products/ silicon-devices/fpga/virtex-ultrascale-plus.html

86. T. Lu, R. Kenny, S. Atsatt, “Secure Device Manager for Intel® Stratix® 10 Devices

Provides FPGA and SoC Security,” 2015. Online:

Bibliography

 165

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/

wp-01252-secure-device-manager-for-fpga-soc-security.pdf

87. Microsemi, UG0753 User Guide PolarFire FPGA Security, 2019. Online:

https://www.microsemi.com/document-portal/doc_view/136534-ug0753-polarfire-

fpga-security-user-guide

88. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.

Yang, “On the (im)possibility of obfuscating programs,” Cryptology ePrint Archive,

Report 2001/069, 2001, http://eprint.iacr.org/.

89. T. Kirkland and M. R. Mercer, “Algorithms for automatic test-pattern generation,”

IEEE Design and Test of Computers, vol. 5, no. 3, pp. 43–55, May 1988.

90. S. Haider, C. Jin and M. van Dijk, “Hatch: A formal framework of hardware trojan

design and detection,” Cryptology ePrint Archive, Report 2014/943, 2014,

https://eprint.iacr.org/2014/943.pdf.

91. A. Kimura and S. Bibyk, “Quantifying error payload and error implementation cost

for hardware assurance,” in GOMACTech 2016 Proceedings, March 2016.

92. S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu, “A Survey of

Game Theory as Applied to Network Security,” in 2010 43rd Hawaii International

Conference on System Sciences, 2010, pp. 1–10.

93. C. A. Kamhoua, M. Rodriguez, and K. A. Kwiat, “Testing for Hardware Trojans: A

Game-Theoretic Approach,” in Decision and Game Theory for Security, 2014, pp.

360–369.

94. A. M. Smith, J. R. Mayo, V. Kammler, R. C. Armstrong, and Y. Vorobeychik,

“Using computational game theory to guide verification and security in hardware

designs,” in 2017 IEEE International Symposium on Hardware Oriented Security

and Trust (HOST), 2017, pp. 110–115.

95. M. Galiardi et al., “On Modeling Detection for Quantitative Trust Analysis,”

in GOMACTech, 2018.

96. W. Saad, A. Sanjab, Y. Wang, C. A. Kamhoua, and K. A. Kwiat, “Hardware Trojan

Detection Game: A Prospect-Theoretic Approach,” IEEE Transactions on

Vehicular Technology, vol. 66, no. 9, pp. 7697–7710, Sep. 2017.

Bibliography

 166

97. Charles River Analytics, “How to Avoid Malice Using Linguistics-Inspired Exploit

Testing,” 2018. [Online]. Available: https://www.cra.com/work/case-

studies/hamlet.

98. C. A. Kamhoua, H. Zhao, M. Rodriguez, and K. A. Kwiat, “A Game-Theoretic

Approach for Testing for Hardware Trojans,” IEEE Transactions on Multi-Scale

Computing Systems, vol. 2, no. 3, pp. 199–210, Jul. 2016.

99. A. G. Kimura and S. B. Bibyk, “Quantifying error payload and error implementation

cost for hardware assurance,” in GOMACTech, 2016.

100. R. Anderson and T. Moore, “The Economics of Information Security,” Science, vol.

314, no. 5799, pp. 610–613, Oct. 2006.

101. L. A. Gordon and M. P. Loeb, “The Economics of Information Security

Investment,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 438–457, 2002.

102. Y. Shoham, “Computer Science and Game Theory,” Communications of the ACM,

vol. 51, no. 8, pp. 74-79. August 2008. DOI:

https://doi.org/10.1145/1378704.1378721

103. S.N. Durlauf and L.E. Blume, “Computer Science and Game Theory,” Game

Theory, Springer New Palgrave Economics Collection, pp. 48-65, 2010.

104. J.Y. Halpern, “Computer Science and Game Theory: A Brief Survey,” 2007.

Available online: https://arxiv.org/abs/cs/0703148

105. Moshe Tennenholtz, “Game Theory and Artificial Intelligence,” UKMAS Workshop

on Foundations and Applications of Multi-Agent Systems, Springer-Verlag, pp 49-

58, 2002.

106. E. Elkind and K. Leyton-Brown, “Algorithmic Game Theory and Artificial

Intelligence,” AI Magazine, vol 31, no 3, Winter 2010.

