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Load Learning and Topology Optimization for Power Networks

Siddharth Bhela

(ABSTRACT)

With the advent of distributed energy resources (DERs), electric vehicles, and demand-

response programs, grid operators are in dire need of new monitoring and design tools that

help improve efficiency, reliability, and stability of modern power networks. To this end, the

work in this thesis explores a generalized modeling and analysis framework for two perti-

nent tasks: i) learning loads via grid probing; and ii) optimizing power grid topologies for

stability. Distribution grids currently lack comprehensive real-time metering. Nevertheless,

grid operators require precise knowledge of loads and renewable generation to accomplish

any feeder optimization task. At the same time, new grid technologies, such as solar panels

and energy storage units are interfaced via inverters with advanced sensing and actuation

capabilities. In this context, we first put forth the idea of engaging power electronics to

probe an electric grid and record its voltage response at actuated and metered buses to infer

non-metered loads. Probing can be accomplished by commanding inverters to momentarily

perturb their power injections. Multiple probing actions can be induced within a few tens

of seconds. Load inference via grid probing is formulated as an implicit nonlinear system

identification task, which is shown to be topologically observable under certain conditions.

The analysis holds for single- and multi-phase grids, radial or meshed, and applies to pha-

sor or magnitude-only voltage data. Using probing to learn non-constant-power loads is

also analyzed as a special case. Once a probing setup is deemed topologically observable, a

methodology for designing probing injections abiding by inverter and network constraints to

improve load estimates is provided. The probing task under noisy phasor and non-phasor



data is tackled using a semidefinite-program relaxation. As a second contribution, we also

study the effect of topology on the linear time-invariant dynamics of power networks. For

a variety of stability metrics, a unified framework based on the H2-norm of the system is

presented. The proposed framework assesses the robustness of power grids to small distur-

bances and is used to study the optimal placement of new lines on existing networks as well

as the design of radial topologies for new networks.



Load Learning and Topology Optimization for Power Networks

Siddharth Bhela

(GENERAL AUDIENCE ABSTRACT)

Increased penetration of distributed energy resources such as solar panels, wind farms, and

energy storage systems is forcing utilities to rethink how they design and operate their

power networks. To ensure efficient and reliable operation of distribution networks and to

perform any grid-wide optimization or dispatch tasks, the system operator needs to precisely

know the net load (energy output) of every customer. However, due to the sheer extent

of distribution networks (millions of customers) and low investment interest in the past,

distribution grids have limited metering infrastructure. Nevertheless, data from grid sensors

comprised of voltage and load measurements are readily available from a subset of customers

at high temporal resolution. In addition, the smart inverters found in solar panels, energy

storage units, and electric vehicles can be controlled within microseconds. The work in this

thesis explores how the proliferation of grid sensors together with the controllability of smart

inverters can be leveraged for inferring the non-metered loads i.e., energy output of customers

that are not equipped with smart inverters/sensors. In addition to the load learning task,

this thesis also presents a modeling and analysis framework to study the optimal design

of topologies (how customers are electrically inter-connected) for improving stability of our

power networks.
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Chapter 1

Introduction

With the advent of distributed energy resources (DERs), electric vehicles, and demand-

response programs, grid operators are in dire need of new monitoring and design tools that

help improve efficiency, reliability, and stability of modern power networks. To this end, the

work in this thesis explores a generalized modeling and analysis framework for two pertinent

tasks: i) learning loads via grid probing; and ii) optimizing power grid topologies for stability.

While the former task utilizes the steady-state power flow model, the latter relies on the linear

dynamic model. Nevertheless, both problems utilize similar graph-theoretic and optimization

toolboxes to establish and validate our claims.

1.1 Grid probing for load learning

Due to limited instrumentation, low investment interest in the past, and the sheer scale of

residential electricity networks, low-voltage grids have limited observability [6]. Traditionally,

utility operators monitor distribution grids by collecting load, voltage and current magnitude

measurements only at a few buses. This mode of operation has been functional due to the

stationarity of conventional loads, the availability of historical data, and the under-utilization

of distribution grids. Nevertheless, with the advent of smart power networks, there is a

need for enhancing grid observability both in space and time to accomplish grid dispatch

objectives, such as voltage regulation, power loss minimization, or optimal dispatch.

1



Determining whether a transmission network is observable, given a set of specifications,

is performed using topological or numerical methods [64]. Topological methods rely on

graph-theoretic principles, whereas the numerical ones study the rank of the Jacobian ma-

trix related to the decoupled power flow model. An analysis of power flow (PF) problems

under different specification sets is conducted in [45], again under the decoupled model.

Given the higher resistance-to-reactance ratios, the decoupled grid model does not apply to

distribution systems.

In networks that are not completely observable, techniques for placing limited meters to

improve distribution system state estimation (DSSE) have been reported in [7], [71], [72]. A

heuristic rule aiming at reducing the variance of voltage magnitude estimates at non-metered

buses is suggested in [71], and is extended to voltage angles too in [72]. Pseudo-measurements

have also been used in restoring observability in distribution grids [23]. Historical load

profiles and real-time measurements are input to a neural network-based state estimator

in [60], while a robust DSSE using pseudo-measurements is developed in [85]. Because

psuedo-measurements may not be easily available or accurate, the aforementioned approaches

cannot be used for real-time estimation and dispatch of power grids.

To overcome the aforementioned drawbacks, the work in this thesis exploits: i) grid sensor

data from metered buses that are readily available at high temporal resolution; and ii)

controllability of smart inverters found in solar panels, energy storage units, and electric

vehicles to infer non-metered loads. Probing inverters to change their active injections and

power factors momentarily can drive the system to a new operating point and elicit additional

grid data that can be exploited for the load inference task. The proposed probing-to-learn

(P2L) technique is not limited to load learning and has been recently used for other inference

tasks such as topology learning and identification [21], [20], [19].



1.2 Optimal topology design

Increased penetration of renewables coupled with the proliferation of grid sensors and inverter-

interfaced devices will allow utilities to have better observability of their power networks. At

the same time, higher variability associated with DERs, renewables, and changing load pat-

terns will pose an enormous challenge for design and stable operation of power networks [77].

The inherent uncertainty associated with renewable energy sources and active loads is likely

to produce more frequent and higher amplitude disturbances [77]. In addition, owing to

the lower aggregate inertia of systems with high penetration of renewables, the capability

of power networks to handle such disturbances may be significantly reduced [83]. Without

detailed simulations, it is usually hard to infer how a change in network topology influences

the overall grid behavior and performance. Recent work in [44] shows that the impact of

network topology on the power system can be quantified through the network Laplacian ma-

trix eigenvalues. In addition, grid robustness against low frequency disturbances is mostly

determined by network connectivity [44], further motivating this study. Past studies in the

power and control systems communities have also looked at designing network topologies

for specific goals using system theoretic tools. Such goals include reduction of transient line

losses [77], improvement in feedback control [76], [58], coherence based network design [32]

and augmentation [74]. Semidefinite programming (SDP) based tools have also been utilized

to design and augment network topologies for dynamic control [39], [32], [65].

Reference [28] presented a unified framework to study topology design based on the H2-norm,

for a variety of objective functions, such as line loss reduction, fast damping of oscillations,

and network coherence. In [28], the focus was on topology reconfiguration rather than

topology design. Further, the work in [28] developed suboptimal algorithms, albeit with

guarantees on optimality gap, to tackle the combinatorial design problems involved. Different



from the work in [28], here we are interested in studying the optimal placement of new lines

on existing networks as well as the design of radial (tree) and meshed (loopy) topologies for

new networks with the goal of improving stability.

1.3 Contributions

To improve efficiency and reliability of our power networks and to aid utilities in performing

grid-wide optimization tasks, we first present the novel idea of grid probing for learning

loads. Secondly, to improve stability of power networks we develop a generalized modeling

and analysis framework for optimally designing grid topologies. The key contributions of

this thesis are as follows:

1. We put forth our novel P2L technique in Section 2.2. Exploiting the stationarity of

non-metered loads over the probing period and assuming noiseless sensor data, the

P2L problem is posed as a PF task coupled over multiple time instances.

2. We provide intuitive and easily verifiable graph-theoretic conditions under which prob-

ing succeeds in recovering unmonitored loads under phasor (Section 2.3) and non-

phasor sensor data (Section 2.4). The established criteria capture the effects of the

number of probing actions and the graph connectivity between metered and non-

metered buses.

3. While several existing works exploit the radial (tree-like) structure of distribution grids

for various learning tasks, our approach is generalized to cover meshed grids, including

loopy multiphase distribution grids as well as transmission systems.

4. We cover the simple yet pertinent case of the single-slot problem (assuming passively

collected grid data without probing) in Section 2.5. This setup makes no assumptions



on the underlying load model and is pertinent to power networks that don’t have the

necessary infrastructure to control smart inverters and obtain synchronized grid data.

5. The aforementioned identifiability criteria decide whether a probing setup is successful.

If a setup is deemed successful, the utility could judiciously design inverter injections

to improve load estimation. Nonetheless, these injections have to be implementable by

inverters; compliant with voltage regulation and line flow limits; and drive the electric

grid to sufficiently different states for better numerical conditioning. This injection

design task is further challenged by the nonlinearity of the power flow equations and the

fact that non-metered loads are not known a priori. In Section 3.2 we have developed

an algorithmic approach for designing probing injections that conform to grid safety

requirements and improve load estimates.

6. The proposed P2L tasks are tackled through our SDP-based solvers described in Sec-

tion 3.3.

7. We present a comprehensive modeling and analysis framework for the topology design

problem to optimize a H2-norm based performance metric subject to budget constraints

in Sections 4.2 and 4.3.

8. In Section 4.4 we show that although the topology design task is inherently non-convex,

it is possible to exactly reformulate the problem in tractable form using McCormick

relaxation (or linearization). This can then be used with off-the-shelf solvers to deter-

mine the optimal solution.

9. By exploiting graph-theoretic properties to tighten bounds on the continuous opti-

mization variables in Section 4.5, we show significant improvements in computation

time.



For the load learning task our research efforts have resulted in three conference papers [15],

[11], [10], and three journal publications [12], [13], [14]. Our papers [15] and [12] presented

preliminary results on the grid probing framework and associated SDP-based solvers. The

analysis there was restricted to two probing actions and the results were confined to radial

grids. Moreoever, the probing actions were not designed, but rather relied on the natural

variability of load/generation at metered buses. Load learning via passive data collection

(without probing) was analyzed in [10]. These initial results were significantly extended in

[11], [13]. More specifically, i) the analysis was extended non-trivially to multiple rather

than only two probing actions; ii) probing setups with voltage magnitude and/or angle data

were studied in a unified fashion; iii) we used the feeder connectivity to upper bound the

number of probing actions beyond which there is no identifiability benefit; iv) a new proving

technique generalized the analysis from radial to meshed grids, thus covering the timely

topic of loopy multiphase distribution grids and transmission systems; v) grid probing to

infer non-constant-power (ZIP) loads was explored as special case. The design of efficient

probing setpoints that conform to inverter and network constraints while improving load

estimates was further explored in [14]. For the topology design task our research efforts have

led to a flagship controls conference paper [9].

Note that Chapters 2 and 3 have been largely reproduced from our papers [15], [11], [10],

[12], [13], and [14], while Chapter 4 has been reproduced from [9].



Chapter 2

Smart Inverter Grid Probing for

Learning Loads

2.1 Introduction

Low-voltage distribution grids have been plagued with limited observability, due to limited

instrumentation, low investment interest in the past, and their sheer extent [6]. Traditionally,

utility operators monitor distribution grids by collecting measurements infrequently and only

from a few critical buses. This mode of operation has been functional due to the under-

utilization of distribution grids and the availability of historical data. Nevertheless, with the

advent of DERs, electric vehicles, and demand-response programs, there is a critical need

to reliably estimate the system state and learn non-metered loads to optimally dispatch the

grid on a frequent basis (say 20 min). To this end, the communication capabilities of grid

sensors together with the actuation and sensing features of power inverters found in solar

panels, energy storage units, and electric vehicles could be utilized toward unveiling loads.

Although estimating loads or the grid state has heavily relied on pseudo-measurements, such

measurements may not be available or accurate under the current mode of operation [51],

[41]. On the other hand, the widespread deployment of digital relays, phasor measurement

units (PMUs), and inverter-interfaced DERs provide excellent opportunities for improving

distribution grid observability [69], [38]. In addition, regular polling and on-demand reads

7



of customer loads and voltages via smart meters have enhanced the accuracy of distribution

system state estimation [5], [42]. Since the previous schemes collect data on a hourly basis,

they are of limited use for real-time optimization.

Rather than passively collecting grid readings to infer non-metered loads, this works advo-

cates engaging inverters to probe the grid and thus actively collect feeder data. We define

probing as the technique of perturbing an electric grid for the purpose of finding unknown

parameters. The idea of probing has been previously suggested towards estimating the

electro-mechanical oscillation modes in power transmission systems [87], [79]. Perturbing

the voltage and/or current of a single inverter has been adopted in the power electronics

community to determine the grid-equivalent Thevenin impedance of inverters [48]. More-

over, modulating the primary droop control loop of inverters has been recently suggested for

learning loads and topologies in direct-current grids [2]. Graph algorithms and identifiabil-

ity conditions for recovering feeder topologies using inverter probing data have been devised

in [20], [19].

Beyond their standard energy conversion functionality, smart inverters are being utilized for

reactive power control and other feeder optimization tasks [81]. In fact, the grid voltage

response to inverter injection changes has been used as a means to solve optimal power flow

tasks in a decentralized and/or communication-free fashion; see for example [33], [49], [25],

[75], [3]. Leveraging exactly this voltage response, grid probing attributes smart inverters a

third functionality towards monitoring rather than grid control.

The contribution of this chapter is on three fronts. First, we formulate our Probing-to-Learn

(P2L) technique in Section 2.2. Exploiting the stationarity of non-metered loads during

probing and assuming noiseless inverter readings, the P2L problem is posed as a coupled

power flow task. Second, we provide intuitive and easily verifiable graph-theoretic conditions

under which probing succeeds in finding non-metered loads under phasor (Section 2.3) and



non-phasor data (Section 2.4). Third, Section 2.5 extends probing to infer ZIP loads.

Regarding notation, column vectors (matrices) are denoted by lower- (upper-) case boldface

letters and sets by calligraphic symbols. The cardinality of set X is denoted by |X |, and its

complement by X̄ . The operators (·)> and (·)H stand for (complex) transposition; the floor

and ceiling functions are denoted by b·c and d·e; dg(x) defines a diagonal matrix having

x on its main diagonal; and IN is the N × N identity matrix. The notation xA denotes

the sub-vector of x indexed by A; and XA,B is the matrix obtained by sampling the rows

and columns of X indexed respectively by A and B. Symbol 1 denotes the all-one vector

and ek is the k-th canonical vector; their dimensions would be clear from the context. The

notation V � 0 means that V is a Hermitian (complex and conjugate symmetric) positive

semidefinite matrix; the matrix trace is denoted by Tr(·); and ‖a‖2 is the `2-norm of vector

a. The notation k = 1 : K is a shorthand to k = 1, . . . , K.

2.2 Grid Probing

Albeit not every bus is metered in a distribution grid, some buses are equipped with sensors

recording voltage magnitudes and/or angles, actual powers, and power factors. Moreover, the

power injections in solar panels and energy storage devices can be instantly controlled using

advanced power electronics. Building on the physical law that perturbing power injections at

different buses is reflected on voltage changes across the grid, the key idea here is to engage

power electronics to probe the grid with the purpose of learning non-metered loads.

