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(ABSTRACT)

There are algorithms for finding zeros or fixed points of nonlinear systems of
(algebraic) equations that are globally convergent for almost all starting points, i.e.,
with probability one. The essence of all such algorithms is the construction of an
appropriate homotopy map and then tracking some smooth curve in the zero set
of this homotopy map. The augmented Jacobian matrix algorithm is part of the
software package HOMPACK, and is based on an algorithm developed by W.C.
Rheinboldt. The algorithm exists in two forms-one for dense Jacobian matrices,

and the other for sparse Jacobian matrices.
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1. Introduction. Homotopy algorithms are the most powerful methods for solving non-
linear systems of equations currently available. While they are computationally more ex-
pensive than other methods, these algorithms can often present a savings in human effort
by eliminating considerable work in finding a good starting point. What’s more, homotopy
algorithms can handle problems which simply cannot be solved effectively by other means
[22]. Thus, while still considered mainly methods of last resort, homotopy algorithms are
an important addition to the field of numerical computation. With that in mind, it makes
sense to continually try out new approaches in hopes of producing even more powerful
and efficient homotopy algorithms. This is the motivation for developing the augmented

Jacobian matrix algorithm.

Homotopy algorithms are related to some long established techniques of numerical
analysis called continuation methods. Some related ideas are parameter continuation, in-
cremental loading, displacement incrementation, and invariant imbedding. The idea behind
continuation methods is to solve a series of problems as some parameter A is slowly var-
ied monotonically. Thus, a curve is traced out, producing a different point for each A.
Homotopy algorithms are based on this same curve tracking philosophy, however they are

concerned not with the curve itself, but rather with where the curve ends up.

Another difference is that homotopy algorithms are not disturbed if the curve reverses
direction in the A component. The continuation methods require that A change in only
one direction. If the curve turns around, the continunation method quits. In contrast, the
homotopy method will follow the curve no matter how much it turns. Thus, homotopy

methods, although similar to continuation methods, are a distinct field in themselves.
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The first homotopy algorithms were the globally convergent simplicial fixed point al-
gorithms of Scarf, Kuhn, Merrill, Eaves, Saigal, and Todd (See references 1,12,43 in [22]).
These algorithms had a theoretical base in topology, were potentially extremely powerful,
but were horribly inefficient in their early forms. They did however represent a fundamental

breakthrough, separating homotopy methods from the related idea of continuation.

Another significant advance was the development of differential equation based algo-
rithms (See references 5,15,25,27,28,30-32,38-41,68 in [22]). These algorithms were quite
successful on many practical problems, however, they had a major problem. A Jacobian
matrix somewhere could become singular, and the computer implementation would either

experience great difficulty or the method would fail completely.

This problem was solved by the development of probability one homotopy methods by
S.N. Chow, J. Mallet-Paret, and J.A. Yorke [2]. These methods were constructed so that
for almost all (i.e., with probability one) choices of some parameter vector involved in the
homotopy map, there are no singular points, and the method is globally convergent. Thus,

the problem of singular Jacobian matrices was eliminated.

Advances continue to be made. So far, homotopy algorithms have been created which
are globally convergent for Brouwer fixed point problems [13], certain classes of zero finding
problems [16], nonlinear programming problems [14], and two-point boundary value prob-

lems [17]. In addition, Morgan [9,10] obtained some elegant results for polynomial systems.

The algorithm presented here is one of three qualitatively different algorithms included
in the software package HOMPACK, which is currently being developed at Sandia National

Laboratories, General Motors Research Laboratories, and Virginia Polytechnic Institute
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and State University. The algorithms in HOMPACK are known as probability one globally
convergent homotopy algorithms. These algorithms are also referred to as “continuous”

methods, to distinguish them from the simplicial homotopy methods.

The augmented Jacobian matrix algorithm is based on an algorithm developed by W.C.
Rheinboldt and J.V. Burkardt [11], but with some significant differences: (1) a Hermite
cubic rather than a linear predictor is used; (2) a tangent vector rather than a standard
basis vector is used to augment the Jacobian matrix of the homotopy map; (3) updated
QR factorizations and quasi-Newton updates are used rather than Newton’s method; (4)
different step size control, necessitated by the use of quasi-Newton iterations, is used; (5)
a different scheme for locating the target point at A = 1 13 used which allows the Jacobian

matrix of F to be singular at the solution.

Two versions of the algorithm exist-one for dense Jacobian matrices, and the other for
sparse Jacobian matrices. The following section describes the theory behind the algorithm.
Sections 3--6 describe the four phases of the dense algorithm, and section 7 discusses the
sparse matrix version. Finally, test results and conclusions are presented in sections 8 and

9.

2. Theoretical Background. HOMPACK is desigued to solve two types of nonlinear
problems: zero finding problems, and fixed point problems. The frameworks for these

problems are slightly different, so they will be discussed separately.

The fixed point problem will be considered first. Let B be the closed unit ball in n-

dimensional real Euclidean space E™, and let f : B — B be a C? map. Define the homotopy



map p, : [0,1) x B — E™ by
pa(A,z) = Az - f(2)) + (1 = A)(z - a). (1)

The fundamental result [2] is that for almost all a (in the sense of Lebesgue measure) in the
interior of B, there is a zero curve 7 C [0,1] x B of p4, along which the Jacobian matrix
Dpa(A, z) has rank n, emanating from (0, a) and reaching a point (1, z), where z is a fixed
poiut of f. Thus with probability one, picking a starting point a € int B and following ~
leads to a fixed point z of f. This justifies the phrase “globally convergent with probability

one”.

The zero finding problem

F(z) =0, (2)
where F : E® — E™ is a C? map, is more complicated. Suppose there exists a C? map
p:E™ x[0,1) x E" - E"
such that
1) the n x (m + 1+ n) Jacobian matrix Dp(a, A, z) has rank n on the sect

p~10) = {(a,\z) |a € E™,0< A <1,z € E", pa, A z) =0},

and for any fixed a € E™,
2) pa(0,z) = p(a,0,z) = 0 has a unique solution zg,
3) ra(l,2) = F(z),

4) p71(0) is bounded.
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Then the supporting theory [16,17,18] says that for almost all a € E™ there exists a zero
curve v of p,, along which the Jacobian matrix Dp, has rank n, emanating from (0, zo) and
reaching a zero Z of F at A = 1. 4 does not intersect itself and is disjoint from any other

zeros of p,. An obvious choice for p, is
Pa(A,z) =AF(z)+ (1 -A)(z— a). (3)

This satisfies properties 1)-3), but not necessarily 4). There are fairly general sufficient
conditions on F(z) so that (3) will satisfy property 4), but for some practical problems
of interest the homotopy map (3) will not suffice. This is why HOMPACK is designed to

handle arbitrary homotopy maps p4(A, z) satisfying properties 1)-4).

The basic idea behind the homotopy algorithms is simple: just follow the zero curve
4 from (0,a) until a point (1, z) is found. z will then be the desired zero or fixed point.
Depending on the problem, the homotopy map p4(A, z) may be given by (1), (3), or some-
thing else that is even nonlinear in A. Once the homotopy map has been determined, the
problem is simply to track the zero curve. This curve tracking is aided by the following
parameterization. Assuming that F(z) is C2, a is such that the Jacobian matrix Dp, (A, z)
has full rank along 4 , and 4 i1s bounded, the zero curve v is C! and can be parameterized

by arclength s. Thus, A = A(s8), z = z(s) along v , and

pa(A(8),z(s)) =0 (4)
identically in 8. Therefore
d
2502(Ms),2(4)) = Dpa(X(s). z(a)) A\ =0, (5)

ds
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(2.5
da’ ds

A(0) =0, z(0)=a, (7)

=1 (6)
2

With the initial conditions

the zero curve v is the trajectory of the initial value problem (5-7). When A(s) = 1, the

corresponding z(3) is a zero (or fixed point) of F(z).

The curve tracking algorithm consists of four phases: prediction, correction, step-size
estimation, and computation of the solution at A = 1 (the end game). Each of the phases

will be discussed in tumn.

3. Prediction. The prediction phase involves finding a point Z(%) close to 4 somewhere
farther along the zero curve than the current point P(?). This is achieved by creating a local
model of v and taking a step of some size h along this local model. Two types of polynomials
are used as local models. For the first step along the curve, a linear model is used. For the

remaining steps, the model chosen is a Hermite cubic interpolating polynomial.

The linear model is used only for the first step. It is constructed by computing the
unit tangent vector T(?) of 4 at the point (0, a). With this information, the predictor point
is calculated by

Z(® =(0,a) + AT?. (8)

The cubic model is used for all of the remaining steps along the zero curve. Having the

points P(Y) = (A(s1),z(a1)), P(® = (A(s2),2(s2)) on 7 with corresponding tangent vectors

d)

——(a1) Q(ﬂz)
1) = | de T2 — das

dr dz !

E("l) Z(ﬂz)
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the prediction Z(%) of the next point on 7 is given by
Z® = p(az + h), (9)
where p(s) is the Hermite cubic interpolating (A(s), z(s)) at a; and s2. Precisely,

p(s1) = PW),  p'(s) =TV,
P(GZ) = P(z)v pl(82) = T(2)1
and each component of p(s) is a polynomial in s of degree less than or equal to 3.

In order to implement either prediction method, a means of calculating the tangent

vector T(2) at a point P(?) is required. The method used here is to solve the system

0

Dpa (P™) :
(1) z= 0 (10)

1

for z, where Dp, is the n x (n + 1) Jacobian of p,, and T is a vector chosen to insure
that z has the correct sign. For the linear predictor, T(}) = (1,0,...,0)%, and for the cubic
predictor, T(!) is chosen as the tangent vector at the previous point P(!). Normalizing z
gives

T = —, (11)

There are many ways other than equation (10) to compute a tangent vector. In fact,
all that 13 necessary 1s that the tangent vector satisfies the equation [Dpa (p(2))] z =0,
which insures that the change in each component of p along the tangent vector is zero at

P2 However, this equation is underdetermined and thus has infinitely many solutions. In
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order to get a unique solution, the system is augmented by the equation T(!) ¢z = 1, giving
equation (10). It is the augmentation of the Jacobian matrix with this additional row which

motivates the name “augmented Jacobian matrix algorithm.”

The last row of (10) is chosen for two reasons. First, it causes the solution z to be
roughly of unit magnitude, thus reducing the risk of losing precision in the normalization
phase. Second, this additional row forces the computed tangent to make an acute angle with
T, When T(1) is the previous tangent vector, T(?) should have the correct sign based on
the fact that the direction of the zero curve is not likely to change by more than 90° over a
small step. When T'(1) i3 the basis vector e; used for the first step, the acute angle criteria
forces the computed tangent to have a positive A component. This is the correct direction

for the first step.

The augmentation scheme chosen here differs from Rheinboldt’s algorithm [11]. His
scheme is to augment the Jacobian matrix by a standard basis vector, and then to compute
a determinant in order to determine the correct sign. This scheme was rejected for three
reasons. First, the computation of a determinant is expensive. Second, determinant calcu-
lations are prone to computational difficulties; thus, there is no reason to believe that the
determinant calculation would give better results than the acute angle test. Finally, the

chosen augmentation scheme lends itself better to the quasi-Newton correction process.

Since the computation of the tangent vectors involves the solution of equation (10), a
means of solving a linear system Az = b is required. The method chosen 1s QR decomposi-
tion. This technique involves factoring the matrix A into an orthogonal matrix @, and an

upper triangular matrix R, so that A = QR. z can then be found by solving the system
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Rz = Q'b, which is simply a matter of backward substitution.

The reasons for choosing QR factorization are two-fold. First, QR decomposition is
very stable. Since Q is orthogonal, |R||z = |QR||2 = ||A||2. Thus, the decomposition does
not magnify size differences of elements of A when forming R. Second, the QR decomposi-
tion allows for cheap rank-one updates, which is of tremendous value in the quasi-Newton

correction step.

The QR factorization is obtained by applying a series of Householder transformations.
A 13 transformed to R by premultiplying A by a series of n — 1 Householder transformations
Q:. Each Q; zeros out the elements of the sth column of Q;_;---Q;A below the main
diagonal, while leaving the first + — 1 columns unchanged. The orthogonal matrix Q is

simply the product Q;---Qn~;. Each Q; has the form

Qi = I — uul,

where (u;); = 0, for 7 < t, and the remaining elements of u; are selected so that Q; is
J

orthogonal and induces the desired zeroes in column .

Having solved equation (10) and calculated the unit tangent vector, the predictor point

Z9 is easily obtained from (8) or (9). The next step is the correction process.

4. Correction. The correction phase is concerned with returning to the zero curve 5 after
computing the predictor point Z(®. This job is performed by a quasi-Newton algorithm.
The basis of the algorithm is to produce successive iterates Z(¥) k = 1,2,..., which come
closer and closer to the zero curve. The iterates converge to the desired point Z(*) on the

zero curve. A restriction that the iterates remain in a hyperplane perpendicular to the
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previous tangent vector is employed so that the correction process will return to the zero

curve as directly as possible.

In order to discuss the quasi-Newton algorithm, Newton’s method will first be de-
scribed. Newton’s method is an iterative process which finds the root z(*) of a nonlinear
function F(z). Each iteration of the algorithm starts with a point z(¥), and produces a
new point z(¥t1) which is closer to the root. The computation of z(¥t!) is performed by
creating a linear model M of the function at the point z(*). Finding the root of this model

produces the next iterate z(k+1),
The linear model M is defined by
M(z®) 4+ p) = F(z®)) + DF(z®)p, (12)

where DF(z(*)) is the Jacobian matrix of F evaluated at z(¥). Finding the root of M

involves finding Az(*) such that M(z(*) + Az(¥)) = 0. This is achieved by solving
DF(z®)Az*) = —F(z(*)). (13)

The next iterate is then computed by z(¥+1) = z(k¥) + Az(*¥) The iteration stops when the

correction Az(¥) is smaller than some tolerance.

The quasi-Newton algorithm works exactly like the Newton algorithm except that in-
stead of computing the exact Jacobian matrix at each iterate z(¥) | an approximation A*) to
the Jacobian matrix is used. After each corrector step is made, a Broyden rank-one update
is applied to the matrix in order to produce the next approximation A+ The Broyden

update i8 defined by the equation

(y(k) — A(k)alk)) alk)e

(k+1) _ 4(k)
A = A"+ J() €5 (k) :

(14)
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where y(*) = F(z*+1)) — F(z(*)), and s(¥) = z(k+1) — z(*),

Considerable computational effort can be saved by performing the updates in QR-
factored form. It is possible to obtain the factorization Q(*¥+1) R(k+1) of 4(x+1) gimply by
updating the factors Q(*) and R(*¥) of A(¥). This is much cheaper than explicitly calculating

and factoring A(**t1). The savings amounts to a reduction from O(n?®) to O(n?) operations.

The idea behind updating in factored form is not difficult. For simplicity, the update

formula (14) can be written

AHD = AlR) 4yt (15)
where u,v € E®. Assuming the factors of A¥) are known, equation (15) can be rewritten
AR+ = o p(R) 4yt — (k) (R(k) + w,,:) , (16)
where w = Q%) tu. Thus, the first step is to calculate the QR decomposition
R¥) 4wyt = C}I} (17)
Then, R*+1) = R and Q*+1) = Q) Q.

The fact that the matrix R(¥) + wv! is a rank-one update of an upper-triangular matrix
allows the QR decomposition to be performed in O(n?) operations rather than the O(n?)
operations usually required to perform a factorization. The decomposition is performed by
premultiplying R(*) + wv* by 2n — 2 Jacobi rotations. These Jacobi rotations are orthogonal
matrices constructed in such a way as to zero out a particular element of a matrix while

only changing two rows of that matrix.

The use of Jacobi rotations to perform the QR factorization of R*) + wy® is a two step

process. First, n—1 Jacobi rotations are applied to zero out in succession rowsn,n—1,...,2
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of wv*, by combining rows ¢ and & — 1 to zero out row s. This is possible because each row
of wv! is simply a scalar multiple of any other row. The effect of each rotation on R(*) is to
alter some existing elements and to introduce one new element directly below the diagonal
in the (i,1— 1) position. Thus, the first n — 1 rotations transform R(¥) + wy* into an upper
Hessenberg matrix. The second step of the process is to apply n — 1 additional Jacobi
rotations to successively zero out the (i,s+ — 1) element, ¢+ = 2,...,n, by combining rows
t — 1 and ¢. The resulting upper triangular matrix is R, and 6' 18 the product of the 2n —2

Jacobi rotations.

The reason for using the quasi-Newton approach instead of the Newton approach is to
improve computational efficiency. The evaluation of Jacobian matrices can be very expensive
for some problems. Thus, the fact that the quasi-Newton algorithm avoids evaluating the
Jacobian represents a considerable savings. In addition, applying the rank-one updates in

factored form further reduces the cost per iteration by saving in matrix factorizations.

The disadvantages of the quasi-Newton algorithm are three-fold. First, convergence
i3 slower. Newton’s method converges quadratically whereas the quasi-Newton method
converges only super-linearly. Second, the radius of convergence is generally smaller. Thus,
the starting point z(®) may need to be closer to the root for the iteration to converge.
Finally, the overhead for implementing the quasi-Newton algorithm is greater. Thus, small
dimensional problems with inexpensive Jacobians are better solved with Newton’s method,
but large-dimensional problems, or problems with expensive Jacobians are solved more

efficiently by using the quasi-Newton approach.

Applying the quasi-Newton algorithm to the corrector step involves finding the solution



13

y(*) of the augmented nonlinear system

a(y)
(T(z) :?y g Z("))) = 0. (18)

This equation insures that the solution y(*) lies on the zero curve, and also, the last row of
this system insures that the solution y(*) and the predictor point Z(? lie in a hyperplane

perpendicular to the tangent vector T(2).
The quasi-Newton iteration to solve (18) is defined by
Z+) — Zz() L Az k=01, (19)

where the corrector step AZ(*) is computed by
(k) - (k)
[‘4 ] AzZ® = ( fa EJZ )). (20)

Here A(¥) is the approximation to the Jacobian matrix Dp,(Z(*)) obtained by successive

rank-one updates.

It should be noted that the quasi-Newton iteration must start with an exact Jacobian
matrix in order for the convergence to be super-linear. The Jacobian used to start the
process is the one used to compute the tangent vector T(?) at the previous point P(2).

Precisely, letting Z(=1 = P(2) A(=1) = Dy, (P?), AZ(-1) = Z(O) — p(2) and

Alk)
(k) =
= |

the update formulas are

Dﬂa (P(z))] + ent1 (T(2) _ T“))" (21)
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and

(5,;“ - M(k)Az(k)) AZk)e

(k+1) _ (k)
M = M AZETEAZK :

k=-1,0,.. (22)

where

~ (k+1)) _ (k)
0
Note that these updates are actually performed in QR factored form since they are all of

rank one.

The goal in the corrector process is to return to the zero curve as directly as possible. An
ideal method would be to iterate in a direction perpendicular to the zero curve; however the
information needed to do this is unavailable. The next best choice i3 to iterate perpendicular
to the latest tangent vector, as this is the best information available about the direction of

the curve.

Two other choices for restricting the iterates were considered and rejected. The first
choice was to iterate perpendicular to the previous tangent T(! instead of the current
tangent T(?). The motivation for doing this was to save the rank-one update (21). The
strategy turned out to be poor in practice because smaller steps had to be taken in order
to stay with the zero curve. The extra work in having to take more steps far outweighed

any savings from avoiding the rank-one update.

The other method considered was to iterate perpendicular to a standard basis vector.
This method was successfully implemented by Rheinboldt [11]. However, the basis vector
seemed to be an even poorer approximation to the direction of the curve than the previous

tangent. Thus, this method was also likely to require smaller steps in order to stay with
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the curve. In addition, unlike the first alternative, this method represented no savings in

matrix updating. Thus, it was rejected.

It is entirely possible that the quasi-Newton process will not converge. This can happen
whenever the prediction Z(%) is too far away from the zero curve. To handle this event,
a limit is placed on the number of iterations allowed by the quasi-Newton algorithm. If
this limit is exceeded, the process is considered to have failed. Therefore, the prediction
is abandoned, the step size A is cut in half, and a new, more conservative, predictor is

computed.

Because of the failure, the augmented Jacobian matrix used for the quasi-Newton
method is probably meaningless. Thus, a new Jacobian matrix is computed at the predictor

point. From here, the corrector process continues as before.

When handling these failures, it is possible that the step-size may have to be cut in
half several times in order to get convergence. This is perfectly acceptable unless the step-
size becomes unreasonably small (i.e., close to the unit roundoff). In this case, the entire

homotopy algorithm is abandoned, and an error flag is returned.

The limit on the number of iterations i3 computed as a function of the error tolerance
for tracking the curve. It is reasonable to expect that the quasi-Newton process will provide
at least half a digit of extra precision for each iteration. Thus, if n digits of precision are

required, the limit on the number of iterations is 2n. Precisely, the limit is computed by

limit = 2 |- log,, arctol + 1], (23)

where arctol is the tolerance for tracking the curve.
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Another possible problem is that the correction process may converge to the wrong
curve. As there may be other components of the zero set of p, other than 4, it is entirely
possible that the correction process may converge to a point on one of these other compo-
nents. This component could be a closed loop, or may shoot off to infinity without ever

coming near A = 1. Thus, tracking this other component may not lead to a solution.

The only way to detect this problem is to place a limit on the number of steps which
can be taken in tracking the zero curve. Thus, when this limit is exceeded, it may mean
that 4 has been lost, and some other curve in the zero set is being tracked. At this point,
the algorithm returns an appropriate flag, and the user has the option of continuing on or

qQuitting.

Another problem is that the tangent vector at a point may be computed with the wrong
sign. This can happen if the curve is turning so quickly as to change direction by more than
90° over the step taken. If this happens, the correct tangent vector makes an obtuse angle
with the previous tangent vector. However, the sign of the computed tangent vector is
chosen to make an acute angle with the previous tangent vector. Thus, the algorithm
thinks the curve is going in exactly the wrong direction. If no more bad steps are taken,

the algorithm effectively retraces its steps, and eventually ends up back at A = 0.

A partial solution to this problem is to require that each new tangent forms an angle no
greater than 60° with the previous tangent. With this idea, the step-length is chosen so as
to keep the angle at a maximum of 60°. If an error is made in computing this step-length,
resulting in an angle greater than 60°, the algorithm distrusts the new tangent: thus, the

new point 18 discarded, the step-size is halved, and a more couservative step 1s made. The
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only way the algorithm can get turned around is for the step-length calculation to make an
error of at least 100%, resulting in an angle greater than 120°. In this case the sign reversal

gives an angle less than 60°, and the error is not detected.

The implementation of this strategy greatly improves the robustness of the curve track-
ing algorithm. With this strategy, it is possible to track a tightly turning curve much more
loosely without losing it. This increased robustness translates into greater efficiency also,

as larger steps can be made in tracking the curve without fear of failure.

In summary, the correction phase works by applying a quasi-Newton iteration to the
predictor point Z(% in order to return to the zero curve. The matrices used in computing
each corrector step are derived from rank-one updates of the matrix used for computing the
tangent in the predictor phase. These updates are performed in QR-factored form. If the
algorithm fails to converge or if the correction produces a point whose tangent forms more
than a 60° angle with the previous tangent, the step is considered to be bad. In this case,

the step is discarded, and a more conservative step of half the size is made.

5. Step-size Estimation. The step-size estimation algorithm operates by trying to keep
the number of corrector iterations at each step relatively constant. This is achieved by
estimating the curvature of 4 for the step, and by computing the ideal predictor error for
the next step. These two pieces of information together with various restrictions aimed
at stabilizing the algorithm are used to compute the step-size h to be used for the next

predictor step.

The goal in computing the step-size is to allow the curve to be tracked as efficiently as

possible. Small steps are inefficient because many of them are needed in order to track the
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entire curve. On the other hand, large steps can be inefficient because they may cause a
large number of correction iterations. Worse yet, they may cause failure of the correction
process altogether, resulting in a considerable amount of wasted effort as the attempted

step 13 abandoned, and a smaller step is taken.

Achieving this goal can be accomplished to some degree by a simple heuristic-keep
the number of corrector iterations constant. The rule cannot be followed exactly due to

imperfect information; however, a scheme developed by Rheinboldt is reasonably effective

(11].

The first step of Rheinboldt’s scheme is to estimate the curvature of v for the step to
be taken. In order to do this, an approximation to the curvature is calculated at each step

by the formula

2
“w(““ = &7 lsin (/)] (24)
where
(k) — p(k—1)
w*) = T__A_az—’ ap = arccos (T(") 'T“‘_l)) , Asy = “P“‘) — plk=1) ll .
k

Intuitively, ax represents the angle between the last two tangent vectors, and the curvature
is approximated by the Euclidean norm of the difference between these two tangents divided

by Ass.

This curvature data can then be extrapolated to give an estimate of the curvature for

the next step by the formula

e K vrervund (C R T 1} (25
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It should be noted that Rheinboldt’s formula for the curvature (24) is cheaper to
evaluate than the equivalent formula ||(T(?) - T(1)/As|. The sine formula requires only
one vector operation and two implicit function evaluations, whereas the explicit equation

requires two vector operations (which are more expensive).

The extrapolation formula (25) can result in a negative estimate for the curvature. This
is clearly inappropriate. Thus, the estimate is revised so as to produce a positive curvature
by the formula

& = max(f,,..-,.,ék) for some small £,,;n > 0. (26)

The next step in Rheinboldt’s step-length algorithm is to calculate what the ideal error
8¢ for the predictor should be. In other words, this step is designed to determine how
far the predictor point should be from 4 in order for the corrector process to take the
desired number of iterations. Rheinboldt accomplishes this by using information about the
convergence rate of Newton’s method. Since the quasi-Newton algorithm is being employed

here, Rheinboldt’s scheme cannot be used. Instead a much simpler idea is implemented.

The ideal error is computed as a function of the tolerance for tracking the zero curve. If
the tolerance becomes stricter, more iterations are necessary to achieve convergence. Thus,
the initial error is made smaller so that the number of iterations stays the same. The ideal
error i3 computed by

bk = (arcae + arcre“y”)l/‘, (27)

where arcae and arcre are the absolute and relative errors used for tracking the curve.

In order to prevent unreasonably large ideal error estimates, the ideal error i3 restricted

to be no larger than half of the previous step-length. Thus, the final estimate for the ideal
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error is

6x = min(h/2, 6). (28)

The choice of h/2 is somewhat arbitrary. Rheinboldt’s algorithm uses h instead; however
the h/2 scheme worked better on the test problems, based on the criteria of how loosely the

curves could be tracked without getting lost.

The final step in Rheinboldt’s algorithm is to compute the step-size based on the ideal

error and the curvature calculations. The formula for doing this is

e
h— €k ) (29)

The above formula is derived from the idea of taking a linear predictor step. Given
the approximate curvature i, the distance from the curve of a linear step of size h is
approximated by 3h2{x. Equation (29) follows from setting this distance equal to the ideal

error 6.

The question arises, “why use a formula based on a linear predictor when a cubic
predictor is actually being employed?” The answer to this is that Equation (29) works well
for a linear predictor, and using a cubic predictor should only improve the performance of
the curve tracking algorithm. Perhaps a better scheme could be derived to take advantage
of the cubic prediction, but the point is, a scheme which works well for a linear predictor

should also work for a cubic predictor.

