Deep Learning Neural Network-based Sinogram Interpolation for Sparse-View CT Reconstruction

Swapnil Vekhande

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Guohua Cao, Co-Chair
A. Lynn Abbott, Co-Chair
Jia-Bin Huang

April 30, 2019

Blacksburg, Virginia
Keywords: Medical Imaging, Image Reconstruction, Deep Learning
Deep Learning Neural Network-based Sinogram Interpolation for Sparse-View CT Reconstruction

Swapnil Vekhande

(ABSTRACT)

Computed Tomography (CT) finds applications across domains like medical diagnosis, security screening, and scientific research. In medical imaging, CT allows physicians to diagnose injuries and disease more quickly and accurately than other imaging techniques. However, CT is one of the most significant contributors of radiation dose to the general population and the required radiation dose for scanning could lead to cancer. On the other hand, a shallow radiation dose could sacrifice image quality causing misdiagnosis. To reduce the radiation dose, sparse-view CT, which includes capturing a smaller number of projections, becomes a promising alternative. However, the image reconstructed from linearly interpolated views possesses severe artifacts. Recently, Deep Learning-based methods are increasingly being used to interpret the missing data by learning the nature of the image formation process. The current methods are promising but operate mostly in the image domain presumably due to lack of projection data. Another limitation
is the use of simulated data with less sparsity (up to 75%). This research aims to interpolate the missing sparse-view CT in the sinogram domain using deep learning. To this end, a residual U-Net architecture has been trained with patch-wise projection data to minimize Euclidean distance between the ground truth and the interpolated sinogram. The model can generate highly sparse missing projection data. The results show improvement in SSIM and RMSE by 14% and 52% respectively with respect to the linear interpolation-based methods. Thus, experimental sparse-view CT data with 90% sparsity has been successfully interpolated while improving CT image quality.
Deep Learning Neural Network-based Sinogram Interpolation for Sparse-View CT Reconstruction

Swapnil Vekhande

(GENERAL AUDIENCE ABSTRACT)

Computed Tomography is a commonly used imaging technique due to the remarkable ability to visualize internal organs, bones, soft tissues, and blood vessels. It involves exposing the subject to X-ray radiation, which could lead to cancer. On the other hand, the radiation dose is critical for the image quality and subsequent diagnosis. Thus, image reconstruction using only a small number of projection data is an open research problem.

Deep learning techniques have already revolutionized various Computer Vision applications. Here, we have used a method which fills missing highly sparse CT data. The results show that the deep learning-based method outperforms standard linear interpolation-based methods while improving the image quality.
Dedication

This dissertation is dedicated to all those who give up dreams of higher education due to family responsibilities.
Acknowledgments

Foremost, I would like to express my utmost gratitude to my academic advisor Dr. Guohua Cao for his patience and perseverance while advising me. He has put in a tremendous amount of efforts in guiding and motivating me to do this research.

This interdepartmental research was made possible due to the courtesy of Dr. A. Lynn Abbott. He also guided me through writing. I gratefully thank Dr. Paul Plassmann, for providing me with unwavering support. I also give many thanks to Dr. Jia-Bin Huang for his invaluable insights and mentorship during the year.

I would also extend my thanks to Xu Dong from Biomedical Engineering, who was always there to help me out.

I am also thankful to my family for all the support.