To formally describe grid probing, let us briefly review a feeder model. Consider a feeder

represented by a graph G = (N+,L) where the nodes in N+ := {0, . . . , N} correspond to

buses, and the edges in L to distribution lines. Let Y := G+ jB be the grid bus admittance

matrix and G (resp. B) be the bus conductance (resp. susceptance) matrix. By definition,



the entries Bnm and Gnm for n 6= m are non-zero only if (n,m) ∈ L. Let us express the

voltage phasor at bus n ∈ N+ in Cartesian and polar coordinates as

vn = vr,n + jvi,n = une
jθn .

The substation is indexed by n = 0, its voltage remains fixed at 1 + j0, and the remaining

buses comprise the set N . If vr := [vr,0 · · · vr,N ]
> and vi := [vi,0 · · · vi,N ]

>, define the

system state as v := [v>
r v>

i ]
>. Apparently, for each bus n ∈ N+, the squared voltage

magnitude and the net power injections are quadratic functions of v, whereas the voltage

angle is a trigonometric function of v [40]

un(v) = u2
n = v2r,n + v2i,n (2.1a)

pn(v) = vr,n

N∑
m=0

(vr,mGnm − vi,mBnm) + vi,n

N∑
m=0

(vr,mBnm + vi,mGnm) (2.1b)

qn(v) = vi,n

N∑
m=0

(vr,mGnm − vi,mBnm)− vr,n

N∑
m=0

(vr,mBnm + vi,mGnm) (2.1c)

θn(v) = arctan
(
vr,n
vi,n

)
. (2.1d)

With the proliferation of grid sensors and inverters, the distribution grid operator may

have access to all four quantities (un, θn, pn, qn) on a subset of buses. Different from the

conventional PF setup with PQ and PV buses, we partition N+ into the subsets:

• The set M of metered buses for which (un, θn, pn, qn) are known and their power in-

jections are possibly controllable. This set includes the substation and buses equipped

with smart sensors and/or inverters. Its cardinality is denoted by M := |M|.

• The set O of non-metered buses where no information is available. Its cardinality is



denoted by O := |O|, and apparently, N + 1 = M +O.

The inverters interfacing DERs are typically modeled as constant-power generators [81],

[33], [25]: Internal control loops can reach setpoints for (re)-active power injections within

microseconds. The setpoints should comply with solar irradiance and the rating of the

inverter.

Remark 2.1. We emphasize pn + jqn is the net complex injection. If bus n hosts a smart

inverter and a non-controllable load, it is henceforth assumed that the operator measures

pn+jqn and the voltage at the point of common coupling, and controls the complex injection

from the inverter. This assumption is reasonable since smart inverters are usually equipped

with sensors; e.g., the Pecan Street project measures both the net and inverter injections [67].

Given the feeder topology captured in Y and the specifications {(un, θn, pn, qn)}n∈M, our

goal is to recover the power injections at non-metered buses {(pn, qn)}n∈O. Lacking a direct

mapping from {(un, θn, pn, qn)}n∈M to {(pn, qn)}n∈O, the problem of finding the non-metered

loads boils down to the task of recovering the underlying state v first. Collecting the grid

data {(ut
n, θ

t
n, p

t
n, q

t
n)}n∈M at time t and assuming for now these data are noiseless, we get

the specifications

un(vt) = ut
n, ∀n ∈ M (2.2a)

θn(vt) = θtn, ∀n ∈ M (2.2b)

pn(vt) = ptn ∀n ∈ M (2.2c)

qn(vt) = qtn ∀n ∈ M (2.2d)

which involve 4M equations over 2(N+1) unknowns. A necessary condition for solving (2.2)



is 4M ≥ 2(N + 1). Since N + 1 = M +O, the condition simplifies to

M ≥ O. (2.3)

In other words, the metered buses must be at least as many as the non-metered ones.

To relax this condition on M , one may consider jointly processing the data {(ut
n, θ

t
n, p

t
n, q

t
n)}n∈M

collected across multiple times t ∈ T with T := {1, . . . , T}. This approach does not improve

the observability of the equations in (2.2), simply because the equations are independent over

T . Moreover, both the 4MT equations and the 2(N +1)T state variables {vt}Tt=1 scale with

T . One way to relate power flow specifications across time is to assume that the non-metered

loads remain invariant across T , that is

pn(vt) = pn(vt+1), ∀n ∈ O, t ∈ T ′ (2.4a)

qn(vt) = qn(vt+1), ∀n ∈ O, t ∈ T ′ (2.4b)

where T ′ := {1, . . . , T − 1}. In this way, we obtain the additional 2O(T − 1) equations and

couple the states {vt}Tt=1.

Even though there may be an observability advantage in coupling specifications across time,

the timespan of T is critical: For non-metered loads to remain unchanged, the timespan of

T should be relatively short. But if the duration of T is too short, the metered injections

in the buses of M may not change either. In this case, the grid state remains identical over

T , the scheme degenerates to the setup of (2.2) for T = 1, and there is no advantage by

coupling specifications.

At this point, smart inverters come to our rescue: The timespan of T can be made suf-

ficiently short so that the non-metered loads in the buses of O remain invariant over T ,



whereas the power injections from smart inverters vary. The key point here is to couple

power flow specifications through what we term grid probing. Probing can be accomplished

by commanding inverters to change their power injections for one second. An inverter can

curtail its solar output; (dis)-charge an energy storage unit; and/or change its power factor.

Multiple probing actions can be instructed within tens of seconds. By intentionally perturb-

ing inverter injections, the grid transitions across different states {vt}Tt=1 depending on the

probing injections and non-metered loads. Recording voltages {ut
n, θ

t
n}Tt=1 over n ∈ M could

unveil non-metered loads.

The metered buses in M can be classified into probing buses and metered but non-controllable

buses. Although grid data (ut
n, θ

t
n, p

t
n, q

t
n) are collected on both probed and metered buses,

the operator can control only the probing buses. To simplify the presentation, we will hence-

forth assume that all metered buses are probing buses, although the analysis and algorithms

apply to the more general setup.

Probing postulates two assumptions on non-metered loads: a1) They remain constant through-

out T ; and a2) are modeled as of constant power. Assumption a1) may be reasonable over

the short duration of probing. Regarding a2), one could alternatively adopt a ZIP load

model for bus n ∈ O [50]

−ptn(u
t
n) = αpn(u

t
n)

2 + βpnu
t
n + γpn (2.5a)

−qtn(u
t
n) = αqn(u

t
n)

2 + βqnu
t
n + γqn . (2.5b)

The parameters (αpn , βpn , γpn) correspond to the constant-impedance, constant-current, and

constant-power components of active load; likewise (αqn , βqn , γqn) for reactive load. A non-

metered ZIP load is then described by six rather than two parameters. Moreover, despite

the model for load, n does not change across T , its power injection pn + jqn does change for



Inverter
probing

Distribution grid 
(smart inverters)

State 
estimation & 
load learning

Control 
center

Probing injection 
design

Grid dispatch (every 20 mins)

(every 1-2 sec. 
over 20 sec.)

Nominal

<latexit sha1_base64="Y9+2QsBUpZfMLSgMKzENL4fICCA="></latexit>

<latexit sha1_base64="Y9+2QsBUpZfMLSgMKzENL4fICCA="></latexit>

<latexit sha1_base64="yUygDzR/Me33rfUphrtZO1bKrm8="></latexit>

<latexit sha1_base64="Rvk96f8fK7bXZFHeVjlojkjb1sI=">AAAR33ichZhbb9s2FMedbus679J4e9yLsaBFFwiBXWDY9tYkXZsGSes01zbyApKiLS66haIcO4Le9zTsdR9tb/soO5RlytaRWgOWKP7+JM85PCJE0sgTser1/l2798mnn93//MEX7S+/+vqbh+udb8/iMJGMn7LQC+UFJTH3RMBPlVAev4gkJz71+Dm93tX8fMJlLMLgRM0iPvTJOBAjwYiCqqv1O5vysQhS4olxsJm1i8cdnygppln7SXIV/K6s7uOurVyuyPzJttvRov5GF35s2zxwymaPu1dpYIvA9tmh1VXz0kk2VxVjXa1v9LZ6+a+LC/2isNEqfoOrzvpr2wlZ4vNAMY/E8WW/F6lhSqQSzOPQexLziLBrMuaXUAyIz2PLmYgozovDNI9X1n60JEyJH8czn2bdR2C8GyOoaw1cGUGNfhmmIogSxQMGEmCjxOuqsKsj3XWE5Ex5MygQJgXY2GUukYQpmI/2yjiXQeiIOPLILL4Ga5XkirnDNOYqBgXXFuvyvD6FGP2UtZdtSbV1Kgy92Costgq39F25vsWjeCTGVh4AK04oI5FOAIv7kctvrLEkkSvYVCPQrYQy5QGEXBLFrUR6FvHGUcwTmIjQ4fopBN9ghFsSz2BEPZIKI2c0H0tRz9LtheL+qs2XikCSDtNp7aTImRO7XmBR4pFgHgHASlzfeYJKwOk81SyHs1DmyRxvReC45BBGJoKxHu05hzyR/BDq30TahVCmtiTBdZbm12bFmOcSuDV1E0MSZ2l+bVBEMksHsonuwNuUpTtNGJJmnKXOuInTuWB+a9AoqZMnPWm0YQIJCtN3ByIoNoaDEy9L3zaHQvjalFd+Uwc+mQo/8TOYs2mjRgSFRjQGVAdbSz4U9MOD37JUX5r6SOgf4LUKoZstuDbOXTjN0vxaq9hM7ZEInCzNr0YyIPDSO89hOdYZD/0wLiB2tlfcZX6HOAb8loW+TwKna1OiQ6RcOkpJllWYZ5iHGDWMIsYMY4hxwzhiY8PGiAnDBGITwyYZcjAwMEANpWESsdiwGLHEsASxW8NuEZsaNkVsZtgMO3Fn4B1qGBkWIXZj2A1i24ZtI7Zj2A5iu4btIvbCsBeIvTTsJWJ7hu1h54/F2C/T1M4fUQ+DMkHsAUoRd9GJSxTqqaJVC60SnsM/pqYLNSXyY1pnoXXCOisq4lJdL18145VRvELswLADxA4NO8QxNWyAZ+XIwCPU8K1hbxE7NuwYsRPDThC7MOwCsXeGvUPsvWHvETs37Bw5qChKgbpcoVURrRFNqqJJjSipipIaUVQVRTWim6roBomYNpy5nF1/wHCqRct5XefbWXWwM5zLip5WVac1XQ2qokGN6KgqOqoRbVdF2zXOna06d1YjmaxK8LRR7dmyBPtF9cwuSxIcIKp9X9Zgz6n2fFmC/Xb1SMsrHM4gV0/psgRPqc+K1Z8RDy//PntZUrSQ++ygpGixgQ1ZSQ9REHz2psRvcOPXJX2N6aCkA0yPS4qXndxqE9rCdBR++GZe+c5YxfkOFXoJPUfvfUL4dsqr8FTDJkV4YbCqLSrxp5QrVoVQgec0V+WziqQwfDUWJ6WfeJndNz7u49dqv/pa7VdT2Wa+vOwPQcenKt9dpfBRmqUb/dXeQEcrOuolvBDCjmvpaCAzj3Sxx3/Uy08FVsfYzKByM//bNrSpw71C0ssl5dO8UXdetfjX9LBo1Th+r9u1gxC2CpRLsEGfOZRWl0cQ+gSiXz1vwIXTp1u/bvWPnm482yuOIh60vm/90HrS6rd+bj1r7bUGrdMWa/23dn/t4dp6h3b+7PzV+XsuvbdWtPmutfLr/PM/6121WQ==</latexit>

<latexit sha1_base64="iQeltKFd8TJXpbKcKqYfngbdRIg="></latexit>

<latexit sha1_base64="rBpQ9iDwjSolXz25LS91YS+VZ/M="></latexit>

(1-20 sec.)Probing (20 min.)Grid Dispatch

Slot 1 Slot 2 Slot T

Probing actions

P2LP2LP2L Grid Dispatch Grid Dispatch Grid Dispatch

Figure 2.1: Overview of the P2L framework: (a) block diagram depicting the P2L task with
phasor data (top panel); (b) temporal organization of grid operation (bottom panel).

varying un. Then, the coupling equations are not valid in the form of (2.4) anymore. If the

ZIP parameters are assumed invariant over T , the power flow equations can still be coupled

across T , yet the identifiability analysis and the associated solvers become perplex. To

bypass this complexity, Section 2.5 copes with ZIP loads by resorting to single-slot probing.

Figure 2.1 depicts how probing can be incorporated into grid operation: Suppose a utility

operates a demand-response program; manages energy storage; or controls smart inverters

for reactive power control on a 20-min basis. To solve the optimal power flow problem, the

operator needs to know the injections at non-metered buses. To do so, a probing interval

lasting few tens of seconds precedes the feeder dispatch. This interval T is divided into T



probing slots indexed by t = 1, . . . , T . During each probing slot t, every inverter n ∈ M

changes its injections to the setpoints (ptn, qtn) and reads voltage data (ut
n) or (ut

n, θ
t
n). At the

end of interval T , each inverter n ∈ M sends the collected data {ut
n}t∈T or {ut

n, θ
t
n}t∈T back

to the utility, and switches its setpoints back to their nominal values. The utility processes

the collected data, infers the non-metered loads, and dispatches the grid for the next 20-min

period. Some implementation details follow.

Remark 2.2. The probing setpoints (ptn, q
t
n) for all t and n ∈ M are decided by the utility

prior to T and communicated to all inverters via two-way communication links. This is

to ensure that probing complies with voltage constraints and for improved load estimation

accuracy; see Chapter 3.2. The commanded setpoints are attained by simple PID controllers.

Further, the inverters act synchronously along probing slots. Since potential delays may

raise synchronization issues, developing protocols where inverters probe asynchronously is of

interest.

Remark 2.3. The proposed probing scheme aims at recovering loads assuming the feeder

topology is known. The topology includes bus connectivity and line impedances, phase

assignments, and the statuses of capacitors and voltage regulators; see Remark 2.4. Although

small errors in line impedances and regulator tap settings could be modeled as measurement

noise, grid probing is as sensitive to topology errors as power flow equations are. However,

probing can be also used for inferring grid topologies and line parameters without knowing

non-metered loads [20], [19]. Moreover, phase assignments can be inferred from smart meter

data; see e.g., [53]. Such techniques could precede P2L to find or calibrate feeder models.

Remark 2.4. Feeders are equipped with voltage-control devices, such as regulators and

capacitor banks, which respond to voltage excursions by changing their taps and switching

on/off with time delays of around 30-90 seconds [50]. Since T lasts 20 sec or less, probing is

not expected to trigger voltage control actions per se. Nonetheless, there are still chances for



these actions to occur during T due to load fluctuations. If the utility does not monitor these

devices in real-time or it cannot override their settings during probing, the topology learning

techniques of Remark 2.3 could be possibly used. Voltage control actions and topology

reconfigurations will be ignored in this work. Interestingly though, such actions could be

used towards grid probing too.

Grid probing can be now formally stated as follows.

Definition 2.5 (Probing-to-Learn task with phasor data). Given Y and probing data

(ut
n, θ

t
n, p

t
n, q

t
n) for all n ∈ M and t ∈ T , the probing-to-learn (P2L) task entails solving

the equations in (2.2) for t ∈ T jointly with the coupling equations in (2.4).