107. V. Jalaparti, G. Nguyen, I. Gupta, and M. Caesar, “Cloud Resource Allocation

Games,” University of Illinois Whitepaper, 2010. Available Online:

http://hdl.handle.net/2142/17427

108. J. Yang, B. Jiang, Z. Lv, and K.R. Choo, “A task scheduling algorithm considering

game theory designed for energy management in cloud computing,” in Future

Generation Computer Systems, March 2017. Available Online:

https://doi.org/10.1016/j.future.2017.03.024

https://doi.org/10.1145/1378704.1378721
https://arxiv.org/abs/cs/0703148
http://hdl.handle.net/2142/17427
https://doi.org/10.1016/j.future.2017.03.024

Bibliography

 167

109. A. Nezarat and G. Dastghaibifard, “Efficient Nash equilibrium resource allocation

based on game theory mechanism in cloud computing by using auction,”

International Conference on Next Generation Computing Technologies (NGCT), pp.

1-5, 2015.

110. Y. Wang, Y. Wang, J. Liu, Z. Huang and P. Xie, “A Survey of Game Theoretic

Methods for Cyber Security,” 2016 IEEE First International Conference on Data

Science in Cyberspace (DSC), Changsha, pp. 631-636, 2016.

111. X. Liang and Y. Xiao, “Game Theory for Network Security,” in IEEE

Communications Surveys & Tutorials, vol. 15, no. 1, pp. 472-486, First Quarter

2013.

112. J. Jormakka and J.V.E. Molsa, “Modeling Information Warfare as a Game,” Journal

of Information Warfare, vol 4, no 2, pp 12-25, 2005.

113. M. H. Manshaei et al, “Game theory meets network security and privacy,” ACM

Computing Surveys, vol 45, no 3, Article 25, July 2013.

DOI=http://dx.doi.org/10.1145/2480741.2480742Ya

114. W. He, C. Xia, H. Wang, C. Zhang and Y. Ji, “A Game Theoretical Attack-Defense

Model Oriented to Network Security Risk Assessment,” 2008 International

Conference on Computer Science and Software Engineering, Hubei, pp. 498-504,

2008.

115. D. P. Wilt, R. C. Meitzler, and J. DeVale, “Metrics for trust in integrated circuits,”

in GOMACTech, 2008.

116. DARPA, “Trusted Integrated Circuits (TRUST) (Archived),” 2006. [Online].

Available: https://www.darpa.mil/program/trusted-integrated-circuits.

117. D. R. Collins, “DARPA ‘Trust in IC’s’ Effort,” 2007. [Online]. Available:

https://apps.dtic.mil/dtic/tr/fulltext/u2/a503809.pdf.

118. N. Tsagourias, “Cyber attacks, self-defence and the problem of attribution,” Journal

of Conflict and Security Law, vol. 17, no. 2, pp. 229–244, 2012.

119. USDOT, “Revised Departmental Guidance on Valuation of a Statistical Life in

Economic Analysis,” 2016. [Online]. Available:

https://www.transportation.gov/office-policy/transportation-policy/revised-

departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis.

https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis
https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis

Bibliography

 168

120. USEPA, “Mortality Risk Valuation,” 2018. [Online]. Available:

https://www.epa.gov/environmental-economics/mortality-risk-valuation.

121. R. D. McKelvey and T. R. Palfrey, “Quantal Response Equilibria for Normal Form

Games,” Games and Economic Behavior, vol. 10, no. 1, pp. 6–38, Jul. 1995.

122. R. Selten, "Reexamination of the perfectness concept for equilibrium points in

extensive games," International Journal of Game Theory, vol. 4, no. 1, pp. 25-55,

1975.

123. H. R. Varian, “Revealed Preference.” [Online]. Available:

http://people.ischool.berkeley.edu/ hal/Papers/2005/revpref.pdf.

124. P. Honner, “Why Winning in Rock-Paper-Scissors (and in Life) Isn’t Everything,”

2018. [Online]. Available: https://www.quantamagazine.org/the-game-theory-

math-behind-rock-paper-scissors-20180402/.

125. J. Ondráček, “Extending game-theoretic models to account for subrational adaptive

behavior,” Czech Technical University in Prague, 2018.

126. D. Kar, F. Fang, F. Delle Fave, N. Sintov, and M. Tambe, “‘A Game of Thrones’:

When Human Behavior Models Compete in Repeated Stackelberg Security Games,”

in Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems, Istanbul, Turkey, 2015, pp. 1381–1390.

127. B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore, “Game-Theoretic

Analysis of DDoS Attacks Against Bitcoin Mining Pools,” in Financial

Cryptography and Data Security, Berlin, Heidelberg, 2014, pp. 72–86.

128. Digilent, “Arty Z7: APSoC Zynq-7000 Development Board for Makers and

Hobbyists,” 2018. [Online]. Available: https://store.digilentinc.com/arty-z7-apsoc-

zynq-7000-development-board-for-makers-and-hobbyists/.

129. Digilent, “NetFPGA-SUME Virtex-7 FPGA Development Board,” 2018. [Online].

Available: https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-

board/.