It is entirely possible that the step-length calculations above could produce bizarre

step-lengths. To prevent this from ruining the algorithm, some additional restrictions are
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placed on the step-length. First, a minimum and maximum step-size hmpin and Apma, are
chosen as bounds on the step-size. Also, the rate of growth is restricted by the parameters

Bpin and By,.s. Thus, the step-length is refined by the equation

h = min {max{hm;n, Brinh, b}, Bmaxh, hmax } . (30)

One final restriction is enforced whenever the last step was achieved after a failure
of the corrector iteration. In this case, the step-size is not allowed to exceed the smallest
step-size hg,; known to cause failure in the previous step. Thus, the final step-length is
computed by

h .= min{h;,u,/_l}. (31)

The step-size estimation algorithm works well for some problems but not as well for
others. It works well when the zero curve is relatively straight because the curvature esti-
mates are fairly accurate, and not much of the “special case” logic is invoked. On the other
hand, the algorithm is poor for very crooked homotopy zero curves. For these problems,
the curvature estimate is terrible, and the algorithm has to fall back on the extra step-size

restrictions in order to produce a reasonable step-size.

6. End Game. The end game phase is concerned with finding the particular point on ~
where A = 1. Intuitively, the idea is to iterate by finding points on v which are closer and
closer to the hyperplane A = 1. This phase is entered when the curve tracking algorithm
produces a point with A component greater than or equal to one. This point, together with
the previous point on the zero curve, are the starting points for an iterative process which

converges to the desired solution.
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The implementation of this iterative scheme involves an alternating process of linear
prediction and quasi-Newton correcton. First, the prediction phase produces a point on the
hyperplane A = 1. At this point, a single quasi-Newton correction step is taken to return

close to the zero curve, but not necessarily on A = 1.

The linear prediction generally works by a secant method. Having two points P(¥—1)

and P(*) near v , the secant prediction is calculated by

_ plk)
Z6=2) _ plk) | (p(k—l) - P(’") (P((:_”P‘ P?"’)' (32)
1 -

The ensuing quasi-Newton correction step produces a point P(¥+1)_ p(¥) and plk+1)

are then used in equation (32) to calculate the next predictor point Z{k—1),

While the secant method generally works quite well, it runs the risk of producing a
disastrous prediction. To see this, consider what happens when two points with nearly
equal A components are used in equation (32). The resulting predictor point is very far

from the zero curve.

To handle this difficulty, the linear prediction is computed by a chord method whenever
the results of the secant method are suspect. This chord method requires two points, P(¥)
and P(°PP) on cither side of A = 1. P(°P?) i3 defined as the most recent iterate opposite of

A =1 from P*). The formula for the prediction is

_ plk)
Zk=2) _ plk) o (p(OPP) - p(k)) <p((:pp) Plp?k)). (33)
1 — 4
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Since the two points “bracket” A = 1, the method will always produce a reasonable predic-
tor. However, the chord method converges only linearly as compared to the 1.618 rate of

convergence for the secant method. Thus, the secant method 1s generally preferred.

The decision mechanism governing which method to use is based on the closeness
of the secant predictor relative to the iterates P(*) and P(°PP)  If the sccant method
produces a point farther from P*) than P(°PP) is, the point is considered unreliable, and
the chord method is used instead. Precisely, the chord method is used whenever the following

inequality is true.

” Z(k=2) _ p(k)" > ” ptk) _ plorp) ” (34)

An exception to using these linear prediction schemes occurs with the first step. Since
the tangents T(!) and T(? at P(!) and P(?) are available, a Hermite cubic polynomial p(s)
is constructed in order to compute the first prediction point Z(®). By finding the root & of

the equation p;(s) = 1, the predictor is computed by

20 = p(5). (35)

After the predictor Z(%¥~2) has been determined, a single quasi-Newton step is taken to
get the point P(t1) It makes little sense to iterate until convergence after each predictor
because this extra accuracy does not improve the next predictor dramatically. Thus, con-
siderable work is saved by taking ounly one quasi-Newton step. An exception to this occurs
if the corrector iterate remains on the hyperplane A = 1. In this case, the predictor step is
skipped, and the corrector process continues until the iterates leave the hyperplane. The

corrector step 18 defined by

P(k+l) — Z(k—?} + AZ(k—2)‘ (36)
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where AZ(¥=2) i3 the solution to (20). As with the stepping algorithm, the matrix in (20)

is produced by the rank one updates (21) and (22) in QR-factored form.

The end game algorithm i3 designed to work even if the Jacobian of F is singular at
the solution. Consider the effect of augmenting the matrix in (20) by (1,0,...,0) instead
of by T(3 ¢, This scheme, which is used in Rheinboldt’s algorithm, is justified by forcing
the iterates to remain in the hyperplane A = 1. This removes the need to keep computing
predictor points; however, a problem comes from the fact that if the Jacobian of F is singular
at the solution, then the augmented Jacobian is also singular. In this case, the algorithm
fails because equation (20) cannot be solved. To prevent this problem, the augmented
Jacobian matrix algorithm uses a scheme which allows the iterates to leave the hyperplane

A=1

One final consideration is that the end game algorithm may never converge. Thus, as
in the curve tracking phase, a limit is placed on the number of iterations. If this limit is
exceeded, the algorithm quits, returning an appropriate error flag. This limit is computed
exactly the same way as in the curve tracking algorithm except that the desired tolerance

is much smaller, resulting in a larger limit for the end game.
In summary, the augmented Jacobian matrix algorithm is:

1. 8 :=0,y:=(0,a), ypold : = (1,0), h : = 0.1, failed : = false, firststep : = true,
arcae,arcre : = absolute, relative error tolerances for tracking 4. ansac.ansre : =

absolute, relative error tolerances for the answer.

2. Compute the tangent yp at y, using (10) and (11), and update the augmented Jacobian

matrix using (21).
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3. If firstep = false then

4. Compute the predicted point Z(°) with the cubic predictor (9) based on yold,

ypold, y, yp.
else

5. Compute the predicted point Z(°) using the linear predictor (8) based on y and

yp.
6. If fasled = true then
7. Compute the augmented Jacobian matrix at Z(©).
8. Compute the next iterate Z(!) using (19).
9. limit: = 2([— log,o (arcae + arcre|ly|) | + l). Repeat steps 10-11 until either

"AZ(")” < arcae + arcre ”Z(")”
or

ltmst iterations have been performed.

10. Update the augmented Jacobian matrix using (22).
11. Compute the next iterate using (19).

12. If the quasi-Newton iteration did not converge in limit steps, then
13. h:=h/2; failed : = true.

14. If h is unreasonably small, then return with an error flag.



16.

17.

18.

22.

23.

24.

26

15. Go to 3.

Compute the tangent at the accepted iterate Z(*) using (10) and (11), and update the

augmented Jacobian matrix using (21).

Compute the angle a between the current and previous tangents by (24).
If a > x/3, then

19. h:= h/2; fasled : = true.

20. If A is unreasonably small, then return with an error flag.

21. Go to 3.

yold : =y, ypold : = yp, y : = Z(*) | yp : = tangent computed in step 16, firststep : =

false.

If y; < 1, then compute a new step size h by Equations (24-31) with &,.;, = 0.01,

1
6x = min {(arcae + arcre|y|))*/*, -2—||y - yold”} ,

and go to 3.

Find 4 such that p(3); = 1, usiug yold, ypold, y, and yp in (9). yopp : = yold,

Z0) : = p(a).

Cdimit = 2([-— log o (anaae +ansre|y|) | + l). Do steps 26-33 for k = 2,... limst + 2.

26. Update the augmented Jacobian matrix using (22).

27. Take a quasi-Newton step with (36).
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28. If

IP,(H'” - ll + “AZ“‘"” " < ansae + ansre ||Z("_2) “ ,
then return (solution has been found).

29. If IP,(H'” - II < ansae + anasre,

then
Zk—1) . — p(k+1)
else do steps 30-33.
30. yold: =y, y:= P+,
31. If yold, and y, bracket A = 1, then yopp : = yold.
32. Compute Z*~1) with the linear predictor (32) using y and yold.

33. If || 2= — y|| > |ly — yopp||, then compute Z¥~1) with the linear predictor (33)

using y and yopp.

34. Return with an error flag.

7. Augmented (sparse) Jacobian matrix algorithm. Large nonlinear systems of
equations with sparse symmetric Jacobian matrices occur in many engineering disciplines,
and each class of problems has special characteristics. The sparse algorithm here is designed
to handle symmetric matrices with a “skyline” structure. This structure occurs frequently

in structural mechanics and in many other engineering problems.

The sparse algorithm differs from the dense algorithm in three respects: (1) the low

level numerical linear algebra is changed to take advantage of the sparsity of the problem; (2)



28
quasi-Newton iterations are abandoned in favor of pure Newton iterations; (3) Rheinboldt’s
step size control [11] is implemented more faithfully because of the use of Newton iterations.
Except for these three changes, the logic for tracking the zero curve 7 is exactly the same

as for the dense algorithm.

For technical reasons it is preferable to write the homotopy map in (3) as

Pa(z, )

with the order of the arguments reversed (this is an internal matter to HOMPACK and
causes no confusion at the user interface, since the user only specifies F(z)). The Jacobian
matrix D,p,(z,2) is symmetric (because it is the Hessian matrix of some energy potential

function) and sparse with a “skyline” structure, such as

(ol o3 \

o o ¢ ®11 %18
& 04 o7 00 g5 31
®g o9 014 ®30
[} [ ] [} og 013 029
b €12 018 28

b ®17 @20 @23 O27
i @19 €22 o2
L4 o 2] ®25

\ o [ L] ° L] o [} 0y )

Typically such matrices are stored in packed skyline format, in which the upper triangle is
stored in a one-dimensional array indexed as shown above. The auxiliary array (1, 2, 4, 6,
8, 12, 17, 19, 21, 24, 32) of diagonal indices is also required. By convention the auxiliary
integer array has length n+ 1 with the (n+ 1)st element containing the length of the packed

real array plus oune.

The general theory from the dense algorithm applies equally well here, so the zero curve
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4 given by (z(s), A(s)) 1s the trajectory of the initial value problem

2 pa(2(s), Mo)) = [Dapala(e) o)), Dasalz(e). No))] [ dz) =0, (1)

=1, (38)

dz d)
ds’ds /|,

z(0) = a, A0) = 0. (39)

In solving any linear equation, care must now be taken in order to benefit from the
sparse structure. For example, QR factorization is no longer appropriate because it causes
fll-in of the matrix. To avoid this problem, a preconditioned conjugate gradient algorithm

13 used. The conjugate gradient algorithm will now be described.

Let (z,A) be a point on the zero curve 7, and § the unit tangent vector to v at (z, )

in the direction of increasing arc length s. Then the matrix
A= [D”“g"’*)] (40)

is invertible in a neighborhood of (Z, ) by continuity. Thus, the kernel of Dp, can be found

by solving the linear system of equatious

Ay=8n+1 =b. (41)

Given any nonsymmetric, nonsingular matrix A, the system of linear equations Ay = b

can be solved by considering the linear system

AA'z =b.



30
Since the coefficient matrix for this system is both symmetric and positive definite, the
system can be solved by a conjugate gradient algorithm. Once a solution vector z is obtained,
the vector y from the original system can be computed as y = A*z. An implementation of
the conjugate gradient algorithm in which y i3 computed directly, without reference to z,
any approximations of z, or AA*, was originally proposed by Hestenes [7], and is commonly
known as Craig’s method [5]. Each iterate y* minimizes the Euclidean error norm |y — y°||

over the translated Krylov space
y® + apan{r®, AA'r?, (A4")%°, ... (AA*) 10},

where r® = b — Ay®. Below (u,v) denotes the inner product u‘v.
Craig’s Method:

Choose y°;

Compute r® = b — Ay%;

Compute p® = A*s0;
For 1+ = 0 step 1 until convergence do

BEGIN

a; = (r',r')/(p*,p")

v = gk g

prtl = a;Ap‘

Bi = (r'tt et /(e )
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Pt = At 4 gipd
END

Let Q be any nonsingular matrix. The solution to the system Ay = b can be calculated by

solving the system
By=(Q'A)y=Q b=y (42)

The use of such a matrix is known as preconditioning. Since the goal of using preconditioning
is to decrease the computational effort needed to solve the original system, Q should be
some approximation to A. Then Q~'A would be close to the identity matrix, and the
iterative method described above would converge more rapidly when applied to (42) than
when applied to (41). In the following algorithm B and g are never explicitly formed. The

algorithm given above can be obtained by substituting the identity matrix for Q.
Craig’s method using a preconditioner:

Choose 9, Q;

Compute r® = b — Ay%;

Compute r° = Q~!r?;

Compute p® = A'Q~*r;
For ¢+ = 0 step 1 until convergence do

BEGIN

a; = (7, 7)/(p'.p’)

y =yt ap!
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Pl = — a,Q ' Ap*
P = (FFHL P (7 F)
prHt = ATQTIFH + fip
END

For this algorithm, a minimum of 5(n + 1) storage locations is required (in addition to that
for A). The vectors y, f, and p all require their own locations; Q~*f can share with Ap;

Q! Ap can share with A*Q~*r. The computational cost per iteration of this algorithm is:
1) two preconditioning solves (@~ !v and Q~*v);
2) two matrix-vector products (Av and A'v);
3) 5(n + 1) multiplications (the inner products (p,p) and (f,r), ap, Ap, and aQ ! Ap).

The coefficient matrix A in the linear system of equations (41) has a very special
structure which can be exploited if (41) is attacked indirectly as follows. Note that the
leading n x n submatrix of A is D, pg, which is symmetric and sparse, but possibly indefinite.

Write

A=M+1L (43)
where

M= [D,pasz,i) c] ‘

c d

Diapa(z,A) — ¢
L=uc:,+l, u=< A (0 )
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Using the Sherman-Morrison formula (L is rank one), the solution y to the original
system Ay = b can be obtained from

_ M~ ue}
(M“u)‘e,,.H +1

y=|I M™1b. (44)

which requires the solution of two lincar systems with the sparse, symmetric, invertible
matrix M. It is the systems Mz = u and Mz = b to which Craig’s preconditioned conjugate

gradient algorithm is actually applied.

The only remaining detail is the choice of the preconditioning matrix Q. Q is taken as
the modified Cholesky decomposition of M, as described by Gill and Murray [6]. If M is
positive definite and well conditioned, @ = M. Otherwise, Q is a well conditioned positive
definite approximation to M. The use of a positive definite Q is reasonable since in the
context of structural mechanics DF(z) is positive definite or differs from a positive definite
matrix by a low rank perturbation. The Gill-Murray factorization algorithm can exploit the
symmetry and sparse skyline structure of M, and this entire scheme, Equations (41-44), is

built around using the symmetry and sparse skyline structure of the Jacobian matrix D, p,.

In addition to linear algebra changes, the sparse algorithm differs from the dense algo-
rithm by using Newton rather than quasi-Newton iterations. The use of Newton iterations
i3 necessitated by the current lack of a good (comparable to Broyden or BFGS) sparse
quasi-Newton update formula. The fill-in produced by a good (dense) update formula is
unacceptable, and the efficacy of deferred updating [8] is questionable (the number of appli-
cations of the Sherman-Morrison formula grows expounentially with the number of deferred

updates). Also there is some evidence that, at least in the context of structural mechanics
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[19], a model trust region strategy with exact (expensive) Jacobian matrix evaluations is

better than (cheap) quasi-Newton updating.

The final change for the sparse matrix algorithm is an enhancement to the step size
control, allowed by the use of Newton iterations. The enhancement involves implementing a
more sophisticated control over the ideal starting error é; used in Equation (28). Computing
this error involves using the exact error 6.,20) of the last predicted point, the size of the last
Newton step 61‘) , the ideal error é6x—; from the previous step, and the number of iterations

t. required by the correction process.
Or =0 6k (45)
where 4 is a function of 5£°), 5:0)' and 1, as described by Rheinboldt [11].

The goal behind these calculations is to keep the number of corrector iterations fixed at
four. Thus @ is computed to adjust the ideal error for the next step. If, for example, t. was
less than four, 8 will be large so that the next step will take more iterations. The scheme is

slightly different than the one used by Rheinboldt. His algorithm used the formula
8 = 0 8" (46)

instead -of (45). However, numerical experiments indicate that the desired behavior (con-

vergence in four corrector iterations) is obtained by using (45).

8. Testing. The augmented Jacobian matrix algorithm (FIXPQF and FIXPQS) has been
tested on several nonlinear problems. The performance of the algorithm was tested relative
to the other two HOMPACK algorithms (FIXPDF and FIXPNF). In addition, the algorithm

was used to solve several tough polynomial problems.
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Table 1 shows some results for Brown’s function, which has an ill conditioned Jacobian
matrix, and an exponential function, whose zero curve 4 has several sharp turns. Brown’s

function is

n

filz) = [z -1

i=1

fk(2)=zk+2z.‘—(n+l), k=2,...,n.
=1

The exponential function is

fe(z) = zx — exp (cos (kZz;)). k=1,...,n.

=1

The solutions were found from a starting point of 0 with a relative error of 107!° and the
CPU times are for a VAX 11/785. NFE is the number of Jacobian evaluations. The runs
were made with the largest tracking tolerance which could successfully track the zero curve.
The magnitude of this tracking tolerance in powers of 10 is represented in parentheses in

the NFE column.

FIXPQF was used to solve several tough polynomial problems. All of these problems
were solved using a polynomial driver program POLSYS which is available in HOMPACK.
This driver created the homotopy map and then called FIXPQF. The following three prob-

lems come from Alexander Morgan.
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Table 1. Numerical results.

Brown’s function

FIXPDF FIXPNF FIXPQF
n NFE TIME NFE TIME NFE TIME arc length
5 87(-3) 71 17(-2) 19 9(-2) 59 2.7
10 85(-2) 2.12 24(-2) 61 8(-2) 1.54 3.7
15 102(-2) 5.64 23(-2) 1.39 11(-2) 4.46 44
20 08(-4) 10.44 22(-2) 2.44 9(-2) 5.56 5.1
25 123(-3) 22.83 29(-2) 5.39 11(-2) 11.27 5.7
30 96(-3) 27.99 23(-2) 6.62 11(-2) 15.46 6.2
35 110(-4) 48.54 28(-2) 11.72 12(-2) | 25.41 6.6
40 110(-4) 68.54 26(-2) 15.85 11(-4) | 30.99 7.1
15 128(-4) | 105.32 30(-3) 24.73 13(-2) | 48.01 75
50 113(-4) 125.48 29(-2) 32.99 11(-2) 45.18 7.8
Exponential function
2 70(-4) 27 12(-2) 07 5(-2) 14 1.6
3 270(-5) 1.42 39(-2) 31 26(-2) 1.18 5.1
4 | 280(-4) 2.03 75(-2) 87 | 37(-3) 2.96 6.5
5 486(-4) 4.73 213(-6) 3.38 62(-3) 7.06 145
6 817(-5) 10.20 293(-8) 6.16 70(-3) 9.92 16.9
7 | 1517(-6) 24.98 433(-8) 11.73 | 105(-3) 18.49 24.0
8 | 2931(-7) 60.50 | 577(-8) | 2073 | 162(-4) | 36.65 47.6
9 4511(-8) 109.82 824(-8) 37.44 206(-4) 54.11 61.8
10 5671(-8) 165.32 1001(-9) 53.80 268(-4) 79.45 85.8
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Problem PB000402:
fi(z) = (—.2292 + 107%)z? + (.2393 + 107 14) « 22 + (-.2735 + 10%)z, 2,
+ (—.5537 + 10%)z; + (.277 + 107 )z, + (.1425 * 10?)
f2(z) = (=.7194 « 10*)z3 + (.2393 + 10™14)22 + (-.2735 + 10%)z; z,
+ (.5537 * 10%)z; + (=.277 « 107 )z, + (.1418 ¢ 10?).
Problem PB000403:
fi(z) = (.98 + 1073)z% + (.978 + 10°)z3 + (-9.8)z, 22
+ (—.235 + 10%)z; + (.88900 + 10%)z; + (~1.0)
f2(z) = (=1 +1071)22 + (—.984)22 + (—.297 + 10%)z, z,
+(.987 ¢ 1072)z; + (—.124)z; + (—.25).
Problem PB000601:
fi(z) = (—.625 + 10")z3 25 + (.53835 + 10°)z3 + (.503135 + 10°)23
+ (.895258 * 10%)z% + (.577586 * 107)z3 + (.107358 + 10°)z2
+ (617 + 10%)z2 + 1.0
f2(z) = (.625 + 10'4)z2z; + (.1875 » 10'5%)z3 23 + (.2025 * 10%)z, z,
+ (—.503135 * 10%)z3 — (.179052 * 10°)z$ + (-.173276)z3
+ (—.429432 + 10%)22 + (-.3085 * 10%)z; — 6.0

f3(z) = (—.555555 « 10'®)22 + (111111 + 10'7)z,z5 + (.18 + 10'%)z, + 1.0.

Morgan’s three problems were solved with a tracking tolerance of 107%. Problems
PB000402 and PB000403 both have 4 complex roots, all of which were found. Problem

PB000601 has 60 complex roots. The algorithm was successful at finding 55 of these roots.
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In addition to Morgan’s problems, POLSYS was also used to solve a test problem

presented by Dcnnis, Gay, and Vu [3]. This problem is
a+b=XM,

c+d=EM,
ta+ub—ve—-wd=TA
va+wb+tc+ud=XB
a(t? - v?) = 2¢tv + b(u? — w?) - 2duw = EC
c(t? — v?) + 2aty + d(u® - w?) — 2duw = TD
at(t? - 3v?) + cv(v? - 3t?) + bu(u® — 3w?) + dw(w? - 3u?) = TFE
ct(t? — 3v?) — av(v® — 3t?) + du(u® - 3w?) - bw(w? - 3u?) = TF,
where the right-hand sides of the equations represent measured quantities. Thus, by using

different right-hand sides, different problems are specified.

POLSYS was used to solve four different versions of the above problem, defined as

follows:

Let & = (EM,,EM,, LA, ZB,XC,LD,XE,XF).
Experiment 791129
¥ = (.485, -.0019, —.0581, .015, .105, .0406, .167, —.399)
Experiment 0121a
L = (-.816,-.017, —1.826, —.754, —4.839, —3.259, —14.023, 15.467)
Experiment 0121b

L = (-.809,-.021, —2.04, —.614, —6.903, —2.934, —26.328, 18.639)
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Experiment 0121c

L = (-.807,-.021, -2.379, —.364, —10.541, —1.961, —51.551, 21.053).

Each of these problems has 576 complex roots, however only the real roots are sig-
nificant. Table 2 shows the results for these experiments, indicating the number of real

solutions found, and the number of Jacobian evaluations needed to find these roots.

The sparse algorithm (FIXPQS) was used to solve the following two problems:

fi(z) = 23 + 62223 + 2, — 1

f2(z) = 6z125 + z;zs +3z; -1
f3(z) = 62122 + 2325 + 423 — 1
fo(z) = 2328 + 224 — 1

fs(z) = .21:‘3 + 523 + zgzs + 325 — 1
fo(z) = zezg + 426 — 1

fr(z) = 2223 + 227 - 1

fo(z) = z§ + 522 + 522 + 2322 + 325 — L.

and

fi(z) = kcos(k(zx — k)) exp(sin(k(zx — k))) k=1...n.

The polynomial problem was solved with a tracking tolerance of 1074, and required 33
Jacobian evaluations. Table 3 shows the results for the exponential problem. Both problems

were run with a starting point of 0.
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Table 2. Dennis’ problem.

experiment solutions found range of Jacobian evaluations
791129 28 26-86
0121a 18 32-98
0121b 6 32-59
0121c 23 30-101
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Table 3. Sparse exponential problem.

n NFE TIME arc length
1 18 .33 1.177
2 26 .59 1.738
3 28 .81 1.786
4 32 1.23 1.892
5 32 1.45 1.948
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9. Conclusions.

The augmented Jacobian matrix algorithm represents a valuable addition to the HOM-
PACK library. Each of the HOMPACK algorithms is superior to the other two on certain
problems. Thus, having three different algorithms enables the user to pick the one most
equipped to solve his particular problem. The following is a description of the augmented
Jacobian matrix algorithm’s strengths and weaknesses. In addition to these strengths and

weaknesses, a description of further research areas is presented.

FIXPQF is superior on problems with expensive Jacobian evaluations. The use of
quasi-Newton itcrations greatly decreases the amount of Jacobian evaluations. The test
results demonstrate this fact. In contrast, when Jacobian evaluations are cheap, FIXPQF
13 less efficient than FIXPNF which uses Newton iterations. This makes sense because

quasi-Newton iterations take longer to converge.

Another strength of the augmented Jacobian matrix algorithm is its ability to track
tightly turning curves. The requirement that two consecutive tangents must make an angle
no greater than 60° allows the algorithm to detect when questionable steps are made. This

makes FIXPQF superior to the other algorithms in keeping with tightly turning curves.

The augmented Jacobian matrix algorithm is poor at tracking curves with ill-
conditioned or badly scaled Jacobian matrices. The reason for this is that the radius of
convergence of the quasi-Newton correction process is small compared to the Newton pro-
cess. Thus, for ill-conditioned problems, smaller steps have to be made in order to keep

with the curve.

The augmented Jacobian matrix algorithm is by no means optimal. In developing the
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algorithm, several questions arose which represent areas for further research. The following

is a list of the research problems.

1. The quasi-Newton algorithm converges most rapidly when the initial point is close to
the solution. Because of this fact, it may be more efficiert to start the quasi-Newton
correction process with an exact Jacobian at the predictor point Z(®). The current
implementation uses an approximate Jacobian matrix derived from a Broyden update
of the matrix at the previous point P(?). The argument for this change is that Z(°) s
much closer to the next point on the curve than P(?) is. Thus, the increased rate of

convergence may justify the additional Jacobian evaluation.

2. What is the optimal limit for the number of quasi-Newton iterations allowed in the
corrector process before admitting failure? This number should not be too small be-
cause it would cause many unnecessary failures. However, if the predictor step is so
large that the process converges extremely slowly or not at all, this problem should be
detected as soon as possible. Thus, the limit on the number of iterations should not
be too large. It may be possible to derive a function which estimates the probability
of converging on the next step given the number of steps already taken, the size of the
last step, and the desired accuracy. By using this function, it is possible that a function

for the optimal limit could be derived.

3. What is the maximum angle that two consecutive tangent vectors should make in
order to safely track the zero curve? Currently a 60° angle is used as a maximum.
Perhaps some other angle is better, or maybe the maximum angle should be computed

dynamically.
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. The curvature estimate for computing the step-size is terrible for tightly turning curves.

Other schemes should be explored.

. The strategy for computing the ideal error in the step-size estimation phase could
be improved. Two issues need to be considered. First, for the dense algorithm, a
better relation between the ideal error and the number of iterations required needs to
be devised. Second, the ideal error computation could take into account the cost of
Jacobian evaluations. If Jacobian evaluations are extremely difficult, the ideal error
should be increased so that larger steps are taken (at the cost of many more corrector

iterations) so that fewer Jacobian evaluations are necessary.

. The formula for computing the step-size from the curvature and the ideal error is based
on a linear predictor. However, since the predictor step usually uses a cubic polynomial,

the possibility of developing a formula based on a cubic predictor should be explored.

. One difficulty homotopy algorithms have occurs when they are trying to find a multiple
root. In this case, the zero curve does not cross A = 1. This makes finding the exact
solution very difficult, and the algorithms often fail. A way of handling this case needs

to be developed.

