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Analysis and Enforcement of Properties in Software Systems

Meng Wu

(ABSTRACT)

Due to the lack of effective techniques for detecting and mitigating property violations, existing

approaches to ensure the safety and security of software systems are often labor intensive and error

prone. Furthermore, they focus primarily on functional correctness of the software code while

ignoring micro-architectural details of the underlying processor, such as cache and speculative

execution, which may undermine their soundness guarantees.

To fill the gap, I propose a set of new methods and tools for ensuring the safety and security of

software systems. Broadly speaking, these methods and tools fall into three categories. The first

category is concerned with static program analysis. Specifically, I develop a novel abstract interpre-

tation framework that considers both speculative execution and a cache model, and is guaranteed to

be sound for estimating the execution time of a program and detecting side-channel information

leaks. The second category is concerned with static program transformation. The goal is to eliminate

side channels by equalizing the number of CPU cycles and the number of cache misses along all

program paths for all sensitive variables. The third category is concerned with runtime safety

enforcement. Given a property that may be violated by a reactive system, the goal is to synthesize

an enforcer, called a shield, to correct the erroneous behaviors of the system instantaneously, so that

the property is always satisfied by the combined system. I develop techniques to make the shield

practical by handling both burst error and real-valued signals.

The proposed techniques have been implemented and evaluated on realistic applications to demon-

strate their effectiveness and efficiency.



Analysis and Enforcement of Properties in Software Systems

Meng Wu

(GENERAL AUDIENCE ABSTRACT)

It is important for everything around us to follow some rules to work correctly. That is the same

for our software systems to follow the security and safety properties. Especially, softwares may

leak information via unexpected ways, e.g. the program timing, which makes it more difficult to be

detected or mitigated. For instance, if the execution time of a program is related to the sensitive

value, the attacker may obtain information about the sensitive value. On the other side, due to

the complexity of softwares, it is nearly impossible to fully test nor verify them. However, the

correctness of software systems at runtime is crutial for critical applications.

While exsiting approaches to find or resolve properties violation problem are often labor intensive

and error prone, in this dissertation, I first propose an automated tool for detecting and mitigating

the security vulnerability through program timing. Programs processed by the tool are guaranteed to

be time constant under any sensitive values. I have also taken the influence of speculative execution,

which is the cause behind recent Spectre and Meltdown attack, into consideration for the first time.

To enforce the correctness of programs at runtime, I introduce an extra component that can be

attached to the original system to correct any violaton if it happens, thus the entire system will still

be correct.

All proposed methods have been evaluated on a a variety of real world applications. The results

show that these methods are effective and efficient in practice.
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Chapter 1

Introduction

Ensuring the safety and security of software systems is a grand challenge of our time. However, it

becomes more and more difficult to guarantee functional correctness as the complexity of software

keeps increasing. Furthermore, non-functional properties of the hardware, such as the power

consumption of the computing device and execution time of the program, start to have a significant

impact on the security of the software. For example, while timing side channels have long been

exploited by attackers to deduce secret information of the system, such as cryptographic keys,

passwords, and security tokens, recent attacks such as Meltdown, Spectre, and ForeShadow [85, 98,

156] showed more severe threats to a much broader class of systems and applications.

While conventional techniques for software testing and verification are invaluable, they are known

to have either coverage or scalability problems, and therefore cannot be guaranteed to eliminate

all safety violations and security vulnerabilities in practice. In particular, they are not effective

in detecting or mitigating side-channel leaks, which can be exploited by an adversary easily. For

example, many modern processors have performance-related instructions for measuring the CPU

usage, which allow attackers to easily monitor the local processes [100, 116, 157] or measure the

response time of remote servers. At the same time, mitigating the timing side channel is difficult

1



2 CHAPTER 1. INTRODUCTION

since it depends on low-level compiler optimizations and even hardware components inside the

CPU, such as instruction and data caches [11], pipelines, and the branch predictors [12].

Since it is not always possible to eliminate safety and security violations at design time, there is also

a need to enforce critical properties at run time. To avoid the same scalability problems encountered

by conventional testing and verification techniques, construction and execution of these runtime

enforcers should not depend on the source code and other implementation details of the potentially

complex system. Ideally, they should depend only on the (hopefully small set of) critical properties

to be enforced. Unfortunately, such runtime enforcement approaches are still severely lacking.

To fill the gap, I develop a set of new methods and tools for ensuring the safety and security of

critical software systems. In terms of security, we address the problem of detecting and mitigating

side-channel information leaks by developing a novel abstract interpretation based static analysis

framework, followed by compiler-based program transformations. In terms of safety, we address

the problem by automatically synthesizing a runtime enforcer, called a shield, to enforce a set of

safety-critical properties of a reactive system.

In the first line of work, we are concerned with static program analysis and transformation techniques,

and the goal is to mitigate two types of timing side-channel leaks: instruction-related and cache-

related. By instruction-related, we mean the number or type of instructions executed along an

execution trace may differ depending on the values of secret variables, leading to differences in the

number of CPU cycles; By cache-related, we mean the memory subsystem may behave differently

depending on the values of secret variables, e.g., a cache hit takes few CPU cycles but a miss takes

hundreds of cycles.

Manually analyzing the timing characteristics of software code is difficult because it requires

deep knowledge of not only the application itself but also the micro-architecture of the computer,

including the cache configuration and how software code is compiled to machine code. Even if our
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heroic programmer is able to conduct the aforementioned timing analysis manually, it would be too

labor-intensive and error-prone to be economical in practice: with every code change, the software

has to be re-analyzed and countermeasures have to be re-applied to ensure uniform execution time

for all possible values of the secret variables.

It is worth noting that straightforward countermeasures such as noise injection (i.e., adding random

delay to the execution) do not work well in practice, because noise can be removed using well-

established statistical analysis techniques [86, 87].

Thus, we propose a fully automated method for mitigating the timing side channels. Our method

relies on static analysis to identify, for a program and a list of secret inputs, the set of variables

whose values depend on the secret data. To decide if these sensitive variables lead to timing leaks,

we check if they affect unbalanced conditional jumps (instruction-timing leaks) or accesses of

memory blocks spanning across multiple cache lines (cache-timing leaks).

Based on results of this analysis, we perform code transformations to mitigate the leaks, by

equalizing the execution time. Conceptually, these transformations are straightforward: if we

equalize the execution time of both sensitive conditional statements and sensitive memory accesses,

there will be no instruction- or cache-timing leaks.

However, since both transformations adversely affect the runtime performance, they must be applied

judiciously to remain practical. Thus, a main technical challenge is to develop analysis techniques

to decide when these countermeasures are not needed and thus can be skipped safely.

A static cache analysis is used to identify the set of locations where memory accesses always lead

to cache hits. This must-hit analysis, following the unified framework of abstract interpretation [44],

is designed to be conservative in that a reported must-hit is guaranteed to be a hit along all paths.

Thus, it can be used by our tool to skip redundant mitigations. Unfortunately, existing abstract

interpretation techniques [51, 65, 67, 143] are unsound under speculative execution. Instead, these
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prior works on abstract interpretation focus more on modeling non-speculative executions, for

which numerous techniques have been developed, including widening/narrowing, chaotic iteration,

and efficient implementations of abstract domains.

Under speculative execution, however, none of these techniques are relevant because the problem

is no longer about removing infeasible paths from the over-approximated analysis, but about

preventing real behaviors from being excluded. This requires a different set of ideas from what

already exist in the literature. The need for a sound cache analysis was highlighted by attacks such

as Spectre [85], Meltdown [98] and Foreshadow [156]. Thus, I propose a method for lifting the

abstract interpretation framework so that it becomes sound again under speculative execution.

The aforementioned cache timing side channel detection and mitigation techniques have been

implemented in software tools and evaluated on various cryptographic libraries and Linux kernel

modules. The results of our evaluation show only moderate increases in the program code size

and the runtime overhead. At the same time, the mitigated software programs are guaranteed to be

side-channel leak free. We also confirm, using a micro-architectural simulator named GEM5, that

the mitigated programs generated by our tools are indeed leakage free.

In the second line of work, I extend the original shield synthesis algorithm of Bloem et al. [31], to

handle burst error and real-valued signals. At a high level, a shield S is a runtime enforcer of a

safety property ϕ of a reactive system D. That is, regardless of the runtime behavior of D, it ensures

that the combinedD◦S never violates ϕ. If, for example, D(I, O) malfunctions and produces some

erroneous output O for input I , the shield will correct O into O′ instantaneously to ensure ϕ(I, O′)

holds even when ϕ(I, O) fails. An important feature of the shield is that S is synthesized solely

from ϕ, regardless of the internals of D, which makes it well-suited for systems with arbitrarily

complex D but small ϕ, e.g., learning-enabled systems [17, 155, 164].

An important feature of the shield is that it tries to minimize the deviation between the original and
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modified system output. However, the original shield synthesis algorithm of Bloem et al. does not

robustly handle burst error; instead, it allows only one error to occur within a window of k time

steps. If there are more than one errors within k time steps, the shield would enter a fail-safe state,

from which it stops minimizing the deviation. We extend the synthesis algorithm to make sure that

the shield can handle arbitrary errors without ever going to the fail-safe state.

Another problem of the original shield synthesis algorithm of Bloem et al. is that the shield can

only handle Boolean signals. However, in many real world systems, the input and output have

real-valued signals. Directly applying the Boolean shield to real-valued signals may run into both

realizability and scalability problems. Thus, I develop a new shield synthesis algorithm, to extend

the shield from the Boolean domain to the real-valued domain, where the system’s input and output

signals can have real values.

The proposed shield synthesis algorithms have been implemented in software tools, and the resulting

shields have been evaluated on a number of embedded control applications. Our experiments show

that, in all cases, the shields synthesized by our new methods are significantly more effective in

handling burst error as well as producing real-valued correction signals at run time.

1.1 Overview

Figure 1.1 shows the overall flow of the software tool that we implement for detecting and mitigating

side-channel information leaks. Given the original program written in the C language, first, our tool

parses the program to construct its intermediate representation in LLVM. Then, it conducts a series

of static analyses to identify the sensitive variables and timing leaks associated with these variables.

Next, it performs two types of code transformations to remove the leaks. One transformation aims

to eliminate the differences in the execution time caused by unbalanced conditional jumps, while

the other transformation aims to eliminate the differences in the number of cache hits/misses during



6 CHAPTER 1. INTRODUCTION

Original

Program

Detection

LLVM

Bit-code

Sensitivity 

Analysis

Static Cache 

Analysis

Unify Sensitive 

Branches

Equalize 

Cache Accesses

Mitigation GEM5

Simulation

Machine 

Code

Figure 1.1: Detecting and mitigating both instruction- and cache-timing side channels.

the accesses of look-up tables such as S-Boxes. Finally, the GEM5 simulator is used to confirm that

the mitigated program code is indeed leakage free.

Fig. 1.2 represents the overall flow of our synthesized shield, where the input consists of real-valued

Ir and Or signals and a safety property ϕr defined over these signals. Internally, the shield S

has three subcomponents: a converter from real-valued Ir/Or signals to Boolean I/O signals, a

converter from Boolean O′ signals to real-valued O′r signals, and a Boolean shield S(I, O,O′).

The synthesized shield is meant to be attached to the original system, to monitor its input and

instantaneously correct the erroneous output. That is, if the system satisfies the safety property, the

shield’s output will remain the same as the system’s output; but if the system violates the safety

property, the shield will take action immediately by generating some new output, to satisfy the

safety property.

1.2 Contribution

In terms of practical contributions, the methods and tools developed in this dissertation are fully

automated and can be used to significantly improve the safety and security of software systems.

Specifically, they can detect timing side-channel leaks using static program analysis, mitigating

these leaks using program transformations, and finally enforce safety properties of systems at run
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Figure 1.2: Overview of the safety shield for real.

time.

In terms of scientific contributions, the new abstract interpretation based static program analysis

framework developed in this dissertation is the first such technique for soundly handling speculative

execution. The new algorithms for synthesizing the shields are also the first for robustly handling

burst error and producing real-valued correction signals.

To summarize, this dissertation makes the following contributions:

• I propose a static analysis and transformation based method for eliminating instruction- and

cache-timing side channels.

• I propose a generally applicable abstract interpretation framework to make the analysis sound

under speculative execution. The speculative cache analysis can help improve side channel

mitigation safely.
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• I propose a method for synthesizing the shield while minimizing the deviation under burst

error.

• I propose a method for synthesizing the shield to ensure both the realizability and the efficiency

of the shield in generating real-valued correction signals.

• I demonstrate, using realistic benchmark applications, the effectiveness and efficiency of the

proposed techniques.

1.3 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 presents a number of static program analysis techniques for detecting side-channel leaks,

including a sensitivity analysis, which propagates a set of user-provided annotations from inputs to

other program variables.

Chapter 3 presents a number of program transformation techniques for mitigating side-channel leaks.

They are provably secure in eliminating leaks associated with both conditional jumps and lookup

table accesses. These mitigation techniques are further optimized using a static cache analysis,

which reduces the unnecessary mitigation points where instructions cannot actually cause leaks.

Chapter 4 presents a new method for making the cache analysis presented in Chapter 3 sound under

speculative execution. That is, it is guaranteed to capture the cache behaviors along all program

paths, for all program inputs, and under all speculative executions.

Chapter 5 presents a new method for synthesizing the shield to handle burst error. Toward this

end, we first review the basics of the classic algorithm for shield synthesis, and then present our

extension to handle burst error.
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Chapter 6 presents a further extension of the synthesis algorithm presented in Chapter 5, to handle

real-valued input and output signals of the system. We also illustrate the effectiveness of the

proposed technique using two case studies in the context of realistic control systems.

Chapter 7 presents the evaluation results, which demonstrate the effectiveness of all techniques

presented in this dissertation.

Finally, Chapter 8 presents the conclusions.



Chapter 2

Detecting Side Channel Leaks

2.1 Timing Side Channels

The execution time of a program has been expoited attackers to deduce sensitive information such

as cryptographic keys and passwords. In this section, we use examples to illustrate various types of

timing leaks and then present our static analysis based methods for detecting them.

2.1.1 Conditional Jumps Affected by Secret Data

An unbalanced if-else statement whose condition is affected by secret data may have side-channel

leakage, because the then- and else-branches will have different execution time. Figure 2.1 shows

the C code of the textbook implementation of a 3-way cipher [142], where the variable a is marked

as secret and it affects the execution time of the if-statements. By observing the timing variation, an

adversary may be able to gain information about the bits of a.

To remove the dependencies between execution time and secret data, one widely-used approach

10
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1 void mu(int32_t *a) { // original version
2 int i;
3 int32_t b[3];
4 b[0] = b[1] = b[2] = 0;
5 for (i=0; i<32; i++) {
6 b[0] <<= 1; b[1] <<= 1; b[2] <<= 1;
7 if(a[0]&1) b[2] |= 1; // leak
8 if(a[1]&1) b[1] |= 1; // leak
9 if(a[2]&1) b[0] |= 1; // leak

10 a[0] >>= 1; a[1] >>= 1; a[2] >>= 1;
11 }
12 a[0] = b[0]; a[1] = b[1]; a[2] = b[2];
13 }

1 // mitigation #1: equalizing the branches
2 int32_t dummy_b[3];
3 dummy_b[0] = dummy_b[1] = dummy_b[2] = 0;
4 ...
5 dummy_b[0] <<= 1; dummy_b[1] <<= 1; dummy_b[2] <<= 1;
6 ...
7 if(a[0]&1) b[2]|=1; else dummy_b[2]|=1;
8 if(a[1]&1) b[1]|=1; else dummy_b[1]|=1;
9 if(a[2]&1) b[0]|=1; else dummy_b[0]|=1;

1 // mitigation #2: removing the branches
2 b[2] = CTSEL(a[0]&1, b[2]|1, b[2]);
3 b[1] = CTSEL(a[1]&1, b[1]|1, b[1]);
4 b[0] = CTSEL(a[2]&1, b[0]|1, b[0]);

Figure 2.1: A cipher with timing leaks and two different mitigation approaches.

is equalizing the branches by cross-copying as illustrated by the code snippet in the middle of

Figure 2.1: the auxiliary variable dummy_b[3] and some assignments are added to make both

branches have the same number and type of instructions. Unfortunately, this approach does not

always work in practice, due to the presence of hidden states at the micro-architectural level and

related performance optimizations inside modern CPUs (e.g., instruction caching, branch prediction

and speculative execution) – we have confirmed this limitation by analyzing the mitigated code

using GEM5, the details of which are described as follows.

We compiled the mitigated program shown in the middle of Figure 2.1 and, by carefully inspecting
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the machine code, made sure that all conditional branches indeed had the same number (and type)

of instructions. Then, we ran the top-level program on GEM5 with two different cryptographic

keys: k1 has 1’s in all 96 bits whereas k2 has 0’s in all 96 bits. Our GEM5 simulation results showed

significant timing differences: 88,014 CPU cycles for k1 versus 87,624 CPU cycles for k2. Such

timing variations would allow attackers to gain information about the secret key.

Therefore, in the remainder of this paper, we avoid the aforementioned approach while focusing on

an alternative: replacing sensitive branches with functionally-equivalent, constant-time, branch-less

assignments, as shown in the code snippet at the bottom of Figure 2.1. Specifically, CTSEL(c,t,e) is

an LLVM intrinsic we added to ensure the selection of either t or e, depending on the predicate c,

is done in constant time. For different CPU architectures, this intrinsic function will be compiled

to different machine codes to obtain the best performance possible (see Section 3.1 for details).

Because of this, our mitigation adds little runtime overhead: the mitigated program requires only

90,844 CPU cycles for both k1 and k2.

Note that we cannot simply rely on C-style conditional assignment r=(c?t:e) or the LLVM

select instruction because neither guarantees constant-time execution. Indeed, LLVM may transform

both to conditional jumps, e.g., when r is of char type, which may have the same residual timing

leaks as before. In contrast, our use of the new CTSEL intrinsic avoids the problem.

2.1.2 Table Lookups Affected by Secret Data

When an index used to access a lookup table (LUT) depends on the secret data, the access time may

vary due to the behavior of the cache associated with the memory block. Such cache-timing leaks

have been exploited, e.g., in block ciphers [74, 116, 148] that for efficiency reasons implement

S-Boxes using lookup tables. Figure 2.2 shows the subBytes function of the AES cipher

in FELICS [49], which substitutes each byte of the input array (block) with the precomputed
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1 const uint8_t sbox[256] = {0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
2 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, ...};
3 void subBytes(uint8_t *block) {
4 uint8_t i;
5 for (i = 0; i < 16; ++i) {
6 block[i] = sbox[block[i]];
7 }
8 }

Figure 2.2: Example for accessing the lookup table.

1 //mitigation #3: replacing block[i] = sbox[block[i]];
2 block_i = block[i];
3 for (j=0; j < 256; j++) {
4 sbox_j = sbox[j];
5 val = (block_i == j)? sbox_j : block_i;
6 }
7 block[i] = val;

Figure 2.3: Countermeasure: reading all the elements.

byte stored in sbox. Thus, the content of block, which depends on secret data, may affect the

execution time. For example, when all sixteen bytes of block are 0x0, meaning sbox[0] is

always accessed, there will be one cache miss followed by fifteen hits; but when all sixteen bytes of

block differ from each other, there may be 256/64 = 4 cache misses (if we assume 64 bytes per

cache line).

Mitigating cache-timing leaks is different from mitigating instruction-timing leaks. Generally

speaking, the level of granularity depends on the threat model (i.e., what the attackers can and

cannot do). For example, if we add the accesses of all elements of sbox[256] to each original

read of sbox[], as shown in Figure 2.2, it would be impossible for attackers to guess which is the

desired element. Since each original loop iteration now triggers the same set of LUT accesses, there

is no longer timing variation.

However, the high runtime overhead may be unnecessary, e.g., when attackers cannot observe

the timing variation of each loop iteration. If, instead, the attackers can only observe differences

in the cache line associated with each write to block[i], it suffices to use the approach in
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1 //mitigation #4: replacing block[i] = sbox[block[i]];
2 block_i = block[i];
3 for (j=block_i % CLS; j < 256; j+=CLS) {
4 sbox_j = sbox[j];
5 val = (block_i == j)? sbox_j : block_i;
6 }
7 block[i] = val;

Figure 2.4: Countermeasure: reading all cache lines.

1 //mitigation #5: preloading sbox[256]
2 for (j =0; j < 256; j+=CLS)
3 temp = sbox[j];
4 //access to sbox[...] is always a hit
5 for (i = 0; i < 16; ++i) {
6 block[i] = sbox[block[i]];
7 }

Figure 2.5: Countermeasure: preloading all cache lines.

Figure 2.4. Here, CLS denotes the cache line size (64 bytes in most modern CPUs). Note there is

a subtle difference between this approach and the naive preloading (Figure 2.5): the latter would

be vulnerable to Flush+Reload attacks. For example, the attackers can carefully arrange the

Flush after Preload is done, and then perform Reload at the end of the victim’s computation;

this is possible because Preload triggers frequent memory accesses that are easily identifiable by

the attacker. In contrast, the approach illustrated in Figure 2.4 can avoid such attacks.

If the attackers can only measure the total execution time of a program, our mitigation can be more

efficient than Figures 2.5 and 2.4: For example, if the cache is large enough to hold all elements,

preloading would incur 256/CLS=4 cache misses, but all subsequent accesses would be hits. This

approach will be illustrated in Figure 3.4. However, to safely apply such optimizations, we need to

make sure the table elements never get evicted from the cache. For simple loops, this would be easy.

But in real applications, loops may be complex, e.g., containing branches, other loops, and function

calls, which means in general, a sound static program analysis procedure is needed to determine

whether an lookup table access is a MUST-HIT.
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1 typedef struct {
2 uint32_t *xk; // the round keys
3 int nr; // the number of rounds
4 } rc5_ctx;
5 #define ROTL32(X,C) (((X)<<(C))|((X)>>(32-(C))))
6 void rc5_encrypt(rc5_ctx *c, uint32_t *data, int blocks) {
7 uint32_t *d,*sk;
8 int h,i,rc;
9 d = data;

10 sk = (c->xk)+2;
11 for (h=0; h<blocks; h++) {
12 d[0] += c->xk[0];
13 d[1] += c->xk[1];
14 for (i=0; i<c->nr*2; i+=2) {
15 d[0] ^= d[1];
16 rc = d[1] & 31;
17 d[0] = ROTL32(d[0],rc);
18 d[0] += sk[i];
19 d[1] ^= d[0];
20 rc = d[0] & 31;
21 d[1] = ROTL32(d[1],rc);
22 d[1] += sk[i+1];
23 }
24 d+=2;
25 }
26 }

Figure 2.6: RC5.c

2.1.3 Idiosyncratic Code Affected by Secret Data

For various reasons, complex operations in cryptographic software are often implemented using a

series of simpler but functionally-equivalent operations. For example, the shift operation (X<<C)

may be implemented using a sensitive data-dependent loop with additions: for ( i=0;i<C;i++) {X +=

X;} because some targets (e.g. MSP430) do not support multi-bit shifts.

One real example of such idiosyncratic code is the implementation of rc5_encrypt [142]

shown in Figure 2.6. Here, the second parameter of ROTL32() is aliased to the sensitive variable

c->xk. To eliminate the timing leaks caused by an idiosyncratic implementation of (X<<C),

we must conservatively estimate the loop bound. If we know, for example, the maximum va-
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lue of C is MAX_C, the data-dependent loop may be rewritten to one with a fixed loop bound.

for ( i=0;i<MAX_C;++i) {if(i<C) X += X;} After this transformation, we can leverage the aforementi-

oned mitigation techniques to eliminate leaks associated with the if ( i<C) statement.

2.2 Threat Model

We now define the threat model, as well as timing side-channel leaks under our threat model.

We assume a less-capable attacker who can only observe variations of the total execution time of

the victim’s program with respect to the secret data. Since the capability is easier to obtain than that

of a more-capable attacker, it will be more widely applicable. A classic example, for instance, is

when the victim’s program runs on a server that can be probed and timed remotely by the attacker

using a malicious client.

We do not consider the more-capable attacker who can directly access the victim’s computer to

observe hidden states of the CPU at the micro-architectural level, e.g., by running malicious code to

perform Meltdown/Spectre [85, 98] or similar cache attacks [121, 166] (Evict+Time, Prime+Probe,

and Flush+Reload). Mitigating such attacks at the software level only will likely be significantly

more expensive — we leave it for future work.