Lastly, I thank the almighty for providing me the opportunity.
Contents

List of Figures ix

List of Tables xi

List of Abbreviations xii

1 INTRODUCTION 1

1.1 Computed Tomography 1

1.2 Sinogram Synthesis 3

1.3 Image Reconstruction Principles 4

1.4 Filtered BackProjection 7

1.4 Sparse CT Reconstruction Literature 8

1.5 Organization of Thesis 9

2 METHODS AND EXPERIMENTS 11

2.1 Data Preparation 11

2.2 The Residual U-Net Architecture 13

2.3 Training 15
2.4 Implementation Details

3 RESULTS

3.1 Evaluation in the Sinogram Domain

3.2 Evaluation in the Image Domain

3.3 Quantitative Comparison of the Results

4 DISCUSSION AND CONCLUSIONS

5 FUTURE DIRECTIONS

BIBLIOGRAPHY

Appendix A PUBLICATION INFORMATION
List of Figures

1.1 The block diagram of the CT imaging system. 3
1.2 Radon transform of a point source. 3
1.3 The central slice theorem. 5
1.4 BackProjection leads to a blurred reconstructed image. 6
1.5 Filtered BackProjection with the sharp reconstructed image. 7
1.6 The frequency spectrum of Ram-Lak filter. 8
2.1 A sample projection view of the rat body scan. 11
2.2 The architecture of residual U-Net. 14
2.3 Schematic relation between ground truth, interpolation, and correction from the model. 17
3.1 Comparison of the interpolated sinogram, the reference sinogram, and the corrected sinogram. 18
3.2 Difference between interpolated and output sinogram with respect to the ground truth. 19
3.3 Reconstructed images of the interpolated, the corrected, and the truth. 20
3.4 Zoomed in central globular structure in mouse anatomy (a) Interpolated (b) Corrected (c) Ground truth. 20
3.5 Comparison of interpolated image and deep learning-based correction with respect to the ground truth.

3.6 Central vertical line profile comparison.
List of Tables

1.1 Typical X-ray CT doses in miliSievert (mSv). 2
2.1 Scanning Protocol for the CT scan. 12
2.2 Distribution of patches for the model. 13
3.1 Quantitative comparison using RMSE, SSIM, and PSNR in the image domain. 22
3.2 Quantitative comparison of RMSE for the entire test dataset in the sinogram domain. 23
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBP</td>
<td>Filtered BackProjection</td>
</tr>
<tr>
<td>U-Net</td>
<td>A deep learning architecture</td>
</tr>
<tr>
<td>CNN</td>
<td>Convolutional Neural Network</td>
</tr>
<tr>
<td>ReLU</td>
<td>Rectified Linear Unit</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>SSIM</td>
<td>Structural Similarity Index</td>
</tr>
<tr>
<td>GPU</td>
<td>Graphics Processing Unit</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root-mean-square error</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak signal-to-noise ratio</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

1.1 Computed Tomography

X-ray imaging has been used in common medical exams to study anatomy. When it comes to the 3D study of biological structure, modern imaging methods like CT are imperative. A CT scan involves combinations of an array of X-ray images taken at various angles around the body. CT can generate cross-sectional images with fine details. CT marked the advent of volumetric analysis. As per tomographic principles of imaging, these cross-sections are then stacked together to get a 3D representation. CT machines could use helical or fan-beam projections.

CT can help cure cancer by providing the exact stage of cancer. It helps the physician take a call if the surgery is essential. It has helped drastically reduce length as well as the cost of hospitalization for patients. It can help draw a radiation therapy plan by detecting the exact nature and the presence of a tumor.

The radiation dose is dependent upon factors like the construction of the scanner, scanning protocol, patient size, etc. The typical radiation doses[1] are listed in table 1.1.
Table 1.1 Typical X-ray CT doses in miliSievert (mSv).

<table>
<thead>
<tr>
<th>Anatomy</th>
<th>Dose(mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>2</td>
</tr>
<tr>
<td>Chest</td>
<td>8</td>
</tr>
<tr>
<td>Pelvis</td>
<td>10</td>
</tr>
<tr>
<td>Abdomen</td>
<td>10</td>
</tr>
</tbody>
</table>

Exposure to ionizing radiation increases the risk of cancer. Children who had CT procedures are at higher risk of developing tumors. Physicians are advised to use the minimal radiation required for CT imaging. The ways to reduce radiation dose include missing angles, missing data, sparse-view, etc. In this research, the sparsity is in terms of the missing projection angles.