The P2L task involves 4MT + 2O(T − 1) equations in 2(N + 1)T unknowns. A necessary

condition for solving it is

M ≥ O

T
(2.6)

which coincides with the condition in (2.3) for T = 1. For T ≥ 2 however, it improves

upon (2.3) if probing over multiple time instances is allowed. In [12], we have derived

conditions under which the P2L task recovers non-metered loads for T = 2. The analysis

there was further confined to non-phasor grid data {(ut
n, p

t
n, q

t
n)}n∈M,t∈T and radial grids. The

conference work of [11] extended the previous claims (without proofs) to meshed networks.

Here, we broaden the scope to study the identifiability of the P2L task with phasor data

{(ut
n, θ

t
n, p

t
n, q

t
n)}n∈M over T , and show that the analysis with non-phasor data can be seen

as a special case of the former [13].



2.3 Identifiability of P2L with Phasor Data

As customary in identifiability analysis, data will be assumed noiseless; noisy data are con-

sidered in Chapter 3.2 [14]. The relationship between the inputs {ut
n, θ

t
n, p

t
n, q

t
n}n∈M and the

outputs {ptn, qtn}n∈O of the P2L task is implicit since the PF equations involve {vt}Tt=1 as

nuisance variables. Because of this, P2L is tackled in two steps. The first step of finding

{vt}Tt=1 is the challenging one. In the second step, one simply evaluates (pn(vt), qn(vt)) for

all n ∈ O and t = 1. For numerical stability, one can recover the unknown injections by

averaging as 1
T

∑T
t=1 pn(vt) and 1

T

∑T
t=1 qn(vt) for all n ∈ O. Hence, if the system states

{vt}Tt=1 can be recovered by solving (2.2) and (2.4), the P2L task is deemed successful.

Granted the P2L equations are non-linear, identifiability can be ensured only within a neigh-

borhood of the nominal {vt}Tt=1. Upon invoking the inverse function theorem, a necessary

and sufficient condition for locally solving P2L is that the Jacobian matrix J ({vt}) related

to the nonlinear equations of (2.2) and (2.4) is full rank. Because J ({vt}) depends on {vt},

characterizing its column rank for any {vt} is challenging.

To tackle this issue, we resort to the generic rank of a matrix defined as the maximum

possible rank attained if the non-zero entries of the matrix are allowed to take arbitrary

real values [82], [80]. If the generic rank of an M × N matrix E with M ≥ N equals N ,

matrix E is said to be of full generic rank. The generic rank of a matrix is related to a graph

constructed by the sparsity pattern of the matrix, that is the locations of its (non)-zero

entries. To explain this link, some graph-theoretic concepts are needed.

A graph G = (N ,L) is bipartite if N can be partitioned into disjoint subsets N1 and N2,

such that N = N1 ∪ N2, and every ` ∈ L connects a node in N1 to a node in N2. A subset

of edges L′ ⊆ L is termed a perfect matching of N1 to N2, if every vertex in N1 is incident

to exactly one edge in L′. The degree δn(G) of node n is defined as the number of edges



Figure 2.2: The sparsity pattern of E and its bipartite graph GE: Column nodes are linked
to row nodes depending on the entries of E. The perfect matching is marked in red. From
Lemma 2.6, any matrix with this sparsity pattern is generically full rank. Had E4,3 = 0, no
perfect matching would exist.

incident to node n in G. Given a matrix E ∈ RM×N , construct a bipartite graph GE having

M +N nodes: Each column of E is mapped to a column node and each row of E to a row

node. An edge runs from the n-th column node to the m-th row node only if Emn 6= 0; see

Fig. 2.2. Based on GE, we will use next claim.

Lemma 2.6 ([82], [80]). An M×N matrix E has full generic rank if and only if the bipartite

graph GE features a perfect matching from the column nodes to its row nodes.

According to Lemma 2.6 (proved in [80, Th. 12.10]), the generic identifiability of P2L relies on

the sparsity pattern of J ({vt}). The goal is to match every column node (state) of J ({vt})

to a unique row node (equation). The non-zero entries of J ({vt}) are the available links.

To characterize the sparsity pattern of J ({vt}), consider the Jacobian matrices

Ju(v)=
[
2 dg(vr) 2 dg(vi)

]
(2.7a)

Jθ(v)=
[
2 dg( vi

v2
r+v2

i
) 2 dg( −vr

v2
r+v2

i
)

]
(2.7b)

Jp(v)=

−G dg(vr)−B dg(vi) −G dg(vi)+B dg(vr)

− dg(Gvr)+ dg(Bvi) − dg(Bvr)− dg(Gvi)

 (2.7c)

Jq(v)=

 B dg(vr)−G dg(vi) B dg(vi)+G dg(vr)

+ dg(Bvr)+ dg(Gvi) − dg(Gvr)+ dg(Bvi)

 (2.7d)



associated accordingly with the squared voltage magnitudes and voltage angles, and the

(re)active power injections over all buses. Matrix J ({vt}) consists of stacked row-sampled

submatrices of Ju(vt), Jθ(vt), Jp(vt), and Jq(vt) corresponding to (2.2) and (2.4) for t ∈ T .

The matrices obtained by selecting the rows of Ju(vt) associated with buses in M and O

are respectively denoted by Ju
M(vt) and Ju

O(vt). Similar notation is used for Jθ(vt), Jp(vt),

and Jq(vt). Let us define

JM(vt) :=



Ju
M(vt)

Jθ
M(vt)

Jp
M(vt)

Jq
M(vt)


and JO(vt) :=

 Jp
O(vt)

Jq
O(vt)

 .

Every JM(vt) corresponds to 4M metering equations, and every JO(vt) to 2O coupling

equations. Having defined JM(vt) and JO(vt), the entire Jacobian matrix J ({vt}) can be

row-permuted as



JM(v1) 0 0 · · · 0

JO(v1) −JO(v2) 0 · · · 0

0 JM(v2) 0 · · · 0

0 JO(v2) −JO(v3) · · · 0

0 0 JM(v3) · · · 0
... ... ... . . . ...

0 0 0 · · · −JO(vT )

0 0 0 · · · JM(vT )



. (2.9)

This row-permuted version of J ({vt}) will be denoted by J̃ ({vt}), and has been obtained

by interleaving block rows of metering and coupling equations.



Matrix J̃ ({vt}) features the sparsity pattern of a block tridiagonal matrix. To reveal this

structure, split each block row of coupling equations into two block rows. The top block row

will be grouped with the previous block row of metering equations. The bottom block row

will be grouped with the next block row of metering equations as in Fig. 2.3.

Focus now on the blocks lying on the main diagonal of J̃ ({vt}). These blocks will be denoted

by J̃t(vt) for t ∈ T . If for each J̃t(vt), its columns can be perfectly matched to its rows, then

a perfect bipartite matching for the entire J̃ ({vt}) has been obtained. Then, Lemma 2.6

guarantees that J̃ ({vt}) and J ({vt}) are generically full rank.

Our goal is to assign coupling equations to blocks so that every block J̃t(vt) enjoys a perfect

bipartite matching. There are 2O(T − 1) coupling equations to be assigned to T blocks. A

uniform allocation should assign 2O(T−1)
T

coupling equations per block. With this allocation,

block t will have 4M metering equations and 2O(T−1)
T

coupling equations over its 2(N +1) =

2M + 2O states in vt. For a perfect bipartite matching to exist, we need 4M + 2O(T−1)
T

≥

2M + 2O.

The last requirement coincides with the necessary condition of (2.6) for T ≥ 2; but it is

not enough: Every coupling equation can be assigned to exactly one between two specific

blocks; see Fig. 2.3. For example, a coupling equation in the block row involving JO(v2)

and −JO(v3) can be grouped either with JM(v2) or JM(v3). Partitioning the coupling

equations into groups of 2O(T−1)
T

while adhering to the latter requirement is the crux of the

identifiability analysis. To allocate coupling equations, let us first define the bipartite grid

graph Gb.

Definition 2.7 (Bipartite grid graph). Consider the graph obtained from G upon maintain-

ing only the edges between M and O. Replicate the node set M to form M′, and connect

the nodes in M′ to nodes in O by replicating the M–O edges. The obtained bipartite graph

will be denoted by Gb.



Figure 2.3: Sparsity pattern of J̃ ({vt}) [cf. (2.9)] (left panel). Block tridiagonal J̃ ({vt})
revealed after splitting each block row of coupling equations (right panel).

The identifiability of P2L relies on a matching in Gb.

Theorem 2.8. If O can be partitioned into {Ōk}dT/2e
k=1 so that each one of them independently

can be perfectly matched to M∪M′ on Gb, the Jacobian matrix J ({vt}) related to the P2L

task with phasor data is generically full rank.

In essence, Theorem 2.8 provides sufficient conditions for successful probing. The proof of

Theorem 2.8 relies on two lemmas shown next: Lemma 2.9 provides sufficient conditions

for the coupling equations assigned to block t, so that J̃t(vt) enjoys a bipartite matching.

Lemma 2.10 explains when these conditions can be met simultaneously for all t ∈ T . The

analysis uses the concept of a multi-set. Different from a conventional set that contains

unique elements, a multi-set is allowed to have multiple instances of elements. For example,

we will override the definition of set union, so that {a, b} ∪ {a, b} does not yield {a, b}, but

the multi-set {a, a, b, b}.

Lemma 2.9. Partition O into Ot∪Ōt so that |O∪Ot| = 2O(T −1)/T . Assume block J̃t(vt)

is assigned some coupling equations related to O∪Ot. If the vertices in Ōt can be matched to

the vertices in M∪M′ on Gb, the block J̃t(vt) features a bipartite matching from its columns

to its rows.



Proof. It can be easily verified from (2.7) that the sparsity patterns of Ju(vt) an Jθ(vt)

coincide with the sparsity pattern of [IN+1 IN+1]. The sparsity patterns of Jp(vt) and Jq(vt)

coincide with the sparsity pattern of [G G] where G is the bus conductance matrix; see [40,

Table 3.2]. From (2.9), the sparsity pattern of J̃t(vt) is



IM,N+ IM,N+

IM,N+ IM,N+

GM,N+ GM,N+

GM,N+ GM,N+

GO,N+ GO,N+

GOt,N+ GOt,N+


(2.10)

where the first block row relates to voltage magnitudes; the second to voltage angles; the

third and fourth to probing injections; while the fifth and sixth to coupled injections.

To create a bipartite matching for block J̃t(vt), unfold the sparsity pattern in (2.10) column-

wise using N+ = M∪O as



IM,M IM,O IM,M IM,O

IM,M IM,O IM,M IM,O

GM,M GM,O GM,M GM,O

GM,M GM,O GM,M GM,O

GO,M GO,O GO,M GO,O

GOt,M GOt,O GOt,M GOt,O


. (2.11)

The first block column in (2.11) relates to variables {vtr,n}n∈M, and can be matched to the

first block row via IM,M. Similarly, the third block column relates to variables {vti,n}n∈M,

and can be matched to the second block row. The second block column relates to variables



{vtr,n}n∈O, and can be matched to the fifth block row via the main diagonal of GO,O.

To achieve a bipartite matching, the fourth block column related to variables {vti,n}n∈O has

to be matched to the union of the third, fourth, and sixth block rows. Lacking a simple

diagonal matching now, we leverage the sparsity pattern of G. It suffices to match the

column nodes in O to the row nodes in M ∪ M ∪ Ot. Because O = Ot ∪ Ōt, the column

nodes Ot can be matched to the row nodes Ot via some diagonal entries of GOt,O. Then, the

column nodes Ōt have to be matched to the row nodes M∪M. This can be accomplished

based on the hypothesis of this Lemma, thus completing its proof.

Lemma 2.10. Under the condition of Theorem 2.8, the coupling equations for two successive

blocks J̃t(vt) with t = 2k − 1 and t = 2k share the same sparsity pattern of O ∪ Ok for

k = 1, . . . , dT/2e.

Proof. The pair of blocks J̃2k−1(v2k−1) and J̃2k(v2k) will be jointly indexed by k. Define also

Rk :=
k⋃

τ=1

Ōτ . (2.12)

In addition to the claim of this lemma, we will also prove that when passing from pair k− 1

to pair k, a set of coupling equations represented by Rk−1 ∪Rk−1 have not been assigned to

block 2k − 2, and are free to be assigned to block 2k − 1.

Proving by induction, we start with the base case. The pair indexed by k = 1 consists

of J̃1(v1) and J̃2(v2). The active and reactive equations coupling these two blocks can be

represented by O ∪ O = O1 ∪ O1 ∪ Ō1 ∪ Ō1. Let us assign O1 ∪ O1 ∪ Ō1 to block 1. With

this assignment, the coupling equations for J̃1(v1) get the sparsity pattern of O ∪ O1. The

remaining coupling equations in Ō1 are assigned to block 2.

Block 2 shares with block 3 the coupling equations O ∪ O, which are again expressed as



O1 ∪ O1 ∪ Ō1 ∪ Ō1. From this new set of coupling equations, assign O1 ∪ O1 to block 2.

Hence, the coupling equations for J̃2(v2) have the sparsity pattern of O1∪O1∪Ō1 = O∪O1.

The unused coupling equations are represented by Ō1 ∪ Ō1 = R1 ∪R1.

Suppose the claim holds for the block pair k − 1. It is next shown that the claim holds for

the block pair k consisting of blocks 2k− 1 and 2k. Starting with the odd block 2k− 1, the

unused equations Rk−1 ∪ Rk−1 that couple blocks 2k − 2 and 2k − 1 are assigned to block

2k−1. Block 2k−1 is also coupled to block 2k via O∪O equations, which can be expressed

as Ok ∪Ok ∪Ōk ∪Ōk. The key point here is that by the definition of Rk−1 and because Ōk’s

are mutually exclusive by the hypothesis of this lemma, it holds that

Rk−1 ∩ Ōk = ∅ and Rk−1 ⊂ O, so that Rk−1 ⊆ Ok.

Therefore, the set Ok can be partitioned into Rk−1 and Ok \ Rk−1. From the equations

coupling blocks 2k− 1 and 2k, the equations (Ok \Rk−1)∪ (Ok \Rk−1)∪ Ōk are assigned to

block 2k − 1. In this way, the coupling equations for block 2k − 1 have the sparsity pattern

Rk−1 ∪Rk−1︸ ︷︷ ︸
with block 2k − 2

∪ (Ok \ Rk−1) ∪ (Ok \ Rk−1) ∪ Ōk︸ ︷︷ ︸
with block 2k

= O ∪Ok.

The unused equations coupling blocks 2k − 1 and 2k are Rk−1 ∪Rk−1 ∪ Ōk.

Moving to block 2k of pair k, the unused equations Rk−1∪Rk−1∪Ōk coupling block 2k with

block 2k − 1 are assigned to block 2k. Block 2k is also coupled with block 2k + 1 through

O ∪ O = Ok ∪ Ok ∪ Ōk ∪ Ōk. From this new set of coupling equations, assign equations

(Ok \Rk−1)∪(Ok \Rk−1) to block 2k. Hence, the coupling equations assigned to block 2k−1



Figure 2.4: Matchings on the IEEE 34-bus grid for T = 4 and O = 6 for the P2L task with
phasor data.

have the sparsity pattern

Rk−1 ∪Rk−1 ∪ Ōk︸ ︷︷ ︸
with block 2k − 1

∪ (Ok \ Rk−1) ∪ (Ok \ Rk−1)︸ ︷︷ ︸
with block 2k + 1

= O ∪Ok.

The unused equations coupling blocks 2k and 2k + 1 are

Rk−1 ∪Rk−1 ∪ Ōk ∪ Ōk = Rk ∪Rk.