Let P be a program and in = {X,K} be the input, where X is public and K is secret. Let x and k

be concrete values of X and K, respectively, and τ(P, x, k) be the time taken to execute P under x

and k. We say P is free of timing side-channel leaks if

∀x, k1, k2 : τ(P, x, k1) = τ(P, x, k2) .

That is, the execution time of P is independent of the secret input K. When P has timing leaks, on

the other hand, there must exist some x, k1 and k2 such that τ(P, x, k1) 6= τ(P, x, k2).
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We assume P is a deterministic program whose execution is determined completely by the input.

Let π = inst1, . . . , instn be an execution path, and τ(insti) be the time taken to execute each

instruction insti, where 1 ≤ i ≤ n, we have τ(π) = Σn
i=1τ(insti).

Furthermore, τ(insti) consists of two components: τcpu(insti) and τmem(insti), where τcpu denotes

the time taken to execute the instruction itself and τmem(insti) denotes the time taken to access

the memory. For Load and Store, in particular, τmem(insti) is determined by if the access leads

to a cache hit or miss. For the other instructions, τmem(insti) = 0. We want to equalize both

components along all program paths – this will be the foundation of our leak mitigation technique.

2.3 Detecting Timing Leaks

Now, we present our method for detecting timing leaks, which is implemented as a sequence of

LLVM passes at the IR level. It takes a set of inputs marked as secret and returns a set of instructions

whose execution time may depend on these secret inputs.

2.3.1 Static Sensitivity Analysis

To identify the leaks, we need to know which program variables are dependent of the secret — they

are called the sensitive variables. Since manual annotation is tedious and error prone, we develop a

procedure to perform such annotation automatically.

Secret Source: The initial set of sensitive variables consists of the secret inputs marked by the

user. For example, in block ciphers, the secret input would be the cryptographic key while plaintext

would be considered as public.

Tag Propagation: The sensitivity tag is an attribute to be propagated from the secret source to other
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1 struct aes_ctx {
2 uint32_t key_enc[60];
3 uint32_t key_length;
4 };
5 int expand_key(const uint8_t *in_key, struct aes_ctx *ctx, unsigned

int key_len)
6 {
7 uint32_t *key =ctx->key_enc;
8 key[0] = *((uint32_t*)in_key);
9 ...

10 ctx->key_length = key_len;
11 ...
12 if (ctx->key_length)
13 ...
14 }

Figure 2.7: Example of Field Sensitive Pointer Analysis

program variables following either data or control dependency. An example of data dependency

is the def-use relation in {b = a & 0x80;} where b is marked as sensitive because it depends on

the most significant bit of a, the sensitive variable. An example of control dependency is in

if (a==0x10) {b=1;} else {b=0;} where b is marked as sensitive because it depends on whether a is

0x10.

Field-sensitive Analysis: To perform the sensitivity analysis defined above, we need to identify

aliased expressions, e.g., syntactically-different variables or fields of structures that point to the

same memory location. Cryptographic software often have this type of pointers and structures. For

example, the ASE implementation of Chronos [48] shown in Figure 2.7 demonstrates the need for

field-sensitivity during static analysis. Here, local pointer key becomes sensitive when key[0] is

assigned the value of another sensitive variable in_key. Without field sensitivity, one would have

to mark the entire structure as sensitive (to avoid missing potential leaks). In contrast, our method

performs a field-sensitive pointer analysis [22, 125] to propagate the sensitivity tag only to truly

relevant fields such as key_enc inside ctx, while avoiding fields such as key_length. This

means we can avoid marking (falsely) the unbalanced if ( ctx−>key_length) statement as leaky.
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2.3.2 Leaky Conditional Statements

There are two requirements for a branch statement to have potential timing leaks. First, the condition

depends on secret data. Second, the branches are unbalanced. Figure 2.1 shows an example, where

the conditions depend on the secret input a and the branches obviously are unbalanced. Sometimes,

however, even if two conditional branches have the same number and type of instructions, they still

result in different execution time due to hidden micro-architectural states, as we have explained

in Section 2.1 and confirmed using GEM5 simulation. Thus, to be conservative, we consider all

sensitive conditional statements as potential leaks (regardless of whether they have balanced) and

apply our CTSEL based mitigation.

2.3.3 Leaky Lookup-table Accesses

The condition for a lookup-table (LUT) access to leak timing information is that the index used in

the access is sensitive. In practice, the index affected by secret data may cause memory accesses to

be mapped to different cache lines, some of which may have been loaded and thus result in hits

while others result in misses. Therefore, we consider LUT accesses indexed by sensitive variables

as potential leaks, e.g., the load from sbox in Figure 2.2, which is indexed by a sensitive element

of block.

However, not all LUT accesses are leaks. For example, if the table has already been loaded, the

(sensitive) index would no longer cause differences in the cache. This is an important optimization

we perform during leak mitigation — the analysis required for deciding if an LUT access results in

a must-hit will be presented in Section 5.3.2.



Chapter 3

Mitigating Side Channel Leaks

In Chapter 2, we have presented our static analysis techniques for detecting side-channel leaks. In

this chapter, we present our program transformations for eliminating both instruction-related and

cache-related timing leaks. To reduce the mitigation overhead, we leverage a static cache analysis

to reduce the number of mitigation points.

3.1 Mitigating Conditional Statements

We present our method for mitigating leaks associated with conditional jumps. In contrast to existing

approaches that only attempt to balance the branches, e.g., by adding dummy instructions [13] [24],

we eliminate these branches.

Algorithm 1 shows our high-level procedure, implemented as an LLVM function pass: for each

function F , we invoke BranchMitigationPass(F) to compute the dominator tree of the control flow

graph (CFG) associated with F and then traverse the basic blocks in a depth-first search (DFS)

order.

20
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Algorithm 1 Mitigating all sensitive conditional statements.
1: function BRANCHMITIGATEPASS(Function F )
2: let DT (F ) be the dominator tree in the CFG of F
3: for each BasicBlock bb ∈ DT (F ) in DFS order do
4: if bb is the entry of a sensitive conditional statement then
5: Standardize (bb)
6: MitigateBranch (bb)
7: end if
8: end for
9: end function

The dominator tree is a standard data structure in compilers where each basic block has a unique

immediate dominator, and an edge from bb1 to bb2 exists only if bb1 is an immediate dominator of

bb2. The DFS traversal order is important because it is guaranteed to visit the inner-most branches

before the outer branches. Thus, when MitigateBranch(bb) is invoked, we know all branches inside

bb have been mitigated, i.e., they are either removed or insensitive and hence need no mitigation.

Our mitigation of each conditional statement starting with bb consists of two steps: (1) transforming

its IR to a standardized form, using Standardize(bb), to make subsequent processing easier; and (2)

eliminating the conditional jumps using MitigateBranch(bb).

3.1.1 Standardizing Conditional Statements

A conditional statement is standardized if it has unique entry and exit blocks. In practice, most

conditional statements in cryptographic software are already in standardized. However, occasionally,

there may be statements that do not conform to this requirement. For example, in Figure 3.1, the

conditional statement inside the while-loop is not yet standardized. In such cases, we transform the

LLVM IR to make sure it is standardized, i.e., each conditional statement has a unique entry block

and a unique exit block.

Standardization is a series of transformations as illustrated by the examples in Figure 3.2, where
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1 do {
2 t += 1;
3 if (x == 1)
4 break;
5 x >>1;
6 ...
7 } while (x != 0);
8 return t;

t+=1;
if(x==1)

x»1;
while(x!=0)

return t;

Figure 3.1: A not-yet-standardized conditional statement.

for(b=0;b<MAX_B;b++){

t += 1;
if (x == 1)

break;

x >>1;
...
if (x == 0)

break;

}

no_br2 = 1;
for(b=0;b<MAX_B;b++){

if (no_br2) {
t += 1;
if (x == 1)
break;

x >>1;
...
if (x == 0)
no_br2 = 0;

}
}

no_br1= no_br2= 1;
for(b=0;b<MAX_B;b++){
if (no_br1&&no_br2){

t += 1;
if (x == 1)

no_br1 = 0;
if (no_br1) {

x >>1;
...
if (x == 0)
no_br2 = 0;

}
}

}

Figure 3.2: Standardized conditional statements (Fig. 3.1).

auxiliary variables such as no_br1 and no_br2 are added to make the loop bound independent

of sensitive variables. MAX_B is the bound computed by our conservative static analysis; in

cryptographic software, it is often 64, 32, 16 or 8, depending on the number of bits of the integer

variable x.
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Algorithm 2 Mitigating the conditional statement from bb.
1: function MITIGATEBRANCH(BasicBlock bb)
2: Let cond be the branch condition associated with bb
3: for each Instruction i in THEN branch or ELSE branch do
4: if i is a Store of the value val to the memory address addr then
5: Let val′ = CTSEL(cond, val,Load(addr))
6: Replace i with the new instruction Store(val ′, addr)
7: end if
8: end for
9: for each Phi Node (%rv ← φ(%rvT ,%rvE)) at the merge point do

10: Let val′ = CTSEL(cond,%rvT ,%rvE)
11: Replace the Phi Node with the new instruction (%rv ← val′)
12: end for
13: Change the conditional jump to THEN branch to unconditional jump
14: Delete the conditional jump to ELSE branch
15: Redirect the outgoing edge of THEN branch to start of ELSE branch
16: end function

3.1.2 Replacing Conditional Statements

Given a standardized conditional statement, we perform a DFS traversal of its dominator tree to

guarantee that we always mitigate the branches before their merge point. The pseudo code, shown

in Algorithm 2, takes the entry block bb as input.

Condition and CTSEL: First, we assume the existence of CTSEL(c,t,e), a constant-time intrinsic

function that returns t when c equals true, and e when c equals false. Without any target-specific

optimization, it may be implemented using bit-wise operations: CTSEL(c,t,e) {c0=c−1; c1= ~c0;

val= (c0 & e) |( c1 & t) ;} — when the variables are of ’char’ type and c is true, c0 will be 0x00 and

c1 will be 0xFF ; and when c is false, c0 will be 0xFF and c1 will be 0x00. With target-specific

optimization, CTSEL(c,t,e) may be implemented more efficiently. For example, on x86 or ARM

CPUs, we may use CMOVCC instructions as follows: {MOV val t; CMP c, 0x0; CMOVEQ val e;}

which requires only three instructions. We will demonstrate through experiments (Section 7.4) that

target-specific optimization reduces the runtime overhead significantly.
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Store Instructions: Next, we transform the branches. If the instruction is a Store(val,addr) we

replace it with CTSEL. That is, the Store instructions in THEN branch will only take effect when the

condition is evaluated to true, while the Store instructions in ELSE branch will only take effect

when condition is false.

Local Assignments: The above transformation is only for memory Store, not assignment to a

register variable such as if (cond) {rv=val1; ...} else {rv=val2; ...} because, inside LLVM, the

latter is represented in the static single assignment (SSA) format. Since SSA ensures each variable

is assigned only once, it is equal to if (cond) {%rv1=val1; ...} else {%rv2=val2; ...} together with

a Phi Node added to the merge point of these branches.

The Phi Nodes: The Phi nodes are data structures used by compilers to represent all possible values

of local (register) variables at the merge point of CFG paths. For %rv ← φ(%rvT ,%rvE), the

variables %rvT and %rvE in SSA format denote the last definitions of %rv in the THEN and ELSE

branches: depending on the condition, %rv gets either %rvT or %rvE . Therefore, in our procedure,

for each Phi node at the merge point, we create an assignment from the newly created val′ to %rv,

where val′ is again computed using CTSEL.

Unconditional Jumps: After mitigating both branches and the merge point, we can eliminate the

conditional jumps with unconditional jumps. For the standardized branches on the left-hand side of

Figure 3.3, the transformed CFG is shown on the right-hand side.

3.1.3 Optimizations

The approach presented so far still has redundancy. For example, given if (cond) {∗addr=∗val_T;}

else {∗addr=val_E;} the transformed code would be ∗addr = CTSEL(cond,val_T,∗addr); ∗addr =

CTSEL(cond,∗addr,val_E); which has two CTSEL instances. We remove one or both CTSEL instances:
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blocks

End_T
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blocks

End_E
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Figure 3.3: Removing the conditional jumps.

• If (val_T==val_E) holds, we merge the two Store operations into one Store: ∗addr = val_T

• Otherwise, we use ∗addr = CTSEL(cond,val_T,val_E)

In the first case, all CTSEL instances are avoided. Even in the second case, the number of CTSEL

instances is reduced by half.

3.2 Mitigating Lookup Table Accesses

We present our method for mitigating lookup table accesses that may lead to cache-timing leaks. In

cryptographic software, such leaks are often due to dependencies between indices used to access

S-Boxes and the secret data. However, before delving into the details of our method, we perform

a theoretical analysis of the runtime overhead of various alternatives, including those designed

against the more-capable attackers. Then we review the static cache analysis from [65, 66] before

presenting the mitigation.
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3.2.1 Mitigation Granularity and Overhead

We focus on the less-capable attackers who only observe the total execution time of the victim’s

program. Under this threat model, we develop optimizations to take advantage of the cache structure

and unique characteristics of the software being protected. Our mitigation, illustrated by the example

in Figure 3.4, can be significantly more efficient than the approaches illustrated in Figure 2.4.

In contrast, the Byte-access-aware threat model allows attackers to observe timing characteristics of

each instruction in the victim’s program, which means mitigation would have to be applied to every

LUT access to make sure there is no timing difference (Figure 2.3).

The Line-access-aware threat model allows attackers to see the difference between memory locations

mapped to different cache lines. Thus, mitigation only needs to touch all cache lines associated with

the table (Figure 2.4).

Let π be a path in P and τ(π) be its execution time. Let τmax be the maximum value of τ(π) for all

possible π in P . For our Total-time-aware threat model, the ideal mitigation would be a program P ′

whose execution time along all paths matches τmax. In this case, we say mitigation has no additional

overhead. We quantify the overhead of other approaches by comparing to τmax.

Table 3.1 summarizes the results. Let N be the table size, CLS be the cache line size, and

M = dN/CLSe be the number of cache lines needed. Let K be the number of times table elements

are accessed. Without loss of generality, we assume each element occupies one byte. In the best

case where all K accesses are mapped to the same cache line, there will be 1 miss followed by

K − 1 hits. In the worst case (τmax) where the K accesses are scattered in M cache lines, there will

be M misses followed by K −M hits.

When mitigating at the granularity of a byte (e.g., Figure 2.3), the total number of accesses in P ′ is

increased from K to K ∗N . Since all elements of the table are touched when any element is read,
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Table 3.1: Overhead comparison: N is the table size; M = dN/CLSe is the number of cache lines
to store the table; K is the number of times table elements are accessed.

Program Version # Accesses # Cache Miss # Cache Hit
Original program K from M to 1 from K-M to K-1
Granularity: Byte-access K*N M K*N-M
Granularity: Line-access K*M M K*M-M
Granularity: Total-time (τmax) K M K-M
Our Method: opt. w/ cache analysis K+M-1 M K-1

all M cache lines will be accessed. Thus, there are M cache misses followed by K ∗N −M hits.

When mitigating at the granularity of a line (e.g., Figure 2.4), the total number of accesses becomes

K ∗M . Since all cache lines are touched, there are M cache misses followed by K ∗M −M hits.

Our method, when equipped with static cache analysis based optimization (Section 5.3.2), further

reduces the overhead: by checking whether the table, once loaded to the cache, will stay there until

all accesses complete. If we can prove the table never gets evicted, we only need to load each line

once. Consequently, there will be M misses in the first loop iteration, followed by K − 1 hits in the

remaining K − 1 loop iterations.

In all cases, however, the number of cache misses (M ) matches that of the ideal mitigation; the

differences is only in the number of cache hits, which increases from K −M to K ∗ N −M ,

K ∗M −M , or K − 1. Although these numbers (of hits) may differ significantly, the actual time

difference may not, because a cache hit often takes an order of magnitude shorter time than a cache

miss.

3.2.2 Static Cache Analysis

We first review a basic static cache analysis, which were previously used in execution time esti-

mation [65, 66]. In our case, it is used to decide whether a memory element is definitely in the

cache.
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1 //mitigation #6: preloading sbox[256] during the first loop
iteration block_0 = block[0];

2 for (j=block_0 % CLS; j < 256; j+=CLS) {
3 sbox_j = sbox[j];
4 val = (block_0 == j)? sbox_j : block_0;
5 }
6 block[0] = val;
7 //access to sbox[...] is always a hit
8 for (i = 1; i < 16; ++i) {
9 block[i] = sbox[block[i]];

10 }

Figure 3.4: Reduction: preloading only in the first iteration.

The Abstract Domain

We design our static analysis procedure based on the unified framework of abstract interpreta-

tion [44], which defines a suitable abstraction of the program’s state as well as transfer functions of

all program statements. There are two reasons for using abstract interpretation. The first one is to

ensure the analysis can be performed in finite time even although precise analysis of the program

may be undecidable. The second one is to summarize the analysis results along all paths and for all

inputs.

Let V = {v1, ..., vn} be the set of program variables, each of which is mapped to a subset Lv ⊆ L∗

of cache lines. The age of v ∈ V , denoted Age(v), is a set of integers corresponding to ages

(subscripts) of the lines it may reside (e.g., along all paths and for all inputs). Let the cache be fully

associative with the LRU replacement policy, which means a variable v ∈ V may be mapped to any

cache line, and if there is not enough space, the least recently used (LRU) variable will be evicted

from the cache. Assume that N is the total number of cache lines, we can define the age Age(v)

for each variable v ∈ V , which is an integer ranging from 1 to N + 1. Here, Age(v) = 1 means v

resides in the most recently used line, Age(v) = N means v resides in the least recently used cache

line, and Age(v) = N + 1 means v is outside of the cache. The program’s cache state, denoted

S = 〈Age(v1), . . . , Age(vn)〉, provides the ages of all variables.
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Consider an example program with three variables x, y and z, where x is mapped to the first cache

line, y may be mapped to the first two lines (e.g., along two paths) and z may be mapped to Lines 3-5.

Thus, Lx = {l1}, Ly = {l1, l2}, and Lz = {l3, l4, l5}, and the cache state is 〈{1}, {1, 2}, {3, 4, 5}〉.

In this context, a Must-Hit analysis needs to compute, at each program location, an upper bound of

Age(v). If the upper bound is less than or equal to N , then v must be in the cache. Otherwise, it is

possible that v may be outside of the cache.

The Transfer Function

Let TRANSFER(S, inst) be the transfer function that models the impact of executing inst in

the cache state S: given the current state S = 〈Age(v1), . . . ,Age(vn)〉, it returns a new state

S ′ = 〈Age ′(v1), . . . ,Age ′(vn)〉. If inst does not access memory at all, then S ′ = S. Otherwise,

assume that v ∈ V is the variable being accessed in inst, and we compute the new state S ′ as

follows:

• For the accessed variable v, set Age ′(v) = 1 in S ′.

• For variable u ∈ V whose age may be younger than v in S, increment the age of u; that is,

Age(u) < Age(v)→ Age ′(u) = Age(u) + 1.

• For any other variable w ∈ V , set Age ′(w) = Age(w).

Given the definition of TRANSFER for an instruction, we define it for a sequence of instructions,

denoted Insts = {inst0, inst1, ...instn}, as follows: TRANSFER(S, Insts) =

TRANSFER(. . . (TRANSFER(S, inst0), inst1), . . . , instn).

Figure 3.5 show two examples. The left-hand-side example illustrates the access of v, which is not
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Figure 3.5: Transfer of the cache state under the LRU policy.
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Figure 3.6: Update of the abstract cache state: (1) on the left-hand side, join at the merge point of
two paths; and (2) on the right-hand side, a non-deterministic key for memory access.

yet loaded into the cache. After the access, Age(v) = 1, meaning v is loaded to the youngest cache

line. Furthermore, the ages of all other lines increase by 1. Since Age(u4) > 4, the variable u4 is

evicted from the cache.

In the right-hand-side example, however, v is in the cache prior to the execution of the instruction.

Thus, existing cache lines fall into two categories. For the line (u) whose age used to be younger

than that of v, the age increases by 1. For the cache lines (w1 and w2) whose ages used to be older

than that of v, the ages remain the same.

The Join Operator

For efficiency reasons, cache states computed along two program paths are often joined together

at the control-flow merge point, to avoid creating an exponential number of states. In the baseline

abstract interpretation algorithm, the join operator (t) always maintains a single cache state in the
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result, regardless of how many states are joined.

Therefore we define the join (t) operator accordingly; it is needed to merge states S and S ′ from

different paths. It is similar to set intersection — in the resulting S ′′ = S t S ′, each Age′′(v) gets

the maximum of Age(v) in state S and Age′(v) in state S ′. This is because v ∈ V is definitely in

the cache only if it is in the cache according to both states, i.e., Age(v) ≤ N and Age′(v) ≤ N .

Consider the left example in Figure 3.6, where the ages of a are 1 and 3 before reaching the merge

point, and the ages of c are 3 and 2. After joining the two cache states, the ages of a and c become

3, and the age of d remains 4. The ages of b and e become ⊥ because, in at least one of the two

states, they are outside of the cache.

Formally, given two states S = 〈Age(v1), . . . , Age(vn)〉 and S ′ = 〈Age(v′1), . . . , Age(v′n)〉, we

define S ′′ = S t S ′ as follows: S ′′ = 〈max(Age(v1), Age(v′1)), . . . ,max(Age(vn), Age(v′n))〉.

MUST-HIT Analysis.

Since our goal is to decide whether a memory block is definitely in the cache, we compute in Age(v)

the upper bound of all possible ages of v, e.g., along all paths and for all inputs. If this upper bound

is ≤ N , we know v must be in the cache.

Now, consider the right-hand-side example in Figure 3.6, where sbox has four elements in total.

In the original state, the first three elements are in the cache whereas sbox[3] is outside. After

accessing sbox[key], where the value of key cannot be statically determined, we have to assume the

worst case. In our MUST-HIT analysis, the worst case means key may be any index ranging from 0

to 3. To be safe, we assume sbox[key] is mapped to the oldest element sbox[3]. Thus, the new state

has sbox[3] in the first line while the ages of all other elements are decremented.
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3.2.3 Static Cache Analysis-based Reduction

As described above, we’ve developed a MUST-HIT analysis which allows us decide if an LUT

access needs to be mitigated. For example, in subCell() of LED_encrypt.c that accesses

sbox[16] using for ( i=0; i<4; i++) for ( j=0;j<4;j++) { state [ i ][ j]=sbox[ state [ i ][ j ]];} since the

size of sbox is 16 bytes while a cache line has 64 bytes, all the elements can be stored in the same

cache line. Therefore, the first loop iteration would have a cache miss while all subsequent fifteen

iterations would be hits – there is no cache-timing leak that needs mitigation.

There are many other real-world applications where accesses to lookup tables result in MUST-HITs.

For example, block ciphers often consist of multiple encryption or decryption rounds, each of which

performs computation using the same lookup table. Instead of mitigating every round, we use our

cache analysis to check if, starting from the second round, mitigation can be skipped.

Correctness and Termination.

Our analysis is a conservative approximation of the actual cache behavior. For example, when it

says a variable has age 2, its actual age must not be older than 2. Therefore, when it says the variable

is in the cache, it is guaranteed to be true, i.e., our analysis is sound; however, it is not (meant to

be) complete in finding all MUST-HIT cases – insisting on being both sound and complete could

make the problem undecidable. In contrast, by ensuring the abstract domain is finite (with finitely

many lines in L and variables in V ) and both TFunc and (t) are monotonic, we guarantee that our

analysis always terminates.

Handling Loops.

One advantage of using abstract interpretation [44] is the capability of handling loops: for each

back edge in the CFG, cache states from all incoming edges are merged using the join (t) operator.



3.3. RELATED WORK 33

Nevertheless, loops in cryptographic software have unique characteristics. For example, most of

them have fixed loop bounds, and many are in functions that are invoked in multiple encryption/de-

cryption rounds. Thus, memory accesses often cause cache misses in the first loop iteration of the

first function invocation, but hits subsequently. Such first-misses followed by always hits, however,

cannot be directly classified as MUST-HITs.

To exploit such unique characteristics, we perform a code transformation prior to our analysis.