The basic CT imaging pipeline is shown in figure 1.1. The series of processing steps start with a scanner which converts the anatomical information into a digital representation called projection data or raw data. Cleaned raw data is subjected to image reconstruction algorithms like iterative reconstruction, BackProjection, etc. These algorithms convert the raw data into the image domain. The results are shown to the physician using state-of-the-art data analytics techniques. The final step is effective data visualization, so it helps make the correct diagnosis.
1.2 Sinogram Synthesis

Radon transform represents an image using a combination of projections within various directions. A topological space qualifies as Radon if every Borel measure is a Radon measure. A Borel measure is a measure which is defined on all open sets. Figure 1.2 shows how a single projection at an angle ϕ of a point source contributes to a row in the Radon space.
As the point traces a sine curve in the Radon space, the projection is known as a sinogram. In a sinogram, the maximum deviation from the center indicates an object’s distance from the origin, and the point of peak deviation indicates the angular location of the object. In general, the Radon transform of a spatial distribution \(f(x, y) \) is given as follows:

\[
\mathcal{R}f(\phi, t) = \int_{L(\phi, t)} f(x, y) ds
\]

where \(L(\phi, t) = \{(x, y) \in \mathbb{R} \times \mathbb{R}: x \cos \phi + y \sin \phi = t\} \).

1.3 Image Reconstruction Principles

The mathematical process that reconstructs an image from the X-ray projection data tries to minimize the error between the actual and the projected image. There are two types of reconstruction, namely: 1) Analytical and 2) Iterative. Analytical reconstruction uses a closed form solution quickly using mathematical transform. Iterative reconstruction tries to minimize an objective function during each iteration hence requires more computations than the analytical method.

This project uses Filtered BackProjection (FBP), which is explained below. Before discussing FBP in detail, an overview of the inverse problem and the Central slice theorem is given.

Computed Tomography produces images indirectly. To this end, the mathematical formulation of the underlying imaging physics is used to form the original image. In the sense of Hadamard’s laws, if a mathematical model fails to satisfy any of the following three conditions, it is categorized as an ill-posed inverse problem. The conditions are:

1. a solution exists,
2. the solution is unique,
3. the solution’s behavior changes with initial conditions.

Medical imaging science often fails to satisfy the last criterion.
Let $X_{exact} = [X_{exact1}, X_{exact2}, \cdots, X_{exactN}]^T$ denote a exact linear attenuation coefficient distribution that need to estimated, where N is the total number of the pixels in a reconstructed image. Thus, the CT image reconstruction problem can be expressed in a linear system of equations as follows:

$$g = AX_{exact} + \sigma$$

(1.2)

where A is the system matrix, X is the unknown image, and σ is the system noise.

One of the fundamental concepts in image reconstruction is the central slice theorem. It is also known by the names Fourier slice theorem or projection-slice theorem. It says that the 1D Fourier transform of a projection at an angle ϕ is the 2D Fourier transform of $f(x, y)$ evaluated at an angle ϕ. It is expressed as

$$F\{p(\phi, x')\} = F(r, \phi)$$

(1.3)

where $x' = x \cos \phi + y \sin \phi$, p indicates projection space, and r indicates polar Fourier space. It can be rephrased as the Fourier transform of projection at a given ϕ gives a line in Fourier space at the same angle. Figure 1.3 shows how the 1D Fourier transform and 2D Fourier transform are related.

![Figure 1.3 The central slice theorem.](image)
Before moving onto Filtered BackProjection, a brief discussion on BackProjection is required. BackProjection involves smearing out all projections back to the image plane to reconstruct the image. As the name suggests, it is just an inverse of Radon or forward transform of attenuation coefficients of X-rays. It is given by equation 1.4.

$$f_{bp}(x, y) = \int \rho_\theta (x \cos \theta + y \sin \theta) d\theta$$ \hspace{1cm} (1.4)

As the number of projections increases, we get a clearer idea of the picture. Still, the image never gets sharpened as higher frequencies are underrepresented. The other drawback of BackProjection includes an image with high density in the center caused by overlapping of different images. Figure 1.4 illustrates BackProjection and the blurred reconstructed image formed due to it.

Figure 1.4 BackProjection leads to a blurred reconstructed image.
1.4 Filtered BackProjection (FBP)

Filtered BackProjection is a combination of BackProjection and ramp filtering. FBP involves fast Fourier transform, Ram-Lak filtering, and inverse Fourier transform. Figure 1.5 explains how FBP can sharpen the reconstructed image.

![Filtered BackProjection diagram]

Figure 1.5 Filtered BackProjection with the sharp reconstructed image.