For the last block pair, the coupling equations already assigned to block T − 1 have the

sparsity pattern O ∪OT/2. The last block T differs from the previous blocks as it only gets

the RT/2−1 ∪RT/2−1 ∪ ŌT/2 unused coupling equations between blocks T − 1 and T . Under

the condition of Th. 2.8, RT/2−1 ∪ ŌT/2 = O and because O = OT/2 ∪ ŌT/2, we also have

RT/2−1 = OT/2. Hence, the sparsity pattern of the last block is also given by O ∪ OT/2.

Since every pair of successive blocks has the same structure, the diagonal blocks of J̃ ({vt})

will exhibit dT/2e distinct sparsity patterns.



Algorithm 1 Test for Successful Probing (phasor data)

1: Assign unit capacity to edges in Gb to define graph G̃b.
2: In G̃b, add source node ns, and connect it to all nodes in O. These edges are assigned

unit capacity.
3: In G̃b, add destination node nd, and connect it to all nodes in M∪M′.
4: Initialize T = 2.
5: while T ≤ Tmax do
6: The edges running between M∪M′ and nd are assigned capacities of T/2.
7: Run a max-flow problem between ns and nd.
8: if obtained ns–nd flow equals O then
9: return Probing setup is deemed successful for T .

10: else
11: T := T + 2
12: end if
13: return Probing setup is deemed unsuccessful.
14: end while

Theorem 2.8 follows as a direct consequence of Lemmas 2.9 and 2.10. To simplify the ex-

position, we will henceforth assume even T . To appreciate the conditions of Theorem 2.8,

examine the probing setup, that is the placement of non-metered and probed buses, of Fig-

ure 2.4. The black circles denote the copies M′ of nodes in M, and the dashed red lines

show the added edges from O to M′. The operator needs to infer the loads at the O = 6

non-metered buses marked by red diamonds. To study if probing this feeder over T = 4 slots

is successful, the set O has to be partitioned into two subsets O1 and O2, so that the buses

of each subset are matched to buses in M∪M′ on Gb. The orange and blue arrows show

precisely these matchings. If the feeder were to be probed over T = 2 slots instead, probing

would fail since buses {8, 11, 12} cannot be uniquely matched to any buses in M∪M′.

As illustrated through this example, to check the condition of Theorem 2.8 for a particular

(O,M) probing setup, first one has to construct the bipartite graph Gb from G. Then, given

a number of probing actions T : i) the set O has to be partitioned into the subsets {Ōk}T/2
k=1;

and ii) the nodes within each Ōk have to be mapped to the nodes in M∪M′ on Gb. Albeit



these steps may seem computationally hard, they can be solved by a linear program as

detailed in Algorithm 1.

Given a probing setup, Algorithm 1 finds the maximum flow between nodes ns and nd over

graph G̃b constructed from Gb. The edges in G̃b are organized in three layers: The edges

of the first layer connect ns to O and have unit capacities. The edges of the second layer

connect O to M∪M′ and have unit capacities as well. The edges of the third layer connect

M∪M′ to nd and have capacities of T/2. This is to ensure that each node in M∪M′ is

mapped to at most T/2 nodes in O through the second layer. If the maximum ns–nd flow

equals O, all first-layer edges have been used to their capacity to map every node in O to

exactly one node in M∪M′.

The max-flow problem can be solved using the Ford-Fulkerson algorithm, whose complexity

scales linearly with the number of graph nodes and edges [35]. Moreover, if all edge capacities

are integers, the algorithm finds an integral maximal flow. If the maximum ns–nd flow is

smaller than O, there is no matching for the tested T . Then, the edge capacities at the third

layer can be increased and the process is repeated. Theorem 2.8 asserts that the chances of

successful probing improve for larger T . This is because progressively smaller subsets of O

need to be mapped to M∪M′. Yet this gain in T is limited by the bus placement (M,O)

as quantified next.

Lemma 2.11. If δM is the maximum node degree over M on G̃b, a probing setup with phasor

data cannot turn into successful beyond Tmax = δM − 1.

Proof. Consider node m ∈ M in G̃b with degree δm. This node is connected to node nd

via an edge having capacity T/2, and to δm − 1 nodes in O via unit-capacity edges. The

maximum flow that can pass through the second-layer edges to m is δm − 1. This flow will

be funneled through edge (m,nd). Then, there is no advantage for this edge to have capacity



larger than δm − 1, so that T/2 ≤ δm − 1. Considering all m ∈ M∪M′, there is no point

in testing for values of T beyond T ≤ 2(δM − 1).

The bound can be improved, since the previous argument assumed that all δm − 1 edges

between O and m ∈ M have reached their capacity. That will not happen since the O

nodes adjacent to m on the feeder, can be shared between m and its copy m′ ∈ M′ on G̃b.

Hence, the flow passing jointly through m and m′ cannot exceed δm − 1. Then, the capacity

of edge (m,nd) plus the capacity of edge (m′, nd) can be safely limited to δm − 1, implying

T ≤ δm − 1.

Lemma 2.11 implies that increasing T beyond Tmax has no hope in making probing successful

for a specific placement, and Algorithm 1 terminates with a negative answer. Once a (M,O)

placement is deemed successful, there are two questions to be answered: i) how to select

probing injections; and ii) how to recover the non-metered loads. Both questions along with

numerical tests are deferred to Chapter 3.2.

2.4 Identifiability of P2L with Non-phasor Data

Since PMUs have limited penetration in distribution grids, requiring voltage phasor data at

probing buses may be unrealistic. This section studies probing with non-phasor data.

Definition 2.12 (P2L task with non-phasor data). Given Y and probing data (ut
n, p

t
n, q

t
n)

for n ∈ M and t ∈ T , the P2L task entails solving the equations in (2.2a), (2.2c) and (2.2d)

for t ∈ T , jointly with the coupling equations in (2.4).

A simple count of equations and unknowns dictates M ≥ 2O
T

, which is clearly more restrictive

than (2.6). We next provide a sufficient condition under which this task is solvable.



Figure 2.5: Matchings on the IEEE 34-bus grid for T = 6 and O = 21 for the P2L task with
non-phasor data.

Theorem 2.13. If O can be partitioned into {Ōk}dT/2e
k=1 such that each one of them indepen-

dently can be perfectly matched to M on G, the Jacobian matrix J ({vt}) related to the P2L

task with non-phasor data is generically full rank.

Dropping the voltage angle metering equations, matrix JM(vt) in (2.9) is replaced by

JM(vt) :=


Ju
M(vt)

Jp
M(vt)

Jq
M(vt)

 .

Similar to Theorem 2.8, it is not hard to see that the nodes in Ōt have to be matched to the

nodes in M, rather than M∪M′.

Consider for example the probing setup of Figure 2.5. To infer the loads at O = 21 non-

metered buses with T = 6 probing slots, the set O has to be partitioned into three subsets

O1, O2, and O3, so that the buses of each subset are matched to M. The orange, blue, and

purple arrows in the figure show these matchings. Because non-metered buses are divided

into three subsets, up to three non-metered buses can be matched to the same probed bus.



Algorithm 2 Test for Successful Probing (non-phasor data)
1: Connect ns to all nodes in O with unit-capacity edges.
2: Connect O to M based on G with unit-capacity edges.
3: Connect all nodes in M to nd.
4: Initialize T = 2.
5: while T ≤ Tmax do
6: Assign capacity T/2 to edges between M and nd.
7: Run a max-flow problem between ns and nd.
8: if obtained ns–nd flow equals O then
9: return Probing setup is deemed successful for T .

10: else
11: T := T + 2
12: end if
13: return Probing setup is deemed unsuccessful.
14: end while

For example, buses {14, 17, 18} are all matched to the probed bus 16. Probing the same

feeder over T = 2 or T = 4 rather than T = 6 slots would fail.

The condition of Theorem 2.13 can be easily tested by Algorithm 2 and up to the value of

Tmax provided next.

Corollary 2.14. If δM is the maximum degree of the nodes in M on the graph constructed

by Alg. 2, a probing setup with non-phasor data cannot turn into successful beyond Tmax =

2(δM − 1).

Corollary 2.14 is proved as part of the proof of Lemma 2.11. Compared to Theorem 2.13, the

condition of Theorem 2.8 provided more flexibility towards attaining a bipartite matching

since probed buses can be used twice. If a probing setup is successful for non-phasor data,

it is also successful for phasor data. Interestingly, the matchings in Theorems 2.8 and 2.13

depend solely on the sparsity pattern of G and the probing setup, so the claims here apply

to even meshed (e.g., multiphase) grids.



2.5 Single-Slot Probing

The analysis so far depends on assumption a2) of constant-power loads. Under the ZIP load

model of (2.5), the coupling equations in (2.4) are no longer valid, and thus, the metering

equations decouple across T . Can the non-metered loads pn+jqn for n ∈ O still be recovered

upon collecting data on M? This answer can be on the affirmative with single-slot probing,

that is T = 1. Leveraging the tools of Sections 2.3 and 2.4, we next study the observability of

single-slot probing. The ensuing two results provide conditions for successful load recovery

using (non)-phasor data.

Theorem 2.15. If each bus in O can be matched to one unique bus in M on G, the Jacobian

matrix J(v1) related to single-slot probing (T = 1) with phasor data has full generic rank.

Proof. The sparsity pattern of J(vt) can be derived from (2.10)–(2.11) by eliminating the

blocks related to coupling equations



IM,M IM,O IM,M IM,O

IM,M IM,O IM,M IM,O

GM,M GM,O GM,M GM,O

GM,M GM,O GM,M GM,O


. (2.14)

Variables {vtr,n}n∈M corresponding to the first block column and {vti,n}n∈M to the third

block column can be matched respectively to the first and second block row via IM,M. To

complete the bipartite matching, the second and fourth block columns (variables {vtr,n}n∈O

and {vti,n}n∈O) can be matched to the third and fourth block rows, accordingly. Hence, J(vt)

is generically full rank if there exists a perfect matching in GM,O, that is every non-metered

node in O is mapped to a unique node in M; see also Lemma 2.6.



Theorem 2.16. If each bus in O can be matched to two unique buses in M on G, the Jacobian

J(v1) related to single-slot probing (T = 1) with non-phasor data has full generic rank.

Proof. Given non-phasor data, the second block row related to voltage angles in (2.14) is

dropped. Following the arguments to the proof for Theorem 2.15, matrix J(vt) can be shown

to be generically full rank if there exists a perfect matching in GM,(O∪O), that is every node

in O is mapped to two unique nodes in M; see also Lemma 2.6.

The conditions of Th. 2.15 and 2.16 can be tested by Algorithm 2 by fixing T = 2 and T = 1,

respectively. Figure 2.6 shows successful placements per Theorems 2.15 and 2.16.

If the conditions of Th. 2.15 and 2.16 are met, the non-metered loads pn+ jqn for n ∈ O can

be recovered using single-slot probing, regardless if these loads are constant-power or not.

However, the operator may also want to estimate their ZIP parameters in (2.5). Estimating

these parameters directly with multi-slot probing becomes complicated. Instead, one could

adopt multi-slot probing in a two-step process as follows: First, the feeder is probed over T

with |T | = T > 3. Under Th. 2.15 and 2.16, the operator obtains estimates (ût
n, p̂

t
n, q̂

t
n) for

all non-metered buses n ∈ O and t ∈ T . Secondly, the ZIP parameters for active load n can

be estimated through the least-squares (LS) fit

[α̂pn β̂pn γ̂pn ]
> := (Û>

n Ûn)
−1Û>

n p̂n (2.15)

where p̂n := [p̂1n . . . p̂Tn ]
> and the t-th row of matrix Ûn is [(ût

n)
2 ût

n 1] for t = 1, . . . , T .

Similar LS fits can be performed for the reactive ZIP load parameters. A major concern here

is that all entries of the Vandermonde matrix Ûn are close to unity in compliance with voltage

regulation. For T = 3, the determinant of Ûn is calculated as (û1
n−û2

n)(û
1
n−û3

n)(û
2
n−û3

n) [47],

which yields |Ûn| = −2 · 10−3 even for bus voltages as widely spread as û1
n = 0.9, û2

n = 1.0,
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Figure 2.6: Matchings on the IEEE 34-bus grid for single-slot probing (T = 1) with: non-
phasor data and O = 8 (top panel); phasor data and O = 14 (bottom panel). Single-slot
probing waives assumption a2) on exclusively constant-power loads.

and û3
n = 1.1. This reveals that the task of estimating ZIP parameters from voltage/power

data is ill-posed. This is germane to the task itself rather than the method (here probing)

used to collect the data.

Finally, note that Th. 2.15 and 2.16 hold even when data are not collected via probing,

e.g., smart meter data. Therefore, our observability analysis covers the general setup where

voltage and active/reactive power data or specifications are given only for M. Under the

linearized power flow model similar conditions were derived in [10] for radial grids. Note that



the tools and analysis presented in this chapter can be easily applied to check observability

of networks with different measurement types. In fact, the presented framework can be

also be utilized to derive the traditional topological observability conditions for transmission

systems [1].

2.6 Conclusions

In this chapter we presented the novel technique of intentionally probing an electric grid using

inverters to recover non-metered loads. The technique leverages the actuation capabilities

of smart inverters, the data collected at probed buses, and the stationarity of non-metered

loads, to formulate a power flow problem coupled over multiple times. We provided sufficient

conditions for solvability that can be easily verified by solving a max-flow problem on a

grid graph to test if a probing placement is successful. Beyond probing, we also cast the

pertinent task of finding loads using data from a subset of buses as a special case. Assuming

a probing setup satisfies these conditions, we explore next how inverter probing setpoints can

be designed to improve load estimation accuracy while adhering to grid safety requirements.



Chapter 3

Probing Injection Design and Solvers

3.1 Introduction

Chapter 2 put forth the novel data acquisition scheme of probing-to-learn (P2L). The P2L

scheme leverages smart inverters to probe an electric grid with the purpose of finding the

values of non-metered loads. It also provided conditions under which a particular probing

setup is successful. In particular, it was shown that given the feeder graph G, the locations of

non-metered buses O and probing buses M, and the number of probing actions T , a simple

linear program could tell whether non-metered loads could be recovered or not. Assuming

noiseless data, this test relied on the generic rank of the Jacobian matrix J ({vt}) related to

the P2L equations. It is thus a topological rather than a numerical observability guarantee

[40, Ch. 4.6].

Even for the standard PF and power system state estimation (PSSE) setups, topological

observability relates to the sparsity structure of the associated Jacobian matrix. This struc-

ture alone however cannot adequately capture the numerical column rank of the Jacobian

matrix. There exist specification or measurement sets whose Jacobian is full column-rank

in general, but becomes ill-conditioned or even singular under specific state values (includ-

ing the boundaries for voltage collapse); see e.g., [40, Ch. 10]. In addition, once a probing

setup is deemed topologically observable, the power injections of probing inverters could be

judiciously selected to improve load or state estimates. This is challenging since P2L is an

35



implicit nonlinear identification task, and probing injections should be comply to network

constraints without knowing the non-metered loads.

The contribution of this chapter is on two practical aspects of grid probing. First, a system-

atic approach to design probing setpoints that conform to grid safety and improve numerical

accuracy is developed in Section 3.2. Second, the proposed P2L task is tackled through SDP-

based solvers presented in Section 3.3. The conditions of Chapter 2 along with the probing

setpoint design and the solver, are numerically validated using actual residential load data

from the Pecan Street project on the IEEE 34-bus benchmark feeder in Section 3.4. Con-

clusions and current research efforts are outlined in Section 3.5.

