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Pipelines for Computational Social Science Experiments and Model
Building

Vanessa I. Cedeno

(ABSTRACT)

There has been significant growth in online social science experiments in order to under-
stand behavior at-scale, with finer-grained data collection. Considerable work is required to
perform data analytics for custom experiments. In this dissertation, we design and build
composable and extensible automated software pipelines for evaluating social phenomena
through iterative experiments and modeling. To reason about experiments and models, we
design a formal data model. This combined approach of experiments and models has been
done in some studies without automation, or purely conceptually.

We are motivated by a particular social behavior, namely collective identity (CI). Group or
CI is an individual’s cognitive, moral, and emotional connection with a broader community,
category, practice, or institution. Extensive experimental research shows that CI influences
human decision-making. Because of this, there is interest in modeling situations that promote
the creation of CI in order to learn more from the process and to predict human behavior in
real life situations.

One of our goals in this dissertation is to understand whether a cooperative anagram game
can produce CI within a group. With all of the experimental work on anagram games, it is
surprising that very little work has been done in modeling these games. Additionally, we use
abduction as an inference approach that uses data and observations to identify plausibly (and
preferably, best) explanations for phenomena. Abduction has broad application in robotics,
genetics, automated systems, and image understanding, but have largely been devoid of
human behavior. We use these pipelines to understand intra-group cooperation and its
effect on fostering CI. We devise and execute an iterative abductive analysis process that is
driven by the social sciences.

In a group anagrams web-based networked game setting, we formalize an abductive loop, im-
plement it computationally, and exercise it; we build and evaluate three agent-based models
(ABMs) through a set of composable and extensible pipelines; we also analyze experimental
data and develop mechanistic and data-driven models of human reasoning to predict de-
tailed game player action. The agreement between model predictions and experimental data
indicate that our models can explain behavior and provide novel experimental insights into
CI.

This material is based on work partially supported by DARPA Cooperative Agreement
D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016- 0001), NSF DIBBS
Grant ACI-1443054, NSF BIG DATA Grant IIS-1633028, NSF Grants DGE-1545362 and
IIS-1633363, and ARL Grant W911NF-17-1-0021.



Pipelines for Computational Social Science Experiments and Model
Building

Vanessa I. Cedeno

(GENERAL AUDIENCE ABSTRACT)

To understand individual and collective behavior, there has been significant interest in using
online systems to carry out social science experiments. Considerable work is required for
analyzing the data and to uncover interesting insights. In this dissertation, we design and
build automated software pipelines for evaluating social phenomena through iterative exper-
iments and modeling. To reason about experiments and models, we design a formal data
model. This combined approach of experiments and models has been done in some studies
without automation, or purely conceptually.

We are motivated by a particular social behavior, namely collective identity (CI). Group or
CI is an individual’s cognitive, moral, and emotional connection with a broader community,
category, practice, or institution. Extensive experimental research shows that CI influences
human decision-making, so there is interest in modeling situations that promote the creation
of CI to learn more from the process and to predict human behavior in real life situations.

One of our goals in this dissertation is to understand whether a cooperative anagram game
can produce CI within a group. With all of the experimental work on anagrams games,
it is surprising that very little work has been done in modeling these games. In addition,
to identify best explanations for phenomena we use abduction. Abduction is an inference
approach that uses data and observations. Abduction has broad application in robotics,
genetics, automated systems, and image understanding, but have largely been devoid of
human behavior.

In a group anagrams web-based networked game setting we do the following. We use these
pipelines to understand intra-group cooperation and its effect on fostering CI. We devise
and execute an iterative abductive analysis process that is driven by the social sciences. We
build and evaluate three agent-based models (ABMs). We analyze experimental data and
develop models of human reasoning to predict detailed game player action. We claim our
models can explain behavior and provide novel experimental insights into CI, because there
is agreement between the model predictions and the experimental data.
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generated (these digital object outputs may be, e.g., plot files, ASCII data
files, and binary data files). There may be additional functions, indicated by
the ellipsis below Pipeline 1 Function h1 Execution. In this example, outputs
from the generic pipeline 1 are inputs for the generic pipeline 2. Function
h4 in Pipeline 2 is executed in a similar fashion to function h1 in Pipeline 1.
See the text for descriptions of these various components. Note: the pipeline
infrastructure code is the same code for all pipelines. . . . . . . . . . . . . . 39

xiv



2.10 The anagram game screen, phase-2, for one player. This player has own letters
“R,” “O,” and “L” and has requested an “E” and “A” from neighbors. The
“E” is green, so this player’s request has been fulfilled and so “E” can be used
in forming words; but the request for “A” is still outstanding so cannot be
used in words. Below these letters, it shows that Player 2 has requested “O”
and “L” from this player. This player can reply to these requests, if she so
chooses. Below that is a box where the player types and submits new words. 40

2.11 Case study 1. Partial representation of the data model for the online exper-
iment composed of 3 phases with a set of V players (n = |V |). The phase 1
DIFI measure, a proxy for CI, uses a null (i.e., empty) network on n players;
i.e., there are no edges in the graph because players play individually. In phase
2, a team-based CI-priming game, edges E are communication channels. Ini-
tial conditions Bv include letter assignments to players. The individual DIFI
measure is repeated in phase 3. The action set A and illustrative action tuples
Ti are given for each phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h3 plots the time series of
number of words formed by player for experiment #2. . . . . . . . . . . . . 42

2.13 The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h5 generates the histogram for
the number of actions “letter request” for three experiments. The x-axis is
time in the group anagram game, binned in 30 seconds intervals. . . . . . . 42

2.14 The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h7 generates the discrete time
actions for all three experiments. This latter output will inform the Property
Inference pipeline for computing parameters for simulation models. Time (in
seconds) is shown in the first row as 1, 2, 3, ..., and counts of the z vector
components, per player and per experiment are given. . . . . . . . . . . . . 43

2.15 The Property Inference pipeline receives the input from h7 of the Data Anal-
ysis Pipeline (DAP). The parameters in this figure were generated to inform
an ABM model for the Modeling and Simulation Pipeline (MASP). The tran-
sitions in the figure are from from i to j, where ai ∈ A is the action at time t
and aj ∈ A is the action at (t + 1). Rows not shown mean there are no such
transitions in the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2.16 The Modeling and Simulation pipeline (MASP) and Model Evaluation and
Prediction pipeline (MEAPP) were executed to generate simulation results
and model predictions, and to compare experimental data to model predic-
tions. All three plots contain model predictions and use results from h1 of the
MASP. Function h1 of MEAPP plots corresponding experimental and model
output data (top plot) and compares experiment and model output using KL-
divergence (center plot) for six parameters. Function h2 of MEAPP uses h3

of the Data Analysis pipeline (DAP) to plot model predictions from h1 of the
MASP (bottom plot) where now n = 15 (in experiments, n = 6). . . . . . . 45

2.17 Elements of the data model (Table 2.1), for the online social network experi-
ment in [47]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.18 Data model of Table 2.4 translated into a entity-relationship diagram in uni-
fied modeling language (UML) form. . . . . . . . . . . . . . . . . . . . . . . 46

2.19 Data model of Table 2.5 translated into a entity-relationship diagram in uni-
fied modeling language (UML) form. . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Conceptual view of three dimensions of this work, illustrating how our group
anagram game study is situated. Our experiments consist of online web-based
human subjects experiments. Our modeling component consists of model
and algorithm development, and agent-based modeling. We study groups of
interacting individuals. To our knowledge, this combination of study features
is unique. These dimensions are used in Figure 3.2 to compare our work with
others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 A hierarchy of different collective identity (CI) experiments in the literature,
which puts the uniqueness of our work on anagram game experiments and
modeling into the context of the works of others. The internal nodes refer
to classifications between in-laboratory and online experiments, and between
works with and without modeling. We distinguish between studies of indi-
viduals, with no interaction between subjects, and studies of groups, with
interactions among subjects. Leaf nodes refer to representative works. Our
work studies online experiments of collective identity with modeling and in-
teraction among subjects. (These references are not exhaustive; more detail
is included in the related work of Section 4.3.) . . . . . . . . . . . . . . . . 55

3.3 Steps in our iterative abductive analysis/loop. . . . . . . . . . . . . . . . . 59

3.4 Steps for the overall online game include: recruitment of players from Amazon
Mechanical Turk (AMT), directions for the use of the platform, DIFI1 score
procedure, anagram game, and DIFI2 score procedure. . . . . . . . . . . . . 73
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3.5 Anagram game configuration with a k = 2 regular graph on n = 4 players
(v1, v2, v3, v4) with number of initial letters nL = 3 assigned to each player,
as shown in the boxes next to the players. Requests for letters and replies
are sent across the channel links (red to request letters, green to reply with
letter). Request-Sent-Buffer keeps track of player vi’s letter requests. To-
Reply-Buffer contains letter requests from other players to vi. Key (#) shows
the sequence of actions by all the players during a game. Table 3.2 shows a
detailed description of these actions. . . . . . . . . . . . . . . . . . . . . . . 74

3.6 The anagram game screen of the web app for one player. This player has own
letters “S,” “O,” and “L” and has requested an “E” and “A” from neighbors.
The “E” is green, so this player’s request has been fulfilled and so “E” can be
used any number of times in forming words. But the request for “A” is still
outstanding so cannot be used in words. Below these letters, it shows that
player 2 has requested “O” and “L” from this player; this player has to reply
to these requests, if she so chooses. Below that is a box where the player types
and submits new words, like “SEE.” . . . . . . . . . . . . . . . . . . . . . . 76

3.7 DIFI game where player vi moves the smaller circle, representing herself, either
over (partially), or away from, the bigger circle that represents the team.
The team circle is stationary. The distance δ between centroids of circles is
measured. The distance is such that δ = 0 corresponds to the small and large
circles just touching; δ < 0 means that the two circles are disjoint; and δ > 0
means the two circles overlap. The distance δ is transformed into a DIFI
value. The range in DIFI value is: −100 ≤ δ ≤ 125. The DIFI score is a
proxy for CI. This is an individual player game. . . . . . . . . . . . . . . . . 77

3.8 Probability density distribution for time of request sent over the 300-second
anagram game. Each of the bins on the x-axis correspond to 30-second inter-
vals. It shows 47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estima-
tion with Gaussian kernels is used estimate the probability density function.
Letter requests are made throughout the game, rather than solely at the out-
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.9 Probability density distribution for time of reply sent over the 300-second ana-
gram game. Each of the bins on the x-axis correspond to 30-second intervals.
It shows 47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation
with Gaussian kernels is used to estimate the probability density function.
Letter replies are made throughout the game, rather than solely at the outset. 80
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3.10 Probability density distribution for time duration between requesting a letter
and replying to the request, over the 300-second anagram game. Each of the
bins on the x-axis correspond to 30-second intervals. It shows 47 experiments
with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels is
used to estimate the probability density function. Players generally respond
relatively quickly to their neighbors letter requests, with replies typically made
within 30 seconds of the request. . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Probability density distribution for time of forming words over the 300-second
anagram game. Each of the bins on the x-axis correspond to 30-second in-
tervals. It shows 47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density
estimation with Gaussian kernels is used to estimate the probability density
function. Word submissions are made throughout the game, and the number
of neighbors and available letters, does not affect this type of action. . . . . 82

3.12 ABM baseline M0 predictions of the k = 2 experiments (in green) and exper-
imental data (in gray), over the entire 5-minute group anagram game. The
probability density function is show for (a) distribution of replies received,
(b) distribution of replies sent, (c) distribution of requests received, (d) dis-
tribution of requests sent, and (e) distribution of words formed, each at the
end of the 5-minute anagram game (gray bars are experimental data) for all
k = 2 experiments. The Baseline M0 predictions are from 100 simulations
of a n = 10 player game. It is clear from visual inspection that model M0
predictions are in better agreement with the experiment data for the requests
received and requests sent variables. We make this comparison more precise
using KL-divergence below in Figure 3.13. . . . . . . . . . . . . . . . . . . . 88

3.13 KL-divergence values for the baseline Model M0 across the five parameters
of x: lower values are better. M0 does a better job predicting the number
of Requests Received and Requests Sent. Analyses are based on the data of
Figure 3.12, over five minutes, at the end of a game. . . . . . . . . . . . . . 89

3.14 KL-divergence values for the baseline M0 model across the five parameters of
x at one-minute intervals: lower values are better. Each plot contains data
over a time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4
minute, and (e) 4-5 minute, of the 5-minute anagram game. The data are for
conditions (n = 10, k = 2). These plots show that request-related predictions
are better than reply-related predictions over all time intervals. The reply-
related predictions are better in the second half of the five-minute anagram
games, but Figure 3.9 shows that in experiments, there are fewer replies in
the second half of the games. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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3.15 Distribution of KL divergence values for comparing distributions of model
output with corresponding distributions of experimental data, for the group
anagram game. The model is the (n = 10, k = 2) baseline M0 ABM. The
data sets used in comparison are experiments: (n = 10, k = 2). The data sets
used in comparison are experiments: (n = 10, k = 2). There are 30 values in
the distribution, with five values for the variables of x at the end of the game
(over five minutes of the game), and 25 values for each of the five variables of
x over five intervals of one minute duration. It shows that for Model M0, some
KL divergence values are high, indicating that the model is in poor agreement
with data. As we see in Figure 3.13, M0 does not do a good job predicting
the number of replies received, replies sent, and words formed. . . . . . . . 91

3.16 ABM M0 and M1 predictions of the k = 2 experiments, along with the exper-
imental data. The probability density function is show for (a) distribution of
replies received, (b) distribution of replies sent, (c) distribution of requests re-
ceived, (d) distribution of requests sent, and (e) distribution of words formed,
each at the end of the 5-minute anagram game (gray bars) for all k = 2 ex-
periments, compared to M1 predictions (red) for 100 simulations of an n = 10
player game. M1 predictions (red) for 100 simulations of an n = 10 player
game. The baseline model M0 is shown in green for comparison. It is clear
from visual inspection that model M1 predictions are in better agreement with
the experiment data than are M0 predictions. We make this comparison more
precise using KL-divergence in Figure 3.17. . . . . . . . . . . . . . . . . . . 93

3.17 KL-divergence values for the baseline M0 and M1 models across the five pa-
rameters of x: lower values are better. The modeling conditions are exper-
iment with k = 2. This figure shows that M1 greatly improves a weakness
of model M0 in poorly representing RplR (number of replies received), RplS
(number of replies sent), and Wrds (number of words formed). . . . . . . . 94

3.18 KL-divergence values for the baseline M0 and M1 across the five parameters
of x: lower values are better. The modeling conditions are experiment with
k = 2. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute
anagram game. While Model M0 has good predictions for the minute 3 and
minute 5 (with the exception of the words formed), Model M1 has better
predictions for the minute 3 and minute 5 for all five x variables. . . . . . . 95
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3.19 Distribution of KL divergence for comparing distributions of model output
with corresponding distributions of experimental data for the anagram game.
Models are (n = 10, k = 2) M0 and M1. The data sets used in comparison are
experiments: (n = 10, k = 2). There are 30 values in each distribution, with
five values for variable x at the end of the game over all five minutes, and
25 values for the five variables x over five intervals of one minute increment
each. These results shows that for model M1, the KL divergence values are
frequently low, indicating that it is in better agreement with experimental
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.20 M1 model distributions predicted for the number of replies received at the
end of game (n = 10, 100 simulations), for different regular degrees k of the
game network G. This partially motivated our development of ABM M2, since
model M1 predictions do not vary significantly with the number of a player’s
neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.21 ABM M1 and M2 predictions of the k = 2 experiments, and experimental
data, over all five minutes of the group anagram games. The probability
density distributions are shown for (a) distribution of replies received, (b) dis-
tribution of replies sent, (c) distribution of requests received, (d) distribution
of requests sent, and (e) distribution of words formed, each at the end of the
5-minute anagram game (gray bars are experimental data) for all k = 2 exper-
iments, compared to M2 predictions (blue) for 100 simulations of an n = 10
player game. The model M1 predictions are shown in red for comparison.
It is clear from visual inspection that models M1 and M2 generate similar
predictions, in agreement with the experiment data, as M1 is learned solely
from k = 2 experimental data. We make this comparison more precise using
KL-divergence in Figure 3.23. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.22 ABM M1 and M2 predictions of the k = 4 experiments, and experimental
data, over all five minutes of the anagram games. The probability density
distributions are shown for (a) distribution of replies received, (b) distribution
of replies sent, (c) distribution of requests received, (d) distribution of requests
sent, and (e) distribution of words formed, each at the end of the 5-minute
anagram game (gray bars are experimental data) for all k = 4 experiments,
compared to M2 predictions (blue) for 100 simulations of an n = 10 player
game. The model M1 predictions are shown in red for comparison. It is
clear from visual inspection that model M2 predictions are generally in better
agreement with the experiment data than are M1 predictions. We make this
comparison more precise using KL-divergence in Figure 3.24. . . . . . . . . 99
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3.23 The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 2
M1 and M2 models predictions to the experiments across the five parameters
of x: lower values are better. This figure shows that M1 and M2 generate
similar predictions to the experimental data. . . . . . . . . . . . . . . . . . 100

3.24 The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 4
M1 and M2 models predictions to the experiments across the five parameters
of x: lower values are better. This figure shows that M2 gives much better
performance than M1 predicting the time to generate an action for an agent.
M2 gives much better performance, as expected, as it explicitly accounts for
agent degree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.25 KL-divergence values for the Models M1 and M2 predictions of the k = 2
experiments across the five parameters of x: lower values are better. Each
plot contains data over a 1-minute time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute intervals, of the
5-minute anagram game. This figure shows that M1 and M2 generate similar
predictions to the experimental data, as M1 is learned from k = 2 experimental
data and M2 is developed from 2 ≤ k ≤ 8 data. . . . . . . . . . . . . . . . . 101

3.26 KL-divergence values for the Models M1 and M2 predictions of the k = 4
experiments across the five parameters of x: lower values are better. Each plot
contains data over a 1-minute time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute intervals, of the 5-minute
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time to generate an action for an agent after the minute one. M2 gives much
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3.27 Each plot shows the distribution of KL divergence for comparing distributions
of model output with corresponding distributions of experimental data for the
group anagram game. There are 30 KL-divergence values represented by each
distribution in each plot, with five values for variable x at the end of the
game, and 25 values for each of the five variables x over five intervals of one
minute increment each. The plots correspond to different k values: (a) k = 2;
(b) k = 4; (c) k = 6; and (d) k = 8. The y-axis range in (a) is different because
of the high concentration of the x-axis KLD values. A model improves as the
density is greater at lesser KL-divergence values. Hence, Model M1 is better
for k = 2, and Model M2 is better for k > 2, consistent with the data used to
build these models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xxi



3.28 A scatter plot of KL-divergence for M1 (x-axis) and M2 (y-axis) for four k
values and five x variables. For k > 2, M2 performs better than M1, as M2
incorporates experimental data with 2 ≤ k ≤ 8. Interestingly, M1 and M2
perform equally well (highlighted) for k = 2 as M1 is learned from k = 2
experimental data (M1 is slightly better). These are data over the total 300
seconds anagram game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.29 KLD values from the comparison of models M0 (green box), M1 (red box), M2
(blue box), versus the experimental data. On the x axis we show the anagram
game by the minute of the five minute game (i.e. [0-1),[1-2),[2-3),[3-4),[4-5)).
Each box, by type of model, contains 100 values of KLD corresponding to
k = 2, 4, 6, and 8, and the five x variables at the end of each minute. Model
M0 shows the highest median values throughout the 5-minute game, except
for minute 5 when it performs better than M1. The Model M1 median is
lower at minute [0,1), while the Model M2 median is lower for the minutes
two through five. Figure B.41 in Appendix B.1.11 shows the boxplots grouped
by type of k = 2, 4, 6, 8 and shows the highest median values on the first two
minutes of the game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.30 This shows that the model fits good for this category. The transitions in this
category only contains intial status 1. Comparing empirical probabilities with
probabilities estimated from model, they are very close to each other. . . . . 105

3.31 This shows that the model fits good for this category. The transitions in this
category contains all intial status. Comparing empirical probabilities with
probabilities estimated from model, they are very close to each other. . . . . 106

3.32 This shows that the model fits bad for this category. However, the model fits
good for initial 1 and initial 4, which have 112 counts and 49 counts. While
the model fits bad for initial 2 and initial 3. Thus, the count for each initial
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3.33 This shows that the model fits bad for this category. The transitions in this
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3.34 Scatter plot of RMSE against total count. The x-axis is the total count of a
category, the y-axis is the RMSE for that category. The plot shows that a
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3.35 Scatter plot of RMSE against min.count. The x-axis is the minimum count
of a category, the y-axis is the RMSE for that category. The plot shows that
a category with less min.count tends to have larger RMSE. Furthermore, it
shows that the minimum count has a sharp delineation between small and
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3.36 Scatter plot of RMSE against Min.Count in different settings of covariates in
Table 3.10. See Equation (3.8) for RMSE and text for Min.Count. . . . . . 108

3.37 Abductive tree representing candidate abductive loops with dependencies.
Hypotheses are nodes, and are provided in Table 3.11; edges are outcomes of
ALs. The orange colored nodes correspond to abductive iterations presented
herein. The red node is a candidate next loop. This tree is not unique;
different analysts can devise different trees. . . . . . . . . . . . . . . . . . . 109

3.38 Statistical analysis correlation results of the anagram game parameters and
DIFI2 score. (a) Probability density of replies received change markedly from
k = 2 to k = 4, but relatively little for further increasing k. (b) Proba-
bility density of DIFI2 score moves dramatically to larger DIFI2 score with
increasing k. Each of these results is novel. All the more novel is the combina-
tion of the two: while game measurables saturate (other data besides replies
received), the DIFI2 score does not. . . . . . . . . . . . . . . . . . . . . . . 113

4.1 Simplified view of a networked group anagram game (GrAG), with illustrative
actions among n = 3 players that communicate and share letters through the
gray channels. Each player is initially given nl = 3 letters. Letters that a
player has “in-hand” to form words are shown in boxes. Player actions are
shown in blue. At time t, v2 requests a “u” from v1 and v3 forms the word
“cot.” At the next time, v2 receives a “u” from v1, forms the word “bug,” and
receives a request from v3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Structure of the composite (agent-based) model. At each time in a group
anagram game, a player takes one of four actions, consistent with the online
game: “form word,” “request letter,” “reply to letter request,” or “think.”
The selection of each action is determined by a multinomial logistic regression
model from [202], which we call the action type and time (ATAT) model.
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module) that simulates human reasoning and outputs the specifics of an ac-
tion. These are expanded on in Figure 4.3 below. These component models in
this figure are the focus of this work. The algorithms for these three actions
are in Figure 4.7, Figure 4.9, and in [45], Figure 16. “Thinking” is an idling
action, no model is needed. The common theme across these models is given
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4.3 Component models (i.e., combined mechanistic and data-driven models) for
the three player actions in the GrAG. These are models of human reasoning,
which output specific player actions in the game. The particulars of the
mechanistic and data-driven models are given in the respective boxes under
the actions and are detailed in Section 4.5. Mechanistic models are built
first, and then augmented with data-driven models. The player actions and
component models map onto those in Figure 4.2. . . . . . . . . . . . . . . . 120

4.4 Comparison of mechanistic model predictions against data for the form
word model. Mechanistic predictions are the values on the x-axis (dLmin); data
are on the y-axis (dLi,act). We use the |CW | = 5000 word corpus. Each plot
corresponds to a grouping of players by 20% bins of player performance in
forming words according to dL, and represents, in turn, Pj, j ∈ {1, 2, 3, 4, 5},
moving left to right. Numbers are numbers of observations in the data. If
dLi,act(w1, w2) = dLmin, then the experimental data correspond exactly with the
mechanistic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 For (CW
i , b

wf
i , dLmin) = (5000 words, P1, 1), the distribution DdL of dLi,act from

experiments is shown. For a given dLmin computed for optimal behavior,
the appropriate distribution is sampled to obtain dLi,act for vi. These dis-
tributions are formed from the data in Figure 4.4 and they are part of the
data-drivenmodel of form word. . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Experimental data for |CW
i | = 5000. Log-log scale plot (inset) of the distri-

bution of ranks of words formed by players from the word set W ih
i (w1, d

L
i,act).

Lesser rank means higher word frequency from corpus. Players most often
choose words with lesser rank (i.e., greater frequency). . . . . . . . . . . . . 126

4.7 Steps of the Algorithm Form Word. This algorithm returns a word that an
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4.8 Comparison of mechanistic model predictions (in green) against data (the
distributions) for the request letter model. Our mechanistic model predicts
all letter requests will be of rank-1 in each of the four plots. (LEFT) Experi-
mental data are for the 5000-word corpus, aptitude breqi = Q1 = 20% for letter
requests (plots for Qj, j ∈ {2, 3, 4, 5} are not shown). For aptitude Q1, the
frequency of the rank of the chosen letter is plotted. These data show that
players most often choose letters with lower rank, meaning that they choose
letters that can form relatively more words. (RIGHT) These three plots break
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4.10 (Left) Simulation results for Sim. nos. 1 through 5 of Table 4.2. The average
number of words formed per player drops in going from bwfi = P1 to P5,
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A.11 To run a pipeline (called a job), a configuration input file specifies functions
and their order of execution. In this configuration file there are five possible
functions that can be executed in any order. This Figure shows a portion of
the schema for a configuration file that specifies how to compose and execute
one or more functions of a simple pipeline. For example, here it defines that
a parameter called “actionId” is only necessary for functions h2 through h5. . 164
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game. Each of the bins on the x-axis correspond to 30-second intervals. (a)
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B.7 ABM M0 predictions of the k = 2 experiments for the distributions of letters
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minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of
the 5-minute anagram game (gray bars) for all k = 2 experiments, compared
to Baseline M0 predictions (green) for 100 simulations of an n = 10 player
game. These plots show that for Model M0, requests received predictions,
compared to the other variables, are good through the five minutes of the
game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B.8 ABM M0 predictions of the k = 2 experiments for the distributions of letters
Requests Sent. Each plot contains data over a time window: (a) 0-1 minute,
(b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the
5-minute anagram game (gray bars) for all k = 2 experiments, compared to
Baseline M0 predictions (green) for 100 simulations of an n = 10 player game.
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Chapter 1

Introduction

1.1 Background, Motivation, and Summary

Online social science experiments/games are increasingly used to study social behaviors at-
scale, with finer-grained data collection [47, 48, 51, 128, 131, 132]. These types of experiments
explore phenomena such as collective identity [51], coordination [143], exploration versus ex-
ploitation [146], and diffusion and contagion [47, 164]. These experiments have subjects or
participants interact via a network thus defining interaction patterns among subjects and
constraining the information available to subjects during an experiment. Also, experiments
are carried out until a certain condition is met or for a specified amount of time (as opposed
to one shot games). Modeling of experiments is also becoming more common. Validated
models can be executed far more quickly and at far less cost than experiments. Furthermore,
iterations of the experiment-analysis-modeling (EAM) process enable incremental improve-
ments in each of these three EAM tasks.

These iterations require several classes of operations: (1) design and conduct experiments,
(2) acquire data, (3) fuse and integrate data, (4) analyze experimental data, (5) develop and
verify models, (6) infer model parameters, (7) run simulations, (8) compare experimental
data against model output (e.g., for validation), (9) exercise models beyond the ranges of
experimental data, and (10) iterate (this is one ordering).

In this work we focus on EAM tasks and refer to this subject as networked temporal social
science (NESS). There is significant interest in using online systems to carry out NESS ex-
periments to understand individual and group behavior. Such systems allow researchers
to record fine grained information pertaining to the social experiment for further analysis.
Considerable work is required for analyzing the recorded fine grained data to uncover inter-
esting insights and to generate/refute hypothesis. This tedious yet important work is usually
carried out by an analyst who develops tailor-made custom programs and analytical scripts
that pertain to the experiment. This often leads to inefficiencies and duplication of effort.

1
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This work takes a step towards overcoming this problem by focusing on the NESS EAM
cycle.

We propose a formal model to which NESS experiments and models must conform. The
formal specification makes the class of participant actions, states and interactions precise.
Furthermore the formal specification is developed with an agent based modeling (ABM)
approach in mind that is used for analysis and hypothesis generation and refinement. An
explicit correspondence is developed between subjects in online experiments and computa-
tional agents in models. Computational modeling is useful in understanding and reasoning
about the NESS experiments behaviors [92, 93].

Also, we design and build five composable and extensible automated software pipelines for
(1) experimental data transformation; (2) data analytics; (3) model property inference;
(4) modeling and simulation; and (5) results analysis and comparisons between experimen-
tal data and model predictions. The pipelines are generic and can be used to study any
NESS experiment that confirms to the formal specification.

In this thesis, we are motivated by a particular social behavior, namely collective identity
(CI). One of our goals is to understand whether a cooperative anagram (i.e., word con-
struction) game can produce CI within a group. CI is an individual’s cognitive, moral, and
emotional connection with a broader community, category, practice, or institution [200].
While CI is our initial driver, we also purposely seek to generalize our work to enable study
of other social phenomena, such as contagion and diffusion.

Our framework for the study of CI is abduction. Abduction is an inference approach that
uses data and observations to identify plausible (preferably, best) explanations for phe-
nomena [197]. Abduction has broad application in robotics, genetics, automated systems,
and image understanding [12, 127, 216, 258]. In the artificial intelligence (AI) community,
many abduction works have focused on topics such as producing explanations for different
logic settings (e.g., [78]); determining the computational complexity of abduction problems
(e.g., [265]); and generating solutions for special problems (e.g., [196]). Here, we extend
the notion of abduction by developing an abductive looping process and execute it for the
problem of CI. While there has been work on abductive iterations, we formalize this process,
and make modeling a much more prominent component of an iteration.

Individual anagram games have been extensively studied for more than 60 years to analyze
problems such as effects of goal-setting [144, 156, 213, 257], effects of compensation types
[40, 41, 52], internal-external attributions [70, 84, 85, 86, 172, 227, 250], test anxiety [205,
208, 209], collective identity [104] and anagram game performance [75, 99, 166, 263]. This
work involves a broad range of fields like sociology [41, 213, 257], economics and [40, 51, 52],
(social) psychology [70, 84, 85, 86, 144, 156, 172, 205, 208, 209, 250]. With all of this
experimental work on anagram games, it is surprising that very little work has been done in
modeling these games.