We unroll the first iteration out of the loop while keeping the remaining iterations. For example,

for(i=0;i<16;++i) {block[i]=...} become {block[0]=...} for(i=1;i<16;++i)

{block[i]=...}. As soon as accesses in the first iteration are mitigated, e.g., as in Figure 3.4, all

subsequent loop iterations will result in MUST-HITs, meaning we can skip the mitigation and avoid

the runtime overhead. Our experiments on a large number of real applications show that the cache

behaviors of many loops can be exploited in this manner.

3.3 Related Work

Kocher [86] is perhaps the first to demonstrate the feasibility of timing side-channel attacks in

embedded systems. Since then, timing attacks have been demonstrated on many other platforms [15,

23, 36, 42, 73, 81, 121]. For example, Brumley et al. [36] demonstrated that timing attacks could

be carried out remotely through a computer network. Cock et al. [42] found timing side channels in

the seL4 microkernel and then performed a quantitative evaluation. Sung et al. [151] used LLVM

transformations together with software verification tools to conduct cache timing analysis. Guo et

al. [75] demonstrated the existence of concurrency-related cache timing leaks using a technique

named adversarial symbolic execution.

Noninterference properties [15, 24, 78, 90, 128] have been formulated to characterize side-channel

leaks. To quantify the amount of leaks, Millen [111] proposed to use Shannon’s channel capa-
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city [144], which models the correlation between sensitive data and timing observations. Other

approaches, including min-entropy [145] and g-leakage [18], were also proposed. Backes and

Köpf [21] developed an information-theoretic model for quantifying side-channel information.

Köpf and Smith [91] proposed a technique for bounding the leakage in blinded cryptographic

algorithms.

Prior techniques for removing timing leaks focused primarily on conditional branches, e.g., type-

driven cross-copying proposed by Agat [13]. Molnar et al. [114] introduced, along the program

counter (PC) model, a method for merging branches. Köpf and Mantel [90] proposed a unification-

based technique encompassing the previous two methods. Independently, Barthe et al. [24] proposed

a transactional branching technique that leverages the availability of commit/abort operations.

Coppens et al. [43] developed a compiler backend for removing instruction-timing channels on x86

processors. However, Mantel and Starostin [107] recently compared four of these existing techniques

on Java byte-code, and showed none was able to eliminate the leaks completely. Furthermore, these

methods did not consider cache-timing leaks.

Our method focuses on leveraging program transformations to completely eliminate timing channels

caused by both sensitive conditionals and cache. However, there are also techniques that do not

attempt to eliminate timing leaks but hide via randomization or blinding [20, 33, 46, 79, 86, 89, 169].

For example, noise may be added [79] and software diversification may be leveraged to confuse

attackers [46]. Correlation between sensitive operations and their observed execution time may be

changed unpredictably [86]; this blinding technique has been generalized by Köpf and Dr̈muth [89]

to allow trade-offs between the performance overhead and security strength. Askarov et al. [20]

proposed to delay the output of a black-box system in order to control its timing side channels;

Zhang et al. [169] formalized a similar approach in a programming system to support language-

based mitigation of timing channels. There are also hardware-based techniques for eliminating

timing channels. Broadly speaking, they fall into two categories: resource isolation and timing
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obfuscation. Resource isolation [100, 122, 161] may be realized by partitioning hardware resources

to two parts (public and private) and then restrict sensitive data/operations to the private partition.

However, it requires modifications of the CPU hardware which is not always possible. Timing

obfuscation [79, 133, 157] may be achieved by inserting fixed or random delays, or interfering

the measurement of the system clock. In addition to being expensive, it does not eliminate timing

channels. Oblivious RAM [72, 99, 149] is another technique for removing leakage through the data

flows, but requires a substantial amount of on-chip memory and incurs significant overhead in the

execution time. In contrast to all these existing techniques, our method does not require hardware

modifications and thus is cheaper and more widely applicable.

Beyond timing side channels, there are techniques for mitigating leaks through other side channels

such as power [87, 106] and faults [28]. Some of these techniques have been automated in

compiler-like tools [14, 27, 115] whereas others leverage SMT solver-based formal analysis and

verification [57, 58, 59, 60, 69, 160, 170] and inductive synthesis techniques [54, 55, 56, 61, 159].

However, none of these techniques was applied to timing side channels.



Chapter 4

Speculative Cache Analysis

In the previous two chapters, we have presented our techniques for detecting and mitigating

side-channel leaks, where a static cache analysis is used to help identifying potential leaks and

thus driving the mitigation step. The contribution of this chapter is to demonstrate, under micro-

architectural optimations, the unsoundness of existing cache analysis techniques, including the one

presented in the previous chapters. Then, we present our method for making the cache analysis

sound again under speculative execution.

Toward this end, we propose a generally applicable abstract interpretation framework for conducting

static analysis while maintaining the soundness under speculative execution. This is accomplished by

including all possible speculative execution traces. It acheives a good balance between performance

and accuracy by carefully choosing the merge points and dynamically changing the speculative

boundaries.

It is not tied to any particular way the abstract state is defined, or the abstract domain used to

represent the abstract state. For example, the abstract state may be used to capture side effects on

the cache content, the pipeline [140, 141], or other CPU components including relaxed memory

36
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models [93, 172]; the non-functional properties may be related to timing or power or other physical

characteristics. The abstract domain may be interval, box, or polyhedral domain. In all these above

cases, our method is able to capture the speculative execution behaviors missed by existing methods.

Although in this work, we have implemented the method to model cache timing behaviors, the

analysis framwork can be used to model other nonfunctional properties as well.

4.1 Introduction to Speculative Execution

Speculative execution [153] is a feature that has been implemented by many modern processors.

It allows a processor to increase the execution speed by exploring certain program paths ahead of

time instead of waiting for the path conditions to be satisfied. This is to prevent slower instructions,

e.g., memory accesses, from blocking faster instructions. For example, when a program reaches

a branching instruction, e.g., if(x>5){...}else{...} where the condition depends on an

uncached value of x stored in memory, a non-speculative execution will force the processor to wait,

often for tens or hundreds of clock cycles, until x is loaded from memory, whereas speculative

execution allows the processor to make a prediction of the branching target and then proceed to

execute the predicted branch. During speculative execution, the processor maintains a checkpoint

of the CPU’s register state, which will be used to roll back the changes if the prediction turns out to

be incorrect, i.e., after the value of x is fetched from memory. However, if the prediction turns out

to be correct, speculative execution will save time and thus outperform non-speculative execution.

Speculative execution is designed to be transparent to the program running on the processor; that

is, it does not affect the program semantics, as the rollback ensures that functional properties are

preserved. This is the reason why, in the past, static analysis techniques do not model speculative

execution.

However, recent vulnerabilities such as Meltdown [98], Spectre [85] and ForeShadow [156] force
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the community to take another look because, although speculative execution preserves the CPU’s

register state, for performance reasons, it does not preserve the states of many other components

such as the cache and the pipeline [70, 71].

4.2 Cache Analysis under Speculative Execution

In modern CPUs, the execution of an instruction takes only 1-3 clock cycles when there is a cache

hit, but tens or even hundreds of clock cycles when there is a cache miss. Therefore, static cache

analysis is important for analyzing timing related properties of a program, e.g., to detect information

leaks through the timing side channel (variances in the execution time of the program), as what we

do in Section 3.2. Besides of that, cache analysis can also be used to determine if the execution of a

real-time task can finsih before its deadline(known as WCET calculation). For timing side channel

detection, in particular, one may want to know if the program’s execution time (i.e., the number of

cache hits and misses) is not affected by the secret data (e.g., a cryptographic key, security token, or

password). For deadline estimation, one may want to compute the number of cache misses along all

paths since it directly affect the program’s execution time in the worst case. In both applications,

the analysis must be sound to be useful in practice. By sound, we mean all possible behaviors of the

program must be considered during the analysis.

Unfortunately, existing static cache analysis techniques [65, 143] are often unsound since they

do not model speculative execution and the possible side effects caused by speculative execution.

Although there is a large body of work on improving the accuracy of such analysis [80], in the past,

efforts were spent primarily on refining the over-approximations of normal program executions.

In the presence of speculative execution, however, the main problem is not caused by too many

infeasible program paths being included in the analysis (so one has to design better algorithms to

eliminate them), but caused by some real program behaviors being omitted. Therefore, to make the
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analysis sound again, we need to develop a different set of ideas from what have been proposed

in the aforementioned literature. Specifically, we need to increase (instead of decrease) the set of

program behaviors considered in the analysis.

4.2.1 Execution Time Estimation

1 char ph[64*510], l1[64], l2[64], p;
2 reg char k;
3 for(reg int i=0;i<64*510; i+=64)
4 load ph[i];
5 if(p==0)
6 load l1[0];
7 else
8 load l2[0];
9 load ph[k];

Figure 4.1: Example program for timing side channel.

Figure 4.1 shows a program that illustrates divergent cache behaviors under normal and speculative

executions as observed in practice [8, 9, 10, 39, 76, 77]. Here, we have four variables: ph, l1, l2,

and p, which are mapped to different cache lines. Suppose the register value k is 0, the load at line 8

will access ph[0]. We assume the cache has 512 lines in total and 64 bytes per line. We also assume

the cache is fully associative, meaning any variable may be mapped to a different line. The place

holder variable ph is mapped to the first 510 lines (line 3); in practice, ph may correspond to an

assorted set of program variables. Each of the remaining variables, l1, l2 and p, may be mapped to a

cache line. Depending on the branching condition, either l1 or l2 may be loaded to the cache, but

both will result in 512 cache misses. As shown on the left-hand side of Figure 4.2, the statement at

line 8, accessing ph[0], is always a hit because the content is already in the cache.

However, under speculative execution, upon reaching the if-else statement, the CPU needs to load p

from memory. Due to a cache miss, it performs a speculative execution of the branch (p==0). If

the branch prediction is incorrect and the CPU has to roll back the speculative execution, there will
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for(...) load ph[i]; 

load p

cmp p,0

jmp L5

load l1[0]

load ph[k]

Non-Speculation: 512 Misses + 1Hit

for(...) load ph[i]; 

load p

cmp p,0

jmp L5

load l1[0]

cmp p,0

jmp L7

load l2[0]

load ph[k]Speculation: 514 Misses

for(...) load ph[i]; 

load p

cmp p,0

jmp L5

load l1[0]

cmp p,0

jmp L7

load l2[0]

load ph[k]Speculation: 514 Misses

Figure 4.2: Pipelined execution trace for program in Figure 4.1

be 514 cache misses (among which 513 cache misses are observable from outside of the CPU) as

shown by the right-hand-side trace in Figure 4.2.

In this case, the program first speculatively executes the then-branch and loads l1 into the cache,

and then rolls back to take the else-branch and loads l2. Although the functional side-effects of

executing the then-branch are eliminated by the rollback mechanism, l1 is already in the cache.

Since the cache has only 512 lines, following the LRU replacement policy, the first line associated

with ph[0] is evicted. This is why the subsequent access to ph[0] will be a cache miss.

For execution time estimation, the non-speculative execution will lead to 512 cache misses plus

1 cache hit, whereas the speculative execution will lead to 513 observable cache misses (and a

speculative cache miss masked by the pipeline). The additional cache miss is important because it

will cause a significant delay in the execution time. The message from this example is as follows: if

a static analysis is not sound in modeling speculative execution, it may underestimate the worst-case

execution time and produce a bogus proof that the computation task meets its deadline.

4.2.2 Side Channel Detection

We use Figure 4.1 again to illustrate a timing side channel made possible by speculative execution.

That is, the attacker, by measuring the execution time of a program, may deduce information of the

secret data. This time, we assume the variable k stores the secret data, e.g., a cryptographic key, and



4.3. TECHNICAL CHALLENGES 41

the value of k is used as an index to access an S-Box-like array named ph. If the time taken by the

access varies with respect to k, there is an information leak.

In a non-speculative execution, there cannot be leaks in Figure 4.1 because, for all paths and values

of k, the number of cache misses remains the same. In particular, accessing ph[k] is leak-free

because the array is loaded to cache at line 3, and executing either branch at lines 5 and 7 will

not evict it. However, similar to what we have observed in the execution time estimation example,

speculative execution may execute one of the two branches first, and then roll back to execute the

other branch. Since the memory locations associated with both branches must be accessed, which

add up to more than 512 cache lines, some of the cache lines associated with ph will be evicted.

Therefore, the subsequent load (at line 8) may be a cache miss. The difference in execution time

may be observed by the attacker and used to deduce information of the secret k: whether the last

statement leads to a cache miss depends on the value of k.

4.3 Technical Challenges

The above two examples illustrate the need to soundly model speculative execution. However, there

are several challenges. The first one is to model the cache state of a program during speculative

execution without drastically altering the abstract interpretation algorithm. The second challenge is

to judiciously merge abstract states computed from normal and speculative executions, since when

and how to merge them drastically affect the accuracy of the fixed-point computation. Furthermore,

since a speculative execution may be rolled back at any moment, the number of scenarios is

exponential in the number of speculatively executed instructions. If we have to enumerate, the

analysis time will be prohibitively long. Therefore, we group scenarios into equivalence classes,

based on which we perform reduction to balance the performance and accuracy.
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4.4 Preliminaries

4.4.1 Abstract Interpretation

Abstract interpretation [44] is a static analysis framework that considers all paths and inputs to obtain

a sound over-approximation of the state at every program location [92, 93, 150]. For efficiency

reasons, the state is kept abstract and often represented by a set of constraints in a certain abstract

domain. For example, in the interval domain, each constraint is of the form lb ≤ x ≤ ub, where x

is a variable and lb,ub are the lower and upper bounds. The join of two states, s1 = lb1 ≤ x ≤ ub1

and s2 = lb2 ≤ x ≤ ub2 , is defined as s1 t s2 = min(lb1 , lb2 ) ≤ x ≤ max (ub1 , ub2 ). Here, t

denotes the join operator, which returns an over-approximation of the set union. If, for example, the

polyhedral abstract domain is used, a constraint will be a linear equation and the join operator may

be the convex hull.

The purpose of restricting the representation of states to an abstract domain is to reduce the

computational overhead. Although various abstract domains may be plugged in, the underlying

fixed-point computation remains the same. The fixed-point of states are computed on the program’s

control flow graph (CFG). Without loss of generality, we assume the CFG has a unique entry node

and a unique exit node. Inside the CFG, nodes are associated with instructions or basic blocks of

instructions, whereas edges represent the control flows, guarded by conditional expressions.

Let TRANSFER : S × INST → S be the transfer function, which takes a state s ∈ S and an

instruction inst ∈ INST as input, and returns the new state s′ = TRANSFER(s, inst) as output. s′

is the result of executing inst in state s.

Algorithm 3 shows a generic procedure that returns, for each CFG node n, an abstract state S[n] as

output. S[n] is supposed to be a sound over-approximation of all the possible states at n, regardless

of the input values or paths taken to reach n. Initially, S[n] is > (tautology) for the entry node but ⊥
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Algorithm 3 Abstract interpretation based static analysis.
1: Initialize S[n] to > if n = ENTRY(CFG), and to ⊥ otherwise
2: WL← ENTRY(CFG)
3: while ∃ n ∈WL do
4: WL←WL \ {n}
5: s′ ← TRANSFER(S[n], instn)
6: for all n′ ∈ SUCCESSORS(CFG, n) do
7: if s′ 6v S[n′]) then
8: S[n′]← s[n′] t s′
9: WL←WL ∪ {n′}

10: end if
11: end for
12: end while

(empty) for all other CFG nodes. The remaining part of the procedure is a standard worklist-based

algorithm for computing the fixed point [118]: starting from the entry node, it computes the states

of the successor nodes (n′) based on the transfer function. To ensure convergence, e.g., when the

program has loops or is otherwise non-terminating, a widening operator (∇) is needed in addition to

join (t). However, for brevity, we omit the details; for a complete introduction, refer to [44, 112].

The actual definitions of abstract state S and transfer function TRANSFER depend on the application.

In this work, we are concerned with the cache state corresponding to a program.

4.4.2 Cache and Speculative Execution

Cache is a type of small but fast storage to hold frequently used data so that they do not need to be

fetched from or stored to the large but slow memory every time. Although this work focuses on the

data cache, which is more relevant to our applications, the underlying technique can be extended to

the instruction cache as well.

In a typical CPU, e.g., an Intel processor [7], instructions are fetched from memory and decoded

continuously before they are sent to the scheduler for execution. Executing an instruction involves

multiple units; speculative execution [153] is an optimization that efficiently utilizes these execution
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units. During speculative execution, instructions are scheduled in a pipeline as soon as the required

execution units are available; for example, while an instruction is waiting for data to be fetched

from memory, subsequent instructions may be executed, as long as the program semantics remains

the same to observers from outside of the CPU.

Things become complicated when there are branches, however, since the branch prediction unit

must make a guess on which branch target to execute. Instructions in the predicted branch will

be executed while the branch condition is being evaluated, and will be committed only after the

prediction is confirmed to be correct. Upon misprediction, however, the result of speculative

execution will be discarded and the execution will be redirected to the correct branch.

The reorder buffer inside the execution unit, among others, is responsible for this rollback: upon a

branch mis-prediction, it will not perform register retiring as in a normal execution; instead, it will

flush out the affected registers, before restoring the CPU to a previously saved state.

The branch predictor also plays an important role in speculative execution since its accuracy is

directly related to the performance of the CPU. However, regardless of the underlying strategies [82,

158, 167], when a branch prediction turns out to be incorrect, the speculatively executed instructions

may leave side-effects on the states of other system components, including the cache. In this work,

we are concerned with modeling of such side-effects in abstract interpretation.

4.5 Modeling the Speculative Execution

In this section, we lift the baseline abstract interpretation algorithm so that it can soundly model

speculative execution.
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4.5.1 Augmented CFG with Virtual Control Flow

Given the CFG of a program, we first augment it by adding special nodes and edges, to model all

possible control flows produced by speculative executions. These implicit control flows, which will

be made explicit in our augmented CFG, are called the virtual control flows.

A virtual control flow occurs at every if-else statement where the branching condition depends on

some variables stored in memory. In a normal execution, a branch guarded by a condition (c) is

explored only when c is satisfied. However, under speculative execution, the branch will be explored

(speculatively) by our algorithm even if c is unsatisfiable. Furthermore, upon mis-prediction, the

rollback will re-direct the control to the other branch.

To model all these behaviors, we add the following special nodes and edges to the CFG for every

branch that may be explored speculatively:

• vnstart, which is a special CFG node that denotes the start of a virtual control flow;

• vnstop, which is a special CFG node that denotes the end of a virtual control flow.

The edges connecting such nodes, which represent the virtual control flows, fall into five categories:

(1) n–vnstart; (2) vnstart–n; (3) n–n; (4) n–vnstop, and (5) vnstop–n, where n is a normal CFG

node.

The edge n–vnstart represents the start of a speculative execution: it feeds the state S[n] to vnstart,

which in turn generates a speculative state SS[vnstart] = S[n]. Then, the newly created speculative

state is propagated through the edge vnstart–n. Next, it is propagated through the edges n–n and

n–vnstop until reaching vnstop–n. The special node vnstop converts the speculative state SS[vnstop]

back to the normal state S[n] = SS[vnstop]. Afterward, the state is joined with other states from the

normal execution.
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Figure 4.3: Strategies for merging speculative control flows.

One way to add the special nodes and edges is illustrated in Figure 4.3a. Specifically, for each

if-else statement, we add virtual control flow edges from instructions in one of the branch to the

entry node of the other branch under the same branching condition.

Here, the blue solid lines represent normal executions, whereas the red dashed lines represent

virtual control flows associated with speculative executions of the else-branch. Virtual control flows

associated with the then-branch are similar, but omitted in the figure for clarity. The reason why

there are more than one dashed lines is because the roll-back point (i.e., location where roll-back

occurs) is non-deterministic; to be conservative, we assume it may occur at any moment within the

maximum speculation depth.

In practice, the speculation depth is platform-dependent and bounded by a few factors [68, 127],

e.g., the size of the reorder buffer; the maximum number of unresolved branches that the CPU can

handle before it stalls; whether there are division-by-zero or floating-point errors in the program;

and the number of clock cycles taken to access memory and resolve a branching condition. For

simplicity, for example, we assume that the maximum speculative execution depth is provided by

the user. In Figure 4.3a, we assume that instB is the boundary within which roll-back occurs.
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4.5.2 Merging the Speculative Flows

Since we use abstract interpretation to over-approximate the cache states, multiple executions must

be merged to reduce the computational overhead. In the baseline algorithm, for example, states

from two different paths are joined whenever the program paths are merged in the CFG. In the

speculative analysis, we also need to decide when to join the normal and the speculative states.

Figure 4.3 shows three merging strategies in addition to the original no-merging strategy in Fi-

gure 4.3a. Consider Figure 4.3b, for example, since the executions before the branch entry node

are identical, they are merged without losing accuracy; in addition, the speculative executions are

merged right before the exit point of the other branch. Recall that the join operator (t) used to

handle merging is over-approximated, we know that the strategy outlined in Figure 4.3b is a sound

over-approximation of Figure 4.3a.

To over-approximate even more, consider Figure 4.3c, which merges all speculative states of the

else-branch before reaching the then-branch. However, the merged speculative state is propagated

through the then-branch before it is merged with the normal state. In contrast, Figure 4.3d is a more

aggressive over-approximation, which merges the speculative states with the non-speculative state

at the entry node of the then-branch.

Regardless of the merging strategy, however, our method ensures that the result is a sound over-

approximation.

Since every time state merging occurs, it may lose information, in general, the later that merging

occurs, the more accurate the result is, but there is no guarantee. Furthermore, late merging may

lead to a more expensive analysis. Our experimental comparisons of these four strategies show that

the one outlined in Figure 4.3c is the best: it not only obtains significantly more accurate results

than the one in Figure 4.3d, but also runs almost equally fast. Therefore, we have settled down on

this strategy: we call it Just-in-Time merging.
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Figure 4.4: Cache state with different merge points.

4.5.3 Just-in-Time Merging: An Example

Consider the CFG of a branch shown on the left-hand side of Figure 4.4, where each basic block

refers to a variable (from a to e). The initial cache state, at the top of the figure on the right-hand

side, is the state after executing the first basic block, where variables a, b and c are loaded into the

cache. Here, the solid arrows represent the normal execution, where either d or e is mapped to the

youngest cache line. Since we are concerned with a Must-Hit analysis, after merging at basic block

4, only a, b and c are left in the cache.

Under speculative execution, we may execute the else-branch before rolling back to execute the

then-branch. If we choose to merge the speculative state right after the rollback, the merging would

be between d, c, b and a on the one hand, and e, d, c and b on the other hand. The merged state will

not contain e anymore, thus losing the important information of speculative execution.

However, if we propagate the speculative state computed from the else-branch through the then-

branch and then merge with the non-speculative state, the cache state at basic block 4 will be more

accurate. As shown by the dotted arrow Ts, variable e is loaded to the cache before d is loaded to

the cache; similarly, for Fs, variable d is loaded before e is loaded. Finally, when the four states are
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merged, the result is that only c and b are guaranteed to result in cache hits. Thus, the cache state on

the bottom-right of Figure 4.4, which corresponds to Just-in-Time merging illustrated in Figure 4.3c,

captures the side effect of speculative execution.

4.6 Generalization and Optimization

In this section, we present the generalized algorithm before discussing several optimizations, which

help increase accuracy as well as decrease runtime overhead.

Algorithm 4 shows the static analysis procedure that is sound under speculative execution. Given the

original CFG of a program, it first constructs an augmented CFG by adding the virtual control flows.

Then, it initializes the abstract states for each program location n, including both the default state,

denoted S[n], and the speculative state, denoted SS[n]. Next, it starts the fixed-point computation

using a worklist based procedure that is similar to that of Algorithm 3.