It can be expressed as follows:

\[
g(r, \theta) = \int_0^\pi \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\xi, \phi) e^{-iz\rho \xi} d\xi \right] |\rho| e^{iz\rho r \cos(\theta - \phi)} d\rho d\phi
\]

where \(g(r, \theta)\) is the reconstructed image, \(f(\xi, \phi)\) are the original projections, and \(|\rho|\) is the ramp filtering function.
In equation 1.5 $|\rho|$ is the Ram-Lak filter which can be represented as:

$$H_{RL}(\omega) = \begin{cases} |\omega|, & |\omega| \leq 2\pi B \\ 0, & \text{otherwise} \end{cases}$$ (1.6)

![Figure 1.6 The frequency spectrum of Ram-Lak filter.](image)

The steps involved in FBP are:
1. Take the Fourier transform for every projection.
3. Take the inverse Fourier transform.
4. BackProject the filtered projections and integrate.

1.4 Sparse CT Reconstruction Literature

Low-dose CT has been addressed in two ways. One way is to optimize the scanning setup for tube voltage or current [1], [2]. The other way requires processing a smaller number of measurements as if the X-ray source is turned on and off frequently. The process is known as sparse data sampling. The reconstructed image suffers quality losses if directly fed to the reconstruction algorithm. Thus, missing sparse data has to be generated [3] effectively.

Missing angle sinogram has been synthesized using linear interpolation or nearest-neighbor interpolation. Such interpolation is essential as the artifacts are more pronounced after FBP in
reconstructed images. However, these conventional interpolation techniques are not useful when the amount of sparsity goes on increasing. Recently, deep learning has been successfully used in numerous computer vision applications[4]. Convolutional neural networks [5] [6] [7] have also been very useful with the sparse-view CT problem. Similarly, generative adversarial networks [8, 9] were utilized for inpainting the sinogram. One of the important development has been an end-to-end machine learning framework [10-13] but generalization of such models for each applicable cases is something remains to be proved. There are other methods which try to address the angular resolution issue [14, 15].

U-Net has been applied successfully in biomedical image segmentation [11, 16]. Another such methodology [7] inspired Cho et al. to apply in the sinogram domain [17, 18] on simulated data. However, so far most of those sinogram inpainting hypotheses for sparse-view CT have been only trained and tested with simulated sinogram data, and comparisons for the performance of those methods were mostly carried in the image domain rather than the sinogram domain, presumably due to the lack of the experimental sinogram as ground truth. Experimental data which is super sparsely sampled is a novel challenge addressed by this research. The novelty of current research lies in the fact that the sinogram completion problem has been addressed in the projection domain itself.

1.5 Organization of Thesis

The first chapter introduces CT and the ill-posed inverse problem in reconstruction. The central slice theorem has been explained before the discussion on BackProjection. BackProjection is followed by the explanation on the analytical method Filtered BackProjection in details. The chapter also lists the attempts that have been made to address this issue. The various approaches, along with merits and limitations, have been briefly discussed. The second chapter explains the deep learning model. There is also a description of the training and testing methodology. The implementation details of the experiment are listed in the last section. The third chapter provides
the results of the model using various performance metrics. The results have been compared in the sinogram as well as in the image domain. The chapter also summarizes the quantitative analysis using various performance metrics in the sinogram as well as the image domain. Finally, the results are discussed, and the future scope is addressed in chapters 4 and 5. Bibliography and Appendix containing the list of publications can be found at the end of the thesis.
Chapter 2

METHODS AND EXPERIMENTS

2.1 Data Preprocessing

Projection images are the results of the X-ray attenuation of the subject at a given angle. Figure 2.1 shows a sample projection from the CT scan of rat anatomy. If we look close we can notice that there is head at the top followed by limbs and other body parts.

![Sample Projection Image](image)

Figure 2.1 A sample projection view of the rat body scan.