The majority of work on anagram games involves individual players. Recently, work has
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expanded to group anagram games where players cooperate by sharing letters [51, 202]. In
this work, we analyze experimental data from novel web-based, networked experiments of
group anagram games. We design, construct, and evaluate data-driven networked ABM
of experiments. First, we develop a CRF model for predicting time sequences of types of
actions that players execute during the group anagram games. Then, we develop models for
agents that execute details of player actions (e.g, what particular word a player forms). For
this latter effort we develop a process for combining mechanistic and data-driven (defined
below) approaches to build models of human reasoning to predict detailed game player
actions. We compare model predictions against experimental data, which enables us to
provide explanations of human reasoning and behavior.

1.2 Research Questions

The work described above, and detailed in subsequent chapters, attempts to answer the
following questions:

1. Can we devise a data model and apply a computational model that together form ab-
stract representations of experiments and modeling and simulation (MAS) and ensure
correspondence between experiments and MAS?

2. Can we design and implement an extensible software system to study social phenomena
through iterative experiments and modeling?

3. We know that Collective Identity (CI) can be fleeting. Can CI form over a short time
period with people that not know each other?

4. Can we build time sequence models that predict the types of actions that players take,
in time, in a group anagram game?

5. Can we build purely mechanistic and data driven models of the details of player actions
in the group anagram game? Can we devise a process for combining mechanistic and
data-driven approaches to build models of human reasoning?

6. Can we implement time sequence, mechanistic, and data driven agent-based models to
explain human behavior beyond that illuminated by experiments alone?

To explore an abstract representation of experiments and modeling and simulation (MAS)
(Question 1) and study social phenomena through iterative experiments and modeling (Ques-
tion 2), we describe in Chapter 2 a formal abstract data model for networked social science
experiments to provide a common representation for both experiments and modeling, thus
producing a correspondence between experiments and MAS. Also, in Chapter 2, we de-
scribe extensible pipelines for (1) experimental data transformation, (2) data analysis, (3)
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model property inference, (4) modeling and simulation, and (5) model of evaluations and
predictions against experiment results. These pipelines are developed and used for iterative
modeling and simulation, and analysis, of networked experiments via abductive looping. In
Chapter 3, using the pipelines, we study the social phenomenon of collective identity through
iterative experiments and modeling (Question 3). We devise and evaluate a time sequence
model of player actions in the group anagram game (Question 4). Finally, in Chapter 4, we
construct mechanistic and data-driven models (defined in Chapter 4) that predict detailed
player actions in the group anagram game. We develop a process for combining mechanistic
and data-driven approaches to build models of human reasoning (Question 5). Finally, we
combine the time sequence, mechanistic, and data driven models in forming an agent-based
modeling and simulation (ABMS) platform for simulating group anagram games (Question
6).



Chapter 2

Pipelines and their Compositions for
Modeling and Analysis of Controlled
Online Networked Social Science
experiments

2.1 Abstract

There has been significant interest in online social science experiments in order to under-
stand behavior at-scale, with finer-grained data collection. To uncover interesting insights
and to generate/refute hypotheses, considerable work is required to perform data analytics
for custom experiments. Furthermore, such experiments are increasingly being done in an
iterative loop that comprises four broad steps: (i) propose/modify hypothesis; (ii) carry out
experiments; (iii) analyze to confirm/disconfirm a hypothesis; and (iv) build models from
the data. This tedious yet important work is usually carried out by an analyst who develops
tailor-made custom programs and analytical scripts that pertain to the experiments and
modeling. This often leads to inefficiencies and duplication of effort.

This paper takes a step towards overcoming this problem by focusing on a networked temporal
social science (NESS) experimental modeling cycle. In such a cycle, participants interact via
a social network and carry out the needed tasks over a period of time via interactions with
neighbors, exchanging appropriate information as specified by a NESS experiment. The loop
allows for iterative modeling and experimental refinement. First, we propose a formal model
to which such NESS experiments and models must conform, for reasoning about them. The
formal specification makes the class of actions, states and interactions precise. Furthermore,
the formal specification is developed with an agent based modeling approach in mind that
is used for analysis and hypothesis generation and refinement. An explicit correspondence is

5
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developed between the subjects in an online experiment and the computational agent-based
model.

As a second step, we design and build five composable and extensible automated software
pipelines for (i) experimental data transformation; (ii) data analytics; (iii) model property
inference; (iv) model/simulation; and (v) results analysis and comparisons between experi-
mental data and model predictions.

The pipelines are generic and can be used to study any NESS experiment that confirms to
the formal specification. Our data model is for scenarios where subjects can repeat actions
(from a set) any number of times over the game duration. Because the types of interactions
and action sets are flexible, this class of experiments is large. Three case studies, on collective
identity, complex contagion, and explore-exploit behaviors illustrate use of the system. The
case studies show the generality of these pipelines and improving human productivity for
carrying out online NESS experiments and modeling.

2.2 Introduction

2.2.1 Background and Motivation

Online controlled networked social experiments/games (henceforth referred to as NESS ex-
periments or experimental loop) are increasingly used to study social behaviors [47, 48, 51,
128, 131, 132] and explore phenomena such as collective identity [51, 202], coordination [143],
and diffusion and contagion [47, 51, 164]. NESS experiments have the following distinguishing
features: (i) the experiments and analysis are performed in a loop; (ii) subjects or partici-
pants interact via a network, thus constraining the information available to them during an
experiment; and (iii) the experiment is carried out until a certain condition is met or for a
specified amount of time (as opposed to one shot games). Computational modeling is useful
in understanding and reasoning about these behaviors [92, 93]. Several studies [81, 147, 162]
motivate much of our work. A model that is validated using experimented data can be run
much faster, more economically, and over a greater range of conditions than can be accom-
plished with experiments (e.g., for parametric studies, sensitivity analyses); e.g., see [146] for
a pure modeling approach that examines a wide range of conditions. Combining experiments
and modeling enables each to inform and guide the other. This combined approach has been
accomplished in some studies without automation [5, 44, 217] or purely conceptually [253].
Reference [253] takes a combined experiment/modeling approach by defining a framework
for conceptual modeling for simulation-based serious gaming. Often, there is emphasis on
one or the other with no experiment/modeling iterations; e.g., experiments are emphasized,
and there are no iterations [164].

NESS experiments require several classes of operations: (1) design experiments, (2) conduct
experiments and collect data, (3) fuse and integrate data, (4) analyze experimental data,
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(5) design, develop, and verify models (data-driven models if models are based on the data),
(6) infer model parameters, (7) run simulations, (8) compare experimental data against
model output, (9) exercise models beyond the ranges of experimental data (e.g., to explore
counterfactuals), and (10) iterate. This is one ordering; see Figure 2.1.

Currently, these steps are done in an adhoc manner by individual scientists, leading to
inefficiencies, duplication and an overall decrease in human productivity. Automating these
steps can not only lead to improved productivity, but also to improved reproducibility,
and scalability. Although there are software systems that address some of these operations
[126, 203], these approaches do not take the semantics of social experiments into account
and largely focus on providing a generic data schema. An automated and extensible system
for evaluating social phenomena through iterative experiments and modeling that addresses
all of these issues is lacking.

Figure 2.1: Five pipelines (in gray) for NESS experiments. In this analysis loop, experi-
ments (conducted with an experimental platform, upper left) are performed. Experimental
data are transformed, by the Experimental Data Transformation Pipeline, into a data com-
mon specification (in blue) that conforms to our data model (see Section 2.3). The Data
Analytics Pipeline analyzes data and generates and prepares data for property inference.
The Property Inference Pipeline determines properties for probabilistic agent-based model-
ing (ABM) and simulation (ABMS). These simulations are performed in the Modeling and
Simulation Pipeline. The Model Evaluation and Prediction Pipeline generates comparisons
between experimental data and model predictions using statistical and logical testing. We
can then specify the parameters for a next set of experiments (experiment specification).
Our data model provides a single specification that enables any experiment whose data can
be cast in terms of the model, to be analyzed in the system (e.g., a classroom experiment).
These pipelines are the focus of this work. This composition of pipelines is one of several
possibilities. Our system uses human-in-the-loop.

One often thinks of software as a tool for increasing the speed of some sort of processing.
However, in the loop of Figure 2.1, some of these steps can take months to complete, so that
work is “slow” in some sense. For example, modifications in experimental procedures can take
weeks to specify, implement, and verify before new experiments are performed. Similarly,
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multiple models using fundamentally different methodologies may require several weeks to
develop, even though they use the same experimental data. Indeed, this has happened in
our work. These cases make documentation, data storage, and provenance critical, so that
work done in the past can be recalled and traced.

In this work, we present a computational environment to support NESS experiments. In
other words, NESS is an experiment/modeling/simulation/analysis environment composed
of pipelines to study social behaviors. A pipeline is a sequence of operations, each of which
performs a useful task by taking one or more inputs and producing one or more outputs.
Our use of pipeline is motivated by the Pipes and Filters architecture pattern [38] and [91].
A pipeline combines operations in analyst-specified ways. We distinguish our work from
workflows because, while pipelines have many common features with workflows, here we
do not account for provenance of digital objects under a data management system; this
work is in progress. See Related Work. Figure 2.1 provides an overview of our system that is
described further below. We also provide multiple formalisms, for a data model, a dynamical
systems computational model, and a pipelines model that underpin our environment. See
Figure 2.2.

Throughout this work, experiment or game means having human subjects interact to achieve
some objective, while the actions are recorded for later analysis. Modeling refers to building
mathematical representations (i.e., models) of experiments. Simulation means running soft-
ware implementations of models, e.g., of ABMs. For clarity, we purposely avoid ambiguous
terms like computational experiment.

2.2.2 Technical Challenges

Technical challenges can be broken down into two categories: those pertaining to pipelines in
general, and those that are more specific to social sciences. For large and complex scientific
applications, abstractions that capture data processing and computation are important [69].
A system is easier to understand and reuse with high-level abstractions [94]. General chal-
lenges include: identifying the correct levels of abstraction for systems and applications (e.g.,
formal data models and computational models help with this), automation, reproducibility,
interoperability, composability, extensibility, scalability, and traceability [97]. A persuasive
argument for a similar approach to study experimental quantum mechanics is presented in
[169]. In the case of NESS experiments, we have three unique challenges to address.

1. Greater range is required in modeling functionality; modeling in social sciences can be
different from that in engineering disciplines because often a “model” is a qualitative
textual description that is open to different interpretations due to lack of details. Hence
a social science “model” can lead to different interpretations and algorithmic models
to build and evaluate.

2. Experiments in the social sciences can vary widely, depending on the phenomena being
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studied [244]. Hence, data analytics for these varying experiments, including data
exploration, requires custom analyses.

3. Different classes of problems require different data and computational models.

We now address the novel aspects of our work. The three types of models described in this
work: (abstract) data model, graph dynamical system model, and pipeline model. A system
similar to Figure 2.1 is being pursued in [169] for quantum studies.

2.2.3 Novelty Of Our Work

The novelty of this work is:

1. Devising an abstract data model that is a representation of experiments and simu-
lation models so that we can determine whether an experiment or simulation can be
analyzed with our system. Furthermore, we incorporate a second model called graph
dynamical systems (GDS) [6]. GDS and the abstract data model provide founda-
tions to ensure correspondence between experiments and computational models. See
Figure 2.2, where we have an experimental platform and a modeling and simulation
(MAS) platform, and we need these two to interoperate through our data and GDS
models. It shows specific data sources and modeling approaches.

Figure 2.2: The three types of models described in this work: (abstract) data model, graph
dynamical system model, and pipeline model. Data model enables rigorous reasoning about
both (i) experiments and experimental data specifications (requirements) and (ii) modeling
and simulation (MAS) specifications. It, along with the GDS model, help to ensure consis-
tency and correspondence between experiments and MAS. We use graph dynamical systems
to model system dynamics. Specific data sources and modeling approaches are shown. These
are used within our pipeline model.
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2. Our pipelines take a microservices conceptual approach [49, 206, 230] wherein the com-
ponents of a pipeline—which we call functions or h-functions—have a narrow scope.
(Functions are described below, but basically represent the software that provides the
functionality that the pipelines orchestrate.) This way, new functions can be added
for new experiments and models in a targeted way, fostering reuse without introducing
redundant capabilities. Our contributions below elaborate on these points. In effect,
then, our pipelines individually and collectively act as gateways into services. We are
moving toward X-as-a-service (XaaS).

3. The range of functionality that we provide (and this range is expanding) is broad.
Implied by the foregoing discussion and Figure 2.1, we seek a broader set of capabilities
that is an experiment, modeling and simulation, and analysis environment (EMSAE).
Our objective is well beyond the current focus of many systems, which is social network
analysis [94].

4. The range of experiments that we can evaluate is large. We demonstrate this with
the three cases studies of Section 2.8. This is particularly relevant in a field like social
sciences (like others), where the range of phenomena under study is so large. Note,
our system cannot deal with any experiment; we specify the class of experiment in
Section 3.2.6 below.

2.2.4 Contributions

1. Development of conceptual views, formal models, and implementations for
each of a data model and a pipeline model. For each of the data and pipeline models,
we provide conceptual views, formal models, and implementation descriptions. This ap-
proach demonstrates the power of modeling to inform software system implementations. We
also describe the GDS formalism which is used to provide a correspondence between experi-
ments and (agent-based) models for simulating experiments. The GDS formalism is not our
contribution, but its use in this setting is a contribution. Thus, taking the data, GDS, and
pipeline systems each in turn, this contribution is specifically that we provide a consistent
(and unified) view of, and approach to, pipeline systems building for social experiments and
for modeling them. Specific contributions within this context follow.

2. Formal data model for NESS experiments and simulation modeling. We develop
a formal abstract data model for networked social science experiments. The model provides a
common representation for both experiments and modeling, thus producing a correspondence
between experiments and modeling and simulation (MAS). It also provides a needed level of
abstraction per Section 2.2.2. Our data model has the following five characteristics: (i) an
experiment may be composed of multiple phases (i.e., sub-games); (ii) each phase may have
a different finite duration; (iii) each phase may have a different interaction structure among
players (i.e., different networks); (iv) each phase may have a different set of actions (and
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interactions) among players; and (v) these actions may be repeated by players any number
of times within the duration of a phase (i.e., temporal interactions). Experiments with our
five characteristics represent a significant class of experiments, e.g., [47, 51, 128, 164], and
experiments based on [146]. The data model, with our computational model (Section 2.4),
provides a formal specification for experiments and models. The data common specification
in Figure 2.1 is based on the data model.

3. Pipeline formalism and implementation. We provide a conceptual view of pipelines.
This view is used to construct a formal description of our pipelines. From these, we design and
construct a pipeline system and infrastructure to execute software pipelines. The pipeline
software infrastructure is the same (common) among all five pipelines that we introduce in
this paper to study social science experiments and modeling of them. It can be used for
additional pipelines, as we have demonstrated in our work that it is extensible (i.e., our par-
ticular pipelines have been constructed over time and use the same infrastructure). Pipeline
operations are: (i) read and parse the pipeline configuration file which specifies the pipeline
tasks to complete; (ii) control accessing input files, JSON schema files, transformation codes,
functions, etc.; (iii) check files against their JSON schema and terminates gracefully if a ver-
ification fails; (iv) invoke the proper transformation functions (if applicable), (v) invoke the
proper h-functions in their proper order (and any other operations), and (vi) error handling.

4. Five extensible pipelines for modeling and simulation, and analysis, of con-
trolled networked experiments. We design and construct pipelines for (1) experimental
data transformation, (2) data analysis, (3) model property inference, (4) MAS, and (5) model
evaluation against experiments results, and prediction. Pipeline functionality is based on a
formal pipeline model. Each pipeline consists of an extensible collection of functions that can
be composed to accomplish computational goals. Moreover, the pipelines themselves can be
composed in several ways (Figure 2.1 is one way). Syntactic data validation of function in-
puts and outputs ensures robust software execution. The ten operations in Section 2.2.1 are
embedded in these pipelines (note: generating software verification cases is not automated
and model design is a human task). The Figure 2.1 caption explains why we emphasize
controlled experiments; however, use of the pipelines does not require this (e.g., they can be
used with social media data). The steps in Figure 2.1, while automated, are often executed
with a human-in-the-loop to inspect results. The pipelines also satisfy the reproducibility,
composability and other “ilities” of Section 2.2.2.

5. Pipeline functions. Our pipelines take a microservices conceptual approach [49, 206,
230] wherein the components executed by a pipeline—which we call functions—have a narrow
scope. We provide 29 implemented functions within the five pipelines (See Appendix A.4).
New functions can be added for new experiments and models in a targeted way (as we have
done), fostering reuse without introducing redundant capabilities.

6. Case studies. We provide three case studies to illustrate the use of the NESS system.
Case study 1 combines experiments and modeling. Case study 2 addresses experiments only.
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Case study 3 focuses on modeling only. In case study 1, we describe social experiments that
we conducted to produce collective identity (CI) within a group of human subjects [202].
Experiments and all five pipelines in Figure 2.1 are used. In a second case study, we take the
experiment in [47] and demonstrate how it maps onto our data model, thus showing that we
can evaluate such experiments with our system. The experiment objective is to study the
effects of network structure on complex contagion diffusion. In a third case study, we take
the explore-exploit model in [146] and demonstrate how it maps onto our data model. The
objective in [146] is to investigate how the structure of communication networks among actors
can affect explore and exploit actions. Although the number of subjects in experiments is
limited to tens of people, our pipelines have been successfully run with millions of artificial
subjects for evaluating scalability.

2.2.5 Additional Perspective

Reproducibility in science is of considerable interest, owing to the fact that several studies
indicate that much of science is not reproducible [22, 186, 211]. A pipeline system such
as this is a contribution to that goal. Pipeline operations can be recorded and rerun for
reproduciblity. When we connect this pipelined system with our infrastructure, we will have
provenance, too.

Approaches to rectify this lack of reproducibility include triangulation and consilience [176].
Triangulation uses multiple approaches to answer a single question, so that if these ap-
proaches produce the same/complementary results and hence similar conclusions, one may
put more credence in the results. Our pipelines can help in this regard in at least two ways.
First, for a given type of experiment (resp., model), multiple models (experiments) can be
incorporated into the pipeline. Second, the experiments and models may both be changed
to investigate a problem from multiple perspectives. This paper is a full treatment of, and
an extension of a preliminary version that appears as [46].

Organization. We first present formalisms for the data model (Section 2.3) and the com-
putational models of discrete dynamical systems (Section 2.4) because these underpin the
pipelines. Next, we present a conceptual view of the pipelines and their components (Sec-
tion 2.5), followed by a formal specification for the pipelines in Section 2.6. Next, selected
implementation issues are presented in Section 2.7. We provide case studies in Section 2.8
that emphasize both the data model and the pipelines. Related work comprises Section 2.9,
and is followed by conclusions. We provide a set of appendices.
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2.3 Data Model for Networked Experiments and for

Modeling and Simulation

2.3.1 Formal Data Model

One of the challenges is to formally represent social experiments and models. Here, we
propose a general adaptive abstract data model for networked social experiments with the
five characteristics itemized in Contribution 2 of Section 3.2.6. The purpose of the data
model, provided in Table 2.1, together with the computational model of Section 2.4 and the
pipeline model in section 2.6, is to provide formal representations for experiments and MAS,
and their iterative interactions. Here, we focus only on the data model. Given a description
of an experiment or model, one can determine whether our system can be applied; and in
reverse, given a phenomenon of study, these models can be used to formulate experiments
and models. The “data common specification” in Figure 2.1 (blue) is produced from this
model. For ease of exposition, we describe the data model in terms of an experiment, but it
is equally valid for modeling and simulation.

Experiment Schema. Per Table 2.1, each experiment has the following elements: a unique
id exp id, a number np of phases, a number n of players, a t begin timestamp for the beginning
of the game, a t end timestamp for the end of the game. Each player has a unique id vi for
identification. A set of players in an experiment is defined by V = {v1, ..., vn}. An experiment
has nsa player attributes defined for each player. Player attributes Ω are invariant across
phases (e.g., age and education level that might be solicited through a survey).

Phase Schema. An experiment may be composed of any number of phases. All phases
have a common schema, per Table 2.1, but particular phase schema instances (e.g., variables)
may be different across phases.

Each phase schema has the following elements, a unique id ph sch id, the number inp(1 ≤
inp ≤ np) of the phase in the sequence of phases, a t ph begin timestamp at the beginning
of the phase, number of time increments in the phase tp and the unit of time up of one
time increment. Each phase represents the interaction structure among players as a network
G(V ′, E ′) with meanings of edges Λ. Node attributes Γ and edge attributes Ψ over all nodes
and edges capture attribute changes in time. Players and edges may have initial conditions
Bv and Be, respectively. A is the set of permissible player actions. An action tuple Ti, which
captures pair-wise interactions between players, may be intimately tied to the attribute
sequences Γ and Ψ of a phase because action tuples, for example, may cause or be caused
by changes in node and edge attributes. In essence, Γ and Ψ can be viewed as sequences of
node and edge states. Items 8 through 11 and 13 of the phase schema in Table 2.1 follow the
same basic pattern, to capture features by node or edge, and by time. There is a sequence
of values for a particular node vj or edge ej (e.g., Γj, Ψj, B

v
j , Be

j , and Tj). Each entry in
these sequences can be scalars, sequences, sets, or other structures. Then, these entries are
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Table 2.1: Definition of our abstract data model. The experiment schema describes experi-
ment parameters. The phase schema structure describes parameter types for an experimental
phase; an experiment can have any number np of phases. Particular instance variables within
the phase schema structure can vary across phases. We use experiment throughout in the
table and text for ease of exposition, but the data model is also used for (simulation) models.

# Parameters Symbols Description

Experiment Schema

1 Experiment id exp id Unique id for an experiment.

2 Number of phases np Number of phases in the experiment.

3 Number of players n The number of unique players over all phases in the experiment.

4 Begin time t begin Timestamp of experiment beginning.

5 End time t end Timestamp of experiment ending.

6 Set of player IDs V V = {v1, . . . , vn}. Set of players over all phases; vi ∈ V is a unique id for player.

7 Player attributes Ω Ω = ∪nj=1Ωj . Ωj = (ωj1, ωj2, . . . , ωj,nsa ) is the sequence of nsa attributes for
vj ∈ V .

Phase Schema Structure

1 Phase schema id ph sch id Unique id for phase schema.

2 Sequence inp 1 ≤ inp ≤ np. Element of the sequence of phases of the experiment.

3 Phase begin t ph begin Timestamp of phase beginning.

4 Phase duration tp Number of time increments in the phase.

5 Unit of time up Time unit of one time increment (e.g., seconds, days).

6 Network definition G(V ′, E′) Node set V ′ = {v1, ..., vη} and edge set E′ = {e1, . . . , em}, where V ′ ⊆ V may not
be all nodes (players) in the system, and edge ei = {vj , v`} with vj , v` ∈ V ′. Note
that E′ may be empty.

7 Meaning of an
edge.

Λ Set Λ of string representations λ ∈ Λ stating the meaning(s) of an edge (e.g., λ =
“communication channel” or “influence”).

8 Node attributes
for a phase.

Γ Γ = ∪tpt=0

(
∪ηj=1 Γj(t)

)
. Γj(t) = (γj1(t), γj2(t), . . . , γj,ηv (t)) is the sequence of ηv

attributes for vj ∈ V ′ in the phase inp at time t. Γ is a triple nested sequence in
attributes, player ID, and time.

9 Edge attributes
for a phase.

Ψ Ψ = ∪tpt=0

(
∪mj=1 Ψj(t)

)
. Ψj(t) = (ψj1(t), ψj2(t), . . . , ψj,ηe (t)) is the sequence of ηe

attributes for ej ∈ E′ in the phase inp at time t. Ψ is a triple nested sequence in
attributes, edge ID, and time.

10 Initial conditions
for nodes

Bv Nodes: Bv = ∪ηj=1B
v
j . Bvj = (bj1, bj2, . . . , bj,µv ) is the sequence of µv initial

conditions for the phase, for vj ∈ V ′; µv ≥ 0.

11 Initial conditions
for edges

Be Edges: Be = ∪mj=1B
e
j . Bej = (βj1, βj2, . . . , βj,µe ) is the sequence of µe initial

conditions for the phase, for ej ∈ E′; µe ≥ 0.

12 Action set A A = {a1, a2, ..., ana}. Set of na actions that each player can execute, over time, any
number of times, during a phase, where na ≥ 0.

13 Action sequence T T = ∪tpt=0

(
∪ηk=1 Tk

)
. Tk = (σi, aj , vk, v`, to, pyq) is the schema for an action tuple.

σi is a string that is a unique identifier for an action sequence. Action aj ∈ A
is initiated by node vk ∈ V ′, and v` is the target node of the action, with edge
e = {vk, v`} ∈ E′. to ∈ R is the time of the action (0 ≤ to ≤ tp); pyq is the payload
represented as a JSON schema.

sequenced over time through the union of entries over time, from time 0 through tp. The
exceptions are the initial conditions Bv

j and Be
j , because by definition, they are specified only

at time 0.
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2.3.2 Illustrative Instances of Data Model Parameters

We provide a few illustrative examples of data model elements. A 3-phase game is described
in Section 2.8, Case Study 1. Phase 2 is a group anagram (word construction) game. In
phase 2, a network G(V ′, E ′) is imposed on the players, where the meaning λ of a edge is a
communication channel to request letters and reply to requests. A node initial condition bj1
for a game is the number of alphabet letters a player receives at the beginning of the phase
to use in forming words, and bj2 is the set of letters. Each player can execute any action
from the action set A, such as request a letter from a neighbor.

We now provide an example of an action tuple of an action sequence. If player vi requests
letter “z” (a request is action a` ∈ A) from player vj at time to, which initiates a sequence
of actions (because there may be a subsequent letter reply from vj) then the action tuple is
Ti = (σi, a`, vi, vj, to, “z”). Here, σi = vi + “− ” + counter (e.g., a string) is a concatenation
of the initiator’s (vi’s) ID with a player-specific counter to form a unique ID for the sequence
of actions that is initiated with the letter request. If vj responds with “z,” then this (second)
action tuple will use the same σi as the first element of the tuple, consistent with Ti. This is
how action tuples are defined and identified in data processing, in forming action sequences
T for a phase.

2.3.3 From Abstract Data Model to Software Specification

Ours is an abstract mathematical data model. There are several reasons for our choice of
model representation. First, a mathematical representation is more abstract (which means,
among other things, more versatile and flexible) in its use. Second, it corresponds much
more closely to the information required for pipeline capabilities, and enables compact rep-
resentations of simulation models. Third, it is naturally amenable to translation into other
data model representations that are more common in software. We elaborate on each of
these.

1. Abstract representation. An element of a sequence can abstractly represent any type
of data, including scalars, vectors, sets, tensors, and complicated data structures (that may
be implemented via a JSON schema). For example, consider γj2 of Γj of Γ in Table 2.1,
which is an attribute for node or player vj ∈ V ′. This variable might represent a 2-D matrix
or a set. Furthermore, if the representation needs to be changed, it is much easier to do so
with an abstract representation.

2. Compactness. Consider a capability for a simulation model, as part of a pipeline:
multiplying two matrices, M1 and M2. A mathematical representation is simply M1 ·M2 or
M1 M2. A pseudo code representation for this functionality would require some five lines of
code including three FOR loops. Clearly, M1 ·M2 is far more compact.

3. Principled transitions (progression) among software artifacts. The steps in



16

progressing from a mathematical data model to a software model are shown in Figure 2.3.
Experiment and phase schemas in Table 2.1 contain data structures. Instances of our abstract
data model (generated from the execution of an experiment) can be represented as entity-
relationship diagrams, which are conceptual or logical data models. Examples are relational
models [56], object-oriented models like Object Definition Language (ODL) [252] or Unified
Modeling Language (UML) [14], or data structure diagrams [21], among others. A UML
representation of an entity-relationship diagram for our abstract data model is presented in
Figure 2.4. UML is the industry-standard language for specifying, visualizing, constructing,
and documenting the artifacts of software systems [14]. All of the structures from the abstract
data model of Table 2.1 are translated into a entity-relationship diagram in unified modeling
language (UML) form, demonstrating that the abstract data model can be translated into
standard forms of data models more amenable for software development.

Figure 2.3: Sequence of data models for reasoning about experiments and modeling and
simulation. We advocate for pre-pending the abstract data model to the front end of the
model process, as shown here. Table 2.1 shows our abstract data model and Figure 2.4 shows
this data model translated into a entity-relationship diagram in unified modeling language
(UML) form. The table and figures in Appendix A.1 (which support Section 2.7) show the
Data Common Specification for our software design.

Figure 2.4: Data model of Table 2.1 translated into a entity-relationship diagram in uni-
fied modeling language (UML) form. This illustrates that the abstract data model can be
translated to customary forms of data models more amenable for software development.

2.3.4 Data Common Specification

Every JSON input file in the pipelines needs a corresponding JSON schema for the verifi-
cation of formats. For our Data Common Specification there are five classes of input every
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experiment needs to define. The formal data model in Section 2.3.1 specifies that an exper-
iment can have any number np of phases and a different set of players with an action set for
each phase. Appendix A.1 defines through JSON schemas the formats and compositions of
the elements of the Data Common Specification. These are implementation aspects of our
pipelines. These are also the types of files we use in the case studies in Section 2.8.

2.4 Graph Dynamical System Model: a Formal Frame-

work for NESS Experiments and Agent-Based Mod-

els

In this section, we present a computational model known as discrete graph dynamical
systems (GDS). This model formalizes experiments and MAS by capturing the interactions
between pairs of players. That is, we use GDS to specify, build, and execute experiments and
simulators of experiments (and of other conditions). We use this GDS model because it is
correspondent with the data model of Section 2.3 and is a general model of computation [23,
24]. We also achieve correspondence between experiments and MAS, per Figure 2.2. A
number of other formal models could have been used; we find GDS to be a natural model
for specifying NESS.