Algorithm 4 Abstract interpretation under speculation.
1: VCFG ← AUGMENTCFGWITHVIRTUALCONTROLFLOW(CFG)
2: Initialize S[n] to > if n ∈ ENTRY(VCFG), else to ⊥
3: Initialize SS[n] to ⊥ for all n ∈ VCFG
4: WL← ENTRY(VCFG)
5: while ∃n ∈WL do
6: WL←WL \ {n}
7: if n is a normal CFG node then
8: s′ ← TRANSFER( S[n], n)
9: ss′ ← TRANSFER( SS[n], n)

10: else
11: Set ss′ to S[n] if n is a special nstart node, else to ⊥
12: Set s′ to SS[n] if n is a special nstop node, else to ⊥
13: end if
14: for each n′ ∈ SUCCESSORS(VCFG , n) do
15: if s′ 6v S[n′] or ss′ 6v SS[n′] then
16: S[n′]← S[n′] t s′
17: SS[n′]← SS(n′) t ss′
18: WL←WL ∪ {n′}
19: end if
20: end for
21: end while
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However, when the special CFG node vnstart is encountered (Line 11), the default state S[n], which

is from the incoming edge, is used to create a speculative state ss′ ← S[n]; this is to model the side

effects caused by the failed speculative execution upon rollback. From then on, both the default state

S[n] and the speculative state SS[n] will be propagated through subsequent nodes in the VCFG; at

each node n, the transfer function has to be applied to both of them (Lines 8-9). This continues until

the other special node vnstop is encountered, which transforms the speculative state SS[n] back to

s′ (Line 12) before s′ is merged into the normal flow.

4.6.1 The Running Example

To illustrate how the algorithm works, consider the example program in Figure 4.5, which is a

real-time DSP program written in C [76]. The corresponding CFG is shown in Figure 4.6, where

the red (solid and dashed) edges represent the two virtual control flows.

Result from Non-speculative Executions Table 4.1 shows the cache state computed for each

location (basic block) based on only normal executions (black edges in Figure 4.6); this is analogous

to running the baseline procedure in Algorithm 3. In Column 2, the variables are arranged according

to their ages: the younger variable appears on the left.

Initially, the cache is empty. From basic block 1 to 5, we apply the transfer functions: decis_lev

takes two cache lines, but since we do not unwind the loop, we do not know its index statically.

Thus, we nondeterministically pick one for the first time, decis_lev[1*]. Following the back

edge from basic block 4, when decis_lev is accessed again, we conservatively choose the second

cache line for decis_lev[2*] to ensure that the cache state remains an over-approximation.

Our analysis iterates through the loop three times before it reaches a fixed-point (light gray row)

and terminates.
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1 /* table is 31-byte long to make quantl look-up
2 easier, last entry is for mil=30 when wd is max */
3 int quant26bt_pos[31] = { 61,60,59,58,57,56,55,54,
4 53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,
5 38,37,36,35,34,33,32,32 };
6 /* table is 31-byte long to make quantl look-up
7 easier, last entry is for mil=30 when wd is max */
8 int quant26bt_neg[31] = { 63,62,31,30,29,28,27,26,
9 25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,

10 9,8,7,6,5,4,4 };
11 /* decision levels - pre-multiplied by 8 */
12 int decis_levl[30] = { 280,576,880,1200,1520,1864,
13 2208,2584,2960,3376,3784,4240,4696,5200,5712,
14 6288,6864,7520,8184,8968,9752,10712,11664,12896,
15 14120,15840,17560,20456,23352,32767 };
16
17 int quantl(int el,int detl) {
18 int ril,mil;
19 long int wd,decis;
20 /* abs of difference signal */
21 wd = my_abs(el);
22 /* mil based on decision levels and detl gain */
23 for(mil = 0 ; mil < 30 ; mil++) {
24 decis = (decis_levl[mil]*(long)detl) >> 15L;
25 if(wd <= decis) break;
26 }
27 /*if mil=30, wd is less than all decision levels*/
28 if(el >= 0) ril = quant26bt_pos[mil];
29 else ril = quant26bt_neg[mil];
30 return(ril);
31 }

Figure 4.5: Code snippet from a real-time DSP program [76].

Result from Speculative Executions Table 4.2 shows the cache state computed under speculative

execution. For clarity, we only focus on the cache states relevant to the speculative executions

starting from basic block 5. We use two different colors, blue and red, to differentiate the cache states

computed from non-speculative (blue) and speculative (red) executions. By considering speculative

executions, it is possible for us to access both quant26bt_pos and quant26bt_neg in a

single execution.
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ref wd
ref el
bb1

bb2
ref mil

bb3
ref decis_levl[mil]
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ref ril
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Figure 4.6: Augmented CFG with virtual control flows.

Table 4.1: Cache states during the fixed-point computation.

BBlk Cache State
0 { }
1 {wd, el}
2 {mil, wd, el}
3 {decis, wd, detl, decis_lev[1*], mil, el}
4 {mil,decis, wd, detl, decis_lev[1*], el}
2 {mil,decis, wd, detl, decis_lev[1*], el}
3 {decis, wd,detl, decis_lev[2*], mil, decis_lev[1*], el}
4 {mil, decis, wd,detl, decis_lev[2*], decis_lev[1*], el}
2 {mil, decis, wd,detl, decis_lev[2*], decis_lev[1*], el}
5 {el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}

Execution Time Estimation The last row of Table 4.2, which differs from the last row of

Table 4.1, shows that most of the program variables have older ages than before. This is dangerous
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Table 4.2: Cache states during speculative execution.

BBlk Cache State
... ...
5 {el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
7 {ril, quant26bt_neg[1*], quant26bt_pos[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
6 {ril, quant26bt_pos[1*], quant26bt_neg[1*], el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}
8 {ril, ∅ , ∅, el ,decis, wd,detl, decis_lev[2*], mil, decis_lev[1*]}

1 #define BUF_SIZE 1024*16
2 const uint8_t sbox[256] = { 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
3 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, ...};
4 int main()
5 {
6 uint32_t inBuf[BUF_SIZE];
7 int el, delt, tmp;
8 for(int i=0; i< 256; i++) // preload sbox
9 tmp = sbox[i];

10 for(int i=0; i< BUF_SIZE; i++) // read inBuf
11 tmp = inBuf[i];
12 tmp = quantl(el, delt);
13 AES_encode(inBuf);
14 }

Figure 4.7: The client code that leads to side-channel leaks.

because, if the cache is only large enough to hold the first eight variables, there will be an additional

cache miss, which may force the program to miss its deadline.

Side Channel Detection The additional cache miss may also lead to side-channel leaks. Fi-

gure 4.7 shows a client program that uses the program in Figure 4.5. The application first accepts

some input from the user, then processes it using quantl as a subroutine, and finally encrypts the

result using a cipher such as AES. Before calling quantl, a look-up table named sbox is loaded; the

lookup table will be used by the cipher while it encrypts the data, during which time a secret key is

used as the index to access sbox.
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By controlling the input size, a malicious user can force part of the sbox to be evicted from

the cache. As a result, for some key values, accessing sbox results in a cache hit, but for other

key values, it results in a cache miss. Although timing side channels have been investigated

before [25, 51, 75, 165], these prior works never considered speculative execution. Our contribution,

in this context, is to show that even if a program is leak-free under normal execution, it may still be

leaky under speculative execution.

4.6.2 Dynamically Bounding Speculation Depth

Although the maximum number of speculatively executed instructions is used to construct the

augmented CFG, in practice, the number of speculatively executed instructions can be smaller. For

example, when all variables needed to resolve a branching condition are in the cache, speculative

execution may be shortened. Since our cache analysis aims to decide whether a variable access is

a must-hit, as the analysis continues it may report more must-hit variables, which can be used to

bound the speculation depths of other branches.

Thus, we propose an optimization that leverages the must-hit variables to dynamically remove

virtual control flows that are deemed redundant. Toward this end, we maintain two predefined

bounds for each speculative execution, bh and bm, which correspond to the branching condition

being a cache hit or miss. (Since bh and bm are platform-dependent, they are set based on input

from the user.) By default, we use bm as the bound; but as soon as the branching condition is proved

to be a must-hit, we switch the bound to bh.

This optimization not only decreases the computational overhead, i.e., by reducing the number of

edges in the VCFG, but also increases the accuracy since it results in a potentially tighter over-

approximation. In the extreme case where bh = 0, for example, switching to bh means avoiding

speculative execution all together, which can avoid many bogus behaviors.
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While our focus here is on exploiting changes to the speculation depth due to cache misses, the

proposed technique may be extended to exploit other sources of changes, e.g., execution units being

busy, or division taking a longer time based on the operands.

4.6.3 Handling the Merges and Loops

The algorithm presented so far uses the join operator (t) to over-approximate the union of two

abstract states. However, in the presence of loops, it may have limitations: (1) the resulting state

may not be accurate enough, and (2) it may take a long time (or forever) to reach a fixed point.

Thus, we add a widening operator [45] to the standard join operation s[n′] t s′; that is, we use

(s[n′] t s′)∇s′ instead of s[n′] t s′. The idea behind widening (∇) is simple: first, we identify the

direction of growth from the state s′ to the state (s[n′] t s′); then, we over-approximate (s[n′] t s′)

in such a way that it maximizes the progress along the direction of growth. In the interval domain,

for example, if the previous state is s′ = 0 ≤ x ≤ 3 and the current state is s = 0 ≤ x ≤ 5, the

result of widening would be s∇s′ = 0 ≤ x ≤ +∞. To achieve better accuracy, loops with fixed

iteration number will be fully unrolled; only unresolved loops will be widened.

Figure 4.8 shows another loop-related problem. First, variable a is loaded into the cache. Then,

inside the loop, every time the branch is executed, Age(a) increases by 1. After the join, however,

neither b nor c will be in the cache. Thus, eventually, a is evicted from the cache as well. This

is not accurate because, during the actual execution, a will never be evicted. With a refined join

operator, we will be able to avoid this problem.

We refine the join operator (t) by adding extra information into the cache state. Similar to Touzeau

et al. [154], we introduce a shadow variable ∃v for each v ∈ V . Whenever two states are merged

and v appears in only one of the two states, the shadow variable ∃v will remain in the merged cache

(while the normal variable v will not). Figure 4.9 shows an example, where both b and e will be
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a

b c

...

a

b c

b c

b c

[a, ⊥, ⊥, ⊥]

[b, a, ⊥, ⊥] [c, a, ⊥, ⊥]

[b, ⊥, a, ⊥] [c, ⊥, a, ⊥]

[b, ⊥, ⊥, a] [c, ⊥, ⊥, a]

[⊥, a, ⊥, ⊥]

[⊥, ⊥, a, ⊥]

[⊥, ⊥, ⊥, a]

Figure 4.8: Example program for the widening operator.

replaced with ∃b and ∃e in the final cache state. That is, there exists a path in which variable b or c

is cached.

We also revise the transfer function: the shadow variable ∃v will be removed if a concrete reference

to v is applied. For example, in Figure 4.9, if the variable b is accessed on the merged state, ∃b will

be removed from final state.

For simplicity, we unroll the loop for three times and illustrate the sequence of memory accesses in

Figure 4.10. The abstract cache states are listed on both sides at each memory access and merge

point. With the shadow variables, our cache states are able to reach the fixed-points after only three

iterations and avoid evicting a.
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Figure 4.9: Transfer function with shadow
variables.

a

b c

b c

b c

[a, ⊥, ⊥, ⊥]

[b, a, ⊥, ⊥] [c, a, ⊥, ⊥]

[b, ∃c, a, ⊥] [c, ∃b, a, ⊥]

[b, ∃c, a, ⊥] [c, ∃b, a, ⊥]

[{∃b, ∃c}, a, ⊥, ⊥]

[⊥, {∃b, ∃c}, a, ⊥]

[⊥, {∃b, ∃c}, a, ⊥]

Figure 4.10: The refined join using shadow
variables.

4.6.4 Handling Multiple Speculative Executions

Finally, we extend our algorithm so it can independently propagate the speculative states through the

virtual control flows, without interfering each other, even if one branching statement is embedded

inside another branching statement.

Algorithm 5 shows the procedure, which computes, for each node n in the augmented CFG, a set of

states of the form SS[n][c], one for each speculative execution. Let C = {1, . . . , k} be the set of all

branches in the program that can be speculatively executed; each 1 ≤ i ≤ k is the index of a branch

in this set. We call c = i the color of the i-th speculative execution. While constructing the VCFG,

for each c ∈ C, we add a separate set of virtual control-flow edges and nodes, with the color c.

During the fixed-point computation, instead of applying the transfer function once to generate a

speculative state ss′, the procedure applies the transfer function |C| times, to generate a vector of

speculative states ss′[c], one for each speculative execution with color c. As such, every speculative

execution (of color c ∈ C) is handled separately until the corresponding node nstop (of the same

color c) is encountered, in which case the speculative state SS[n][c] is transformed back to a
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Algorithm 5 Analysis under a set of speculative executions.
1: (VCFG , C)← AUGMENTCFGWITHVIRTUALCONTROLFLOW(CFG)
2: Initialize S[n] to > if n ∈ ENTRY(VCFG), else to ⊥
3: Initialize SS[n][c] to ⊥ for all n ∈ VCFG and for all color c ∈ C
4: WL← ENTRY(VCFG)
5: while ∃n ∈WL do
6: WL←WL \ {n}
7: if n is a normal CFG node then
8: s′ ← TRANSFER( S[n], n)
9: ss′[c]← TRANSFER( SS[n][c], n) for all color c ∈ C

10: else
11: Set s′ to SS[n][c] if n is node nstart of color c, else to ⊥
12: Set ss′[c] to S[n] if n is node nstop of color c, else to ⊥
13: end if
14: for each n′ ∈ SUCCESSORS(VCFG , n) do
15: if s′ 6v S[n′] or ∃c : ss′[c] 6v SS[n′][c] then
16: S[n′]← S[n′] t s′
17: SS[n′][c]← SS(n′) t ss′[c] for all color c ∈ C
18: WL←WL ∪ {n′}
19: end if
20: end for
21: end while

non-speculative state s′.

There are alternative ways of presenting the analysis procedure in Algorithm 5, for example, by

using the trace partitioning framework developed by Mauborgne and Rival [108]. Also note that, for

ease of comprehension, we choose to split the speculative states from the normal states. However,

the two types of states may be treated uniformly and processed using a generalized worklist-based

algorithm. Assume that the worklist-based algorithm is smart enough, the special merge nodes

created for virtual control flows can be viewed as merely optimization hints.

4.7 Related Work

Abstract interpretation [44] is a framework for conducting static analysis and proving properties.

Ferdinand and Wilhelm [66, 67] pioneered the use of abstract interpretation in may- and must-hit

cache analyses [162]. Others also used similar techniques to detect timing side channels [25,
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51, 165]. However, prior works focused primarily on improving abstract interpretation without

considering speculative execution.

There are some techniques that consider the impact of speculative execution [95], but only for the

instruction pipeline. In a commercial tool named AIT, speculations are also considered during

execution time estimation by leveraging a standalone pipeline analysis as a driver [162]. Since the

tool is propriety, details of this analysis have not been made public; therefore, it is not clear how

speculative execution is modeled during abstract interpretation.

Our method differs from the large body of work on statistically estimating the worst-case execution

time of real-time software [94, 96, 113] using either CPU simulators or characteristics of prior

simulation results [152]. These techniques, while useful, are not designed to be sound, and hence

may not be suitable for the applications that we have in mind, such as detecting side-channel leaks

or proving that leaks do not exist. The reason is because, if the analysis is not sound, the proof may

not be valid and as a consequence, leaks may be left undetected.

For timing side channels, many analysis and verification techniques [23, 35, 37, 75, 124, 126, 151,

165] have been developed. Some of these methods, however, only consider instruction-related

timing variance while ignoring the cache completely. They include, for example, the method

developed by Chen et al. [38], which uses Cartesian Hoare Logic [147] to prove that timing leaks of

a program are bounded, the method developed by Antonopoulos et al. [19], which uses a similar

technique for proving the absence of timing channels, and the method developed by Nilizadeh et

al. [119], which uses differential fuzzing to show the existence of timing leaks.

There are also techniques for improving the accuracy of cache analysis, e.g., by using symbolic

execution or model checking to refine the cache analysis results [40, 110, 154] and by extending the

analysis from single-core to multi-core CPUs [104]. However, none of these techniques considered

speculative execution, which is the focus of our work.



Chapter 5

Runtime Enforcement under Burst Error

In the previous two chapters, we have presented techniques for statically mitigating side-channel

leaks to improve the security of systems. In this chapter, we present our methods for enforcing

safety of reactive systems at run time. Here, the enforcers are synthesized from the safety properties

automatically.

5.1 Introduction to the Shield

First, we introduce the technical background and define the terminologies used in this chapter.

5.1.1 The Reactive System

A reactive system is a system that continuously responds to external events. In practice, reactive

systems may have strict timing requirements that demand them to respond without any delay.

Furthermore, they are often safety-critical in that a violation may lead to catastrophe. In this context,

it is important to guarantee the certainty that the system satisfies a small set of safety properties even

60
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in the presence of design defect and environmental disturbance. However, traditional verification

and fault-tolerance techniques cannot accomplish this task. In particular, fault-tolerance techniques

are not effective in dealing with design defects whereas verification techniques are not effective

in dealing with transient faults introduced by the environment. Furthermore, formal verification

techniques such as model checking are limited in handling large designs and third-party IP cores

without the source code.

The reactive system to be protected by the shield is represented as a Mealy machine D =

〈S, s0,ΣI ,ΣO, δ, λ〉, where S is a finite set of states, s0 ∈ S is the initial state, ΣI is the set

of values of the input signals, ΣO is the set of values of the output signals, δ is the transition function,

and λ is the output function. More specifically, δ(s, σI) returns the unique next state s′ ∈ S for a

given state s ∈ S and a given input value σI ∈ ΣI , while λ(s, σI) returns the unique output value

σO ∈ ΣO.

The safety specification that we want to enforce is represented as a finite automaton ϕs =

〈Q, q0,Σ, δϕ, Fϕ〉, where Q is a finite set of states, q0 ∈ Q is the initial state, Σ = ΣI × ΣO

is the input alphabet, δϕ is the transition function, and Fϕ ⊆ Q is a set of unsafe (error) states. Let

σ = σ0σ1 . . . be an input trace where for all i = 0, 1, . . . we have σi ∈ Σ. Let q = q0q1 . . . be the

corresponding state sequence such that, for all i = 0, 1, . . ., we have qi+1 = δϕ(qi, σi).

We assume the input trace σ of ϕs is generated by the reactive system D. We say that σ satisfies ϕs

if and only if the corresponding state sequence q visits only the safe states; that is, for all i = 0, 1, . . .

we have qi ∈ (Q \ Fϕ). We say that D satisfies ϕs if and only if all input traces generated by D

satisfies ϕs. Let L(ϕs) be the set of all input traces satisfying ϕs. Let L(D) be the set of all input

traces generated by D. Then, D satisfies ϕs if and only if L(D) ⊆ L(ϕs).
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5.1.2 The Safety Shield

Following Bloem et al. [31], we define the shield as another reactive system S such that, even if D

violates ϕs, the combined system (D ◦ S) still satisfies ϕs. We define the synchronous composition

of D and S as follows:

Let the shield be S = 〈S ′, s′0,Σ,ΣO′ , δ′, λ′〉, where S ′ is a finite set of states, s′0 ∈ S ′ is the initial

state, Σ = ΣI×ΣO is the input alphabet, ΣO′ , which is the set of values ofO′, is the output alphabet,

δ′ : S ′ × Σ→ S ′ is the transition function, and λ′ : S ′ × Σ→ ΣO′ is the output function.

The composition is D ◦ S = 〈S ′′, s′′0,ΣI ,ΣO′ , δ′′, λ′′〉, where S ′′ = (S × S ′), s′′0 = (s0, s
′
0), ΣI is

the set of values of the input of D, ΣO′ is the set of values of the output of S, δ′′ is the transition

function, and λ′′ is the output function. Specifically, λ′′((s, s′), σI) is defined as λ′(s′, σI · λ(s, σI)),

which first applies λ(s, σI) to compute the output of D and then uses σI · λ(s, σI) as the new input

to compute the final output of S. Similarly, δ′′ is a combined application of δ and λ from D and δ′

from S . That is, δ′′((s, s′), σI) = (δ(s, σI), δ
′(s′, σI · λ(s, σI))).

Let L(D◦S) be the set of input traces generated by the composed system. Clearly, if L(D) ⊆ L(ϕs),

the shield S should simply maintain σO ′ = σO. But if L(D) 6⊆ L(ϕs), the shield S needs to modify

the original output of D to eliminate the erroneous behaviors in L(D) \ L(ϕs).

In general, there are multiple ways for S to change the original output σO ∈ ΣO into σO ′ ∈ ΣO′ to

eliminate the erroneous behaviors, some of which are better than others in minimizing the deviation.

Ideally, we would like the shield to do nothing when D satisfies ϕs; that is, σO ′ = σO. However,

when D violates ϕs, the deviation is inevitable. In this case, the shield synthesized by Bloem

et al. [31] guarantees that the deviation is minimum only if there are no multiple errors within

each k-step recovery period. Under burst error, however, their shield would enter a fail-safe mode

where it stops minimizing the deviation. This is undesirable because, even after the transient errors

disappear, their shield would still keep modifying the output values.
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Our synthesis method takes a safety specification ϕs of the reactive system D(I, O) as input, and

returns another reactive system S(I, O,O′) as output. Following Bloem et al. [31], we call S

a shield. We use I and O to denote the set of input and output signals of the original system,

respectively, and define the runtime enforcer S(I, O,O′) as follows: It takes I and O as input and

returns a modified version of O as output to guarantee the combined system satisfies the safety

specification; that is, ϕs(I, O′) holds even if ϕs(I, O) is violated. Furthermore, the shield modifies

O only when ϕs(I, O) is violated, and even in that case, it tries to minimize the deviation between

O and O′. This approach has several advantages. First, since S is a reactive system, it can correct

the erroneous output in O in the same clock cycle. Second, since S is agnostic to the size and

complexity of the system D, it is cheaper and more scalable than fault-tolerance techniques. Finally,

the approach works even if the design contains third-party IP cores.

5.1.3 Example of Shield Handling Burst Error

Now we use an example to illustrate the main advantage of our shield synthesis method, which is the

capability of handling burst error. Consider the automaton representation of a safety specification in

Fig. 5.1, which has three states, one Boolean input signal, and two Boolean output signals. Here,

the state 0 is the initial state and the state 2 is the unsafe state. Every edge in the figure represents

a state transition. The edge label represents the values of the input and output signals, where the

digit before the comma is for the input signal and the two digits after the comma are for the output

signals. X stands for don’t care, meaning that the digit can be either true (1) or false (0). Among

other things, the safety specification in Fig. 5.1 states that when the input value is 0, the two output

values cannot be 11; furthermore, in state 1, the two output values cannot be 00.

Assume that the design D(i, o1o2) occasionally violates the safety specification, e.g, by generating

11 for the output signals o1o2 when the input i is 0, which forces the automaton to enter the unsafe
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Figure 5.1: Example safety specification ϕs.
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Figure 5.2: The 2-stabilizing shield [31].
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Figure 5.3: Our new shield for burst error.

state. We would like to have the shield S(i, o1o2, o
′
1o
′
2) to produce correct values for the modified

output o′1o
′
2 as either 10, 01, or 00. Furthermore, whenever the design satisfies the specification or

recovers from transient errors, we would like to have the shield produce the same (correct) output

as the design; that is, o′1 = o1 and o′2 = o2.

Unfortunately, the shield synthesized by Bloem et al. [31] can not always accomplish this task.

Indeed, if given the safety specification in Fig. 5.1 as input, their method would report that a

1-stabilizing shield, which is capable of recovering from a violation in one clock cycle, does not

exist, and the best shield their method can synthesize is a 2-stabilizing shield, shown in Fig. 5.2 (to

make it simple, we omit part of the shield unrelated to handle burst error), which requires up to 2

clock cycles to fully recover from a property violation. For example, starting from the initial state
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Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o′1o

′
2 00 01 10 01 01 01 01 01 01 ...

State in Fig. 5.2 S0 S0 S1 S1 S3 Sf Sf Sf Sf ...

Figure 5.4: Simulation trace of 2-stabilizing
shield.

Step 0 1 2 3 4 5 6 7 8 9
Input i 0 0 1 0 0 0 0 0 0 ...
Design Output o1o2 00 01 10 11 11 10 10 00 00 ...
Shield output o′1o

′
2 00 01 10 01 01 10 10 00 00 ...

State in Fig. 5.3 S0 S0 S1 S1 S3 S3 S0 S0 S0 ...

Figure 5.5: Simulation trace of our new shield.