. The use of a quasi-Newton algorithm with deferred updating [8] may be a plausible

alternative to Newton’s method for the sparse algorithm. This alternative needs to be

explored.
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Appendix A Dense Algorithm Code Listing

SUBROUTINE FIXPQF(N,NFE, IFLAG,ARCRE,ARCAE,ANSRE, ANSAE, ARCLEN,A,Y,
& YP,YOLD,YPOLD,QT,R,FO,F1,20,DZ,¥,T,YSAV,5SPAR,PAR, IPAR)

SUBROUTINE FIXPQF FINDS A FIXED POINT OR ZERO OF THE
N-DIMENSIONAL VECTOR FUNCTION F(X), OR TRACKS A ZERO CURVE OF A
GENERAL HOMOTOPY MAP RHO(A,LAMBDA,X). FOR THE FIXED POINT PROBLEM
F(X) IS ASSUMED TO BE A C2 MAP OF SOME BALL INTO ITSELF. THE
EQUATION X=F(X) IS SOLVED BY FOLLOWING THE ZERO CURVE OF THE
HOMOTOPY MAP

LAMBDA*(X - F(X)) + (1 - LAMBDA)*(X - A),

STARTING FROM LAMBDA = 0, X = A. THE CURVE IS PARAMETERIZED
BY ARC LENGTH S, AND IS FOLLOWED BY SOLVING THE ORDINARY
DIFFERENTIAL EQUATION D(HOMOTOPY MAP)/DS = 0 FOR

Y(S) = (LAMBDA(S), X(S)). THIS IS DONE BY USING A HERMITE CUBIC
PREDICTOR AND A CORRECTOR WHICH RETURNS T0 THE ZERO CURVE IN A
HYPERPLANE PERPENDICULAR TO THE TANGENT T0 THE ZERO CURVE AT THE
MOST RECENT POINT.

FOR THE ZERO FINDING PROBLEM F(X) IS ASSUMED IO BE A C2 MAP
SUCH THAT FOR SOME R > 0, X*F(X) >= 0 WHENEVER NORM(X) = R.
THE EQUATION F(X) = 0 IS SOLVED BY FOLLOWING THE ZERO CURVE OF
THE HOMOTOPY MAP

LAMBDA*F(X) + (1 - LAMBDA)*(X - A)

EMANATING FROM LAMBDA = 0, I = A.

A MUST BE AN INTERIOR POINT OF THE ABOVE MENTIONED BALLS.
FOR THE CURVE TRACKING PROBLEM RHO(A,LAMBDA,X) IS ASSUMED TO
BE A C2 MAP FROM Es**M X [0,1) X E**N INTO Es+N, WHICH FOR
ALMOST ALL PARAMETER VECTORS A IN SOME NONEMPTY OPEN SUBSET
OF E*+M SATISFIES

RANK [D RHO(A,LAMBDA,X)/D LAMBDA, D RHO(A,LAMBDA,X)/DX] = N

FOR ALL POINTS (LAMBDA,X) SUCH THAT RHO(A,LAMBDA,X) = 0. IT IS
FURTHER ASSUMED THAT

RANK [ D RHO(A,0,X0)/DX ] = N.

WITH A FIXED, THE ZERO CURVE OF RHO(A,LAMBDA,X) EMANATING FROM
LAMBDA = 0, X = X0 IS TRACKED UNTIL LAMBDA = 1 BY SOLVING THE
ORDINARY DIFFERENTIAL EQUATION D RHO(A,LAMBDA(S),X(S))/DS = 0
FOR Y(S) = (LAMBDA(S), X(S)), WHERE S IS ARC LENGTH ALONG THE
ZERO CURVE. ALSO THE HOMOTOPY MAP RHO(A,LAMBDA,X) IS ASSUMED TO

47
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BE CONSTRUCTED SUCH THAT

D LAMBDA(0)/D8 > 0.

A SUBROUTINE F(X,V) WHICH EVALUATES F(X) AT X AND RETURNS THE
VECTOR F(X) IN V, AND A SUBROUTINE FJAC(X,V,K) VWHICH RETURNS IN V
THE KTH COLUMN OF THE JACOBIAN MATRIX OF F(X) EVALUATED AT X. FOR
THE CURVE TRACKING PROBLEM, THE USER MUST SUPPLY A SUBROUTINE
RHO(A,LAMBDA,X,V,PAR,IPAR) VWHICH EVALUATES THE HOMOTOPY MAP RHO AT

C (A,LAMBDA,X) AND RETURNS THE VECTOR RHO(A,LAMBDA,X) IN V, AND

C A SUBROUTINE RHOJAC(A,LAMBDA,X,V,K,PAR,IPAR) VWHICH RETURNS IN V

C THE KTH COLUMN OF THE ¥ X (N+1) JACOBIAN MATRIX

C (D RHO/D LAMBDA, D RHO/DX] EVALUATED AT (A,LAMBDA,X). FIXPQF

C DIRECTLY OR INDIRECILY USES THE SUBROUTINES DIMACH, F (OR RHO),

C FJAC (OR RHOJAC), QRFAQF, QRSLQF, ROOT, ROOTQF, STEPQF, TANGQF,

C UPQRQF AND THE BLAS ROUTIFES DAXPY, DCOPY, DDOT, DNRM2, AND DSCAL.

C OELY DIMACE CONTAINS MACHINE DEPENDENT CONSTANTS. NO OTHER

C NODIFICATIOKS BY THE USER ARE REQUIRED.

c

c

C O§¥ IKPUT:

c

C X IS THE DIMENSION OF X, F(X), AND RHO(A,LAMBDA,X).

c

C IFLAG CAN BE -2, -1, 0, 2, OR 3. IFLAG SHOULD BE O ON THE FIRST

CALL T0 FIXPQF FOR THE PROBLEN IX=F(X), -1 FOR THE PROBLEM

F(X)=0, AND -2 FOR THE PROBLEM RHEO(A,LAMBDA,X)=0. IN CERTAIN

SITUATIONS 1IFLAG IS SET I0 2 OR 3 BY FIXPQF, AND FIXPQF CAN

BE CALLED AGAIN WITHOUT CHANGING IFLAG.

c
c
c
c
C FOR THE FIXED POINT AND ZERO FINDING PROBLEMS, THE USER MUST SUPPLY
c
c
c
c
c

ARCRE, ARCAE ARE THE RELATIVE AND ABSOLUTE ERRORS, RESPECTIVELY,
ALLOVED THE QUASI-NEWION ITERATION ALONG THE ZERO CURVE. IF
ARC?E .LE. 0.0 ON INPUT, IT IS RESET TO .6*SQRT(ANS?E).
NORMALLY ARC?E SHOULD BE CONSIDERABLY LARGER THAN ANS?E.

ANSRE, ANSAE ARE THE RELATIVE AND ABSOLUTE ERROR VALUES USED FOR
THE ANSWER AT LAMBDA = 1. THE ACCEPTED ANSWER Y = (LAMBDA, X)

SATISFIES
IY(1) - 1| .LE. ANSRE + ANSAE .AND.
IIDZ|] .LE. ANSREs||Y|| + ANSAE WHERE

DZ IS THE QUASI-NEWION STEP T0 Y.

A(1:+) CONTAINS THE PARAMETER VECTOR A. FOR THE FIXED POINT
AND ZERO FINDING PROBLEMS, A NEED NOT BE INITIALIZED BY THE
USER, AND IS ASSUMED T0 HAVE LENGTH N. FOR THE CURVE
TRACKING PROBLEM, A MUST BE INITIALIZED BY THE USER.
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Y(1:N+1) CONTAINS THE STARTING POINT FOR TRACKING THE HOMOTOPY MAP.
(Y(2),...,Y(N+1)) = A FOR THE FIXED POINT AND ZERO FINDING
PROBLEMS. (¥(2),...,Y(N+1)) = X0 FOR THE CURVE TRACKING PROBLEM.
Y(1) NEED NOT BE DEFINED BY THE USER.

YP(1:N+1) IS A WORK ARRAY CONTAINING THE TANGENT VECTOR T0 THE
ZERD CURVE AT THE CURRENT POIRT Y.

YOLD(1:¥+1) IS A WORK ARRAY CONTAINING THE PREVIOUS POINT FOUND
O THE ZERO CURVE.

YPOLD(1:N+1) IS A WORK ARRAY CONTAINING THE TAKGENT VECIOR TO
THE ZERO CURVE AT YOLD.

QT(1:N+1,1:N+1), R((N+1)+(N+2)/2), FO(1:N+1), F1(1:N+1), 20(1:N+1),
DZ(1:N+1), W(1:N+1), T(1:N+1), YSAV(1:N+1) ARE ALL WORK ARRAYS
USED BY GSTEPQF, TAKGQF AND ROOTQF YO CALCULATE THE TAKGENT
VECTORS AKD QUASI-NEWION STEPS.

SSPAR(1:4) = (ENIN, HMAX, BMIN, BMAX) IS A VECTOR OF PARAMETERS
USED FOR THE OPTIMAL STEP SIZE ESTIMATION. A DEFAULT VALUE
CAN BE SPECIFIED FOR ANY OF THESE FOUR PARAMETERS BY SETTING IT
.LE. 0.0 ONF INPUI. SEE THE COMMENTS IN STEPQF FOR MORE
INFORMATION ABOUT THESE PARAMETERS.

PAR(1:*) AND IPAR(1:s) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,
WHICH ARE SIMPLY PASSED THROUGH T0 THE USER WRITTEN SUBROUTINES
REO, RHOJAC.

ON OUTPUT:

N, A ARE UNCHANGED.

NFE IS THE NUMBER OF JACOBIAN EVALUATIONS.

IFLAG =
1 NORMAL RETURN
2 SPECIFIED ERROR TOLERANCE CANNOT BE MET. SOME OR ALL OF

ARCRE, ARCAE, ANSRE, ANSAE HAVE BEEN INCREASED TO
SUITABLE VALUES. T0 CONTINUE, JUST CALL FIXPQF AGAIN
WITHOUT CHANGING ANY PARAMETERS.

STEPQF HAS BEEN CALLED 1000 TIMES. TO CONTINUE, CALL
FIXPQF AGAIN VITHOUT CHANGING ANY PARAMETERS.

JACOBIAN MATRIX DOES NOT HAVE FULL RANK. THE ALGORITHM
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HAS FAILED (THE ZERO CURVE OF THE HOMOTOPY MAP CANNOT BE
FOLLOVED ANY FURTHER).

THE TRACKING ALGORITEM HAS LOST THE ZERO CURVE OF THE
HOMOTOPY MAP AND IS NOT MAKING PROGRESS. THE ERROR
TOLERANCES ARCTE AND ANSTE VWERE T00 LENIENT. THE PROBLEN
SHOULD BE RESTRARTED BY CALLING FIXPQF VITH SMALLER ERROR
TOLERANCES AND IFLAG = 0 (-1, -2).

THE QUASI-NEWION ITERATION IN STEPQF OR ROOIQF FAILED T0
CONVERGE. THE ERROR TOLERANCES ANSTE MAY BE T00 STRINGENT.

ILLEGAL INPUT PARAMETERS, A FATAL ERROR.

ARCRE, ARCAE, ANSRE, ANSAE ARE UNCHANGED AFTER A NORMAL RETURN

(IFLAG = 1). THEY ARE INCREASED T0 APPROPRIATE VALUES ON THE
RETURN IFLAG = 2.

ARCLEN IS THE APPROXINATE LENGTH OF THE ZERO CURVE.

Y(1) = LAMBDA, (Y(2),...,Y(N+1)) =X, AND Y IS AN APPROXIMATE

ZERO OF THE HOMOTOPY MAP. NORMALLY LAMBDA =1 AND X IS A
FIXED POINT OR ZERO OF F(X). IN ABNORMAL SITUATIONS, LAMBDA
MAY ONLY BE NEAR 1 AND X NEAR A FIXED POINT OR ZERO.

ss35% DECLARATIONS s»ss3

FUNCTION DECLARATIONS
DOUBLE PRECISION DiMACH, DNRM2

LOCAL VARIABLES
DOUBLE PRECISION ABSERR, H, HOLD, RELERR, 8, WK
INTEGER IFLAGC, ITER, J¥, LIMITD, LIMIT, KP1
LOGICAL CRASH, START

SCALAR ARGUMENTS

DOUBLE PRECISION ARCRE, ARCAE, ANSRE, ANSAE, ARCLEN
INTEGER N, NFE, IFLAG

ARRAY DECLARATIONS

DOUBLE PRECISION A(N), Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1),
& QT(N+1,N+1), R((N+1)*(N+2)/2), FO(N+1), F1(N+1), ZO(N+1),

DZ(N+1), W(N+1), T(N+1), YSAV(N+1), SSPAR(4), PAR(1)
INTEGER IPAR(1)

~»

SAVE
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sss+s END OF DECLARATIONS ##%+#

LIMITD IS AN UPPER BOUND ON THE NUMBER OF STEPS. IT MAY BE
CHANGED BY CHANGING THE FOLLOWING PARAMETER STATEMENT:
PARAMETER (LIMITD =1000)

ss¢++ FIRST EXECUTABLE STATEMENT ##%#s
CHECK IFLAG

IF (N .LE. O .OR. ANSRE .LE. 0.0 .0R. ANSAE .LT. 0.0)
& IFLAG = 7

IF (IFLAG .GE. -2 .AND. IFLAG .LE. 0) GO TO 10

IF (IFLAG .EQ. 2) GO TO 60

IF (IFLAG .EQ. 3) GO TO 40

ONLY VALID INPUT FOR IFLAG IS -2, -1, O, 2, 3.

IFLAG = 7
RETURN

s¢sss INITIALIZATION BLOCK #¢s%=

10 ARCLEN = 0.0
IF (ARCRE .LE. 0.0) ARCRE = .5*SQRT(ANSRE)
IF (ARCAE .LE. 0.0) ARCAE = .5+SQRT(ANSAE)
NFE=0
IFLAGC = IFLAG
NP1=N+1

SET INITIAL CONDITIONS FOR FIRST CALL T0 STEPQF.

START=.TRUE.

CRASH=.FALSE.

RELERR = ARCRE

ABSERR = ARCAE

HOLD=1.0

H=0.1

§=0.0

YPOLD(1) = 1.0

Y(1) = 0.0

DO 20 Jw=2,NP1

YPOLD(JW)=0.0

20 CONTINUE

SET OPTIMAL STEP SIZE ESTIMATION PARAMETERS.

MINIMUM STEP SIZE HMIN
IF (SSPAR(1) .LE. 0.0) SSPAR(1)= (SQRT(N+1.0)+4.0)*DIMACH(4)
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MAXIMUM STEP SIZE HMAX

IF (SSPAR(2) .LE. 0.0) SSPAR(2)= 1.0
MINIMUM STEP REDUCTION FACTIOR BMIN

IF (SSPAR(3) .LE. 0.0) SSPAR(3)= 0.1
MAXIMUM STEP EIPANSION FACTOR BMAX

IF (SSPAR(4) .LE. 0.0) SSPAR(4)= 7.0

LOAD A FOR THE FIXED POINT AND ZERO FINDING PROBLEMS.
IF (IFLAGC .GE. -1) THEN
CALL DCOPY(N,Y(2),1,4,1)
ENDIF
40 LIMIT=LIMITD
s¢s¢¢ END OF INITIALIZATION BLOCK. #s%s¢
sssss MAIN LOOP. ##sss
60 DO 400 ITER=1,LIMIT
IF (Y(1) .LT. 0.0) THEN
ARCLEN = 8§
IFLAG = b
RETURN
END IF
TAKE A STEP ALONG THE CURVE.
CALL STEPQF(N,NFE,IFLAGC,START,CRASH,HOLD,H,¥K,
& RELERR, ABSERR,S,Y,YP,YOLD, YPOLD,A,QT,R,FO,F1,20,D2Z,
& W,T,SSPAR,PAR, IPAR)
CHECK IF THE STEP WAS SUCCESSFUL.
IF (IFLAGC .GI. 0) THEN
ARCLEXN=S
IFLAG=IFLAGC
RETURN
END IF
IF (CRASH) THEN
RETURN CODE FOR ERROR TOLERANCE T00 SMALL.
IFLAG=2
CHANGE ERROR TOLERANCES.

IF (ARCRE .LT. RELERR) ARCRE=RELERR
IF (ANSRE .LT. RELERR) ANSRE=RELERR
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IF (ARCAE .LT. ABSERR) ARCAE=ABSERR
IF (ANSAE .LT. ABSERR) ANSAE=ABSERR

CHANGE LIMIT ON NUMBER OF ITERATIONS.
LIMIT = LIMIT - ITER
RETURN
END IF
IF LAMBDA >= 1.0, USE ROOTIQF T0 FIND SOLUTION.
IF (Y(1) .GE. 1.0) GOTO 600
400 CONTINUE
sss++ END OF MAIN LOOP #*%%s#
DID NOT CONVERGE IN LIMIT ITERATIONS, SET IFLAG AND RETURN.
ARCLEN = §
IFLAG = 3
RETURN
sss3¢ FINAL STEP -- FIND SOLUTION AT LAMBDA=1 %%
SAVE YOLD FOR ARC LENGTH CALCULATION LATER.
600  CALL DCOPY(NP1,YOLD,1,YSAV,1)

FIND SOLUTION.

CALL ROOTQF(N,NFE, IFLAGC,ANSRE,ANSAE,Y,YP,YOLD,
& YPOLD,A,QT,R,DZ,20,¥,T,FO,F1,PAR, IPAR)

CHECK IF SOLUTION WAS FOUND AND SET IFLAG ACCORDINGLY.
IFLAG=1

SET ERROR FLAG IF ROOTQF COULD NOT GET THE POINT ON THE ZERO
CURVE AT LAMBDA = 1.0.

IF (IFLAGC .GT. 0) IFLAG=IFLAGC
CALCULATE FINAL ARC LENGTH.

CALL DCOPY(NP1,Y,1,DZ,1)

WK=-1.0

CALL DAXPY(NP1,WK,YSAV,1,DZ,1)
ARCLEN = § - HOLD + DNRM2(NP1,DZ,1)
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sssss END OF FINAL STEP s*++s
RETURN

ss++3 END OF SUBROUTINE FIXPQF ##%%¢

END

SUBROUTINE STEPQF(N,NFE,IFLAG,START,CRASH,HOLD,H,
[ 4 WK ,RELERR,ABSERR,S,Y,YP, YOLD, YPOLD,A,QI,R,
& FO,F1,20,DZ,¥,T,5SPAR ,PAR, IPAR)

SUBROUTINE STEPQF TAKES ONE STEP ALONG THE ZERO CURVE OF THE
HOMOTOPY MAP RHO(LAMBDA,X) USING A PREDICTOR-CORRECTOR ALGORITHM.
THE PREDICTOR USES A HERMITE CUBIC INTERPOLANT, AND THE CORRECTOR
RETURNS T0 THE ZERO CURVE USING A QUASI-NEWION ALGORITHM, REMAINING
IN A HYPERPLANE PERPENDICULAR TO THE MOST RECENT TANGENT VECTOR.
STEPQF ALSO ESTIMATES A STEP SIZE H FOR THE NEXT STEP ALONG THE
ZERO CURVE.

OX INPUT:

N = DIMENSION OF X.

NFE = NUMBER OF JACOBIAN MATRIX EVALUATIONS.

IFLAG = -2, -1, OR O, INDICATING THE PROBLEM TYPE.

START = .TRUE. ON FIRST CALL TO STEPQF, .FALSE. OTHERWISE.
SHOULD NOT BE MODIFIED BY THE USER AFTER THE FIRST CALL.

HOLD = |]Y - YOLD|| ; SHOULD NOT BE MODIFIED BY THE USER.

H = UPPER LIMIT ON LENGTH OF STEP THAT WILL BE ATTIEMPTED. H MUST
BE SET T0 A POSITIVE NUMBER ON THE FIRST CALL T0 STEPQF.
THEREAFTER, STEPQF CALCULATES AN OPTIMAL VALUE FOR H, AND H
SHOULD NOT BE MODIFIED BY THE USER.

WK = APPROXIMATE CURVATURE FOR THE LAST STEP (COMPUTED BY PREVIOUS
CALL TO STEPQF). UNDEFINED ON FIRST CALL. SHOULD NOT BE
MODIFIED BY THE USER.

RELERR, ABSERR = RELATIVE AND ABSOLUTE ERROR VALUES. THE ITERATION
IS CONSIDERED T0 HAVE CONVERGED WHEN A POINT Z=(LAMBDA,X) IS
FOUND SUCH THAT

|IDZ|| .LE. RELERR*||Z|| + ABSERR,
WHERE DZ IS THE LAST QUASI-NEWION STEP.

S = (APPROXIMATE) ARC LENGTH ALONG THE HOMOTOPY ZERO CURVE UP T0
Y(S) = (LAMBDA(S), X(S)).
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Y(1:N+1) = PREVIOUS POINT (LAMBDA(S),X(8)) FOUND ON THE ZERO CURVE
OF THE HOMOTOPY MAP.

YP(1:N+1) = UNIT TANGENT VECTOR TO THE ZERO CURVE OF THE HOMOTOPY
MAP AT Y. INPUT IN THIS VECTOR IS NOT USED ON THE FIRST CALL
T0 STEPQF.

YOLD(1:N+1) = A POINT BEFORE Y ON THE ZERO CURVE OF THE HOMOTOPY
MAP. INPUT IN THIS VECTOR IS NOT USED ON THE FIRST CALL TO
STEPQF.

YPOLD(1:N+1) = UNIT TANGENT VECTOR TO THE ZERO CURVE OF THE
HOMOTOPY MAP AT YOLD.

A(1:N) = PARAMETER VECTOR IN THE HOMOTOPY MAP.

QT(1:N+1,1:N+1) = HOLDS Q TRANSPOSE OF THE QR FACTORIZATION OF
THE AUGMENTED JACOBIAN MATRIX AT VY.

R((N+1)+(N+2)/2) = HOLDS THE UPPER TRIANGLE OF R OF THE QR
FACTORIZATION, STORED BY ROWS.

FO(1:N+1), F1(1:N+1), ZO(1:N+1), DZ(1:N+1), W(1:N+1), T(1:N+1) ARE
WORK ARRAYS.

SSPAR(1:4) = PARAMETERS USED FOR COMPUTATION OF THE OPTIMAL STEP SIZE.
SSPAR(1) = HMIN, SSPAR(2) = HMAX, SSPAR(3) = BMIN, SSPAR(4) = BMAX.
THE OPTIMAL STEP H IS RESTRICTED SUCH THAT

HMIN .LE. H .LE. HMAX, AND BMIN#HOLD .LE. H .LE. BMAX=*HOLD.

PAR(1:*) AND 1IPAR(1:*) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,
WHICH ARE SIMPLY PASSED THROUGH TO THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

OX OUTPUT:

NFE HAS BEEN UPDATED.

IFLAG

= -2, -1, OR 0 (UNCHANGED) ON A NORMAL RETURN.

= 4 IF A JACOBIAN MATRIX WITH RANK < N HAS OCCURRED. THE
ITERATION WAS NOT COMPLETED.

= 6 IF THE ITERATION FAILED TO CONVERGE.

START = .FALSE. ON A NORMAL RETURN.
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CRASH

HOLD

WK =

S =

.FALSE. ON A NORMAL RETURN.

.TRUE. IF THE STEP SIZE H WAS T00 SMALL. H HAS BEEN
INCREASED I0 AN ACCEPTABLE VALUE, WITH WHICH STEPQF MAY BE
CALLED AGAIN.

.TRUE. IF RELERR AND/OR ABSERR VWERE T00 SMALL. THEY HAVE
BEEN INCREASED TO ACCEPTABLE VALUES, WITH WHICH STEPQF MAY
BE CALLED AGAIN.

= ||Y-YOLD||.

OPTIMAL VALUE FOR NEXT STEP T0 BE ATTEMPTED. NORMALLY H SHOULD
NOT BE MODIFIED BY THE USER.

APPROXIMATE CURVATURE FOR THE STEP TAKEN BY STEPQF.

(APPROXIMATE) ARC LENGTH ALONG THE ZERO CURVE OF THE HOMOTOPY

MAP UP TO THE LATEST POINT FOUND, WHICH IS RETURNED IN VY.

RELERR, ABSERR ARE UNCHANGED ON A NORMAL RETURN. THEY ARE POSSIBLY

CHANGED IF CRASH = .TRUE. (SEE DESCRIPTION OF CRASH ABOVE).

Y, YP, YOLD, YPOLD CONTAIN THE TWO MOST RECENT POINTS AND TANGENT

VECTORS FOUND ON THE ZERO CURVE OF THE HOMOTOPY MAP.

QT, R STORE THE QR FACTORIZATION OF THE AUGMENTED JACOBIAN MATRIX

EVALUATED AT Y.

CALLS DIiMACH, DAXPY, DCOPY, DDOT, DNRM2, DSCAL, F (OR RHO), FJAC

L2 2 2 4

w

(OR RHOJAC), QRFAQF, QRSLQF, TANGQF, UPQRQF.
+ DECLARATIONS s##++
FUNCTION DECLARATIONS
DOUBLE PRECISION DIMACH, DDOT, DNRM2, QOFS
LOCAL VARIABLES
DOUBLE PRECISION ALPHA, DD0OO1, DD0OO11, DDO1, DDO11, DELS, ETA,
FOURU, GAMMA, HFAIL, HTEMP, IDLERR, ONE, PO, P1, PPO, PP1,
TEMP, TWOU, WKOLD
INTEGER I, ITCNT, LITFH, J, JP1, NP1
LOGICAL FAILED

SCALAR ARGUMENTS
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c
INTEGER N, NFE, IFLAG
LOGICAL START, CRASH
DOUBLE PRECISION HOLD, H, WK, RELERR, ABSERR, §
c
c ARRAY DECLARATIONS
c
DOUBLE PRECISION Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1),
& A(N), QT(N+1,N+1), R((N+1)+(N+2)/2), FO(N+1), F1(N+1),
& 20(N+1), DZ(N+1), W(N+1), T(N+1), SSPAR(4), PAR(1)
INTEGER IPAR(1)
c
SAVE
c
C s+s++ END OF DECLARATIONS #*%%¢
c

C DEFINITION OF HERMITE CUBIC INTERPOLANT VIA DIVIDED DIFFERENCES.
c
DDO1(PO,P1,DELS) = (P1-P0O)/DELS
bpoo1 (P0,PPO,P1,DELS) = (DDO1(PO,P1,DELS)-PPO)/DELS
DDO11(PO,P1,PP1,DELS) = (PP1-DD01(PO,P1,DELS))/DELS
DD0011(PO,PPO,P1,PP1,DELS) = (DDO11(PO,P1,PP1,DELS) -
& DD001 (PO, PPO,P1,DELS)) /DELS
QOFs(Po0,PPO,P1,PP1,DELS,5) = ((DD0O011(PO,PPO,P1,PP1,DELS)*
& (S-DELS) + DD001(PO,PPO,P1,DELS))*8 + PP0)*S + PO

sss¢s FIRST EXECUTABLE STATEMENT ###s¢

ssss INITIALIZATION #e%++

aooooaooaa

C ETA = PARAMETER FOR BROYDEN'S UPDATIE.
C LITFH = MAXIMUM NUMBER OF QUASI-NEWION ITERATIONS ALLOWED.

ONE = 1.0
TWOU = 2.0+DIMACH(4)

FOURU = TWOU + TWOU

NP1 = N+i

FAILED = .FALSE.

CRASH = .TRUE.

ETA = 50.0+TWOU

LITFH = 2+(INT(-LOG10(ABSERR+RELERR*DNRM2(NP1,Y,1)))+1)

g CHECK THAT ALL INPUT PARAMETERS ARE CORRECT.

g THE ARCLENGTH S MUST BE NONNEGATIVE.

¢ IF (S .LT. 0.0) RETURN

g IF STEP SIZE IS T00 SMALL, DETERMINE AN ACCEPTABLE ONE.
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IF (H .LT. FOURU*(1.0+S§)) THEN
H=FOURU#(1.0 + 8)
RETURN

END IF

IF ERROR TOLERANCES ARE T00 SMALL, INCREASE THEM TO ACCEPTABLE
VALUES.