2.4.1 Formal Model

A synchronous Graph Dynamical System (GDS) [174] S is specified as S = (G,W,F, U),
where we define each in the following. (a) G ≡ G(V,E) is an undirected graph with n = |V |,
and represents the underlying graph of the GDS, with node set V and edge set E. The nodes
represent agents in a system or test subjects in our experiments, and the edges represent
pair-wise interactions between agents. (b) W is the state space, which is the union of the
state space W v for nodes and the state space W e for edges; i.e., W = W v ∪ W e. These
are the states that nodes and edges can take during the dynamics. Each undirected edge
{vi, vj} ∈ E, with vi, vj ∈ V , can be represented by two directed edges: vi to vj, eij = (vi, vj),
and eji = (vj, vi). (c) F = (f1, f2, . . . , fn) is a collection of functions in the system. Function
fi denotes the local function associated with node vi, 1 ≤ i ≤ n, that describes how vi
updates its state. (d) U is the method which describes how the local functions are ordered
at each discrete time. Here, we use the synchronous update scheme where all fi execute in
parallel.

Each node of G has a state value from W v. Each edge of G has a state value from W e.
Each function fi specifies the local interaction between node vi and its neighbors in G. The
inputs to function fi are the state of vi, the states of the neighbors of vi, and the states of
the edges outgoing from vi in G. Function fi maps each combination of inputs to s′i ∈ W v
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for vi, and to s′ij ∈ W e for each directed edge eij. s
′
i becomes the next state of node vi, and

s′ij becomes the next state of eij edge. These functions are executed in parallel at each time
step t.

Here, we provide a more formal description of GDS, based on the overview above. We assume
here that only nodes have vertex states. Let G(V,E) be a graph with node set V and edge
set E, and where n = |V |. Each node vi has a state si Let N(vi) be the sequence of vertices
adjacent to vi in G, including vi itself, so that 1 ≤ |N(vi)| ≤ n for each vi ∈ V . That is,

N(vi) = (vvi,1, vvi,2, . . . , vvi,d(vi)+1) , (2.1)

where d(vi) is the degree of vi in G. Let s(vi) be the sequence of vertex states of the vertices
in N(vi), so that 1 ≤ |s(vi)| ≤ n for each vi ∈ V , i.e., and d(vi) = |N(vi)| − 1.

s(vi) = (svi,1, svi,2, . . . , svi,d(vi)+1) . (2.2)

We call s(vi) the restricted state of vi. The system state or configuration C of a GDS is
the n-vector C = (s1, s2, . . . , sn).

A local function fi : (W v)d(vi)+1 → W v quantifies the dynamics of node vi by computing vi’s
next state s′i using the states of nodes in its closed 1-neighborhood as

s′i = fi(s(vi)) . (2.3)

Updating the entire set of nodes inG at some time t is accomplished with the GDS mapping

F : (W v)n → (W v)n . (2.4)

For the synchronous update scheme, where all fi, i ∈ {1, 2, . . . , n}, execute in parallel, the
GDS mapping is defined by

F(s1, s2, . . . , sn) = (f1(s(v1)), f2(s(v2)), . . . , fn(s(vn))) . (2.5)

In a simulation, we compute successive system states using this last equation, as C(t+ 1) =
F(C(t)), where C(t) is the system state or configuration at time t, and C(t+ 1) is the next
system state.

To make this explicit, we now cast the preceding formalism into a pseudo-algorithm in
computing the dynamics of a GDS. Let us assume for simplicity that only nodes possess
state, and edges do not. At any time t, the configuration C(t) of a GDS is the n-vector
C(t) = (st1, s

t
2, . . . , s

t
n), where sti ∈ W v is the state of node vi at time t (1 ≤ i ≤ n). In a

synchronous GDS, all nodes compute and update their next state synchronously. A GDS
transition from one configuration C(t) to a next configuration C(t + 1) in parallel at each
time t can be expressed as follows,

for each node vi ∈ V do in parallel
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(i) Compute the value of fi (Equation (2.3)) using states in C(t) and assign it to s′i.

(ii) Assign s′i as the next state of vi in C(t+ 1).

end for

Note that if the fi are stochastic, C(t+ 1) may not be unique. The extension to the update
of edge states s′ij is natural.

2.4.2 Use of GDS in This Work

For our purposes, the benefits of GDS are multi-fold. First, this computational model is
correspondent with the data model in Section 2.3. For example, G(V ′, E ′), per phase, in
Table 2.1 corresponds to the graph G(V,E) of the GDS. Node W v and edge W e state
spaces in the model are represented as (subsets of) the node (Γ) and edge attributes (Ψ),
respectively. Attributes may have additional parameters that are not part of the node or
edge state, such as gender and age. Action tuples may be part of the state. Second, GDS is
also useful in generating agent-based models (ABMs) and other types of models that can be
generated from experimental data and/or first principles. We do this, and show illustrative
results from these models in Section 2.8. Third, the unified framework for experiments
and models enables us to reason more effectively about system behavior; e.g., using this
framework, properties about different types of dynamical systems have been proven (e.g.,
[6, 23, 24, 174]).

2.4.3 Example GDS and Resulting Dynamics: Threshold Systems

We provide an example of a GDS and the dynamics that it generates. We use a threshold
contagion system, motivated by the work [47, 107, 162] in the social sciences. Also, we use
this model in the second case study of Section 2.8. A progressive threshold system works as
follows. The network G(V,E) is provided at the left in Figure 2.5. The valid state set W for
a node is W = W v = {0, 1}, where state 0 means that a node does not possess a contagion
and state 1 means that a node possesses the contagion and will assist in transmitting it. The
threshold local function works as follows. Each node vi is assigned a threshold 0 ≤ θi ≤ di+1,
where di is the degree of vi in G. If the state si of node vi at time t is 1 (i.e., sti = 1), then
the output of fi is 1 (that is, a node in state 1 at t remains in state 1 at (t+ 1)). If sti = 0,
then st+1

i = fi = 1 if at least θi of vi’s neighbors are in state 1 at t; otherwise, st+1
i = fi = 0.

That is,

st+1
i = fi(s

t(vi)) =


1 if sti = 1 ,

1 if sti = 0 and n1 ≥ θi , or

0 otherwise

(2.6)
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where st(vi) is the sequence of states in the closed neighborhood of vi at time t, and n1 is
the number of nodes in state 1 in st(vi). This is a deterministic GDS.

The dynamics evolve as follows; see Figure 2.5. We specify as initial conditions that v1 has the
contagion at t = 0, i.e., s0

1 = 1; all other nodes do not have it. See C(0) in Figure 2.5, where
only s0

1 = 1. At t = 1, s1
2 = f2(s0

1, s
0
2, s

0
3) = 1 because θ2 = 1 and s0

1 = 1, and s0
2 = s0

3 = 0.
So, the threshold for v2 is just met by v1. For the same reason, s1

5 = f5(s0
1, s

0
4, s

0
5, s

0
6) = 1

(because s0
1 = 1; v5 and all other neighbors of v5 are in state 0). No other node will change

state at t = 1 and therefore C(1) has three nodes in state 1 at t = 1. At t = 2, v4 will change
state, even though its threshold is large (θ4 = 3) because three of v4’s neighbors (v1, v2, and
v5) are now in state 1. This is the only node that changes state at t = 2 and so C(2) is
as shown in Figure 2.5. The same reasoning applies to the transitions of other node states.
Note that v3 will never transition because its threshold (2) is greater than the number of its
neighbors (1). Also note that the system reaches a fixed point at t = 3 because no further
state changes are possible.

1

2

3

2

1

1v1 v2 v3

v4

v5
v6

Time, t Configuration, C(t)
0              (1, 0, 0, 0, 0, 0)
1              (1, 1, 0, 0, 1, 0)
2              (1, 1, 0, 1, 1, 0)
3               (1, 1, 0, 1, 1, 1)
4                     (1, 1, 0, 1, 1, 1)

Figure 2.5: Network G(V,E) for a GDS example, with V = {v1, v2, v3, v4, v5, v6}. Thresholds
θi are provided for nodes vi, in blue, by the respective nodes. The local functions fi are
threshold functions for vi ∈ V , 1 ≤ i ≤ 6; see text for details. The discrete system dynamics
are given by the configurations at successive times from 0 to 4, at the right in the figure.
Each configuration is given by C(t) = (st1, s

t
2, s

t
3, s

t
4, s

t
5, s

t
6). The system reaches a fixed point

at time t = 3, as evidenced by no change in the configuration in going from t = 3 to t = 4.

2.5 Hierarchical Pipeline Conceptual View

2.5.1 Pipeline Compositions

Our system is composed of all elements of Figure 2.1. We specifically separate the experimen-
tal platform from the pipelines so that the system can be used with different experimental
software platforms, through the Data Common Specification, via the data model of Section
2.3. The full system is shown with five pipelines in gray: “Experimental Data Transfor-
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mation,” “Data Analytics,” “Property Inference,” “Modeling and Simulation,” and “Model
Evaluation and Prediction.” An iteration of the loop, as shown in Figure 2.1, may use any
number of the five pipelines, and any number of functions within them, for flexible compos-
ability, consistent with data dependencies [133]. Case studies demonstrating the use of the
pipelines are provided in Section 2.8.

2.5.2 Pipelines

The five pipelines of Figure 2.1 now described. (1) The Experimental Data Transformation
Pipeline transforms experimental raw data into a data common specification. (2) The Data
Analytics Pipeline analyzes temporal interactions among players to identify patterns and
phenomena in the data. Direct and derived data are used as input for (3) the Property
Inference Pipeline. This pipeline generates property values for parameters of simulation
models, often by combining data from multiple experiments. The simulation models (e.g.,
ABMs) are built off-line and software implementations of these models are part of (4) the
Modeling and Simulation Pipeline. This pipeline invokes the code to run simulations, using
the generated property values, as well as network descriptions, initial conditions, and other
inputs. Simulations may model completed or contemplated experiments, or other scenarios
beyond the scope of experiments. (5) The Model Evaluation and Prediction Pipeline com-
bines simulation results across multiple (stochastic) executions and performs comparisons
among sets of data. In one case, experimental data and model predictions may be com-
pared. In another case, results from two models may be compared. One objective may be
to predict beyond game data (counter-factuals) and propose further investigations suggested
by analysis findings.

Each pipeline is currently a sequential composition of functions. This composition is specified
by an analyst through a job definition. Similarly, compositions of the pipelines of Figure
2.1 are specified by an analyst. The pipeline process takes care of file dependencies between
functions. Also, it validates the input and output data of functions, described below. The
structure of a pipeline is shown in Figure 2.6, where function h1 takes two inputs and
generates three outputs (two are inputs to function h2 and one is an input to function h3);
function h2 generates two outputs, one of which is an input to h3. Note that the pipelines
control execution of functionality. Execution control consists of a pipeline invoking functions
sequentially, as illustrated in Figure 2.6. Additional details are in Sections 2.6 and 2.7. Other
control structures are being added.

2.5.3 Functions Within Pipelines

Functions are designed as microservices (i.e., modular software with limited scope) within
pipelines. They provide a range of capability from simple plotting routines to cleaning and
organizing, storing and accessing data sets, and inferring properties and running simulations.
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Figure 2.6: Functions, or h-function, hi, 1 ≤ i ≤ 3 (implemented as software) within a
pipeline. Pipelines control the execution order of functions and the inputs and outputs for
each function, through a pipeline job specification. Circles in the figure denote input and
output digital objects, such as ASCII files of database tables.

Figure 2.7: An arbitrary software function h. Input data instances D may have to be
transformed by transformation code τ to conform to required inputs I. Inputs and outputs
are subjected to verification through comparisons with specified schema (not shown here).

These are not exhaustive; users may add other functions and continue community-based
development. This concept is illustrated in Figure 2.6. Functions hi (1 ≤ i ≤ 3) in Figure 2.6
take inputs and generate outputs. Currently, inputs and outputs are files, but may include
other digital objects, such as database table entries. Figure 2.7 drills down to show details
for a function.

Figure 2.7 shows execution details associated with each function h. Input data (D) (e.g., in
the form of an ASCII data file that may be raw data or output from a preceding function)
may need to be transformed into a format required by h. This transformation is performed
by transformation code τ , which generates the input (I) in the required format. This input
object (I) conforms to a JSON specification to ensure compliance for input to h.

2.5.4 Microservices

Our functions map directly to microservices. Appendix A.5 addresses characteristics, bene-
fits, and comparisons of microservices. We provide details of microservices because they are
the fundamental execution units within our pipelines.
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2.6 Formal Pipeline Model

With the conceptual view in Section 2.5, we now provide a formal model for pipelines. In
Section 2.7, we address pipeline implementation which is based on our model. First, we
provide the model. Then, we describe the execution of a pipeline. Finally, we describe some
benefits of the formal model.

2.6.1 Model

Let P be a collection of pipelines with pipeline P ∈ P represented as P (Q,SID, S, T,H).
Here, Q is a set of data elements q ∈ Q; SID is a set of mappings sID ∈ SID of data to schema;
S is a set of schema s ∈ S; T is a set of data transformations τ ∈ T ; and H is a sequence of
h-functions h ∈ H.

Data Q include input data representations K ⊆ Q and output data representations
L ⊆ Q. A data element k ∈ K is an input to some function and data element ` ∈ L is an
output of some function. An element q ∈ Q may be both an input data element k and an
output data element `. We have Q = K ∪ L. Moreover, the intersection of K and L will
almost always be non-empty, i.e., K ∩L 6= ∅, because in a pipeline, an output element of an
h-function may be an input to a subsequent h-function. We use q to denote an input data
element, an output data element, or both.

We now address data schema and data verification. To verify that an instance of a data
representation q is valid, an analyst provides a schema ID mapping sID : Q→ S defined
by a mapping from each data representation q to a unique schema s ∈ S. That is, s = SID(q).
An element s ∈ S is a schema s : Q → {0, 1} that takes as input an instance of a data
representation q and outputs a 1 when the instance of q conforms to the schema s (i.e., q is
successfully verified against s), and outputs a 0 otherwise. That is, s(q) returns a 0 or 1.

A set T of data transformation functions transform data elements q ∈ Q. A data transfor-
mation function τ ∈ T takes as input one or more data elements and outputs precisely one
data element. The role of a data transformation function is to operate on inputs and outputs
from one or more h-functions (defined below) and produce a new data element that is in the
required format for input to another h-function. Hence, a data transformation function
τ : Qnτ → Q is defined as q′ = τ(q1, q2, . . . , qnτ ) where q′ ∈ Q and qj ∈ Q, 1 ≤ j ≤ nτ .

An h-function (or function) h ∈ H represents a microservice that performs some small unit
of work in a pipeline. An h-function takes as input a sequence of ni input data representation
elements and computes a sequence of no output data representation elements. Each input
data element kj ∈ K, 1 ≤ j ≤ ni, has been verified through sID ∈ SID and element s ∈ S, so
that the inputs to h are valid (i.e., so that the appropriate s ∈ S outputs a 1 for each instance
of kj). Also, each of these input data elements may have been generated by transforming
data into the required format, using one data transformation function τ ∈ T . Each h outputs
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a sequence of instances of `j ∈ L, (1 ≤ j ≤ n0) which are also verified through sID ∈ SID and
elements s ∈ S, so that the sequence of outputs from h are valid (i.e., so that the appropriate
s ∈ S outputs a 1 for each instance of `j). Thus, we have the following. An h-function is
h : Kni → Lno defined by (`1, `2, . . . , `no) = h(k1, k2, . . . , kni), where kj ∈ K, 1 ≤ j ≤ ni, and
`j ∈ L, 1 ≤ j ≤ no.

It is useful to define the composition of all h-functions within a pipeline, because it identifies
the order in which h-functions execute. It naturally identifies the (input) data files that must
exist before the pipeline starts (e.g., some input files for some h-functions are not specified
initially because they are generated by other [preceding] h-functions); and which output
files are generated. As the preceding model description indicates, one data transformation
function may need to be executed on each input before each h-function is invoked, to put
each input data element k into the required format for h. If there are ni inputs to h, then
the number of data transformation functions is at most ni. Hence, executing one h-function
can be thought of as a composition of functions (τ ∗, h) = (h ◦ τ ∗), where τ ∗ represents zero
or more transformation functions that are required to put all inputs for h into the proper
formats for execution of h. A composition of nf h-functions H : Knp,i → Lnp,o is defined
by H = (hnf ◦ τ ∗nf ) ◦ (hnf−1 ◦ τ ∗nf−1) ◦ · · · ◦ (h2 ◦ τ ∗2 ) ◦ (h1 ◦ τ ∗1 ), where (`1, `2, . . . , `np,o) =

H(k1, k2, . . . , knp,i). We define K∗ = Knp,i and L∗ = Lnp,o as short-hand. Thus, the np,i
input files that must exist before the pipeline is invoked are represented by K∗. The np,o
pipeline outputs are represented by L∗. It is often convenient to represent H as the (ordered)
sequence ((τ ∗1 , h1), (τ ∗2 , h2), . . . , (τ ∗nf−1, hnf−1), (τ ∗nf , hnf )), where the ordering gives the order
of execution.

2.6.2 Execution of a Pipeline

With the formalism of Section 2.6.1, the dynamics of pipeline execution are now presented.
Figure 2.8 contains the algorithm. The algorithm steps through each hi ∈ H and for each
input of hi, determines whether it needs to be created by transforming one or more other
data elements. If so, the transformation function is executed. At this point the required
input data exist, and hi is invoked and the output files are generated. These outputs are
stored. Note that at various points, data file formats are verified by using schema verification
functions s.

The description thus far in this section is focused on a single pipeline. However, the model
is equally valid across pipelines. In fact, grouping sets of h-functions into multiple pipelines,
as we do herein, is largely a matter of practicality, and aids in software system organization
and in reasoning about such systems. However, from Section 2.6.1 and this Section 2.6.2, it
should be clear that all data transformation functions and h-functions could be put into a
single τ∗ large pipeline.
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Algorithm 1: Pipeline Execution.

Input:
h-functions of H to execute for the pipeline P . Data transformation functions T to execute. The
set K∗ of input files for the pipeline. Identification of the ni inputs Kni = (k1, k2, . . . , kni) ⊆ K∗
and no outputs Lno = (`1, `2, . . . , `no) ⊆ L∗ for each h-function. Inputs q1, q2, . . . , qnτ ∈ Q and
output q′ ∈ Q for each data transformation function τ ∈ T , for each hi ∈ H. The set S of schema
s ∈ S for verification of data elements q. The set SID of schema ID elements sID ∈ SID for the
mapping of data elements q to schema s.
Output: The output files L∗ generated by the pipeline P , represented by H.
Steps:

1. for each hi ∈ H do

(a) Obtain the inputs ni inputs (k1, k2, . . . , kni) for hi.

(b) for each ki ∈ Kni do

i. if ki requires data transformation prior to input to hi then

A. Let k′1, k
′
2, ..., k

′
nτ , be the inputs to the transformation function τ such that

ki = τ(k′1, k
′
2, ..., k

′
nτ ).

B. Obtain the schema to verify each k′i, as s = sID(k′i).

C. Compute each s(k′i)(1 ≤ i ≤ nτ ). If s(k′i) = 1, then k′i is verified. If s(ki) = 0,
then ki is not verified; an error is found, and the pipeline τ(k′1, k

′
2, ..., k

′
nτ )

terminates.

D. Use the data transformation function τ to compute the input ki for hi, in the
proper format, according to ki = τ(ki).

ii. Obtain the schema to verify ki, as s = sID(ki).

iii. Compute s(ki). If s(ki) = 1, then ki is verified. If s(ki) = 0, then ki is not verified;
an error is found, and the pipeline terminates.

(c) Invoke function hi and compute (`1, `2, . . . , `no) = hubi(k1, k2, . . . , kni).

(d) Check the format of each output `i(1 ≤ i ≤ n0) by obtaining the schema s = sID(`i)
and invoking s(`i). If s(`i) = 1, then the output file format is verified. Else `I is not
verified, which is an error, and the pipeline gracefully terminates.

(e) Store the outputs (`1, `2, . . . , `no) in Q, which may be used as inputs for subsequent
hj ∈ H, (j 6= i).

(f) Store the outputs (`1, `2, . . . , `no) in L∗, which is the set of outputs from the pipeline.

2. Return L∗.

Figure 2.8: Steps of the Algorithm Pipeline Execution.
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2.6.3 Mapping of Model onto the Software System

One reason for the particular development in Section 2.6.1 above is that it parses the model
into components that are the responsibility of the pipeline framework, software that users put
into a pipeline, and user-supplied information regarding data. Input data K for a pipeline
or a collection of pipelines must be supplied by an analysts, or come from some previous
analysis. While we assume here that instances of the elements of K are ASCII format (via
files and data), output instances of representations of L may be ASCII format or some other
binary format (e.g., for files containing data plots). There are natural extensions to other
data formats, such as database tables.

The schema ID mapping and schema themselves are provided by the analyst to ensure that
input and computed results conform to specified formats and contain the proper types of
information. The execution of schema to verify data representation instances is the responsi-
bility of the pipeline (not the functions). Data transformation functions and h-functions are
executable software, and may be stand-alone executables that form processes. They are
provided by an analyst or software developer. It is the pipeline’s responsibility to invoke the
correct functions and in the correct order, and to access the proper input files and to store
the resulting output files, all of which are specified in a human-generated pipeline config-
uration file (addressed below). Functions are responsible for generating correct outputs.

2.7 Pipeline Implementation

2.7.1 Pipeline Configuration File

To run a pipeline (called a job), a configuration input file specifies functions and their order
of execution. Table 2.2 overviews the entire pipeline configuration file with a definition for
each parameter. In the Configuration File, the following parameters, experiment, phasedesc,
phase, action, and player, specify the JSON schema files for each component in the data
common specification from Section 2.3.4. The parameter functions defines the available
functions to run in the pipeline; also defines the input values for each function. Appendix
A.2 contains a detailed example of a configuration file.

Figure A.11 shows the schema for a configuration file that specifies how to compose and
execute one or more functions of a pipeline. In Figure A.11, there are up to five functions
available and the required parameters for each function are defined; the enumeration is the
list of valid candidate values that can be specified for functions in a specific pipeline.
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Table 2.2: Configuration input file description. See Appendix A.2 for details.

# ParameterDescription
1 experimentExperiment Schema JSON file location. See Figure A.6.
2 phasedesc Phase Description Schema JSON file location. See Figure A.7.
3 phase Phase Schema JSON file location. See Figure A.8.
4 action Action Schema JSON file location. See Figure A.9.
5 player Player Schema JSON file location. See Figure A.10.
6 functions The parameters inside varies for every function. Figure A.11 shows a

definition for five functions.

2.7.2 Pipelines

The pipelines software (written in Python) performs these operations: (i) reads and parses
the configuration file; (ii) controls accessing input files, JSON schema files, transformation
codes, and h-functions; (iii) checks files against their JSON schema and terminates gracefully
if a verification fails; (iv) invokes the proper transformation functions (if applicable), and
(v) invokes the proper h-functions in their proper order (and any other operations), and (vi)
error handling.

JSON schema are used in various ways: (i) to verify the configuration file, (ii) to verify
inputs to transformation functions, (iii) to verify the outputs of transformation functions
(which are inputs to the h-functions), and (iv) to verify the outputs from the h-functions
(we use the term h-function to differentiate them from transformation functions).

Figure 2.9 shows the pipeline structure and elements of the execution chain. Here we show
two pipelines. Table 2.3 provides a list and description of the structures and elements from
the execution of a generic pipeline in Figure 2.9. A pipeline is executed according to the
user-supplied configuration file for it. In the left side of Figure 2.9, inside Pipeline i, there
is the configuration input file JSON schema.

In Figure 2.9, the first inner dashed box (Pipeline i Control), describes the pipeline software
that performs the operations stated above. First, the pipeline receives a configuration input
file and the corresponding input files. All files are JSON files. The JSON schema for the
configuration file in Figure A.11 was described in Section 2.7.1, so the pipeline is ensured to
have proper data formats. Second, the pipeline performs the validation of the JSON instances
from the input files against their corresponding JSON schemas. Third, the pipeline invokes
the functions specified in the configuration input file. The heart of the pipelines is invoking
the h-functions and the associated transformation functions (if appropriate). The second
inner dashed box inside (Pipeline i Function Execution) controls all h-functions. There can
be any number of functions per pipeline. In this example, we are only showing one h-function
per pipeline. The corresponding input files for h1 and h4 go through a transformation to
allow them to conform to the functions h1 and h4 direct input formats (if necessary). After
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Table 2.3: Sections and files from the execution of a generic Pipeline. Figure 2.9 describes
how these elements interact, here we define and describe them.

# Input File
Name

File Type Description

Pipeline i: In this section the input files are specified for execution.
1 Configuration

input file
JSON Specifies functions from pipeline i to be exe-

cuted, and their order of execution.
2 Input file JSON Actual input files to execute functions in

the pipeline (possibly outputs from upstream
pipelines).

Pipeline i Control: In this section the functions are invoked, specifying the order.
1 Configuration

file verification
JSON Input files are validated against their corre-

sponding JSON schema.
2 Pipeline infras-

tructure code
Python If needed, invokes a function transformation

that transform input files in the correct for-
mat for the function input files. Otherwise it
invokes the corresponding function, providing
the input files.

Pipeline i Function Execution: In this section the functions are executed.
1 Function trans-

formation
Python Input files are transformed into a valid input

file for function hi.
2 Direct input file JSON Input files with the corresponding format that

function hi receives as input for execution.
3 Configuration

file verification
JSON Input files are validated against their corre-

sponding JSON schema.
4 Function Exe-

cution
Multiple Pro-
gramming
Languages
formats

Function hi code is executed.

5 Function Out-
put Files

Multiple for-
mats

Function hi output files.

validation of the JSON instances against their corresponding JSON schemas, direct input
data are used in the h1 and h4 function executions. Pipelines can run on desktops, laptops,
and (Linux) clusters. The two pipelines are shown in Figure 2.9 to make it clear that each
pipeline has its own configuration file, h-functions, and associated digital objects, but that
the pipeline code/software is the same for every pipeline. All these structures and files in
a generic pipeline execution are detailed in Table 2.3. Appendix A.3 provides examples
of input files for the Experimental Data Transformation Pipeline (Figure A.12), and the
Data Analytics Pipeline (Figure A.13). The system is programming language agnostic to
particular functions.
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All pipelines in the system have been developed on this project and for the work described
herein. We have added pipelines and functions over the course of a year, demonstrating the
extensibility of the system, without modifying the pipeline infrastructure code discussed in
Section 2.7.2

2.7.3 Functions Within Pipelines

Each pipeline has a list of available functions. The functions can be written in any program-
ming language. Currently we use C++, Python, and R. A function may use as input any
combination of outputs from preceding functions in the same pipeline, functions in preceding
pipelines, files from previous iterations, and data from experiments.

Currently there are 29 functions across five pipelines. Listings of functions implemented per
pipeline are provided in Appendix A.4 (one table for each pipeline). The functions provide
a range of capabilities from simple plotting routines to cleaning and organizing, storing
and accessing data sets, and inferring properties and running simulations. These are not
exhaustive; users may add other functions and continue community-based development.

2.8 Case Studies

2.8.1 Study 1: Full System Execution for Collective Identity Ex-
periments

Collective identity (CI) is an individual’s cognitive, moral, and emotional connection with an
enclosing broader group such as a team or a community [200]. There are many applications
and contexts in which CI is important and therefore makes it worthy of study. For example,
CI is important in the formation and maintenance of teams, and team behavior [72, 138]. It
is also important in the formation and enforcement of norms [72, 138].

Here, we seek to produce CI among team members playing a game cooperatively. A complete
game seeks to produce CI and measure the amount of CI formed among team players in an
experiment. The experiment consists of: phase-1–measure individual levels of CI using
the DIFI index [125] (for a baseline); phase-2–produce CI among team members using a
collaborative anagram game; and phase-3–measure individual levels of CI in players using
the same index as in phase-1.

Here, we focus the Dynamic Identity Fusion Index (DIFI) score [125] as a proxy for CI. The
DIFI score is measured individually as part of our online experiments in the following way.
A small (movable) circle represents an individual player and a second (stationary) larger
circle represents the team. A player moves the small circle along a horizontal axis, where the
distance between circle centroids represents that player’s sense of identity with the team; it
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is their DIFI score. The range in DIFI distance value is, −100 ≤ DIFI ≤ 125; DIFI = 0
corresponds to the two circles just touching, DIFI < 0 means that the two circles are
disjoint (an individual has no positive affinity for the team), and DIFI > 0 means that the
two circles overlap (an individual identifies with the team).

As a priming activity to foster CI among team members, in phase-2, they play a collaborative
word construction (anagram) game motivated by [51]. This Phase 2 is the focus of our case
study.

Web-based Experiment Software Platform, Game Play and Data Collection

We built a web application to conduct experiments. The primary components of our platform
are the oTree framework [54], Django Channels and the online web interface. We designed
and developed software for each phase of the experiment that interfaces with oTree. Django
Channels technology supports interactions among players through websocket communication
between individual participants and the server. Figure 3.6 shows the web interface for each
player of the anagram game. The experimental platform recruits players from Amazon
Mechanical Turk and, for all phases of an experiment, records players’ actions. The actions
are clicks and their event times for specified HTML objects such as letters, and submit
buttons.

In phase-2, players are initially given three letters, and are provided communication channels
to d number of other players, with whom they can share letters to help each other form words.
That is, based on the number n of players recruited, the experimental platform generates a
graph on the n players, with a pre-defined regular degree d. Players can form words, request
letters from neighbors, and reply to letter requests from neighbors, which are explained in
detail in the caption of Figure 3.6.

The goal is for the team to form as many words as possible. Total earnings in this game
are based on the total number of words formed by the team, and earnings are split evenly
among players. The words formed by a player have to be unique, but different players can
form the same word. Each player has, in effect, an infinite supply of each of her initial three
letters so that she can use letters to form words, and also freely share these initial letters
with her neighbors. These features are intended to foster cooperation.

Data Analysis, Modeling and Simulations, and Modeling Evaluations using the
Pipelines

Several data model features from Table 2.1 are provided in Figure 2.11. For the DIFI
measures (phases 1 and 3), the action set A, with its one element (submit DIFI score), is
shown, and the action sequence T is the action tuple of submitting DIFI score for each agent.
For phase 2, the word construction game, the edge set E for the four players is provided,



31

as is the action set A, containing four elements. The action “thinking” is a no-op in the
model. Initial letter assignments to players, which are part of Bv

j for each node (player) vj,
are shown. So, too, is an illustrative sequence of action tuples. For example, T3 states that
vi requests the letter “G” from v3.