S0, if the shield sees i, o1o2 = 0, 01, which satisfies ϕs, it will produce o′1o
′
2 = 01 and go to the

state S1. From S1, if the shield sees i, o1o2 = 0, 11, which violates ϕs, it will produce o′1o
′
2 = 01

and go to the state S3. At this moment, if the second violation i, o1o2 = 0, 11 occurs, the shield will

enter a fail-safe state Sf , where it stops minimizing the deviation between o′1o
′
2 and o1o2.

Fig. 5.4 shows the simulation trace where two consecutive errors occur in Steps 3 and 4, forcing the

shield to enter the fail-safe state sf where it no longer responds to the original output o1o2. This is

shown in Steps 5-8, where the original output no longer violates ϕs and yet the shield still modifies

the values to 01.

In contrast, our new method would synthesize the shield shown in Fig. 5.3, which never enters

any fail-safe state but instead keeps minimizing the deviation between o′1o
′
2 and o1o2 even in the

presence of burst error. As shown in the simulation trace in Fig. 5.5, when the two consecutive

violations occur in Steps 3 and 4, our new shield will correct the output values to 01. Furthermore,

immediately after the design recovers from the transient errors, the shield stops modifying the

original output values. Therefore, in Steps 5-8, our shield maintains o′1o
′
2 = o1o2.

5.2 Synthesize Shield under Burst Error

In this section, we present our new shield synthesis algorithm for handling burst error.
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5.2.1 The Overall Flow

Algorithm 6 shows the overall flow of our synthesis procedure. The input of the procedure consists

of the safety specification ϕs(I, O), and the set of signals in I , O, and O′. The output of the

procedure is the safety shield S(I, O,O′).

Algorithm 6 Synthesizing the shield S(I, O,O′) from the safety specification ϕs(I, O).

1: SYNTHESIZE (specification ϕs, input I , output O, modified output O′) {
2: Q(I, O′)← GENCORRECTNESSMONITOR(ϕs)
3: E(I, O,O′)← GENERRORAVOIDINGMONITOR(ϕs)
4: G ← Q ◦ E // create the safety game
5: ρ← COMPUTEWINNINGSTREGETY(G)
6: S(I, O,O′)← CONSTRUCTSHIELD(ρ)
7: return S
8: }

Starting from the safety specification ϕs, our synthesis procedure first constructs a correctness

monitor Q(I, O′). The correctness monitor Q ensures that the composed system, whose input is I

and output is O′, always satisfies the safety specification. That is, ϕs(I, O′) holds even if ϕs(I, O)

occasionally fails. Note that Q(I, O′) alone may not be sufficient as a specification for synthesizing

the desired shield S , because it refers only to O′ but not to O. For example, if we giveQ to a classic

reactive synthesis procedure, e.g., Pnueli and Rosner [129], it may produce a shield that ignores the

original output O of the design and arbitrarily generates O′ to satisfy ϕs(I, O′).

To minimize the deviation from O to O′, we construct an error-avoiding monitor E(I, O,O′) from

ϕs. In this work, we use the Hamming distance between O and O′ as the measurement of the

deviation. Therefore, when the design D(I, O) satisfies ϕs(I, O), the error-avoiding monitor ensure

that O′ = O. When D(I, O) violates ϕs(I, O), however, we have to modify the output to avoid

the violation of ϕs(I, O′); in such cases, we want to impose constraints in E so as to minimize the

deviation from O to O′. The detailed algorithm for constructing E is presented in Section 5.2.2.

Essentially, E(I, O,O′) captures all possible ways of modifying O to O′ to minimize the deviation.
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To pick the best possible modification strategy, we formulate the synthesis problem as a two-player

safety game, where the shield corresponds to a winning strategy. Toward this end, we define a set of

unsafe states of E as follows: they are the states where ϕs(I, O) holds but O′ 6= O, and they must

be avoided by the shield while it modifies O to O′.

The two-player safety game is played in the game graph G = Q ◦ E , which is a synchronous

composition of the correctness monitor Q and the error-avoiding monitor E . Recall that Q is used

to make sure that ϕs(I, O′) holds, and E is used to make sure that O′ = O whenever ϕs(I, O) holds.

Therefore, the set of unsafe states of G is defined as follows: they are the states that are unsafe in

either Q or E . Conversely, the safe states of G are those that simultaneously guarantee ϕs(I, O′)

and minimum deviation from O to O′. The main difference between our new synthesis method and

the method of Bloem et al. [31] is in the construction of this safety game: their method does not

allow the second error to occur in O during the k-step recovery period of the first error, whereas our

new method allows such error.

After solving the two-player safety game denoted as G(I, O,O′), we obtain a winning strategy

ρ = (δρ, λρ), which allows us to stay in the safe states of G by choosing proper values of O′

regardless of the values of I and O. The winning strategy consists of two parts: δρ is the transition

function that takes a present state of G and values of I and O as input and returns a new state of

G, and λρ is the output function that takes a present state of G and values of I and O as input and

returns a new value for O′. Finally, we convert the winning strategy ρ into the shield S , which is a

reactive system that implements the transition function and output function in ρ.

5.2.2 Constructing the Safety Game

We first use an example to illustrate the construction of the safety game G from ϕs. Consider

Fig. 5.6 (a), which shows the automaton representation of a safety property of the ARM bus
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Figure 5.6: Example: (a) safety specification ϕs(R, S) and (b) correctness monitor Q(R, S ′).

arbiter [30]; the LTL formula is G(¬R→ X(¬S)), meaning that transmission cannot be started (S

is the output) if the bus is not ready (R is the input signal). In Fig. 5.6 (a), the state 2 is unsafe.

The first step of our synthesis procedure is to construct the correctness monitor Q(R, S ′), shown in

Fig. 5.6 (b), which is a duplication of ϕs(R, S) except for replacing the original output S with the

modified output S ′.

The next step is to construct the error-avoiding monitor E(R, S, S ′), which captures all possible

ways of modifying S into S ′ to avoid reaching the unsafe state. This is where our method differs

from Bloem et al. [31] the most. Specifically, Bloem et al. [31] assume that the second violation

from the design will not occur during the k-step recovery period of the first violation. If there are

more than one violations within k steps, it would enter a fail-safe state Sf , where it stops tracking

the deviation from S to S ′. Our method, in contrast, never enters the fail-safe state. It starts from

the safety specification ϕs and replaces all transitions to the unsafe state with transitions to some

safe states. This is achieved by modifying the value of the output signal S so that the transition

matches some existing transition to a safe state. If there are multiple ways of modifying S to

redirect the edges leading to unsafe states in ϕs, we simultaneously track all of these choices until

the ambiguity is completely resolved. In other words, we keep correcting consecutive violations

without ever giving up (entering Sf ). This is done by modifying the error tracking automaton which

is responsible for motoring the behavior of design: we conservatively assume the design will make

mistakes at any time, so whenever there is a chance for the design to make mistakes, we generate a

new abstract state to guess its correct behaviors.
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Construction of E(I, O,O′)

Algorithm 7 shows the pseudocode for constructing the error-avoiding monitor E . At the high level,

E = U ◦ T , where U(I, O) is called the violation monitor and T (O,O′) is called the deviation

monitor.

• To construct the violation monitor U , we start with a copy of the specification automaton ϕk,

and then replace each existing edge to a failing state, denoted as (s, l)→ t, with an edge to

a newly added abstract state sg, denoted as (s, l)→ sg. The abstract state sg represents the

set of possible safe states to which we may redirect the erroneous edge. That is, each safe

state s′ ∈ sg.states may be reached from s through (s, l′) → t′, where l, l′ share common

input label. Since each guessing state sg represents a subset of the safe states in ϕs, the

procedure for constructing U(I, O) from ϕs(I, O) resembles the classic procedure for subset

construction.

• To construct the deviation monitor T , we start by creating two states A and B and treating

values of O and O′ as the input symbols. Whenever O = O′, the state transition goes to state

A, and whenever O 6= O′, the state transition goes to B. Finally, we label A as the safe state

and B as the unsafe state. Fig. 5.9 shows the deviation monitor.

Consider the safety specification ϕs(R, S) in Fig. 5.6 (a) again. To construct the violation monitor

U(R, S), we first make a copy of the automaton ϕs, as shown in Line 2 of Algorithm 7. Then,

starting from Line 3, we replace the edge to the unsafe state 2, denoted as (1, S)→ 2, with the edge

to a guessing state, denoted as (1, S)→ 2g, where the set of safe states in 2g is {0, 1}. That is, if we

modify the output value S to the new value ¬S, the transition from state 1 may go to either state 0

or state 1. This is shown in Fig. 5.7 (a). In Lines 6-8, for each outgoing edge of the states in {0, 1},

we add an outgoing edge from 2g.
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Algorithm 7 Generating error-avoiding monitor E from safety specification ϕs.
1: GENERRORAVOIDINGMONITOR ( specification ϕs ) {
2: U ← copy of the specification automaton ϕs

3: while (∃ edge (s, l)→ t in U where t is an unsafe state) {
4: Delete edge (s, l)→ t from U
5: Add abstract state sg and edge (s, l)→ sg into U //{t′} ⊆ sg.states
6: foreach (edge (s, l′)→ t′ such that t′ is safe, and l, l′ share common input)
7: foreach (outgoing edge (t′, l′′)→ t′′)
8: Add edge (sg, l

′′)→ t′′ into U
9: U ← MERGEEDGESWITHSAMELABEL(U)

10: }
11: T ← the deviation monitor
12: E ← U ◦ T
13: return E
14: }
15: MERGEEDGESWITHSAMELABEL(monitor U) {
16: while (∃ edges (sg, l1)→ t1 and (sg, l2)→ t2 in U where l1 ∧ l2 is not false) {
17: Delete edges (sg, l1)→ t1 and (sg, l2)→ t2 from U
18: if (l1 ∧ ¬l2 is not false) Add edge (sg, l1 ∧ ¬l2)→ t1 back to U
19: if (l2 ∧ ¬l1 is not false) Add edge (sg, l2 ∧ ¬l1)→ t2 back to U
20: Add abstract state sm and edge (sg, l1 ∧ l2)→ sm to U //{t1, t2} ⊆ sm.states
21: foreach (outgoing edge of t1 and t2, denoted as (t12, l

′)→ t′)
22: Add edge (sm, l

′)→ t′ into U
23: if (t1 or t2 is unsafe) return U
24: }
25: }

Next, we merge the outgoing edges with the same label in Line 9. This acts like a subset construction.

For example we may first merge two edges with the label R ∧ ¬S, both of them lead to state 0.

Then, we merge the two edges with the label ¬R ∧ ¬S. Then, consider the edge label ¬R ∧ S:

starting from state 0 ∈ 2g, the next state is 1, and starting from state 1 ∈ 2g, the next state is 2.

Therefore, the outgoing edge labeled ¬R ∧ S goes to the abstract state 4m, whose set of states is

{1, 2}. Since 2 is an unsafe state, we return back to Line 3 in Algorithm 7 and replace it with other

guessing states. More specifically, the state 2 is replaced with the state 1 and 4m becomes 4g. After

adding all outgoing edges of 4g, the resulting U is shown in Fig. 5.7 (a). Similarly, we merge the

remaining outgoing edges of 2g that are labeled R ∧ S and create the abstract state 3m, whose set of
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Figure 5.7: Constructing the violation monitor U(R, S): Replacing edge 1→ 2 with 1→ {0, 1}.

states is {0, 2}. Since 2 is an unsafe state, we go back to Line 3 and replace it again. This turns 3m

into 3g and the resulting automaton is shown in Fig. 5.7 (b). At this moment, all error states (state 2)

are eliminated and therefore U is fully constructed.

Unsafe States of E = U ◦ T

The error-avoiding monitor E is a synchronous composition of U and T , where the unsafe states are

defined as the union of the following sets:

• {(s, B) | s is a safe state in U coming from ϕs},

• {(sm, B) | sm results from merging edges and it contains no unsafe state}, and

• {(sg, A) | sg results from replacing some unsafe states}.

The reason is, when s is a safe state and sm contains only safe states, the specification ϕs is not

violated and therefore we must ensure O′ = O (state A in T ). In contrast, since sg is created

by replacing some originally unsafe states, the specification ϕs(I, O) is violated, in which case

O′ 6= O in order to avoid the violation of ϕs(I, O′). Figs. 5.8-5.10 show the resulting error-avoiding

automaton. For brevity, only safe states and edges among these states are shown in Fig. 5.10. Note
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Figure 5.10: Error-avoiding monitor E(R, S, S ′).

that 2gB, 3gB, 4gB are there because they are created by replacing some unsafe states and O′ 6= O

holds in the B states.

Fig. 5.11 shows the game graph G = Q ◦ E for the correctness monitor Q in Fig. 5.6 (b) and the

error-avoiding monitor E in Fig. 5.10. For brevity, only the safe states in G and edges among these

states are shown in Fig. 5.11. A safe state in G is a state (gQ, gE) where gQ is safe inQ and gE is safe

in E . The winning strategy of this safety game is denoted as ρ = (δρ, λρ), where δρ is the transition

function capturing a subset of the edges in Fig. 5.11, and λρ is the output function determining the

value of S ′ based on the current state and values of R and S. The shield S(R, S, S ′) is a reactive

system that implements function δρ and λρ of ρ.
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Figure 5.11: Game graph G(R, S, S ′), which is the composition of Q(R, S ′) and E(R, S, S ′).

5.3 Solving the Safety Game

We compute the winning strategy ρ = (δρ, λρ) by solving the two-player safety game G =

(G, g0,Σ,ΣO′ , δ, F ), where G is a finite set of game states, g0 ∈ G is the initial state, F ⊆ G

are the final (unsafe) states, δ : G × Σ × ΣO′ → G is a complete transition function. The two

players of the game are the shield and the environment (including the design D). In every game

state g ∈ G, the environment first chooses an input letter σ ∈ Σ, and then the shield chooses some

output letter σO ′ ∈ ΣO′ , leading to the next state g′ = δ(g, σ, σO
′). The sequence g = g0g1 . . . of
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game states is called a play. We say that a play is won by the shield if and only if, for all i = 0, 1, . . .

we have gi ∈ G \ F .

5.3.1 Fix-point Computation

In this work, we use the algorithm of Mazala [109] to solve the safety game. In this algorithm,

we compute “attractors" for a subset of safe states (G \ F ) and final states (F ), until reaching the

fix-point. Specifically, we maintain two sets of states: F is the set of states from which the shield

will inevitably lose, andW is the set of states from which the shield has a strategy to win. We also

define a function

MX(Z) = {q | ∃σ ∈ Σ . ∀σO ′ ∈ ΣO′ . q′ = δ(q, σ, σO
′) ∧ (q′ ∈ Z)}

That is, MX(Z) is the set of states from which the environment can force the transition to a state in

Z regardless of how the shield responds.

The fix-point computation starts withW = G\F and F = F . In each iteration,W =W\MX(F)

and F = F ∪MX(F).

The computation stops when bothW and F reach the fix-point.

5.3.2 Optimization

The computation of the winning strategy ρ in the safety game G = E ◦Q is time-consuming. In this

section, we propose a new method for speeding up this computation. First, we note that a safe state

in G must be safe in both E andQ, meaning that a winning play in G must be winning in both of the

subgames E andQ. Therefore, instead of directly computing the winning regionW of G, which can

be expensive due to the size of G, we first compute the winning regionW1 of the smaller subgame
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G1 = E , then compute the winning regionW2 of the smaller subgame G2 = Q, and finally compute

the winning regionW of the game G by usingW1 ×W2 as the starting point. Since a winning play

in G is winning in both G1 and G2, we knowW ⊆W1 ×W2.

Furthermore, due to the unique characteristics of the subgames G1 = E and G2 = Q, in practice,

W1 ×W2 is often close to the final fix-pointW . This is because both E(I, O,O′) and Q(I, O′) are

derived from the specification automaton ϕs. Specifically, each state in Q is simply a copy of the

corresponding state in ϕs, whereas each state in E is either a copy of a safe state s in ϕs, or a new

abstract state sg that replaces some unsafe states in ϕs, or a new abstract state sm consisting of only

safe states in ϕs. Since it is cheaper to computeW1 andW2, this optimization can significantly

speed up the fix-point computation.

5.4 Related Work

As we have already mentioned, our method for ensuring that the design D always satisfies the safety

specification ϕs differs from both model checking [41, 130], which checks whether D |= ϕs but

does not enforce ϕs, and reactive synthesis [30, 53, 129], which synthesizes the design D from a

complete specification. Since our method is agnostic to the size and complexity of D, it can be

significantly more scalable than reactive synthesis in practice. Our method differs from the existing

shield synthesis method of Bloem et al. [31] in that it can robustly handle burst error.

Our shield is a reactive system that can respond to a safety violation instantaneously, e.g., in the

same clock cycle where the violation occurs, and therefore differs from the many existing methods

for enforcing temporal properties [63, 97, 139] that have to buffer the erroneous output before

correcting them. Similarly, it differs from the method by Luo and Rosu [103] for enforcing temporal

logic properties in concurrent software, which relies on delaying the execution of one or more

threads to avoid unsafe states. It also differs from the method by Yu et al. [168], which aims at
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minimizing the edit-distance between two strings, but requires the entire input string to be available

prior to generating the output string.

Renard et al. [136] proposed a runtime enforcement method for timed-automaton properties, but

the method differs from ours as it assumes that the controllable input events can be delayed or

suppressed, whereas our method relaxes such an assumption. Bauer et al. [26] and Falcone et

al. [63] also studied what type of temporal logic properties can or cannot be monitored and enforced

at run time. These works are orthogonal and complementary to ours. In this work, we focus on

enforcing safety specification only. We leave the enforcement of liveness properties for future work.



Chapter 6

Runtime Enforcement for Real-Valued

Signals

The shield synthesis technique presented in the previous chapter works only in the Boolean domain,

by assuming that all input and output signals of the system, as well as the variables used in ϕ, are

Boolean.

However, signals in cyber-physical systems may have real values and need to satisfy constraints such

as x+ y ≤ 1.53. Naively treating the real-valued constraint as a predicate, or a Boolean variable P ,

may lead to loss of information at the synthesis time and unrealizability at run time. For example,

while the Boolean combination P ∧ ¬Q ∧ ¬R may be allowed, the corresponding real-valued

constraint may not have solution, e.g., with P : x + y ≤ 1.53, Q : x < 1.0 and R : y < 1.0.

Therefore, a straightforward combination of the Boolean-level shield synthesis techniques with

generic constraint solving at run time does not always work.

Even the use of abstraction refinement to combine a Boolean shield with constraint solving does

not work. For example, one may be tempted to block P ∧ ¬Q ∧ ¬R and ask the shield to generate

77
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a new solution. However, since the shield must be reflexive, i.e., producing O′ in the same clock

cycle when the erroneous O occurs, it may be too slow to recompute a solution. Even if it is fast

enough, the new solution may still be unrealizable in the real domain. In general, it is difficult to

bound a priori the number of iterations in such an abstraction-refinement loop to meet the strict

timing requirement.

In this chapter, we propose a shield synthesis method to guarantee, with certainty, the realizability of

real-valued signals. Generally speacking, this is accomplished by treating Boolean and real-valued

signals uniformly by adding a set of new constraints. These constraints take the form of two

automata: a relaxation automaton, to capture the impossible combinations of predicates over signals

in I and O, and a feasibility automaton, to capture the infeasible combinations of signals in O′.

We use them to restrict the synthesis algorithm formulated as a two-player safety game, where the

antagonist controls the erroneous O and the protagonist (shield) controls the corrected O′: the game

is won if the protagonist ensures that ϕ(I, O′) holds even if ϕ(I, O) fails.

As shown by the aforementioned overall flow Fig. 1.2, where the input consists of real-valued Ir

and Or signals and a safety property ϕr defined over these signals. Internally, the shield S has three

subcomponents: a converter from real-valued Ir/Or signals to Boolean I/O signals, a converter

from Boolean O′ signals to real-valued O′r signals, and a Boolean shield S(I, O,O′). Note that the

system, denoted D(Ir, Or), is not required to synthesize the shield: by treating D as a blackbox, we

ensure that D ◦ S |= ϕr for any D.

Our shield synthesis algorithm first computes a set P of predicates over real-valued signals from ϕr,

Ir, Or and O′r. Next, it leverages P to construct the Boolean abstractions ϕ, I , O and O′, as well as

the relaxation automatonR(I, O) and the feasibility automaton F(O′). Using these components,

it constructs and solve a safety game where the antagonist is free to introduce errors to O and the

protagonist must correct them in O′. The winning strategy computed for the protagonist is the

Boolean shield S(I, O,O′). At run time, real values are computed for signals in O′r by solving a
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conjunction of constraints based on the Boolean values of signals in O.

To speed up the computation of real values at run time, we also propose a set of design-time

optimizations, which leverage the information gathered from the shield to simplify the constraints

to be solved at run time. When there are multiple real-valued solutions, the utility function γ shown

in Fig. 1.2, which defines a robustness criterion, is used to pick the best one. We also propose a

two-phase, predict-and-validate technique to speed up the computation of the real-valued solutions.

6.1 Technical Challenges

Using a Boolean shield to generate real-valued correction signals have two problems: realizability

of the Boolean predicates, and quality of the real-valued signals.

6.1.1 Realizability of the Boolean Predicates

Conside the following real-valued LTL properties, which are abstractions of properties of an

automotive powertrain control system [83] expressed in Signal Temporal Logic (STL [105]).

G
(
l=power⇒ |µ| < 0.2

)
G
(
l=power ∧ X(l=normal)⇒ G

(
|µ| < 0.02

))

The input signal l denotes the system mode, which may be normal or power. The output signal µ

is the normalized error of the air-fuel (A/F) ratio inside an internal combustion engine. Let λ be the

A/F ratio and λref be a reference value, then µ = (λ − λref )/λref . Since it affects gas emission,

driveability and fuel efficiency, it must be kept in certain regions depending on the system mode.

The first property says that |µ| should stay below 0.2 in the power mode. The second property
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says that, after the system changes from the power model to the normal mode, |µ| should stay

below 0.02. In the Boolean versions, A denotes whether the system is in the power mode, while B1

and B2 denote |µ| < 0.2 and |µ| < 0.02, respectively. The combination ¬B1 ∧B2 is unrealizable,

because |µ| cannot be both greater than 0.2 and less than 0.02.

However, the shield synthesized by existing methods is not aware of this problem, and thus may

produce combinations of Boolean values that are not realizable in the real domain. If the shield’s

input is ¬A∧¬B1∧¬B2, the shield’s output will be ¬B′1∧B′2, despite that |µ′| >= 0.2∧|µ′| < 0.02

is unsatisfiable.

We solve this problem by checking the compatibility of the predicates at the synthesis time, to

guarantee the realizability of these predicates at run time. Details will be presented in Section 6.2.

6.1.2 Quality of the Real-valued Output

Even if the Boolean values are realizable, the real-valued solution may not be of high quality when

the solution is computed by a generic LP solver. Assume that all predicates are linear constraints,

the output of a Boolean shield would be a conjunction of linear constraints. As illustrated in Fig. 1.2,

the back-end may convert O′, the Boolean shield’s output, to O′r, the real-valued output by solving

a linear programming (LP) problem.

However, it may not produce a reasonable output. Consider G(A ⇒ B), which abstracts G
(
l=

power ⇒ |µ| < 0.2
)
. Suppose the original system’s output violates the property |µ| < 0.2 as

shown by the blue line in Fig. 6.1, where the two erroneous values are in the middle. The correction

computed by an LP solver may be any of the infinitely many values in the interval (-0.2, +0.2),

including -0.19 and 0. However, neither of these two values may be acceptable in a real system,

which expects the signal to be stable, not arbitrary.

Ideally, we want to generate real-valued signals that are smooth and consistent with physical laws
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Figure 6.1: Importance of the smoothness in real-valued correction signals.

of the environment, e.g., the green line in Fig. 6.1. Toward this end, we leverage a utility function,

γ, to impose robustness in addition to correctness constraints. With both types of constraints, the

LP solver can generate values of high quality.

We also propose a technique to speed up the computation of these real values. The intuition is that

system dynamics may be approximated using (linear or non-linear) regression, which predicts the

current value of a signal based on its values in the recent past. Thus, we develop a fast prediction

unit to guess the value, followed by a fast validation unit to check its validity. If the predicted value

is valid, it will serve as the shield’s output. Otherwise, we invoke the LP solver. Details will be

presented in Section 6.3.