3.2 Designing Probing Setpoints

Suppose probing has been deemed successful for a particular (M,O) placement of probed and

non-metered buses, i.e., the setup (M,O) has passed the test of Algorithm 1 or 2. The next

question is how to select probing setpoints that are implementable by inverters; compliant

to feeder constraints; and at the same time, improve estimation accuracy. This chapter deals

with the design of inverter setpoints during probing interval T with slots t = 1, . . . , T , for a

given T .

To facilitate the exposition, let us stack the power injections at all probing buses {(pn, qn)}n∈M

in vectors pM, qM, and sM := [p>
M q>

M]>. Likewise, the injections at all non-metered buses

{(pn, qn)}n∈O are collected in pO, qO, and sO := [p>
O q>

O]
>. The injections at slot t will be

denoted by a superscript t.

In search of a meaningful metric to design the probing injections {stM}Tt=1, one could consider

the minimum mean square estimation error for non-metered loads sO or states {vt}Tt=1. The



former is hard to derive given the implicit estimation task involved. The latter exhibits

the Cramer-Rao lower bound (CRLB) of [J> ({vt})J ({vt})]−1; a proof for this CRLB can

be obtained by adopting the result in [84]. Since J ({vt}) depends linearly on {vt}Tt=1, the

CRLB depends inverse quadratically on the unknown states.

To arrive at a practical solution, we resort to selecting probing setpoints so that the elec-

tric grid is driven to the most diverse states {vt}Tt=1 while abiding by inverter and feeder

operational constraints. We conjecture that probing the grid to effect larger state variations

across T would yield smaller condition numbers for J ({vt}) and J> ({vt})J ({vt}).

Hence, the goal is to design {stM}Tt=1 that yield the most diverse system states {vt}Tt=1. Since

the system states depend on both {stM}Tt=1 and the unknown sO in a non-linear fashion,

our design adopts a linearized power flow model. The latter can be obtained by taking the

first-order Taylor’s series approximation of the PF equations with respect to nodal voltages

expressed in polar coordinates [16], [27]. Unless a reference system state is available, the

linearization occurs at the flat voltage profile of ṽ = u01 + j0, and yields the so termed

linearized distribution flow (LDF) model [8], [27], which can be rearranged for our analysis as

y :=

u − u01

θ

 =

K L

M N


sM

sO

 . (3.1)

The vectors u and θ collect the voltage magnitudes and angles at all buses excluding the

substation; and matrices (K,L,M,N) depend on the bus admittance matrix Y; see [27],

[21]. Armed with a linear mapping between power injections and voltages, the design of

setpoints {stM}Tt=1 is accomplished next in three steps.



3.2.1 Library of Inverter Implementable Probing Setpoints

The first step of the setpoint design builds a library S of K � T candidate injection vectors

indexed by k

S := {skM}Kk=1. (3.2)

The entries of each skM should be implementable, in the sense that each probing inverter

should be able to inject the requested value of complex power.

To characterize the allowable range of inverter injections (pn, qn) with n ∈ M, two inverter

classes are identified. The first class consists of inverters interfacing solar panels. When

inverter n interfaces a solar panel, its complex injection is limited by its apparent power

capacity s̄n as

p2n + q2n ≤ s̄2n. (3.3)

Moreover, if the maximum active power that can be generated given the solar irradiance at

the current probing period is p̄n, then its active power injection is limited by

0 ≤ pn ≤ p̄n. (3.4)

The second class consists of inverters interfacing energy storage units. The apparent power

constraint of (3.3) should still be enforced. If the power rate of energy storage unit n is p̄n,

the active injection from inverter n should lie within

− p̄n ≤ pn ≤ p̄n (3.5)

since the battery can be charged or discharged. Given the short duration of probing, limits

on the state of charge have been ignored for simplicity.



Given the limitations for each inverter class, a candidate probing injection skM ∈ S can be

constructed by sampling uniformly at random pkn within (3.4)–(3.5) for all n ∈ M. Upon

fixing active injections, the reactive injections can be sampled again uniformly at random

within |qkn| ≤
√

s̄2n − (pkn)
2 to comply with (3.3). Scenarios where a single bus hosts multiple

inverters belonging to the previous two or additional classes can be incorporated in the

sampling process.

As explained in Remark 2.1, a probing bus n ∈ M may be hosting controllable inverters and

non-controllable assets (non-probing inverters and non-controllable loads). The process of

sampling implementable injections through (3.3)–(3.5) can be repeated for all controllable

inverters. The net injection from non-controllable assets is assumed to be metered; that

is the case for the Pecan Street dataset [67]. The complex powers injected into bus n are

summed up and used in the P2L. To keep the notation uncluttered, we will slightly abuse

notation and denote this net injection at bus n as pn + jqn.

The sampling process is repeated K times to construct library S. Although each candidate

probing vector skM ∈ S can be implemented by inverters, the aggregate effect of probing

injections may be violating feeder constraints. To handle this concern, we next reduce

library S to only those probing injections abiding by feeder constraints.

3.2.2 Maintaining only Network-Compliant Probing Setpoints

Even though a probing action lasts for one second or two, the operator may still want to

guarantee that it does not violate any feeder constraints. For example, voltage regulation

standards dictate voltage magnitudes to remain within a pre-specified range as u ≤ un ≤ u

for all n ∈ N+. A probing injection vector skM ∈ S is deemed network-compliant if the

incurred voltage deviations are maintained within the allowable range u1 ≤ u − u01 ≤ u1



with the inequalities applied entry-wise. Thanks to (3.1), these voltage constraints can be

expressed as linear inequality constraints on skM

u1 ≤ KskM + LsO ≤ u1. (3.6)

One cannot directly check whether skM is network-compliant, since sO is unknown. To bypass

this complication, non-metered loads are assumed to lie within a known range

sO ≤ sO ≤ sO. (3.7)

The bounds (sO, sO) can be derived from historical data, the confidence intervals of load

forecasts, or the load estimates obtained during the previous probing period.

Adopting a robust design, we would like to comply with the voltage constraints in (3.6) for

all possible values of non-metered loads in (3.7). To do so, we leverage the next version of

Farka’s lemma on the containment of polytopes.

Lemma 3.1 ([30], [59], [86]). The non-empty polytope P1 := {x : Ax ≤ b} with A ∈ RM×N

is contained within the polytope P2 := {x : Cx ≤ d} with C ∈ RK×N if and only if there

exists matrix E ≥ 0 satisfying EA = C and Eb ≤ d.

Based on Lemma 3.1, to ensure that the polytope over sO defined in (3.7) is contained within

the polytope of (3.6), we need to solve the feasibility problem

find E (3.8)

s.to E ≥ 0

E

 −I2O

I2O

 =

 −L

L


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Figure 3.1: Percentage of candidate vectors that violate (3.6) for varying voltage bounds.
The percentage of non-admissible vectors decreases with smaller load uncertainty and/or
looser voltage regulation bounds.

E

 −sO

sO

 ≤

 KskM + (u0 − u)1

−KskM − (u0 − u)1

 .

Given skM, if the linear program in (3.8) is feasible, the candidate vector skM is deemed

network-compliant and is copied to the reduced library Sr. Otherwise, the candidate vector

is not copied to Sr since there exist load values within [sO, sO] that violate the voltage

constraints in (3.6). The test of (3.8) is repeated for all skM ∈ S to get the reduced library

Sr := {s`M}L`=1 of L candidate injection vectors with L ≤ K.

To demonstrate the importance of this library reduction step, we ran a numerical test on

the IEEE 34-bus feeder for T = 4 and O = 10; see Fig. 3.1. Load uncertainty in (3.7) was

confined within sO = (1 − 1
γ
)sO and sO = (1 + 1

γ
)sO for γ > 0. The candidate inverter

injections in S were randomly drawn from ±0.2 pu and tested against (3.8). For increasing

γ, the uncertainty bounds in (3.7) became tighter and progressively more candidate vectors

were rendered admissible. Even for loose voltage regulation limits of ±10% and tight load

uncertainty, more than 20% of the candidates in S violated (3.6).



The reduction from S to Sr via (3.8) can be generalized. For example, limits on line and

transformer flows can be expressed as linear functions of power injections and appended

to (3.6). Moreover, correlations in load forecasts across buses, or power factor limitations

applied on a per-bus basis, both can be directly captured as linear inequalities and appended

to (3.7). Finally, if the library has been reduced significantly so that L < T , the operator

could broaden the voltage interval [u, u] and/or tighten the load uncertainty range in (3.6)

if grid probing is still needed to recover non-metered loads.

3.2.3 Finding Probing Setpoints with Most Diverse System States

Given the reduced library Sr = {s`M}L`=1 of implementable and network-compliant candi-

dates, the last step is to select the T candidates yielding the most diverse states. Recall that

the system state v` related to probing injection s`M depends also on the unknown loads sO.

Moreover, the dependence on both s`M and sO is non-linear and implicit. The approximate

LDF model of (3.1) can help us circumvent these technical challenges.

The Euclidean distance between the system states induced by injections s`M, s`′M ∈ Sr will

be surrogated by the Euclidean distance between the approximate states of (3.1) as

‖v` − v`′‖2 ' ‖y` − y`′‖2

for all `, `′ = 1, . . . , L. The latter simplifies as

‖y` − y`′‖2 =

∥∥∥∥∥∥∥
K L

M N



s`M

sO

−

s`′M

sO



∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
K

M

(s`M − s`′M
)∥∥∥∥∥∥∥

2



where we have exploited the linearity in (3.1) together with the fact that non-metered loads

remain roughly invariant during probing. We define the distance between s`M, s`′M ∈ Sr as

d(`, `′) := ‖y` − y`′‖22

= (s`M − s`′M)>(K>K + M>M)(s`M − s`′M). (3.9)

Based on this metric, we would like to select a subset A of T out of the L candidate vectors

in Sr so that the sum of their pairwise distances is maximized

max
A⊂Sr

∑
`∈A

∑
`′∈A

d(`, `′) (3.10)

s.to |A| = T.

The task in (3.10) is known as the max-sum diversity (MSD) problem, and appears frequently

in information retrieval, computational geometry, and operations research [22]. In fact, MSD

can be reformulated as a binary quadratic program (QP) after introducing the L×L distance

matrix D with entries D`,`′ := d(`, `′) as

f ? := max
x∈{0,1}L

x>Dx (3.11a)

s.to x>1 = T. (3.11b)

Despite its simple form, the MSD task is NP-hard [22]. However, thanks to the properties

of D, the problem in (3.11) enjoys a polynomial-time approximate scheme (PTAS) [22].

Although D is indefinite, the objective in (3.11a) can be shown to be concave under constraint

(3.11b). To see this, define the 2N × L matrix Ỹ := [y1 · · · yL] and use the definition of



d(`, `′) to rewrite the objective of (3.11) as

f(x) := x>Dx =
L∑

`=1

L∑
`′=1

x`x`′D`,`′

=
L∑

`=1

L∑
`′=1

x`x`′
(
‖y`‖22 + ‖y`′‖22 − 2y>

` y`′
)

=
L∑

`′=1

x`′‖y`′‖22

(
L∑

`=1

x`

)
+

L∑
`=1

x`‖y`‖22

(
L∑

`′=1

x`′

)

− 2
L∑

`=1

L∑
`′=1

x`x`′y>
` y`′

= 2Tc>x − 2x>Ỹ>Ỹx.

where c := [‖y1‖22 · · · ‖yL‖22]
>. Since Ỹ>Ỹ � 0, the objective f(x) equals a concave

quadratic function.

For moderate L (a few hundreds), the task in (3.11) can be handled by a mixed-integer QP

solver. For T = 2, the MSD solution can be found by an exhaustive search. For larger T ,

we will use a randomized rounding approach, as adopted from [70] in [22, Remark 2]. The

approach is briefly reviewed here for completeness. Its first step solves the relaxed problem

x̂ := arg min
0≤x≤1

2x>Ỹ>Ỹx − 2Tc>x (3.12a)

s.to x>1 = T. (3.12b)

Since the binary constraints of (3.11) are related to box constraints in (3.12), it holds that

f(x̂) ≥ f ?. To construct a point x̃ that is feasible for (3.11), draw L-dimensional vectors

{x̃i} whose entries are independent Bernoulli random variables with mean (1−β)x̂ for some

β > 0, say β = 0.1. The so constructed binary vectors x̃i’s satisfy E[x̃>
i 1] = (1 − β)T and

E[x̃>
i Dx̃i] = (1 − β)2x̂>Dx̂. The purpose of scaling x̂ by (1 − β) is to ensure x̃i’s are both
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Figure 3.2: Histogram of condition numbers for the Jacobian matrix J({vt}4t=1) obtained by
randomly sampling quadruplets of sM’s from Sr.

feasible for (3.11) and yield relatively high cost with significant probability [22].

Let us now comment on the complexity for designing probing setpoints. The first step

described in Section 3.2.1 is computationally inexpensive. The second step of Section 3.2.2

involves solving the linear program in (3.8) K times, once for each candidate setpoint vector.

The third step of Section 3.2.3 entails solving the linearly-constrained quadratic program

of (3.12), whose complexity is cubic in the number of variables L. As detailed later in

Section 3.4, running this design process for the IEEE 34-bus feeder and K = 100 candidate

setpoints took 1− 1.5 min depending on (M,O). The tests were run on a laptop computer

using generic off-the-shelf solvers.

To justify the need for this third step in probing design, we conducted a test on the IEEE

34-bus feeder for T = 4 and O = 6. For this test, load uncertainty was confined within a

factor of ±1 times the nominal loads. Given library S of randomized injections drawn from

±0.2 pu and obeying (3.3)–(3.5), we constructed the reduced library Sr based on (3.8) for

[u, u] = [0.90, 1.10]. We then solved (3.12) and followed the randomized rounding process to

construct 100 binary x̃i’s. We evaluated the cost f(x̃i) for those x̃i’s satisfying x̃>
i 1 = T ,
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and returned the x̃i yielding the largest cost. The condition number of the Jacobian matrix

evaluated at the so obtained x̃i was 3 · 106. We also calculated the condition number of

the Jacobian matrix evaluated at random candidate quadruplets in Sr. The latter condition

numbers ranged within 107 − 109; see Fig. 3.2. Hence, albeit MSD adds computational

complexity, it is an important part of the probing design process.

To show that this MSD step provides diverse system states, we performed another test on

the IEEE 34-bus feeder under the same setup, but for T = 2. The states induced by the

designed probing and nominal loads are shown in Figure 3.3.

Upon solving (3.10) near optimally, we have obtained T probing injection vectors {stM}Tt=1

that are: i) implementable by inverters; ii) network-compliant; and iii) yield diverse system

states. In the process of probing design, the first step (Section 3.2.1) operates on the entries

of stM’s; the second step (Section 3.2.2) considers each vector stM as a whole; and the third

step (Section 3.2.3) accounts for the joint effect of probing injections {stM}Tt=1.



3.3 Solving the P2L tasks

Recall that the P2L task with phasor data involves solving the set of non-linear equations

un(vt) = ut
n ∀n ∈ M, t ∈ T (3.13a)

θn(vt) = θtn ∀n ∈ M, t ∈ T (3.13b)

pn(vt) = ptn ∀n ∈ M, t ∈ T (3.13c)

qn(vt) = qtn ∀n ∈ M, t ∈ T (3.13d)

pn(vt) = pn(vt+1) ∀n ∈ O, t ∈ T ′ (3.13e)

qn(vt) = qn(vt+1) ∀n ∈ O, t ∈ T ′ (3.13f)

where vt’s are the system states across T = {1, . . . , T}; {(ut
n, θ

t
n, p

t
n, q

t
n)}n∈M are the probing

data collected at time t; (3.13a)–(3.13d) are the 4MT metering equations; and (3.13e)–(3.13f)

are the 2O(T − 1) coupling equations with T ′ := {1, . . . , T − 1}. For the P2L task with

non-phasor data, the angle information in (3.13b) is unavailable.