Several ABMs were built to model the phase 2 group anagram game. The one used here is
based on a transition probability matrix where the transition probability from one action
a(t) = ai at time t to the next action a(t + 1) = aj for each agent v, i, j ∈ [1..4] and
a(t) ∈ A, is given by πij = Pr(a(t + 1) = j|a(t) = i) with

∑4
j=1 πij = 1. For clarity, we

use i and j to represent the actions ai and aj ∈ A. Agent v executes a stochastic process
driven by transition probability matrix Π = (πij)m×m, where m ≡ |A| (here, = 4). We use
a multinomial logistic regression model for πij. Details are in [202]. In essence, the ABM
predicts action tuples Ti for players vi in the game, over the 5-minute game duration.

The complete system of Figure 2.1, and portions of it, were executed over many loops in
this study. Here we focus on one iteration of three experiments, with n = 6 and number
of neighbors d = 5, to analyze only the anagram game . Figures 2.12, 2.13, 2.14 show
results for the Data Analytics Pipeline (DAP). Figure 2.15 show results for the Property
Inference Pipeline (PIP). Figure 2.16 show results for the Modeling and Simulation Pipeline
(MASP) and Model Evaluation and Prediction Pipeline (MEAPP). See the figure captions
for details. In this work: (i) output data from the DAP are inputs for the PIP; (ii) outputs
from the PIP are inputs to the MASP; and (iii) outputs from the DAP and MASP are inputs
to the MEAPP.

We now address some particular aspects of these results. The plot generated by h3 in
Figure 2.12 shows, for each player of one game, the time series of words formed. Each step
in a curve indicates the time at which a new word is formed. “Form word” is a4 ∈ A in
Figure 2.11. The time series for all actions can be formed with h3. These data, like those
for h5 in Figure 2.13, are used to (i) understand player behaviors, (ii) assist in specifying
the structure of ABMs, (iii) infer properties of ABMs, and (iv) help validate models by
comparing model predictions with them. Function h7 generates the data needed for property
inference and showed in Figure 2.14.

The β coefficients in Figure 2.15 are parameters in the multinomial logistic regression model
alluded to above. In the πij terms above, each transition is from action i to j. For example,
the β coefficients at the bottom are for the transition from forming word (a4 in Figure 2.11)
to the next actions being a2 through a4; the probability that the next action is a1 (thinking)
is 1 minus the sum of other three transition probabilities.

In Figure 2.16, the Modeling and Simulation Pipeline is used to generate all three plots
(the first two for simulating experiments, the third for predictions beyond the experiments).
The Model Evaluation and Prediction Pipeline is used in the first two plots to compare
experiments and model predictions.
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2.8.2 Study 2: Data Model for Online Experiment in [47]

Overview

In [47], the effects of network structure on complex contagion diffusion are studied by the
spread of health behavior through networked online communities. We represent this ex-
periment with the data model from Section 2.3. Each experiment, exp id, consists of two
independent phases (np = 2), one with G(V ′, E ′) being a clustered-lattice network and an-
other H(V ′′, E ′′) being a random network. V = V ′ ∪ V ′′ is the set of all players with player
vi ∈ V , and 1 ≤ i ≤ n. There are n/2 players in each of the two networks, assigned ran-
domly. Γi contains variables for vi’s profile (i.e., avatar, username, health interests), ratings
of the forum content, and the state of vi in time, i.e., whether vi has joined the forum. The
meaning of an edge is λ = communication channel between pairs of subjects. Bv

i contains
initial conditions for the game, including values for the elements of Γi. The set of actions
is A = {a1, a2, a3}, where a1 is “send a message” to encourage a neighbor to adopt a health
related behavior; a2 is “join forum” which notifies a participant every time a neighbor adopts
the behavior; and a3 is “input rating content” in the forum. Figure 2.17 shows many of these
variables, and examples of action tuples. Here we also provide detail of the action sequence
from Figure 2.17. In T1, v1 sends a message to v2, then in T2, v1 sends a message to v3. All
these are signals from v1 to encourage health buddies to join the forum. In T3, v2 decides
to join because of v1’s message. This is why the unique identifier σi for the action sequence
is the same as in T1. After this, the news is propagated to v2’s health buddy v3 in T4. v2

sends a message to v4 in T5. In T6, v1’s inputs rating content to the forum. This data model
instance, coupled with a GDS formulation (not shown), means that the experimental data
can be analyzed (and modeled) with the pipeline system.

Formal Data Model

Table 2.4 details the online social network experiment in [47], defined with our data model.
We define one experiment with two independent phases, one with a clustered-lattice network
and another with a random network. Each has a population size n=98 and number of health
buddies per person d=6.

Figure 2.18 shows the model of Table 2.4 translated into a entity-relationship diagram
in unified modeling language (UML) form. This data model instance, that represents an
experiment instance, means that the experimental data can be analyzed (and modeled)
with the pipeline system. We can perform similar mappings for other social experiments
[132, 164, 207].
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Formal GDS Model

The GDS model for this system and experiments is that given in Section 2.4.3.

2.8.3 Study 3: Data Model for a Simulation Study in [146]

Overview

In this case study, we evaluate research that is purely simulation-based. We cast their prob-
lem in terms of our data model. With this mapping, we then can reason that if we performed
experiments according to this data model, we would have a correspondence between those
experiments and the simulation system. Hence, in a sense, this case study demonstrates a
process of going from modeling to experiments. Another note is that even with simulation
models and no experiments, we can still use our pipeline system.

The model in [146] investigates how the structure of communication networks among actors
can affect system-level performance. This is an agent-based computer simulation model
of explore-exploit tradeoffs, with information sharing. [146] produces an arbitrarily large
number of statistically identical “problem” for the simulated agents to solve (explore). Also,
the less successful emulate the more successful (exploit). They state that solutions involve
the conjunction of multiple activities, in which the impact of one dimension on performance
is contingent on the value of other dimensions. For example, activities A, B, and C each
actually hurt performance unless all are performed simultaneously, in which case performance
improves dramatically. These are defined as synergies, and the presence of such synergies
produces local optima.

Formal Data Model

Table 2.5 details the model in [146], defined with our data model. We define one experiment
with one phase, with a population of 100, 20 human activities, and 5 synergies (i.e., activities
that performed simultaneously improves dramatically the activity performance). Here we
also provide an example of an action sequence. In T1, v1 posts a solution, then in T2, v2

posts a solution. All these are signals from v1 to encourage health buddies to join the forum.
In T3, v3 evaluates v1 solution. In T4 v3 copies solution from v1. The payload will have the
information of how accurate agents copy the solution from other, (i.e.) if it was “mimic” or
“adapt”.

Figure 2.19 shows the model of Table 2.5 translated into a entity-relationship diagram in
unified modeling language (UML) form.

This data model instance, that represents a modeling instance, means that the computational
modeling results can be analyzed with the pipeline system.
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2.9 Related Work

We address several different topics below.

2.9.1 (Networked) Experiments in the Social Sciences

There are several online and in-person experiments with individuals [84, 85, 172, 198, 207,
213, 257] and groups [47, 48, 51, 131, 132, 164]. Some include modeling of the experiment
[164]. Also, none of these works appears to do iterative evaluations involving modeling and
experiments. There is no platform, that we know of, that allows the iterative process of
data analysis, design of data-driven model to simulate experiments, model validation and
verification in order to predict behavior. In this work our focus is to formalize a general
methodology, through a generic data pipeline, for online controlled experiments of human
subjects aim to explain diverse phenomena.

2.9.2 Graph Dynamical Systems

GDSs have been used to produce a wide range of theoretical, modeling, simulation, and pol-
icy results on computational complexity, discrete dynamical systems, optimization, (agent-
based) simulators, and simulation systems. See the review article [6] for an overview of GDS,
research topics that employ GDSs, theoretical results, and practical applications.

2.9.3 Workflow Systems

There are many workflow systems. Here, we cite several popular workflow systems and then
describe how they relate to social sciences and pipelines for computation. Examples include
Taverna [271] for bioinformatics, chemistry, and astronomy; Pegasus [74] and CyberShake,
built on Pegasus [42], for large-scale workflows in astronomy, seismology, and physics; Ke-
pler [25, 157] for ecology and environmental workflows. Other workflow engines including
Toil [260], and Rabix [130], were developed for computational biology. To the best of our
knowledge, none of these systems addresses social sciences for modeling/experiments as we
do here. For example, Taverna is used to analyze suicide data in [222] and Galaxy is used
for genomic research [102]; neither has a modeling component.

Most workflows in the social sciences are for social network analyses [94]; we seek to go well
beyond that. Also in [73], a taxonomy of features is defined from the way scientists make
use of existing workflow systems; this provide end users with a mechanism by which they
can assess the suitability of workflow to make an informed choice about which workflow sys-
tem would be a good choice for a particular application. The importance of interoperability
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between these systems is detailed in [80] and identifies three dimensions; execution environ-
ment, model of computation (MoC), and language. MoCs provide the semantic foundation,
but a data model is a prerequisite. [69, 73, 94, 150] are among the works that overview sev-
eral workflow systems. An overview and discussion of future directions is provided in [15].
Challenges and future directions for life science workflows are provided in [63]. Ontologies
for workflow objects are discussed in [28].

2.9.4 Workflow and Scripting Languages

Workflow languages are usually represented in a textual manner, or through graphical in-
terfaces. A textual representation is often employed for storing the workflows in files, even
when a graphical representation is employed. For full interoperability, it is important to have
the capacity to translate between workflow languages [80]. Wings [98] uses rich semantic
representations to describe compactly complex scientific applications in a data-independent
manner. Swift [267] and Swift/T [8, 273] are workflow languages built for executing parallel
programs within workflows. NextFlow [248] is a domain specific language for computational
workflow management systems. Workflow languages include Common Workflow Language
(CWL) [11, 130] and Workflow Description Language (DWL) [13]. Script of Scripts [262] is
a workflow system with an emphasis on support for different scripting languages.

2.9.5 Specialized Pipelines

Specialized pipelines are used in different fields. We address several as illustrative. In natural
language processing (NLP) [62, 67], allows modular extensions that can be incorporated in
a configurable pipeline, but they only focus on NLP components. Similarly, in computer
vision [122, 155] use definitions of different models for sub-task classifiers. In computational
biology, a structure-oriented pipeline is proposed, capable of detecting RNA motifs [275]. In
economics, a web-based IT infrastructure for supply chains is in [187]. In social sciences,
[126] develops a three-part pipeline for data analysis and student support in social learning;
there is no modeling component. One popular approach is ABM [160] and simulations.
In [203], an XML-based data pipeline for interactive simulation is implemented, but it does
not integrate modeling with experiments, nor does it have facilities for comparing model
predictions with data. In [253] a conceptual model for online games is developed to work
with simulations but it does not provide a formal data model for online experiments nor an
implementation. Workflows for statistical analysis of social science data are addressed in
[251].

While several of these works address one or a couple of the aspects of our pipelines, none of
these works provide formal data models and dynamics models (e.g., for ABMs) for pipelines,
pipeline designs and implementations, pipeline functions, and case studies, as we do.
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2.9.6 Microservices

Our pipelines take a microservices conceptual approach. First defined in 2012, Microservices
[153] is an architectural style, addressing how to build, manage, and evolve architectures out
of small, self-contained units [49, 189, 206, 230]. The function component of our pipelines
have a narrow scope; this way, new functions can be added for new experiments and models
in a targeted way, fostering reuse without introducing redundant capabilities.

Microservices Architecture (MSA) and Service-Oriented Architecture (SOA) both rely on
services as the main component. But they vary greatly in terms of service characteristics.
SOA divides applications into sets of business applications offering services through different
protocols. This aims to solve the problem of complexity. SOA applications are costly and
complex and are designed to support high workloads, and a large number of users. In [153]
is stated that microservices keep services independent so that a service can be individually
replaced without impacting an entire application.

In 2012 [152] defined microservices as a way to more swiftly build software by dividing and
conquering, using Conway’s Law to structure teams. Issues, advantages and disadvantages of
microservices are identified in [237]. For example an issue identified is the system decomposi-
tion. Advantages include the increase in scalability and the clear boundaries. Disadvantages
include the difficulty to learn. The microservice architectural style is largely used by several
companies such as Amazon [139], Netflix [165], and many others.

2.9.7 Data Models

In [214], a data model is presented for supporting the modeling, execution and management
of emergency plans before and during a disaster. In [231], aspects of a business data model
are described. In [191], a data model is presented for capturing workflow audit trail data
relevant to process performance evaluation. In [247], models for social networks that have
mainly been published within the physics-oriented complex networks literature, are reviewed,
classified and compared.

In [173], an object-relational graph data model is proposed for modeling a social network.
It aims to illustrate the power of this generic model to represent the common structural
and node-based properties of different social network applications. A multi-paradigm ar-
chitecture is proposed to efficiently manage the system. In [121], a semantic model that
can naturally represent various academic social networks is presented; it describes various
complex semantic relationships among social actors.
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2.9.8 Formal Models of Pipelines

The possibility of incorporating formal analytics into workflow design is investigated in [231].
It provides a model that includes data dependencies. The workflow design analytics they
propose helps construct a workflow model based on information about the relevant activities
and the associated data. Also, it helps determine whether the given information is sufficient
for generating a workflow model and ensures the avoidance of certain workflow anomalies.
A detailed treatment of data dependencies is found in [133].

In [219], to improve data curation process efficiency for biological and chemical oceanography
data studies, pipelines are defined using a declarative language. The pipelines are serialized
into formal provenance data structures using the Provenance Ontology (PROV-O) data
model (defined in the paper).

2.9.9 “-Ilities;” reproducibility; interoperability; composability;
extensibility; scalability; reusability; and traceability

Foreseeable and unforeseeable changes occur in a system, ilities are attributes that character-
ize a system’s ability to respond to both. Ilities describe what a system should be, providing
an enduring architecture that is potent and durable, yet flexible to evolve with the insertion
of new systems.

The use of ilities for systems engineering of subsystems and components is investigated in
[274]. They show how some ilities are passed and used as a non-functional property of
electrical and structural subsystems in aircraft. They demonstrate that a useful practice for
systems engineers, to ensure that customer needs are actually met by the system under design
or service, is to flow ilities down to the subsystem level. The system ilities are passed down
and translated from non-functional to functional requirements by subject matter experts.

Pipelines and workflows provide reproducibility [28], interoperability [145], reusability [28].
The microservices conceptual approach of our pipelines satisfy the reproducibility, inter-
operability and reusability properties. We show the pipeline composability feature, also it
properties for extensibility, scalability, and traceability.

2.10 Summary and Future Work

Online social science experiments are used to understand behavior at-scale. Considerable
work is required to perform data analytics for custom experiments. Furthermore, model-
ing is often used to generalize experimental results, enabling a greater range of conditions
to be studied than through experiments alone. In order to transition from experiments to
modeling, model properties must also be inferred. Consequently, our work presents an auto-
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mated and extensible system for evaluating social phenomena through iterative experiments
and modeling. Our work scope ranges from formal models through software design and
implementation. Our models include a formal experimental data model (and data common
specification), a network-based discrete dynamical systems model (graph dynamical system,
GDS), and a formal model for pipeline composition. These models aid in reasoning about
the design and construction of five composable and extensible software pipelines, which cur-
rently contain 29 functions. We provide three case studies, on collective identity, complex
contagion, and explore-exploit behavior, respectively, to illustrate the successful use of the
system. Ongoing work includes integrating the pipelines into a distributed data management
system, and adding new functions to the pipelines.
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Figure 2.9: To run a pipeline (called a job), a configuration input file specifies functions and
their order of execution. Here we show how function h1 is executed in a generic Pipeline 1
and how h4 is executed in Pipeline 2. Input files are validated against their corresponding
JSON schema (Configuration File Verification). The Pipeline Infrastructure Code invokes
the corresponding functions. If necessary, the Pipeline Infrastructure Code invokes a func-
tion transformation procedure that transforms the file contents into a function input file
format. When the contents of all inputs are in the function h1 input file formats, the files
are validated against their corresponding JSON schema (Configuration File Verification).
After verification of formats by the corresponding JSON schemas, the function is executed
and output files are generated (these digital object outputs may be, e.g., plot files, ASCII
data files, and binary data files). There may be additional functions, indicated by the el-
lipsis below Pipeline 1 Function h1 Execution. In this example, outputs from the generic
pipeline 1 are inputs for the generic pipeline 2. Function h4 in Pipeline 2 is executed in a
similar fashion to function h1 in Pipeline 1. See the text for descriptions of these various
components. Note: the pipeline infrastructure code is the same code for all pipelines.
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Figure 2.10: The anagram game screen, phase-2, for one player. This player has own letters
“R,” “O,” and “L” and has requested an “E” and “A” from neighbors. The “E” is green,
so this player’s request has been fulfilled and so “E” can be used in forming words; but the
request for “A” is still outstanding so cannot be used in words. Below these letters, it shows
that Player 2 has requested “O” and “L” from this player. This player can reply to these
requests, if she so chooses. Below that is a box where the player types and submits new
words.
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Figure 2.11: Case study 1. Partial representation of the data model for the online experiment
composed of 3 phases with a set of V players (n = |V |). The phase 1 DIFI measure, a proxy
for CI, uses a null (i.e., empty) network on n players; i.e., there are no edges in the graph
because players play individually. In phase 2, a team-based CI-priming game, edges E are
communication channels. Initial conditions Bv include letter assignments to players. The
individual DIFI measure is repeated in phase 3. The action set A and illustrative action
tuples Ti are given for each phase.
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Figure 2.12: The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h3 plots the time series of number of words
formed by player for experiment #2.

Figure 2.13: The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h5 generates the histogram for the number
of actions “letter request” for three experiments. The x-axis is time in the group anagram
game, binned in 30 seconds intervals.
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Figure 2.14: The Data Analytics pipeline (DAP) was executed to analyze phase 2 of three
experiments with n = 6 and d = 5. Function h7 generates the discrete time actions for
all three experiments. This latter output will inform the Property Inference pipeline for
computing parameters for simulation models. Time (in seconds) is shown in the first row as
1, 2, 3, ..., and counts of the z vector components, per player and per experiment are given.
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Figure 2.15: The Property Inference pipeline receives the input from h7 of the Data Analysis
Pipeline (DAP). The parameters in this figure were generated to inform an ABM model for
the Modeling and Simulation Pipeline (MASP). The transitions in the figure are from from
i to j, where ai ∈ A is the action at time t and aj ∈ A is the action at (t + 1). Rows not
shown mean there are no such transitions in the data.
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Figure 2.16: The Modeling and Simulation pipeline (MASP) and Model Evaluation and
Prediction pipeline (MEAPP) were executed to generate simulation results and model pre-
dictions, and to compare experimental data to model predictions. All three plots contain
model predictions and use results from h1 of the MASP. Function h1 of MEAPP plots cor-
responding experimental and model output data (top plot) and compares experiment and
model output using KL-divergence (center plot) for six parameters. Function h2 of MEAPP
uses h3 of the Data Analysis pipeline (DAP) to plot model predictions from h1 of the MASP
(bottom plot) where now n = 15 (in experiments, n = 6).
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Figure 2.17: Elements of the data model (Table 2.1), for the online social network experiment
in [47].

Figure 2.18: Data model of Table 2.4 translated into a entity-relationship diagram in unified
modeling language (UML) form.
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Table 2.4: Online social network experiment in [47], defined with our data model. One
experiment has two independent phases, one with a clustered-lattice network and another
with a random network; each with population size n=98 and number of health buddies per
person d=6.

# Parameter Description

Experiment Schema

1 exp id = 1 Experiment id for an experiment.

2 np = 2 Number of phases in the experiment.

3 n = 196 The number of unique players over all phases.

4 t begin Timestamp of experiment beginning.

5 t end Timestamp of experiment ending.

6 V V = {v1, . . . , v196}, set of players over all phases.

Phase Schema

1 ph sch id = 1 Id for phase schema.

2 inp = 1 Element of the sequence of phases of the experiment.

3 t ph begin Timestamp of phase beginning.

4 tp = 13 Number of time increments in the phase.

5 up = days Time unit of one time increment.

6 G(V ′, E′) Clustered-lattice network, node set V ′ = {v1, ..., v98} and edge set E′ =
{e1, . . . , e294}, where the number of health buddies each person has is 6.

7 λ λ = communication channel between health buddies. λ ∈ Λ

8 Γ Γj(t) = (γj1(t), γj2(t), . . . , γj,ηv (t)) is the sequence of ηv attributes for vj ∈ V ′. ηv=
# of initial ratings in the forum to provide content for the early adopters.

10 Bv Bvj = (avatarj1, usernamej2, health interestj3, . . .).

12 A A={a1, a2, a3} where a1 is send message, a2 is join forum, and a3 is input rating
content.

13 T T1 = (1, a1, v1, v2, t,message). v1 “sends message” to v2.

T2 = (2, a1, v1, v3, t,message). v1 “sends message” to v3.

T3 = (1, a2, v2, v1, t,message). v1 “joins forum” after T1.

T4 = (1, a1, v2, v3, t,message). v2 “sends message” to v3.

T5 = (2, a1, v2, v4, t,message). v2 “sends message” to v4.

T6 = (3, a3, v1, null, t,message). v1 “inputs rating content” to forum.

· · ·
Phase Schema

1 ph sch id = 2 Id for phase schema.

2 inp = 2 Element of the sequence of phases of the experiment.

3 t ph begin Timestamp of phase beginning.

4 tp = 13 Number of time increments in the phase.

5 up = days Time unit of one time increment.

6 H(V ′′, E′′) Random network, node set V ′ = {v99, ..., v196} and edge set E′ = {e1, . . . , e294},
where the number of health buddies each person has is 6.

7 λ λ = communication channel between health buddies. λ ∈ Λ

8 Γ Γj(t) = (γj1(t), γj2(t), . . . , γj,ηv (t)) is the sequence of ηv attributes for vj ∈ V ′. ηv=
# of initial ratings in the forum to provide content for the early adopters.

10 Bv Bvj = (avatarj ,usernamej , health interestj , . . .).

12 A A={send message, join forum, input rating content.}.
13 T T1 = (1, a1, v1, v2, t,message). v1 “sends message” to v2.

T2 = (1, a2, v2, v1, t,message). v1 “joins forum” after T1.

· · ·
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Table 2.5: How the structure of communication networks among actors can affect system-
level performance is studied in [146]. Here we define this model with our data model.

# Parameter Description

Experiment Schema

1 exp id = 1 Experiment id for an experiment.

2 np = 1 Number of phases in the experiment.

3 n = 100 The number of unique players over all phases.

4 t begin Timestamp of experiment beginning.

5 t end Timestamp of experiment ending.

6 V V = {v1, . . . , v100}, set of players over all phases.

Phase Schema

1 ph sch id =
1

Id for phase schema.

2 inp = 1 Element of the sequence of phases of the experiment.

3 t ph begin Timestamp of phase beginning.

4 tp =converge The phase runs until it converges on a single solution.

5 up =
seconds

Time unit of one time increment.

6 G(V ′, E′) Linear network, node set V ′ = {v1, ..., v100} and edge set E′ =
{e1, . . . , e98}.

7 λ λ = influence channel between neighbors. λ ∈ Λ

8 Γ Γj(t) = (densityj(t), average path lengthj(t), scorej(t))

10 Bv Bv
j = (human activitiesj , synergiesj , . . .).

12 A A={post solution, evaluate, copy solution.}.
13 T T1 = (1, a1, v1, null, t, solution). v1 “posts solution”.

T2 = (1, a1, v2, null, t, solution). v2 “posts solution”.

T3 = (1, a2, v3, v1, t, solution). v3 “evaluates” v1 solution.

T4 = (1, a3, v3, v1, t, solution). v3 “copies solution” from v1.

· · ·
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Figure 2.19: Data model of Table 2.5 translated into a entity-relationship diagram in unified
modeling language (UML) form.



Chapter 3

Social Networked Experiments and
Modeling for Producing Collective
Identity in a Group of Human
Subjects Using an Iterative
Abduction Framework

3.1 Abstract

Group or collective identity is an individual’s cognitive, moral, and emotional connection
with a broader community, category, practice, or institution. There are many different con-
texts in which collective identity operates, and a host of application domains where collective
identity is important. Collective identity is studied across myriad academic disciplines. As
an example, extensive experimental research shows that collective identity influences human
decision-making. Consequently, there is interest in understanding the collective identity for-
mation process. In laboratory and other settings, collective identity is fostered through prim-
ing a group of human subjects. However, there have been no works in developing agent-based
models for simulating collective identity formation processes. Our focus is understanding a
game that is designed to produce collective identity within a group. In this work, we build
an online game platform; perform and analyze controlled laboratory experiments; build, ex-
ercise, and evaluate network-based agent-based models; and form and evaluate hypotheses
about collective identity. We conduct these steps in multiple abductive iterations to improve
our understanding of collective identity as this looping process unfolds. Our work serves as
an exemplar of using abductive looping in the social sciences.
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3.2 Introduction

3.2.1 Background and Motivation

Group or collective identity (CI) is an individual’s cognitive, moral, and emotional connection
with a broader community, category, practice, or institution [200].1 There are several themes
of, and implications for, CI, including: (1) an individual’s willingness to place the needs
of the group above personal needs (e.g., contributions to Public Goods Games (PGGs)
[34, 51]); (2) a person’s susceptibility to positive social influence from group members (e.g.,
sensitivity to evaluations from a collective group [34, 51]); (3) one’s desire to differentiate
from others not in the collective (e.g., allocation between ingroup/outgroup [32]); (4) an
individual’s willingness to enforce conformity to group norms established by the collective
identity [34, 72, 138, 167]; and (5) a person deriving self-esteem from the group [137, 238].
Hence, there are many behavioral and attitudinal manifestations as consequences of CI.

There are many types of, and contexts for, collective identity, including: (1) religious iden-
tity [29, 193], (2) philosophical identity [108, 175], (3) gender identity [39, 43], (4) (sports)
fan identity [224], (5) labor movements [103], (6) social movements such as African American
civil rights, women’s suffrage, gay rights ([200, 225, 242]), (7) political identities [129, 199],
(8) racial and ethnic identities [10, 82, 177, 241], (9) national and cultural identities [10, 161,
163], and (10) ideologies [254].

CI is a widely studied concept across academic disciplines. Extensive experimental research
in social science, political science, psychology, biology, geography, anthropology, religion,
criminology, philosophy, and economics shows that CI influences human decision-making
[2, 29, 33, 34, 36, 68, 82, 83, 104, 159, 184, 190, 194, 198, 204, 217, 220, 232, 256, 272].

There is a host of applications for which CI is important, including team formation, main-
tenance, and behavior in organizations and communities [72, 138]. The ability to generate
identity within (marginalized) groups, e.g., through sacred values, is an important aspect of
violent group formation [17, 18, 220]. These are compounded by effects of culture and ethnic-
ity [16, 100, 101]. International relations are affected by CI among independent states [266].
Political leaders of minority or marginalized groups may control identity narratives to per-
suade their constituents of posturing with governments [61]. Relatedly, CI is a cohesive force
for groups fighting governments to secure rights and indigenous lands [36, 225]. Religious
identity can be a source of stability for immigrants assimilating into a new country [193].
Language and preservation of culture are intimately tied to collective or group identity [36].
Ramifications of a lack of identity are studied in [228].

Individuals may possess several group identities, with different degrees of salience (strength

1There are other definitions for collective identity. For example, [168] state that collective identity means
that members become more familiar and equal. [266] defines CI as the positive identification with the welfare
of another, such that the other is seen as a cognitive extension of the self, rather than independent. See [188]
for a discussion of various definitions of CI.
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of affinity and association), such that multiple identities may be simultaneously operative
[29, 193, 224]. There may be a hierarchy of identities, with different identities coming to the
fore in different situations [229]. (The ability to use different identities in different situations
has been referred to as freedom in a philosophical context [115].) Multiple identities may also
be negatively correlated, e.g., religious and national identities [259]. Furthermore, identities
and their saliences may be transient over short time scales, and may ebb and flow over
longer time scales [29, 39, 188, 224, 261]. Consequently, a person’s identity may include a
combination of dynamically changing, hierarchical collective identities.

Relationships between CI and other phenomena can be intricate. We take collective action
(CA), for which there is a massive literature (e.g., [107, 185, 210, 240]), as an example. Causal
relations between CI and CA are very complicated, with the causal direction between the
two changing for different circumstances [61, 90, 200, 224, 266].

These issues make the study of CI both interesting and challenging. It is the generality
of the concept of CI, its application in a wide range of contexts, its many types and its
ramifications for humans and their behaviors that have led to myriad CI studies since the
term collective identity was first coined by Durkheim some 65-plus years ago [77]. Our focus
here is the CI formation process: how CI is formed among a group of people.

CI formation is studied in several works [5, 34, 37, 51, 58, 61, 109, 193, 198, 235, 266].
See Related Work, Section 3.4.5. All of these works, except one, are empirical, examining
events in the field. Surveys, questionnaires, and interviews with human subjects are used to
establish, through expert judgment, whether CI has formed within a group.

The work by [51] also studies CI formation, but is quite different from these other works.
They use controlled experiments to produce CI among human subjects through priming using
team anagram games, wherein players work cooperatively to form words from a collection
of letters that they are given. For example, letters t, c, a, and s can be used to form words
such as cat and cats. There are many other aspects to their game. Group identity was
then measured after the anagram game using a public goods game (PGG). The greater the
PGG contributions of individuals to the team, the greater the collective identity of these
individuals. It was found that the priming activity increased PGG contributions. To the
best of our knowledge, these are the only controlled experiments that seek to produce CI
through priming (in an anagram game) and measure CI quantitatively (through the proxy
of PGG contributions). [51] influence our work herein.

We note in passing that priming tasks are central in social and economic experiments
(e.g., [76, 87, 223]) and are therefore worthy of study for this reason alone.

In addition to the references above, CI formation is discussed and theorized about in [90, 170,
171, 200, 224, 225, 240]. We note that these theoretical works are descriptive and qualitative
in nature, and are not concerned with computational modeling. Yet, despite all of the
work on CI (described here and in Related Work, Section 4.3), we know of no works that
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quantitatively model any CI formation process2. We investigate one CI formation process
by modeling the priming process of a group anagram game.