6.2 Synthesizing the Boolean Shield

In this section, we present our method for ensuring the realizability of the Boolean shield’s correction

signals. The idea is to check the compatibility of predicates inside the game-based algorithm for

synthesizing the shield. To improve efficiency, we check predicate combinations only when they

are involved in compute the winning strategy.

Algorithm 8 shows the procedure, where blue highlighted lines address the realizability issue, while

the remainder follows the classic algorithm in the prior work [31, 88, 163]. First, it creates P ,
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Algorithm 8 Synthesizing a realizable Boolean shield Sbool from ϕr.
1: Let P be the set of predicates over real-valued variables in ϕr;

2: Let ϕ, I , O, O′ be Boolean abstractions of ϕr, Ir, Or, O′
r via P;

3: function SYNTHESIZEBOOL ( P , I , O, O′ )
4: Q(I,O′)← GENCORRECTNESSMONITOR(ϕ)
5: E(I,O,O′)← GENERRORAVOIDINGMONITOR(ϕ)
6: G ← Q ◦ E
7: W ← COMPUTEWINNINGSTRATEGY(G)
8: R(I,O)← GENRELAXATIONAUTOMATON(P, I,O,W)

9: F(O′)← GENFEASIBILITYAUTOMATON(R)
10: Gr ←W ◦R ◦ F
11: ωr ← COMPUTEWINNINGSTRATEGY(Gr )
12: Sbool(I,O,O′)← IMPLEMENTSHIELD(ωr )
13: return Sbool
14: end function

the set of predicates from the real-valued specification ϕr. Then, it uses P to compute a Boolean

abstraction of ϕr, denoted ϕ. Next, it uses ϕ to formulate a two-player safety game G where the

antagonist controls I and O, the protagonist controls O′, andW is the winning region where the

protagonist may win the game.

Since the construction of the safety game G is part of the prior work and is well understood, we refer

to Bloem et al. [31] and Meng et al. [163] for details. Here, it suffices to say that G is a synchronous

composition of E , an error-avoiding monitor that outlines all possible ways in which the antagonist

may introduce errors in O and the protagonist may introduce corrections in O′, andQ, a correctness

monitor that ensures ϕ(I, O′) always holds.

Since a winning strategy inW may not be realizable in the real domain, our next step is to compute

a strategy ωr based onW while ensuring correction signals produced by ωr are always realizable.

Toward this end, we introduce two additional automata: the feasibility automaton F(O′) and the

relaxation automatonR(I, O). Specifically, F is used to identify and remove the infeasible edges

in ω, i.e., corrections in O′ with no real-valued solutions. R is used to identify and remove the

unrealistic errors in I and O, i.e., errors that are impossible and will not occur in the first place.
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In other words, F restricts the search to realizable solutions, and R allows us to have less worry

and more freedom while computing the winning strategy. Thus, the new game Gr is a composition

ofW , R and F . Based on the winning strategy ωr computed from Gr, we can construct a shield

Sbool that is guaranteed to be realizable at run time.

In the remainder of this section, we illustrate the details while focusing on the highlighted lines in

Algorithm 8.

6.2.1 Computing the Predicates

P is the set of predicates over real-valued signals used in ϕr, where ϕr is expressed in Signal

Temporal Logic (STL). In addition to the LTL operators, STL also has dense time intervals associated

with temporal operators and constraints over real-valued variables.

Consider the STL formulas below, which come from the powertrain control system [83] without

modification.

G[τs,T ]

(
l=power⇒ |µ| < 0.2

)
G[τs,T ]

(
l=power ∧ X(l=normal)⇒ G[η, ς

2
]

(
|µ| < 0.02

))

Here, G[τ1,τ2] is the temporal operator augmented with time interval [τ1, τ2], l is the system mode,

and µ is the normalized error of the air-fuel ratio. The first property says that |µ| should stay below

0.2 immediately after the system switch to the power mode, i.e., between time τs and time T . The

second property says that, when it switches from the power mode to the normal mode, |µ| should

settle down to below 0.02 after time η and before time ς
2
.

To compute P , first, we convert each time interval to a conjunction of linear constraints, e.g., by

using a time variable t to represent the bounds in intervals [τs, T ] and [η, ς
2
].
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T1: (t ≥ τs) T2: (t ≤ T )

T3: (t ≥ η) T4: (t ≤ ς
2
)

Next, we convert the constraints over real-valued variables to predicates. From the running example,

we will produce the following predicates:

L1: (l = power) L2: (l = normal)

M1: (|µ| < 0.2) M2: (|µ| < 0.02)

6.2.2 Computing the Boolean Abstractions

After the set P of predicates is computed, we use it to compute the Boolean abstractions of ϕr, Ir,

Or and O′r. This step is straightforward. To compute ϕ from ϕr, we traverse the abstract syntax

tree (AST) of ϕr and, for each AST node n that corresponds to a real-valued predicate P ∈ P , we

replace P with a new Boolean variable vP .

To compute I from Ir, we traverse the predicates in P and, for each predicate Q ∈ P defined over

some real-valued signals in Ir, we add a new Boolean variable vQ to I . Similarly, O and O′ are also

computed from Or and O′r by creating new Boolean variables.

6.2.3 Computing the Relaxation Automaton

The relaxation automatonR aims to identify impossible combinations of I and O values, and since

they will never occur in the shield’s input, there is no need to make corrections in the shield’s output.

There may be two reasons why a value combination is impossible:

1. The values of real-valued predicates are incompatible, e.g., as in |µ| < 0.02 and |µ| > 0.2.

2. The values are not consistent with physical laws of the environment, e.g., time never travels
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impossible

(¬T1 ∧ T2) ∨ (M1 ∨ ¬M2)

(¬M1 ∧M2) ∨ (¬T1 ∧ ¬T2)

¬T2

True

T1 ∧ T2

T1 ∧ T2

T1 ∧ ¬T2

T1 ∧ ¬T2

¬T1

¬T1 ∨ T2

Figure 6.2: Relaxation automaton R(I, O):
impossible means the system D will not al-
low the state to be reached, and the shield S
can treat it as don’t care.

infeasible

(M ′
1 ∨ ¬M ′

2)

(¬M ′
1 ∧M ′

2)

True

Figure 6.3: Feasibility automaton F(O′): in-
feasible means the state is unrealizable, and
the shield S must avoid the related edges
while generating solutions.

backward. For example, with respect to the time interval [τs, T ], the transition from T1 ∧ T2

to ¬T1 ∧ T2 is impossible.

In addition, our method allows users to provide more constraints to characterize physical laws of

the environment or their understanding of the behaviors of the system D.

States in the relaxation automatonR are divided into two types: normal states and impossible states.

Here, normal means the I/O behavior of the system D may occur, whereas impossible means it

will never occur. Since impossible I/O behavior will never occur in the shield’s input, the shield

may treat it as don’t-care and thus have more freedom to compute the winning strategy.

Example Fig. 6.2 shows the relaxation automaton for our running example. Here, the dashed

edges come from the physical laws (time never travels backward), while the solid edges comes

from the compatibility of real-valued predicates defined over l and µ. In particular, the combination

¬M1 ∧M2 is identified as impossible, because |µ| cannot be greater than 0.2 and less than 0.02 at

the same time.

To check the compatibility of the predicate values, conceptually, one can iterate through all possible

value combinations for the predicates in P , and check each combination with an LP solver. If the
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combination is unsatisfiable (UNSAT) according to the LP solver, we say it is impossible. However,

in our actual implementation, the compatibility checking is performed significantly more efficiently,

due to the use of variable partitioning and UNSAT cores. First, P may be divided into subgroups,

such that predicates from different subgroups do not interfere with each other. Therefore, value

combinations may be computed via Cartesian products. Second, when a value combination is proved

to be unsatisfiable, we compute its UNSAT core, i.e., a minimal subset that itself is UNSAT. By

leveraging these UNSAT cores, we can significantly speed up the checking of value combinations.

6.2.4 Computing the Feasibility Automaton

The feasibility automaton F aims to capture the combinations of O′ values that are unrealizable in

the real domain. Similar toR, states in F are divided into two types: safe and unsafe. Here, safe

means the value combinations are realizable in the real domain, whereas unsafe means the value

combinations are unrealizable.

Fig. 6.3 shows an example of the feasibility automaton for our running example. In this case, all

predicates are the primed versions, because they are defined over the O′ signals, which are part

of the modified output of the shield. Upon ¬M ′
1 ∧M ′

2, the automaton goes into the unsafe state,

because this particular value combination is unsatisfiable.

During the computation of the winning strategy ωr, we need to make sure that such unsafe states

are avoided.

6.2.5 Solving the New Safety Game

The new safety game Gr is defined as the composition ofW , the winning region of the Boolean

game G, the relaxation automatonR, and the feasibility automaton F . We tweak the winning region
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automatonW by adding an unsafe state for all edges going out ofW . Here, composition means

the standard synchronous product, where a state transition exists only if it is allowed by all three

components (W ,R and F). Furthermore, safe states of Gr are defined as either (1) states that are

both safe inW and feasible in F , or (2) states that are impossible inR.

More formally, assume that Fw is the set of unsafe states of the winning regionW , F f is the set

of infeasible states of the feasibility automaton F , and F r is the set of the impossible states of the

relaxation automatonR. The set of safe states in the new game Gr is defined as (¬Fw ∧¬F f )∨F r.

Finally, we solve Gr using standard algorithms for safety games, e.g., Mazala [109], which are also

used in the prior work [31, 88, 163]. The result is a winning strategy ωr, which in turn may be

implemented as a reactive component Sbool . Note that Sbool is a Mealy machine that takes I and O

signals as input and returns the modified O′ signals as output. Furthermore, due to the use ofR and

F , the output of Sbool is guaranteed to be realizable at run time.

6.3 Generating the Real-valued Signals

In this section, we present our method for computing the real-valued signals (O′r) at run time, based

on the Boolean shield’s output (O′).

Algorithm 9 shows the details of our method, which needs Ir, Or, O′r, the set P of predicates, Sbool ,

and a utility function γ, which is used to evaluate the quality of the real-valued solution. First, real

values in Ir and Or are transformed to Boolean values in I and O. Then, they are used by Sbool to

compute new values in O′. When O′ and O have the same Boolean value, meaning the shield does

not make any correction, O′r and O′ will also have the same real value; in this case, no computation

is needed (Line 5). However, when O′ and O have different values, we need to recompute the real

values in O′r (Lines 7-11).
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Algorithm 9 Computing real-valued correction signals at run time.

1: function COMPUTEREALVALUES( Ir, Or, O′
r, P , Sbool , γ)

2: I,O ← GENBOOLEANABSTRACTION(Ir, Or,P)
3: O′ ← GENBOOLEANSHIELDOUTPUT(Sbool , I, O)
4: if O′ = O then
5: O′

r = Or

6: else
7: O′

r ← PREDICTION(Hist)

8: if ¬ SATISFIABLE(P, O′, O′
r) then

9: model←LPSOLVE(P, γ, O′)

10: O′
r ← model

11: end if
12: end if
13: Hist← Hist ∪ {O′

r}
14: end function

6.3.1 Robustness Optimization

Since the output of the Boolean shield is an assignment of the Boolean predicates in O′, and each

predicate corresponds to a linear constraint of the form Σk
i=1aixi ≤ 0, conceptually, the real values

in O′r can be computed by solving the linear programming (LP) problem.

However, naively invoking the LP solver does not guarantee that the real-valued solution is of

high quality. Instead, we develop the following optimization to improve the quality of the solution.

Specifically, we restrict the LP problem using a robustness constraint derived from the utility

function γ. While there may be various ways of defining robustness, especially in the context of

STL [50, 62], a straightforward way that works in practice is to ensure the signal is smooth (see the

example in Fig. 6.1).

That is, we restrict the LP problem using the objective function as follows:

min
(
|vali −

N∑
k=1

vali−k

N
|
)

where vali denotes the current value (at the i-th time step), vali−k, where k = 1, 2, . . . , denotes the



6.3. GENERATING THE REAL-VALUED SIGNALS 89

value in the recent past, and the above function aims to minimize its distance between vali and the

average of the previous N values, stored in Hist (Line 13).

6.3.2 Value Prediction and Validation

While the robustness constraint improves the quality of the real-valued solution, it also increases

the computational cost of LP solving. To reduce the computational cost, we develop a two-phase

technique for computing the solution.

First, we predict the value of a signal using standard regression algorithms based on the historical

values of the signal in the immediate past (Line 7 in Algorithm 9). Here, the procedure PREDICTION

leverages historical values stored in Hist. Since the signal is expected to be smooth, standard linear

or non-linear regression can be very accurate in practice.

Next, we validate the predicted value (Line 8). This is accomplished by plugging the predicted

value for O′r into the combination of Boolean predicates defined by P and the values of signals in

O′. If it is valid, the value is accepted as the final output, and invocation of the LP solver is avoided.

Note that the time taken to perform prediction and validation is significantly smaller than that of the

LP solving.

Only when the predicted value is not valid, we invoke the LP solver (Line 9). Even in this case, the

response time is fast because we use the same LP solver for validation and LP solving. Due to the

incremental computation inside the solver, the solution used for validation, which is often close to

the final solution, can help speed up the LP solving.



90 CHAPTER 6. RUNTIME ENFORCEMENT FOR REAL-VALUED SIGNALS

6.4 Related Work

We are the first to synthesize real-valued shields and demonstrate their application to cyber-physical

systems. As we have mentioned earlier, prior work on shield synthesis has been restricted to the

Boolean domain. Specifically, Bloem et al. [31] introduced the notion of shield together with a

synthesis algorithm, which minimizes the deviation between O and O′ under the assumption that

no two errors occur within k steps. Wu et al. [163] improved the algorithm to deal with burst

error. That is, if more errors occur within the k-step recovery period, instead of entering a fail-safe

state, they keep minimizing the deviation. Könighofer et al. [88] further improved the shield while

Alshiekh et al. [17] leveraged it to improve the performance of reinforcement learning. However,

none of the existing techniques dealt with the realizability problems associated with real-valued

signals.

There is also a large body of work on reactive synthesis [30, 53, 129, 146] and controller synthe-

sis [64, 101, 131, 132]. The goal is to synthesize D from a complete specification Ψ, or the control

sequences for D to satisfy Ψ. In both cases, the complexity depends on D. This is more challenging,

for two reasons. First, specifying all aspects of the system requirement may be difficult. Second,

even if Ψ is available, synthesizing D from Ψ is difficult due to the inherent double exponential

complexity of the synthesis problem. Our method, in contrast, treatsD as a blackbox while focusing

on a small subset ϕ ⊆ Ψ of safety-critical properties. This is why shield synthesis may succeed

where conventional reactive synthesis fails.

Renard et al. [134] proposed a runtime enforcement method for timed automata, but assumed that

controllable input events may be delayed or suppressed, whereas our method does not require such

an assumption. Bauer et al. [26] and Falcone et al. [63] studied various types of temporal logic

properties that may be monitored or enforced at run time. Renard et al. [135] also leveraged Büchi

games to enforce regular properties with uncontrollable events. Our work is orthogonal in that it
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tackles the realizability and efficiency problems associated with real-valued signals. Furthermore,

we focus on safety while leaving liveness and hyper-properties [32] for future work.

An important feature of the shield synthesized by our method is that it always makes corrections

instantaneously, without any delay. Therefore, it differs from a variety of solutions that allow

delayed corrections. In some cases, for example, buffers may be allowed to store the erroneous

output temporarily, before computing the corrections [63, 97, 139]. In this context, the notion of

edit-distance is more relevant. Yu et al. [168], for example, proposed a technique for minimizing

the edit-distance between two strings, but the technique requires the entire input be stored in a

buffer prior to generating the output. However, when the buffer size reduces to zero, these existing

techniques would no longer work.

Runtime enforcement is related to, but different from, software techniques for error avoidance.

For example, failure-oblivious computing [102, 137] was used to allow applications to execute

through memory errors; temporal properties [103, 171] were leveraged to control thread schedules

to avoid runtime failures of concurrent software. However, these techniques are not designed to

target cyber-physical systems with real-valued signals, where corrections are expected to be made

instantaneously, in the same clock cycle when the error occurs.



Chapter 7

Evaluation

The side channel detection and mitigation techniques presented in Chapters 2 and 3 have been

implemented in a software tool named SC-Eliminator, based on the LLVM compiler platform.

The tool has been evaluated on a number of cryptographic software programs. Similarly, the shield

synthesis techniques presented in Chapters 5 and 6 have been implemented in software tools and

evaluated on realistic systems such as automotive powertrain control and autonomous driving.

7.1 Timing Side Channel Elimination

Our detection of potential timing leaks is accomplished by three LLVM-based analysis passes: a

sensitivity analysis that reads in the list of secret variables and propagates the sensitivity attribute to

other variables via control- and data-dependencies; a static cache analysis invoked on demand to

decide whether a store or load instruction definitely results in a cache hit; and a leakage detection

pass leveraging results of the above two analyses to identify instructions that may cause timing

leaks.

92
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Our mitigation is accomplished by two LLVM-based transformation passes. The first pass aims to

replace sensitive conditional statements with functionally-equivalent but time-invariant assignments.

The second pass aims to mitigate accesses to sensitive look-up tables that, depending on the value

of the index, may lead to different cache behaviors.

Our experiments aimed to answer three research questions: (1) Is our new method effective in

detecting and mitigating instruction- and cache-timing leaks? (2) Is our method efficient in handling

real-world cryptographic software? (3) Is the overhead of mitigated code low enough (in terms of

code size and run time) for practical use?

7.1.1 Benchmarks

We conducted experiments on C/C++ programs that implement well-known cryptographic algo-

rithms by compiling them to bit-code using Clang/LLVM. Table 7.1 shows the benchmark statistics.

In total, there are 19,708 lines of code from libraries including a real-time Linux kernel (Chro-

nos [48]), a lightweight cryptographic library (FELICS [2]), a system for performance evaluation

of cryptographic primitives (SuperCop [5]), the Botan cryptographic library [1], three textbook

implementations of cryptographic algorithms [142], and the GNU Libgcrypt library [6]. Columns 1

and 2 show the benchmark name and source. Column 3 shows the number of lines of code (LoC).

Columns 4 and 5 show the number of conditional jumps (# IF) and the number of lookup tables (#

LUT). The last two columns show more details of these lookup tables, including the total, minimum,

and maximum table size.

7.1.2 Experimental Results: Leak Detection

Table 7.2 shows the results of applying our leak detection technique based on static analysis, where

Columns 1-4 show the name of the benchmark together with the number of conditional jumps (# IF),
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Table 7.1: Benchmark statistics.

Name Description # LoC # IF # LUT LUT size in Bytes
total (min, max)

aes AES in Chronos [48] 1,379 3 5 16,424 (40, 4096)
des DES in Chronos 874 2 11 6,656 (256, 4096)
des3 DES-EDE3 in Chronos 904 2 11 6,656 (256, 4096)
anubis Anubis in Chronos 723 1 7 6,220 (76, 1024)
cast5 Cast5 cipher (rfc2144) in Chronos 799 0 8 8,192 (1024, 1024)
cast6 Cast6 cipher (rfc2612) in Chronos 518 0 6 4,896 (32, 1024)
fcrypt FCrypt encryption in Chronos 401 0 4 4,096 (1024, 1024)
khazad Khazad algorithm in Chronos 841 0 9 16,456 (72, 2048)
LBlock LBlock cipher from Felics [2] 1,005 0 10 160 (16,16)
Piccolo Piccolo cipher from Felics 243 2 4 148 (16,100)
PRESENT PRESENT cipher from Felics 183 0 33 2,064 (15,64)
TWINE TWINE cipher from Felics 249 0 3 67 (16,35)
aes AES in SuperCop [5] 1099 4 10 8,488 (40, 1024)
cast CAST in SuperCop 942 5 8 16,384 (2048, 2048)
aes_key AES key_schedule in Botan [1] 502 3 4 8,704 (256,4096)
cast128 cast 128-bit in Botan 617 2 8 8,192 (1024,1024)
des des cipher in Botan 835 1 12 10,240 (1024,2048)
kasumi kasumi cipher in Botan 275 2 2 1,152 (128,1024)
seed seed cipher in Botan 352 0 5 4,160 (64,1024)
twofish twofish cipher in Botan 770 18 9 5,150 (32,1024)
3way 3way cipher reference [142] 177 10 0 0 (0,0)
des des cipher reference 463 16 14 2,302 (16,512)
loki91 loki cipher reference 231 10 1 32 (32,32)
camellia camellia cipher in Libgcrypt [6] 1453 0 4 4,096 (1024,1024)
des des cipher in Libgcrypt 1486 2 13 2,724 (16,2048)
seed seed cipher in Libgcrypt 488 3 5 4,160 (64,1024)
twofish twofish cipher in Libgcrypt 1899 1 6 6,380 (256,4096)

lookup tables (# LUT), and accesses to table elements (# LUT-access), respectively. Columns 5-7

show the number of sensitive conditional jumps, lookup tables, and accesses, respectively. Thus,

non-zero in the sensitive #IF column means there is instruction-timing leakage, and non-zero in

the sensitive #LUT-access means there is cache-timing leakage. We omit the time taken by our

static analysis since it is negligible: in all cases the analysis completed in a few seconds.

Although conditional statements (#IF) exist in many benchmarks, few are sensitive. Indeed, only

twofish from Botan[1] and three old textbook implementations (3way, des, and loki91) have

leaks of this type. In contrast, many lookup tables are sensitive. This result was obtained using a
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Table 7.2: Results of conducting static leakage detection.

Name Total Sensitive (leaky)
# IF # LUT # LUT-access # IF # LUT # LUT-access

aes 3 5 424 0 4 416
des 2 11 640 0 11 640
des3 2 11 1,152 0 11 1,152
anubis 1 7 871 0 6 868
cast5 0 8 448 0 8 448
cast6 0 6 448 0 4 384
fcrypt 0 4 128 0 4 128
khazad 0 9 240 0 8 248
*LBlock 0 10 320 0 0 0
*Piccolo 2 4 121 0 0 0
*PRESENT 0 33 1,056 0 0 0
*TWINE 0 3 156 0 0 0
aes 4 10 706 0 9 696
cast 5 8 448 0 8 448
aes_key 3 4 784 0 2 184
cast128 2 8 448 0 8 448
des 1 12 264 0 8 256
kasumi 2 2 192 0 2 192
seed 0 5 576 0 4 512
twofish 18 9 2,576 16 8 2,512
3way 10 0 0 3 0 0
des 16 14 456 2 8 128
loki91 10 1 512 4 0 0
camellia 0 4 32 0 4 32
des 2 13 231 0 8 128
seed 3 5 518 0 4 200
twofish 1 6 8,751 0 5 2,576

representative cache configuration: fully associative LRU cache with 512 cache lines, 64 bytes per

line, and thus 32 Kilobytes in total.

Some benchmarks, e.g., aes_key from Botan [1], already preload lookup tables; however, our

analysis still reports timing leakage, as shown in Figure 7.1, where XEK is key-related and used to

access an array in the second for-loop. Although the table named TD is computed at run time (thus

capable of avoiding flush+reload attack) and all other tables are preloaded before accesses,

they forgot to preload SE[256], which caused the cache-timing leak.
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1 const uint8_t SE[256] = {0x63, 0x7C, 0x77, 0x7B,...};
2 void aes_key_schedule(const uint8_t key[], size_t length,
3 std::vector<uint32_t>& EK, std::vector<uint32_t>& DK,
4 std::vector<uint8_t>& ME, std::vector<uint8_t>& MD)
5 {
6 static const uint32_t RC[10] = {0x01000000, 0x02000000,...};
7 std::vector<uint32_t> XEK(48), XDK(48);
8 const std::vector<uint32_t>& TD = AES_TD();
9

10 for(size_t i = 0; i != 4; ++i)
11 XEK[i] = load_be<uint32_t>(key, i);
12
13 for(size_t i = 4; i < 44; i += 4) {
14 XEK[i] = XEK[i-4] ^ RC[(i-4)/4] ^
15 make_uint32(SE[get_byte(1, XEK[i-1])],
16 SE[get_byte(2, XEK[i-1])],
17 SE[get_byte(3, XEK[i-1])],
18 SE[get_byte(0, XEK[i-1])]);
19 ...
20 }
21 ...
22 }

Figure 7.1: Reduction: preloading only in the first iteration.