TEMP=DNRM2(NP1,Y,1) + 1.0
IF (.6*(RELERR*TEMP+ABSERR) .LTY. TWOUsTEMP) THEN
IF (RELERR .NE. 0.0) THEN
RELERR = FOURU*(1.0+FOURU)
TEMP = 0.0
ABSERR = MAX(ABSERR,TEMP)
ELSE
ABSERR=FQURU*TEMP
END IF
RETURN
END IF

INPUT PARAMETERS WERE ALL ACCEPTABLE.
CRASH = .FALSE.

COMPUTE YP ON FIRST CALL.
NOTE: DZ IS USED SIMPLY AS A WORK ARRAY HERE.

IF (START) THEN
CALL TANGQF(Y,YP,YPOLD,A,QT,R,¥,DZ,T,N,IFLAG,NFE,PAR, IPAR)
IF (IFLAG .GT. O) RETURN

END IF

FO = (RHO(Y), YP+Y) TRANSPOSE (DIFFERENT FOR EACH PROBLEN TYPE).
IF (IFLAG .EQ. -2) THEN
CURVE TRACKING PROBLEM.

CALL RHO(A,Y(1),Y(2),FO,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLENM.

CALL F(Y(2),F0)
DO 6 I=1,N
FO(I) = Y(1)+FO(I) + (1.0-Y(1))*=(Y(I+1)-A(I))
6 CONTINUE
ELSE
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FIXED POINT PROBLEN.

CALL F(Y(2),F0)
DO 10 I=1,X
FO(I) = Y(1)*(A(I)-FO(I))+Y(I+1)-A(I)
10 CONTINUE
END IF

DEFINE LAST ROW OF FO = YP+Y,
FO(NP1) = DDOT(NP1,YP,1,Y,1)
sss+s END OF INITIALIZATION s+s*+
sss¢+ COMPUTE PREDICIOR POINT ZO #s¢%ss
20 IF (START) THEN

COMPUTE 20 VITH LINEAR PREDICTOR USING Y, YP --
Z0 = Y+H+YP.

CALL DCOPY(NP1,Y,1,20,1)
CALL DAXPY(NP!,H,YP,1,20,1)

ELSE
COMPUTE 20 WITH CUBIC PREDICTOR.

DO 30 I=1,NP1
20(1) = QOFS(YOLD(I),YPOLD(I),Y(I),YP(I),HOLD, HOLD+H)
30 CONTINUE

END IF
F1 = (RHO(ZO), YP*Z0) TRANSPOSE.

IF (IFLAG .EQ. -2) THEN
CALL RHO(A,Z0(1),Z0(2),F1,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN
CALL F(Z0(2).F1)
DO 40 I=1,N
F1(I) = Z0(1)*F1(I) + (1.0-20(1))*(Z0(I+1)-A(I))
40 CONTINUE
ELSE
CALL F(Z0(2),F1)
D0 60 I={,N
F1(I) = Z0(1)+(ACI)-F1(I))+Z0(I+1)-A(I)
60 CONTINUE
END IF
F1(NP1) = DDOT(NP1,YP,1,20,1)
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sss+s END OF PREDICTOR SECTION #*s#¢
*++¢% SET-UP FOR QUASI-NEWTION ITERATION s#%*+

IF (FAILED) THEN

[ 2 I 2]
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GENERATE QT = AUGMENTED JACOBIAN MATRIX FOR POINT ZO=(LAMBDA,X).

60

70

80

90

IF (IFLAG .EQ. -2) THEN

CURVE TRACKING PROBLEM:

D(RHO) = (D RHO(A,LAMBDA,X)/D LAMBDA, D RHO(A,LAMBDA,X)/DX).

DO 60 J = 1, NP1
CALL RHOJAC(A,Z0(1),20(2),QT(1,J),J,PAR,IPAR)
CONTINUE
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLENM:

D(RHO) = (F(X) - X + A, LAMBDA*DF(X) + (1-LAMBDA)*I).

CALL F(Z0(2),QT(1,1))
DO 70 I=1,N
QI(I,1) = A(I) - Zo(I+1) + QI(I,1)
CONTINUE
DO 80 J= 1,X
JPL = J+f
CALL FJAC(Z20(2),Q1(1,JP1),J)
CALL DSCAL(N, Z0(1), Qr(1,JP1), 1)
qQr(J,JP1) = 1.0 - Z0(1) + QI(J,JP1)
CONTINUE
ELSE

FIXED POINT PROBLEM:
D(RHO) = (A - F(X), I - LAMBDA*DF(X)).

CALL F(20(2),Q1(1,1))
CALL DSCAL(N,-ONE,QT(1,1),1)
CALL DAXPY(N,ONE,A,1,QT(1,1),1)
D0 90 J=1 N
JPL = J+1
CALL FJAC(Z0(2),QT(1,JP1),J)
CALL DSCAL(N, -20(1), QT(1,JP1), 1)
QT(J,JP1) = 1.0 + QT(J,JP1)
CONTINUE
END IF

DEFINE LAST ROW OF QT = YP.
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CALL DCOPY(NP1, YP, 1, QT(NP1,1), ¥P1)

COUNT JACOBIAN EVALUATION.

NFE = NFE+1

DO FIRST QUASI NEWION STEP.

100

110

FACTOR AUG.

CALL QRFAQF(QT,R,NP1,IFLAG)
IF (IFLAG .GT. 0) RETURN

COMPUTE NEWION STEP.

CALL DCOPY(N,F1,1,DZ,1)
CALL DSCAL(N,-ONE,DZ,1)
DZ(NP1) = 0.0

CALL QRSLQF(QT,R,DZ,¥W,NP1)

TAKE STEP AND SET FO = F1.

CALL DAXPY(NP1, ONE, DZ, 1, 20, 1)
CALL DCOPY(NP1, Fi, 1, FO, 1)

F1 = (RHO(ZO), YP*Z0) TRANSPOSE.

IF (IFLAG .EQ. -2) THEN
CALL RHO(A,Z0(1),20(2),F1,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN
CALL F(Z0(2),F1)
DO 100 I=1,N
F1(I) = Z0(1)*F1(I) + (1.0-Z0(1))*(20(I+1)-A(I))
CONTINUE
ELSE
CALL F(Z0(2),F1)
DO 110 I=1 N
F1(I) = 20(1)*(ACI)-F1(I))+Z0(I+1)-A(I)
CONTINUE
END IF
F1(NP1) = DDOT(NP1,YP,1,20,1)

ELSE

IF NOT FAILED THEN DEFINE DZ=20-Y PRIOR TO MAIN LOOP.

CALL DCOPY(NP1,20,1,DZ,1)
CALL DAXPY(NP1,-ONE,Y,1,DZ,1)

END IF
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C ssss+ END OF PREPARATION FOR QUASI-NEWTON ITERATION ss#s+
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c

c

sss3s QUASI-NEWTON ITERATION ##++»

DO 140 ITCNT = {,LITFH

PERFORM UPDATE FOR NEWION STEP JUST TAKEN.

CALL UPQRQF(NP1,ETA,DZ,FO,F1,QT,R,¥,T)

C COMPUTE NEXT NEWION STEP.

c

aQaQ

aoooaoaa aa

aQaQ

CALL DCOPY(N,F1,1,DZ,1)

CALL DSCAL(N,-ONE,DZ,1)

DZ(NP1) = 0.0

CALL QRSLQF(QT,R,DZ,¥,NP1)
TAKE STEP.

CALL DAXPY(NP1, ONE, DZ, 1, 20, 1)
CHECK FOR CONVERGENCE.

IF (DNRM2(NP1,DZ,1) .LE. RELERR*DNRM2(NP1,20,1)+ABSERR) THEN
GO TO 160
END IF

IF NOT CONVERGED, PREPARE FOR NEXT ITERATION.

120

130

FO = F1.
CALL DCOPY(NP1, Fi, 1, FO, 1)
F1 = (RHO(ZO), YP*Z0) TRANSPOSE.

IF (IFLAG .EQ. -2) THEN
CALL RHO(A,Z0(1),20(2),F1,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN
CALL F(Z0(2),F1)
DO 120 I=1,N
F1(I) = Z0(1)*F1(I) + (1.0-Z0(1))*(ZO(I+1)-A(I))
CONTINUE
ELSE
CALL F(z0(2),F1)
DO 130 I=1,N
F1(I) = Z0(1)+(A(I)-F1(I))+20(I+1)-A(I)
CONTINUE
END IF
F1(¥P1) = DDOT(NP1,YP,1,20,1)
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140 CONTINUE
ss+xs END OF QUASI-NEWTON LOOP s#+sx

ss+s+ DIDN'T CONVERGE OR TANGENT AT NEW POINT DID NOT MAKE
AN ACUTE ANGLE VWITH YPOLD -- TRY AGAIN VWITH A SMALLER H #+*%+

160  FAILED = .TRUE.

HFAIL = H

IF (A .LE. FOURU*(1.0 + §)) THEN
IFLAG = 6
RETURN

ELSE
H= 6+ H

END IF

GO T0 20

s++¢+ END OF CONVERGENCE FAILURE SECTION #*sss
s¢+¢+ CONVERGED -- MOP UP AND RETURN #*s+x

COMPUTE TANGENT & AUGMENTED JACOBIAN AT Z0.
NOTE: DZ AND F1 ARE USED SIMPLY AS WORK ARRAYS HERE.

160 CALL TANGQF(ZO,T,YP,A,QT,R,¥,DZ,F1,N,IFLAG,NFE,PAR,IPAR)
IF (IFLAG .GT. 0) RETURN

CHECK THAT COMPUTED TANGENT T MAKES AN ANGLE NO LARGER THAN
60 DEGREES WITH CURRENT TANGENT YP. (I.E. COS OF ANGLE < .5)
IF NOT, STEP SIZE WAS T00 LARGE, SO THROW AWAY ZO, AND TRY
AGAIN WITH A SMALLER STEP.

ALPHA = DDOT(NP1,T,1,YP,1)
IF (ALPHA .LT. 0.5) GOTO 150
ALPHA = ACOS(ALPHA)

SET UP VARIABLES FOR NEXT CALL.

CALL DCOPY(NP1,Y,1,YOLD,1)
CALL DCOPY(NP1,20,1,Y,1)
CALL DCOPY(NP1,YP,1,YPOLD,1)
CALL DCOPY(NP1,T,1,YP,1)

UPDATE ARCLENGTH S =S + ||Y-YOLDI|.

HTEMP = HOLD
CALL DAXPY(NP1,-ONE,YOLD,1,20,1)
HOLD = DNRM2(NP1,20,1)

S = S+HOLD
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C COMPUTE OPTIMAL STEP SIZE.

C IDLERR = DESIRED ERROR FOR NEXT PREDICTOR STEP.

C WK = APPROXIMATE CURVATURE = 2+SIN(ALPHA/2)/HOLD VWHERE
c ALPHA = ARCCOS(YP*YPOLD).

C GAMMA = EXPECTED CURVATURE FOR NEXT STEP, COMPUTED BY
c EXTRAPOLATING FROM CURRENT CURVATURE WK, AND LAST
c CURVATURE VWKOLD. GAMMA IS FURTHER REQUIRED TO BE
c POSITIVE.

c

WKOLD = ¥K
IDLERR = SQRT(SQRT(ABSERR + RELERR+DNRM2(NP1,Y,1)))

Q

IDLERR SHOULD BE NO BIGGER THAN 1/2 PREVIOUS STEP.

Q

IDLERR = NIN(.5+HOLD, IDLERR)
WK = 2.0+ABS(SIN(.6+ALPHA))/HOLD
IF (START) THEN
GAMMA = WK
ELSE
GAMMA = WK + HOLD/(HOLD+HTEMP) *(WK-WKOLD)
END IF
GAMMA = MAX(GAMMA, 0.01+0NE)
H = SQRT(2.0+IDLERR/GAMMA)

ENFORCE RESTRICTIONS ON STEP SIZE SO AS TO ENSURE STABILITY.
HMIN <= H <= HMAX, BMIN#HOLD <= H <= BMAX+HOLD.

aaaaan

H = MIN(MAX(SSPAR(1),8SPAR(3)+«HOLD,H) ,SSPAR(4)+HOLD,SSPAR(2))
IF (FAILED) H = MIN(HFAIL,H)
START = .FALSE.

aa

ss+s+ END OF MOP UP SECTION #*%**
RETURN

C #+*++ END OF SUBROUTINE STEPQF #*#%%»
END
SUBROUTINE TANGQF(Y,YP,YPOLD,A,QT,R,¥,S,T,N,IFLAG,NFE,PAR, IPAR)

SUBROUTINE TANGQF COMPUTES THE UNIT TANGENT VECTOR YP TI0 THE
ZERO CURVE OF THE HOMOTOPY MAP AT Y BY GENERATING THE AUGMENTED
JACOBIAN MATRIX

c

c

c

c

c

c - -
c | D(RHO(Y)) |

c AUG = | T |, WHERE RHO IS THE HOMOTOPY MAP,
c | YPOLD |

c

c

c

SOLVING THE SYSTEM
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T
AUG+YPT = (0,0,...,0,1) FOR YPT,

AND FINALLY COMPUTING YP = YPT/||YPTI|.

IN ADDITION, THE MATRIX AUG IS UPDATED S0 THAT THE LAST ROV IS
YP INSTEAD OF YPOLD ON RETURN.

ON INPUT:

Y(1:N+1) = CURRENT POINT (LAMBDA(S), IX(S)).

YP(1:N+1) 1S UNDEFINED ON INPUT.

YPOLD(1:N+1) = UNIT TANGENT VECTOR AT THE PREVIOUS POINT ON THE
ZERO CURVE OF THE HOMOTOPY MAP.

A(1:N) IS THE PARAMETER VECTOR IN THE HOMOTOPY MAP.

¥W(1:N+1), S(1:N+1), T(1:N+1) ARE WORK ARRAYS.

N IS THE DIMENSION OF X, WHERE Y=(LAMBDA(S),X(S)).

IFLAG IS -2, -1, OR O, INDICATING THE PROBLEM TYPE.

NFE IS THE NUMBER OF JACOBIAN EVALUATIONS.

PAR(1:*) AND IPAR(1:*) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,
WHICH ARE SIMPLY PASSED THROUGH TO THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

0N OUTPUT:

Y, YPOLD, A, N ARE UNCHANGED.

YP(1:N+1) CONTAINS THE NEW UNIT TANGENT VECTOR TO THE ZERO
CURVE OF THE HOMOTOPY MAP AT Y(S) = (LAMBDA(S), X(S)).

QT(1:N+1,1:N+1) CONTAINS Q TRANSPOSE OF THE QR FACTORIZATION OF
THE JACOBIAN MATRIX OF RHO EVALUATED AT Y AUGMENTED BY
YP TRANSPOSE.

R(1:(N+1)*(N+2)/2) CONTAINS THE UPPER TRIANGLE (STORED BY RO¥S)
OF THE R PART OF THE QR FACTORIZATION OF THE AUGMENTED JACOBIAN
MATRIX.

IFLAG = -2, -1, OR O, (UNCHANGED) ON A NORMAL RETURN.
= 4 IF THE AUGMENTED JACOBIAN MATRIX HAS RANK LESS THAN N+1.
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C NFE HAS BEEN INCREMENTED BY 1.

c
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CALLS DCOPY, DNRM2, DSCAL, F (OR RHO IF IFLAG = -2), FJAC

(OR RHOJAC, IF IFLAG = -2), R1UPQF (WHICH IS AN ENTRY POINT OF
UPQRQF), QRFAQF, QRSLQF.

*+x¢% DECLARATIONS »##s»

FUNCTION DECLARATIONS
DOUBLE PRECISION DNRM2
LOCAL VARIABLES

DOUBLE PRECISION LAMBDA, ONE, YPNRM
INTEGER I, J, JP1, NP1

SCALAR ARGUMENTS
INTEGER N, IFLAG, NFE
ARRAY DECLARATIONS
DOUBLE PRECISION Y(N+1), YP(N+1), YPOLD(N+1), A(N),

& QT(N+i,Ne1), R((N+1)#(N+2)/2), W(N+1), S(N+1), T(N+1),PAR(1)
INTEGER IPAR(1)

¢+++¢ END OF DECLARATIONS ##ss+

s¢++++¢ FIRST EXECUTABLE STATEMENT s#*s+

ONE = 1.0
NFE = NFE + 1
NP1 = N + 1
LAMBDA = Y(1)

*++++ DEFINE THE AUGMENTED JACOBIAN MATRIX *#s+s

QT

10

= AUG.
IF (IFLAG .EQ. -2) THEN

CURVE TRACKING PROBLEM:
D(RHO) = (D RHO(A,LAMBDA,X)/D LAMBDA, D RHO(A,LAMBDA,X)/DX).

DO 10 J = {,NP1
CALL RHOJAC(A,LAMBDA,Y(2),QT(1,J),J,PAR,IPAR)
CONTINUE
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ELSE IF (IFLAG .EQ. -1) THEN

c
c ZERO FINDING PROBLEM:
c D(RHO) = (F(X) - X + A, LAMBDA*DF(X) + (1-LAMBDA)+*I)
c
CALL F(Y(2),QT(1,1))
DO 20 I=1,N
QT(I,1) = ACI) - Y(I+1) + QI(I,1)
20 CONTINUE
DO 30 J= 1,N
JP1 = Jet
CALL FJAC(Y(2),Q1(1,JP1),J)
CALL DSCAL(N,LAMBDA,QT(1,JP1),1)
QT(J,JP1) = 1.0 - LAMBDA + QT(J,JP1)
30 CONTINUE
ELSE
c
c FIXED POINT PROBLEM:
c D(RHO) = (A - F(X), I - LAMBDA*DF(X)).
c
CALL F(Y(2),QT(1,1))
CALL DSCAL(N,-ONE,QT(1,1),1)
CALL DAXPY(N,ONE,A,1,QT(1,1),1)
DO 60 J=1,N
JP1 = J+t
CALL FJAC(Y(2),QT(1,JP1),J)
CALL DSCAL(N,-LAMBDA,QT(1,JP1),1)
QT(J,JP1) = 1.0 + QI(J,JP1)
60 CONTINUE
END IF
c
c DEFINE LAST ROW OF QT = YPOLD.
c
CALL DCOPY(NP1,YPOLD,1,QT(NP1,1),NP1)
c
C s++++ END OF DEFINITION OF AUGMENTED JACOBIAN MATRIX sssss
c
c T

C sssss SOLVE SYSTEM AUG*YPT = (0,...,0,1) #ssss
c
C FACTOR MATRIX.
c
CALL QRFAQF(QT,R,NP1,IFLAG)

IF MATRIX IS SINGULAR, THEN QUIT.
IF (IFLAG .EQ. 4) RETURN

ELSE SOLVE SYSTEM R*YP = QT+(0,...,0,1) FOR YP.

a0
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D0 70 J=1,N
YP(J) = 0.0
70 CONTINUE
YP(NP1) = 1.0
CALL QRSLQF(QT.R,YP,¥,NP1)

COMPUTE UNIT VECTOR.

YPNRM = 1.0/DNRM2(NP1,YP,1)
CALL DSCAL(NP1,YPNRM,YP,1)

#+s++ SYSTEM SOLVED #es+s
ssss+ UPDATE AUGMENTED SYSTEM S50 THAT LAST ROV IS YP sesss
S=YP-YPOLD, T = QT+E(NP1).

CALL DCOPY(NP1,YP,1,8,1)

CALL DAXPY(NP1,-ONE,YPOLD,1,5,1)

CALL DCOPY(NP1,QT(1,NP1),1,T,1)

CALL R1UPQF(NP1,8,T,QT,R,¥)

RETURN
ss+¢s END OF SUBROUTINE TANGQF #e+++

END

SUBROUTINE ROOTQF(N,NFE,IFLAG,RELERR,ABSERR,Y,YP,YOLD,

& YPOLD,A,QT,R,DZ,Z,¥,T,FO,F1,PAR, IPAR)

ROOTQF FINDS THE POINT YBAR = (1, XBAR) ON THE ZERO CURVE OF THE
HOMOTOPY MAP. IT STARTS WITH TWO POINTS YOLD=(LAMBDAOLD,XOLD) AND
Y=(LAMBDA,X) SUCH THAT LAMBDAOLD < 1 <= LAMBDA, AND ALTERNATES
BETWEEN USING A SECANT METHOD TO FIND A PREDICTED POINT ON THE
HYPERPLANE LAMBDA=1, AND TAKING A QUASI-NEWION STEP T0 RETURN TO THE
ZERO CURVE OF THE HOMOTOPY MAP.
ON INPUT:
N = DIMENSION OF I.
NFE = NUMBER OF JACOBIAN MATRIX EVALUATIONS.
IFLAG = -2, -1, OR 0, INDICATING THE PROBLEM TYPE.

RELERR, ABSERR = RELATIVE AND ABSOLUTE ERROR VALUES. THE ITERATION IS
CONSIDERED T0 HAVE CONVERGED WHEN A POINT Y=(LAMBDA,X) IS FOUND
SUCH THAT

1Y(1) - 1] <= RELERR + ABSERR AND
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1IDZ|| <= RELERR#||Y|| + ABSERR, VHERE
DZ I8 THE QUASI-NEWION STEP I0 V.
Y(1:N+1) = POINT (LAMBDA(S), X(S)) ON ZERO CURVE OF HOMOTOPY MAP.

YP(1:N+1) = UNIT TANGENT VECTOR I0 THE ZERO CURVE OF THE HOMOTOPY MAP
AT T,

YOLD(1:N+1) = A POINT DIFFERENT FROM Y ON THE ZERO CURVE.

YPOLD(1:N+1) = UNIT TANGENT VECTOR IO THE ZERO CURVE OF THE HOMOTOPY
MAP AT YOLD.

A(1:s) = PARAMETER VECTOR IN THE HOMOTOPY MAP.

QT(1:N+1,1:N+1) CONTAINS Q TRANSPOSE OF THE QR FACTORIZATION OF
THE AUGMENTED JACOBIAN MATRIX EVALUATED AT THE POINT Y.

R((N+1)*(N+2)/2) CONTAINS THE UPPER TRIANGLE OF THE R PART OF
OF THE QR FACTORIZATION, STORED BY ROVWS.

DZ(1:N+1), Z(1:N+1), W(1:N+1), T(1:N+1), FO(1:N+1), F1(1:N+1)
ARE WORK ARRAYS USED FOR THE QUASI-NEWION STEP AND THE SECANT
STEP.

PAR(1:+) AND IPAR(1:#) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,

WHICH ARE SIMPLY PASSED THROUGH T0 THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

ON QUTPUT:
N, RELERR, ABSERR, AND A ARE UNCHANCED.
NFE HAS BEEN UPDATED.

IFLAG
= -2, -1, OR O (UNCHANGED) ON A NORMAL RETURN.

= 4 IF A SINGULAR JACOBIAN MATRIX OCCURRED. THE
ITERATION WAS NOT COMPLETED.

= 6 IF THE ITERATION FAILED TO CONVERGE. Y AND YOLD CONTAIN
THE LAST TWO POINTS OBTAINED BY QUASI-NEWION STEPS, AND YP
CONTAINS A POINT OPPOSITE OF THE HYPERPLANE LAMBDA=1 FRON
Y.

Y IS THE POINT ON THE ZERO CURVE OF THE HOMOTOPY MAP AT LAMBDA = 1.
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YP AND YOLD CONTAIN POINTS NEAR THE SOLUTION.

CALLS DIMACH, DAXPY, DCOPY, DDOT, DNRM2, F (OR RHO),

QRSLQF, ROOT, UPQRQF.

ss¢x% DECLARATIONS sssss

&
&

FUNCTION DECLARATIONS
DOUBLE PRECISION DiMACH, DDOT, DNRM2, QOFS
LOCAL VARIABLES
DOUBLE PRECISION AERR, DDOO1, DDOO1i, DDO1, DDO1i, DELS, ETA,
ONE, PO, P1, PPO, PP1, QSOUT, RERR, §, SA, §B, S§0UT,
U, ZERO
INTEGER ISTEP, I, LCODE, LIMIT, NP1
LOGICAL BRACK
SCALAR ARGUMENTS

DOUBLE PRECISION RELERR, ABSERR
INTEGER N, NFE, IFLAG

ARRAY DECLARATIONS

DOUBLE PRECISION Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1), A(N),

& QT(N+1:N+1), R((N+1)*(N+2)/2), DZ(N+1), Z(N+1), W(N+1),

L4

*¥%%

T(N+1), FO(N+1), F1(N+1), PAR(1)
INTEGER IPAR(1)

* END OF DECLARATIONS ##*##

DEFINITION OF HERMITE CUBIC INTERPOLANT VIA DIVIDED DIFFERENCES.

DDO1 (PO, P1,DELS)=(P1-P0) /DELS
DD001(PO,PPO,P1,DELS)=(DD01(PO,P1,DELS)-PP0) /DELS
DDO11(PO,P1,PP1,DELS)=(PP1-DD01(P0,P1,DELS) ) /DELS
DDO011(PO,PPO,P1,PP1,DELS)=(DD011(PO,P1,PP1,DELS) -

& DD001 (PO, PPO,P1,DELS)) /DELS

&

L2 2 24

k%%

ETA

QOFs(Po,PPO,P1,PP1,DELS,S)=((DD0011(PO,PPO,P1,PP1,DELS)*
(S-DELS) + DD001(PO,PPO,P1,DELS))*S + PP0)*S + PO

* FIRST EXECUTABLE STATEMENT ##%¢+
* INITIALIZATION #%+++

= PARAMETER FOR BROYDEN'S UPDAIE.
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C LINIT = MAXIMUM NUMBER OF ITERATIONS ALLOWED.

c

c

ONE=1.0
ZER0=0.0

U=DIMACH(4)

RERR=MAX (RELERR, U)

AERR=MAX (ABSERR, ZER0)

NP1=N+1

ETA = 100.0+U

LIMIT = 2+«(INT(-LOG10 (AERR+RERR*DNRM2(NP1,Y,1)))+1)

C FO = (RHO(Y), YP*Y) TRANSPOSE.

c

c
c

aaQ

10

a0

20

c

IF (IFLAG .EQ. -2) THEN
CURVE TRACKING PROBLEM.

CALL RHO(A,Y(1),Y(2),FO,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLEM.

CALL F(Y(2),F0)
DO 10 I=1.,N
FO(I) = Y(1)*FO(I) + (1.0-Y(1))*(Y(I+1)-A(I))
CONTINUE
ELSE

FIXED POINT PROBLEM.