3.2.2 Summary of Work Scope

Our work has three broad elements. First, we develop an online experiment, motivated by
the work of [51], that is designed to produce CI within a group of participants, through
priming, and then measure the CI produced. Specifically, the priming activity consists of
players cooperating in a group anagram game, where participants share letters with their
neighbors in order to help all players form more words. Specifically, the main player actions
are: (1) requesting letters from neighbors, (2) replying to letter requests of neighbors, and (3)
forming words. Players equally share in all earnings generated by the team. This priming
activity is accompanied by a dynamic identity fusion index (DIFI) task that measures—
individually—how much a person associates with a team or group (it is a proxy for CI).
Second, we construct models of the CI priming process (the group anagram game) and
compare predictions of player behavior against experiments. We develop and evaluate three
agent-based models. Third, we use abduction as our framework for this study where both
experimental work and modeling work take place within an abductive loop framework.

3.2.3 Situating Our Work On Anagram Game Experiments and
Modeling With Other Research

We have mentioned other works in the preceding section. Here we explicitly situate our work
relative to those of others. Figure 3.1 shows the context of our work along three dimensions
of experiments, modeling, and types of experimental subjects. Figure 3.2 makes this more
concrete by presenting representative works along various combinations of values along the
three dimensions of Figure 3.1. It is clear that our work—identified at the bottom of the
chart in Figure 3.2—is unique.

3.2.4 Overview of Our Experiment and Modeling Approach: Ab-
ductive Iterations

Abduction is an inference approach that uses data and observations to identify plausible
(preferably, best) explanations for phenomena [89, 197]. That is, abduction is reasoning from
effects to causes [50]. Effects are often generated by results from (laboratory) experiments

2We use the term model to mean a representation of equations and algorithms to compute some result.
In contrast, in the social and some other sciences, model often refers to a qualitative (textual) description
of some process that is much more conceptual and not computational. Our models that we present herein
are of the first type. We use the term model in the former (quantitative) sense, unless otherwise specified.
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Figure 3.1: Conceptual view of three dimensions of this work, illustrating how our group
anagram game study is situated. Our experiments consist of online web-based human sub-
jects experiments. Our modeling component consists of model and algorithm development,
and agent-based modeling. We study groups of interacting individuals. To our knowledge,
this combination of study features is unique. These dimensions are used in Figure 3.2 to
compare our work with others.

or in situ observations of systems. One then constructs hypotheses and identifies or develops
theories that explain these observations.

Much of the work on abduction has focused on topics such as producing explanations for
different logic settings (e.g., [78]); determining the computational complexity of abduction
problems (e.g., [265]); and generating solutions for special problems or transformations that
are useful in obtaining solutions (e.g., [196]). Abduction has broad application in robotics,
genetics, automated systems, and image understanding [12, 127, 216, 258].

However, in contrast to the above notion of abduction, our focus is the specification and
implementation of an abductive looping process, wherein abduction is executed in successive
iterations. Every iteration builds off of all previous ones, so that explanations may evolve
from accumulated data from experiments and observations. As a differentiator from previous
work, our interests are behaviors and human interactions within networked groups in the
social sciences. In particular, our exemplar is to understand whether a cooperative game
can produce collective identity (CI) within a group.

The abductive loop (AL) process that we employ is described in Section 3.3, but among
its components are experiments and modeling, and we make note of works on coupling
experiments and modeling here. There have been several controlled experimental studies
of comparable size to our experiments (e.g., [128, 131, 132]). Also, empirically grounded,
data-driven modeling of human behavior is done [154, 164, 179, 277]. We combine these two
ideas, in a particular way that is guided by abduction, and perform them iteratively. The
proposed abductive analysis is to form hypotheses to evaluate theories as part of the looping
process, and develop new insights about CI. Looping over abductive analyses is relatively
rare (see the robotics work [216] as an exception), and the use of abduction and abductive
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Figure 3.2: A hierarchy of different collective identity (CI) experiments in the literature,
which puts the uniqueness of our work on anagram game experiments and modeling into
the context of the works of others. The internal nodes refer to classifications between in-
laboratory and online experiments, and between works with and without modeling. We
distinguish between studies of individuals, with no interaction between subjects, and studies
of groups, with interactions among subjects. Leaf nodes refer to representative works. Our
work studies online experiments of collective identity with modeling and interaction among
subjects. (These references are not exhaustive; more detail is included in the related work
of Section 4.3.)

iterations in the social sciences is very rare. Our approach provides an exemplary case of
coupling theory development/evaluation with real problems.

3.2.5 Novelty of Our Work

We summarize the novelty of our work based on the foregoing discussion. (1) Our online
group anagram games are the first of their kind ([51] conducts face-to-face games and their
game is different from ours in several respects). (2) We develop quantitative models and
agent-based models of the priming process for producing CI. (3) We compare distributions
of experimental data to distributions of model predictions. (4) We use an iterative abductive
looping process to combine experimental and modeling work, which is quite novel in the social
sciences. (5) Our approach provides an exemplary case for combining theory evaluation with
an important subject of interest to social scientists (CI).

3.2.6 Contributions

Our major contributions follow.

1. Insights on the collaborative anagram game. We present novel experimental data
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that illustrate how players interact in group anagram games. We focus on experimental
data that are useful in modeling. We find that letter requests and letter replies are made
throughout the game, rather than solely at the outset. However, if there are few neighbors
(k = 2) and consequently fewer available letters (3 letters per neighbor), there are fewer letter
requests and letter replies near the end of the game. Also, players generally respond relatively
quickly to their neighbors’ letter requests: replies are typically made within 30 seconds of
the request. In the same way as letter requests and letter replies, word submissions are made
throughout the game, but the number of neighbors and available letters, does not affect this
type of action.

2. Data-driven networked agent-based models (ABMs) of experiments: design,
construction, and evaluation. We design, construct, and evaluate three data-driven
ABMs of the group anagram game experiment. We adapt a conditional random fields (CRF)
[233] modeling approach with four parameters to flexibly incorporate history effects on agent
actions that evolve in time. That is, our models predict time histories of player actions in the
group anagram game. These actions are: (1) requesting letters from neighbors, (2) replying
to letter requests of neighbors, (3) forming words, and (4) thinking (or idling). We capture
these activities through a state transition matrix approach, where, in our most sophisticated
model, the action at time (t + 1) is based on the action at time t and on a feature vector
that captures an individual’s state. Our approach can alleviate the overfitting problem that
would arise with, e.g., a static Markov model that would require capturing many more state
transitions.

ABM is used as our simulation modeling approach because of its fine granularity and for
its generative properties [81]. That is, local interactions produce population-level dynamics.
We use inductive and deductive inference in three ways, use KL-divergence to compare
model predictions with experimental data, and compare results across multiple ABMs. For
example, our KL-divergence evaluations are broken down by ABM, player action, and number
of neighbors in a game. For each combination, we use overall data at the end of the 5-minute
group anagram game and at 1-minute intervals during the game to evaluate temporal effects.
All of these are used to demonstrate that the ABMs successively improve with the process
of incorporating more data.

Our three successive ABMs are named M0, M1, and M2. Our work in evaluating the ABMs
shows that ABM M1 reduces KL-divergence values by 4× or more, over those for ABM
M0, in many cases (smaller KL-divergence values are better; they indicate better agreement
with experimental data). Our work also shows that in many cases, ABM M2 has KL-
divergence values that are 4× or more reduced from those of ABM M1. Interestingly, ABM
M1 does slightly better than our most sophisticated model (ABM M2) for a small range of
parameters that were used in generating M1, but M2 does much better over the remaining
input parameter space.

3. Specification and demonstration of iterative abductive analysis process. We
perform experiments (Contribution 1), and modeling and evaluation (Contribution 2), within
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an iterative abductive process. Using [112, 246] as a starting point, we explicitly incorpo-
rate modeling and iterations into the abductive process. The latter necessitates specifying
what is to be done in the next iteration. The iterative process is successfully demonstrated
through the group anagram experiments, agent-based modeling, and hypothesis generation
and testing. The proposed abductive process can be considered as a general methodology for
other social science researches. For example, our method of model construction from data
(see Contribution 4 below) can be used to capture other temporal human action sets among
interacting agents.

4. Statistical analysis of numbers of samples required for modeling. We evaluate
the quality of our state transition matrices of our ABMs using a root of mean squared errors
(RSME) approach. Specifically, we are interested in how many test samples are required to
achieve a specified small error in predicted transition probabilities as compared to measured
transition probabilities. We use our feature vector from the ABM and break each element
down into bins, and add to it the number of neighbors that a player has in a game. By
evaluating all of the state transitions among the actions, within each of the resulting 324
distinct bins of data, we find that the minimum number of observations (samples) for each
state transition clearly demarcates small from large RSME. The data show that small RSME
values result when a state transition has at least 100 observations.

5. New experimental understanding of the formation of collective identity (CI).
We discover three novel insights on the formation of CI by coupling the team anagram game
and DIFI score. First, players’ DIFI scores increase with increasing numbers of neighbors
in the anagram game. Second, the number of interactions increases as number of neighbors
(i.e., a player’s network degree) increases from 2 to 4. However, the numbers of interactions,
relatively speaking, saturate with further increases in degree. Third, despite this saturation,
the DIFI score continues to increase with degree, suggesting complicated interactions among
game parameters. Our analysis is a first work on quantifying the formation of CI since
little work has been conducted on this subject in the literature. It is important to note
that this experimental work (like the modeling work) takes place within the abductive loop
framework.

3.2.7 Extensions from the Conference Paper

This paper was originally published as [202]. Extensions of that work, presented herein,
are summarized as follows. (1) Introduction has been expanded to give fuller treatment
of background, motivation, and problem context. (2) Related work is expanded with more
detail and new topics. (3) Game description has more detail. (4) Experimental data from the
game are given with new insights on player behavior. (5) Fuller treatment of the development
of each of the three ABMs (M0, M1, and M2) and comparisons of model predictions with
experimental data. This includes providing data for all of our experimentally measured
and predicted quantities, and providing temporal variations of these data and predictions.
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(6) Additional model evaluation and data, comparing model predictions to experimental
results across games. (7) Enhanced description and results in error analysis, comparing
experiments and models.

3.2.8 Paper Organization

An overview of the abductive loop process is presented in Section 3.3, providing a framework
for the rest of the paper. Related work is in Section 4.3. The group anagram experiments are
described in Section 3.5. Models of the experiments are developed in Section 3.6. Section 3.7
contains error analyses of the models. Sections 3.5 through 3.7 contain the major technical
components of the abductive loop that is overviewed in Section 3.3. These analyses and
results enable a more streamlined description of the abductive loop for CI in Section 3.8.
Limitations of this work are presented in Section 3.9. Section 3.10 summarizes. Sections 3.5
and 3.6 are substantial in size. Consequently, we provide tables within these sections to
organize the work and guide the reader, and we present many of the results in an appendix.

3.3 Overview of Abductive Loop

Figure 3.3 illustrates our iterative abductive process, which includes inductive and deduc-
tive steps and hypothesis testing. All work in this paper takes place within this framework.
This structure follows that of [112, 246], which are based on Piercian abduction [197], but
augments it in key areas. Note that in contrast to confirmatory (deductive) analyses, where
theories, hypotheses, and models are developed first, and used to predict results of future
candidate experiments, one-step abduction first generates data through experiments or ob-
servations. (Abduction uses data to drive the scientific discovery process.) Then, data
analysis consists of searching for patterns and generalizing these into phenomena, which is
an inductive step. These results are used to formulate hypotheses based on theories whose
purpose is to explain the data. Hypotheses may exist (e.g., from a previous loop) or may
be proposed in this step, and can be removed (e.g., via falsification). Multiple candidate
theories may be posed for a given phenomena. Models are developed from the data, with
the objective of generating outputs that help evaluate hypotheses and theories, and/or help
guide experiments for the next loop. The best explanation, or hypothesis/theory appraisal,
is the process of identifying the best explanation for the phenomena [243]; this includes hy-
pothesis falsification. Finally, the last step in an iteration is to determine what to do next,
in terms of designing new experiments. The iterative process may terminate for any number
of reasons; e.g., a best explanation has been found.

This description provides the structure for the rest of the paper. The experimental work of
Figure 3.3 is described in Section 3.5, after related work. The modeling work in Figure 3.3 is
presented in Sections 3.6 and 3.7. We provide the experimental and modeling methodologies,
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Figure 3.3: Steps in our iterative abductive analysis/loop.

data and results in these sections because they are too large to fit within a discussion of results
from the abductive iterations. Following these sections, we return to the abductive loop and
reference experimental and modeling results as appropriate, to make the looping process and
results more streamlined and cogent (and provide additional results).

3.4 Related Work

Related work topics are provided in Table 3.1, along with each topic’s relevance to our work.
Each subsection below provides research for one row in the table.

3.4.1 Overviews of CI

Overviews of CI are provided in [4, 88, 119, 188, 224, 238, 261]. [193] provides an interesting
view of CI as a combination of social structure (through roles) and processes (via perceptions
and interactions) [171].

3.4.2 Individual Anagram Games: Experiments

Over 20 experimental works use anagram games—with individual players (e.g., [40, 41, 70,
75, 84, 85, 86, 99, 104, 144, 156, 166, 172, 205, 208, 209, 213, 227, 250, 257, 263]). An
individual game means no interactions (e.g., sharing letters) between subjects playing a
game at the same time.

We review anagram game studies that are purely experimental. In [227], experiments of
anagram games are used to test player’s specification of causality for their performance
(e.g., did a player attribute good performance to skill or luck?). It was found that people
more likely to be responsible for their own actions attributed success or failure to their own
behavior, versus assigning outcomes to chance. [172] analyzed how individuals engage in
attributions of causality. Situational factors were studied through anagram games in [70].

Effects of goal-setting are analyzed with anagram tasks in [144, 156, 213, 257]. In [257] players
played the anagram game and their assigned goals became increasingly difficult. For example,
for each goal trial, subjects were assigned a goal for the number of words they have to form.
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Table 3.1: Topics described in Section 4.3 of Related Work.

Section
of Re-
lated
Work

Name Relevance

3.4.1 Overviews of CI CI is a broad topic. These are surveys of CI for the interested reader.
3.4.2 Individual Anagram

Games: Experiments
Individual anagram games are precursors to group anagram games and have been
extensively studied for more than 60 years to analyze the effects of goal-setting,
compensation types, internal-external attributions, and test anxiety. It includes
a broad range of disciplines like sociology, economics, management science, and
(social) psychology. For our work, anagram games are priming activities.

3.4.3 Individual Anagram
Games: Modeling

With all of the experimental work on anagram games, it is surprising that very
little work has been done in modeling and simulating these games.

3.4.4 Individual Anagram
Games: Experiments and
Modeling

Few works combining experiments and modeling of individual anagram games exist
[84, 85, 86].

3.4.5 Collective Identity-Based
Experiments: Formation
of CI

Our work is motivated by CI, and in particular the CI formation process. These
works study different methods from ours in generating CI.

3.4.6 Collective Identity-Based
Experiments: Implica-
tions of CI

Along with the Introduction, this section provides works that demonstrate the
implications of CI, thus motivating why we study it.

3.4.7 Measurement of CI Methods used in research to measure (quantify) CI are important.
3.4.8 Combined Group Ana-

gram and CI Experi-
ments

This section emphasizes that there is only one work on group anagram game. That
work motivated our work. However there are differences between that work and
ours.

3.4.9 Modeling of CI Demonstrates that there are few modeling studies of CI, and no works like ours.
3.4.10 Agent Based Models of

Anagram Games and
Formation of CI

This puts our preliminary results into context. The first and only work, to our
knowledge, in modeling human group anagram games is our work [202].

3.4.11 Studies of Phenomena
Related to CI

As described in the Introduction, CI is relevant for and closely related to, many
other phenomena like cooperation and collective action. These works provide some
background on these works.

3.4.12 Data-Driven: Combining
Experiments and Data-
Driven Modeling

Demonstrates that combined experimental and modeling studies, as we do here,
are used for other phenomena besides CI.

3.4.13 Modeling of Time Se-
quences of Actions

These are studies that investigate time series models. Our modeling and ABMs
are essentially time series models.

3.4.14 Evaluation of Model Pre-
dictions

Methods for comparing experimental and model prediction distributions, as we do
here, are presented.

3.4.15 Abduction and Abduc-
tive Loop

We use abductive iterations as a framework for our experimental and modeling
work. We survey other abductive works.

After each goal trial, subjects recorded their performance (i.e., the number of words formed)
as well as their assigned goal for the next trial. Difficulty of assigned goal was increased by
two words per trial. Before beginning the next trial, subjects completed a form on which
they calculated their GDF (goal discrepancy feedback: performance minus assigned goal)
and PDF (performance discrepancy feedback: performance this trial minus performance
last trial). Assigned goals were rejected when GDF became sufficiently negative. GDF
and PDF differed both in sign and magnitude of effects on acceptance and personal goals,
indicating that subjects used these feedback discrepancies differently in the goal evaluation
process. Unusually, personal goals and performance remained high even after assigned goals
were rejected. In [144, 156], theories of goal settings are developed. In [213], it was found
that people with unmet goals were more likely to engage in unethical behavior than people
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attempting to do their best.

[104] use the anagram task to examine three factors and their effects on group performance:
intergroup competition or cooperation, intragroup competition or cooperation, and task
means interdependence. In [205, 208, 209], studies look at anxiety generated from perform-
ing a task, where the task is the anagram game. In [40], pay-for-performance and fixed-salary
compensation were compared using an anagram task. In [41], an anagram game was em-
ployed as the experimental task to evaluate a target-based compensation system, a linear
piece-rate system and a tournament-based bonus system. Larger amounts of cheating oc-
curred under target-based compensation. In [75, 99, 166, 263], the effects of letter order and
word frequency on anagram game performance are analyzed.

3.4.3 Individual Anagram Games: Modeling

In [250], problem solving and verbal cues are analyzed with an anagram game. [250] modifies
the [111] mediational model of problem-solving behavior (introducing word length and letter
position), to understand anagram problem solving. This is a theoretical model of individual
anagram games.

3.4.4 Individual Anagram Games: Experiments and Modeling

These works combine experiments and modeling. In [84], it was found that subjects who
were initially confident of passing an anagram game test tended to attribute success to
ability and failure to bad luck. However, subjects who were initially not confident tended to
attribute success to good luck and failure to lack of ability. Results are discussed in terms of
Heiderian theory and a valence-difficulty model. In [85, 86], two individuals played anagram
games simultaneously but independently to test whether a person attributed her success (if
she performed better) to skill versus good fortune, and failure to inferior skill or bad luck.
Attributions were found to be dependent on expectations of players. Results are discussed
in terms of models involving Heider’s principle of balance and his analysis of the causes of
action, in terms of positivity biases in social perception, and as indicating effects of the social
context of performance upon attribution and valence.

3.4.5 Collective Identity-Based Experiments: Formation of CI

The following references study or theorize on the CI formation process. That is, they study
processes by which a group of individuals that does not possess CI can form CI by, for
example, interacting or undergoing a priming task.

In [34], laboratory experiments of CI with no interactions between subjects are performed
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using priming. They argue that the personal, relational, and collective levels of self-definition
(shift from personal to collective) represent distinct forms of self-representation with different
origins, sources of self-worth, and social motivations. They suggest the concept “we” primes
social representations of the self that are more inclusive than that of the personal self-
concept. In a preliminary investigation of the implications of different levels of the social
self-concept, a set of three experiments were conducted to explore the effects of priming
various “we” schemas on individual judgments and self-descriptions. In the priming task,
participants read a descriptive paragraph with instructions to circle all the pronouns that
appeared in the text, as part of a proofreading and word search task. After completing this
word search task, participants were escorted to another room and asked to judge, as quickly
as possible, whether the statements were similar or dissimilar to their own views by pressing
a number key on the keyboard, ranging from 1 (very dissimilar) to 4 (very similar). They
found that individuals primed with “we” would entail an expanded sense of self that would
lower thresholds for agreement and assimilation.

In [58], laboratory experiments with no interactions between subjects measure the effects
of induced group identity on participant social preferences. They show that participants
are more altruistic towards an ingroup match. They evaluate different ways of creating
group identity in the laboratory, to explore the formation of groups and to investigate the
foundation of what group identity is. When participants are matched with an ingroup
member (as opposed to an outgroup member) they show a 47-percent increase in charity
concerns when they have a higher payoff and a 93-percent decrease in envy when they have
a lower payoff. Also, participants are 19 percent more likely to reward an ingroup match
for good behavior, but 13 percent less likely to punish an ingroup match for misbehavior.
Participants are significantly more likely to choose social-welfare-maximizing actions when
matched with an ingroup member.

In [198], online experiments with no interactions between subjects are performed. To expand
upon perspectives on the commons dilemma (e.g., do I contribute to the common resource
or do I free ride), [198] developed an online experiment grounded on group decision-making.
They create manipulations based on three modalities of structure: dense versus sparse net-
works (domination), collective versus individual identity (signification), and social sanction
versus non-social sanction (legitimation). The online experiments reveal that modalities of
signification positively influence contribution rates on the commons dilemma, when partici-
pants were provided information meant to stimulate a CI. This is analogous to the findings
of [51]; see Section 3.4.8. They mention how challenging it is for an online experiment to
create CI, because the individual is sitting alone playing the game on a computer. In their ex-
periments they try to stimulate CI by communicating three additional pieces of information
regarding collective outcomes: (1) total collective score, rather than just an individual collec-
tive score, (2) collective rank compared to previous sessions, and (3) the score of the highest
collective score from previous sessions. By including more collective, rather than individual,
information, the user may come to behave more in a collective fashion and contribute to the
public good.
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In [5], an online experiment using data collected from the websites of over 160 environmental
activist organizations is developed. A model is presented where social movement actors
exchange practical and symbolic resources in the guise of website text content and hyperlinks,
as part of a process of online CI formation. The hyperlink and online frame networks are
compared on three measures of centralization: degree, betweenness and closeness.

[266] argues that international cooperation among independent states can be fostered through
CI. He describes different mechanisms that may lead to CI, and takes examples from past
events or general ideas. For example, he states that trade relations among states can foster
CI through the emergence of the feeling of a common fate, but there are no experiments nor
historical observations. It focuses more directly on identities and interests as the dependent
variable and investigates whether, how, and why identities change.

[109] evaluates self and recognition theories—recognition theory states that an individual or
group places recognition of itself by others as a very high-priority goal—to determine whether
these two ideas can combine to produce CI. The reasoning is that as the self acknowledges
others, and this process is replicated by all participants, a collective identity is formed.
However, social identity theory-based experiments do not support this line of reasoning.
This work is more akin to a meta-study, summarizing existing results.

[193] studies CI generation among Muslims in the United States. It is an empirical study of
the formation of religious CI among 127 subjects, using focus groups, individual interviews,
and participant observations. She presents three consecutive steps to form CI: religion as an
ascribed identity; religion as chosen identity; and finally religion as declared identity.

[61] studies the relationships among specific (poor) constituent groups and governments, and
how these groups use their shared (collective) identity to position themselves. She also uses
observations (of group meetings) and interviews of group leaders to produce a model of CI
formation and its effect on collective action.

[235] uses small groups of music students (sizes of 2 to 5 students) to study the formation
of CI. Again, as with several previous works, surveys, interviews, and observational studies
are used to document the CI formation processes as students work together.

[37] examines South Africa and the current fracturing of the nation among different societal
groups. Factors contributing to the lack of a national CI (e.g., a lack of trust among sub-
groups and misunderstandings) are also discussed. Finally, the article posits that one way
to heal these divisions and form a national CI is through religious understanding.

A final work in CI formation are experiments with interactions among subjects performed
in [51]. This work, in a general way, motivated our anagram game experiments (although
there are many differences between our work and that in [51]). Consequently, we address
this work separately below.

Dismissing for the moment this last reference, it is clear that none of the above works on CI
formation are like ours. In contrast, our work uses controlled online laboratory experiments
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to produce CI through priming groups of subjects using a cooperative anagram game.

3.4.6 Collective Identity-Based Experiments: Implications of CI

The effects of religious (group) identity on individual behavior is studied in [29]. Subjects
(self-identified as Protestant, Jew, Catholic, or agnostic/atheist) were primed or not primed
with respect to religion. Priming consisted of having players unscramble a set of words that
form a sentence, and that sentence has religious content. The unprimed subjects unscrambled
words to form a sentence with no religious content. The purpose of priming is to make
salient the religious identities of players, if they exist. Subjects then played a number of
games, including public goods games, risk aversion games, discount rate elicitation games
(i.e., delayed gratification games), among others. In a public goods game, players are given
some amount of money. They have the option of contributing a portion of their money
to the group. The pooled money that is contributed to the group by all members is then
typically multiplied by some factor and redistributed to the players. Hence, there may be
some incentive to contribute to the group. There are several interesting results. Among
them is that religious identity salience (i.e., priming) produced an increase in Protestant
subjects’ contributions to Public Goods Games (PGG), while it generated a decrease in
Catholic subjects’ contributions.

In related experimental economics work using Indian caste and other nonreligious identi-
ties, [79], [116, 117], [53], [57], [64], [59], [65] find that group identity effects on behavior
strengthen with the salience of group membership. [55] manipulate the norms (expressed
by legal rulings) that subjects are exposed to and study how these norms affect their self-
identification.

The following works study the implications of identity fusion, where individuals may feel
fused with (i.e., strongly connected to) a group [105, 106, 234, 268, 269, 270]. We interpret
identity fusion to be synonymous with, or very similar to, CI.

In [270], the authors use online experiments to test the notion that fusion represents a
distinctive form of allegiance to groups. They propose that when people become fused with
a group, their personal and social identities become functionally equivalent. To measure
identity fusion they used a modified version of a fusion scale developed by [212]. They prove
that activating either personal or social identities of people who were fused with their group
increased the extent to which they were willing to fight or even die for the group. Thus, even
when people become deeply aligned with a group, their personal identities remain potent.

In [234], using an intergroup version of the trolley problem, the authors explored participants’
willingness to sacrifice their lives for their group. Studies showed that nonfused participants
expressed reluctance to sacrifice themselves, and identification with the group predicted
nothing. To measure identity fusion they used the same scale as in [270].

In [269], they assume that autonomic arousal will increase agency (i.e., the capacity to ini-
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tiate and control intentional behavior) for fused and nonfused persons. In four experiments,
increasing autonomic arousal through physical exercise elevated heart rates among all partic-
ipants. Fused participants, however, uniquely responded to arousal by translating elevated
agency into endorsement of pro-group activity. To measure identity fusion they used the
same scale as in [270].

In [106], online experiments showed that when people are ostrasized (i.e., rejected and ex-
cluded) by either an outgroup or an ingroup, they may either withdraw or engage in compen-
satory activities designed to reaffirm their social identity as a group member. The authors
proposed that individual differences in identity fusion (an index of familial orientation to-
ward the group) would moderate the tendency for people to display such compensatory
activity. Four experiments showed that irrevocable ostracism increased endorsement of ex-
treme, pro-group actions (fighting and dying for the ingroup) among fused persons but not
among nonfused persons. To measure identity fusion they used the same scale as in [270].

In [105], the authors determine what fusion is and the mediating mechanisms that lead
fused individuals to make extraordinary sacrifices for their group. For measure of group
identification, they proposed a seven-item verbal scale with greater fidelity than the earlier
pictorial measure of identity fusion from [270].

In [268], online experiments explored the cognitive and emotional mechanisms that underlie
the endorsement of self-sacrifice. Using participants responses to moral dilemmas, they found
that only those who were strongly fused with the group preferentially endorsed self-sacrifice.
Identity fusion was measured using the seven item verbal fusion scale from [105].

3.4.7 Measurement of CI

Researchers measure or declare the existence of CI in different ways. This is in part because
there are many definitions for, and types of, CI (see Section 3.2.1).

Many references on CI formation [61, 109, 193, 235, 266], presented in Section 3.4.5, pro-
nounce that CI has been formed based on expert evaluation of textual comments of partic-
ipants, survey responses, and interviews. These are subjective approaches for determining
the existence of CI. They require an expert to interpret the data, and multiple experts may
arrive at different conclusions.

In PGGs [148], players are given some amount of money. They have the option of con-
tributing a portion of their money to the group. The pooled money that is contributed to
the group by all members is then typically multiplied by some factor and redistributed to
the players. Hence, there may be some incentive to contribute to the group. [51, 58] use
PGG contributions as a proxy for CI. In [51], the percentage of a persons money that they
contribute to the group is taken as their identification with the group: those with greater
group identity contribute more of their money to the team.
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In [270] a modified version of a fusion scale developed by [212] is proposed. To capture
fusion in a manner that emphasized perceived overlap and nothing else, participants choose
from five pictures which best represented the way they perceived their relationship with the
group. Each figure in the scale shows two circles of different sizes. The small circle represents
“the self”, the big circle represents “the group”. When participants need to choose from the
scale, five figures with symmetrical degrees of overlap (0%, 25%, 50%, 75%, and 100%) are
presented. For example, the first figure shows the two circles not intercepting, the second
figure show a 25% interception and the fifth figure show a 100% interception with the small
circle. To measure identity fusion, the following works use this scale [105, 234, 269, 270].

In [105], a seven-item verbal scale is proposed to obtain greater fidelity in the measurement
of identity fusion, compared to the pictorial measure from [270]. The levels in the verbal
scale are represented with the following sentences (1)“I am one with my group”, (2)“I feel
immersed in my group”, (3)“I have a deep emotional bond with my group”, (4)“My group
is me”, (5)“I’ll do for my group more than any of the other group members would do”, (6)“I
am strong because of my group”, (7)“I make my group strong”. [268] uses this scale to
measure identity fusion.

In [125] the DIFI is introduced to combine the simplicity of the single pictorial item [270]
with the higher predictive fidelity of the verbal scale [105]. The scales presented in [105, 270]
are not dynamic. In [125] the DIFI is defined as a continuous measure of identity fusion,
introducing a dynamic behavior for web-based questionnaires. The DIFI shows a figure
formed by two circles of different sizes in the screen of the computer. The small circle
represents “the self”, the big circle represents “the team”. The player can move the small
circle by clicking and dragging with the mouse to measure the degree to which the player
feels part of the team.