7.1.3 Experimental Results: Leak Mitigation

To evaluate whether our method can robustly handle real applications, we collected results of

applying our mitigation procedure to each benchmark. Table 7.3 shows the results. Specifically,

Columns 2-5 show the result of our mitigation without cache analysis-based optimization, while

Columns 6-9 show the result with the optimization. In each case, we report the number of LUT

accesses actually mitigated, the time taken to complete the mitigation, the increase in program size,

and the increase in runtime overhead. For anubis, in particular, our cache analysis showed that

only 10 out of the 868 sensitive LUT accesses needed mitigation; as a result, optimization reduced

both the program’s size (from 9.08x to 1.10x) and its execution time (from 6.90x to 1.07x).

We also compared the execution time using generic (bitwise) versus optimized (CMOV) imple-

mentations of CTSEL(c,t,e). Figure 7.2 shows the result in a scatter plot, where points below the
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Table 7.3: Results of leakage mitigation. Runtime overhead is based on average of 1000 simulations
with random keys.

Name
Mitigation w/o opt Mitigation w/ opt

# LUT-a Time(s) Prog-size Ex-time # LUT-a Time(s) Prog-size Ex-time
aes 416 0.61 5.40x 2.70x 20 0.28 1.22x 1.11x
des 640 1.17 19.50x 5.68x 22 0.13 1.23x 1.07x
des3 1,152 1.80 12.90x 12.40x 22 0.46 1.13x 1.07x
anubis 868 3.12 9.08x 6.90x 10 0.75 1.10x 1.07x
cast5 448 0.79 7.24x 3.84x 12 0.22 1.18x 1.07x
cast6 384 0.72 7.35x 3.48x 12 0.25 1.16x 1.08x
fcrypt 128 0.07 5.70x 1.59x 8 0.03 1.34x 1.05x
khazad 248 0.45 8.60x 4.94x 16 0.07 1.49x 1.35x
aes 696 0.96 9.52x 2.39x 18 0.22 1.21x 1.06x
cast 448 1.42 13.40x 6.50x 12 0.30 1.35x 1.20x
aes_key 184 0.27 1.35x 1.19x 1 0.23 1.00x 1.00x
cast128 448 0.42 3.62x 2.48x 12 0.10 1.09x 1.06x
des 256 0.21 3.69x 1.86x 16 0.06 1.17x 1.08x
kasumi 192 0.18 2.27x 1.37x 4 0.11 1.03x 1.01x
seed 512 0.57 6.18x 1.94x 12 0.15 1.12x 1.03x
twofish 2,512 29.70 5.69x 4.77x 8 10.6 1.02x 1.03x
3way 0 0.01 1.01x 1.03x 0 0.01 1.01x 1.03x
des 128 0.05 2.21x 1.22x 8 0.03 1.09x 1.11x
loki91 0 0.01 1.01x 2.83x 0 0.01 1.01x 2.83x
camellia 32 0.04 2.21x 1.35x 4 0.03 1.20x 1.09x
des 128 0.06 2.30x 1.20x 8 0.03 1.10x 1.02x
seed 200 0.01 1.38x 1.36x 8 0.01 1.20x 1.18x
twofish 2,576 32.40 6.85x 6.59x 136 11.90 1.41x 1.46x

diagonal line are benchmarks where the optimized implementation is faster.

7.1.4 Experimental Results: Simulation

Although our analysis is conservative in that mitigated code is guaranteed to be leakage free, it is

still useful to conduct GEM5 simulations, for two reasons. First, it confirms our analysis reflects the

reality: leaks reported by us are real. Second, it demonstrates vividly that after mitigation leaks are

indeed eliminated.

Table 7.4 shows our results. For each benchmark, we ran the machine code compiled for x86 on

GEM5 using two manually crafted inputs (e.g., cryptographic keys) capable of showing the timing
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Figure 7.2: CTSEL implementations.

variations. Columns 2-5 show the results of the original program, including the number of CPU

cycles taken to execute it under the two inputs, as well as the number of cache misses. Columns 6-9

show the results on the mitigated program versions.

The results show the execution time of the original program indeed varies, indicating there are

leaks. But it becomes constant after mitigation, indicating leaks are removed. The one exception is

aes_keys: although it may be a real leak, we were not able to manually craft the inputs under which

leak is demonstrable on GEM5. Since the input space is large, manually crafting such inputs is not

easy. Perhaps symbolic execution tools can help generate leak-manifesting input pairs — we will

consider it for future work.
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Table 7.4: Results of GEM5 simulation with 2 random inputs.

Name
Before Mitigation Mitigation w/o opt Mitigation w/ opt

# CPU cycle (in1,in2) # Miss (in1,in2) # CPU cycle # Miss # CPU cycle # Miss
aes 100,554 101,496 261 269 204,260 303 112,004 303
des 95,630 90,394 254 211 346,170 280 100,694 280
des3 118,362 111,610 271 211 865,656 280 124,176 280
anubis 128,602 127,514 276 275 512,452 276 134,606 276
cast5 102,426 102,070 282 279 266,156 304 108,068 304
cast6 96,992 97,492 238 245 233,774 245 100,914 245
fcrypt 84,616 83,198 224 218 114,576 240 88,236 240
khazad 101,844 100,724 332 322 366,756 432 130,682 432
aes 89,968 90,160 234 235 174,904 240 94,364 240
cast 117,936 117,544 345 342 520,336 436 136,052 435
aes_key* 243,256 243,256 329 329 254,262 329 245,584 328
cast128 161,954 161,694 298 296 305,514 321 167,626 321
des 118,848 119,038 269 270 182,830 317 127,374 316
kasumi 113,362 113,654 204 206 137,914 206 115,060 206
seed 106,518 106,364 239 238 165,546 249 110,486 249
twofish 309,160 299,956 336 334 1,060,832 340 315,018 339
3way 87,834 87,444 181 181 90,844 182 90,844 182
des 152,808 147,344 224 222 181,074 225 168,938 225
loki91 768,064 768,296 181 181 2,170,626 181 2,170,626 181
camellia 84,208 84,020 205 203 102,100 244 91,180 244
des 100,396 100,100 212 211 112,992 213 100,500 213
seed 83,256 83,372 228 230 107,318 240 96,266 239
twofish 230,838 229,948 334 327 982,258 338 295,268 338

7.1.5 Threats to Validity

We now discuss the threats to validity and how they were addressed or could be addressed in future

work. First, our mitigation is software-based; as such, we do no address leaks exploitable only by

probing the hardware such as instruction pipelines and data buses. We focus on the Total-time-aware

threat model. Although extensions to handle other threat models are possible (e.g., multi-core and

multi-level cache), we consider them as future work.

Although in principle timing characteristics of the machine code may differ from those of the LLVM

bit-code, we have taken efforts in making sure machine code produced by our tool does not deviate

from the mitigated bit-code. For example, we always align sensitive lookup tables to cache line

boundaries, and we implement CTSEL as an intrinsic function to ensure constant-time execution.
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We also use GEM5 simulation to confirm that machine code produced by our tool is indeed free of

timing leaks.

7.2 Cache Analysis under Speculative Execution

We have instantiated our speculative abstract interpretation framework as a speculative cache

analysis tool in LLVM [3] and experimentally compared it with a state-of-the-art, non-speculative

static cache analysis technique [165]. In our experiments, we used a set-associative cache with the

LRU replacement policy, 512 cache lines, and 64 bytes per line. The speculative execution depths,

following a cache hit and a cache miss, are set to 20 and 200 instructions, respectively. These

bounds were derived from our analysis of the pipelined execution traces produced by GEM5 [29], a

state-of-the-art micro-architecture simulator, with O3CPU, which is a detailed out-of-order CPU

model based on the Alpha 21264 processor.

Our experiments were designed to answer three questions: (1) Is our method more accurate in

detecting cache misses than existing methods, which do not consider speculative execution? (2)

Is our method fast enough for practical use? (3) Are the optimizations proposed in Section 5.3.2

effective in reducing overhead and increasing accuracy?

7.2.1 Benchmarks

Tables 7.5 and 7.6 show the statistics of our benchmarks, which are collected from various sources

including the Malardalen real-time software benchmark [76], a commercially representative embed-

ded software benchmark suite named MiBench [77], a high performance patch for ssh (hpn-ssh) [39],

a cryptographic toolkit named LibTomCrypt [8], the openssh source code [10], and a Linux kernel

for tegra [9] used on Tesla automobiles. These benchmarks are divided into two sets: execution time
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Table 7.5: Execution time estimation: benchmark statistics.

Name Source Description Loc
adpcm WCET@mdh motor control 910
susan MiBench image process algorithm 2,140
layer3 MiBench mp3 audio lib 2,233
jcmarker MiBench jpeg compose algorithm 1,444
jdmarker MiBench jpeg decompose algorithm 2,068
jcphuff MiBench jpeg Huffman entropy encoding routines 694
gtk MiBench GTK plotting routines 949
g72 mediaBench routines for G.721 and G.723 conversions 608
vga mediaBench Driver for Borland Graphics Interface 386
stc mediaBench pson Stylus-Color Printer-Driver 492

Table 7.6: Side channel detection: benchmark statistics.

Name Source Description Loc
hash hpn-ssh hash function 320
encoder LibTomCrypt hex encode a string 134
chacha20 LibTomCrypt chacha20poly1305 cipher 776
ocb LibTomCrypt OCB implementation 377
aes LibTomCrypt AES implementation 1,838
str2key openssl key prepair for des 385
des openssl des cipher 1,051
seed linux-tegra seed cipher 487
camellia linux-tegra camellia cipher 1,324
salsa linux-tegra Salsa20 stream cipher 279

estimation and side channel detection. The benchmarks for execution time estimation (Table 7.5)

are used as is, whereas the benchmarks for side channel detection (Table 7.6) are used together with

a client program that we wrote, to invoke the benchmark program in a way similar to Figure 4.7.

7.2.2 Effectiveness: Execution Time Estimation

We first compare our method with the state-of-the-art, non-speculative method [165]. The results

are shown in Table 7.7. For our method, we also report the number of speculative cache misses

(#SpMiss), which are not observable from outside of the CPU, the number of conditional branches
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Table 7.7: Execution time estimation: comparisons in terms of the analysis time and the number of
cache misses.

Name
Non-speculative Speculative
Time (s) #Miss Time (s) #Miss #SpMiss #Branch #Iteration

adpcm 0.98 24 12.70 32 17 75 173
susan 19.40 17 248.40 26 17 113 464
layer3 7.24 78 65.54 88 35 241 374
jcmarker 0.20 22 3.40 26 11 37 72
jdmarker 2.89 21 15.18 78 55 193 726
jcphuff 0.03 12 0.44 12 13 25 32
gtk 19.90 16 274.76 19 13 77 190
g72 0.16 6 0.94 9 4 41 79
vga 0.05 4 0.06 4 3 3 3
stc 0.13 10 0.96 23 14 39 105

that can be speculatively executed, and the total number of iterations of our method on loops.

The results show that our method detected more cache misses, thus highlighting the unsoundness of

the existing method and the importance of modeling speculative execution during execution time

estimation.

As for the analysis time, our method completed all the benchmarks, although it took a longer time

than the non-speculative analysis due to its focus on being always sound. The reason why it took

significantly longer for the gtk benchmark, in particular, is because the program has a large data size

(of nearly 3 MB), which led to a large number of variables to be tracked in the abstract cache state.

Table 7.8 compares two merging strategies in terms of the analysis time, the number of cache misses,

the number of speculative cache misses, and the number of iterations. The result is somewhat

surprising in that although merging at rollback point is more aggressive than just-in-time merging,

the later is actually faster while being more accurate. The reason is because merging the speculative

state with the normal state right after the rollback point may force the normal state to become

a coarser-grained over-approximation. This can lead to a slower convergence to a coarser fixed

point, as shown by the data in Columns 5 and 9. However, there are exceptions, indicating that

optimal merging in general is problem-specific, and the accuracy depends on the combined effects
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Table 7.8: Execution time estimation: comparisons of two strategies for merging speculative
executions.

Name
Merging at rollback point Just-in-time merging

Time(s) #Miss #SpMiss #Ite Time(s) #Miss #SpMiss #Ite
adpcm 14.40 31 25 261 12.70 32 17 173
susan 405.70 30 29 620 248.40 26 17 464
layer3 84.64 94 53 471 65.54 88 35 374
jcmarker 4.80 27 19 99 3.40 26 11 72
jdmarker 16.11 35 59 777 15.18 78 55 726
jcphuff 0.48 12 10 36 0.44 12 13 32
gtk 358.56 24 26 236 274.76 19 13 190
g72 1.28 7 1 122 0.94 9 4 79
vga 0.07 4 3 5 0.06 4 3 3
stc 1.86 31 35 222 0.96 23 14 105

of branches and loops in a program.

7.2.3 Effectiveness: Side Channel Detection

Table 7.9 shows the results for side channel detection, including comparisons of the two methods

in terms of the analysis time and whether leaks are detected. In this context, a leak refers to the

dependency between the cache behavioral difference and sensitive data; furthermore, whether there

is a leak or not often depends on the input buffer size controlled by the (potentially malicious) user.

Thus, during experiments, we set the buffer size to various values from 32K bytes (the size of cache

we use) down to 0 byte.

Generally speaking, the larger the buffer size, the easier that the client program triggers the

behavioral difference. Thus we first set the buffer size to 32KB, and starting from there we gradually

reduce the buffer size and keep track of the impact of speculative execution on cache state, until the

two methods return different results.

Since the benchmarks are mostly cryptographic algorithms, which are relatively small in terms

of the number of lines of code, the analysis time is short. Furthermore, our method successfully
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Table 7.9: Side channel detection: comparisons in terms of the analysis time and whether leaks are
detected.

Name Buffer (byte)
Traditional Speculative

Time (s) Leak Detected Time (s) Leak Detected
hash 31,808 0.67 No 1.15 Yes
encoder 32,512 0.03 No 0.10 Yes
chacha20 26,304 1.18 No 9.24 Yes
ocb 31,616 0.10 No 0.68 Yes
aes 32,768 0.08 No 2.13 No
str2key 32,768 0.01 No 0.01 No
des 0 0.60 No 14.20 Yes
seed 32,768 0.01 No 0.07 No
camellia 32,768 0.35 No 6.35 No
salsa 32,768 0.02 No 0.06 No

detected leaks in half of the benchmarks, whereas the existing (unsound) method did not detect

leaks in any of them. This highlights the importance of having a sound static cache analysis for

speculative executions, e.g., to detect more leaks and avoid producing bogus proofs (that there is no

leak). On one of the benchmarks, des, leaks are detected even if the buffer size is set to 0; this is

because, even without the client program, the benchmark program itself has a user controlled buffer,

which can be set to sizes that induce timing side-channel leaks under speculative execution.

As a static analysis procedure, our method may generate false positives. In addition to abstraction,

the other source of false positives is modeling of the speculative execution. For each of the new

leaks detected by our method in Table 7.9, we have manually inspected the software code and the

execution trace. Our inspecction confirmed that all of them are actually real; that is, there exist

specific memory/cache layouts and execution traces that induce the leaks.

7.3 Boolean Shield under Burst Error

Our shield synthesis approach for Boolean domain is implemented in the same software tool

that also implements the method of Bloem et al. [31]. The fix-point computation for solving
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safety games is implemented symbolically, using CUDD [4] as the BDD library, whereas the

construction of the various monitors and the game graph are carried out explicitly. The tool takes

the automaton representation of the safety specification ϕs as input and returns the Verilog program

of the synthesized shield S as output.

7.3.1 Benchmarks

We have evaluated our method on a range of safety specifications, including temporal logic properties

from (1) the Toyota powertrain control verification benchmark [83], (2) an automotive design for

engine and brake controls [117], (3) the traffic light controller example from the VIS model

checker [34], (4) LTL property specification patterns from Dwyer et al. [52], and (5) parts of the

ARM AMBA bus arbiter specification [30].

Specifically, properties from [83] are on the model of a fuel control system, specifying the per-

formance requirements in various operation modes. Originally, they were represented in signal

temporal logic (STL). We translated them to LTL by replacing the predicates over real variables

with boolean variables. The properties for engine and brake control [117] are related to the safety

of the brake overriding mechanism. The properties for traffic light controller [34] are for safety of a

crossroads traffic light. The AMBA benchmark [30] includes combinations of various properties of

an ARM bus arbiter. We also translate liveness properties in Dwyer et al. [52] to safety properties

by adding a bound on the reaction time steps. For example, in the first columns of Table 7.11, the

numbers besides F and U are the bound number, where F and U mean Finally and Until respectively.

7.3.2 Experimental Results

Table 7.10 shows the results of running our tool on these benchmarks and comparing it with the

method of Bloem et al. [31]. Columns 1-2 show the properties we use from [30] and the number
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Table 7.10: Experimental results for comparing the two shield synthesis algorithms.

Property ϕs Sates
K-Stabilizing Shield Burst-Error Shield

Handle-Burst-Error States in S Time (s) Handle-Burst-Error States in S Time (s)
AMBA G1+2+3 12 yes 22 0.1 yes 22 0.1
AMBA G1+2+4 8 no (1-step) 61 6.3 yes 78 2.2
AMBA G1+3+4 15 no (1-step) 231 55.6 yes 640 97.6
AMBA G1+2+3+5 18 no (1-step) 370 191.8 yes 1,405 61.8
AMBA G1+2+4+5 12 no (1-step) 101 3,992.9 yes 253 472.9
AMBA G4+5+6 26 no (2-step) 252 117.9 yes 205 26.4
AMBA G5+6+10 31 no (2-step) 329 9.8 yes 396 31.4
AMBA G5+6+9e4+10 50 no (2-step) 455 17.6 yes 804 42.1
AMBA G5+6+9e8+10 68 no (2-step) 739 34.9 yes 1,349 86.8
AMBA G5+6+9e16+10 104 no (2-step) 1,293 74.7 yes 2,420 189.7
AMBA G5+6+9e64+10 320 no (2-step) 4,648 1,080.8 yes 9,174 2,182.5
AMBA G8+9e4+10 48 no (2-step) 204 7.0 yes 254 6.1
AMBA G8+9e8+10 84 no (2-step) 422 22.5 yes 685 33.7
AMBA G8+9e16+10 156 no (2-step) 830 83.7 yes 1,736 103.1
AMBA G8+9e64+10 588 no (2-step) 3,278 2,274.2 yes 7,859 2,271.5

of states of the safety specification ϕs. Columns 3-5 show the results of applying the k-stabilizing

shield synthesis algorithm [31], including whether the resulting shield can handle burst error, the

shield size in terms of the number of states, and the synthesis time in seconds. Similarly, Columns

6-8 show the results of applying our new synthesis algorithm. Note that the k-stabilizing shields are

guaranteed to handle burst error, and as shown in Table 7.10, only some of them can actually handle

burst error. Here, “no (1-step)” means the shield needs at least one more clock cycle to recover from

the previous error before it can take on the next error, and “no (2-step)” means the shield needs at

least two more clock cycles to recover. In contrast, the shield synthesized by our new method can

recover instantaneously and therefore can always handle burst error.

In terms of the synthesis time, the result is mixed in that our new method is sometimes slower and

sometimes faster than the existing method. There are two reasons for such results. On the one hand,

our method is searching through a significantly larger game graph than the existing method in order

to find the best winning strategy for handling burst error. On the other hand, our method utilizes

the new optimization technique described in Section 5.3.2 for symbolically computing the winning

region, which can significantly speed up the fix-point computation.
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Table 7.11: Experimental results for synthesizing the shield with and without optimization.

Property ϕs States
Burst Error Shield Syn. (w/o Opt) Burst Error Shield Syn. (w/ Opt)

States in S Time (s) States in S Time (s)
Toyota powertrain 23 38 0.3 38 0.3
Engine and brake ctrl 5 7 0.1 7 0.1
Traffic light 4 7 0.2 7 0.2
F256 p 259 259 45.5 259 10.5
F512 p 515 5157 511.0 515 54.4
G(¬q) ∨ F64(q ∧ F64 p) 67 67 0.8 67 0.6
G(¬q) ∨ F256(q ∧ F256 p) 259 259 46.2 259 10.7
G(¬q) ∨ F512(q ∧ F512 p) 515 515 668.1 515 54.5
G(q ∧ ¬r → (¬rU8(p ∧ ¬r))) 10 4,002 3.9 5,519 4.5
G(q ∧ ¬r → (¬rU12(p ∧ ¬r))) 14 95,357 1,506.9 27,338 1,414.5
AMBA G1+2+4 8 69 2.3 78 2.2
AMBA G1+3+4 15 566 99.5 640 97.6
AMBA G1+2+3+5 18 1,256 58.4 1,405 61.8
AMBA G1+2+4+5 12 193 479.2 253 472.9
AMBA G4+5+6 26 206 26.3 205 26.4
AMBA G5+6+9e16+10 104 2,334 194.2 2,420 189.7
AMBA G5+6+9e64+10 320 8,618 2,865.6 9,174 2,182.5
AMBA G8+9e16+10 156 1,344 111.0 1,736 103.1
AMBA G8+9e64+10 588 5,848 7,843 7,859 2,271.5

Table 7.11 shows the results of our synthesis algorithm with and without optimization. Columns 1-2

show the benchmark name and the size of the safety specification. Columns 3-4 show the size of the

resulting shield and the synthesis time without using the optimization. Columns 5-6 show the shield

size and the synthesis time with the optimization. In almost all cases, there is significant reduction

in the synthesis time when the optimization is used. At the same time, there is slightly difference in

the number of states in the resulting shield. This is because the game graph often contains multiple

winning strategies, and currently our method for computing the winning strategy tends to pick

an arbitrary one. Furthermore, since the shield is implemented in hardware, the difference in the

number of bit-registers (flip-flops) needed to implement the two shields will be further reduced. For

example, in the last benchmark, we have dlog2(3278)e = 12, whereas dlog2(7859)e = 13, meaning

that the shield requires either 12 or 13 bit-registers. Nevertheless, for future work, we plan to

investigate new ways of computing the winning strategy to further reduce the shield size.
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7.4 Real-Valued Shield Synthesis

The shield synthesis approach for real domain has been implemented as a tool that takes the

automaton representation of a safety specification as input and returns a real-valued shield as output.

Internally, we solve the safety game using Mazala’s algorithm [109] implemented symbolically

using CUDD [4], and use the LP solver integrated in Z3 [47] for prediction, validation and constraint

solving. For evaluation purposes, the shield is implemented as a C program and is executed at every

time step. Each execution has two phases: (1) generating Boolean values for signals in O′, and (2)

generating real values for signals in O′r.

7.4.1 Benchmarks

We evaluated our tool on seven sets of benchmarks, including automotive powertrain control [83],

autonomous driving [132], adaptive cruise control [120], multi-drone fleet control [123], generic

control [84], blood glucose control [138], and water tank control [16]. In all benchmarks, the

original specification was given in STL, which has both timing and real-valued constraints.

Table 7.12 shows the benchmark statistics, including the application name, the property, a short

description, and the corresponding STL formula. For brevity, we omit the automaton representations,

but they will be released together with our tool upon acceptance of the paper. We conducted

experiments on a computer with Intel i5 3.1GHz CPU, 8GB RAM, and the Ubuntu 14.04 operating

system. Our experiments were designed to answer the following questions: (1) Is our tool efficient

in synthesizing the real-valued shield? (2) Is the shield effective in preventing safety violations? (3)

Are the real-valued signals produced by the shield of high quality?
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Table 7.12: Statistics of the benchmark applications.