Having characterized the local identifiability for the P2L tasks, this section presents solvers

for tackling P2L. If grid specifications are noiseless and the power injections in O remain

unaltered during probing, the P2L tasks boil down to solving the equations in (3.13). The

latter can be tackled by adopting the SDP-based solvers developed in [88], [51], [56], [55].

The key idea of the SDP-based solver is that the PF specifications in (2.1b)–(2.1c) are

quadratic functions of v and therefore can be expressed as vHMkv = ŝk for a specific

Hermitian matrix Mk for all k [51], [56]. By introducing the matrix variable V = vvH , the

specifications can be equivalently written as Tr(MkV) = ŝk and the PF task can be posed



as the feasibility problem

find (V,v) (3.14a)

s.to Tr(MkV) = ŝk, k = 1, . . . , 2N + 2 (3.14b)

V = vvH . (3.14c)

Although the constraints in (3.14b) are linear with respect to V, the constraint in (3.14c)

is non-convex. To see this, note that V = vvH is equivalent to V � 0 and rank(V) = 1.

Problem (3.14) can be relaxed by dropping the non-convex rank constraint and replacing

V = vvH with V � 0. To locate feasible points of rank-one, the feasibility problem is turned

into the SDP minimization task [56]

min
V�0

Tr(MV) (3.15a)

s.to Tr(MkV) = ŝk, k = 1, . . . , 2N + 2. (3.15b)

The matrix M is judiciously selected to provide rank-one minimizers if the power system

operates close to the flat voltage profile. Two practical choices for M are G and −B yielding

PF states with minimal system losses and avoiding low-voltage solutions. If problem (3.15)

yields a rank-one minimizer with eigenvalue decomposition V∗ = λuuH , a PF solution is

recovered as v =
√
λu.

Building on (3.15), the P2L task can be posed as

min
Vt�0

T∑
t=1

Tr(MVt) (3.16a)

s.to Tr(MkVt) = ŝtk, k = 1 : 3M, t ∈ T (3.16b)

Tr(MlVt) = Tr(MlVt+1), l = 1 : 2O, t ∈ T ′ (3.16c)



where the matrix variables Vt � 0 have been obtained upon relaxing the rank-one constraint

Vt = ṽtṽH
t on the original system states for t ∈ T . The measurements ŝtk relate to state vt

in (3.16b); and the constraints in (3.16c) couple the T states.

3.3.1 Noisy Measurements

Probing data are inexact due to measurement noise and modeling inaccuracies in the me-

tering equations of (3.13a)–(3.13d). To account for small fluctuations in non-metered loads

during probing, a noise term is added to the RHS of the coupling equations in (3.13e)–(3.13f).

To cope with noisy data, we extend the penalized SDP-based state estimator of [55] to the

P2L setting as follows

min α
T∑
t=1

Tr(MVt) +
T∑
t=1

3M∑
k=1

fk(ε
t
k) +

T−1∑
t=1

2O∑
l=1

fl(ξ
t
l ) (3.17a)

over Vt � 0, {εtk}3Mk=1, t ∈ T (3.17b)

{ξtl}2Ol=1, t ∈ T ′ (3.17c)

s.to Tr(MkVt) + εtk = ŝtk, k = 1 : 3M, t ∈ T (3.17d)

Tr(MlVt) = Tr(MlVt+1) + ξtl , l = 1 : 2O, t ∈ T ′ (3.17e)

The auxiliary variables εtk can be substituted from (3.17d)–(3.17e) into the objective of (3.17);

they are introduced here only to simplify notation. The data fitting penalties fk can be either

a weighted squared or absolute value, that is

fk(ε
t
k) =

(
εtk
σ2
k

)2

=
(ŝtk − Tr(MkVt))

2

σ2
k

or

fk(ε
t
k) =

|εtk|
σk

=
|ŝtk − Tr(MkVt)|

σk



with different σk’s depending on the uncertainty of the k-th datum. Likewise, the auxiliary

variables ξtl ’s capture variations of non-metered loads and are penalized through fl’s, which

are defined as fk’s.

The first summand in (3.17a) corresponds to a regularizer promoting rank-one minimizers

for Vt. The second and third summands in (3.17a) are data-fitting terms. The tuning

parameter α > 0 governs the balance between the regularizer and the data-fitting terms:

For α = 0, the P2L cost involves only the data-fitting terms; whereas for increasing α, more

emphasis is placed on the regularizer [55]. If one or more of the minimizers V?
t of (3.17) is

not rank-one, the heuristic for constructing a system state v?
t proposed in [55] is used.

Additional constraints can be added to strengthen the SDP relaxation. For example, if

non-metered buses are known to host exclusively loads, the constraints Tr(MlVt) ≤ 0 for

l = 1 : 2O, and t ∈ T can be appended to (3.17). Additional information on loads, such

as the uncertainty range of (3.7), can be readily incorporated. As in [55], if bus n is known

to be a zero-injection bus, then ĩn = e>
n Yṽ has to be zero. Therefore, the constraint

ṽĩ?n = VY?en = 0 can be added.

Given phasor data, the metering equations corresponding to voltage magnitudes can be

dropped. If the vectors of voltage phasors {ṽt}Tt=1 are included as optimization variables,

the direct measurements on the voltage phasors of M can be simply expressed as

ṽt,k + εtk = ŝtk, k = 1 : M, t ∈ T . (3.19)

To capture the dependence between ṽt and Ṽt, the non-convex constraint

rank


Vt ṽt

ṽH
t 1


 = 1



can be surrogated by the next SDP constraint as in [88]

Vt ṽt

ṽH
t 1

 � 0, t ∈ T . (3.20)

Since the ṽt’s are optimization variables now, there is no need to use the heuristic of [55] to

recover the system states.

3.4 Numerical Tests

The topological observability criteria for the P2L task and the SDP-based solvers were nu-

merically tested using the IEEE 34-bus feeder. The original multi-phase grid was converted

to an equivalent single-phase grid [37]. The numerical tests were run on a 2.7 GHz In-

tel Core i5 laptop computer with 8 GB RAM using the Sedumi solver on YALMIP and

MATLAB [73], [54].

3.4.1 Numerical Observability

Since Theorems 2.8 and 2.13 rely on the sparsity pattern rather than the exact values of

J ({vt}), we evaluated J ({vt}) for 1,000 random state sequences {vt}Tt=1. The scenarios of

phasor and non-phasor data were tested under four probing setups. For each setup, the

placement of non-metered O and probing buses M were fixed. We generated 1,000 random

state sequences by randomly drawing voltage magnitudes in the range [0.90, 1.10] per unit

and voltage angles in the range [−1.5, 1.5]◦. Assuming non-phasor data first, the following

four setups were constructed according to the condition of Th. 2.13:

• Setup A meets the condition for O = 16 and T = 2.
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Figure 3.4: Histograms of the condition numbers for the P2L Jacobian matrices with non-
phasor data for T = 2 (left) and T = 4 (right) probing actions.

• Setup B meets the condition for O = 6 and T = 2.

• Setup C does not meet the condition for O = 16 and T = 2, but it does for T = 4.

• Setup D does not meet the condition for O = 6 and T = 2, but it does for T = 4.

The same setups were considered for phasor data. As discussed in Sections 2.3-2.4, setups

A and B meet also the condition of Th. 2.8. Additionally, setups C and D were constructed

such that they meet the condition of Th. 2.8 for T = 2.

Non-phasor data: Figure 3.4 depicts the condition number histograms obtained under the

four setups for T = 2 and 4. Under setups A and B, although the dimensions of J ({vt})

increase with T , the condition numbers did not. In fact, the condition number was sometimes

reduced, especially in networks with large O. For setups C and D, there was a significant

shift in the histograms from T = 2 to T = 4, which validates Th. 2.13. By and large, the

condition number improves for decreasing O and increasing T . Hence, when more loads are

to be recovered, longer probing periods should be used. Of course, longer probing periods

may violate the stationarity assumption on loads.
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Figure 3.5: Histograms of the condition numbers for the P2L Jacobian matrices with phasor
data for T = 2 (left) and T = 4 (right) probing actions.

Phasor data: Figure 3.5 displays the condition number histograms of J ({vt}) again for

T = 2 and 4. As expected, due to the value added of phasor data, the condition numbers

decrease significantly. In addition, setups C and D that failed for T = 2 with non-phasor

data, become successful with phasor probing data. The tests corroborate the criteria of

Th. 2.8. The right panel of Figure 3.5 displays the condition number histograms under the

following two setups that did not satisfy the condition of Th. 2.8: i) for T = 4 and O = 6)

(yellow histogram); and ii) for T = 4 and O = 16 (green histogram).

Single-slot probing scenario: We also tested the special case of T = 1, where one fixes

voltages and injections on a subset of buses M and tries to find the loads at the remaining

buses O. This setup is pertinent to learning ZIP loads as discussed in Section 2.5. We

tested two fixed placements of non-metered buses that met the conditions of Theorems 2.15

and 2.16, respectively. We then evaluated J (v1) at 1, 000 random system states. Figure 3.6

shows the histograms for the condition numbers of J (v1). Bus placements that did not meet

the criteria of Th. 2.15 and 2.16 exhibited condition numbers similar to those in the right

panel of Figure 3.5.
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Figure 3.6: Histograms of the condition numbers for the Jacobian matrix J (v1) with phasor
and non-phasor data for single-slot probing (T = 1).

The condition number of the Jacobian matrices in PSSE tasks for transmission systems is

known to depend heavily on the specification set [43], [31]: A larger number of voltage

magnitude and line flow measurements tends to yield a lower condition number. It is thus

expected that adding line flow measurements would improve load and state estimation.

3.4.2 SDP-based P2L

Given noisy specifications, the P2L tasks were tackled using actual data and the SDP-based

solver of (3.17)–(3.20). The loads on the IEEE 34-bus grid were taken from the Pecan Street

dataset [67], between 10:00 a.m. and 01:40 p.m. on January 1, 2013, and in 10-minute

intervals. Load sequences were scaled so that the peak active load over the tested period

was 0.5 pu. Lacking values for reactive loads, a lagging power factor of 0.9 was simulated

for all loads.

To simulate probing injections at buses in M, we first created a data library S of K = 100

randomized injection vectors as described in Section 3.2.1 for p̄n = 0.2 pu. The library S

was then reduced to Sr to ensure that voltage magnitudes lie within [0.90, 1.10] pu for non-
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Figure 3.7: Percentage error in active power injection estimates with phasor data for T = 4
and O = 8 without MSD (left) and with MSD (right).

metered loads within [0, 2sO] as described in Section 3.2.2. For all tests, the regularization

parameter was set to α = 20, 000, and the functions fk and fl in (3.17) were selected as

the WLS costs. To simulate measurement noise, the probing data recorded for an actual

quantity x (e.g., voltage magnitude or power injection) was modeled as x̂ = x(1 + ε), where

ε is a zero-mean Gaussian random variable. The variance σ2 of ε was selected to yield the

desired value of signal-to-noise ratio (SNR)

10 · log10

x2

E[x2ε2]
= −20 · log10 σ. (3.21)

This variance is the same variance appearing in (3.17) as σ2
k. Likewise, to capture small

load variations, non-metered loads were simulated by perturbing their nominal value pn as

p̂tn = (1 + εn)pn for t ∈ T , and similarly for qn’s.

To check whether the MSD step of Section 3.2.3 improves estimation, we tested P2L with

and without this step. The test considered 100 Monte Carlo realizations for the loads at

10:00 a.m. The P2L task was run for T = 4, O = 8, and using phasor data. The SNR

values were set respectively to 80 and 60 dB for metered and non-metered buses. PMUs are
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Figure 3.8: Percentage error in active power injection estimates with non-phasor data for
T = 4 and O = 8.

expected to have such high accuracy [36]. The range of percentage errors was reduced from

[−50,+50]% to [−30,+40]% by selecting the T most diversifying setpoints.

To verify the improvement of using phasor over non-phasor probing data, we repeated the

previous MSD setup but now for non-phasor data. The obtained percentage errors are

depicted in Figure 3.8 and are of worse accuracy compared to those in the right panel of

Figure 3.7. We also tested the single-slot probing scenario of T = 1 under slightly different

probing setups for (non)-phasor data. Figure 3.9 illustrates the statistics of the obtained

percentage errors.

Remark 3.2. Based on the numerical tests, we have observed that load estimates generally

improve when: a) the MSD step is implemented; b) phasor data are utilized; c) the duration

T is increased; and d) O is decreased.

We next evaluated how the estimation accuracy of system states depends on the SNR.

For this test, the SNRs for non-metered loads and probing data were identical. The state

estimation accuracy was evaluated in terms of the root mean square error (RMSE) defined

as
√∑T

t=1 ‖vt − v̂t‖22/(NT ) averaged over 20 Monte Carlo tests. Figure 3.10 shows how the
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Figure 3.9: Percentage error in active power injection estimates for T = 1 with non-phasor
data and O = 4 (left); and with phasor data and O = 6 (right).

RMSE decreases for increasing SNR.

To validate P2L over different loading conditions, we ran numerical tests for the period of

10:00 a.m. and 01:40 p.m. and every 10 min using phasor data. The SNRs for probing data

and non-metered loads were again fixed to 80 and 60dB, respectively. Figure 3.11 presents

the actual and estimated non-metered (re)active loads on buses {4, 6, 15, 20, 27, 31} for T = 4

and T = 6. The plots show the load estimation improvement by increasing T .

Regarding the runtime of our algorithms, each P2L task took between 95 − 180 sec, which

were allocated as follows:

• The linear programs of (3.8) took 70 sec overall, to check the feeder compliance of

K = 100 candidate probing setpoints.

• The quadratic program of (3.12) needed to select the T most diversifying setpoints was

solved in less than 10 sec.

• The SDP formulation of (3.17) together with the heuristic of [55] to obtain a rank-one

solution took 25− 100 sec.
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Figure 3.10: RMSE for the system state with non-phasor data for T = 2.

The load learning task for the single-slot probing setup (T = 1) was solved in less than

15 sec.

3.5 Conclusions

We presented the novel data acquisition scheme of probing an electric grid via smart inverters

to infer non-metered loads. In Chapter 2 we studied the topological observability of grid

probing using (non)-phasor data in potentially meshed networks. Given a probing setup is

deemed topologically observable, in this chapter we presented a systematic methodology for

designing probing injections. The goal was improved estimation accuracy and adherence to

inverter and feeder constraints even without knowing non-metered loads. We also tackled the

computational tasks involved in grid probing via penalized SDP-based solvers that accounted

for noisy measurements and non-stationary loads.

Numerical tests using synthetic and real-world data on benchmark feeders demonstrate the

ensuing take-away simulation findings: i) High-accuracy phasor data are better for load

recovery than non-phasor data; ii) Having the most diverse system states during probing
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Figure 3.11: Active power injection estimates using probing with phasor data for T = 4 (top
left) and T = 6 (top right); similarly for reactive power injection estimates.

yields better load estimates; iii) Probing seemed to yield better estimates under broad voltage

regulation range and tight load uncertainty iv) Although increasing T improved the system

state accuracy, the obtained load estimates were not always better, especially for larger O.

Nevertheless, we were able to recover a reasonable number of loads; and v) Including the

extra constraints to strengthen the SDP relaxation provided better numerical accuracy.