3.4.8 Combined Group Anagram and CI Experiments

A group anagram game entails cooperation in requesting and receiving letters, with the goal
of forming more words with additional letters received from teammates. The only face-to-
face cooperative team-play of an anagram game is reported in [51]. Their goal, like ours,
is to foster CI among teammates. While this motivated our experiment, there are several
differences in procedures and context. Major differences include (i) the game setup: we
used larger fixed team compositions, while in [51], the four-person team composition varied
in time (by people voting themselves and others onto and off of teams); (ii) in [51], games
were played face-to-face among participants in the same room cooperatively manipulating
Scrabble-like tiles on a table, while we used remote players interacting in a game through
a web application; and (iii) in [51], they measure CI with the proxy of PGG contributions,
while we use DIFI score.
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3.4.9 Modeling of CI

[159, 204] use ABMs to study identity diffusion. An agent adopts (changes) her type of
identity to that of a neighbor with a stronger (higher valued) type of identity. Hence, these
are contagion processes and are implemented much like voter models [71, 195]. Other works
modeling collective identity [5, 29, 58, 256] are presented in Section 3.4.5.

3.4.10 Agent Based Models of Anagram Games and Formation of
CI

The [51] work in Section 3.4.8 has no modeling for the group anagram game. This motivated
the online experiments and ABMs in [202]. This article is an expansion of [202]. In this
work, we model the priming process of producing CI, which is the group anagram game.
There are no ABMs (or models of any kind) of group anagram games, to our knowledge,
other than ours.

3.4.11 Studies of Phenomena Related to CI

Many phenomena, such as in-group and out-group effects are related to CI. In [35, 194],
laboratory experiments with no interactions between subjects are performed. In [35], it
was found that bias in favor of the ingroup on a reward allocation task was unaffected
by the arbitrariness of classification into groups. An effort was made to assure that sub-
jects in the arbitrary condition would not perceive the outgroup as dissimilar. They found
that similarity-dissimilarity of the outgroup did not affect allocation bias as long as the
ingroup was perceived as similar to the subject. Subjects were divided clearly into groups
labelled “dark” and “light.” Subjects then were asked to indicate their ratings first of
“the other members of my group” and then of “the members of the other group” on a se-
ries of six-point bipolar scales (friendly-unfriendly; trustworthy-untrustworthy; cooperative-
competitive; intelligent-stupid; weak-strong; generous-stingy; likeable-unlikeable). In [194],
classical conditioning in-group and out-group descriptors (e.g., “us” and “them”) are used to
establish evaluative responses to novel, unfamiliar targets. Nonsense syllables unobtrusively
paired with in-group designating pronouns (e.g., “we”) were rated as more pleasant than
syllables paired with out-group designators (e.g, “they”).

[190] studies how the anticipated interaction between groups determines the representations
that groups have of each other. When students are categorized into groups, discrimination
occurs such that the ingroup is more favorably represented than the outgroup before interac-
tion takes place and also when no interaction is anticipated. Such discrimination is stronger
when competitive interaction is anticipated in an important situation. In this condition,
intergroup differences are also more easily projected on physical traits. Categorization is
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shown to be not only an independent variable but also a dependent variable in intergroup
relations.

In [2], Own Group Bias (OGB) was measured by differences in pre and postgame scores on
the evaluative scales of the Semantic Differential (SD).

In [217], an experiment on Amazon Mechanical Turk was used to develop an agent-based
simulation to understand how people’s motivations and behaviors within public goods dilem-
mas interact with the properties of the dilemma to lead to collective outcomes. They predict
how the public good’s benefit and size, combined with controlling individual versus group
properties, produce different levels of cooperation in public goods dilemmas.

In [215], a simple model of collective action is presented as a framework for empirical research
into the issue of when collective action in the commons will be successful.

In [256], an integrative social identity model of collective action (SIMCA) is developed
that incorporates three socio-psychological perspectives on collective action. Instructions
for coders were to answer different questions like “Does the measure of identification (used
in this study) refer to a disadvantaged group or a social movement?”, “Is this group inciden-
tally disadvantaged or structurally disadvantaged?”. Coders also rated the extent to which
collective disadvantage was structural on a 5-point Likert-type scale ranging from 1 (not at
all) to 5 (very much).

In [207], new insights into the role of individual behavior on collective outcomes are obtained
using a multiple-worlds experimental design in a web-based experiment in which 2,930 par-
ticipants listened to, rated, and download 48 songs by up-and-coming bands.

In [232], laboratory experiments with interactions between subjects are performed. Web-
based experiments are conducted where 24 individuals played a local public goods game
arranged on one of five network topologies that varied between disconnected cliques and
a random regular graphs. It was found that although players did generally behave like
conditional cooperators, they were as likely to decrease their contributions in response to
low contributing neighbors as they were to increase their contributions in response to high
contributing neighbors. They also found that positive effects of cooperation were contagious
only to direct neighbors in the network.

In [44], online experiments using Amazon Mechanical Turk were used to develop a predictive
model of human cooperation able to organize a number of different experimental findings
that are not explained by the standard model.

In [204], an agent-based computer simulation of identity change explores how changes in
the attributes of the individual and/or elements of the environment influence the dependent
variable: the degree of shared identity in a population.

There is a host of other studies that investigate phenomena such as cooperation and a per-
son’s affinity for a group that are closely related to CI. In [53, 272] laboratory experiments
with interactions between subjects are performed. They study concepts such as group at-
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traction and salience, respectively, which are related to CI. In [272], study groups worked
cooperatively on two tasks and results were interpreted as showing that both previous inter-
action and success of combined effort are important variables in determining when intergroup
cooperation will increase intergroup attraction. In [53], groups perform two stage games as
priming tasks, the Battle of the Sexes and Prisoner’s Dilemma. Results show that the salience
of the group affects behavior of members, as well as the behavior of people in another group,
and that participants anticipate these effects.

3.4.12 Data-Driven: Combining Experiments and Data-Driven
Modeling

This section reports on works that combine experiments with data-driven modeling. These
works cover explore-exploit networked experiments with limited modeling [164]; individual
models of single-choice (i.e., one-shot) evacuation decisions [179]; ABM of emotion and
information contagions spreading on a network and comparisons with a single event [154];
and ABM of solar panel adoption and comparisons with data in San Diego county [277].
See [276] for a review of innovation diffusion models. None of these works use ABMs to model
networked experiments where individuals take a series of actions (that may be repeated) over
time, to study CI, as we do.

In [158], small-scale laboratory experiments and an ABM were used to analyze the dynamics
of collaborative inhibition. In [95], the model in [158] was tested against human data col-
lected in a large-scale experiment to find that participants demonstrate non-monotonicities
not evident in the predictions. These unexpected results motivate more recent work in elu-
cidating the algorithms underlying collaborative memory. In [192], using real-time online
social experiments data, a statistical model is used to study interpersonal coordination in a
“minimally interactive context” to explore how people become coupled in their perceptual
and memory systems while performing a task together.

In contrast to the above works, where controlled experiments are used to produce data that
are then used for modeling, there are many models based on observational data. We survey
some of these works here.

In [135], the possibility of predicting a social protest (planned, or unplanned) based on
social media messaging is studied. In [180], to help increase the performance of retweet
prediction, a flexible model under the framework of Random Forest classifier captures a
number of behavior signals affecting user’s retweet decision. In [121], a semantic model
that can naturally represent various academic social networks, especially various complex
semantic relationships among social actors, is presented. In [201], the proposed method
integrates topology and content of networks, and introduces a novel adaptive parameter
for controlling the contribution of content with respect to the identified mismatch degree
between the topological and content information. In [19], data-driven multi-agent models



70

predict Twitter trends. In [255], a method that implements, validates, and improves an
individual behavior model is proposed. The multi-agent model contains the social network
structure, individual behavior parameters, and the scenario that are obtained from empirical
data. In [149], emergence and propagation of reputations in social networks is modeled with
a distributed algorithm. In [60], using several Twitter data sets, focusing in particular on
the tweets sent during the soccer World Cup of 2010, a model of how users switch between
producing information or sentiments and sharing others news or sentiments is developed.
In [136], a theoretical analysis is developed for how social-chatter quantitatively relates to
action via a superlinear scaling law.

Other works include using data from geotagged social media messages and data from mobile
health applications [142, 249] In [249], to understand citizen reactions regarding Ebola, a
large-scale data-driven analysis of geotagged social media messages is performed. In [142],
data from mobile health applications is used to develop a statistical model, called TIPAS
(Time-varying, Interdependent, and Periodic Action Sequences). This approach is based on
personalized, multivariate temporal point processes that model time-varying action propen-
sities through a mixture of Gaussian intensities. Their model captures short-term and
long-term periodic interdependencies between actions through Hawkes process-based self-
excitations.

Clearly, much of the modeling of observational data is motivated by social media.

3.4.13 Modeling of Time Sequences of Actions

We review modeling of time sequences because our ABMs are essentially in this class of
models.

Many complex action sequences from human behavior are being collected from different
environments, like sensors [9, 30, 110, 239] or computer-based applications [60, 134, 142].
Sequence mining techniques to model and predict human behavior in the real world can be
used in different types of applications to improve a person’s life (e.g., mobile health [142],
education patterns [134], smart-home optimization [9, 110]).

Sequence analysis is an important task to understand human behavior [3]. The sequential
pattern mining problem was first introduced by [7], where the main focus is on the patterns
present in the sequential order of different transactions. But the complexity of human behav-
ior with time-varying, interdependent and periodic action sequences [142] makes accurate
analysis and predictions a challenging task.

[142] use activity data from logging applications to model the task of predicting future
user actions and their timing through a mixture of Gaussian intensities. The model cap-
tures short-term and long-term periodic interdependencies between actions through Hawkes
process-based self excitations [114]. Accurate recommendations could improve a person’s
health through the personalization of these applications. In [134], a combination of sequence
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mining techniques uses data from computer-based learning environments to model students
learning behavior patterns. [110] use sequential pattern learning to model an agent-based
system to aid elderly people in living longer in their homes. [9] uses pervasive home sensors,
like motion sensors, door close sensors, and floor pressure pads, to model and predict discrete
human actions with smoothed n-grams.

We are not modeling specific actions in our work. Rather, we are modeling the sequencing
of actions during an anagram game. The above works use primarily data from in situ
environments, while our data come from human subjects experiments.

3.4.14 Evaluation of Model Predictions

Predictive models can have many forms. For example, simple classifier algorithms try to
predict discrete class labels. Another technique used in predictive modeling is regression
analysis, which tries to predict the mean value of a quantitative response variable. Also, the
factor analysis approach, tries to predict the distribution of a set of correlated quantitative
variables (i.e., predicts the values of some variables from knowing the values of others). The
evaluation of prediction models can be developed using a variety of different methods and
metrics. For classification, the usual measure of error is the fraction of cases mis-classified,
called the mis-classification rate or the error rate. For linear regression, the measure of
accuracy is R2 and the measure of error is the sum of squared errors or 1 − R2. For the
method of factor analysis, when a model predicts a whole distribution, the negative log-
likelihood is the usual measure of error, but sometimes a direct measure of the distance
between the predicted and the observed distribution is used [113].

In this work, we are primarily concerned with using well-known measures to characterize the
difference between two statistical distributions. In our work, one distribution is generated
from experimental data, and one distribution is generated from predictions of models from
Section 3.6. [96] list ten metrics on probability measures: (1) Discrepancy, (2) Hellinger
distance, (3) Relative entropy (or Kullback-Leibler divergence), (4) Kolmogorov (or Uniform)
metric, (5) Lévy metric, (6) Prokhorov metric, (7) Separation distance, (8) Total variation
distance, (9) Wasserstein (or Kantorovich) metric, and (10) χ2 distance.

It is clear that there are many measures for comparing two probability distributions, and
different ones are used in different settings. For our needs, we have chosen to use KL-
divergence (also called relative entropy). The KL-divergence was introduced by Solomon
Kullback and Richard Leibler in 1951 as the directed divergence between two distributions
[141].

The most important measure in information theory is called entropy and measures the uncer-
tainty associated with a random variable. The entropy of a random variable X denoted H(X)
is a lower bound on the average length of the shortest description of the random variable
[66]. The concept of information entropy was introduced by [218]. The Shannon entropy,
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defined in [218], measures how close a random variable is to being uniformly distributed.
Shannon entropy estimates the average minimum number of bits needed to encode a string
of symbols based on an alphabet size and the frequency of the symbols. Is calculated us-
ing the following formula H(X) = −

∑
x∈X P (x) logP (x). The KL-divergence measures the

discrepancy between two probability distributions, and from which Shannon entropy can be
constructed. For discrete probability distributions P and Q defined on the same probability
space, the KL-divergence between P and Q is defined to be

DKL(P ||Q) = −
∑
x∈X

P (x) log
(Q(x)

P (x)

)
.

In the simple case, a KL divergence of 0 indicates that the two distributions in question are
identical. The KL-divergence is not symmetric. The evaluations of our models are described
in Section 3.7.

3.4.15 Abduction and Abductive Loop

Works on constructive procedures for implementing abductive analyses include [112, 246].
We extend those works for abductive looping by making modeling a first-class process, and
by adding the task of determining what to do in the next iteration. In addition to the
applications cited in the Introduction, abduction was used to understand emergency room
personnels’ efforts to save injured people in terms of “social viability” [245]. Perhaps the
work closest to ours is [221] in that they develop models and make predictions based on data.
However, their data are either artificially generated or address isolated individuals, and they
use abduction rather than abductive iterations. Several additional works are provided in
Section 3.2.4.

3.5 Experiments

In Section 3.5.1, we provide a description of the experiment and overview the web application
(web app) software system for running games. An experiment consists of an anagram game
and two executions of the dynamic identity fusion index (DIFI) procedure. We present
analyses of the experimental data that illustrate how players interact in the anagram games
in Section 3.5.2.

3.5.1 Experiment Description

The elements of an experiment, as specified in Figure 3.4, are:

1. Players are recruited from Amazon Mechanical Turk, to play our anagram game.
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2. Players receive directions on how to use the platform, including a description of the
game and how to play it, and information about remuneration at the end of the game.

3. Players play the Dynamic Identity Fusion Index (DIFI) 1, DIFI1, procedure individu-
ally.

4. Players play the anagram game in a cooperative group setting.

5. Players play the DIFI2 procedure individually.

The terms DIFI1 and DIFI2 are used to indicate the first and second uses of the DIFI
procedure (Figure 3.4). The two DIFI procedures are the same.

Figure 3.4: Steps for the overall online game include: recruitment of players from Amazon
Mechanical Turk (AMT), directions for the use of the platform, DIFI1 score procedure,
anagram game, and DIFI2 score procedure.

Group Anagram Game Description

The group anagram game is a word construction game, where n players cooperate in sharing
letters to form and submit words of length ≥ 3 letters. Communication channels between
pairs of agents mean that they can request and share letters with each other. An edge
between nodes (players) vi and vj means that vi and vj can share letters with each other; vi
and vj are neighbors. We use random regular graphs of degree k on the n players so that
everyone has the same number of neighbors. Over all abductive loops, experiments are run
in groups with nominal values of 10 ≤ n ≤ 20 and with regular degrees 2 ≤ k ≤ 8.

An example game configuration and system states are provided in Figure 3.5. The game
configuration can be represented as a graphG(V,E) where V is the set of nodes that represent
players and E is the set of edges that are communication channels between pairs of nodes.
Red channels are for letter request and green channels are for letter replies. The number
of players is n = 4 with players v1, v2, v3, and v4, the degree of each player is k = 2, and
the number of initial letters per player is nL = 3. The players have the following initial
letters: Linitv1

= {RID}, Linitv2
= {AGR}, Linitv3

= {HNO}, and Linitv1
= {UTY }. Key (#)

shows the sequence of actions by all the players during a game. In Figure 3.5, the sequence
of actions is detailed in Table 3.2, which narrates the actions. The To-Reply-Buffer and the
Request-Sent-Buffer of Figure 3.5 are buffers, per player, that contain outstanding requests-
to-be-fulfilled and requests of letters, respectively. For example, in step (5) of Table 3.2, v2

has a request from v3 for the letter A. Therefore, v3 has an entry A in its Request-Sent-Buffer
and v2 has an entry A in its To-Reply-Buffer. If/when v2 fulfills that request (in the example
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Figure 3.5: Anagram game configuration
with a k = 2 regular graph on n = 4 play-
ers (v1, v2, v3, v4) with number of initial let-
ters nL = 3 assigned to each player, as shown
in the boxes next to the players. Requests for
letters and replies are sent across the channel
links (red to request letters, green to reply
with letter). Request-Sent-Buffer keeps track
of player vi’s letter requests. To-Reply-Buffer
contains letter requests from other players to
vi. Key (#) shows the sequence of actions
by all the players during a game. Table 3.2
shows a detailed description of these actions.

(#) Player Action Description
(1) v1 form word v1 forms word “RID”
(2) v2 form word v2 forms word “RAG”
(3) v1 request let-

ter
v1 requests v2 for letter
“G”

(4) v2 reply letter v2 replies v1 with let-
ter“G”

(5) v3 request let-
ter

v3 requests v2 for letter
“A”

(6) v1 form word v1 forms word “GRID”
(7) v2 reply letter v2 replies v3 with let-

ter“A”
(8) v3 request let-

ter
v3 requests v4 for letter
“T”

(9) v4 reply letter v4 replies v3 with let-
ter“T”

(10) v3 form word v3 forms word “HAT”

Table 3.2: Action table detailing the sequences
of actions by all players during the anagram game
example from Figure 3.5. The first column defines
the number of the sequence of actions during the
game. For this example, the duration of the game
is 10 actions. The second column shows the player
initiating the action. The third column shows the
name of the action. The fourth column provides
a description of the action.
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this happens in step (7)), v3’s “received letters” will contain an A, A will be removed from
v3’s Request-Sent-Buffer, and v2’s To-Reply-Buffer will become empty.

Team members earn money by forming as many words as possible. Players are told that
the total team earnings et are split evenly; each player receives et/n, so that it is in their
interests to assist their neighbors. Players must form words with at least three letters. A
single letter can be used any number of times in a word, e.g., a player can form the word
TOT if she has a T and an O among her current letters (own letters and those received from
neighbors) because the T can be used twice. Moreover, players do not lose letters that they
use. Hence, a player has infinite multiplicity of each letter they possess so that letters can
be reused any number of times. This means that a player only has to request a letter (and
receive it) one time. Therefore if a player forms “TOT”, she still possesses T and O with
which to form more words. A player can only share their initial letters with her neighbors;
letters received from neighbors cannot be shared with others. These rules were designed to
foster word construction, to increase earnings potential, and to foster team cohesion.

A total of 105 players participated in 47 games. The anagram game is played for five minutes.
Table 3.3 shows all the game configurations played.

Table 3.3: Description of anagram game configurations played with players recruited from
Amazon Mechanical Turk.

Degree,
k

No. Play-
ers, n

No.
Games

2 10 18
2 20 10
3 15 1
4 15 9
5 15 2
6 15 3
8 15 4

We provide an overview of the web application (app) game platform that we built. The web
app software platform consists of the oTree infrastructure [54] for recruiting players from
Amazon Mechanical Turk (AMT) and interactions during the game; Django Channels for
player interactivity; and JavaScript and HTML for generating the screens for a consent form,
instructions, information, a survey, and game interactions. Experiments and data analyses
are part of the abductive loop of Sections 3.3 and 3.8 and Figure 3.3. This game platform
was constructed as part of our work.

A screen shot of one player’s screen at one point in time is shown in Figure 3.6. Each player
is given nL = 3 letters that she can use to form words and that she can share with others.
She has an infinite supply of letters so that sharing letters does not inhibit her own use of
letters. A player can also request letters from her neighbors and if the neighbors provide
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SEE

Figure 3.6: The anagram game screen of the web app for one player. This player has own
letters “S,” “O,” and “L” and has requested an “E” and “A” from neighbors. The “E” is
green, so this player’s request has been fulfilled and so “E” can be used any number of times
in forming words. But the request for “A” is still outstanding so cannot be used in words.
Below these letters, it shows that player 2 has requested “O” and “L” from this player; this
player has to reply to these requests, if she so chooses. Below that is a box where the player
types and submits new words, like “SEE.”

those letters, then she can use those letters in words, but she cannot pass on the received
letters.

Initially, a player sees her nL own letters and those of all of her neighbors, but has access
only to her own letters. Over the 5-minute anagram game duration, players can form words,
request letters from their neighbors and reply to requests.

DIFI Description

The DIFI procedure precedes and follows the anagram game. Each player executes individ-
ually the DIFI procedure [269], to measure the degree to which a player feels part of a team
(i.e., associates their identity with that of a team). Each player does this individually by
moving a circle in a browser, representing herself, relative to a fixed team circle. The DIFI
score is in the range [-100,125], with a score < 0 representing no overlap of circles, and there-
fore indicating no CI; = 0 representing the circles just touching; and > 0 indicating overlap
of the two circles and hence formation of some level of CI. See Figure 3.7. There are screens
in the web app that also step each player through the steps in the DIFI game/procedure.

3.5.2 Experimental Data

In this section we present an analysis of the experimental data that illustrates how players
interact in the anagram games. We focus on experimental data that are useful in modeling.
We identify three main actions for a player during the game: (1) letter request, (2) letter
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me Team

slide circle horizontally

Figure 3.7: DIFI game where player vi moves the smaller circle, representing herself, either
over (partially), or away from, the bigger circle that represents the team. The team circle
is stationary. The distance δ between centroids of circles is measured. The distance is such
that δ = 0 corresponds to the small and large circles just touching; δ < 0 means that the two
circles are disjoint; and δ > 0 means the two circles overlap. The distance δ is transformed
into a DIFI value. The range in DIFI value is: −100 ≤ δ ≤ 125. The DIFI score is a proxy
for CI. This is an individual player game.

reply, and (3) word formation and submission.

We define the following variables for the actions in the game:

• When vi sends a requests for a letter to vj, a request sent occurs.

• When vj receives the letter request from vi, a request received occurs.

• When vj replies with the letter requested from vi, a reply sent occurs.

• When vi receives the letter reply from vj, a reply received occurs.

• When vi uses its own letters to form a word, a word formed occurs.

Table 3.4 shows a summary of the section plots and the questions we answer with the
analyses.

Timestamp for Letter Request

The number of letters a player can request through a game depends on the number of its
neighbors. Each neighbor can share up to three letters (the initial three letters), so if a player
has k = 2 neighbors, then six letters can be requested throughout the game. If a player has
k = 8 neighbors, then 24 letters can be requested. We want to analyze the behavior of
players with reference to the letter request action and answer the following questions. When
do players request letters during the game? How does the number of neighbors affects the
behavior of a player to request a letter in the game?

Figure 3.8 shows a histogram with 10 bins of 30-seconds each of timestamps for request
sent, for 47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian
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Table 3.4: Summary of the analyses in the Experimental Data Section 3.5.2, and the ques-
tions we answer. Section 3.5.2 presents histograms for the timestamps for letter request.
Section 3.5.2 presents histograms for the timestamps for letter reply. Section 3.5.2 presents
histograms for the timestamps of the time duration between reply received and request sent.
Section 3.5.2 presents histograms for the timestamps for word formed.

Section Histograms Questions for Analysis

3.5.2
Timestamps for letter
request

When do players request letters during the game?
How does the number of neighbors affect the behav-
ior of a player to request a letter in the game?

3.5.2
Timestamps for letter
reply

When do players reply to letter requests during the
game?
How does the number of neighbors affect the behav-
ior of a player to reply a letter in the game?

3.5.2
Timestamps for time
duration(reply
received - request
sent)

How long does it take players to reply to a letter
request?
How does the number of neighbors affects the time
duration between the timestamps of the letter reply
action and the letter request action?

3.5.2
Timestamps for word
formed

When do players submit words during the game?
How does the number of neighbors and the number of
available letters affects the number of words formed
by a player?

kernels is used to estimate the probability density function. It indicates that more letters are
being requested during the first half of the 300-second anagram game. To analyze whether
the number of neighbors affects the letter request, Figure B.1 in Appendix B.1.1 shows
histograms with 10 bins of 30-seconds each for request sent for experiments with k= 2, 3,
4, 5, 6, 8. The same trends exist for each value of k. However, if there are few neighbors
(k=2) and consequently fewer available letters (3 letters per neighbor), there are fewer letter
requests and letter replies near the end of the game.
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Figure 3.8: Probability density distribution for time of request sent over the 300-second
anagram game. Each of the bins on the x-axis correspond to 30-second intervals. It shows
47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels
is used estimate the probability density function. Letter requests are made throughout the
game, rather than solely at the outset.

Timestamp for Letter Reply Sent

The number of letters a player can reply with, in response to letter requests, through a
game depends on the number of its neighbors. Each neighbor can share up to 3 letters, so
if a player has k = 2 neighbors, then 6 letters can be replied (when requested) at any time
through the game, since the number of letters assigned initially is three. We want to analyze
the behavior of players with reference to the letter reply action and answer the following
questions. When do players reply letters during the game? How do the number of neighbors
affects the behavior of a player to reply a letter in the game?

Figure 3.9 shows a histogram with 10 bins of 30 seconds each, for reply sent, for 47 exper-
iments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels is used to
estimate the probability density function. It indicates that letter requests are being replied
to throughout the game, but moreso at the earlier stages of the game. To analyze whether
the number of neighbors affects the letter request, Figure B.2 in Appendix B.1.2 shows his-
tograms with 10 bins of timestamp for reply sent for experiments with k = 2, 3, 4, 5, 6, 8.
Similar trends are obtained when data are broken down by k. We find that letter reply are
made throughout the game, rather than solely at the outset.
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Figure 3.9: Probability density distribution for time of reply sent over the 300-second ana-
gram game. Each of the bins on the x-axis correspond to 30-second intervals. It shows 47
experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels is
used to estimate the probability density function. Letter replies are made throughout the
game, rather than solely at the outset.

Time duration from Sending a Letter Request to Receiving the Requested Letter

When vi requests a letter of vj, it has to wait for vj to respond. Once vj replies with the
letter, then vi is allowed to use the received letter and form words to contribute to the team.
This time duration between request sent and reply received reveals how long players take to
reply to their neighbors’ requests. A player only has to request a letter (and receive it) on
one occasion to use it as any number of times in forming words. Remember that these rules
were designed to foster word construction, to increase earnings potential, and to foster team
cohesion. We want to analyze the behavior of players with reference to the time duration
between the timestamps of the letter reply action and the letter request action, to answer
the following questions. How long does it take for players to reply to a letter request? How
does the number of neighbors affect the difference between the timestamps of the letter reply
action and the letter request action?

Figure 3.10 shows a histogram with 10 bins of 30-seconds each, for the time difference between
reply received and request sent, for 47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-
density estimation with Gaussian kernels is used estimate the probability density function.
Players generally respond relatively quickly to their neighbors letter requests with replies
typically made within 30 seconds of the request.
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Figure 3.10: Probability density distribution for time duration between requesting a letter
and replying to the request, over the 300-second anagram game. Each of the bins on the
x-axis correspond to 30-second intervals. It shows 47 experiments with k = 2, 3, 4, 5, 6, 8. A
kernel-density estimation with Gaussian kernels is used to estimate the probability density
function. Players generally respond relatively quickly to their neighbors letter requests, with
replies typically made within 30 seconds of the request.

To analyze whether this behavior is common while increasing the number of k neighbors in
a game, Figure B.3 in Appendix B.1.3 shows histograms with 10 bins of 30-seconds each
of timestamp change between reply received and request sent for experiments with k =
2, 3, 4, 5, 6, 8. The number of neighbors doesn’t affect this type of action, players generally
respond relatively quickly to their neighbors letter requests with replies typically made within
30 seconds of the request.

Timestamp for Word Formed

At any time during a game, a player can form a word and submit it for validation to our web
application. If a player possesses letters to form a valid word, then she forms and submits
a word, the application validates it, and the word is added to the game screen. We want to
analyze the behavior of players with reference to the action of word formed and answer the
following questions. When do players submit words during the game? How does the number
of neighbors and the number of available letters affects the number of words formed by a
player?

Figure 3.11 shows a histogram with 10 bins of 30-seconds each for word formed, for 47
experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels is
used estimate the probability density function. It suggests that words are being formed
throughout the game, and even up through the end of the game. This justifies a 5-minute
anagram game duration. To analyze whether the number of neighbors affects the word
formation, Figure B.4 in Appendix B.1.4 shows histograms with 10 bins of 30-seconds each
for timestamp of word formed for experiments with k = 2, 3, 4, 5, 6, 8. Word submissions
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are made throughout the game, and the number of neighbors and available letters does not
affect this behavior.
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Figure 3.11: Probability density distribution for time of forming words over the 300-second
anagram game. Each of the bins on the x-axis correspond to 30-second intervals. It shows
47 experiments with k = 2, 3, 4, 5, 6, 8. A kernel-density estimation with Gaussian kernels is
used to estimate the probability density function. Word submissions are made throughout
the game, and the number of neighbors and available letters, does not affect this type of
action.

3.6 Agent-Based Models (ABMs) of the Group Ana-

gram Game and Modeling Results

We present three progressively more sophisticated ABMs of the anagram game that are used
in the abductive loop analyses to follow in Section 3.8. All models were developed as part
of the abductive loop process, but are presented here to emphasize their construction and
evaluation, and to obviate the need for a large digression for the models in the description
of the AL process in Section 3.8. Each model represents the behavior of one player or agent.
The models are data-driven, and hence inductive inference is used with data in three ways:
to inform model structure, model parameters, and to compute parameter values.

In all models, we represent the set V of players and the set E of their communication channels
(edges) as an undirected graph G (V,E). The game is modeled as a discrete-time stochastic
process, where at each time step, a player performs one of the actions from the action set A,
consisting of: (i) a1: idling (i.e., thinking); (ii) a2: replying to a neighbor with a requested
letter, (iii) a3: requesting a letter from a neighbor, and (iv) a4: forming and submitting a
word. Table 3.5 shows the actions.
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Table 3.5: Actions of players in the model. The set A of actions is {a1, a2, a3, a4}.

Item VariableName Description
1 a1 idling thinking
2 a2 reply replying to a neigh-

bor with a requested
letter

3 a3 request requesting a letter
from a neighbor

4 a4 words forming and submit-
ting a word

3.6.1 Discrete-Time Stochastic Process

In all ABMs, actions are taken at integer numbers of seconds; that is, simulations of inter-
acting agents take place as time advances in discrete 1-second increments from 0 to 300.
This time increment is based on the experimental data where no player takes two or more
actions in one second.