The scan used for this research was collected by the Xradia MicroCT (also known as MicroXCT-200) machine in the X-ray Systems Lab at Virginia Tech. The machine is useful in life science research and material characterization. The scanning protocol for the dataset has been given in table 2.1.
Table 2.1 Scanning protocol for the CT scan.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray source</td>
<td>80 kV</td>
</tr>
<tr>
<td>Start angle</td>
<td>-96 degree</td>
</tr>
<tr>
<td>End angle</td>
<td>96 degree</td>
</tr>
<tr>
<td>Number of projection images</td>
<td>1500</td>
</tr>
<tr>
<td>Binning</td>
<td>2</td>
</tr>
<tr>
<td>Source-sample distance</td>
<td>300 mm</td>
</tr>
<tr>
<td>Detector-sample distance</td>
<td>64.35 mm</td>
</tr>
</tbody>
</table>

While one scan can yield 1024 sinograms in total, only 625 sinograms in the central scans were used in the study. The projection data was also cropped by cutting out 45 peripheral detector pixels at each side. These pre-processing steps were applied to make sure all the collected sinograms are in good quality. As per the Lambert-Beer law of attenuation, the received flux, I is given by

$$I = I_0 \exp \left\{ - \int_L \mu(x) dx \right\}$$ \hspace{1cm} (2.1)

where I_0 is the incident flux and $\mu(x)$ is the absorption coefficient. Thus projection is given by:

$$- \log \left(\frac{I}{I_0} \right) = \int_L \mu(x) dx$$ \hspace{1cm} (2.2)

The projection was log inverted with the blank image in each scan to get the actual attenuation, as shown in equation 2.2. The sparse-view sinograms were constructed by selecting one projection in every ten views to make the sparsity 90%. In contrast, the full-view sinograms were constructed.
by using all the projections. As a result, each sparse-view sinogram is of size 150×935, and each full-view sinogram is of size 1500×935. We interpolated the sparse-view sinogram to upscale its size to be 1500×935 using linear interpolation. Then both interpolated sinograms and full-view sinograms were divided into 64×64 patches so that they can be fed into the neural network. The patch distribution is given in Table 2.2.

<table>
<thead>
<tr>
<th></th>
<th>Number of Patches</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>121680</td>
<td>65</td>
</tr>
<tr>
<td>Validation</td>
<td>18720</td>
<td>10</td>
</tr>
<tr>
<td>Testing</td>
<td>46800</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>187200</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2 The Residual U-Net Architecture

The U-Net proposed by Ronneberger [19] consists of a contracting arm at the left, followed by an expansive arm. The network has proven capabilities in medical image segmentation. There is a shortcut connection from input to output known as a residual connection. This connection helps network understand the difference between the input and the output; hence, we get fast convergence in training the model. Residual connections also play a pivotal role in avoiding the vanishing gradient. It also helps in getting rid of streaking artifacts. Figure 2.2 shows the architecture of the residual U-Net.
Figure 2.2 The architecture of residual U-Net.

The pooling layer in the U-Net has been replaced with a convolutional layer of size 2×2. Max pooling is useful for downsampling and yielding the output quickly with fewer computations. It involves picking up the max in a local neighborhood. As this network operates in the sinogram domain, more weight needs to be given to the highly correlated pixels. The max values could be ignored. Thus, restoration accuracy is maintained at the cost of computations. Patch-wise data were fed to the network, so the RAM usage is limited. Thus, a general computer can also execute the given algorithm.

The given architecture delivered most efficiently using four hidden layers. The other attempt involved changing the number of layers, such as two, three, and five. The performance did not improve by the addition or the deletion of layers. Each layer comprised of a combination of convolutional blocks, a Rectified Linear Unit (ReLU), and a concatenation block. ReLU is a popular activation function choice since it offers efficient gradient propagation. Output was a simple mathematical addition with the input to facilitate residual connection.
2.3 Training

The interpolated sinogram was fed to the network, and output was compared with the corresponding full-view sinogram. The network was trained to minimize the root-mean-square error (RMSE) loss function between the input and the ground truth. Let N denote the number of batches, and let x be the network output patch. The ground truth patch is denoted by y. For each patch k, RMSE is given by:

$$RMSE = \frac{1}{2N} \sum_{k} ||x^k - y^k||^2_2$$ (2.3)

The learning rate was set to 0.0005 initially. It was decreased in the steps of 5% at every hundredth epoch. Structural similarity (SSIM) was also plotted with respect to the ground truth. SSIM captures correlation in the spatial neighborhood of a pixel. It is given by:

$$SSIM\{f_1, f_2\} = S = \frac{2\mu_1\mu_2}{\mu_1^2 + \mu_2^2} \times \frac{2\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2} \times \frac{\sigma_{12}}{\sigma_1\sigma_2}$$ (2.4)

where μ_1, σ_1 is the average and variance of the image f_1 and μ_2, σ_2 is the average and variance of the image f_2.