CALL F(Y(2),F0)
D0 20 I=1,¥
FO(I) = Y(1)*(A(I)-FO(I))+Y(I+1)-A(I)
CONTINUE
END IF
FO(NP1) = DDOT(NP1,YP,1,Y,1)

C s++%+ END OF INITIALIZATION BLOCK *#%s#s

c
c
c

sss+s COMPUTE FIRST INTERPOLANT WITH A HERMITE CUBIC #+**#

C FIND DISTANCE BEIWEEN Y AND YOLD. DZ=||Y-YOLD|]|.

c

c

CALL DCOPY(NP1,Y,1,DZ,1)
CALL DAXPY(NP{,-ONE,YOLD,1,DZ,1)
DELS=DNRM2(NP1,DZ,1)

C USING TW0 POINTS AND TANGENIS ON THE HOMOTOPY ZERO CURVE, CONSTRUCT
C THE HERMITE CUBIC INTERPOLANT Q(S). THEN USE ROOT TO0 FIND THE §

c

CORRESPONDING TO LAMBDA = 1. THE TW0 POINTS ON THE ZERO CURVE ARE
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C ALWAYS CHOSEN TO BRACKET LAMBDA=1i, WITH THE BRACKETING INTERVAL
C ALVAYS BEING [0, DELS].
c
§4=0.0
S§B=DELS
LCODE=1
40 CALL ROOT(SOUT,QSOUT,SA,SB,RERR, AERR,LCODE)
IF (LCODE .GT. 0) GO TO 60
QSoUT=QoFs(YOLD(1),YPOLD(1),Y(1),YP(1) ,DELS,50UT) - 1.0
GO TO 40

IF LAMBDA = 1 VWERE BRACKETED, ROOT CANNOT FAIL.

aaon

50 IF (LCODE .GT. 2) THEN
IFLAG=6
RETURN
ENDIF
c
C CALCULATE Q(SA) A8 THE INITIAL POINT FOR A NEWION ITERATION.
c
DO 60 I=1,KP1
Z(1)=QoFs(YOLD(I),YPOLD(I),Y(I),YP(I),DELS,SA)
60 CONTINUE

CALCULATE DZ = Z-Y.

aaa

CALL DCOPY(NP1,Z,1,DZ,1)
CALL DAXPY(NPi,-ONE,Y,1,DZ,1)

s+s++ END OF CALCULATION OF CUBIC INTERPOLANT s#*#+

TANGENT INFORMATION YPOLD IS NO LONGER KEEDED. HEREAFTER, YPOLD
REPRESENTS THE MOST RECENT POINT WHICH IS ON THE OPPOSITE SIDE OF
LAMBDA=1 FROM Y.

*+++¢ PREPARE FOR MAIN LOOP s#*s+

aaoaooooao0oo0ao00an

CALL DCOPY(NP1,YOLD,1,YPOLD,1)

INITIALIZE BRACK TI0 INDICATE THAT THE POINTS Y AND YOLD BRACKET
LAMBDA=1, THUS YOLD = YPOLD.

aacoaao

BRACK = .TRUE.

ao

sxse% MAIN LOOP *%s%x

Q

DO 300 ISTEP=1,LIMIT

aaQ

UPDATE JACOBIAN MATRIX.
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Fi=(RHO(Z), YP*Z) TRANSPOSE.

IF (IFLAG .EQ. -2) THEN
CALL RHO(A,Z2(1),Z(2),F1,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN
CALL F(Z2(2),F1)
DO 80 I=1,N
F1(I) = Z(1)*F1(I) + (1-Z(1))*(Z(I+1)-A(1))
CONTINUE
ELSE
CALL F(Z(2),F1)
DO 90 I=1,N
F1(I) = Z(1)+(A(I)-F1(I))+Z(I+1)-A(I)
CONTINUE
END IF
F1(NP1) = DDOT(NP1,YP,1,Z,1)

C PERFORM BROYDEN UPDATE.

c

aooaoaoaoao

a0

aoa

aaoaooaa

CALL UPQRQF(NP1,ETA,DZ,FO,F1,QT,R,¥,T)

QUASI-NEWION STEP.

COMPUTE NEWTON STEP.

CALL DCOPY(N,F1,1,DZ,1)
CALL DSCAL(N,-ONE,DZ,1)
DZ(¥P1) = 0.0

CALL QRSLQF(QT,R,DZ,VW,NP1)

TAKE NEWION STEP.

CALL DCOPY(NP1,Z,1,¥,1)
CALL DAXPY(NP1,0NE,DZ,1,Z,1)

CHECK FOR CONVERGENCE.

IF ((ABS(Z(1)-1.0) .LE. RERR+AERR) .AND.
(DNRM2(NP1,DZ,1) .LE. RERR+«DNRM2(N,Z(2),1)+AERR)) THEN
CALL DCOPY(NP1,Z,1,Y,1)
RETURN
END IF

PREPARE FOR NEXT ITERATION.

FO = F1.

CALL DCOPY(NP1,F1,1,FO0,1)
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IF Z(1) = 1.0 THEN PERFORM QUASI-NEWTON ITERATION AGAIN
WITHOUT COMPUTING A NEW PREDICTOR.

IF (ABS(Z(1)-1.0) .LE. RERR+AERR) THEN
CALL DCOPY(NP1,Z,1,DZ,1)
CALL DAXPY(NP1,-ONE,¥,1,DZ,1)
GOTO 300

END IF

UPDATE Y AND YOLD.

CALL DCOPY(NP1,Y,1,YOLD,1)
CALL DCOPY(NP1,Z,1,Y,1)

UPDATE YPOLD SUCH THAT YPOLD IS THE MOST RECENT POINT
OPPOSITE OF LAMBDA=1 FROM Y. SET BRACK = .TRUE. IFF
Y & YOLD BRACKET LAMBDA=1 §0 THAT YPOLD=YOLD.

IF ((Y(1)-1.0)+(YOLD(1)-1.0) .GI. 0) THEN
BRACK = .FALSE.

ELSE
BRACK = .TRUE.
CALL DCOPY(NP1,YOLD,1,YPOLD,1)

END IF

COMPUTE DELS = ||Y-YPOLD|]|.

CALL DCOPY(NP1,Y,1,DZ,1)
CALL DAXPY(NP1,-ONE,YPOLD,1,DZ,1)
DELS=DNRM2(NP1,DZ,1)

COMPUTE DZ FOR THE LINEAR PREDICTOR Z = Y + DZ,
WHERE DZ = SA+(YOLD-Y).

SA = (1.0-Y(1))/(YOLD(1)-Y(1))
CALL DCOPY(NP1,YOLD,1,DZ,1)
CALL DAXPY(NP1,-ONE,Y,1,DZ,1)
CALL DSCAL(NP1,84,DZ,1)

T0 INSURE STABILITY, THE LINEAR PREDICTION MUST BE NO FARTHER
FROM Y THAN YPOLD 1IS. THIS IS GUARANTEED IF BRACK = .TRUE.

IF LINEAR PREDICTION IS T00 FAR AWAY, USE BRACKETING POINTS
T0 COMPUTE LINEAR PREDICTION.

IF (.NOT. BRACK) THEN
IF (DNRM2(NP1,DZ,1) .GT. DELS) THEN

COMPUTE DZ = SA*(YPOLD-Y).

SA = (1.0-Y(1))/(YPOLD(1)-Y(1))
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CALL DCOPY(NP1,YPOLD,1,DZ,1)
CALL DAXPY(NPi1,-ONE,Y,1,DZ,1)
CALL DSCAL(NP1,54,DZ,1)
END IF
END IF

COMPUTE PREDICTOR Z = Y+DZ, AND DZ = NEW Z - OLD Z (USED FOR

QUASI-NEWION UPDATE).

CALL DAXPY(NP1,0NE,DZ,1,Z,1)

CALL DCOPY(NP1,Z,1,DZ,1)

CALL DAXPY(NP1,-ONE,¥,1,DZ,1)
300 CONTINUE

*s+s% END OF MAIN LOOP. #%#%*

THE ALTERNATING OSCULATORY LINEAR PREDICTION AND QUASI-NEWION
CORRECTION HAS NOT CONVERGED IN LIMIT STEPS. ERROR RETURN.
IFLAG=6
RETURN

*+s+s END OF SUBROUTINE ROOTIQF #sssx
END
SUBROUTINE QRFAQF(QT,R,N,IFLAG)

SUBROUTINE QRFAQF COMPUTES THE QR FACTORIZATION OF A MATRIX A,
WHERE R IS AN UPPER TRIANGULAR MATRIX, AND Q IS AN ORTHOGONAL
MATRIX WHICH IS THE PRODUCT OF N-1 HOUSEHOLDER TRANSFORMATIONS

Q=H1+H2+.. .*H(N-1).

THE ROUTINE HAS TWO MAJOR STEPS. FIRST, THE QR FACTORIZATION
OF A IS COMPUTED, RESULTING IN DEFINING THE VECIOR R, AND
STORING INFORMATION IN THE LOWER TRIANGLE OF QT WHICH VILL
ENABLE THE CONSTRUCTION OF Q TRANSPOSE.

THE SECOND STEP CONSTRUCIS Q TRANSPOSE FROM THE INFORMATION
STORED IN QT, AND PLACES IT IN QT.

THE INFORMATION STORED IN THE LOWER TRIANGLE OF QT DURING THE FIRST
STEP ARE THE VECTORS UJ, WHICH DEFINE THE HOUSEHOLDER TRANSFORMATIONS

T
H) =1 - (UJsUJ / PJ), VWHERE UJ[I]=0 FOR I=1...J-1,
UJ[1]=QT[I,J], FOR I=J...N,
PJ = THE JTH COMPONENT OF UJ.

ON INPUT:
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QT(1:N,1:N) CONTAINS THE MATRIX A TO BE FACTORED.
R(1:N+(N+1)/2) I8 UNDEFINED.
N IS THE DIMENSION OF THE MATRIX TO BE FACTORED.

IFLAG IS UNDEFINED.

ON OUTPUT:
QT CONTAINS Q TRANSPOSE.
R(1:N+(N+1)/2) CONTAINS THE UPPER TRIANGLE OF R STORED BY ROWS.
N IS UNCHANGED.
IFLAG = 4 IF THE MATRIX A IS SINGULAR. OTHERWISE, IFLAG
1§ UNCHANGED.
CALLS DAXPY, DCOPY, DDOT, DNRM2, DSCAL.
sss%¢ DECLARATIONS #**%%x
FUNCTIOR DECLARATIONS
DOUBLE PRECISION DDOT, DNRM2
LOCAL VARIABLES

DOUBLE PRECISION ONE, TAU, TEMP
INTEGER I, J, K, INDEXR, ISIGN

SCALAR ARGUMENTS
INTEGER N, IFLAG
ARRAY DECLARATIONS
DOUBLE PRECISION QT(N,N),R(N)
*++¢+ END OF DECLARATIONS #%+++
s+s+% FIRST EXECUTABLE STATEMENT #*##%#
ONE = 1.0

ss++¢ CALCULATION OF QR DECOMPOSITION, PLACING R IN THE VECTOR ##+++
R, AND PLACING THE UJ VECTORS IN THE LOWER TRIANGLE OF
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qr.

INDEIR = 1|

D0 20 K=1,N-1
TEMP = DNRM2(N-K+1,QT(K,K),1)
IF (TEMP .EQ. 0.0) THEN

MATRIX IS SINGULAR, SET IFLAG AND RETURN.
IFLAG = 4
RETURN

ELSE

FORM QK AND PREMULTIPLY QT BY IT.
T

UK = EK - ISIGN+X/||X||, WHERE HK = I-(UK+UK /PK),

PK = THE KTH COMPONENT OF UK,
EK = THE KTH NATURAL BASIS VECIOR,

I = THE KTH COLUMN OF THE MATRIX H(K-1)...H2+H1sQT,

ISIGN = THE SIGN OF PK.
GET SIGN.
ISIGN = SIGN(ONE,QT(K,K))
COMPUTE R(K,K).
R(INDEXR) = -ISIGN*TEMP
UPDATE KTH COLUMN.

TEMP = ISIGN/TEMP
CALL DSCAL(N-K+1,TEMP,QT(K,K),1)
QT(K,K) = QT(K,K) + 1.0

UPDATE THE K+1ST - NTH COLUMNS OF QT, AND R.

INDEIR = INDEIR + 1
DO 10 J=K+1 N
TAU = DDOT(N-K+1,QT(X,K),1,QT(X,J),1)/QT(K,K)
R(INDEXR) = QT(K,J) - TAU*QT(K.K)
INDEIR = INDEIR + 1
CALL DAXPY(N-K,-TAU,QT(K+1,K),1,QT(K+1,J),1)
CONTINUVE
END IF
CONTINUE
IF (QT(N,N) .EQ. 0.0) THEN

MATRIX IS SINGULAR, SET IFLAG AND RETURN.
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IFLAG = 4
RETURN
END IF
R(INDEXR) = QT(N,N)
ss+++ END OF FACTORING STEP #*#+%»
sssss CONSTRUCT Q TRANSPOSE IN QT ###ss
FORM Q BY MULTIPLYING ((IsH(N-1))=...)sH1.

THIS IS DONE IN PLACE IN QT BY UPDATING ONLY THE LOWER
RIGHT HAND CORNER OF QT (QT(K,K) T0 QT(N,N)).

QI(N,N) = 1.0
DO 40 K=N-1,1,-1
MULTIPLY QT BY H(K).
TEMP = QT(K,K)
UPDATE ROV K.
QT(K,K) = 1.0-QT(K,K)
CALL DCOPY(N-K,QT(XK+1,K),1,QT(K,K+1),X)
CALL DSCAL(N-K,-ONE,QT(K,K+1),N)
UPDATE REMAINING RO¥S.
DO 30 I=N,K+1,-1
TAU = -DDOT(N-K,QT(I,K+1),N,QT(K.K+1),N)
QT(I,K) = -TAU
TAU = TAU/TEMP
CALL DAXPY(N-K,TAU,QT(K,K+1),N,QT(I,K+1),N)
30 CONTINUE
40 CONTINUE
sss¢¢ END OF Q TRANSPOSE CONSTRUCTION #s#%s
RETURN
ssssx END OF SUBROUTINE QRFAQF *+#*»
END
SUBROUTINE QRSLQF(QT,R,B,X,N)

SUBROUTINE QRSLQF SOLVES THE SYSTEM R+S = QT+«+B FOR S.

ON INPUT:
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QT(1:N,1:N) CONTAINS QT IN THE EQUATION ABOVE.

R(1:N+(N+1)/2) CONTAINS THE UPPER TRIANGLE OF R IN THE EQUATION
ABOVE, STORED BY ROWS.

B(1:N) CONTAINS B IN THE EQUATION ABOVE.

N 18 THE DIMENSION OF THE PROBLEN.

ON OUTPUT:
QT AND R ARE UNCHANGED.
B  CONTAINS THE SOLUTION VECTIOR S.

X(1:N) IS A WORK ARRAY WHICH CONTAINS QTI«B ON OUTPUT.

CALLS DDOT.
ss++s DECLARATIONS s##ss=
FUNCTION DECLARATIONS
DOUBLE PRECISION DDOT
LOCAL VARIABLES

DOUBLE PRECISION TAU
INTEGER INDEXR, I, J

SCALAR ARGUMENTS
INTEGER N
ARRAY DECLARATIONS
DOUBLE PRECISION QT(N,N),R(N*(N+1)/2),B(N),X(N)
sss+s END OF DECLARATIONS #*s+s
*ss++ FIRST EXECUTABLE STATEMENT *s#ss
X = QT+B.
D0 10 I=1,N

X(I) = DDOT(N,QT(I,1),N,B,1)
10 CONTINUE



80

C COMPUTE 8 USING BACK SUBSTITUTION.
c
INDEXR = Ne«(N+1)/2
B(N) = X(N)/R(INDEXR)
INDEXR = INDEIR - 1
DO 30 I=N-1,1,-%
TAU = X(I)
DO 20 J=K,I+1,-1
TAU = TAU - R(INDEXR)*B(J)
INDEXR = INDEIR - 1
20 CONTINUE
B(I) = TAU/R(INDEXR)
INDEIR = INDEIR - 1
30 CONTINUE
RETURN

Qo0

ss+++ END OF SUBROUTINE QRSLQF #*%#++x*

END

SUBROUTINE UPQRQF(N,ETA,S,FO,F1,QT.R,¥,T)
SUBROUTINE UPQRQF PERFORMS A BROYDEN UPDATE ON THE Q R
FACTORIZATION OF A MATRIX A, (AN APPROXIMATION TO0 J(X0)),
RESULTING IN THE FACTORIZATION Q+ R+ OF

A+ = A ¢+ (Y - A+*S) (ST)/(ST * §8),

(AN APPROXIMATION TO J(X1))
YHERE § = X1 - X0, ST = § TRANSPOSE, Y = F(X1) - F(X0).

THE ENTRY POINT R1UPQF PERFORMS THE RANK ONE UPDATE ON THE QR
FACTORIZATION OF

A+ = A + Q+(T+ST).

ON INPUT:
N IS THE DIMENSION OF X AND F(X).

ETA IS A NOISE PARAMETER. IF (Y-A*S)(I) .LE. ETA+(|F1(I)|+[FO(I)I)
FOR 1 .LE. I .LE. N, THEN NO UPDATE IS PERFORMED.

S(1:N) = X1 - X0 (OR § FOR THE ENTRY POINT R1UPQF).
FO(1:N) = F(X0).
F1(1:N) = F(I1).

QT(1:N,1:N) CONTAINS THE OLD Q TRANSPOSE, WHERE A = Q*R .

oo oaooo0ao0o0a0o0000000000n0000nO0n0n0n0n0nOnOnOn0n0nn
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C R(1:N+(N+1)/2) CONTAINS THE OLD R, STORED BY ROVWS.
¥(1:¥), T(1:N) ARE WORK ARRAYS ( T CONTAINS THE VECTOR T FOR THE
ENTRY POINT R1UPQF ).
ON OUTPUT:
N AND ETA ARE UNCHANGED.
QT CONTAINS Q+ TRANSPOSE.
R CONTAINS R+, STORED BY ROVS.

§, FO, F1, W, AND T HAVE ALL BEEN CHANGED.

CALLS DAXPY, DDOT, AND DNRM2.
*s3¢% DECLARATIONS %%+

FUNCTION DECLARATIONS

(2 s B s B e I e B s I s I s I e B s I s I s I e I s I e e s B 2 2 B2 I 2 )

DOUBLE PRECISION DDOT, DNRM2

c
c LOCAL VARIABLES
c
DOUBLE PRECISION C, DEN, ONE, SS, ww, YY
INTEGER I, INDEXR, INDXR2, J, K
LOGICAL SKIPUP
c
c SCALAR ARGUMENTS
c
DOUBLE PRECISION ETA
INTEGER N
c
c ARRAY DECLARATIONS
c
DOUBLE PRECISION S(N), FO(N), Fi(N), QT(N,N), R(N*(N+1)/2),
& ¥(N), T(N), TT(2)
c
C #+sx+ END OF DECLARATIONS s*#**s
c
C *¢ss% FIRST EXECUTABLE STATEMENT %%+
c
ONE = 1.0
SKIPUP = .TRUE.
c
C #¢ss+ DEFINE T AND S SUCH THAT ##ssx
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A+ = Q+(R ¢ T*8T).
T = Rs§.
INDEIR = 1
DO 10 I=1,N
T(1) = DDOT(N-I+1,R(INDEXR),1,58(I),1)
INDEIR = INDEIR + N - I + 1
10 CONTINUE
W=7Y-QsT =Y - AsS,

DO 20 I=1,N
¥(I) = F1(I) - FO(I) - DDOT(N,QT(1,I),1,T,1)

IF W(I) IS NOT SMALL, THEN UPDATE MUST BE PERFORMED,
OTHERWISE SET W(I) T0 0.

IF (ABS(¥(I)) .GT. ETA*(ABS(F1(I)) + ABS(FO(I)))) THEN
SKIPUP = .FALSE.
ELSE
w(I) =0.0
END IF
20 CONTINUE
IF NO UPDATE IS NECESSARY, THEN RETURN.
IF (SKIPUP) RETURK
T = QT+¥W = QT+Y - RsS.
DO 30 I=1,N
T(I) = DDOT(N,QT(I,1).N,¥,1)
30 CONTINUE
S = S/(ST*S).

DEN = 1.0/DDOT(N,S,1,5,1)
CALL DSCAL(N,DEN,S,1)

«++++ END OF COMPUTATION OF T & S hae
AT THIS POINT, A+ = Qs(R + T+ST).

ENTRY R1UPQF(N,S,T,QT.R,¥)

ssss+ COMPUTE THE QR FACTORIZATION Q- R- OF (R + TsS). THEN,
Q+ = Q+*Q-, AND R+ = R-.

FIND THE LARGEST K SUCH THAT T(K) .NE. O.

*kkk¥
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K=XN
60 IF (T(K) .KE. 0.0 .OR. K .LE. 1) GOTO 60
K=K-1
GOTO 60O
60 CONTINUE

COMPUTE THE INDEX OF R(K-1,K-1).
INDEXR = (N + N - K + 3)¢(K -2) / 2+ 1
*ss3+ TRANSFORM R+T+ST INTO AN UPPER HESSENBERG MATRIX ##s«s

DETERMINE JACOBI ROTATIONS WHICH WILL ZERO OUT ROWS
N, §-1,...,2 OF THE MATRIX T+ST, AND APPLY THESE
ROTATIONS TO R. (THIS IS EQUIVALENT TO APPLYING THE
SAME ROTATIONS TO R+I+ST, EXCEPT FOR THE FIRST ROVW.
THUS, AFTER AN ADJUSTMENT FOR THE FIRST ROW, THE
RESULT IS AN UPPER HESSENBERG MATRIX. THE
SUBDIAGONAL ELEMENTS OF WHICH WILL BE STORED IN V.

NOTE: ROWS N,N-1,...,K+1 ARE ALREADY ALL ZERO.
D0 90 I=K-1,1,-1

DETERMINE THE JACOBI ROTATION WHICH WILL ZERO OUT
ROW 1I+1 OF THE TsST MATRIX.

IF (T(I) .EQ. 0.0) THEN
C=0.0
SS = SIGN(-T(I+1))= -T(I+1)/IT(I+1)|
§S = -SIGN(ONE,T(I+1))
ELSE
DEN = DNRM2(2,T(I),1)
C = 1(I1) / DEN
SS = -T(I+1)/DEN
END IF

PREMULTIPLY R BY THE JACOBI ROTATION.

YY = R(INDEXR)
WY = 0.0
R(INDEXR) = C*YY - SS+Ww
W(I+1) = SS*YY + C*W¥
INDEXR = INDEXR + 1
INDXR2 = INDEXR + N - I
DO 70 J= I+1,N
YY = R(I,J)
W¥ = R(I+1,J)
YY = R(INDEIR)
w¥ = R(INDXR2)
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R(I,J) = C*+YY - SS*¥W¥
R(I+1,J)) = S8+YY + CsW¥W
R(INDEXR) = C+YY - SS+W¥
R(INDIR2) = SS+YY + Cs¥Wy¥
INDEXR = INDEIR + 1§
INDXR2 = INDIR2 + 1
CONTINUE

PREMULTIPLY QT BY THE JACOBI ROTATION.

DO 80 J=1{ N
YY = QI(I,J)
YW = QT(I+1,))
QT(I,J) = C*YY - SSsWy
QT(I+1,J) = SS*YY + C*W¥
CONTINUE

UPDATE T(I) SO0 THAT T(I)*ST(J) IS THE (I,J)TH COMPONENT
OF T+ST, PREMULTIPLIED BY ALL OF THE JACOBI ROTATIONS SO
FAR.

IF (T(I) .EQ. 0.0) THEN
T(I) = DABS(T(I+1))
ELSE
T(I) = DNRM2(2,T(I),1)
END IF

LET INDEXR = THE INDEX OF R(I-1,I-1).

INDEXR = INDEXR - 2+(N - I) - 3

CONTINUE

UPDATE THE FIRST ROW OF R SO THAT R HOLDS (R+TsST)
PREMULTIPLIED BY ALL OF THE ABOVE JACOBI ROTATIONS.

CALL DAXPY(N,T(1),S,1,R,1)

*ss++ END OF TRANSFORMATION T0 UPPER HESSENBERG *#%**

*s+++ TRANSFORM UPPER HESSENBERG MATRIX INTO UPPER #***#»

TRIANGULAR MATRIIX.

INDEXR = INDEX OF R(1,1).

INDEXR = 1
DO 120 I=1,K-1

DETERMINE APPROPRIATE JACOBI ROTATION TO ZERO 0OUT
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Q

R(I+1,I).

IF (R(INDEIR) .EQ. 0.0) THEN
C=0.0
§S = -SIGN(ONE,¥W(I+1))
ELSE
TT(1) = R(INDEXR)
TT(2) = W(I+1)
DEN = DNRM2(2,1T,1)
C = R(INDEXR) / DEN
Ss = -W(I+1)/DEN
END IF

Q

PREMULTIPLY R BY JACOBI ROTATIOX.

YY = R(INDEXR)
WY = W(I+1)
R(INDEXR) = C*YY - SS*¥¥
¥(I+1) = 0.0
INDEXR = INDEIR + 1
INDXIR2 = INDEIR + N - 1
DO 100 J= I+1,N
YY = R(I,J)
c W = R(I+1,])
YY = R(INDEXR)
w¥ = R(INDIR2)
R(I,J) = C*YY -SS*Wy
c R(I+1,J) = ES+YY + CsW¥
R(INDEXR) = C*YY - SSsWy
R(INDXR2) = SSsYY + Cs¥W¥
INDEXR = INDEIR + 1
INDXR2 = INDIR2 + 1
100 CONTINUE

Q

aQ

(2]

c PREMULTIPLY QT BY JACOBI ROTATION.

DO 110 J=1,N
Y = QI(1,0)
WY = QT(I+1,J)
QI(I,J) = C*+YY - SSs¥¥
QT(I+1,J) = SS*YY + C+W¥
110 CONTINUE
120 CONTINUE
C
C s¢*+++ END OF TRANSFORMATION TO UPPER TRIANGULAR *%%#x
c
c
C #*s%% END OF UPDATE #*%sx
c
c
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RETURN

c

C sss++ END OF SUBROUTINE UPQRQF #+sss
END
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Appendix B Sparse Algorithm Code Listing

SUBROUTINE FIXPQS(N,NFE,IFLAG,LENQR,ARCRE,ARCAE, ANSRE, ANSAE,
& ARCLEN,A,Y,YP,YOLD, YPOLD,QR,PIVOT,PP,RHOVEC,20,DZ, T,¥ORK,
& SSPAR,PAR, IPAR)

SUBROUTINE FIXIPQS FINDS A FIXED POINT OR ZERO OF THE
N-DIMENSIONAL VECTOR FUNCTION F(X), OR TRACKS A ZERO CURVE OF A
CENERAL HOMOTOPY MAP RHO(A,X,LAMBDA). FOR THE FIXED POINT PROBLEN
F(X) I8 ASSUMED T0 BE A C2 MAP OF SOME BALL INTO ITSELF. THE
EQUATION X=F(X) IS SOLVED BY FOLLOWING THE ZERO CURVE OF THE
HOMOTOPY MAP

LAMBDA*(X - F(X)) + (1 - LAMBDA)*(X - A),

STARTING FROM LAMBDA = 0, X = A. THE CURVE IS PARAMETERIZED
BY ARC LENGTE 8§, AND IS FOLLOWED BY SOLVING THE ORDINARY
DIFFERENTIAL EQUATION D(HOMOTOPY MAP)/DS = 0 FOR

Y(5) = (X(S),LAMBDA(S)). THIS IS DONE BY USING A HERMITE CUBIC
PREDICTOR AND A CORRECTOR WHICH RETURNS T0 THE ZERO CURVE IN A
HYPERPLANE PERPENDICULAR I0 THE TANGENT T0 THE ZERO CURVE AT THE
MOST RECENT POINT.

FOR THE ZERO FINDING PROBLEM F(X) IS ASSUMED I0 BE A C2 MAP SUCH
THAT FOR SOME R > 0, IX+F(X) >= 0 VWHENEVER NORM(X) = R.

THE EQUATION F(X) = 0 IS SOLVED BY FOLLOWING THE ZERO CURVE OF
THE HOMOTOPY MAP

LAMBDA*F(X) + (1 - LAMBDA)*(X - A)

EMANATING FROM LAMBDA = 0, I = A.

A NUST BE AN INTERIOR POINT OF THE ABOVE MENTIONED BALLS.