We chose ABMs for their generative properties, fine granularity, and ability to model tempo-
ral effects. These enable us to more readily quantify “what if” scenarios (counter factuals)
as part of parametric studies and sensitivity analyses. Also, ABM maps well onto the actual
experiments: players have connections in a network arrangement and they interact through
their edges, taking actions at discrete times as in Figure 3.5.

The choice of discrete time or discrete event simulation arises. If we selected discrete event
simulations, then we would also have to predict the time at which the next action for a
player takes place (at some ∆t into the future). However, with discrete time, we know we
are always predicting for the next time unit (here, one second). We also used a multinomial
logistic regression model; other approaches could have been employed.

3.6.2 KL-Divergence

To measure the performance of our models, we use Kullback Leibler-divergence between our
model prediction on x and the experimental observation of x, throughout this manuscript.
That is, we are comparing distributions of data: distributions of experimental data against
distributions of model predictions. Most relevant for our work is Boltzmann’s [20] concept of
generalized entropy, where the entropy of a physical system is a measure of disorder related to
it. [141] derived an information measure, now referred to as the KL divergence, the negative
of Boltzmann’s entropy. The motivation for Kullback and Leibler’s work was to provide a
rigorous definition of information. The Kullback-Leibler distance can be conceptualized as
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a directed distance between two models, say a and b [140]. This is a measure of discrepancy.
It is not a simple distance because the measure from a to b is not the same as the measure
from b to a. It is a directed, or oriented, distance. The KL divergence DKL(a, b) is always
positive, except when the two distributions a and b are identical (i.e., DKL(a, b) = 0 if and
only if a(x) = b(x) everywhere). Entropy is zero if there is unit probability at a single point.
If the distribution is widely dispersed over a large number of individually small probabilities,
then the entropy is high (e.g., DKL > 1).

3.6.3 Overview of the Three Agent Based Models

ABM M0 is a baseline model, where each player makes a probabilistic transition from action
ai ∈ A to action aj ∈ A. The transition matrix is time invariant and is the same for all
players. Data from the experiments is used to infer the model parameters using a ring
topology (degree of each node is 2) of player connectivity within an anagram game. Model
M1 is similar to M0 but with the crucial difference that the transition matrix is time variant.
Model M2 is similar to M1 but now instead of a ring topology, we used other topologies and
infer model parameters (degree from 2 to 8). Models M0, M1 and M2 predict the actions of
A for a player but are generic in that letter request a3, letter reply a2, and submit word a4

are not associated with particular letters. For example, if the player action is a4, then the
model assumes that the player can form a word. Table 3.6 shows a description of the three
progressively sophisticated models.

Models M0, M1, and M2 are presented in Sections 3.6.4, 3.6.5, and 3.6.6 respectively. In
each of these subsections, model development and results are provided.

Table 3.6: Progressively sophisticated models of the anagram game developed in this work.
The incremental improvements in models are given, starting with model M0.

Model Transition
Probabili-
ties

Degree
k

M0 fixed 2
M1 temporal 2
M2 temporal 2, 4, 6, 8

Throughout, we use k to denote the number of neighbors (degree) of an agent v ∈ V . Also,
we evaluate five variables and their distributions, across all players in a set of games, in
comparing models and experiments: x = (x1, x2, x3, x4, x5), where x1 is the number of letter
replies received (RplR); x2 is the number of replies sent (RplS ); x3 is the number of letter
requests received (RqsR); x4 is the number of requests sent (RqsS ); and x5 is the number of
words formed (Wrds). Table 3.7 summarizes these variables.
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Table 3.7: Variables that are measured in experiments for each player, and predicted with
models for each agent, where vector x = (x1, x2, x3, x4, x5). All xi, 1 ≤ i ≤ 5, are time
dependent.

Item VariableName Description
1 x1 RplR Number of replies re-

ceived
2 x2 RplS Number of replies

sent
3 x3 RqsR Number of requests

received
4 x4 RqsS Number of requests

sent
5 x5 Wrds Number of words

formed

In the results sections for each model, simulations are performed using ABMs that implement
each of the described models. These simulations produce, for each player, time histories of
the actions in Table 3.7. One hundred simulations are run and results are averaged across
these simulations, i.e., are averaged across all players in each simulation. These data are
post-processed to generate distributions of the variables in Table 3.7. These distributions
from ABM predictions are compared against corresponding distributions generated from
experiments.

Note that fixing n = 10 in all simulations does not introduce errors because the distributions
that we use are density distributions, not counts. Thus, the number of players is normalized
out of all comparisons of distributions of experimental data and model predictions.

Table 3.8 shows the structure of comparisons of results for each of the models M0, M1, and
M2. First, comparisons are made between distributions of experimental results and model
predictions, for each xi of Table 3.7, at the end of a game (i.e., over all five minutes of
an anagram game). Then, these data are broken down into one-minute intervals to assess
temporally the distributions of data and predictions. Next, we compute KL-divergence
values that provide a scalar representing how well the model predictions of the distributions
of xi compare with those of the experimental data. From Section 3.6.2, DKL = 0 means the
model distribution agrees very well with the corresponding experimental distribution. As
DKL increases from zero, model predictions worsen. Table 3.8 denotes that these comparisons
are performed over all five minutes of the anagram game (number 3), corresponding to the
end of the group anagram game, and for each one-minute interval over the game (number 4)
of Table 3.8. Finally, we compare these sets of computed DKL across all xi of Table 3.7. The
reason for the temporal breakdown is to examine model predictions over time. Temporal
comparisons are hidden in numbers 1, 3 and 5 of Table 3.8, which examine aggregated data.
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Table 3.8: Summary of the model comparison plots applied to each of the models M0, M1,
and M2. For each model, we collect the data into the five groups shown. See the text for
details and justification. The fifth column indicates the time period, in minutes, over which
experimental data are compared to model predictions.

No Method Plot Variables,
Player Actions

Time

1
Comparisons of
distributions at
end of game

(a) x1 0-5
(b) x2 0-5
(c) x3 0-5
(d) x4 0-5
(e) x5 0-5

2
Temporal
comparisons of
distributions

(a) x1, x2, x3, x4, x5 0-1
(b) x1, x2, x3, x4, x5 1-2
(c) x1, x2, x3, x4, x5 2-3
(d) x1, x2, x3, x4, x5 3-4
(e) x1, x2, x3, x4, x5 4-5

3

Comparisons of
KL divergence
distributions at
end of game

x1, x2, x3, x4, x5 0-5

4

Temporal
comparisons of
KL divergence
distributions

(a) x1, x2, x3, x4, x5 0-1
(b) x1, x2, x3, x4, x5 1-2
(c) x1, x2, x3, x4, x5 2-3
(d) x1, x2, x3, x4, x5 3-4
(e) x1, x2, x3, x4, x5 4-5

5

Comparisons of
KL divergence
distributions
combining all
vars.

x1, x2, x3, x4, x5 0-5

3.6.4 Baseline Agent-Based Model M0

ABM M0 Development

The goal is to accurately quantify the transition probability from one action a(t) = ai at
time t to the next action a(t + 1) = aj for each agent v ∈ V , i, j ∈ [1..4] and a(t) ∈ A.
For clarity, we use i and j to represent the actions ai and aj. Agent v executes a stochastic
process driven by transition probability matrix Π = (πij)m×m, where m ≡ |A| (here, = 4)
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and

πij = Pr(a(t+ 1) = j|a(t) = i) with
m∑
j=1

πij = 1 . (3.1)

The transition matrix Π is formed from the data by using successive pairs of actions of players
in experiments so that the 16 values of πij in Equation (3.1) are constant, i.e., time-invariant.
The matrix in Equation (3.2) shows the transition probabilities for Model M0 (the baseline
model) generated from experiment data with n = 10, k = 2. For example, given that the
action of a player vi at time t is a2 (replying to a letter request), the probability that vi’s
next action, at time (t+ 1), is a1 (thinking) is 0.93.

Π =

a1(t+ 1) a2(t+ 1) a3(t+ 1) a4(t+ 1)
a1(t) 0.93 0.01 0.02 0.04
a2(t) 0.84 0.16 0 0
a3(t) 0.98 0.01 0.01 0
a4(t) 0.93 0.01 0 0.06

(3.2)

ABM M0 (Baseline) Results

We address all of the results in Table 3.8 for model M0.

Comparisons of distributions between model and experiments for individual vari-
ables at the end of the anagram game. Figure 3.12 shows the ABM M0 predictions
of the k = 2 experiments. Figure 3.12(a) shows the distribution of replies received, Figure
3.12(b) shows the distribution of replies sent, Figure 3.12(c) shows the distribution of requests
received, Figure 3.12(d) shows the distribution of requests sent, and Figure 3.12(e) shows
the distribution of words formed, each at the end of the 5-minute anagram game (gray bars)
for all k = 2 experiments, compared to Baseline M0 predictions (green) for 100 simulations
of an n = 10 player game. It is clear from visual inspection that model M0 predictions are
in better agreement with the experimental data for the requests received and requests sent
variables. We make this comparison more precise using KL-divergence in Figure 3.13.

Temporal comparisons of distributions between model and experiments for in-
dividual player actions. Appendix B.1.5 shows the figures resulting from the temporal
analysis by minute of distributions between Model M0 and experiments for k = 2. Each
plot contains data over a time window for each variable of x from Table 3.7. Often, but not
always, the largest discrepancies between the model predictions and experiments occur in
the first minute of the game.

Comparisons of KL divergence values between model and experiments for indi-
vidual variables at the end of the anagram game. Figure 3.13 shows the KL-divergence
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Figure 3.12: ABM baseline M0 predictions of the k = 2 experiments (in green) and ex-
perimental data (in gray), over the entire 5-minute group anagram game. The probability
density function is show for (a) distribution of replies received, (b) distribution of replies sent,
(c) distribution of requests received, (d) distribution of requests sent, and (e) distribution of
words formed, each at the end of the 5-minute anagram game (gray bars are experimental
data) for all k = 2 experiments. The Baseline M0 predictions are from 100 simulations of
a n = 10 player game. It is clear from visual inspection that model M0 predictions are
in better agreement with the experiment data for the requests received and requests sent
variables. We make this comparison more precise using KL-divergence below in Figure 3.13.

values for the baseline M0 across the five parameters of x: lower values are better. M0 does
a better job predicting the number of requests received and requests sent at the end of a
game. These data span the entire five-minute game. That is, the request-related operations
are better predicted than reply operations.

Temporal comparisons of KL divergence values between model and experiments
for individual player actions. Figure 3.14 shows the temporal KL-divergence values for
the baseline M0 across the five parameters of x, at one-minute intervals: lower values are
better. Each Figure contains data over a time window: Figure 3.14(a) shows the 0-1 minute,
Figure 3.14(b) shows the 1-2 minute, Figure 3.14(c) shows the 2-3 minute, Figure 3.14(d)
shows the 3-4 minute, and Figure 3.14(e) shows the 4-5 minute results of the 5-minute
anagram game. These plots show that request-related predictions are better than reply-
related predictions for the first three minutes, but are worse for the last two minutes, based
on KL-divergence. Reply-related predictions are better in the second half of the five-minute
anagram games, but Figure 3.9 shows that in experiments, there are fewer replies in the
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Figure 3.13: KL-divergence values for the baseline Model M0 across the five parameters of
x: lower values are better. M0 does a better job predicting the number of Requests Received
and Requests Sent. Analyses are based on the data of Figure 3.12, over five minutes, at the
end of a game.

second half of the games.

Comparisons of KL divergence values between model and experiments for com-
bining all variables. Figure 3.15 shows the distribution of KL divergence values for com-
paring distributions of model output with corresponding distributions of experimental data
for the anagram game. The model is the (n = 10, k = 2) baseline. The data sets used in
the comparison are (n = 10, k = 2). There are 30 values in the distribution, with five values
for variables xi over the five-minute game, at the end of the game; and 25 values for the
five variables of x over five intervals of one minute duration. It shows that for model M0,
some KL divergence values are high (e.g., > 0.5), indicating poor agreement between model
predictions and the experiment data. As we see in Figures 3.13 and 3.14, M0 does not do a
good job predicting the number of replies received, replies sent, and words formed.

3.6.5 Agent-Based Model M1

Model M1 is similar to M0 but with the important enhancement that the transition matrix
Π is time variant.

ABM M1 Development

To make Π (and its components πij in Equation (3.1)) dynamic in time and account for
history effects, four variables are introduced in Equation (3.3): number zL(t) of letters that
v has available to use (i.e., in hand) at t; number zW (t) of valid words that v has formed;
size zB(t) of the buffer of letter requests that v has yet to reply to; and number zC(t) of
consecutive time increments that v has taken the same action. See Table 3.9. Thus, letting
z = (1, zL, zW , zB, zC)(m+1)×1, we can model πij as a function of these covariates, among
other variables.
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Figure 3.14: KL-divergence values for the baseline M0 model across the five parameters of x
at one-minute intervals: lower values are better. Each plot contains data over a time window:
(a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the
5-minute anagram game. The data are for conditions (n = 10, k = 2). These plots show that
request-related predictions are better than reply-related predictions over all time intervals.
The reply-related predictions are better in the second half of the five-minute anagram games,
but Figure 3.9 shows that in experiments, there are fewer replies in the second half of the
games.

We use multinominal logistic regression to model πij as

πij =
exp(z′β

(i)
j )

1 +
∑

h6=i exp(z′β
(i)
h )

, (3.3)

where β
(i)
j = (β

(i)
j1 , . . . , β

(i)
j,m+1)′, β

(i)
i = 0, and prime indicates transpose. For a given i, the

parameter set can be expressed as

B(i) =


β

(i)
11 β

(i)
12 . . . β

(i)
1,m+1

β
(i)
21 β

(i)
22 . . . β

(i)
2,m+1

...
...

. . .
...

β
(i)
41 β

(i)
42 . . . β

(i)
4,m+1

 . (3.4)

Parameters in Equation (3.4) are inferred from the k = 2 experimental data using the
framework of maximum likelihood estimation for the multinomial distribution.
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Figure 3.15: Distribution of KL divergence values for comparing distributions of model
output with corresponding distributions of experimental data, for the group anagram game.
The model is the (n = 10, k = 2) baseline M0 ABM. The data sets used in comparison are
experiments: (n = 10, k = 2). The data sets used in comparison are experiments: (n =
10, k = 2). There are 30 values in the distribution, with five values for the variables of x
at the end of the game (over five minutes of the game), and 25 values for each of the five
variables of x over five intervals of one minute duration. It shows that for Model M0, some
KL divergence values are high, indicating that the model is in poor agreement with data. As
we see in Figure 3.13, M0 does not do a good job predicting the number of replies received,
replies sent, and words formed.

Inductive Inference

We address the three dimensions of inference stated above: (i) model structure; (ii) model
parameters; and (iii) parameter values. First, the model structure is informed by the k =
2 data, by design, as described above. Second, the parameters identified in the feature
vector z are described and justified in Table 3.9. In fact, we claim that identifying this
feature vector has elements of art. Third, parameters in Equation (3.4) are inferred from
the k = 2 experimental data using the framework of maximum likelihood estimation for the
multinomial distribution.

The reason to emphasize inductive inference is because this is an integral part of the ab-
ductive looping process, and of abduction itself: the data drive the model and theory
development and hypothesis identification, and not the other way around.

ABM M1 Results

Results for Model M1 are provided according to Table 3.8 as was done for Model M0. In
many cases, we compare KL-divergence values for M0 and M1 to show improvements in
performance. These results, like those for model M0, are compared against the k = 2 data
in Table 3.3.

Comparisons of distributions between models and experiments for individual
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Table 3.9: The feature vector z = (zL(t), zW (t), zB(t), zC(t)) used in the models M1 and M2.
These capture history effects in determining the next action of a player.

Variable Name Description
zB Size of reply

buffer.
Number of current letter requests to which this player
may reply. Captures the notion that the more letter re-
quests that have not been replied to, the more likely v is
to reply.

zL Numer of
letter in
hand.

Number of unique letters in hand to form words. Cap-
tures the idea that the more letters v has in-hand, the
more likely the agent is to form words.

zW Number
of words
formed.

Number of words formed. Captures the notion that the
more words that have been formed, the larger the vocab-
ulary of the player.

zC Number of
consecutive
actions.

Number of consecutive time steps at which player takes
the same action. Captures the notion that the more time
v is idle (thinking), the more likely v will take some other
action at the next timestep.

variables at the end of the anagram game. Figure 3.16 shows M0 and M1 model
predictions and experimental data distributions for all variables in Table 3.7. These data are
over all five minutes of the anagram game for all k = 2 experiments. Model predictions are
averages over 100 simulations with n = 10 players. Figure 3.16(a) shows the distributions of
replies received, Figure 3.16(b) shows the distributions of replies sent, Figure 3.16(c) shows
the distributions of requests received, Figure 3.16(d) shows the distributions of requests sent,
and Figure 3.16(e) shows the distributions of words formed. It is clear from visual inspection
that model M1 predictions are in better agreement with the experiment data than are M0
predictions. We make this comparison more precise using KL-divergence in Figure 3.17.

Temporal comparisons of distributions between models and experiments for in-
dividual variables. Appendix B.1.6 shows the figures resulting from the temporal analysis
by minute of distributions between Models M0, M1 and Experiments for k = 2. Each plot
contains data over a 1-minute time window for each variable of x from Table 3.7. It is
clear from visual inspection that model M1 predictions are in better agreement with the
experiment data than are M0 predictions.

Comparisons of KL divergence values between models for individual variables at
the end of the anagram game. Figure 3.17 shows KL divergence values for comparing
distributions of model outputs with corresponding distributions of experimental data for the
anagram game. The models are (baseline) M0 and M1 for the (n = 10, k = 2) experiments.
The comparisons are at the end of the game, i.e., at t = 5 minutes, over the entire game.
For each experiment/model combination, the variables (and hence distributions) compared
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Figure 3.16: ABM M0 and M1 predictions of the k = 2 experiments, along with the experi-
mental data. The probability density function is show for (a) distribution of replies received,
(b) distribution of replies sent, (c) distribution of requests received, (d) distribution of re-
quests sent, and (e) distribution of words formed, each at the end of the 5-minute anagram
game (gray bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 sim-
ulations of an n = 10 player game. M1 predictions (red) for 100 simulations of an n = 10
player game. The baseline model M0 is shown in green for comparison. It is clear from
visual inspection that model M1 predictions are in better agreement with the experiment
data than are M0 predictions. We make this comparison more precise using KL-divergence
in Figure 3.17.

are: number of replies received, number of replies sent, number of requests received, number
of requests sent, and number of words formed. Lower values are better. This figure shows
that M1 generates predictions much closer to the experimental data than does M0. For
example, M1 significantly reduces the reply-related and words formed KL-divergence values
(weaknesses of model M0 as shown in Figure 3.13).

Temporal comparisons of KL divergence values between models for individual
player actions. Figure 3.18 shows the temporal KL-divergence values for the baseline M0
and M1 across the five parameters of x: lower values are better. Each plot contains data over
a time window: Figure 3.18(a) for 0-1 minute, Figure 3.18(b) for 1-2 minute, Figure 3.18(c)
for 2-3 minute, Figure 3.18(d) for 3-4 minute, and Figure 3.18(e) for 4-5 minute time intervals
of the 5-minute anagram game.

The plots demonstrate that KL-divergence values for the model M1 predictions are closer
to the experimentally-determined data distributions than are those from model M0. While
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Figure 3.17: KL-divergence values for the baseline M0 and M1 models across the five param-
eters of x: lower values are better. The modeling conditions are experiment with k = 2. This
figure shows that M1 greatly improves a weakness of model M0 in poorly representing RplR
(number of replies received), RplS (number of replies sent), and Wrds (number of words
formed).

Model M0 has good predictions for the minute 3 and minute 5 (with the exception of the
words formed), Model M1 has better predictions for the minute 3 and minute 5 for all five
x variables of Table 3.7. These data are significant because they evaluate the quality of the
models to predict behavior temporally. That is, just because a model can produce predictions
at the end of some scenario, this does not mean that it can capture the trajectory (or time
evolution) of phenomena. With these types of plots, we demonstrate that our models do
capture temporal behavior.

Comparisons of KL divergence distributions between models and experiments
for combining all variables. Figure 3.19 shows the distribution of KL divergence for
comparing distributions of model output with corresponding distributions of experimental
data for the anagram game. The models are (n = 10, k = 2) M0 and M1. The data sets used
in comparison are experiments: (n = 10, k = 2). There are 30 values in the distribution, with
five values for each variable x at the end of the game, and 25 values for the five variables x
over five intervals of one-minute increment. It shows that for Model M1, the great majority
of KL-divergence values are less than 0.2, while they can be much greater for Model M0.

Summary of M0 and M1 model comparisons. Clearly, ABM M1 is in better agreement
with the experimental data compared to the baseline model. From KL-divergence values in
Figures 3.17 through 3.19, it is clear that the predictions of M1 represent the experimental
data better than those of the baseline model.

In addition, we use M1 to make predictions for anagram games with k > 2, resulting in
more interactions. Counterintuitively, as shown in Figure 3.20, the number of replies does
not change as k increases. These results call for more experiments at larger k. Note that
we exercise M1 learned from experiments with k = 2. The results in Figure 3.20 indicate
that M1 predicts no changes in the number of letter replies received as k increases, which
seems counter intuitive. One would expect more letter requests and replies with increasing
numbers of neighbors. These types of data lead us to construct model M2.
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Figure 3.18: KL-divergence values for the baseline M0 and M1 across the five parameters of
x: lower values are better. The modeling conditions are experiment with k = 2. Each plot
contains data over a time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4
minute, and (e) 4-5 minute, of the 5-minute anagram game. While Model M0 has good
predictions for the minute 3 and minute 5 (with the exception of the words formed), Model
M1 has better predictions for the minute 3 and minute 5 for all five x variables.

We remark that we also fitted M1 using experimental data with k = 4 (call this Model M1b),
and consequently made predictions for the case of k = 2. We compared the distributions of
x between prediction and experimental results using KL-divergence, and determined values
in the range 0.11 to 0.46, indicating good predictions. Note that Model M1b is interpolating
when it predicts k = 2 experimental data, while Model M1 is extrapolating to predict k = 4
experimental data.

3.6.6 Agent-Based Model M2

ABM M2 Development

Model M1 was developed with data where all game players have the same degree k = 2. To
generalize M1 to incorporate various k, we conducted additional experiments with 2 < k ≤ 8
as a part of the second AL (Section 3.8.4 below).

We build a hierarchical model to incorporate the effect of agent degree k. For different
values of k, the parameter coefficients in B(i), used in Equation (3.3), are now a function
of k, denoted as B(i)(k). We use an orthogonal polynomial basis to construct a continuous
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Figure 3.19: Distribution of KL divergence for comparing distributions of model output with
corresponding distributions of experimental data for the anagram game. Models are (n =
10, k = 2) M0 and M1. The data sets used in comparison are experiments: (n = 10, k = 2).
There are 30 values in each distribution, with five values for variable x at the end of the
game over all five minutes, and 25 values for the five variables x over five intervals of one
minute increment each. These results shows that for model M1, the KL divergence values
are frequently low, indicating that it is in better agreement with experimental data.
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Figure 3.20: M1 model distributions predicted for the number of replies received at the end
of game (n = 10, 100 simulations), for different regular degrees k of the game network G.
This partially motivated our development of ABM M2, since model M1 predictions do not
vary significantly with the number of a player’s neighbors.

and smoothing function for β
(i)
jh (k) for any given i, j, h, as

β
(i)
jh (k) = α

(i,j,h)
0 + α

(i,j,h)
1 ξl(k) + α

(i,j,h)
2 ξq(k), (3.5)

where ξl and ξq are the linear and quadratic functions of the orthogonal basis in terms of k.
We have

B(i)(k) = C
(i)
0 +C

(i)
1 ξl(k) +C

(i)
2 ξq(k), (3.6)

where

C(i)
r =


α

(i,r)
11 α

(i,r)
12 . . . α

(i,r)
1,m+1

α
(i,r)
21 α

(i,r)
22 . . . α

(i,r)
2,m+1

...
...

. . .
...

α
(i,r)
41 α

(i,r)
42 . . . α

(i,r)
4,m+1

 , r = 0, 1, 2, (3.7)
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with α
(i,r)
ih = 0 for any r and h.

Inductive Inference

We address the three dimensions of inference, as for M1: (i) model structure; (ii) model pa-
rameters; and (iii) parameter values. In this case, the model structure we employ to capture
the effect of k was identified a priori. However, if the model structure was found lacking, we
would have tried another approach. The model parameters given in Equations (3.6) and (3.7)
were also anticipated owing to the development of ABM M1. Hence, these first two steps
were not solely driven by the data. To estimate the parameters sets C

(i)
0 ,C

(i)
1 ,C

(i)
2 , we use

maximum likelihood estimation across the experimental observations for k = 2, 4, 6, and 8.
For a given i and k, denote the corresponding observational data as D(i)

k . Then we conduct
parameter estimation by

Ĉ
(i)

0 , Ĉ
(i)

1 , Ĉ
(i)

2 = arg max
dmax∑
k=dmin

logL(C
(i)
0 ,C

(i)
1 ,

C
(i)
2 |D

(i)
k ),

where L(C
(i)
0 ,C

(i)
1 ,C

(i)
2 |D

(i)
k ) is the likelihood function with respect to the data D(i)

k collected
under the setting of k neighbors in the experiments of Section 3.5.

ABM Model M2 Results

Results for model M2 are provided according to Table 3.8. Results are often compared to
those for model M1.

Comparisons of distributions between models and experiments for individual
variables at the end of the anagram game. Figure 3.21 shows data distributions at
the end of the 5-minute anagram game (gray bars) for all k = 2 experiments, compared to
M2 predictions of distributions (blue) for 100 simulations of an n = 10 player game. These
results are over all five minutes of the group anagram game.

Figure 3.22 shows data distributions at the end of the 5-minute anagram game (gray bars)
for all k = 4. In appendix B.1.7, Figure B.15 shows data distributions at the end of the
5-minute anagram game (gray bars) for all k = 6. Figure B.16 shows data distributions
at the end of the 5-minute anagram game (gray bars) for all k = 8. Model M1 is shown
in red for comparison. In all of these figures, Figure (a) shows the distributions of replies
received, Figure (b) shows the distributions of replies sent, Figure (c) shows the distributions
of requests received, Figure (d) shows the distributions of requests sent, and Figure (e) shows
the distributions of Words Formed. M2 gives much better performance, as expected, as it
explicitly accounts for agent degree. As expected, M1 and M2 perform equally well for k = 2
as M1 is learned from k = 2 experimental data.
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Figure 3.21: ABM M1 and M2 predictions of the k = 2 experiments, and experimental data,
over all five minutes of the group anagram games. The probability density distributions are
shown for (a) distribution of replies received, (b) distribution of replies sent, (c) distribution
of requests received, (d) distribution of requests sent, and (e) distribution of words formed,
each at the end of the 5-minute anagram game (gray bars are experimental data) for all
k = 2 experiments, compared to M2 predictions (blue) for 100 simulations of an n = 10
player game. The model M1 predictions are shown in red for comparison. It is clear from
visual inspection that models M1 and M2 generate similar predictions, in agreement with
the experiment data, as M1 is learned solely from k = 2 experimental data. We make this
comparison more precise using KL-divergence in Figure 3.23.

Temporal comparisons of distributions between models and experiments for indi-
vidual variables. Appendix B.1.8 shows the temporal analysis by minute of distributions
for models M1 and M2 and experiments for k = 2. Each plot contains data over a time
window of one minute. For k = 2 experiments, Figure B.17 shows temporal analysis for the
number of Replies Received at the end of each minute. Figure B.18 shows temporal analysis
for the number of Replies Sent at the end of each minute. Figure B.19 shows temporal
analysis for the number of Requests Received at the end of each minute. Figure B.20 shows
temporal analysis for the number of Requests Sent at the end of each minute. Figure B.21
shows temporal analysis for the number of Words Formed at the end of each minute.

Collections of plots for each of k = 4, 6, and 8 are analogously provided in Appendix B.1.8.
As expected, M1 and M2 perform equally well for k = 2, as M1 is learned from k = 2
experimental data. For k > 2, M2 performs better. We make this comparison more precise
using KL-divergence below.
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Figure 3.22: ABM M1 and M2 predictions of the k = 4 experiments, and experimental
data, over all five minutes of the anagram games. The probability density distributions are
shown for (a) distribution of replies received, (b) distribution of replies sent, (c) distribution
of requests received, (d) distribution of requests sent, and (e) distribution of words formed,
each at the end of the 5-minute anagram game (gray bars are experimental data) for all
k = 4 experiments, compared to M2 predictions (blue) for 100 simulations of an n = 10
player game. The model M1 predictions are shown in red for comparison. It is clear from
visual inspection that model M2 predictions are generally in better agreement with the
experiment data than are M1 predictions. We make this comparison more precise using
KL-divergence in Figure 3.24.

Comparisons of KL divergence distributions between models and experiments
for individual variables at the end of the anagram game. Figures 3.23 and 3.24 in
this section, and Figures B.37 and B.38 in Appendix B.1.9 show KL divergence values for
comparing distributions of model outputs with corresponding distributions of experimental
data, for the group anagram game. The figures are for, respectively, k = 2, k = 4, k = 6, and
k = 8 experiments. The models are M1 (red) and M2 (blue). These four figures show clear
and interesting behavior. Model M1 agrees better with experiments than does Model M2
for k = 2, since Model M1 was specifically developed with k = 2 data. However, for larger
k (4 ≤ k ≤ 8), Model M2 does better than M1. This is because Model M2 was developed
using data across all of these k values. Hence, to obtain a wider range in input space for
simulations, our Model M2 does slightly worse for a particular k (k = 2).