The evaluation metrics also Peak signal-to-noise ratio. PSNR is given by:

$$PSNR = 20 \times \log_{10}\left(\frac{MAX}{RMSE}\right)$$ (2.5)

where MAX is the maximum possible pixel value of an image.

PSNR is widely used to measure reconstruction quality in compression as it approximates the human perception of reconstruction.

From the input as well as ground truth patches of size 64×64 were extracted. The patch size of 48×48 was also tried, but it was not effective given the computing capabilities. Zero-padding was used with stride as one while performing the convolution operations to match the matrix
dimensions. To utilize the full GPU processing capabilities, batch size of 400 was used. A single batch comprised 25 columns and 12 rows each of patch size 64×64. The dataset was continuously shuffled to avoid overfitting. It also helped in generalization and reducing the variance. The training of around 5000 epochs was completed in five hours. Validation error was calculated at the steps of 50 epochs. Validation error helped network tune hyperparameters of the hidden layers. The other parameter that was monitored for training the model apart from RMSE was SSIM.

2.4 Implementation Details

Each projection had 1024×1024 pixels. Such 1500 projections were captured in the scan. Out of these middle 625 sinograms were taken for processing. Each sinogram was cropped 45 pixels in each side, resulting in size 1500×935. These steps were carried out to have better quality data. Reference, interpolated sinograms were formed from the projection views by using each row of the projection data. The training was done on a computer with Intel Core i5-7400 CPU and 16GB RAM. Nvidia GTX Titan X GPU was utilized during the training process. The hyperparameters were tuned in such a way that each epoch was completed in a few seconds. The convolution and deconvolution kernels were initialized with random Gaussian distributions with 0 mean and 0.01 standard deviation. When the network was fully trained, it was tested with sparse-view sinograms from the test dataset. The relation between the sparse-view sinogram, the interpolated input sinogram, the deep learning-based corrected sinogram, and the full-view ground truth sonogram is shown in figure 2.3. They are reconstructed using FBP.
Figure 2.3 Schematic relation between ground truth, interpolation, and correction from the model.
Chapter 3

RESULTS

3.1 Evaluation in the Sinogram Domain

The test sinogram is shown on the left in figure 3.1. The sinogram belongs to the same scan, which was mentioned in table 2.1. The test sinogram was sampled into patches of 64×64 before feeding into the network. The inference was tested for each sinogram as well as the entire test data set. Testing on the data set indicated overall improvement while testing individual sinogram helped analyze the reconstructed image quality. The results in the image domain were more effective in predicting the success of the model. The results were tested on a single sinogram patch-wise, and the quality measures were computed over the entire image. The result is shown in figure 3.1.

Figure 3.1 Comparison of the interpolated sinogram, the reference sinogram, and the corrected sinogram.
As figure 3.1 shows, the changes in the sinogram domain are subtle, and we do need quantitative analysis to evaluate the performance of the network. To get a better idea, we can take the difference between the interpolated and the corrected sinograms with respect to the ground truth, as shown in figure 3.2. One can notice a significant improvement over the interpolated sinogram, which has a lot of streaky components.

![Figure 3.2 Difference between the interpolated and the corrected sinogram with respect to the ground truth.](image)

3.2 Evaluation in the Image Domain

The reconstructed image gives a better picture of the performance of the model as the FBP reconstruction algorithm tends to exaggerate artifacts, if any, in the sinogram domain. Figure 3.3 shows the reconstructed images from the interpolated, the corrected, and the reference sinogram. The improvements are more pronounced in the deep learning-based corrected reconstructed image.
Figure 3.3 Reconstructed images of the interpolated, the corrected, and the truth.

The zoomed in comparison of the same mouse anatomy shown above can be seen below.

Figure 3.4 Zoomed in central globular structure in mouse anatomy (a) Interpolated (b) Corrected (c)

Ground truth.