Chapter 4

Optimal Topology Design for

Disturbance Minimization

4.1 Introduction

The electric power system is continually changing. It is expected that the grid of the future

will have higher variability due to renewables, changing load patterns, and distributed energy

sources [77]. This paradigm shift will pose an enormous challenge for design and stable

operation of power networks. The inherent uncertainty associated with renewable energy

sources and active loads is likely to produce more frequent and higher amplitude disturbances

[77]. In addition, owing to the lower aggregate inertia of systems with high penetration of

renewables, the capability of power networks to handle such disturbances may be significantly

reduced [83].

Thus, improving the dynamic performance of the power grid is of importance and has received

greater attention from academia and industry. Efforts in this direction include development

of payment structures and novel markets, as well as analysis of techniques to incentivize load-

side participation [63], [78], [34], [61]. The benefits of load-side controllers has motivated a

series of recent works to understand how different system parameters and controller designs

impact the transient response of the network [57], [44]. Recent work in [68] has also explored

the optimal placement of virtual inertia to improve stability.

60



Compared to the previously mentioned system parameters, the effect of network topology on

transient stability is less well understood. Without detailed simulations, it is usually hard to

infer how a change in network topology influences the overall grid behavior and performance.

Recent work in [44] shows that the impact of network topology on the power system can be

quantified through the network Laplacian matrix eigenvalues. In addition, grid robustness

against low frequency disturbances is mostly determined by network connectivity [44], further

motivating this study. Past studies in the power and control systems communities have also

looked at designing network topologies for specific goals using system theoretic tools. Such

goals include reduction of transient line losses [77], improvement in feedback control [76],

[58], coherence based network design [32] and augmentation [74]. Semidefinite programming

(SDP) based tools have also been utilized to design and augment network topologies for

dynamic control [39], [32], [65].

While the primary focus here is topology design, we recognize that there is line of related

work dealing with learning network topologies and line parameters [21], [20], [27]. Schemes

that rely on passive data have been used in [27] and [21] for learning radial topologies.

Different from them, the work in [20] actively probes the grid to recover radial topologies

and verify line statuses.

In this chapter we are interested in studying the effect of topology on the power grid dy-

namics. For a variety of objective functions, such as line loss reduction, fast damping of

oscillations, and network coherence, reference [28] presented a unified framework to study

topology design based on the H2-norm. In [28], the focus was on topology reconfiguration

rather then topology design. Further, the work in [28] developed suboptimal algorithms,

albeit with guarantees on optimality gap, to tackle the combinatorial design problems in-

volved. Here, we present reformulations of the topology design task that allow us to solve

the problem to optimality.



Our contributions are as follows. First, we provide a comprehensive modeling and analysis

framework for the topology design problem to optimize a H2 norm based performance metric

subject to budget constraints in Sections 4.2 and 4.3. Second, in Section 4.4 we show

that although the topology design task is inherently non-convex, it is possible to exactly

reformulate the problem in tractable form using McCormick relaxation (or linearization).

This can then be used with off-the-shelf solvers to determine the optimal solution. Further,

we show that exploiting graph-theoretic properties to tighten bounds on the continuous

optimization variables yields significant improvements in computation time. Section 4.6

discusses numerical tests based on the IEEE 39−bus test case followed by conclusions and

future directions in Section 4.7.

Notation: Column vectors (matrices) are denoted by lower- (upper-) case letters and sets

by calligraphic symbols, unless noted otherwise. The cardinality of set X is denoted by |X |.

Given a real-valued sequence {x1, x2, . . . , xN}, x ∈ RN is the vector obtained by stacking the

scalars xi and dg({xi}) is the corresponding diagonal matrix. The operator (·)> stands for

transposition. The N -dimensional all ones vector is denoted by 1N ; IN is the N ×N identity

matrix; and ei is the canonical vector with a 1 at the i-th entry and zero everywhere else.

The notation θ̇i denotes its time derivative δθi
δt

.

4.2 Dynamic Power System Model

A power network having N+1 buses can be modeled as a connected graph G = (V , E), whose

nodes V := {0, 1, . . . , N} correspond to buses, and edges E ⊆ V ×V to undirected lines. Bus

i = 0 is selected as the reference; all other buses constitute set Vr := V\{0}. Let bij > 0

be the susceptance of line (i, j) ∈ E connecting nodes i and j ∈ V . Then, the susceptance



Laplacian matrix L ∈ R(N+1)×(N+1) associated with the grid graph G can be defined as

Lij :=


−bij , if (i, j) ∈ E∑

(i,j)∈E bij , if j = i

0 , otherwise.

Each node i ∈ V is associated with a phase angle θi, frequency ωi = θ̇i, inertia constant Mi,

and damping coefficient Di; see [52]. Since bus i may host an ensemble of devices such as

synchronous machines, renewable or energy storage sources, frequency-dependent or actively

controlled frequency-responsive loads, the parameters Mi and Di characterize their aggregate

behavior [68].

Focusing on small-signal stability, the quantities (θi, ωi) will henceforth refer to the deviations

of nodal voltage angles and frequencies from their nominal values. The grid dynamics at bus

i can then be described by the linearized swing equation [52]

Miω̇i +Diωi = Pm
i − P e

i + ui (4.1)

where Pm
i denotes the mechanical power input; P e

i is the electric power flowing from bus i to

the grid; and ui is the power consumed at bus i. Again, the aforementioned quantities refer

to the deviations from their scheduled values. Under the linearized DC model, the power

flowing from bus i to the grid can be approximated as [52]

P e
i '

∑
(i,j)∈E

bij(θi − θj). (4.2)



Combining (4.1) and (4.2), the state-space representation of the power grid is

 θ̇
ω̇

 =

 0 IN

−M−1L −M−1D


︸ ︷︷ ︸

A:=

θ
ω

+

 0

M−1


︸ ︷︷ ︸

B:=

u (4.3)

where M := dg({Mi}) and D := dg({Di}) are diagonal matrices containing the inertia and

damping coefficients; the states ω ∈ RN+1 and θ ∈ RN+1 are accordingly the stacked vectors

of nodal frequencies and angles; and u ∈ RN+1 is the vector of local power disturbances. The

subsequent analysis relies on the ensuing assumption.

Assumption 4.1. The inertia coefficients are strictly positive and damping coefficients are

identical for all buses, that is Mi > 0 and Di = d for all i ∈ V.

The non-zero inertia assumption is not necessary, but simplifies our presentation. If Mi = 0

for a bus i ∈ V , then a Kron-reduced network containing only nodes with inertia can be

obtained. The second assumption of constant damping has been previously used in [77],

[76]. When it is not satisfied, the stability metric defined in the next section does not enjoy

a closed-form expression, and only bounds can be derived. In our future work, we plan to

extend our approach to the case with variable D.

4.3 Generalized Network Coherence Metrics

Given the state-space model in (4.3), our goal is to design network topologies or augment

existing ones to minimize the voltage angle deviations caused by load disturbances. These

angle deviations are formally captured by the metric of network coherence [4]. The latter is

defined as limt→∞ E[fc(t)] where fc(t) is the steady-state deviation of the angles from their
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Figure 4.1: Illustration of power grid and its associated coherence graph.

grid-average

fc(t) :=
N∑
i=1

(
θi(t)−

1

N

N∑
j=1

θj(t)

)2

. (4.4)

In other words, network coherence quantifies how tightly bus angles drift together. Larger

variances in angle deviations reflect a more disordered network [77].

Instead of network coherence, the system operator may be interested in minimizing the

expected steady-state value of a generalized function combining both voltage angle and

frequency excursions [28], [68]

f(t) :=
∑
∀i 6=j

wij(θi(t)− θj(t))
2 +

∑
i∈V

siω
2
i (t) (4.5)

where wij and si are given non-negative scalars. The weights wij induce a connected weighted

graph Gw that is not necessarily identical to G; see Fig. 4.1. Let W be the Laplacian matrix

of graph Gw and S := dg({si}). Then, it is not hard to verify that f(t) = ‖y(t)‖22 where

y(t) :=

W 1/2 0

0 S1/2


︸ ︷︷ ︸

C:=

θ(t)
ω(t)

 . (4.6)



Being a Laplacian matrix, matrix W is positive semidefinite, and so its matrix square root

W 1/2 is well-defined. The matrix S1/2 is well-defined too. The importance of the generalized

coherence metric of (4.5) is that for different choices of (W,S), one can represent different

grid performance metrics and study them in a unified manner [28]: For instance, if the

system operator is only interested in minimizing frequency excursions, one can set W = 0

and S = IN+1. Similarly, if the goal is to reduce transient line losses, one can choose

W = L and S = 0. Lastly, the network coherence metric of (4.4) corresponds to the case of

W = IN+1 − 1
N+1

1N+11
>
N+1 and S = 0. Figure 4.1 shows the physical power network and its

associated coherence graph. Note that the choice of (W,S) for network coherence penalizes

global deviations, whereas that for line loss reduction penalizes local deviations.

4.3.1 Relation to Stability Analysis

The expected steady-state value of f(t) can be interpreted as the squared H2-norm of the

linear time-invariant (LTI) system described by (4.3) and (4.6). This system will be com-

pactly denoted by H := (A,B,C). Leveraging this link, the generalized network coherence

is amenable to a closed-form expression [28].

The H2 norm is widely used as a stability performance metric and has several interpre-

tations [18]: For unit-variance stochastic white noise u(t), the H2-norm of an LTI system

equals the steady-state output variance [18, Ch. 5], [77], [68]

‖H‖2H2
:= lim

t→∞
E
[
‖y(t)‖22

]
. (4.7)

For unit-impulse disturbances ui(t) = eiδ(t) for i = 1, . . . , N , the H2-norm can be equiva-



lently written as

‖H‖2H2
:=

N∑
i=1

∫ ∞

0

‖yi(t)‖22dt (4.8)

where yi(t) is the system output corresponding to disturbance vector ui(t). Instead of eval-

uating the expectation in (4.7) or the time integral in (4.8), the H2-norm for system H can

be expressed as [18, Ch. 5]

‖H‖2H2
= Tr(B>QB) (4.9)

where Q :=
∫∞
0

eA
>tC>CeAtdt is the observability Gramian matrix of the LTI system H. In

fact, the matrix Q can be computed as the solution to the linear Lyapunov equation [18,

Ch. 5]

A>Q+QA = −C>C. (4.10)

Matrix Q is known to be symmetric positive semidefinite, so it can be partitioned as

Q =

Q1 Q0

Q>
0 Q2

 . (4.11)

Based on the reformulation in (4.9), we next design topologies attaining minimum generalized

network coherence.

4.4 Grid Topology Design as an MILP

Among other criteria, the topology of a grid can be designed to minimize the generalized

network coherence metric of (4.5). Given a graph Ĝ = (V , Ê), where Ê is the set of candidate

lines weighted by their susceptances, the goal is to find the subset E ⊆ Ê of cardinality

|E| ≤ K with K ≥ N attaining the minimum generalized network coherence. Given the



equivalences of the previous section, this task can be posed as the optimization problem

arg min
E∈Ê

Tr(B>QB) (4.12a)

s.to |E| ≤ K (4.12b)

Q satisfies (4.10) (4.12c)

E is connected. (4.12d)

The constraint in (4.12b) reflects the budget on the number of edges. For K = N , the

problem in (4.12) yields a tree topology, which is important for typically radially operated

distribution grids. Interestingly, leveraging the problem structure under Assumption 4.1, it

can be shown that the objective of (4.12) simplifies as [68], [28], [77]

Tr(B>QB) =
Tr(WL+) + Tr(SM−1)

2d
. (4.13)

If Assumption 4.1 is not met, i.e., the damping coefficients are not identical (D 6= dIN), then

it may not be possible to find a closed-form expression for the objective in (4.12). If the

damping coefficients are known to lie within [dmin, dmax], then the objective of (4.12) can be

bounded as; see [77], [68]

Tr(WL+) + Tr(SM−1)

2dmax
≤ Tr(B>QB) ≤ Tr(WL+) + Tr(SM−1)

2dmin
.

Therefore, as the range [dmin, dmax] becomes narrower, minimizing the numerator of (4.13)

approaches the optimal solution to (4.12). From Assumption 4.1, we consider dmin = dmax

here.

The second summand in the right-hand side of (4.13) is independent of the grid topology,



and can thus be ignored. Problem (4.12) can then be reformulated as

arg min
E∈Ê

Tr(WL+) (4.14)

s.to |E| ≤ K

rank(L) = N

where the rank constraint ensures that the graph induced by E is connected. Problem (4.14)

could be tackled with brute-force algorithms over all the possible topologies of budget K

and below; though that would incur exponential complexity.

The objective in (4.14) can be written in terms of the inverse of the reduced Laplacian matrix

of G as explained next. The claim has appeared in [77, Lemma 3.2], albeit for the restricted

case where W and L have the same structure.

Lemma 4.2. If W̃ and L̃ are the N ×N matrices obtained after removing the first row and

column from W and L, respectively, then

Tr(WL+) = Tr(W̃ L̃−1).

Proof. The Laplacian matrices can be described in terms of their reduced counterparts as

W = RW̃R> and L = RL̃R> (4.15)

where R := [1N − IN ]
>. This is because a Laplacian matrix satisfies L1N+1 = 0N+1. If we

define matrix J := IN − 1
N+1

1N1
>
N , then it is not hard to see that

R>R = IN + 1N1
>
N = J−1. (4.16)



Then the pseudoinverse of L can be expressed as

L+ = RJL̃−1JR>. (4.17)

The latter can be shown by simply verifying that LL+L = L and L+LL+ = L+. From (4.15)

and (4.17), we get that

Tr(WL+) = Tr
(
RW̃R>RJL̃−1JR>

)
= Tr(W̃ L̃−1)

where the last equality follows from (4.16) and the cyclic property of the trace.

To express the optimization in (4.14) over Ê in a more convenient form, let us introduce a

binary variable zm for every line m ∈ Ê . This variable is zm = 1 if line m is selected, i.e.,

m ∈ E ; and zm = 0, otherwise. If we stack variables {zm}m∈Ê in vector z, then z has to lie

in the set

Z :=
{
z : z>1|Ê| ≤ K, z ∈ {0, 1}|Ê|

}
. (4.18)

Based on the line selection vector z, the reduced susceptance Laplacian of G can be expressed

as

L̃(z) =
∑

(i,j)∈Ê

zijbijaija
>
ij (4.19)

where each vector aij corresponds to line (i, j) ∈ Ê , and its n-th entry is defined as

[aij]n :=


+1 , if n = i

−1 , if n = j

0 , otherwise.



Given Lemma 4.2 and (4.19), the optimization in (4.14) can be equivalently written as the

mixed-integer semidefinite program (MI-SDP)

arg min
X,z∈Z

Tr(W̃X) (4.20a)

s.to

X IN

IN L̃(z)

 � 0. (4.20b)

To see this, the constraint in (4.20b) is equivalent to X � 0 and X � L̃−1(z); see [17,

Sec. A.5.5]. Since W̃ � 0, the optimal X can be shown to be X = L̃−1(z). In fact,

constraint (4.20b) waives the possibility of the optimal L̃ being singular, and thus, ensures

the connectedness of the graph.

To overcome the computational complexity of the MI-SDP in (4.20), one may relax the

binary variables to box constraints as z ∈ [0, 1]|Ê| to get an ordinary SDP, which can be

handled by off-the-shelf solvers for moderately-sized networks. Being a relaxation, the SDP

solution provides a lower bound on the cost of (4.20). If the obtained solution of the SDP

turns out to be binary, then this z minimizes the MI-SDP in (4.20) as well. Otherwise,

(randomized) rounding heuristics can be adopted to acquire a feasible z.