FOR THE CURVE TRACKING PROBLEM RHO(A,X,LAMBDA) IS ASSUMED 10

BE A C2 MAP FRON Es*sM X [0,1) X E**N INTO Es+*N, WHICH FOR
ALMOST ALL PARAMETER VECTORS A IN SOME NONEMPTY OPEN SUBSET

OF E**M SATISFIES

RANK [D RHO(A,X,LAMBDA)/D LAMBDA, D RHO(A,X,LAMBDA)/DX] = X

FOR ALL POINTS (X,LAMBDA) SUCH THAT RHO(A,X,LAMBDA) = 0. IT IS
FURTHER ASSUMED THAT

RANK [ D RHO(A,X0,0)/DX ] = N.
¥ITH A FIXED, THE ZERO CURVE OF RHO(CA,X,LAMBDA) EMANATING FROM
LAMBDA = 0, X = X0 IS TRACKED UNTIL LAMBDA = 1 BY SOLVING THE
ORDINARY DIFFERENTIAL EQUATION D RHO(A,X(S),LAMBDA(S))/DS = 0
FOR Y(S) = (X(S),LAMBDA(S)), WHERE S IS ARC LENGCTH ALONG THE

87
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ZERO CURVE. ALSO THE HOMOTOPY MAP RHO(A,X,LAMBDA) IS ASSUMED I0
BE CONSTRUCTED SUCH THAT

D LAMBDA(0)/DS > 0.

FOR THE FIXED POINT AND ZERO FINDING PROBLEMS, THE USER MUST SUPPLY

A SUBROUTINE F(X,V) VWHICH EVALUATES F(X) AT X AND RETURNS THE
VECTOR F(X) IN V, AND A SUBROUTINE FJACS(X,QR,LENQR,PIVOT) VWHICH
EVALUATES THE (SYMMETRIC) JACOBIAN MATRIX OF F(X) AT X, AND RETURNS
THE SYMMETRIC JACOBIAN MATRIX IN PACKED SKYLINE STIORAGE FORMAT IN (QR.
LENQR AND PIVOY DESCRIBE THE DATA STRUCTURE IN QR. FOR THE CURVE
TRACKING PROBLEM, THE USER MUST SUPPLY A SUBROUTINE
RHO(A,LAMBDA,X,V,PAR,IPAR) VWHICH EVALUATES THE HOMOTOPY MAP RHO

AT (A,X,LAMBDA) AND RETURNS THE VECTOR RHO(A,X,LAMBDA) IN V,

AND A SUBROUTINE RHOJS(A,LAMBDA,X,QR,LENQR,PIVOT,PP,PAR,IPAR) VWHICH
RETURNS IN QR THE SYMMETRIC N X N JACOBIAN MATRIX (D RHO/DX]
EVALUATED AT (A,X,LAMBDA) AND STORED IN PACKED SKYLINE FORMAT,

AND RETURKS IN PP THE VECTOR -(D RHO/D LAMBDA) EVALUATED AT
(A,X,LAMBDA). LENQR AND PIVOT DESCRIBE THE DATA STRUCTURE IN

QR.

s«s NOTE THE MINUS SIGN IN THE DEFINITION OF PP. #s»

FIXPQS DIRECTLY OR INDIRECTLY USES THE SUBROUTINES DIMACH, F

(OR RHO), FJACS (OR RHO0JS), GMFADS, MULIDS, PCGQS, ROOTQS, STEPQS,
SOLVDS, AND THE BLAS ROUTINES DAXPY, DCOPY, DDOT, DNRM2, AND DSCAL.
ONLY DIMACH CONTAINS MACHINE DEPENDENT CONSTANTS. NO OTHER
MODIFICATIONS BY THE USER ARE REQUIRED.

ON INPUT:
N IS THE DIMENSION OF X, F(X), AND RHO(A,X,LAMBDA).

IFLAG CAN BE -2, -1, 0, 2, OR 3. IFLAG SHOULD BE O ON THE FIRST
CALL TO FIXPQS FOR THE PROBLEM X=F(X), -1 FOR THE PROBLEM
F(X)=0, AND -2 FOR THE PROBLEM RHO(A,X,LAMBDA)=0. IN CERTAIN
SITUATIONS IFLAG IS SET TO 2 OR 3 BY FIXPQS, AND FIXPQS CAN
BE CALLED AGAIN WITHOUT CHANGING IFLAG.

LENQR IS THE LENGTH OF THE N-DIMENSIONAL ARRAY QR. I.E.
IT IS THE NUMBER OF NON-ZERO ENTRIES IN THE JACOBIAN
MATRIX [DF/DX] (OR [D RHO/DX]).

ARCRE, ARCAE ARE THE RELATIVE AND ABSOLUTE ERRORS, RESPECTIVELY,
ALLOWED THE ITERATION ALONG THE ZERO CURVE. IF
ARC?E .LE. 0.0 ON INPUT, IT IS RESET TO .65*SQRT(ANS?E).
NORMALLY ARC?E SHOULD BE CONSIDERABLY LARGER THAN ANS?E.

ANSRE, ANSAE ARE THE RELATIVE AND ABSOLUTE ERROR VALUES USED FOR
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THE ANSWER AT LAMBDA = {. THE ACCEPTED ANSWER Y = (X,LAMBDA)
SATISFIES

1Y(1) - 1| .LE. ANSRE + ANSAE .AND.
|1DZ]| .LE. ANSRE#||Y|| + ANSAE YHERE
DZ IS THE NEWION STEP 10 Y.

A(1:*) CONTAINS THE PARAMETER VECTOR A. FOR THE FIXED POINT
AND ZERO FINDING PROBLEMS, A NEED NOT BE INITIALIZED BY THE
USER, AND IS ASSUMED TO HAVE LENGTH K. FOR THE CURVE
TRACKING PROBLEM, A MUST BE INITIALIZED BY THE USER.

Y(1:N+1) CONTAINS THE STARTING POINT FOR TRACKING THE HOMOTOPY MAP.
(Y(1),...,Y(N)) =4 FOR THE FIXED POINT AND ZERO FINDING
PROBLEMS. (Y(1),...,Y(¥)) = X0 FOR THE CURVE TRACKING PROBLENM.
Y(N+1) NEED NOT BE DEFINED BY THE USER.

YP(1:K+1) IS A WORK ARRAY CONTAINING THE TANGENT VECTOR T0 THE
ZERO CURVE AT THE CURRENT POINT Y.

YOLD(1:N+1) IS A WORK ARRAY CONTAINING THE PREVIOUS POINT FOUND
ON THE ZERO CURVE.

YPOLD(1:N+1) IS A WORK ARRAY CONTAINING THE TANGENT VECIOR TO
THE ZERO CURVE AT YOLD.

QR(1:LENQR) IS A WORK ARRAY CONTAINING THE N X N SYMMETRIC
JACOBIAN MATRIX WITH RESPECT I0 X STORED IN PACKED SKYLINE
STORAGE FORMAT. LENQR AND PIVOT DESCRIBE THE DATA
STRUCTURE IN (QR. (SEE SUBROUTINE PCGQS FOR A DESCRIPTION
OF THIS DATA STRUCTURE).

PIVOT(1:N+2) IS A WORK ARRAY WHOSE FIRST N+1 COMPONENTIS CONTAIN
THE INDICES OF THE DIAGONAL ELEMENTS OF THE N X N SYMMETRIC
JACOBIAN MATRIX (WITH RESPECT T0 X) WITHIN QR.

PP(1:N¥) IS A WORK ARRAY CONTAINING THE NEGATIVE OF THE LAST COLUMN
OF THE JACOBIAN MATRIX -[D RHO/D LAMBDA].

RHOVEC(1:N+1), ZO(1:N+1), DZ(1:N+1), T(1:N+1) ARE ALL WORK ARRAYS
USED BY STEPQS, TANGQS, AND ROOTQS TO CALCULATE THE TANGENT
VECTORS AND NEWTON STEPS.

WORK(1:8+*(N+1)+LENQR) IS A WORK ARRAY USED BY THE CONJUGATE GRADIENT
ALGORITHM TO SOLVE LINEAR SYSTEMS.

SSPAR(1:4) = (HMIN, HMAX, BMIN, BMAX) IS A VECTOR OF PARAMETERS
USED FOR THE OPTIMAL STEP SIZE ESTIMATION. A DEFAULT VALUE
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CAN BE SPECIFIED FOR ANY OF THESE FOUR PARAMETERS BY SETTING IT
.LE. 0.0 ON INPUT. SEE THE COMMENTS IN STEPQS FOR MORE
INFORMATION ABOUT THESE PARAMETERS.

PAR(1:s) AND 1IPAR(1:+) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,

WHICH ARE SIMPLY PASSED THROUGH TO THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

ON OUTPUT:

N, LENQR, A ARE UNCHANGED.

NFE IS THE NUMBER OF JACOBIAN EVALUATIONS.

IFLAG =

1

2

7

NORMAL RETURN.

SPECIFIED ERROR TOLERANCE CAKNOT BE MET. SOME OR ALL OF
ARCRE, ARCAE, ANSRE, ANSAE HAVE BEEN INCREASED I0
SUITABLE VALUES. TO0 CONTINUE, JUST CALL FIXPQS AGAIN
WITHOUT CHANGING ANY PARAMETERS.

STEPQS HAS BEEN CALLED 1000 TIMES. TO CONTINUE, CALL
FIXPQS AGAIN WITHOUT CHANGING ANY PARAMETERS.

JACOBIAN MATRIX DOES NOT HAVE FULL RANK. THE ALGORITHM
HAS FAILED (THE ZERO CURVE OF THE HOMOTOPY MAP CANNOT BE
FOLLOWED ANY FURTHER).

THE TRACKING ALGORITHM HAS LOST THE ZERO CURVE OF THE
HOMOTOPY MAP AND IS NOT MAKING PROGRESS. THE ERROR
TOLERANCES ARC?E AND ANS?E VWERE T00 LENIENT. THE PROBLEM
SHOULD BE RESTRARTED BY CALLING FIXPQS VWITH SMALLER ERROR
TOLERANCES AND IFLAG = 0 (-1, -2).

THE NEWION ITERATION IN STEPQS OR ROOTIQS FAILED TO
CONVERGE. THE ERROR TOLERANCES ANS?E MAY BE T00 STRINGENT.

ILLEGAL INPUT PARAMETERS, A FATAL ERROR.

ARCRE, ARCAE, ANSRE, ANSAE ARE UNCHANGED AFTER A NORMAL RETURN

ARCLEN

(IFLAG = 1). THEY ARE INCREASED TO0 APPROPRIATE VALUES ON THE
RETURN IFLAG = 2.

IS THE APPROXIMATE LENGTH OF THE ZERO CURVE.

Y(N+1) = LAMBDA, (Y(1),...,Y(N)) =X, AND Y IS AN APPROXIMATE

ZERO OF THE HOMOTOPY MAP. NORMALLY LAMBDA =1 AND X IS A
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FIXED POINT OR ZERO OF F(X). IN ABNORMAL SITUATIONS, LAMBDA
MAY ONLY BE NEAR 1 AND X NEAR A FIXED POINT OR ZERO.

sss3% DECLARATIONS #see»
FUNCTION DECLARATIONS
DOUBLE PRECISION DiMACH, DNRM2
LOCAL VARIABLES
DOUBLE PRECISION ABSERR, H, HOLD, RELERR, §, WK
INTEGER IFLAGC, ITER, J¥, LIMITD, LIMIT, NP1, PCGWK
LOGICAL CRASH, START

SCALAR ARGUMENTS

DOUBLE PRECISION ARCRE, ARCAE, ANSRE, ANSAE, ARCLEN
INTEGER N, NFE, IFLAG, LENQR

ARRAY DECLARATIONS

DOUBLE PRECISION A(N), Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1),
QR(LENQR), PP(N), RHOVEC(N+1), ZO(N+1), DZ(N+1), T(N+1),
WORK(8+(N+1) +LENQR), SSPAR(4), PAR(1)

INTEGER PIVOT(N+2), IPAR(1)

o &

SAVE
¢ssss END OF DECLARATIONS ****x
LIMITD IS AN UPPER BOUND ON THE NUMBER OF STEPS. IT MAY BE
CHANGED BY CHANGING THE FOLLOWING PARAMETER STATEMENT:
PARAMETER (LIMITD =1000)
ssss* FIRST EXECUTABLE STATEMENT ##%¢**
CHECK IFLAG
IF (N .LE. 0 .OR. ANSRE .LE. 0.0 .0OR. ANSAE .LT. 0.0)
& IFLAG = 7
IF (IFLAG .GE. -2 .AND. IFLAG .LE. 0) GO TO 10
IF (IFLAG .EQ. 2) GO T0 60
IF (IFLAG .EQ. 3) GO T0 40
ONLY VALID INPUT FOR IFLAG IS -2, -1, O, 2, 3.

IFLAG = 7
RETURN
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C sss+s INITIALIZATION BLOCK ##+#s
c
10 ARCLEN = 0.0

IF (ARCRE .LE. 0.0) ARCRE = .5+SQRT(ANSRE)
IF (ARCAE .LE. 0.0) ARCAE = .6+SQRT(ANSAE)
NFE=0
IFLAGC = IFLAG
NPi=N+1
PCGWK = 2+}+3

(2]

SET INITIAL CONDITIONS FOR FIRST CALL TO STEPQS.

Q

START=.TRUE.
CRASH=.FALSE.
RELERR = ARCRE
ABSERR = ARCAE
HOLD=1.0
H=0.1
8=0.0
YPOLD(NP1) = 1.0
Y(¥P1) = 0.0
DO 20 JwW=1,¥
YPOLD(J¥)=0.0
20 CONTINUE

SET OPTIMAL STEP SIZE ESTIMATION PARAMETERS.

anoonoa

MINIMUM STEP SIZE HNIN
IF (SSPAR(1) .LE. 0.0) SSPAR(1)= (SQRT(N+1.0)+4.0)*DIMACH(4)
c MAXIMUM STEP SIZE HMAX
IF (SSPAR(2) .LE. 0.0) SSPAR(2)= 1.0
c MINIMUM STEP REDUCTION FACTOR BMIN
IF (SSPAR(3) .LE. 0.0) SSPAR(3)= 0.1
c MAXIMUM STEP EXPANSION FACTOR BMAX
IF (SSPAR(4) .LE. 0.0) SSPAR(4)= 7.0

c
C LOAD A FOR THE FIXED POINT AND ZERO FINDING PROBLEMS.
c
IF (IFLAGC .GE. -1) THEN
CALL DCOPY(N,Y,1,4,1)
ENDIF
C

40 LIMIT=LIMITD

*+++¢+ END OF INITIALIZATION BLOCK. *s%*s

sk MAIN LOOP. *%%xx»

aoaooao

60 DO 400 ITER=1,LIMIT
IF (Y(NP1) .LT. 0.0) THEN
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ARCLEN = §
IFLAG = b
RETURN
END IF
c
C TAKE A STEP ALONG THE CURVE.
c
CALL STEPQS(N,NFE,IFLAGC,LENQR,START,CRASH,HOLD,H,WK,RELERR,
& ABSERR,S8,Y,YP,YOLD, YPOLD,A,QR,PIVOT,PP,RHOVEC, 20,DZ, T,
& WORK,SSPAR,PAR, IPAR)
c
C CHECK IF THE STEP WAS SUCCESSFUL.
c
IF (IFLAGC .GT. 0) THEN
ARCLEN=8
IFLAG=IFLAGC
RETURN
END IF
c
IF (CRASH) THEN
c
c RETURN CODE FOR ERROR TOLERANCE T00 SMALL.
c
IFLAG=2
c
c CHANGE ERROR TOLERANCES.
c
IF (ARCRE .LT. RELERR) ARCRE=RELERR
IF (ANSRE .LT. RELERR) ANSRE=RELERR
IF (ARCAE .LT. ABSERR) ARCAE=ABSERR
IF (ANSAE .LT. ABSERR) ANSAE=ABSERR
c
c CHANGE LIMIT ON NUMBER OF ITERATIONS.
c
LIMIT = LIMIT - ITER
RETURN
END IF
c

C IF LAMBDA >= 1.0, USE ROOTQS TO FIND SOLUTION.
c
IF (Y(NP1) .GE. 1.0) GOTO 600
c
400 CONTINUE

#*#%¥% END OF MAIN LOOP *+%++

DID NOT CONVERGE IN LIMIT ITERATIONS, SET IFLAG AND RETURN.

aOaaoaoaan

ARCLEN = §
IFLAG = 3
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RETURN
sssss FINAL STEP -- FIND SOLUTION AT LAMBDA=1 s#sss
SAVE YOLD FOR ARC LENGTH CALCULATION LATER.
600 CALL DCOPY(NP{,YOLD,1,T,1)
FIND SOLUTION.

CALL ROOTQS(N,NFE,IFLAG,LENQR,ANSRE,ANSAE,Y,YP,YOLD, YPOLD,
& A,QR,PIVOT,PP,RHOVEC,Z0,DZ,¥ORK(PCGWK) ,PAR, IPAR)

CHECK IF SOLUTION WAS FOUND AND SET IFLAG ACCORDINGLY.
IFLAG=1

SET ERROR FLAG IF ROOTQS COULD NOT GET THE POINT ON THE ZERO
CURVE AT LAMBDA = 1.0 .

IF (IFLAGC .GT. 0) IFLAG=IFLAGC
CALCULATE FINAL ARC LENGTH.

CALL DCOPY(NP1,Y,1,DZ,1)

WK=-1.0

CALL DAXPY(NP1,¥K,T,1,DZ,1)
ARCLEN=S - HOLD + DNRM2(NP1,DZ,1)

ss++s END OF FINAL STEP #%%s#
RETURN

*#+++x END OF SUBROUTINE FIXPQS *#**++
END
SUBROUTINE STEPQS(N,NFE,IFLAG,LENQR,START,CRASH,HOLD,H,
& ¥K,RELERR, ABSERR,S, Y, YP, YOLD, YPOLD,A,QR,PIVOT,PP,
& RHOVEC,Z0,DZ, T,WORK,SSPAR ,PAR, IPAR)

SUBROUTINE STEPQS TAKES ONE STEP ALONG THE ZERO CURVE OF THE
HOMOTOPY MAP RHO(X,LAMBDA) USING A PREDICTOR-CORRECTOR ALGORITHM.
THE PREDICTOR USES A HERMITE CUBIC INTERPOLANT, AND THE CORRECTOR
RETURNS TO THE ZERO CURVE USING A NEWTON ITERATION, REMAINING

IN A HYPERPLANE PERPENDICULAR T0 THE MOST RECENT TANGENT VECTOR.

STEPQS ALSO ESTIMATES A STEP SIZE H FOR THE NEXT STEP ALONG THE

ZERO CURVE.

ON INPUT:
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¥ = DIMENSION OF X.
NFE = NUMBER OF JACOBIAN MATRIX EVALUATIONS.
IFLAG = -2, -1, OR O, INDICATING THE PROBLEN TYPE.
LENQR = THE LENGTH OF THE ONE DIMENSIONAL ARRAY QR.

START = .TRUE. ON FIRST CALL TO STEPQS, .FALSE. OTHERVISE.
SHOULD NOT BE MODIFIED BY THE USER AFTER THE FIRST CALL.

HOLD = ||Y - YOLD|| ; SHOULD NOT BE MODIFIED BY THE USER.

H = UPPER LIMIT ON LENGTH OF STEP THAT WILL BE ATTEMPTED. H MUST
BE SET TO A POSITIVE NUMBER ON THE FIRST CALL I0 STEPQS.
THEREAFTER, STEPQS CALCULATES AN OPTIMAL VALUE FOR H, AND H
SHOULD NOT BE MODIFIED BY THE USER.

WK = APPROXIMATE CURVATURE FOR THE LAST STEP (COMPUTED BY PREVIOUS
CALL TO STEPQS). UNDEFINED ON FIRST CALL. SHOULD NOT BE
MODIFIED BY THE USER.

RELERR, ABSERR = RELATIVE AND ABSOLUTE ERROR VALUES. THE ITERATION
IS CONSIDERED TO HAVE CONVERGED WHEN A POINT Z=(X,LAMBDA) IS
FOUND SUCH THAT

|IDZ|| .LE. RELERR#||Z|| + ABSERR,
WHERE DZ IS THE LAST NEWION STEP.

S8 = (APPROXIMATE) ARC LENGTH ALONG THE HOMOTOPY ZERO CURVE UP TO
Y(S) = (X(S),LAMBDA(S)).

Y(1:N+1) = PREVIOUS POINT (X(S),LAMBDA(S)) FOUND ON THE ZERO CURVE
OF THE HOMOTOPY MAP.

YP(1:N+1) = UNIT TANGENT VECTOR TO THE ZERO CURVE OF THE HOMOTOPY
MAP AT Y. INPUT IN THIS VECIOR IS NOT USED ON THE FIRST CALL
T0 STEPGS.

YOLD(1:N+1) = A POINT BEFORE Y ON THE ZERO CURVE OF THE HOMOTOPY
MAP. INPUT IN THIS VECTOR IS NOT USED ON THE FIRST CALL T0
STEPQS.

YPOLD(1:N+1) = UNIT TANGENT VECTOR TO THE ZERO CURVE OF THE
HOMOTOPY MAP AT YOLD.

A(1:N) = PARAMETER VECTOR IN THE HOMOTOPY MAP.
QR(1:LENQR) IS A WORK ARRAY CONTAINING THE N X N SYMMETRIC

JACOBIAN MATRIX WITH RESPECT TO X STORED IN PACKED SKYLINE
STORAGE FORMAT. LENQR AND PIVOT DESCRIBE THE DATA
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STRUCTURE IN QR. (SEE SUBROUTINE PCGQS FOR A DESCRIPTION
OF THIS DATA STRUCTURE).

PIVOT(1:N+2) IS A WORK ARRAY WHOSE FIRST N+i COMPONENTS CONTAIN
THE INDICES OF THE DIAGONAL ELEMENTIS OF THE N X N SYMMEIRIC
JACOBIAN MATRIX (WITH RESPECT T0 I) WITHIN QR.

PP(1:N) IS A WORK ARRAY CONTAINING THE NEGATIVE OF THE LAST COLUMN
OF THE JACOBIAN MATRIX -[D RHO/D LAMBDA].

RHOVEC(1:N+1), 20(1:N+1), DZ(1:N+1), T(1:N+1) ARE ALL WORK ARRAYS
USED BY STEPQS, TANGQS, AND ROOTQS TO CALCULATE THE TANGENT
VECTORS AND NEWTON STEPS.

WORK(1:8+(N+1)+LENQR) IS A WORK ARRAY USED BY THE CONJUGATE GRADIENT
ALGORITHM T0 SOLVE LINEAR SYSTEMS.

SSPAR(1:4) = PARAMETERS USED FOR COMPUTATION OF THE OPTIMAL STEP SIZE.
SSPAR(1) = HMIN, SSPAR(2) = HMAX, SSPAR(3) = BMIN, SSPAR(4) = BMAX.
THE OPTIMAL STEP H IS RESTRICTED SUCH THAT

HMIN .LE. H .LE. HMAX, AND BMIN#HOLD .LE. H .LE. BMAX=*HOLD.

PAR(1:*) AND 1IPAR(1:s) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,

VHICH ARE SIMPLY PASSED THROUGH T0 THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

ON OUTPUT:
N, LENQR, A ARE UNCHANGED.

NFE HAS BEEN UPDATED.

IFLAG
= -2, -1, OR O (UNCHANGED) ON A NORMAL RETURN.

= 4 IF A JACOBIAN MATRIX WITH RANK < N HAS OCCURRED. THE
ITERATION WAS NOT COMPLETED.

= 6 IF THE ITERATION FAILED TO CONVERGE.
START = .FALSE. ON A NORMAL RETURN.
CRASH

= _FALSE. ON A NORMAL RETURN.

= .TRUE. IF THE STEP SIZE H WAS TO00 SMALL. H HAS BEEN
INCREASED TO AN ACCEPTABLE VALUE, WITH WHICH STEPQS MAY BE
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CALLED AGAIN.
= _TRUE. IF RELERR AND/OR ABSERR WERE Y00 SMALL. THEY HAVE
BEEN INCREASED TO ACCEPTABLE VALUES, WITH WHICH STEPQS MAY
BE CALLED AGAIN.
HOLD = ||Y-YOLD|]|.

H = OPTIMAL VALUE FOR NEXT STEP I0 BE ATTEMPTED. NORMALLY H SHOULD
NOT BE MODIFIED BY THE USER.

WK = APPROXIMATE CURVATURE FOR THE STEP TAKEN BY STEPQS.

S = (APPROXIMATE) ARC LENGTH ALONG THE ZERO CURVE OF THE HOMOTOPY
MAP UP T0 THE LATEST POINT FOUND, WHICH IS RETURNED IN Y.

RELERR, ABSERR ARE UNCHANGED ON A NORMAL RETURN. THEY ARE POSSIBLY
CHANGED IF CRASH = .TRUE. (SEE DESCRIPTION OF CRASH ABOVE).

Y, YP, YOLD, YPOLD CONTAIN THE TWO MOST RECENT POINTS AND TANGENT
VECTORS FOUND ON THE ZERO CURVE OF THE HOMOTOPY MAP.

CALLS DIMACH, DAXPY, DCOPY, DDOT, DNRM2, DSCAL, F (OR RHO), FJACS
(OR RHOJS), PCGQS, TANGQS.

ss¢++ DECLARATIONS s*%ss

FUNCTION DECLARATIONS

(2 e B B e B B e B s B e B e I e B e B e B s A e I s I s I s e N e B s s I e I B I B e s 2 D2 )
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DOUBLE PRECISION DiMACH, DDOT, DNRM2, QOFS
LOCAL VARIABLES

DOUBLE PRECISION ALPHA, CORDIS, DDOOi, DDOO11,DDO1,DDO11,DELS,
& FOURU, GAMMA, HFAIL, HTEMP, IDLERR, LAMBDA, OMEGA, ONE, PO,
& Pi, PPO, PP1, SIGMA, TEMP, THETA, TW0U, WKOLD, XSTEP
INTEGER I, IICNT, LITFH, J, JP1, LK, LST, NP1, PCGWK, ZU
LOGICAL FAILED

SCALAR ARGUMENTS

INTEGER N, NFE, IFLAG, LENQR

LOGICAL START, CRASH

DOUBLE PRECISION HOLD, H, WK, RELERR, ABSERR, S
ARRAY DECLARATIONS

DOUBLE PRECISION Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1),
& A(N), QR(LENQR), PP(N), RHOVEC(N+1), ZO(N+1), DZ(N+1),
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T(N+1), WORK(8+(N+1)+LENQR), SSPAR(4), PAR(1)
INTEGER PIVOT(N+2), IPAR(1)

REAL WRGE(8),ACOF(12)
DATA WRGE /
.8736116E+00, .1631947E+00, .3101816E-01, .3330946E-10,
.4677T88E+00, .6070123E-03, .1080863E-06, .1122789E-08/
DATA ACOF /

.9043128E+00,-.7076676E+00,-.4667383E+01,-.3677482E+01,

.8616099E+00,-.19563110E+00,~-.4830636E+01,~.9770628E+00,

.1040061E+01, .3793396E-01, .1042177E+01, .4450706E-01/
SAVE

END OF DECLARATIONS ##s%¢

DEFINITION OF HERMITE CUBIC INTERPOLANT VIA DIVIDED DIFFERENCES.