Moderate streaking artifacts could be seen in the linear interpolation based reconstruction. The deep learning-based corrected image was closer to the ground truth than the interpolated. To further analyze the same result, we again differentiated the images with respect to the ground truth. Figure 3.5 shows the comparison of the results. The result proves that the model has a better
understanding of the image so it can preserve all the texture as well as low and high-frequency information.

![Interpolated vs Corrected Image](image)

Figure 3.5 Comparison of interpolated image and deep learning-based correction with respect to the ground truth.

3.3 Quantitative Comparison of the Results

RMSE value of the interpolated sinogram, fed as input, was found to be 0.0189320 whereas for the deep learning-based corrected sinogram it came out to be 0.0090445. Thus, there was an improvement of 52.2% with respect to the linear interpolation-based technique. Similarly, the quantitative metrics showed improvement in the image domain. The reconstructed image before correction showed RMSE as 0.0036. After reconstruction, it came down to 0.0016. The SSIM was improved from 0.98 to 0.9973, which implies a better correlation with the reference.
The line profile of the deep learning-based correction seems more correlated with the reference sinogram, as shown in figure 3.6. The noise components in the interpolated sinogram were ironed out. The quantitative assessment included comparing metrics like PSNR, SSIM, and RMSE of the interpolated sinogram and the corrected sinogram with respect to the ground truth. The SSIM and PSNR showed a small improvement. The time taken for inference by the network was 12.7 sec.

Table 3.1 shows a change in the quality metrics for the interpolated as well as the corrected image with respect to the ground truth.

Table 3.1 Quantitative comparison using RMSE, SSIM, and PSNR in the image domain.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Before</th>
<th>After</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.0036</td>
<td>0.0016</td>
<td>55.56</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.9863</td>
<td>0.9973</td>
<td>13.9</td>
</tr>
<tr>
<td>PSNR</td>
<td>48.8051</td>
<td>56.1731</td>
<td>13.12</td>
</tr>
</tbody>
</table>
In this table, the column marked as before indicates the interpolated sinogram with respect to the ground truth while after represents corrected sinogram with respect to the ground truth. Inference for the entire test dataset (46800 patches) took 144.67 sec. These are random patches and therefore, not be reconstructed. There was an improvement of around 81%, as shown in table 3.2.

Table 3.2 Quantitative comparison of RMSE for the entire test dataset in the sinogram domain.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Before</th>
<th>After</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.0062209</td>
<td>0.0011503</td>
<td>81.5</td>
</tr>
</tbody>
</table>
Chapter 4

DISCUSSION AND CONCLUSIONS

U-Net has proven capabilities in image segmentation. In this thesis, the residual U-Net has been evaluated for the interpolating missing data in the sparse-view sinogram. The results are promising for the scans of the same type. Though the generalization capabilities of the network are limited, the results do encourage further investigation.

The other architectures like Autoencoder and Convolutional Neural Network with up to eighteen hidden layers were tried but, the results were not promising. The U-Net model was also modified by adding the batch normalization layers, but the performance degraded presumably because of the nature of experimental data. The pooling layers were not used because the sinogram is too sensitive to such processing and computing capabilities of the GPU were available at our disposal.

The proposed method was effective in interpolating missing CT data. The loss function helped minimize the l2-norm and fetched improvement in the other quality metrics. There remains scope to explore loss function that is more tuned to image perceptual quality.

The baseline used for the model was constructed using linear interpolation. An improvement suggested by the committee includes a stronger baseline which takes into consideration the angular nature of sinogram.
Chapter 5

FUTURE DIRECTIONS

In this research project, a novel deep learning-based method has been proposed for sparse-view CT. As the graphics processing hardware of modern computers tends to become more and more sophisticated, the complexity of the neural network model that could be run also knows no bounds. Still, taking into consideration the need for real-time diagnosis, we have proposed a solution which operates in the sinogram domain. Future work might involve generative adversarial network based deep learning model. In that, PatchGAN promises significant improvement over the conventional. Deep learning is a cutting edge field, and there are new models proposed now and then. New frontiers [21, 22] are being explored and put to use for various real-life application. Therefore, the possibilities are endless.
BIBLIOGRAPHY

Appendix A

PUBLICATION INFORMATION