130. Payscale.com, “Design Verification Engineer Cost of Living in Blacksburg,

Virginia.” [Online]. Available: https://www.payscale.com/cost-of-living-

calculator/Virginia-Blacksburg/-/Design-Verification-Engineer.

https://www.epa.gov/environmental-economics/mortality-risk-valuation
http://people.ischool.berkeley.edu/ hal/Papers/2005/revpref.pdf
https://store.digilentinc.com/arty-z7-apsoc-zynq-7000-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/arty-z7-apsoc-zynq-7000-development-board-for-makers-and-hobbyists/
https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-board/
https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-development-board/
https://www.payscale.com/cost-of-living-calculator/Virginia-Blacksburg/-/Design-Verification-Engineer
https://www.payscale.com/cost-of-living-calculator/Virginia-Blacksburg/-/Design-Verification-Engineer

Bibliography

 169

131. W. C. J. A. A. C. A. R. LaFleur, “2017 Government Contractor Survey,” 2017.

[Online]. Available: https://www.grantthornton.com/-/media/content-page-

files/public-sector/pdfs/surveys/2018/2017-government-contractor-survey.

132. Amazon.com, “Amazon EC2 Pricing,” 2018. [Online]. Available:

https://aws.amazon.com/ec2/pricing/on-demand/.

133. H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis and

trust benchmarks development,” in 2013 IEEE 31st International Conference on

Computer Design (ICCD), 2013, pp. 471–474.

134. B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,

“Benchmarking of Hardware Trojans and Maliciously Affected Circuits,” Journal

of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102, Mar. 2017.

135. GAO, “Weapon System Cybersecurity: DOD Just Beginning to Grapple with Scale

of Vulnerabilities,” 2018. [Online]. Available: https://www.gao.gov/products/GAO-

19-128.

136. S. M. Slayback, “A Computer Scientist’s Evaluation of Publically Available

Hardware Trojan Benchmarks’,” Naval Postgraduate School, 2015.

137. DARPA, “CEP - Common Evaluation Platform (v1.2),” 2018. [Online]. Available:

https://github.com/mit-ll/CEP.

138. A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the Perils of

Security-Oblivious Energy Management,” in 26th USENIX Security Symposium,

2017.

139. A. Tang, S. Sethumadhavan, and S. Stolfo, “Motivating Security-Aware Energy

Management,” IEEE Micro, vol. 38, no. 3, pp. 98–106, 2018.

140. H. Salmani, “COTD: Reference-Free Hardware Trojan Detection and Recovery

Based on Controllability and Observability in Gate-Level Netlist,” Trans. Info. For.

Sec., vol. 12, no. 2, pp. 338–350, 2017.

141. R. Marlow, S. Harper, W. Batchelor, and J. Graf, “Hardware Trojan Detection using

Xilinx Vivado,” in NAECON 2018 - IEEE National Aerospace and Electronics

Conference, 2018, pp. 86–91.

https://www.grantthornton.com/-/media/content-page-files/public-sector/pdfs/surveys/2018/2017-government-contractor-survey
https://www.grantthornton.com/-/media/content-page-files/public-sector/pdfs/surveys/2018/2017-government-contractor-survey
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.gao.gov/products/GAO-19-128
https://www.gao.gov/products/GAO-19-128
https://github.com/mit-ll/CEP

Bibliography

 170

142. S. C. Seth, V. D. Agrawal, and H. Farhat, “A theory of testability with application

to fault coverage analysis,” in [1989] Proceedings of the 1st European Test

Conference, 1989, pp. 139–143.

143. F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn.

Res., vol. 12, pp. 2825–2830, 2011.

144. A. Dabrowski, P. Fejes, J. Ullrich, K. Krombholz, H. Hobel, and E. Weippl, “Poster:

Hardware Trojans – Detect and React?,” in Network and Distributed System Security

(NDSS) Symposium, 2014.

145. A. Dabrowski, H. Hobel, J. Ullrich, K. Krombholz, and E. Weippl, “Towards a

Hardware Trojan Detection Cycle,” in 2014 Ninth International Conference on

Availability, Reliability and Security, 2014, pp. 287–294.

146. “Jenkins: Build great things at any scale,” 2018. [Online]. Available:

https://jenkins.io/.

147. D. Avis and C. Jordan, “Comparative computational results for some vertex and

facet enumeration codes,” CoRR, vol. abs/1510.02545, 2015.

148. SageMath, [Online]. Available: http://www.sagemath.org/

149. R. D. McKelvey, A. M. McLennan, and T. L. Turocy, “Gambit: Software Tools for

Game Theory, Version 16.0.1,” 2016. [Online]. Available: http://www.gambit-

project.org.