(22 22

L2 2 2 27

LITFH

CHECK

DDO1(PO,P1,DELS) = (P1-PO)/DELS
DD001(PO,PPO,P1,DELS) = (DDO1(PO,P1,DELS)-PP0)/DELS
DDO11(PO,P1,PP1,DELS) = (PP1-DDO1(PO,P1,DELS))/DELS
DD0011(PO,PPO,P1,PP1,DELS) = (DDO11(PO,P1,PP1,DELS) -
ppoo1(Po,PPO,P1,DELS) ) /DELS
QoFs(po,PPO,P1,PP1,DELS,S) = ((DD0O011(PO,PPO,P1,PP1,DELS)*
(S-DELS) + DD001(PO,PPO,P1,DELS))*S + PP0)*S + PO

FIRST EXECUTABLE STATEMENT #s%%x

INITIALIZATION sses»
= MAXIMUM NUMBER OF NEWTON ITERATIONS ALLOWED.

ONE = 1.0

TWOU = 2.0+*DIMACH(4)
FOURU = TWOU + TWOU
NP1 = N+i

FAILED = .FALSE.
CRASH = .TIRUE.

LITFH = 10

PCGWK = 2#N+3

ZU = 3+N+4

THAT ALL INPUT PARAMETERS ARE CORRECT.

THE ARCLENGTH S MUST BE NONNEGATIVE.

IF (S .LT. 0.0) RETURN

IF STEP SIZE IS TO0 SMALL, DETERMINE AN ACCEPTABLE ONE.
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IF (H .LT. FOURU*(1.0+§)) THEN
H=FOURU#(1.0 + 8)
RETURN

END IF

IF ERROR TOLERAKCES ARE T00 SMALL, INCREASE THEM T0 ACCEPTABLE
VALUES.

TEMP=DNRM2(NP1,Y,1) + 1.0
IF (.6+(RELERR+TEMP+ABSERR) .LT. TWOU+TEMP) THEN
IF (RELERR .NE. 0.0) THEN
RELERR = FOURU=*(1.0+FOURU)
TEMP = 0.0
ABSERR = MAX(ABSERR, TEMP)
ELSE
ABSERR=FQURU*TEMP
END IF
RETURN
END IF

INPUT PARAMETERS WERE ALL ACCEPTABLE.

CRASH = .FALSE.

COMPUTE YP ON FIRST CALL.

10

IF (START) THEN
INITIALIZE THE IDEAL ERROR USED FOR STEP SIZE ESTIMATION.
IDLERR=SQRT(SQRT(ABSERR))

INITIALIZE STARTING POINTS FOR THE CONJUGATE GRADIENT
ALGORITHN I0 ZERO.

DO 10 J=1,32+N+2

WORK(J)=0.0
CONTINUE
CALL TANGQS(Y,YP,YPOLD,A,QR,PIVOT,PP,RHOVEC,WORK,
& N,LENQR, IFLAG,NFE,PAR, IPAR)

IF (IFLAG .GT. 0) RETURN
END IF

s++++ COMPUTE PREDICTOR POINT Z0 ####s

20

IF (START) THEN

COMPUTE 20 WITH LINEAR PREDICTOR USING Y, YP --
20 = Y+Hs*YP.
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CALL DCOPY(NP1,Y,1,20,1)
CALL DAXPY(NP1,H,YP,1,20,1)

ELSE
COMPUTE Z0 WITH CUBIC PREDICTOR.

DO 30 I=1,NP1
Z0(1) = QOFs(YoLD(I),YPOLD(I),Y(I),YP(I), HOLD,HOLD+H)
30 CONTINUE

END IF
ss3+s END OF PREDICTOR SECTION s#%#+
*ss4% NEWTON ITERATION ##+#+s
DO 140 ITICNT = {,LITFH
SET STARTING POINTS FOR CONJUGATE GRADIENT ALGORITHM.

DO 40 J=ZU,ZUs2+N+1
WORK(J) = 0.0
40  CONTINUE

COMPUTE QR = [D RHO/DX], RHOVEC=RHO, -PP= (D RHO/D LAMBDA).

LAMBDA = ZO(NP1)
IF (IFLAG .EQ. -2) THEN

CURVE TRACKING PROBLENM.

CALL RHOJS(A,LAMBDA,ZO,QR,LENQR,PIVOT,PP,PAR,IPAR)
CALL RHO(A,LAMBDA,ZO,RHOVEC,PAR, IPAR)
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLEM.

CALL FJACS(ZO,QR,LENQR,PIVOT)

CALL DSCAL(LENQR,LAMBDA,QR,1)

SIGMA=1.0-LAMBDA

DO 60 J=1,N

QR(PIVOT(J))=QR(PIVOT(J))+SIGMA

60 CONTINUE

CALL DCOPY(N,Z0,1,RHOVEC,1)

CALL DAXPY(N,-ONE,A,1,RHOVEC,1)

CALL F(Z0,PP)

CALL DSCAL(N,-ONE,PP,1)

CALL DAXPY(N,ONE,RHOVEC,1,PP,1)
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CALL DAXPY(N,-LAMBDA,PP,1,RHOVEC,1)
ELSE

FIXED POINT PROBLENM.

CALL FJACS(ZO0,QR,LENQR,PIVOT)
CALL DSCAL(LENQR,-LAMBDA,QR,1)
DO 60 J=1,N
QR(PIVOT(J)) = QR(PIVOT(J))+1.0
60 CONTINUE
CALL DCOPY(N,Z0,1,RHOVEC,1)
CALL DAXPY(N,-ONE,A,1,RHOVEC,1)
CALL F(Z0,PP)
CALL DAXPY(N,-ONE,A,1,PP,1)
CALL DAXPY(N,-LAMBDA,PP,1,RHOVEC,1)
END IF
RHOVEC(NP1) = 0.0
NFE = NFE+1

SOLVE SYSTEM TO FIND NEWION STEP Dz.

CALL PCGQS(N,QR,LEKQR,PIVOT,PP,YP,RHOVEC,DZ,
& WORK (PCGWK) , IFLAG)
IF (IFLAG .GT. 0) RETURN

TAKE STEP.
CALL DAXPY(NPi, ONE, DZ, 1, 20, 1)
CHECK FOR CONVERGENCE.

XSTEP=DNRM2(NP1,DZ,1)

IF (XSTEP .LE. RELERR*DNRM2(NP1,Z0,1)+ABSERR) THEN
GO TO 160

END IF

140 CONTINUE
*ss+x% END OF NEWION LOOP #%%s%+¢

*+*++ DIDN'T CONVERGE OR TANGENT AT NEW POINT DID NOT MAKE #*%s%¢
AN ANGLE SMALLER THAN 60 DEGREES ¥WITH YPOLD --
TRY AGAIN WITH A SMALLER H

160  FAILED = .IRUE.
HFAIL = H
IF (H .LE. FOURU*(1.0 + S)) THEN
IFLAG = 6
RETURN
ELSE
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H= .6+ H
END IF
GO T0 20

ss+¢ss END OF CONVERGENCE FAILURE SECTION #*¢ss
ss+s% CONVERGED -- MOP UP AND RETURN #»s#s
COMPUTE TANGENT AT 20.

160  CALL TANGQS(Z0,T,YP,A,QR,PIVOT,PP,RHOVEC,WORK,N,
& LENQR, IFLAG,NFE,PAR, IPAR)
IF (IFLAG .GT. 0) RETURN

CHECK THAT COMPUTED TANGENT T MAKES AN ANGLE NO LARGER THAN
60 DEGREES WITH CURRENT TANGENT YP. (I.E. COS OF ANGLE < .B)
IF NOT, STEP SIZE WAS TO0 LARGE, SO THROW AWAY ZO, AND TRY
AGAIN WITH A SMALLER STEP.

ALPHA = DDOT(NP1,T,1,YP,1)
IF (ALPHA .LT. 0.5) GOTO 160
ALPHA = ACOS(ALPHA)

COMPUTE CORRECTOR DISTANCE.

DO 170 I=1,NPi
WORK (PCGYK+I-1)=QOFS(YOLD(I),YPOLD(I),Y(I),YP(I) ,HOLD,HOLD+H)
170  CONTINUE
CORDIS=DNRM2(NP1,WORK(PCGWK+I-1),1)

SET UP VARIABLES FOR NEXT CALL.

CALL DCOPY(¥P1,Y,1,YOLD,1)
CALL DCOPY(NP1,20,1,Y,1)
CALL DCOPY(NP1,YP,1,YPOLD,1)
CALL DCOPY(¥P1,T,1,YP,1)

UPDATE ARCLENGTH S =8 + ||Y-YOLD||.

HTEMP = HOLD

CALL DAXPY(NP1,-ONE,YOLD,1,Z0,1)
HOLD = DNRM2(NP1,20,1)

§ = S+HOLD

COMPUTE IDEAL ERROR FOR STEP SIZE ESTIMATION.

OMEGA=XSTEP/CORDIS

IF (ITCNT .LE. 1) THEN
THETA = 8.0

ELSE IF (ITCNT .EQ. 4) THEN
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THETA = 1.0
ELSE IF (ITCNT .LT. 4) THEN
LK = 4+ITCNT-7
IF (OMEGA .GE. WRGE(LK)) THEN
THETA = 1.0
ELSE IF (OMEGA .CE. WRGE(LK+1)) THEN
THETA = ACOF(LK) + ACOF(LK+1)+LOG(OMEGA)
ELSE IF (OMEGA .GE. WRGE(LK+2)) THEN
THETA = ACOF(LK+2) + ACOF(LK+3)*L0G(OMEGA)
ELSE
THETA = 8.0
END IF
ELSE IF (ITCNT .GE. 7) THEN
THETA = 0.125
ELSE
LK = 4+ITCNT - 16
IF (OMEGA .GT. WRGE(LK)) THEN
LST = 2+«ITICNT - 1
THETA = ACOF(LST) + ACOF(LST+1)+L0OG(OMEGA)
ELSE
THETA = 0.126
END IF
END IF
IDLERR=THETA* IDLERR

IDLERR SHOULD BE NO BIGGER THAN 1/2 PREVIOUS STEP.
IDLERR = MIN(.5+HOLD, IDLERR)

COMPUTE OPTIMAL STEP SIZE.

WK = APPROXIMATE CURVATURE = 2+SIN(ALPHA/2) VWHERE
ALPHA = ARCCOS(YP*YPOLD).

GAMMA = EXPECTED CURVATURE FOR NEXT STEP, COMPUTED BY
EXTRAPOLATING FROM CURRENT CURVATURE WK, AND LAST
CURVATURE WKOLD. GAMMA IS FURTHER REQUIRED IO BE
POSITIVE.

WKOLD = WK
WK = 2.0+ABS(SIN(.6+ALPHA))/HOLD
IF (START) THEN

GAMMA = WK
ELSE

GAMMA = WK + HOLD/(HOLD+HTEMP) * (WK-WKOLD)
END IF

GAMMA = MAX(GAMMA, 0.01*0NE)
H = SQRT(2.0+*IDLERR/GAMMA)

ENFORCE RESTRICTIONS ON STEP SIZE SO AS TO ENSURE STABILITY.
HMIN <= H <= HMAX, BMIN*HOLD <= H <= BMAX+HOLD.
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H = MIN(MAX(SSPAR(1),5SPAR(3)+HOLD,H),S5SPAR(4)*HOLD,SSPAR(2))
IF (FAILED) H = NIN(HFAIL,H)
START = .FALSE.
ss+¢ss END OF MOP UP SECTION #se+s
RETURN

sss+s END OF SUBROUTINE STEPQS s#s*+
END

SUBROUTINE TANGQS(Y,YP,YPOLD,A,QR,PIVOT,PP,RHOVEC,WORK,N,LENQR,

s IFLAG,NFE,PAR, IPAR)

SUBROUTINE TANGQS COMPUTES THE UNIT TANGENT VECTIOR YP TO0 THE
ZERO CURVE OF THE HOMOTOPY MAP AT Y BY GENERATING THE AUGMENTED
JACOBIAN MATRIX

| D(RHO(Y)) |
AUG = | T |, VWHERE RHO IS THE HOMOTOPY MAP
|  YPOLD |

SOLVING THE SYSTEM
T

AUG+YPT = (0,0,...,0,1) FOR YPT.

AND FINALLY COMPUTING YP = YPI/|IYPTIII.

ON INPUT:
Y(1:N+1) = CURRENT POINT (X(S), LAMBDA(S)).
YP(1:N+1) IS UNDEFINED ON INPUT.

YPOLD(1:N+1) = UNIT TANGENT VECTOR AT THE PREVIOUS POINT ON THE
ZERO CURVE OF THE HOMOTOPY MAP.

A(1:N) IS THE PARAMETER VECTOR IN THE HOMOTOPY MAP.

QR(1:LENQR) IS A WORK ARRAY CONTAINING THE N X N SYMMETRIC
JACOBIAN MATRIX WITH RESPECT T0 X STORED IN PACKED SKYLINE
STORAGE FORMAT. LENQR AND PIVOT DESCRIBE THE DATA
STRUCTURE IN QR. (SEE SUBROUTINE PCGQS FOR A DESCRIPTION
OF THIS DATA STRUCTURE).

PIVOT(1:N+2) IS A WORK ARRAY WHOSE FIRST N+1 COMPONENTS CONTAINI
THE INDICES OF THE DIAGONAL ELEMENTS OF THE N X N SYMMETRIC
JACOBIAN MATRIX (WITH RESPECT T0 X) WITHIN QR.
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PP(1:¥) I8 A WORK ARRAY CONTAINING THE NEGATIVE OF THE LAST COLUMN
OF THE JACOBIAN MATRIX -([D RHO/D LAMBDA].

RHOVEC(1:N+1), IS A WORK ARRAY USED TO CALCULATE THE TANGENT
VECTOR.

WORK(1:8+(N+1)+LENQR) IS A WORK ARRAY USED BY THE CONJUGATE GRADIENT
ALGORITHM TO0 SOLVE LINEAR SYSTEMS.

¥ IS THE DIMENSION OF X, WHERE Y=(X(8),LAMBDA(S)).

LENQR IS THE LENGTH OF THE ONE-DIMENSIONAL ARRAY QR.

IFLAG IS -2, -1, OR O, INDICATING THE PROBLEN IYPE.

NFE IS THE NUMBER OF JACOBIAN EVALUATIORNS.

PAR(1:+) AND 1IPAR(1:s) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,
WHICH ARE SIMPLY PASSED THROUGH TO THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

ON OUTPUT:

Y, YPOLD, A, N, LENQR ARE UNCHANGED.

YP(1:N+1) CONTAINS THE NEW UNIT TANGENT VECTOR T0 THE ZERO
CURVE OF THE HOMOTOPY MAP AT Y(S) = (X(S),LAMBDA(S)).

IFLAG = -2, -1, OR O, (UNCHANGED) ON A NORMAL RETURN.
= { IF THE AUGMENTED JACOBIAN MATRIX HAS RANK LESS THAN N+1.

NFE HAS BEEN INCREMENTED BY 1.
CALLS DCOPY, DNRM2, DSCAL, F (OR RHO IF IFLAG = -2), FJACS
(OR RHOJS, IF IFLAG = -2), PCGQS.
sssss DECLARATIONS sssss
FUNCTION DECLARATIONS
DOUBLE PRECISION DNRM2
LOCAL VARIABLES

DOUBLE PRECISION LAMBDA, ONE, SIGMA, YPNRM
INTEGER J, NP1, PCGWK, ZU
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SCALAR ARGUMENTS

INTEGER N, LENQR, IFLAG, NFE

ARRAY DECLARATIONS

&

(2222

E 22 2 24

22 2 2

DOUBLE PRECISION Y(N+1), YP(N+1), YPOLD(N+1), A(N),
QR(LENQR), PP(N), RHOVEC(N+1), VWORK(8+(N+1)+LENQR),(PAR(1)
INTEGER PIVOT(N+2), IPAR(1)

END OF DECLARATIONS ##%*+
FIRST EXECUTABLE STATEMENT ##+#s

ONE = 1.0

NFE = NFE + 1
NP1 = N ¢+
LAMBDA = Y(NP1)
PCGWK = 2+N+3
ZU = 3+N+4

DEFINE THE AUGMENTED JACOBIAN MATRIX ###3s

COMPUTE JACOBIAN MATRIX, STORE IT IN [QR|-PP].

10

IF (IFLAG .EQ. -2) THEN
CURVE TRACKING PROBLEM.

CALL RHOJS(A,LAMBDA,Y,QR,LENQR,PIVOT,PP,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLEM.

CALL F(Y,PP)
CALL DSCAL(N,-ONE,PP,1)
CALL DAXPY(N,ONE,Y,1,PP,1)
CALL DAXPY(N,-ONE,A,1,PP,1)
CALL FJACS(Y,QR,LENQR,PIVOT)
CALL DSCAL(LENQR,LAMBDA,QR,1)
SIGMA = 1.0-LAMBDA
D0 10 J=1,N
QR(PIVOT(J))=QR(PIVOT(J))+SICMA

CONTINUE

ELSE

FIXED POINT PROBLEM

CALL F(Y,PP)
CALL DAXPY(N,-ONE,A,1,PP,1)
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CALL FJACS(Y,QR,LENQR,PIVOT)
CALL DSCAL(LENQR,-LAMBDA,QR,1)

DO 20 J=1,N
QR(PIVOT(J))=QR(PIVOT(J)) + 1.0
20 CONTINUE
ENDIF
c
C ssss+ END OF DEFINITION OF AUGMENTED JACOBIAN MATRIX *ssss
c
c T
C *+s+++ SOLVE SYSTEM AUG*YPT = (0,...,0,1) ssess
c

C INITIALIZE STARTING POINT FOR THE CONJUGATE GRADIENT ALGORITHM
C T0 BE THE SOLUTIONS FROM THE PREVIOUS CALL TO TANGQS.
c

CALL DCOPY(2+NP1,WORK,1,WORK(ZU),1)

c
C RHOVEC = -(0,...,0,1)*sT
c
D0 30 J=1,§
RHOVEC(J)=0.0
30 CONTINUE
RHOVEC(NP1) = -1.0
c
C SOLVE SYSTEM.
c
CALL PCGQS(N,QR,LENQR,PIVOT,PP, YPOLD,RHOVEC, YP, YORK(PCCVK),
& IFLAG)
IF (IFLAG .GT. 0) RETURN
c
C NORMALIZE THE TANGENT.
c
YPNRM = 1.0/DNRM2(NP1,YP,1)
CALL DSCAL(NP1,YPNRN,YP,1)
c
C SAVE SOLUTIONS FROM CONJUGATE GRADIENT ALGORITHM FOR NEXT CALL
C TO TANGRS.
c
CALL DCOPY(2*NP1,WORK(ZU),1,WORK,1)
c
RETURN
c
C #++++ END OF SUBROUTINE TANGQS **sss

END
SUBROUTINE ROOTQS(N,NFE,IFLAG,LENQR,RELERR,ABSERR,Y,YP,YOLD,
& YPOLD,A,QR,PIVOT,PP,RHOVEC,Z,DZ,WORK,PAR, IPAR)

c
C ROOTQS FINDS THE POINT YBAR = (XBAR, 1) ON THE ZERO CURVE OF THE
C HOMOTOPY MAP. IT STARTS WITH TW0 POINTS YOLD=(XOLD,LAMBDAOLD) AND
C Y=(X,LAMBDA) SUCH THAT LAMBDAOLD < 1 <= LAMBDA, AND ALTERNATES
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BETWEEN USING A SECANT METHOD TO FIND A PREDICTED POINT ON THE

HYPERPLANE LAMBDA=1, AND TAKING A NEWTOK STEP TI0 RETURN T0 THE
ZERO CURVE OF THE HOMOTOPY MAP.

ON INPUT:

N = DIMENSION OF I.

NFE = NUMBER OF JACOBIAN MATRIX EVALUATIONS.

IFLAG = -2, -1, OR O, INDICATING THE PROBLEN TYPE.

LENQR = THE LENGTH OF THE ONE-DIMENSIONAL ARRAY QR.

RELERR, ABSERR = RELATIVE AND ABSOLUTE ERROR VALUES. THE ITERATION IS
CONSIDERED TO HAVE CONVERGED WHEK A POINT Y=(X,LAMBDA) IS FOUND
SUCH THAT
|IY(N+1) - 1| <= RELERR + ABSERR AND
IIDZI| <= RELERR*||Y|| + ABSERR, WHERE
DZ 15 THE NEWION STEP T0 Y.

Y(1:N+1) = POINT (X(S),LAMBDA(S)) ON ZERO CURVE OF HOMOTOPY MAP.

YP(1:N+1) = UNIT TANGENT VECTOR TO THE ZERO CURVE OF THE HOMOTOPY MAP
AT Y.

YOLD(1:N+1) = A POINT DIFFERENT FROM Y ON THE ZERO CURVE.

YPOLD(1:N+1) = UNIT TANGENT VECTOR I0 THE ZERO CURVE OF THE HOMOTOPY
MAP AT YOLD.

A(1:+) = PARAMETER VECTOR IN THE HOMOTOPY MAP.

QR(1:LENQR) IS A WORK ARRAY CONTAINING THE N X N SYMMETRIC
JACOBIAN MATRIX WITH RESPECT TO X STORED IN PACKED SKYLINE
STORAGE FORMAT. LENQR AND PIVOT DESCRIBE THE DATA
STRUCTURE IN QR. (SEE SUBROUTINE PCGQS FOR A DESCRIPTION
OF THIS DATA STRUCTURE).

PIVOT(1:N+2) IS A WORK ARRAY WHOSE FIRST N+1 COMPONENTS CONTAIN
THE INDICES OF THE DIAGONAL ELEMENTIS OF THE N I N SYMMETRIC
JACOBIAN MATRIX (WITH RESPECT T0 X) WITHIN QR.

PP(1:N) IS A WORK ARRAY CONTAINING THE NEGATIVE OF THE LAST COLUMN
OF THE JACOBIAN MATRIX -([D RHO/D LAMBDA].
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C RHOVEC(1:N+1), 2(1:N+1), DZ(1:N+1) ARE ALL WORK ARRAYS
c USED T0 CALCULATE THE NEWTION STEPS.

WORK(1:6+#(N+1)+LENQR) IS A WORK ARRAY USED BY THE CONJUGATE GRADIENT
ALGORITHM TO SOLVE LINEAR SYSTEMS.

PAR(1:*) AND IPAR(1:s) ARE ARRAYS FOR (OPTIONAL) USER PARAMETERS,
WHICH ARE SIMPLY PASSED THROUGH TO THE USER WRITTEN SUBROUTINES
RHO, RHOJAC.

ON OUTPUT:

N, LENQR, RELERR, ABSERR, A ARE UNCHANGED.

EFE HAS BEEN UPDATED.

IFLAG
= -2, -1, OR 0 (UNCHANGED) ON A NORMAL RETURN.

= 4§ IF A SINGULAR JACOBIAN MATRIX HAS OCCURRED. THE
ITERATION WAS NOT COMPLETED.

= 6 IF THE ITERATION FAILED T0 CONVERGE. Y AND YOLD CONTAIN
THE LAST TWO POINTS OBTAINED BY NEWION STEPS, AND YP
CONTAINS A POINT OPPOSITE OF THE HYPERPLANE LAMBDA={ FROM Y.
Y IS THE POINT ON THE ZERO CURVE OF THE HOMOTOPY MAP AT LAMBDA = 1.
YP, AND YOLD CONTAIN POINTS NEAR THE SOLUTION.

CALLS DIMACH, DAXPY, DCOPY, DDOT, DNRM2, F (OR RHO),
FJACS (OR RHOJS), PCGQRS, ROOT

ss++¢ DECLARATIONS s#s%++

FUNCTION DECLARATIONS

oo 000000a000O00O0O0O0O0nO0O0n0 000000 N

DOUBLE PRECISION DIMACH, DDOT, DNRM2, QOFS

c
c LOCAL VARIABLES
c
DOUBLE PRECISION AERR, DDOOi1, DDOO11, DDO1, DDO11, DELS,
& LAMBDA, ONE, PO, P1, PPO, PP1, QSOUT, RERR, S, SA, SB,
& SIGMA, SOUT, U, ZERO
INTEGER ISTEP, I, J, LCODE, LIMIT, NP1, ZU
LOGICAL BRACK
c
c SCALAR ARGUMENTS
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DOUBLE PRECISION RELERR, ABSERR
INTEGER N, KFE, IFLAG, LENQR

c
c ARRAY DECLARATIONS
c
DOUBLE PRECISION Y(N+1), YP(N+1), YOLD(N+1), YPOLD(N+1), A(N),
& QR(LENQR), PP(N), RHOVEC(N+1), Z(N+1), DZ(N+1),
& WORK(6+(N+1)+LENQR), PAR(1)
INTEGER PIVOT(N+2), IPAR(1)
c
C ss+++ END OF DECLARATIONS #*+#=
c
c
C DEFINITION OF HERMITE CUBIC INTERPOLANT VIA DIVIDED DIFFERENCES.
c

DDO1(PO,P1,DELS)=(P1-P0) /DELS
DDO01 (PO,PPO,P1,DELS)=(DD01(PO,P1,DELS) -PPO) /DELS
Dpo11(PO,P1,PP1,DELS)=(PP1-DDO1(P0O,P1,DELS) ) /DELS
DD0OO011(PO,PPO,P1,PP1,DELS)=(DDO11(PO,P1,PP1,DELS) -
& DDO01 (PO, PPO,P1,DELS)) /DELS
QoFs(po,PPO,P1,PP1,DELS,S)=((DD0011(PO,PPO,P1,PP1,DELS) *
& (s-DELS) + DD001(PO,PPO,P1,DELS))*8 + PP0)*S + PO

*s¢+s FIRST EXECUTABLE STATEMENT ###s¢
ssss¢ INITIALIZATION ssss=

LIMIT = MAXINUM NUMBER OF ITERATIONS ALLOWED.

oo

ONE=1.0
ZER0=0.0
U=DIMACH(4)
RERR=MAX (RELERR,U)
AERR=MAX (ABSERR, ZERO)
NP1=N+1
LIMIT = 2+(INT(-LOG10(AERR+RERR*DNRM2(NP1,Y,1)))+1)
ZU=N+2
c
C #sss% END OF INITIALIZATION BLOCK s#sss
c
C s**s+ COMPUTE FIRST INTERPOLANT WITH A HERMITE CUBIC *#s*s

FIND DISTANCE BETWEEN Y AND YOLD. DZ=||Y-YOLD||.

aaa

CALL DCOPY(NP1,Y,1,DZ,1)
CALL DAXPY(NP{,-ONE,YOLD,1,DZ,1)
DELS=DNRM2(NP1,DZ,1)

(2]

USING TWO POINTS AND TANGENTS ON THE HOMOTOPY ZERO CURVE, CONSTRUCT
THE HERMITE CUBIC INTERPOLANT Q(S). THEN USE ROOT TO0 FIND THE S

Q
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C CORRESPONDING TO LAMBDA = 1. THE IWO POINIS ON THE ZERO CURVE ARE
C ALVAYS CHOSEN T0 BRACKET LAMBDA=1, WITH THE BRACKETING INTERVAL
C ALWAYS BEING [0, DELS].

c

40

aQaaa

60

c
c
c

60

anaooaoaaoaoaaan

aaogaa

aaa

(2]

S54=0.0

§B=DELS

LCODE=1

CALL ROOT(SOUT,QSOUT,SA,SB,RERR,AERR,LCODE)
IF (LCODE .GT. 0) GO TO 60
QSoUT=QOFs(YOLD(NP1) , YPOLD(NP1) ,Y(NP1) ,YP(NP1) ,DELS,S0UT)

& - 1.0

GO TO 40

IF LAMBDA = 1 VWERE BRACKETED, ROOT CANNOT FAIL.
IF (LCODE .GT. 2) THEN
IFLAG=6
RETURN
ENDIF

CALCULATE Q(SA) AS THE INITIAL POINT FOR A NEWION ITERATION.