Aiming at an exact solver, we will next show how the MI-SDP of (4.20) can be equivalently

formulated as an MILP. To this end, we first rewrite (4.20) as

(X∗, z∗) ∈ arg min
X,z∈Z

Tr(W̃X) (4.21a)

s.to L̃(z)X = IN . (4.21b)

Note that for constraint (4.21b) to hold, L̃(z∗) must be non-singular and X∗ = L̃−1(z∗).

Although its cost is linear, problem (4.21) is non-convex due to the bilinear constraints in



(4.21b) and because vector z is binary. To handle the former, we adopt the McCormick

relaxation technique [62], which is briefly reviewed next.

Constraint (4.21b) involves the bilinear terms zmXij for m ∈ Ê and i, j ∈ Vr. For each such

term, introduce a new variable

ymij = zmXij. (4.22)

Suppose that the entries X∗
ij are known to lie within the range [X ij, X ij]. Since zm ∈ [0, 1],

the ensuing inequalities hold trivially [62]

zm(Xij −X ij) ≥ 0 (4.23a)

(zm − 1)(Xij −X ij) ≥ 0 (4.23b)

zm(Xij −X ij) ≤ 0 (4.23c)

(zm − 1)(Xij −X ij) ≤ 0. (4.23d)

Substituting zmXij by ymij in (4.23) provides

ymij ≥ zmX ij (4.24a)

ymij ≥ Xij + zmX ij −X ij (4.24b)

ymij ≤ zmX ij (4.24c)

ymij ≤ Xij + zmX ij −X ij. (4.24d)

One can replace the bilinear terms in (4.21b) by ymij’s and enforce (4.22) and (4.24) as

additional constraints for all m ∈ Ê and i, j ∈ Vr. In that case, the constraints (4.24) are

apparently redundant. However, one may simplify the problem by dropping (4.22) to get an

MILP reformulation of (4.21). Interestingly, this reformulation is exact due to the binary

nature of z. To see this, if z∗m = 1 for some m, then (4.24b) and (4.24d) imply y∗mij = X∗
ij for



all i, j ∈ Vr. Otherwise, if z∗m = 0, then (4.24a) and (4.24c) imply y∗mij = 0 for all i, j ∈ Vr.

Through the aforementioned process, problem (4.21) has been converted to an MILP over

the variables {Xij}, {zm}, and {ymij}. MILPs can be handled by state-of-the-art solvers

such as Gurobi [46], and are known to scale better than MI-SDPs. Recall that the MILP

reformulation of (4.21) requires the bounds (X ij, X ij) on each (i, j)-th entry of X∗. Lacking

prior information on X∗, one could select an arbitrarily wide range [X ij, X ij]. However, this

could slow down the MILP solver significantly. In the other extreme, if X∗ is known, that is

X ij = X ij for all i, j ∈ Vr, then the binary vector z can be recovered by simply solving the

linear equations in (4.21b). To improve the run time of the involved MILP, we next derive

tighter, non-trivial bounds on the entries of X∗
ij.

4.5 Graph-theoretic Bounds on the Optimization Vari-

ables

Depending on the problem structure, different bounds can be derived on X∗
ijs. This section

considers two classes of topology design tasks. In the first task, some lines are already

energized and the operator would like to augment a connected network by additional lines to

further improve its stability. In the second task, a network topology is designed from scratch

with the additional requirement of a radial grid.

4.5.1 Augmenting Existing Networks

Given the graph Ĝ = (V , Ê), this problem setup considers a pre-existing connected network

described by Ge = (V , Ee), and the goal is to energize additional lines from Ê \ Ee to improve

its stability. In essence, this corresponds to the problem in (4.21) with the entries of z



corresponding to the lines in Ee being set to one. Then, based on (4.19), the reduced

Laplacian matrix of the existing network is obviously

L̃e :=
∑

(i,j)∈Ee

bijaija
>
ij.

Under this setup, the entries of X∗ minimizing (4.21) under the additional constraints z` = 1

for all ` ∈ Ee, can be bounded as follows.

Lemma 4.3. The entries of X∗ are bounded by

0 < X∗
ij ≤

[L̃−1
e ]ii + [L̃−1

e ]jj
2

, ∀(i, j) ∈ Vr. (4.25)

Proof. Observe that L̃e can be written as L̃(z) by fixing the entries of z corresponding to

the lines in Ee to 1. Since the same entries will remain 1 in z∗, it readily follows that

L̃(z∗) � L̃e � 0, where L̃e is non-singular since the existing network is already connected.

Then, it follows that X∗ � L̃−1
e and v>(X∗ − L̃−1

e )v < 0 for any v 6= 0. Setting v = ei,

the diagonal entries of X∗ can be bounded as X∗
ii ≤ [L̃−1

e ]ii for all i ∈ Vr. Since X∗ � 0

by constraint (4.21b), we have that (ei − ej)
>X∗(ei − ej) > 0 for all i, j ∈ Vr. The latter

provides X∗
ij <

1
2
(X∗

ii+X∗
jj). Upper bounding the diagonal entries with the bounds obtained

earlier proves the upper bound in (4.25). The lower bound in (4.25) can be trivially obtained

since L(z∗) is an M-matrix, and so its inverse has positive entries.

The reduced Laplacian matrix L̃e of the existing network Ge is invertible as long as Ge is

connected. If that is not the case, one could obtain bounds on X∗
ij’s by imposing a radial

structure on the sought topology as discussed next.



4.5.2 Radial Topology Design

The setup considered here designs a network afresh, but under the requirement that it is

radial. The analysis simplifies under the following mild assumption.

Assumption 4.4. There exists a node in V that is incident to exactly one edge.

To derive bounds on the entries of X∗ minimizing (4.21) for the special case of K = N (radial

network), let us first construct the graph Gr = (V , Êr), where Êr consists of the edges in Ê ,

but with inverse weights xij := b−1
ij for all (i, j) ∈ Ê . Based on Gr, we define some additional

properties that will be useful later. If one of the nodes in V satisfying Assumption 4.4 is

selected as the reference node, then the weight (inverse susceptance) of its incident line is

denoted by x0. Let us also define the minimum of the inverse line susceptances

xmin := min
(i,j)∈Êr

xij.

Before solving (4.21), we find the maximum spanning tree of graph Gr, and denote the sum

of its edge weights by f . The maximum spanning tree can be found efficiently by finding

the minimum spanning tree on Gr upon negating its edge weights [24]. Lastly, for each node

i ∈ Vr, we find its shortest path to the reference node 0 in Gr. The sum of edge weights

along this shortest path will be denoted by hi.

Lemma 4.5. Under Assumption 4.4, the entries of X∗, minimizing (4.21) for K = N , are

bounded as

hi ≤ X∗
ii ≤ f, ∀i ∈ Vr (4.26a)

x0 ≤ X∗
ij ≤ f − xmin, ∀i, j ∈ Vr. (4.26b)



Proof. The bounds rely on a fundamental property of the inverse Laplacian matrix of a radial

network: If L̃ is the reduced susceptance Laplacian of a radial network and X := L̃−1, then

the entry Xij equals the sum of the inverse susceptances that are common to the paths of

nodes i and j to the reference bus; see [26, Lemma 1]. Under Assumption 4.4, the common

path of any pair of nodes (i, j) ∈ Vr must include at least the line incident to the reference

bus, and hence, X∗
ij ≥ x0. By the definition of shortest path, the entry X∗

ii is lower bounded

by hi for all i ∈ Vr, thus providing the lower bound in (4.26a).

Regarding the upper bound in (4.26a), recall that the (i, i)-th entry of X∗ equals the sum of

weights on the path from i to the reference node 0. The sum of weights on the longest such

path is still upper bounded by the sum weight f of all edges in the maximum spanning tree.

Because the entry X∗
ij for i 6= j must have at least one less edge than the longest path, the

upper bound in (4.26b) holds as well.

Note that the upper bounds can be tight in the setting where the maximum spanning and

optimum trees are the same line graph.

4.5.3 Model Simplification and Bound Tightening

Exploiting the structure of Ĝ = (V , Ê) can provide additional information on the bounds of

X∗ matrix entries to accelerate solving (4.21) for the special case of K = N (radial grid).

For example, if Ĝ gets disconnected upon removing edge ` ∈ Ê , this edge ` belongs to the

sought tree topology and z∗` = 1 before solving (4.21). To identify such edges, we resort to

the notion of a graph cutset C ⊂ Ê , defined as a subset of edges that once removed, splits the

graph Ĝ into two or more connected components. The edges in this cutset will be termed as

critical edges. Now, we present a simple algorithm to enumerate all the single critical edges

(|C| = 1) by initializing the graph Ĝ’s weights to unit values.



k

i j
z1 z2

z1 + z2 ≥ 1

Figure 4.2: Grid graph Ĝ = (V , Ê) with candidate location of edges. The lower bounds on
X∗

ki, X∗
kj, and X∗

ij can be tightened using the shortest path weight hk due to the critical edge
colored in red (left panel). The size–2 cutset shown in red implies the constraint z1 + z2 ≥ 1
(right panel).

1. Solve the min-cut problem on Ĝ with unit edge weights by using the standard max-flow

min-cut algorithm [35].

2. Increase the weight for the edge labelled as critical to 1 + ε for some ε > 0.

3. If |C| > 1, quit; else, go to Step 1.

The second step ensures that every time we are identifying a new critical edge. Upon

completing this process, the entries of z∗ corresponding to the critical edges can be safely set

to 1. This process not only reduces the binary search for z∗ in (4.21), but it further tightens

the lower bounds on certain X∗
ij’s as discussed in Lemma 4.6; see also Fig. 4.2.

Lemma 4.6. Suppose a critical edge ` = (i, j) ∈ Ê partitions the nodes of Ĝ into two disjoint

connected components V` and its complement V̄`. If V` contains node i as well as the reference

bus, then (4.26b) can be tightened as

hj ≤ X∗
kj, ∀k ∈ V̄`.

Proof. The edge (i, j) ∈ Ê is the only edge that connects the nodes in V̄` to the rest of the

network. Hence, the common path to the reference bus of any two nodes in V̄` must include



the path of node j to the reference. It follows that the shortest path weight hj is a valid

lower bound for all nodes in V̄`.

Identifying cutsets of cardinality larger than 1 offers additional information to tighten the

bounds of entries of the X matrix. If graph Ĝ gets disconnected upon removing lines `1, `2 ∈

Ê , then at least one of these lines should be active. This logical conclusion translates to

the constraint z`1 + z`2 ≥ 1, which can be augmented to (4.21) to tighten the McCormick

reformulation and possibly accelerate the MILP solver. Cutsets of larger cardinality, say

|C| = k, k > 1, can be identified by iterating Steps 1 through 3 of the algorithm described

earlier. In this case, we assign the weights of k + ε on the critical edges, where ε > 0.

4.6 Numerical Tests

All tests were run on a 2.7 GHz Intel Core i5 laptop with 8GB RAM. The MILP formulations

were solved using Gurobi v8.0.1 optimizer, written in Julia/JuMP [29, 46].

The performance of the MILP in (4.21) was tested for augmenting an existing network as well

as for designing a radial one afresh. For the augmentation setup, the IEEE 39-bus system

benchmark was used as the pre-existing connected network [66]. The set Ê was selected by

10 randomly picked additional lines. From these lines, we solved the restricted version of

(4.21) for K = {2, 3, 4, 5}. To satisfy Assumption 4.1, we assumed Mi = 10−4 on all buses

that did not host generators, and Di = d = 0.025 for all i ∈ V . To evaluate an arbitrarily

constructed network, we compared its squared H2 norm to that of the optimal network of the

same edge cardinality. The results are summarized in Table 4.1. Additional lines are useful

in minimizing disturbances, and so the budget constraint in (4.21) was always met with

equality. For all cases, the augmentation design problem was solved in less than 5 seconds.



Table 4.1: Cost of designed grids using the IEEE 39-bus network.

# of lines Optimal Topology Suboptimal Topology
2 0.570 0.585
3 0.564 0.582
4 0.557 0.576
5 0.552 0.570
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Figure 4.3: Frequency response at generator buses 30–39 for a impulse input on bus 39: (a)
Optimal tree (left panel); (b) Sub-optimal tree (right panel).

We next considered the radial topology design problem with Ê composed of all edges in the

IEEE 39-bus network. The optimal cost obtained after solving the MILP in this case was

1.669, and the time required to find the optimal tree was close to 2 hours. Considering

that the problem needs to be solved once off-line, this running time may not be of concern.

Figure 4.4 shows the optimal radial topology that was identified.

Instead of using the bounds of Lemma 4.5 and the bound tightening procedure of Sec-

tion 4.5.3, we attempted to solve the same MILP with the relatively looser bounds of

0 ≤ X∗
ij ≤ 10 for all (i, j) ∈ V . In this case, the solver reached the optimality gap of 60%

after running for 3 hours. Clearly, having tighter bounds improves the computation time.

For a 1 per unit impulse input at bus 39, Figure 4.3 compares the frequency response of the



Figure 4.4: Optimal radial topology (bold red lines) considering all possible edges of the
IEEE 39-bus feeder.

optimal tree (left panel) with an arbitrarily selected suboptimal tree (right panel). Notice

that not only is the amplitude of oscillations lower in the left panel, but the generators also

seem to drift together. These observations indicate that the optimal tree selected is much

more effective at minimizing the effect of small disturbances.

4.7 Conclusions

We presented a general framework to study the effect of network topology on power grid

dynamics. Using a system-theoretic approach, we showed that the original topology design

problem (MI-SDP) can be reformulated in tractable form as an MILP. To improve the

computation time, we exploited graph-theoretic properties to simplify the model and provide

tighter bounds on the continuous optimization variables involved. Numerical tests on the

IEEE 39-bus benchmark suggest that meshed networks exhibit improved coherence behavior.



Chapter 5

Summary and Future Work

We have presented a modeling and analysis framework for learning loads and optimizing

power grid topologies. We hope that this body of work will aid utilities in improving effi-

ciency, reliability, and stability of modern power networks. As a first step, we studied the

novel data acquisition scheme of probing an electric grid via smart inverters to infer non-

metered loads in Chapter 2. In particular, topological observability of grid probing using

(non)-phasor data in single- and multi-phase grids was established. Using probing to infer

non-constant-power loads was studied as a special case. Given a probing setup is deemed

topologically observable, in Chapter 3 we presented a systematic methodology for designing

probing injections. The goal was improved estimation accuracy and adherence to inverter

and feeder constraints even without knowing non-metered loads. The computational tasks

involved in grid probing were tackled using penalized SDP-based solvers that accounted for

noisy measurements and non-stationary loads. Several extensions of this work remain open.

Developing scalable solvers perhaps along the lines of [84]; incorporating measurement from

distribution lines and transformers; and applying our topological observability framework to

detect data attacks in distribution grids; all constitute pertinent research directions.

We have also developed a generalized framework to study the effect of network topology on

power grid dynamics in Chapter 4 . Using a system-theoretic approach, we were able to show

that the original topology design problem (MI-SDP) can be reformulated in tractable form

as an MILP. To improve the computation time, graph-theoretic properties were exploited

81



to simplify the model and provide tighter bounds on the continuous optimization variables

involved. Current research efforts are focused on tackling the topology design task with

non-uniform damping, exploring conditions for submodularity, and considering the design

problem from an H∞-norm perspective.

Different from the aforementioned problems, we are also exploring data-driven algorithms

for solving the linearized power grid dynamical equations without relying on numerical dis-

cretization and/or time integration. For large scale systems, this approach will aim to provide

a closed-form solution to the differential equations by utilizing sparse measurement data and

knowledge of the network model.
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