Application Property STL Formula and Description

R26 In normal mode, permitted overshoot/undershoot is always be less than 0.05
G[τs,T ]

(
l=normal⇒ |µ| < 0.05

)
R27 In normal mode, overshoot/undershoot less than 0.02 within the settling time

G[τs,T ]

(
rise(a)|fall(a)⇒ G[η, ς

2
]

(
|µ| < 0.02

))
Powertrain R32 From power to normal, overshoot/undershoot less than 0.02 within settling time

G[τs,T ]

(
l=power ∧ X(l=normal)⇒ G[η, ς

2
]

(
|µ| < 0.02

))
R33 In power mode, permitted overshoot or undershoot should be less than 0.2

G[τs,T ]

(
l=power⇒ |µ| < 0.2

)
R34 Upon startup/sensor failure, overshoot/undershoot <0.1 within the settling time

G[τs,T ]l=startup|sensor_fail ∧ rise(a)|fall(a)⇒ G[η, ς
2

]

(
|µ| < 0.1

))
D1 Vehicle should keep a steady speed Vs when there is no collision risk

Autonomous G
(
|yegok − xadvk | >= 4

)
⇒ G

(
|vegok − Vs| < ε

)
Driving D2 Vehicle should come to stop for at least 2 second when there is collision risk

G
(
|yegok − xadvk | < 4

)
⇒ G[0,2]

(
|vegok | < 0.1

)
A1 Keep a safe distance with lead vehicle: G

(
pos_lead[t]− pos_ego[t] > Ds

)
Cruise A2 Achieve cruise velocity if there is a comfortable distance
Control

(
pos_lead[t]− pos_ego[t] > Dc

)
U[0,10]

(
|v_ego[t]− v_cruise[t]| < ε

)
A3 Vehicle should never travel backward: G

(
v_ego[t] >= 0

)
A4 Vehicle doesn’t halt unless lead vehicle halts:

G
(
v_lead[t] > 0

)
⇒ G

(
v_ego[t] > 0

)
Q1 Drone flies to goal point if no obstacles are on they way:

Quadrotor G
(
Obs(posquad,posobs)⇒ ωg > 0)

)
Control Q2 Avoiding obstacles:G¬Obs(posquad,posobs)⇒(

ωḡ > 0 ∧ G
(
Dis(posquad,posobs) < ε⇒ ωg = 0

))
C1 After settling, output error should be less than set value εb:

General G
(

x[t]⇒ G[10,∞]

(
| y[t]−yref

yref | < εb
))

Control C2 Output error should be [ε⊥, ε>] in settling time:

G
(

x[t]⇒ G[0,20]

(
ε⊥ < y[t]−yref

yref < ε>
))

C3 Output should achieve reference value within rise_time:

G
(

x[t]⇒ F[0,rise_time]

(
| y[t]−yref

yref | < εr
))

Glucose Cont-
rol

B1 Having meal within t1 minutes after taking the bolus is safe. A bolus must be taken after t2 minutes of
having meal, if it is not yet taken:

G
(
F[0,t1+t2](B > c2) ∨ G[t1,t1+t2]

(
M > c1 ⇒ F[0,t2](B > c2)

))
Water Tank W1 Turn on inflow and turn off outflow switch when water level is low (l < 4)
Control G

(
l < 4⇒ G[0,3](flowout = 0 ∧ 1 < flowin < 2)

)
W2 Turn on outflow and turn off inflow switch when water level is high (l > 93)

G
(
l > 93⇒ G[0,3](flowin = 0 ∧ 0 < flowout < 1)

)

7.4.2 Experimental Results

Table 7.13 shows the results of our shield synthesis procedure. Columns 1-3 show the property

name, the number of states of the specification, and the number of real-valued signals in Ir and

Or, respectively. Column 4 shows the number of predicates defined over signals in Ir and Or.

Based on these predicates, Boolean signals in I and O are created; Column 5 shows the number
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Table 7.13: Results of real shield synthesis procedure.

Name Specification Synthesis Tool Shield S
states |Ir|/|Or| |PI |/|PO| |I|/|O| |R|/|F| time(s) states constrs

R26+R27 8 1/1 2/2 5/2 2/1 0.16 25 2+2
R32+R33 9 1/1 2/2 5/2 2/1 0.15 28 2+2
R26+R27+R32
+R33+R34

23 1/1 2/4 5/4 12/11 1.15 158 4+2

D1 6 3/1 5/3 6/3 53/5 0.15 19 3+2
D2 5 3/1 2/3 3/3 5/5 0.21 30 3+2
D1+D2 14 3/1 5/3 6/3 53/5 0.8 164 3+2
A1+A3+A4 3 3/1 2/2 2/3 1/1 0.08 8 2+0
A2+A3+A4 4 4/1 3/3 3/3 4/4 0.1 15 3+0
A1+A2+A3+A4 7 4/1 4/3 4/4 8/4 0.55 48 3+0
Q1+Q2 5 1/2 1/2 2/2 0/0 0.08 7 2+0
C1+C2+C3 19 2/1 3/4 3/4 13/11 0.52 118 4+2
B1 5 3/1 5/1 5/1 14/0 0.1 6 1+0
W1+W2 6 1/2 2/2 2/2 1/0 0.1 10 2+2

of these signals. Column 6 shows the number of conflicting constraints captured by the relaxation

and feasibility automata, respectively. Column 7 shows the synthesis time. Columns 8-9 show the

number of states of the Boolean shield, and the number of real-valued constraints to be solved at

run time.

Table 7.14 shows the runtime performance of the shields. For each shield, we generated input

signals (for Ir and Or) based on the description of the system: some of these input signals satisfy

the specification while others do not. By measuring the response time of the shield under these

input signals, as well as the quality of the corrections made by the shield, we hope to evaluate its

effectiveness.

In this table, Column 1 shows the property name. Column 2 shows the size of the C program that

implements the shield. Column 3 shows the response time of the Boolean shield on input signals

that do not violate the specification. Columns 4-5 show the response time on input signals that

violate the specification. Among these columns, prediction means the real-valued solution was

successfully computed by a linear regression, whereas constr. solving means prediction failed and

the solution was computed by the LP solver.
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Table 7.14: Results of evaluating runtime performance of the shield.

Name Implementation Shield Response Time
(LoC) Boolean step (us) prediction step (us) constraint solving (us)

R26+R27 745 0.3 293.3 336.8
R32+R33 748 0.41 256.5 333.9
R26+R27+R32
+R33+R34

1446 0.8 245.0 279.8

D1 781 0.45 177.2 164.7
D2 853 0.5 313.5 329.0
D1+D2 2242 0.8 318.3 202.4
A1+A3+A4 539 0.37 164.3 212.7
A2+A3+A4 632 0.49 281.7 431.5
A1+A2+A3+A4 940 0.45 291.7 290.1
Q1+Q2 556 0.18 299.2 313.5
C1+C2+C3 1037 0.5 299.4 395.2
B1 623 0.31 225.4 313.4
W1+W2 608 0.57 295.3 222.1

Overall, the time to compute real-valued correction signals is within 0.5 ms when D 6|= ϕ, and less

than 1 us when D |= ϕ. In the latter case, the shield does not need to make correction at all. In both

cases, the response time is always bounded and fast enough for the target applications.

7.4.3 Case Studies

Case Study 1: Powertrain Control System To validate the effectiveness of our approach, we

integrated the shield into the simulation model of the powertrain control system. Then, we compared

the system performance with and without the shield. Fig. 7.3 shows the simulation results, where

our shield was synthesized from the system properties 26, 27, 32, 33 and 34 as described in Jin et

al. [83]. Recall that µ is the normalized error of the A/F ratio and µref is a reference value.

The green dashed line indicates the safe region, which varies as the system switches between

different modes (transition events are highlighted with black dotted line). The red dashed line

represents violations of the specification by the original Or signals. The solid red line represents

corrections made in O′r. The result shows that our shield can always produce real-valued correction
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Figure 7.3: Automotive powertrain system simulation results (with and without the shield).

to keep µ in the safe region.

Case Study 2: Autonomous Driving

Fig. 7.4 shows the simulation results of an autonomous driving system [132] with and without our

shield. Here, an ego vehicle is put into a nondeterministic environment that includes an adversarial

vehicle, and the two cars are crossing an intersection. The ego vehicle is protected by a shield

synthesized from D1+D2 in Table 7.12. The three plots, from top to bottom, are for distances to

the intersection, velocities, and accelerations of the two vehicles. The x-axis represents the time in

seconds.

The adversarial vehicle drives straight through the intersection at a constant speed. The ego vehicle,

in contrast, may change speed to avoid collision. From t = 0s to t = 5s, since the distance between

the two vehicles is large, the ego vehicle maintains a steady speed (set to 2m/s initially). At t = 5s,

based on the safety specification, it is supposed to come to a stop (for at least 2s or when there is

no collision risk). However, since we injected an error at t = 6s (in red dashed line), there is an

unexpected acceleration and, without the shield, there would have been a collision.

The blue lines show the behavior of the ego vehicle after corrections are made by our shield. Clearly,
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Figure 7.4: Position, velocity and acceleration in autonomous driving simulation.

its behavior satisfies the requirements: it stops at the intersection to allow the adversarial vehicle to

pass safely. Furthermore, the real-valued correction made by our shield is successfully predicted

using linear regression, and the predicted values satisfy not only the safety but also the robustness

requirements.



Chapter 8

Conclusions

This dissertation presents two types of techniques for enforcing the safety and security of critical

software systems.

In terms of security, we have presented a number of techniques for detecting timing side-channel

leaks via static program analysis, and a number of techniques for mitigating these leaks via program

transformation. Toward this end, we have lifted the abstract interpretation framework to make

it sound for handling non-functional properties such as cache timing and micro-architectural

optimizations such as speculative execution. These proposed techniques have been implemented

in software tools based on the LLVM compiler and evaluated on realistic applications. Our

experimental results show that the techniques are both effective and efficient in practice.

In terms of safety, we have presented a number of techniques for synthesizing a runtime enforcer,

called a shield, to instantaneously generate correction signals. The shields synthesized by our

techniques not only handle Boolean signals, but also handle real-valued signals. Furthermore, they

can robustly handle burst error. These proposed techniques have also been implemented in software

tools and evaluated on realistic embedded control systems. Our experimental results show that the

114
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shields produced by our techniques are both effective and efficient in enforcing safety properties of

reactive systems.



Bibliography

[1] Botan: Crypto and TLS for C++11. https://github.com/randombit/botan/.

[2] Fair Evaluation of Lightweight Cryptographic Systems. https://www.cryptolux.

org/index.php/FELICS.

[3] The LLVM Compiler Infrastructure. http://llvm.org/.

[4] CUDD: CU Decision Diagram Package. ftp://vlsi.colorado.edu/pub/.

[5] System for Unified Performance Evaluation Related to Cryptographic Operations and Primi-

tives. https://bench.cr.yp.to/supercop.html.

[6] Libgcrypt. https://www.gnupg.org/software/libgcrypt/index.html.

[7] Intel R©64 and IA-32 Architectures Optimization Reference Manual. https://botan.

randombit.net/, 2014.

[8] LibTomCrypt: A Modular and Portable Cryptographic Toolkit. https://www.libtom.

net/LibTomCrypt, 2018.

[9] Tesla Motors: Linux. https://github.com/teslamotors/linux, 2018.

[10] Openssh, 2018. URL http://www.openssh.com/.

116

https://github.com/randombit/botan/
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/FELICS
 http://llvm.org/
ftp://vlsi.colorado.edu/pub/
https://bench.cr.yp.to/supercop.html
https://www.gnupg.org/software/libgcrypt/index.html
https://botan.randombit.net/
https://botan.randombit.net/
https://www.libtom.net/LibTomCrypt
https://www.libtom.net/LibTomCrypt
https://github.com/teslamotors/linux
http://www.openssh.com/


BIBLIOGRAPHY 117

[11] Onur Aciiçmez. Yet another microarchitectural attack:: exploiting i-cache. In Proceedings of

the 2007 ACM workshop on Computer security architecture, pages 11–18. ACM, 2007.

[12] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch

prediction analysis. In Proceedings of the 2nd ACM symposium on Information, computer

and communications security, pages 312–320. ACM, 2007.

[13] Johan Agat. Transforming out timing leaks. In ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, pages 40–53, 2000.

[14] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing methodology

to automate power analysis countermeasures. In ACM/IEEE Design Automation Conference,

pages 77–82, 2012.

[15] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS

record protocols. In IEEE Symposium on Security and Privacy, pages 526–540, 2013.

[16] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,

and Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence (AAAI-18), pages 2669–2678, 2018.

[17] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Nie-

kum, and Ufuk Topcu. Safe reinforcement learning via shielding. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[18] Mário S. Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan, Catuscia

Palamidessi, and Geoffrey Smith. Additive and multiplicative notions of leakage, and their

capacities. In IEEE Computer Security Foundations Symposium, pages 308–322, 2014.

[19] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and

Shiyi Wei. Decomposition instead of self-composition for proving the absence of timing chan-



118 BIBLIOGRAPHY

nels. In ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 362–375, 2017.

[20] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. Predictive black-box mitigation of

timing channels. In ACM Conference on Computer and Communications Security, pages

297–307, 2010.

[21] Michael Backes and Boris Köpf. Formally bounding the side-channel leakage in unknown-

message attacks. In European Symposium on Research in Computer Security, pages 517–532,

2008.

[22] George Balatsouras and Yannis Smaragdakis. Structure-sensitive points-to analysis for C

and C++. In Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK,

September 8-10, 2016, Proceedings, pages 84–104, 2016. doi: 10.1007/978-3-662-53413-7_

5. URL https://doi.org/10.1007/978-3-662-53413-7_5.

[23] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Pasareanu, and Tevfik Bultan.

String analysis for side channels with segmented oracles. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 193–204, 2016.

[24] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks through transacti-

onal branching instructions. Electr. Notes Theor. Comput. Sci., 153(2):33–55, 2006.

[25] Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Leakage resilience

against concurrent cache attacks. In International Conference on Principles of Security and

Trust, pages 140–158, 2014.

[26] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL. ACM

Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011. ISSN 1049-331X.

https://doi.org/10.1007/978-3-662-53413-7_5


BIBLIOGRAPHY 119

[27] Ali Galip Bayrak, Francesco Regazzoni, Philip Brisk, François-Xavier Standaert, and Paolo

Ienne. A first step towards automatic application of power analysis countermeasures. In

ACM/IEEE Design Automation Conference, pages 230–235, 2011.

[28] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In

International Cryptology Conference, pages 513–525, 1997.

[29] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt, Ali G. Saidi,

Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, Somayeh Sardashti, Rathijit

Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and David A.

Wood. The GEM5 simulator. SIGARCH Computer Architecture News, 39(2):1–7, 2011.

[30] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1)

designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[31] R. Bloem, B. Könighofer, R. Könighofer, and C. Wang. Shield synthesis: Runtime en-

forcement for reactive systems. In International Conference on Tools and Algorithms for

Construction and Analysis of Systems, 2015.

[32] Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties.

In IEEE Computer Security Foundations Symposium, pages 162–174, 2018.

[33] Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and efficient elimination of cache

and timing side channels. CoRR, abs/1506.00189, 2015. URL http://arxiv.org/

abs/1506.00189.

[34] R. K. Brayton et al. VIS: A system for verification and synthesis. In International Conference

on Computer Aided Verification, pages 428–432, 1996.

[35] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. Symbolic path cost analysis for side-

http://arxiv.org/abs/1506.00189
http://arxiv.org/abs/1506.00189


120 BIBLIOGRAPHY

channel detection. In International Conference on Software Engineering, pages 424–425,

2018.

[36] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,

48(5):701–716, 2005.

[37] Tevfik Bultan, Fang Yu, Muath Alkhalaf, and Abdulbaki Aydin. String Analysis for Software

Verification and Security. 2017.

[38] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel vulnerabilities using

quantitative cartesian hoare logic. In ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 875–890, 2017.

[39] Rapier Chris, Steven Michael, Bennett Benjamin, and Tasota Mike. High performance ssh/scp

- hpn-ssh, 2018 (accessed March 1, 2019). URL https://www.psc.edu/hpn-ssh.

[40] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. Precise cache timing analysis via symbo-

lic execution. In IEEE Real-Time and Embedded Technology and Applications Symposium,

pages 1–12, 2016.

[41] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In Logics of Programs, LNCS 131, pages 52–71, 1981.

[42] David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. The last mile: An empirical study

of timing channels on seL4. In ACM SIGSAC Conference on Computer and Communications

Security, pages 570–581, 2014.

[43] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical

mitigations for timing-based side-channel attacks on modern x86 processors. In IEEE

Symposium on Security and Privacy, pages 45–60, 2009.

https://www.psc.edu/hpn-ssh


BIBLIOGRAPHY 121

[44] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 238–252, 1977.

[45] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, pages 84–96, 1978.

[46] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. Thwar-

ting cache side-channel attacks through dynamic software diversity. In Annual Network and

Distributed System Security Symposium, 2015.

[47] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages

337–340. Springer, 2008.

[48] Matthew Dellinger, Piyush Garyali, and Binoy Ravindran. Chronos linux: a best-effort

real-time multiprocessor linux kernel. In Design Automation Conference (DAC), 2011 48th

ACM/EDAC/IEEE, pages 474–479. IEEE, 2011.

[49] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and

Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things. Cryptology

ePrint Archive, Report 2015/209, 2015. http://eprint.iacr.org/2015/209.

[50] Adel Dokhanchi, Bardh Hoxha, and Georgios E. Fainekos. On-line monitoring for temporal

logic robustness. In International Conference on Runtime Verification, pages 231–246, 2014.

[51] Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. CacheAu-

dit: A tool for the static analysis of cache side channels. In USENIX Security, pages 431–446,

2013.

http://eprint.iacr.org/2015/209


122 BIBLIOGRAPHY

[52] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for

finite-state verification. In International Conference on Software Engineering, 1999.

[53] R. Ehlers and U. Topcu. Resilience to intermittent assumption violations in reactive synthesis.

In HSCC, pages 203–212. ACM, 2014.

[54] Hassan Eldib and Chao Wang. An SMT based method for optimizing arithmetic computations

in embedded software code. In International Conference on Formal Methods in Computer-

Aided Design, 2013.

[55] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against side channel

attacks. In International Conference on Computer Aided Verification, pages 114–130, 2014.

[56] Hassan Eldib and Chao Wang. An SMT based method for optimizing arithmetic computations

in embedded software code. IEEE Trans. on CAD of Integrated Circuits and Systems, 33(11):

1611–1622, 2014.

[57] Hassan Eldib, Chao Wang, and Patrick Schaumont. SMT based verification of software

countermeasures against side-channel attacks. In International Conference on Tools and

Algorithms for Construction and Analysis of Systems, 2014.

[58] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal verification of software counter-

measures against side-channel attacks. ACM Trans. Softw. Eng. Methodol., 24(2):11:1–11:24,

2014.

[59] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. QMS: Evaluating the side-

channel resistance of masked software from source code. In ACM/IEEE Design Automation

Conference, pages 209:1–6, 2014.

[60] Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. Quantitative Masking



BIBLIOGRAPHY 123

Strength: Quantifying the side-channel resistance of masked software code. In IEEE Trans.

on CAD of Integrated Circuits and Systems, volume 34, pages 1558–1568, 2015.

[61] Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack countermeasures for

cryptographic circuits. In International Conference on Computer Aided Verification, pages

343–363, 2016.

[62] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications. In

Formal Approaches to Software Testing and Runtime Verification, First Combined Internatio-

nal Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16, 2006, Revised

Selected Papers, pages 178–192, 2006.

[63] Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?

STTT, 14(3):349–382, 2012.

[64] Samira S Farahani, Vasumathi Raman, and Richard M Murray. Robust model predictive

control for signal temporal logic synthesis.

[65] Christian Ferdinand and Reinhard Wilhelm. On predicting data cache behavior for real-time

systems. In ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

Systems, pages 16–30, 1998.

[66] Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior prediction

for real-time systems. Real-Time Systems, 17(2-3):131–181, 1999.

[67] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache behavior

prediction by abstract interpretation. Science of Computer Programming, 35(2-3):163–189,

1999.

[68] Eliseu M. Chaves Filho and Edil S. Tavares Fernandes. The effect of the speculation depth



124 BIBLIOGRAPHY

on the performance of superscalar architectures. In International Euro-Par Conference on

Parallel Processing, pages 1061–1065, 1997.

[69] Pengfei Gao, Jun Zhang, Fu Song, and Chao Wang. Verifying and quantifying side-channel

resistance of masked software implementation. ACM Trans. Softw. Eng. Methodol., 2019.

[70] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware. J. Cryptographic Engineering, 8

(1):1–27, 2018.

[71] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: The missing OS

abstraction. In Proceedings of the Fourteenth EuroSys Conference, pages 1:1–1:17, 2019.

[72] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.

Journal of the ACM (JACM), 43(3):431–473, 1996.

[73] Philipp Grabher, Johann Großschädl, and Dan Page. Cryptographic side-channels from

low-power cache memory. In International Conference on Cryptography and Coding, pages

170–184, 2007.

[74] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing access-based

cache attacks on aes to practice. In 2011 IEEE Symposium on Security and Privacy, pages

490–505. IEEE, 2011.

[75] Shengjian Guo, Meng Wu, and Chao Wang. Adversarial symbolic execution for detecting

concurrency-related cache timing leaks. In ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, pages

377–388, 2018.

[76] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET



BIBLIOGRAPHY 125

benchmarks – past, present and future. In International Workshop on Worst-Case Execution

Time Analysis, pages 137–147, 2010.

[77] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and

Richard B Brown. MiBench: A free, commercially representative embedded benchmark

suite. In IEEE International Workshop on Workload Characterization, pages 3–14, 2001.

[78] Daniel Hedin and David Sands. Timing aware information flow security for a javacard-like

bytecode. Electr. Notes Theor. Comput. Sci., 141(1):163–182, 2005.

[79] Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE Symposium on Security

and Privacy, pages 8–20, 1991.

[80] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache analysis for

WCET estimation. In 17th IEEE Real-Time and Embedded Technology and Applications

Symposium, RTAS 2011, Chicago, Illinois, USA, 11-14 April 2011, pages 203–212, 2011.

[81] Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. A complete key recovery timing attack

on a GPU. In IEEE International Symposium on High Performance Computer Architecture,

pages 394–405, 2016.

[82] Daniel A Jiménez and Calvin Lin. Dynamic branch prediction with perceptrons. In IEEE

International Symposium On High Performance Computer Architecture, pages 197–206,

2001.

[83] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Power-

train control verification benchmark. In 17th International Conference on Hybrid Systems:

Computation and Control, 2014.

[84] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Mining



126 BIBLIOGRAPHY

requirements from closed-loop control models. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 34(11):1704–1717, 2015.

[85] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:

Exploiting speculative execution. ArXiv e-prints, January 2018.

[86] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems. In Annual International Cryptology Conference, pages 104–113. Springer, 1996.

[87] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In International

Cryptology Conference, pages 388–397, 1999.

[88] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura R. Humphrey, Robert

Könighofer, Ufuk Topcu, and Chao Wang. Shield synthesis. Formal Methods in System

Design, 51(2):332–361, 2017.

[89] Boris Köpf and Markus Dürmuth. A provably secure and efficient countermeasure against

timing attacks. In IEEE Computer Security Foundations Symposium, pages 324–335, 2009.

[90] Boris Köpf and Heiko Mantel. Transformational typing and unification for automatically

correcting insecure programs. Int. J. Inf. Sec., 6(2-3):107–131, 2007.

[91] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage resilience of blinded

cryptography under timing attacks. In IEEE Computer Security Foundations Symposium,

pages 44–56, 2010.

[92] Markus Kusano and Chao Wang. Flow-sensitive composition of thread-modular abstract

interpretation. In ACM SIGSOFT Symposium on Foundations of Software Engineering, 2016.



BIBLIOGRAPHY 127

[93] Markus Kusano and Chao Wang. Thread-modular static analysis for relaxed memory models.

In ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 337–348,

2017.

[94] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Accurate timing analysis by modeling

caches, speculation and their interaction. In ACM/IEEE Design Automation Conference,

pages 466–471, 2003.

[95] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors for

wcet analysis. Real-Time Systems, 34(3):195–227, 2006.

[96] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Timing analysis

of concurrent programs running on shared cache multi-cores. In IEEE Real-Time Systems

Symposium, pages 57–67, 2009.

[97] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM Trans.

Inf. Syst. Secur., 12(3), 2009.

[98] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Man-

gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. ArXiv

e-prints, January 2018.

[99] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine Shi.

Ghostrider: A hardware-software system for memory trace oblivious computation. ACM

SIGARCH Computer Architecture News, 43(1):87–101, 2015.

[100] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and

Ruby B Lee. Catalyst: Defeating last-level cache side channel attacks in cloud computing. In

2016 IEEE International Symposium on High Performance Computer Architecture (HPCA),

pages 406–418. IEEE, 2016.



128 BIBLIOGRAPHY

[101] Jun Liu, Necmiye Ozay, Ufuk Topcu, and Richard M Murray. Synthesis of switching

protocols from temporal logic specifications. 2011.

[102] Fan Long, Stelios Sidiroglou-Douskos, and Martin C. Rinard. Automatic runtime error repair

and containment via recovery shepherding. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 -

11, 2014, pages 227–238, 2014.
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