DO 60 I=1,NP1

Z(1)=QoFs(YoLD(I),YPOLD(I),Y(I),YP(I),DELS,SA)

CONTINUE
sss%¢ END OF CALCULATION OF CUBIC INTERPOLANT ###%x
TANGENT INFORMATION YPOLD IS NO LONGER NEEDED. HEREAFTER, YPOLD
REPRESENTS THE MOST RECENT POINT WHICH IS ON THE OPPOSITE SIDE OF
LAMBDA={ FROM Y.
s¢s¢+ PREPARE FOR MAIN LOOP ##%%x

CALL DCOPY(NP1,YOLD,1,YPOLD,1)

INITIALIZE BRACK T0 INDICATE THAT THE POINIS Y AND YOLD BRACKET
LAMBDA=1, THUS YOLD = YPOLD.

BRACK = .TRUE.
esses MAIN LOOP eesss
DO 300 ISTEP=1,LIMIT
SET STARTING POINTS FOR CONJUGATE GRADIENT ALGORITHM TO ZERO.
DO 70 J=ZU,ZU+2+N+1

WORK(J) = 0.0
70 CONTINUE
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COMPUTE KEWION STEP.

80

90

COMPUTE QR = [D RHO/DX], RHOVEC = RHO, -PP = (D RHO/D LAMBDA).

LAMBDA = Z(NP1)
IF (IFLAG .EQ. -2) THEN

CURVE TRACKING PROBLEM.

CALL RHOJS(A,LAMBDA,Z,QR,LENQR,PIVOT,PP,PAR, IPAR)
CALL RHO(A,LAMBDA,Z, RHOVEC,PAR,IPAR)
ELSE IF (IFLAG .EQ. -1) THEN

ZERO FINDING PROBLEM.

CALL FJACS(Z,QR,LENQR,PIVOT)

CALL DSCAL(LENQR,LAMBDA,QR,1)

SIGMA = 1.0-LAMBDA

DO 80 J=1,N

QR(PIVOT(J))=QR(PIVOT(J))+SIGMA

CONTINUE

CALL DCOPY(N,Z,1,RHOVEC,1)

CALL DAXPY(N,-ONE,A,1,RHOVEC,1)

CALL F(Z,PP)

CALL DSCAL(N,-ONE,PP,1)

CALL DAXPY(N,ONE,RHOVEC,1,PP,1)

CALL DAXPY(N,-LAMBDA,PP,1,RHOVEC,1)
ELSE

FIXED POINT PROBLEM.

CALL FJACS(Z,QR,LENQR,PIVOT)
CALL DSCAL(LENQR,-LAMBDA,QR,1)
DO 90 J=1,N
QR(PIVOT(J))=QR(PIVOT(J))+1.0
CONTINUE
CALL DCOPY(N,Z,1,RHOVEC,1)
CALL DAXPY(N,-ONE,A,1,RHOVEC,1)
CALL F(Z,PP)
CALL DAXPY(N,-ONE,A,1,PP,1)
CALL DAXPY(N,-LAMBDA,PP,1,RHOVEC,1)
END IF
RHOVEC(NP1) = 0.0
NFE = NFE+1

SOLVE SYSTEM T0 FIND NEWION STEP.

CALL PCGQS(N,QR,LENQR,PIVOT,PP,YP RHOVEC,DZ,WORK, IFLAG)
IF (IFLAG .GT. 0) RETURN
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TAKE NEWION STEP.
CALL DAXPY(NP1,0NE,DZ,1,Z,1)
CHECK FOR CONVERGENCE.

IF ((ABS(Z(NP1)-1.0) .LE. RERR+AERR) .AND.

(DNRM2(NP1,DZ,1) .LE. RERR*DNRM2(N,Z,1)+AERR)) THEN

RETURN
END IF

PREPARE FOR NEXT ITERATION.

IF LAMBDA COMPONENT OF Z=1, THEN DO NOT COMPUIE A

NEW PREDICTOR, BUT RATHER CONTINUE WITH ANOTHER NEWION

ITERATION.
IF (ABS(Z(NP1)-1.0) .LT. RERR+AERR) GOTO 300
UPDATE Y AKD YOLD.

CALL DCOPY(NP1,Y,1,YOLD,1)
CALL DCOPY(NP1,Z,1,Y,1)

UPDATE YPOLD SUCH THAT YPOLD IS THE MOST RECENT POINT OPPOSITE
OF LAMBDA=f FRON Y. SET BRACK = .TRUE. IFF Y & YOLD

BRACKET LAMBDA={ SO0 THAT YPOLD=YOLD.

IF ((YOLD(NP1)-1.0)*(Y(NP1)-1.0) .GT. 0) THEN
BRACK = .FALSE.

ELSE
BRACK = .TRUE.
CALL DCOPY(NP{,YOLD,1,YPOLD,1)

END IF

COMPUTE DELS = ||Y-YPOLD|]|.

CALL DCOPY(NP1,Y,1,DZ,1)
CALL DAXPY(NP1,-ONE,YPOLD,1,DZ,1)
DELS=DNRM2(NP1,DZ,1)

COMPUTE DZ FOR THE LINEAR PREDICTOR Z =DZ + Y,
WHERE DZ = SA*(YOLD-Y).

SA = (1.0-Y(NP1))/(YOLD(NP1)-Y(NP1))
CALL DCOPY(NP1,YOLD,1,DZ,1)

CALL DAXPY(NP1,-ONE,Y,1,DZ,1)

CALL DSCAL(NP1,SA,DZ,1)
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T0 INSURE STABILITY, THE LINEAR PREDICTION MUST BE NO FARTHER
FRON Y THAN YPOLD 1IS. THIS IS GUARANTEED IF BRACK = .TRUE.
IF LINEAR PREDICTION IS TO0 FAR AWAY, USE BRACKETING POINIS

T0 COMPUTE LINEAR PREDICTION.

IF (.NOT. BRACK) THEN
IF (DNRM2(NP1,DZ,1) .GT. DELS) THEN

COMPUTE DZ = SA+(YPOLD-Y).

SA = (1.0-Y(NP1))/(YPOLD(NP1)-Y(NP1))
CALL DCOPY(NP1,YPOLD,1,DZ,1)
CALL DAXPY(NP1,-ONE,Y,1,DZ,1)
CALL DSCAL(NP1,54,DZ,1)
END IF
END IF

COMPUTE PREDICTOR Z = DZ+Y.

CALL DCOPY(NP1,Y,1,Z,1)
CALL DAXPY(NP1,0¥NE,DZ,1,Z,1)
300 CONTINUE

sss+s END OF MAIN LOOP. ##s#x

THE ALTERNATING OSCULATORY LINEAR PREDICTION AND NEWION
CORRECTION HAS HOT CONVERGED IN LIMIT STEPS. ERROR RETURN.
IFLAG=6
RETURN

ssssx END OF SUBROUTINE ROOTQS #s#»s
END
SUBROUTINE PCGQS(NN,AA,LENAA,MAXA,PP,YP,RHO,START,WORK, IFLAG)

THIS SUBROUTINE SOLVES A SYSTEM OF EQUATION USING THE METHOD OF
CONJUGATE GRADIENTS. THE SYSTEM T0 BE SOLVED IS IN THE FORM

(AUG)*X = B,
WHERE
+-- -=+ +- -+
| | | | I
| AL | -PP | | |
AUG = | I |, B =1 -RHO |
L + I ‘
| YP | | |
- - +- -4
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c
C THE SYSTEM IS SOLVED BY SPLITIING AUG INTO TYO MATRICES
CAUG = M + L, VHERE

‘- -+ *- -+

I I | |

| AL | C| | -PP-C |
N=| I | ., L =U= [E(NNe1)ssT], U = | |,

demccee o= becmcmna +

Il ¢ 1Dl Il o |

+- -+ ‘- -+

E(NN+1) IS THE (NN+1) X 1 VECTOR CONSISTING OF ALL ZEROS EXCEPT FOR
A '1* IN ITS LAST POSITION.

THE FINAL SOLUTION VECTOR, X, IS GIVEN BY
+- -+
| [SOL(U) ]+ [E(NK+1)#=T] |

X = | I = ccmcccmcccmccccmccccceceeeeo | » SOL(B)
| {[(SOL(U))s+T)*E(NN+1)}+1.0 |

4= -4
WHERE SOL(A)=[Mss(-1)]J+A. THE IW0 SYSTEMS (MZ=U, MZ=B) ARE SOLVED
BY A PRECONDITIONED CONJUGATE GRADIENT ALGORITHM.
0N INPUT:
NN = THE DIMENSION OF THE MATRIX PACKED IN AA.

AA(1:LENAA) CONTAINS THE MATRIX AA, STORED IN PACKED SKYLINE
FORMAT. LENAA AND MAIA DESCRIBE THE DATA STRUCTURE.

LENAA = THE LENGTH OF THE ONE-DIMENSIONAL ARRAY AA.

MAXA(1:NN+2) IN ITS FIRST N+1 COMPONENTS CONTAINS THE INDICES OF
THE DIAGONAL ELEMENTS OF THE MATRIX STORED IN AA.
MAXA(NN+2) IS ASSIGNED THE VALUE LENNAA + NN + 2.

AS AN EXAMPLE OF THE PACKED SKYLINE STORAGE FORMAT, CONSIDER THE
SYMMETRIC MATRIX

(22 I A s A s B e B e B e I s B s AN e A e A s B e B e A e B s I e I e I s I s BN s I e I s B e I s B s I e B s I e B e I s I e I s I s N e I s e N B e e B s I M2 )

O O O W »
O NoOoOwWwWwW
O O & 0O
O 0o 3O
® O O O O
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THIS WOULD RESULT IN NN=5, LENAA=Q, MAXA=(1,2,4,6,8,10,16),
AND AA=(1,2,3,4,65,6,7,8,9).

PP(1:NN) = THE KEGATIVE OF THE LAST COLUMN OF AUG.
YP(1:NN+1) = THE LAST ROW OF AUG.

RHO(1:NN+1) = THE NEGATIVE OF THE RIGHT HAND SIDE OF THE EQUATION T0
BE SOLVED.

WORK(1:6+(NN+1)+LENAA) IS A WORK ARRAY DIVIDED UP AS FOLLOVWS:
WORK(1:NN+1) = TEMPORARY WORKING STORAGE.

WORK(NN+2:2+#NN+2) = INTERMEDIATE SOLUTION VECTOR Z FOR M2=U.
THE INPUT VALUE IS USED AS THE INITIAL ESTIMATE FOR Z.

WORK(2*NN+3:3+NN+3) = INTERMEDIATE SOLUTION VECIOR Z FOR MZ=B.
WORK(3+NN+4:4*NN+4) = STORAGE FOR THE RESIDUAL VECTORS.
WORK(4*NN+5:6+NN+6) = STORAGE FOR THE DIRECTION VECTORS.
WORK(6¢NN+6:6+NN+6+LENAA) = STORAGE FOR THE PRECONDITIONING
MATRIX Q.

OK OUTPUT:

NN, AA, LENAA, MAXIA, PP, YP, AND RHO ARE UNCHANGED.

START(1:N+1) CONTAINS THE SOLUTION VECTOR I.

IFLAG IS UNCHANGED UNLESS THE CONJUGATE GRADIENT ITERATION
FAILS TO CONVERGE IN 10+(NN+1) ITERATIONS (MOST LIKELY DUE

TO A SINGULAR JACOBIAN MATRIX). 1IN THIS CASE, PCGQS RETURNS
IFLAG = 4, AND DOES NOT COMPUTE X.

CALLS DIMACH, DAXPY, DCOPY, DDOT, DNRM2, DSCAL, GMFADS, MULTDS,
SOLVDS.

s¢x4¢ DECLARATIONS #*%#+
FUNCTION DECLARATIONS

DOUBLE PRECISION DiMACH, DDOT, DNRM2
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LOCAL VARIABLES

DOUBLE PRECISION AB, AU, BB, BU, DZNRM, PBNPRD, PUNPRD,

& RBNPRD, RBTOL, RNPRD, RUNPRD, RUTOL, TEMP, UNRM, ZLEN, ZTOL
INTEGER DIR, I, IMAX, J, K, LENQ, KP1, Q, RES, ZB, ZU
LOGICAL STILLU, STILLB

SCALAR ARGUMENIS
INTEGER NN, LENAA, IFLAG
ARRAY DECLARATIONS

DOUBLE PRECISION AA(LENAA), PP(NN), YP(NHN+1), RHO(NN+1),
& START(NN+1), VORK(6*(NN+1)+LENAA)
INTEGER MAXA(NN+2)

ssss+ END OF DECLARATIONS ##»+#
*+ss+ FIRST EXECUTABLE STATEMENT s#s%s
SET UP BASES FOR VECTORS STORED IN WORK ARRAY.

NP1=NN+1
ZU=NN+2
ZB=(2+NN) +3
RES=(3+NN) +4
DIR=(4+NN)+6
Q=(6*NN)+6

INITIALIZE PRECONDITIONING MATRIX Q, SET VALUES OF MAXA(NN+1)
AND MAXA(NN+2), COMPUTE PRECONDITIONER.

CALL DCOPY(LENAA,AA,1,WORK(Q).1)
CALL DCOPY(NP1,YP,1,WORK(Q+LENAA),1)
MAXA(NN+1)=LENAA+1
MAXA(NN+2)=LENAA+NN+2

LENQ = MAXA(NN+2)-1

CALL GMFADS(NP1,WORK(Q),LENQ,MAXA)

COMPUTE ALL TOLERANCES NEEDED FOR EXIT CRITERIA.

CALL DCOPY(NN,PP,1,WORK,1)
WORK(NP1)=0.0D0

CALL DAXPY(NPi,1.0DO,YP,1,WORK,1)
RUTOL=ZTOL*DNRM2(NP1,WORK, 1)
RBTOL=ZTOL*DNRM2(NP1,RHO,1)
IMAX=10+NP1

STILLU=.TRUE.

STILLB=.TRUE.
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ZTOL=100.0*DIMACH(4)

Cc
C #*s+ss END OF INITIALIZATION ##e+#»
c
C #sssx SOLVE SYSTEM M Z = U sss=*»
Cc
C COMPUTE INITIAL RESIDUAL VECIOR FOR THE SYSTEM N Z = U .
c RES = (Q#*(-1))*(U - Ms*Z.)
CALL MULTDS(WORK(RES),AA,WORK(ZU) ,MAXA,NN,LENAA)
WORK(RES+NN)= DDOT(NN,YP,1,WORK(ZU),1)
CALL DAXPY(NP1,WORK(ZU+NN),YP,1,WORK(RES),1)
CALL DSCAL(NP1,-1.0DO,¥ORK(RES),1)
CALL DAXPY(NN,-1.0DO,PP,1,¥ORK(RES),1)
CALL DAXPY(NN,-1.0DO,YP,1,WORK(RES),1)
CALL SOLVDS(XP1,WORK(Q),LENQ,MAXA,WORK(RES))
C
C COMPUTE INITIAL DIRECTION VECTIOR.
c DIR = (A++T)+(Q++(-T))*RES.
c
CALL DCOPY(NP1,WORK(RES),1,WORK,1)
CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA,VWORK)
CALL MULTDS(WORK(DIR),LAA,WORK,MAXA,NN,LENAA)
WORK(DIR+NN)=DDOT(NN,YP,1,WORK,1)
CALL DAXPY(NP1,WORK(NP1),YP,1,WORK(DIR),1)
Cc
C COMPUTE INITIAL INNER PRODUCIS.
c
RUNPRD=DDOT(NP1,¥ORK(RES) ,1,¥ORK(RES),1)
PUNPRD=DDOT (XP1,¥WORK(DIR),1,¥WORK(DIR),1)
Cc
C REPEAT UNTIL CONVERGENCE OR TO0 MANY ITERATIONS.
Cc
J=1
c
c DO WHILE ((STILLU) .AND. (J .LE. IMAX))
100 IF (.NOT. ((STILLU) .AND. (J .LE. IMAX)) ) GO TO 200
c
c IF ||RESIDUAL|| IS STILL NOT SMALL ENOUGH, CONTINUE.
c
IF (SQRT(RUNPRD) .GT. RUTOL) THEN
c
Cc IF DIRECTION VECTOR IS ZERO, THEN RE-COMPUTE RESIDUAL,
Cc DIRECTION VECTOR, AND INNER PRODUCTS FROM SCRATICH
(o} (RATHER THAN FROM UPDATES OF PREVIOUS VALUES).
Cc
IF (PUNPRD .EQ. 0.0) THEXN
c
c COMPUTE RESIDUAL.
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CALL MULTDS(WORK(RES),AA,WORK(ZU) ,MAXA NN, LENAA)
WORK (RES+NN)= DDOT(NN,YP,1,WORK(ZU),1)

CALL DAXPY(NP1,WORK(ZU+NN),YP,1,WORK(RES),1)
CALL DSCAL(NP1,-1.0DO,WORK(RES),1)

CALL DAXPY(NN,-1.0DO,PP,1,¥ORK(RES),1)

CALL DAXPY(NN,-1.0DO,YP,1,WORK(RES),1)

CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA,WORK(RES))

COMPUTE DIRECTION VECTOR.

CALL DCOPY(NP1,WORK(RES),1,¥ORK,1)

CALL SOLVDS(NP1,WORK(Q) ,LENQ,MAXA,WORK)
CALL MULTDS(WORK(DIR),AA,WORK,MAXA, NN, LENAA)
WORK(DIR+NN)=DDOT(NN,YP,1,WORK,1)

CALL DAXPY(NP1,¥WORK(NP1),YP,1,¥ORK(DIR),1)

COMPUTE INNER PRODUCTS

RUNPRD=DDOT(NP1,WORK(RES),1,¥ORK(RES),1)
PUNPRD=DDOT(NP1,WORK(DIR) ,1,WORK(DIR),1)

CHECK FOR CONVERGENCE.

IF (SQRT(RUNPRD) .LE. RUTOL) THEN
STILLU=.FALSE.
ENDIF
ENDIF
IF (STILLU) THEN

UPDATE SOLUTIOX VECTOR.
Z = Z + AU*DIR, WHERE AU= RUNPRD/PUNPRD.

AU=RUNPRD/PUNPRD
CALL DAXPY(XP1,AU,WORK(DIR),1,¥ORK(ZU),1)

COMPUTE RELATIVE CHANGE IN THE SOLUTION.

DZNRM=AU+SQRT (PUNPRD)
ZLEN=DNRM2(NP1,¥ORK(ZU),1)

IF RELATIVE CHANGE IN SOLUTIONS IS SMALL ENOUGH, EIXIT.

IF ( (DZNRM/ZLEN) .LT. ZTOL) STILLU=.FALSE.
ENDIF
ELSE
STILLU=.FALSE.
ENDIF

IF NO EXIT CRITERIA FOR MZ=U HAVE BEEN MET, UPDATE RESIDUAL,
DIRECTION VECTORS, AND INNER PRODUCTS FOR NEXT ITERATION.
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IF (STILLU) THEN

UPDATE RESIDUAL VECTOR; COMPUTE <RES,RES>.
RES = RES - AU*(Q#*#*(-1))*MsDIR.

an0onoan

CALL MULTDS(WORK,AA,WORK(DIR),MAXA,NN,LENAA)
WORK (NP1)=DDOT(NN,YP,1,WORK(DIR),1)

CALL DAXPY(NP1,WORK(DIR+NN),YP,1,WORK,1)
CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA,WORK)
CALL DAXPY(NP1,-AU,WORK,1,WORK(RES),1)
RNPRD=DDOT(NP1,WORK (RES) ,1,WORK(RES),1)

UPDATE DIRECTION VECTOR; COMPUTE <DIR,DIR>.
DIR = (MssT)*(Q+*(-T))sRES + BUsDIR,
WHERE BU = RNPRD/RUNPRD. (NOTE: START IS USED AS
A WORK ARRAY HERE).

a0 aan

BU=RNPRD/RUNPRD

RUNPRD=RNPRD

CALL DCOPY(NP1,WORK(RES),1,¥ORK,1)

CALL SOLVDS(NP1,¥ORK(Q),LENQ,MAXA,WORK)

CALL MULTDS(START,AA,WORK,MAXA,NN,LENAA)

START(NP1)=DDOT(NN,YP,1,WORK,1)

CALL DAXPY(NP1,WORK(NP1),YP,1,START,1)

CALL DAXPY(NP1,BU,WORK(DIR),1,START,1)

CALL DCOPY(NP1,START,1,WORK(DIR),1)

PUNPRD=DDOT(NP1,WORK(DIR),1,WORK(DIR),1)
ENDIF

J=J+1
GO TO0 100
200 CONTINUE
c END DO
c
C SET ERROR FLAG IF THE CONJUGATE GRADIENT ITERATION DID NOT CONVERGE.
C
IF (J .GT. IMAX) THEN
IFLAG=4
RETURN
ENDIF
(]
C *+3s% END OF M Z = U SYSTEM #s%3%

s#ss+ SOLVE SYSTEM M Z = B s+sss

COMPUTE INITIAL RESIDUAL VECIOR FOR THE SYSTEM M Z = B .

o000

CALL MULTDS(WORK(RES),AA,WORK(ZB),MAXA,NN,LENAA)
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WORK (RES+NN)=DDOT(NN,YP,1,WORK(ZB),1)

CALL DAXPY(NP1,¥WORK(ZB+NN),YP,1,WORK(RES),1)
CALL DSCAL(NP1,-1.0DO,WORK(RES),1)

CALL DAXPY(NP1,-1.0DO,RHO,1,WORK(RES),1)
CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA, WORK(RES))

c
C COMPUTE INITIAL DIRECTION VECTOR.
c
CALL DCOPY(NP1,WORK(RES),1,WORK,1)
CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA,WORK)
CALL MULTDS(WORK(DIR),AA,WORK,MAXA,NN,LENAA)
WORK(DIR+NN)=DDOT(NN,YP,1,WORK,1)
CALL DAXPY(NP1,WORK(NP1),YP,1,WORK(DIR),1)
c
C COMPUTE INITIAL INNER PRODUCTS.
c
RBNPRD=DDOT(NP1,¥ORK (RES) ,1,WORK(RES) ,1)
PBNPRD=DDOT(NP1,¥ORK(DIR),1,WORK(DIR),1)
c

C REPEAT UNTIL CONVERGENCE, OR TOO MANY ITERATIONS.
c
J=1
c
c DO WHILE ( STILLB .AND. (J .LE. IMAX) )
300 IF (.NOT. ( STILLB .AND. (J .LE. IMAX) ) ) GO TO 400

c
c IF ||RESIDUAL|| IS STILL KOT SMALL ENOUGH, CONTINUE.
c
IF (SQRT(RBNPRD) .GT. RBTOL) THEN
c
c IF DIRECTION VECIOR IS ZERO, RE-COMPUTE RESIDUAL,
c DIRECTION VECTOR, AND INNER PRODUCIS FROM SCRATCH.
c
IF (PBNPRD .EQ. 0.0) THEN

C
c COMPUTE RESIDUAL.
c

CALL MULTDS(WORK(RES),AA,WORK(ZB) ,MAXA,NN,LENAA)

WORK (RES+NN)=DDOT(NN,YP,1,WORK(ZB),1)

CALL DAXPY(NP1,WORK(ZB+NN),YP,1,WORK(RES),1)

CALL DSCAL(NP1,-1.0DO,WORK(RES),1)

CALL DAXPY(NP1,-1.0DO,RHO,1,WORK(RES),1)

CALL SOLVDS(NP1,¥ORK(Q),LENQ,MAXA, WORK(RES))
c
c COMPUTE DIRECTION VECTOR.
c

CALL DCOPY(NP1,WORK(RES),1,WORK,1)

CALL SOLVDS(NP1,WORK(Q) ,LEKQ,MAXA,¥ORK)

CALL MULTDS(WORK(DIR),AA,WORK,MAXA, NN,LENAA)
WORK(DIR+NN)=DDOT(NN,YP,1,¥ORK,1)
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CALL DAIPY(NP1,WORK(NP1),YP,1,WORK(DIR),1)
COMPUTE INNER PRODUCTS.

RBNPRD=DDOT(NP1,WORK (RES) ,1,WORK(RES) ,1)
PBNPRD=DDOT(NP1,¥WORK(DIR),1,WORK(DIR),1)

CHECK FOR CONVERGENCE.
IF (SQRT(RBNPRD) .LE. RBTOL) THEN

STILLB=.FALSE.
ENDIF

ENDIF
IF (STILLB) THEN

UPDATE SOLUTION VECTOR.
Z = Z + AB+DIR, WHERE AB=RBNPRD/PBNPRD.

AB=RBNPRD/PBNPRD
CALL DAXPY(NP1,AB,¥ORK(DIR),1,¥ORK(ZB),1)

COMPUTE RELATIVE CHANGE IN SOLUTIONS.

DZNRM=AB+SQRT (PBNPRD)
ZLEN=DNRM2(NP1,¥WORK(ZB) ,1)

IF RELATIVE CHANGE IN SOLUTIONS IS SMALL ENOUGH, EXIT.

IF ( (DZNRM/ZLEN) .LT. ZIOL) STILLB=.FALSE.

ENDIF

ELSE
St
ENDIF

IF NO

ILLB=_ FALSE.

EXIT CRITERIA FOR MZ=B HAVE BEEN METY, UPDATE RESIDUAL,

DIRECTION VECTORS, AND INNER PRODUCIS.

IF (8

TILLB) THEN

UPDATE RESIDUAL VECTOR; COMPUTE <RES,RES>.

ci
¥o
Ci
Ci
CA

RES = RES - AB*(Q#*(-1))sM*DIR.

LL MULTDS(WORK,AA,WORK(DIR) ,MAXA,NN,LENAA)
RK(NP1)=DDOT(NN,YP,1,WORK(DIR),1)

LL DAXPY(NP1,WORK(DIR+NN),YP,1,WORK,1)

LL SOLVDS(NP1,WORK(Q),LENQ,MAXA,WORK)

LL DAXPY(NP1,-AB,WORK,1,WORK(RES),1)

RNPRD=DDOT(NP1,¥ORK(RES) ,1,WORK(RES),1)

UPDATE DIRECTION VECTIOR; COMPUTE <DIR,DIR>.



123

DIR = (AssT)+(Q++(-T))+RES + BB+DIR,
VHERE BB=RNPRD/RBNPRD.
(NOTE: START IS USED AS A WORK ARRAY HERE).

anooa

BB=RNPRD/RBNPRD

RBNPRD=RNPRD

CALL DCOPY(NP1,VWORK(RES),1,WORK,1)

CALL SOLVDS(NP1,WORK(Q),LENQ,MAXA,¥ORK)

CALL MULTDS(START,AA,WORK,MAXA,NN,LENAA)

START(NP1)=DDOT(NN,YP,1,¥O0RK,1)

CALL DAXPY(NP1,WORK(NP1),YP,1,START,1)

CALL DAXPY(NP1,BB,WORK(DIR),1,START,1)

CALL DCOPY(NP1,START,1,WORK(DIR),1)

PBNPRD=DDOT(NP1,¥ORK(DIR),1,¥ORK(DIR),1)
ENDIF

JuJ+y

GO0 TO 300
400 CONTINUE
c END DO
c
C SEY ERROR FLAG IF THE CONJUGATE GRADIENT ITERATION DID NOT CONVERGE.
c

IF (J .GT. IMAX) THEN

IFLAG=4
RETURN
ENDIF
C
C #ssxx END OF M Z = B SYSTEN ss3s»
c

C COMPUTE FINAL SOLUTION VECTOR X, AND RETURN IT IN START.
c ,

TEMP=-WORK (ZB+NN) / (1.0DO+WORK (ZU+NN))

CALL DCOPY(NP1,WORK(ZB),1,START,1)

CALL DAXPY(NP1,TEMP,WORK(ZU),1,START,1)

RETURN
END
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