150. Gambit Project, “For contributors: Ideas and suggestions for Gambit-related

projects,” accessed April 22, 2019. http://www.gambit-

project.org/gambit13/ideas.html

151. G. D. Rosenberg, “Enumeration of All Extreme Equilibria of Bimatrix Games with

Integer Pivoting and Improved Degeneracy Check,” London School of Economics

and Political Science, 2005.

152. D. Avis, “lrs home page,” 2018. [Online]. Available:

http://cgm.cs.mcgill.ca/ avis/C/lrs.html.

153. D. Avis, “LRS: A Revised Implementation of the Reverse Search Vertex

Enumeration Algorithm,” 1999. [Online]. Available:

http://cgm.cs.mcgill.ca/ avis/doc/avis/Av98a.pdf.

https://jenkins.io/
http://www.sagemath.org/
http://www.gambit-project.org/
http://www.gambit-project.org/
http://www.gambit-project.org/gambit13/ideas.html
http://www.gambit-project.org/gambit13/ideas.html
http://cgm.cs.mcgill.ca/ avis/C/lrs.html
http://cgm.cs.mcgill.ca/ avis/doc/avis/Av98a.pdf

Bibliography

 171

154. R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design

Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

155. R. S. Chakraborty and S. Bhunia, “RTL Hardware IP Protection Using Key-Based

Control and Data Flow Obfuscation,” in 2010 23rd International Conference on

VLSI Design, 2010, pp. 405–410.

156. R. S. Chakraborty and S. J. Bhunia, “Security Against Hardware Trojan Attacks

Using Key-Based Design Obfuscation,” Journal of Electronic Testing, vol. 27, no.

767, 2011.

157. J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of logic

obfuscation,” in DAC Design Automation Conference 2012, 2012, pp. 83–89.

158. L. Li and H. Zhou, “Structural transformation for best-possible obfuscation of

sequential circuits,” in 2013 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST), 2013, pp. 55–60.

159. K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building trusted

ICs using split fabrication,” in 2014 IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), 2014, pp. 1–6.

160. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, “Candidate

indistinguishability obfuscation and functional encryption for all circuits,” SIAM

Journal on Computing, vol. 45, no. 3, pp. 882–929, 2016.

161. J. Zhang, “A Practical Logic Obfuscation Technique for Hardware Security,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp.

1193–1197, 2016.

162. J. Tian, G. R. Reddy, J. Wang, W. Swartz, Y. Makris, and C. Sechen, “A field

programmable transistor array featuring single-cycle partial/full dynamic

reconfiguration,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2017, 2017, pp. 1336–1341.

163. Q. Yu, J. Dofe, Z. Zhang, and S. Kramer, “Hardware Obfuscation Methods for

Hardware Trojan Prevention and Detection,” in The Hardware Trojan War, B. S.

and T. M., Eds. Spinrger, 2018, pp. 291–325.

Bibliography

 172

164. “Trusted and Assured MicroElectronics Forum,” 2018. [Online]. Available:

https://tameforum.org/.

165. V. Jyothi, P. Krishnamurthy, F. Khorrami, and R. Karri, "TAINT: Tool for

Automated INsertion of Trojans," in 2017 IEEE International Conference on

Computer Design (ICCD), 2017, pp. 545-548.

166. J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, "An Automated Configurable Trojan

Insertion Framework for Dynamic Trust Benchmarks", in 23rd Design Automation

and Test in Europe (DATE) Conference, Dresden, Germany, March 19 - 23, 2018.

167. S. Farashahi, H. Azab, B. Hayden, and A. Soltani, “On the Flexibility of Basic Risk

Attitudes in Monkeys,” Journal of Neuroscience, vol. 38, no. 18, pp. 4383–4398,

2018.

168. M. Edwards, “Trusted Silicon Stratus (TSS) Workshop,” 2010. [Online]. Available:

https://apps.dtic.mil/dtic/tr/fulltext/u2/a540791.pdf.

169. Nimbis, “Trusted Silicon Stratus: Joint Federated Assurance Center Distributed

Transition Environment.” [Online]. Available: https://www.trustedstratus.org/.

170. D. Prelec, “The Probability Weighting Function,” Econometrica, vol. 66, no. 3, pp.

497–527, 1998.

171. V. Rao and N. Price, “Hardware Trojan Horse Detection (Poster),” in Military and

Aerospace Programmable Logic Devices (MAPLD) Workshop, 2018.

172. B. Schneier, “The Psychology of Security,” Online:

https://www.schneier.com/essays/archives/2008/01/the_psychology_of_se.html

https://tameforum.org/
https://www.schneier.com/essays/archives/2008/01/the_psychology_of_se.html