Temporal comparisons of KL divergence distributions between models and ex-
periments for individual player actions. This section shows the temporal KL-divergence
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Figure 3.23: The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 2 M1 and
M2 models predictions to the experiments across the five parameters of x: lower values are
better. This figure shows that M1 and M2 generate similar predictions to the experimental
data.
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Figure 3.24: The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 4 M1 and
M2 models predictions to the experiments across the five parameters of x: lower values are
better. This figure shows that M2 gives much better performance than M1 predicting the
time to generate an action for an agent. M2 gives much better performance, as expected, as
it explicitly accounts for agent degree.

values for the model M1 and M2 predictions across the five parameters of x. Lower values
are better. Figure 3.25 shows k = 2 experiments, and Figure 3.26 shows k = 4 experiments.
In appendix B.1.10 Figure B.39 shows k = 6 experiments, and Figure B.40 shows k = 8
experiments. Each plot contains data over a 1-minute time window, as in previous analyses.
It is clear from visual inspection that model M2 predictions are in better agreement with
the experiment data than are M1 predictions for k > 2. As noted above, however, Model
M1 does slightly better for k = 2. That is, the comparisons between models M1 and M2,
for temporal variations in 1-minute time intervals over the 5-minute group anagram game,
are similar to those comparisons when combining all data into one analysis over the entire
five-minute game.

Comparisons of KL divergence distributions between models and experiments
for combining all variables. Each plot in Figure 3.27 shows the distribution of KL
divergence for comparing distributions of model output with corresponding distributions of
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Figure 3.25: KL-divergence values for the Models M1 and M2 predictions of the k = 2
experiments across the five parameters of x: lower values are better. Each plot contains
data over a 1-minute time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4
minute, and (e) 4-5 minute intervals, of the 5-minute anagram game. This figure shows that
M1 and M2 generate similar predictions to the experimental data, as M1 is learned from
k = 2 experimental data and M2 is developed from 2 ≤ k ≤ 8 data.

experimental data for the anagram game. There are 30 values in each distribution, with five
values for variable x at the end of the game over the 5-minute game duration, and 25 values
for each of the five variables x over five intervals of one-minute increment each. These four
plots, one for each value of k, summarize the previous trends: Model M1 is in slightly better
agreement with k = 2 data, but Model M2 is better for k > 2.

Summary of M1 and M2 model comparisons. In addition to Figure 3.27 discussed
immediately above, Figure 3.28 compares Model M1 and Model M2 for each of the five
actions in x, accumulated through the 5-minute group anagram game. Model M2 does not
perform quite as well as Model M1 for the k = 2 data, but does better than M1 for k = 4, 6, 8.
Thus we sacrifice some quality for k = 2 and get in return capabilities over a range of k.
Hence, Model M2 is of greater value, since it covers a broader range of inputs for simulations.

Figure 3.29 show how well the models M0, M1, and M2 work in time. We plot the KLD values
from the comparison of models M0 (green box), M1 (red box), M2 (blue box) predictions
versus the experimental data. On the x axis we show the group anagram game by minute
of the five minute game (i.e. [0-1), [1-2), [2-3), [3-4), [4-5)). Each box, by type of model,
contains 100 values of KLD corresponding to k = 2, 4, 6, and 8 and the five x variables at
the end of each 1-minute time interval of the five minute game. Model M0 shows the greatest
median values throughout the 5-minute game, except for minute 5, when it performs better
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Figure 3.26: KL-divergence values for the Models M1 and M2 predictions of the k = 4
experiments across the five parameters of x: lower values are better. Each plot contains
data over a 1-minute time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-
4 minute, and (e) 4-5 minute intervals, of the 5-minute anagram game. M2 gives much
better performance than M1 predicting the time to generate an action for an agent after the
minute one. M2 gives much better performance, as expected, as it explicitly accounts for
agent degree for 2 ≤ k ≤ 8.

than M1. In comparing models M1 and M2, the Model M1 median at minute [0,1) is lower,
while the Model M2 median is lower for the minutes two through five.

In Appendix B.1.11, Figure B.41 shows the boxplots grouped by type of k = 2, 4, 6, 8, where
each box contains five values of KLD corresponding to the five x variables at the end of each
minute. The plot show that our models show highest median values on the first two minutes
of the game.

3.7 Model Evaluation

This section contains evaluations of Model M2 from Section 3.6. Our goal is to understand
the conditions for which our estimated model transition probabilities πij are sufficiently
accurate.

To evaluate the goodness of fitting for the proposed hierarchical model, we compare the
estimated (model) transition probability matrix Π̂ = (π̂ij) with the empirical (data) tran-
sition probability matrix Π̃ = (π̃ij) under different settings of covariates (the z vector of
Table 3.9). Here, the empirical transition probability matrix Π̃ is obtained under the set-
tings by grouping the value of each covariate into three levels, as described in Table 3.10, to
obtain comparable numbers of samples across bins.
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Figure 3.27: Each plot shows the distribution of KL divergence for comparing distributions of
model output with corresponding distributions of experimental data for the group anagram
game. There are 30 KL-divergence values represented by each distribution in each plot, with
five values for variable x at the end of the game, and 25 values for each of the five variables x
over five intervals of one minute increment each. The plots correspond to different k values:
(a) k = 2; (b) k = 4; (c) k = 6; and (d) k = 8. The y-axis range in (a) is different because of
the high concentration of the x-axis KLD values. A model improves as the density is greater
at lesser KL-divergence values. Hence, Model M1 is better for k = 2, and Model M2 is better
for k > 2, consistent with the data used to build these models.

For each setting, there is a level combination of the four covariates. We compute a counting
matrix N = (nij), where nij is the number of data instances observed for the transition
from action i to next action j across all players in group anagram games. (Here, actions i
and j refer to actions ai, aj ∈ A in Table 3.5.) We then calculate the empirical probability
π̂ij =

nij∑
j nij

. There are 324 settings in total from the grouping of variables in Table 3.10 (three

settings of each of four variables, and four k values), and 279 of them have valid empirical
transition probability matrices. For the estimated transition probability matrix Π̂ = (π̂ij),
the value of π̂ij is estimated by the proposed model under each setting of covariates, where
the averaged value at each level of the covariate is used in the estimated model.

The squared Root of Mean Squared Errors (RMSE) is used to quantify the difference between
Π̂ = (π̂ij) and Π̃ = (π̃ij). RMSE is calculate as follows:

RMSE =

√√√√ 1

4|I|
∑
i∈I

4∑
j=1

(π̂ij − π̃ij)2 (3.8)

where I = {i : minj nij > 0} is the index set of the rows where the empirical probability can
be obtained.
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Figure 3.28: A scatter plot of KL-divergence for M1 (x-axis) and M2 (y-axis) for four k
values and five x variables. For k > 2, M2 performs better than M1, as M2 incorporates
experimental data with 2 ≤ k ≤ 8. Interestingly, M1 and M2 perform equally well (high-
lighted) for k = 2 as M1 is learned from k = 2 experimental data (M1 is slightly better).
These are data over the total 300 seconds anagram game.

Table 3.10: Three bins and ranges of values for the z variables from Section 3.6.5. These
bins are created for each of the four values of k ∈ {2, 4, 6, 8}.

Level Buffer
(zB)

Letter
(zL)

Word
(zW )

Consec.
(zC)

1 0 0-3 0-1 0-3
2 1 4-6 2-8 4-11
3 ≥2 ≥7 ≥9 ≥12

To illustrate this process, Figure 3.30 and Figure 3.31 contain results from good model fits.
Each figure shows empirical and estimated transition probabilities πij where “initial” in the
figures means action i (or ai) and “final” in the figures means action j (or aj). The values
of the variables for the settings are provided above the matrix. For example, in Figure 3.30,
the empirical probability in going from action 1 (a1) to action 3 (a3) is 0.0129.

Figure 3.32 and Figure 3.33 show analogous data for settings where the model fit is poor.
These figures also provide an extra column of numbers of counts for each row of data. For
example, in Figure 3.32, there are sufficient data for the transitions from a1 and a4, but not
for a2 and a3, where the numbers of samples are 2 and 1, respectively. With data such as
these, we perform the analysis below.

Under each setting of covariates from Table 3.10, we define the Min.Count as nmin =
mini,j{nij : nij > 0}. That is, nmin is the smallest nonzero counts among transitions from
state i to any state j (1 ≤ j ≤ 4) within one setting from from Table 3.10. Thus, nmin
is determined as the minimum value of the number of observations among each of the four
states i. The motivation for using nmin is that it is known that when it is small, the empiri-
cal probability π̃ij is not accurate. We also consider the total number of observations for a
setting. Figure 3.34 and Figure 3.35 show RMSE as a function of total count and min.count,
respectively. It is apparent that nmin does a better job in discriminating between small and
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Figure 3.29: KLD values from the comparison of models M0 (green box), M1 (red box), M2
(blue box), versus the experimental data. On the x axis we show the anagram game by the
minute of the five minute game (i.e. [0-1),[1-2),[2-3),[3-4),[4-5)). Each box, by type of model,
contains 100 values of KLD corresponding to k = 2, 4, 6, and 8, and the five x variables at
the end of each minute. Model M0 shows the highest median values throughout the 5-minute
game, except for minute 5 when it performs better than M1. The Model M1 median is lower
at minute [0,1), while the Model M2 median is lower for the minutes two through five. Figure
B.41 in Appendix B.1.11 shows the boxplots grouped by type of k = 2, 4, 6, 8 and shows the
highest median values on the first two minutes of the game.

Empirical
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.9381 0.0180 0.0129 0.0309
Initial	2 NA NA NA NA
Initial	3 NA NA NA NA
Initial	4 NA NA NA NA

Estimated
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.9393 0.0200 0.0151 0.0256
Initial	2 0.1237 0.8763 0.0000 0.0000
Initial	3 0.9707 0.0265 0.0028 0.0000
Initial	4 0.9575 0.0113 0.0000 0.0311

obs k buffer letter word constant
66 2 3 2 1 3

Figure 3.30: This shows that the model fits good for this category. The transitions in this
category only contains intial status 1. Comparing empirical probabilities with probabilities
estimated from model, they are very close to each other.

large RSME.

Figure 3.36 shows the scatter plot between the RMSE and nmin for the 279 settings for which
there are sufficient data, where the plot is in log10-log10 scale. From the figure, the proposed
method generally provides an accurate estimation of probability transition matrix in most
of settings. Clearly, the value of RMSE decreases as the Min.Count nmin increases. When
nmin ≥ 100, the value of RMSE is smaller than 0.069, showing a very good model fitting.
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Empirical
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.8807 0.0000 0.0034 0.1158
Initial	2 0.9500 0.0000 0.0000 0.0500
Initial	3 1.0000 0.0000 0.0000 0.0000
Initial	4 0.9129 0.0000 0.0000 0.0871

Estimated
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.8832 0.0038 0.0040 0.1089
Initial	2 0.9344 0.0565 0.0000 0.0091
Initial	3 0.9909 0.0091 0.0000 0.0000
Initial	4 0.9352 0.0034 0.0000 0.0613

obs k buffer letter word constant
25 2 1 3 3 1

Figure 3.31: This shows that the model fits good for this category. The transitions in
this category contains all intial status. Comparing empirical probabilities with probabilities
estimated from model, they are very close to each other.

Empirical
Probability Final	1 Final 2 Final 3 Final 4 Counts

Initial	1 0.8839 0.0268 0.0000 0.0893 112
Initial	2 0.0000 1.0000 0.0000 0.0000 2
Initial	3 1.0000 0.0000 0.0000 0.0000 1
Initial	4 0.7959 0.0204 0.0000 0.1837 49

Estimated
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.8837 0.0052 0.0038 0.1073
Initial	2 0.8112 0.1888 0.0000 0.0000
Initial	3 0.9882 0.0118 0.0000 0.0000
Initial	4 0.9332 0.0039 0.0000 0.0629

obs k buffer letter word constant
52 2 3 3 1 2

Figure 3.32: This shows that the model fits bad for this category. However, the model fits
good for initial 1 and initial 4, which have 112 counts and 49 counts. While the model
fits bad for initial 2 and initial 3. Thus, the count for each initial status determines the
probabilities fitting for that status.

When nmin is small, the RMSE is relatively high. One explanation is that the empirical
probabilities cannot be calculated accurately when nmin is small.
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Empirical
Probability Final	1 Final 2 Final 3 Final 4 Counts

Initial	1 0.3333 0.6667 0.0000 0.0000 3
Initial	2 NA NA NA NA 0
Initial	3 NA NA NA NA 0
Initial	4 NA NA NA NA 0

Estimated
Probability Final	1 Final 2 Final 3 Final 4

Initial	1 0.8976 0.0193 0.0284 0.0547
Initial	2 0.9057 0.0943 0.0000 0.0000
Initial	3 0.9934 0.0066 0.0000 0.0000
Initial	4 0.9320 0.0056 0.0045 0.0580

obs k buffer letter word constant
206 6 2 2 3 2

Figure 3.33: This shows that the model fits bad for this category. The transitions in this
category only contains intial status 1, which has only 3 counts.
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Figure 3.34: Scatter plot of RMSE against total count. The x-axis is the total count of a
category, the y-axis is the RMSE for that category. The plot shows that a category with less
count tends to have larger RMSE.

3.8 Abductive Loop Analyses and Results

3.8.1 Overview

In this section, we present the results of iterative abductive analyses, described in Figure 3.3.
First, we “unroll” the abductive loop to illustrate several levels of abduction and different
paths that can be taken, depending on results generated up to that point. Then, we present
two ALs. At the end of loop-2, we describe how ABM M2 can be used in further loops. We
note that the experiments (Section 3.5) and modeling (Section 3.6) are major components of
the abductive looping process, and were separated out to make this section more streamlined.
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Figure 3.35: Scatter plot of RMSE against min.count. The x-axis is the minimum count of
a category, the y-axis is the RMSE for that category. The plot shows that a category with
less min.count tends to have larger RMSE. Furthermore, it shows that the minimum count
has a sharp delineation between small and large RMSE.
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Figure 3.36: Scatter plot of RMSE against Min.Count in different settings of covariates in
Table 3.10. See Equation (3.8) for RMSE and text for Min.Count.

3.8.2 Abductive Iterations with Hypotheses

Figure 3.37 provides a tree structure representation of several candidate abductive loops.
Each node is a hypothesis, which is provided in Table 3.11. Each edge is labeled by outcome
of the experiments that correspond to the hypothesis at the parent node. An edge and the
child node of the edge represent one abductive iteration. The hypotheses are candidates
because they depend on the data generated [112, 246].

We now overview the two abductive iterations detailed in subsequent sections. At the start,
DIFI experiments are performed with and without the group anagram game. If we look at
the “With Group Anagram Priming” edge, we form hypothesis H11. Since it was not clear
that CI was formed, we follow the “No CI detected” path to arrive at the node hypothesis
H22. Since we do obtain a CI signal from these experiments, we follow edge “CI detected”
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With Phase 1 
Priming

Without Phase 1 
Priming

H11 H12

H21 H22

CI detected No CI detected

No CI detectedCI detected
H32=H21 H33

start

H31

H42=H31

CI detected

CI detected

H44=H31

No CI detectedCI detected
H43=H22H41

CI detected

Figure 3.37: Abductive tree representing candidate abductive loops with dependencies. Hy-
potheses are nodes, and are provided in Table 3.11; edges are outcomes of ALs. The orange
colored nodes correspond to abductive iterations presented herein. The red node is a candi-
date next loop. This tree is not unique; different analysts can devise different trees.

to hypothesis H32. Details are provided below, and we note that modeling results guide
decisions about what experiments to perform in the next abductive iteration, illustrating
the value of modeling. This is one reason why our abductive loops promote modeling to
a central role. We also note that a hypothesis can appear at multiple nodes within the
abductive tree. Finally, a node need not have two children; e.g., fewer or more children are
possible.

3.8.3 Abductive Loop 1 (AL-1)

We execute the steps of the abductive loop in Figure 3.3.

Experiments. A set of 18 experiments with a total of 87 players was completed where k = 2.

Hypothesis/Theory. Hypothesis H1 (H11): In the team-based anagram game, the sense of CI
formed is driven more by the number of words a player forms than the number of interactions
of a player (requests and replies). Social Exchange Theory [120] focuses on the individual and
suggests that the number of words resonates more in forming CI because they are directly
related to reward in the game. Theory of Social Interactions [26] indicates that interactions
are important for forming an interdependent organization. Reciprocity Theory suggests that
vi will respond to vj’s requests because vi wants vj to respond to hers, so that interactions
are important.

Models. There are two types of models constructed. One is the models of the group anagram
game. The other is a regression model to predict DIFI2 score as a function of outputs from
the group anagram games (e.g., number of requests sent, nRqsS, number of replies received
nRplR).

The group anagram game models M0 and M1 of Sections 3.6.4 and 3.6.5 were constructed
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Table 3.11: Candidate hypotheses to evaluate in abductive iterations. Not all of the hy-
potheses are evaluated herein. The goal of these hypotheses, coupled with Figure 3.37, is
to illustrate that there are many possible hypotheses that can be formulated, and it is up
to analysts to decide which ones to pursue. An analyst will be guided by the results of
completed iterative abductive analyses.

Hypothesis
Number

Description

H11 In the team-based anagram game, the sense of collective identity formed
is driven more by the number of words a player forms than the number
interactions of a player (requests and replies).

H12 Playing the group anagram game will produce greater individual DIFI
scores than not playing the group anagram game.

H21 = H32 As the number and quality of letters assigned to a person decreases
(i.e., as the letters assigned to a player occur less frequently in common
words), collective identity of the player will increase.

H22 = H43 (a) As the number of neighbors of a player increases in the anagram
game, the level of CI of the player increases because there are more
interactions. (b) However, beyond four neighbors (equivalently, for
more than 12 neighbor letters) there is no benefit to a player, in terms
of increased CI, of additional neighbors.

H31 = H42 =
H44

Playing the game with players face to face will produce greater indi-
vidual DIFI scores (by enabling the players to communicate and pick
up on visual and verbal cues).

H33 Lesser payouts in the group anagram game means that players do not
have enough incentive to engage their neighbors.

H41 Having the group anagram game score of another team displayed during
the game will increase CI because it will create a stronger in-group/out-
group paradigm.

from the time histories of actions of players for experiments with k = 2. The results relevant
to this iteration are provided in Figures 3.16 and 3.17. ABM M1 is much better at capturing
the dynamics in the experiments than is baseline model M0.

From data on the actions of A from the games, and the measured DIFI2 scores after the
group anagram games, a regression was performed to predict DIFI2 score as a function of
number of actions of each kind. The DIFI2 score is given as

D̂IFI2 =c1 + cRplR nRplR + cRplS nRplS+

cRqsR nRqsR + cRqsS nRqsS + cWrds nWrds

(3.9)

where Table 3.12 provides the equation coefficients and the defintions of variables.

Best Explanation. Results of a linear regression in Table 3.13 indicate that hypothesis H1 is
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Table 3.12: Constants in the regression of Equation (3.9) to predict DIFI2 score from outputs
of the team anagram game.

Coefficient Value
Intercept c1 102.7
cRplR on number of replies received nRplR 14.95
cRplS on number of replies sent nRplS -12.99
cRqsR on number of requests received nRqsR 6.406
cRqsS on number of requests sent nRqsS -16.43
cWrds on number of words formed nWrds -0.2134

Table 3.13: Results of linear regression of variables in x against dependent variable DIFI2
score, indicating that interactions are more significant than number of words formed in
producing CI.

Var. Interc. RplR RplS RqsR RqsS Wrds
est. 103. 15.0 -13.0 6.41 -16.4 -0.213

p-val. 0.001 0.019 0.011 0.332 0.011 0.735

falsified because Wrds, the number of words formed, is not significant, while RplR, RplS and
RqsS (i.e., interactions) are significant. Thus, Social Exchange Theory can be eliminated
as a theory of CI formation in this experiment. It is somewhat surprising that Wrds is
not significant because it is the variable that is most closely associated with the reward
(earnings). In the social sciences, and in many domains, eliminating candidate theories is a
valuable result (that is, an analysis does not always have to identify the best theory). Thus,
at this point, the best explanation is Reciprocity Theory and Theory of Social Interactions.

What is Next? Figure 3.20 indicates that the model predicts behavior that is invariant with
respect to the degrees of players [and hence the number of letters that neighbors possess]
(plots of other variables of x are similar). We want to determine whether there is an effect of
k, and hence the next experiments are specified as using increasing k (i.e., k > 2). Thus, the
ABM M1 (driven by the data) is guiding what to do next. While Social Exchange Theory
was eliminated in this loop, Reciprocity Theory and Theory of Social Interactions are carried
forward into the next loop(s), where they may be supported or refuted.

3.8.4 Abductive Loop 2 (AL-2)

We execute the steps of the abductive loop in Figure 3.3.

Experiments. A set of 16 experiments with a total of 137 players was completed where k = 4,
6, and 8 in turn.

Data Analysis. We continued the same types of analyses described in AL-1, but with the
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added dimension of k.

Hypothesis/Theory. Hypothesis H2 (= H22): (a) As the number of neighbors of a player
increases in the anagram game, the level of CI of the player increases because there are more
interactions. (b) However, beyond four neighbors (equivalently, for more than 12 neighbor
letters) there is no benefit to a player, in terms of increased CI, of additional neighbors.
The Theory of Social Interactions states that interactions with more neighbors creates more
interdependence. Theory of Cognitive Load [236] suggests that cognitive load might be too
great at some point, resulting in a player being unable to take advantage of more input.

Model. Model M2 of Section 3.6.6 was constructed from the time histories of actions of
players, from the combined data from both iterations. Model results relevant to this iteration
are provided in Figures 3.21 through 3.29. ABM M2 captures trends in degree k much more
effectively than ABM M1, for all parameters of x.

Best Explanation. Figure 3.38 provides results that address hypotheses H2(a) and H2(b).
Figure 3.38a shows the frequency distributions for replies received, for the four values of k.
Note the large change in distributions in going from k = 2 to k = 4, but relatively minor
changes for further increases in k. Thus, the saturation in the distributions (and others are
similar), supports hypothesis H2(b): the number of neighbors increases, but the number of
interactions does not, for k > 4. This is consistent with Cognitive Load Theory.

Figure 3.38b shows that as k increases from 2 to 8, the probability density of DIFI2 shifts
demonstrably to increasing DIFI2. That is, greater numbers of neighbors produce more CI, as
measured by the DIFI2 score. This does not wholly support H2(a). While increasing k does
correlate with increasing DIFI2 score, it is not because of the number of interactions, which
does not increase appreciably for k > 4. These data falsify H2(b): there is additional benefit,
in terms of increased DIFI2 score, with increasing number of neighbors. The applicability of
the theory of social interactions is not clear, but the data suggest that it is the number of
different people with whom one interacts that is important, rather than the total number of
interactions. More experiments are needed.

What is Next? At this point we halt the iterative abduction process for this paper. In a
next iteration, we could (i) try to isolate the effects of number of interactions versus the
number of neighbors in different experiments, or (ii) study the effects of different degrees
of players and different numbers and qualities of letters initially assigned to players within
the same experiment. We could also perform a deductive (confirmatory) analysis by making
specific quantitative predictions for experiments using ABM M2 as part of AL-2, and running
corresponding experiments in AL-3.

3.8.5 Abductive Loops: Role of Analyst and Bigger Picture

Two ALs have been demonstrated. Many additional loops are possible, as illustrated in
Figure 3.37, which depicts several hypotheses, including the two addressed above (in orange).



113

k=2, Replies Received
0 2 4 6 8 120.

00
0.

15
0.

30
D

en
si

ty

k=4, Replies Received
0 2 4 6 8 120.

00
0.

15
0.

30
D

en
si

ty

k=6, Replies Received
0 2 4 6 8 120.

00
0.

15
0.

30
D

en
si

ty

k=8, Replies Received
0 2 4 6 8 120.

00
0.

15
0.

30
D

en
si

ty

(a)

k=2, DIFI

D
en

si
ty

−100 0 50 1500.
00

0.
02

0.
04

k=4, DIFI

D
en

si
ty

−100 0 50 1500.
00

0.
02

0.
04

k=6, DIFI

D
en

si
ty

−100 0 50 1500.
00

0.
02

0.
04

k=8, DIFI

D
en

si
ty

−100 0 50 1500.
00

0.
02

0.
04

(b)

Figure 3.38: Statistical analysis correlation results of the anagram game parameters and
DIFI2 score. (a) Probability density of replies received change markedly from k = 2 to
k = 4, but relatively little for further increasing k. (b) Probability density of DIFI2 score
moves dramatically to larger DIFI2 score with increasing k. Each of these results is novel.
All the more novel is the combination of the two: while game measurables saturate (other
data besides replies received), the DIFI2 score does not.
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These additional loops would require more experiments. Figure 3.37 and Table 3.11 make
clear the important role of an analyst in this process, as she guides the direction of the
looping. So, while a plan such as that in Figure 3.37 may be useful, the actual tree structure
will evolve with analyst decisions as the looping progresses and as data are generated, because
hypotheses are based on newly-generated data in abduction.

3.9 Limitations and Additional Work

More experiments, particularly at greater k would be useful. Also, we would like to alter the
number of letters and to control the “quality” of letters that are assigned to players (e.g, e
is a more desirable letter than q) in additional experiments, so that we can run experiments
that will more stringently test the models. We would like to study more network structures
(i.e., connectivity among players in a game), such as a clique structure. We attempted to
correlate player behavior with survey information in the online experimental platform. For
example, we tried to correlate DIFI score with player age, gender, nationality, ethnic group,
and education level. We did not get a strong signal in any of these correlation studies.
This would be a huge step forward if such correlations exist and can be found because it
would relate macro-player features with player behavior. With respect to modeling, we can
improve the models for the player actions (e.g., the process of forming words); this work is
in progress. We can improve the modeling in translating results in the group anagram game
to the DIFI scores, to better understand the connection between priming and CI formation.

3.10 Summary

We formalize an abductive loop, implement it computationally, and exercise it in an ex-
perimental setting (the group anagram game) designed to induce CI, as operationalized by
Swann’s DIFI score. However, our abductive looping process is not tied to CI. As part of
the abductive iterations, we provide novel experimental insights into CI and build and eval-
uate three ABMs. This work establishes the potential of iterative abductive looping for the
(computational) social sciences.



Chapter 4

Mechanistic and Data-Driven ABM’s
in Group Anagrams Games

4.1 Abstract

In anagram games, players are provided with letters for forming as many words as possible
over a specified time duration. Anagram games have been used in controlled experiments to
study problems such as collective identity, effects of goal-setting, internal-external attribu-
tions, test anxiety, and others. The majority of work on anagram games involves individual
players. Recently, work has expanded to group anagram games where players cooperate by
sharing letters. In this work, we analyze experimental data from online social networked
experiments of group anagram games. We develop mechanistic and data-driven models of
human reasoning to predict detailed game player actions (e.g., what word to form next).
With these results, we develop a composite agent-based modeling and simulation platform
that incorporates the models from data analysis. We compare model predictions against ex-
perimental data, which enables us to provide explanations of human reasoning and behavior.
Finally, we provide illustrative case studies using agent-based simulations to demonstrate the
efficacy of models to provide insights that are beyond those from experiments alone.

4.2 Introduction

4.2.1 Background and Motivation

In one form of an individual anagram game, a player is provided with a set of alphabetical
letters to form as many words as possible in a prescribed time duration. The performance
of a player is often quantified based on the number of words formed.
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In a group anagram game (GrAG), multiple players collaborate. Each player is given
letters and forms words with her own letters, and can share letters with her neighbors to
enable everyone to form more words. Figure 4.1 provides a schematic of a 3-player GrAG.
Each player (v1, v2, and v3) is initially provided with nl = 3 letters as shown. A player may
form words, and through the communication channels in gray, may request letters and reply
to letter requests.

request “u”

u, r, k

b, g, s c, t, o

form “cot” reply “u”

u, r, k

b, g, s, u c, t, orequest
“g”

form “bug”

time t time t+1

v3v2

v1

v3v2

v1

Figure 4.1: Simplified view of a networked group anagram game (GrAG), with illustrative
actions among n = 3 players that communicate and share letters through the gray channels.
Each player is initially given nl = 3 letters. Letters that a player has “in-hand” to form
words are shown in boxes. Player actions are shown in blue. At time t, v2 requests a “u”
from v1 and v3 forms the word “cot.” At the next time, v2 receives a “u” from v1, forms the
word “bug,” and receives a request from v3.

Overwhelmingly, research on anagram games considers the individual setting. It has been
extensively studied (over 20 published works) for more than 60 years to analyze phenomena
such as goal-setting, compensation types, internal-external attributions, and test anxiety
(e.g., [52, 70]). Other names for anagram game are word formation game and word construc-
tion game.

There are several reasons to study GrAGs. A face-to-face GrAG has recently been played. In
particular, [51] used them to study experimentally the formation of collective identity (CI),
defined in social psychology as an individual’s cognitive, moral, and emotional connection
with a broader community, category, practice, or institution [200]. A second motivation is
their relevance to other types of group dynamics, notably intergroup and intragroup coop-
eration and competition (e.g., [104]). A third motivation is that many of the phenomena
listed above for the individual anagram game (e.g., goal-setting) could be studied in group
settings with models of group behavior.

Overall, researches involving anagram games encompass a broad range of disciplines like so-
ciology, economics, management science, and (social) psychology [40, 52, 70]. It is clear that
using anagram games is valuable in various fields of research. With all of this experimental
work on anagram games, it is surprising that very little work has been done in modeling
and simulating these games. The first and only work on modeling GrAGs was recently
completed [202]. We enumerate the differences between our work and [202] in Section 4.2.2
immediately below.
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4.2.2 Our Work Scope and Differentiators from Previous Work

Work scope. Our work starts with data from online social network GrAGs. (The game
platform and online experiments are not the focus in this work.) With these data: (i) data
analytics are performed to support model development; (ii) different models for different
player actions in the GrAG are developed; (iii) the models are evaluated against experimental
data; and (iv) these models are then recast as agent-based models and executed within an
agent-based modeling and simulation (ABMS) platform to produce computational results
that go beyond the experiments.

Based on this work scope, all of the following are completely different in this work, compared
to that in [202]: data analytics, the aspects of the game that are being modeled, the types
of modeling techniques used, the models themselves, and the quantities that the models
predict. We address particular differences between [202] and our work now.

Work in Ref. [202]. Figure 4.2 serves to emphasize our models and to differentiate our
work from that in [202]. The action type and time (ATAT) model of the figure is the subject
of [202], which builds the model using multinomial logistic regression. In that work, the goal
was to develop models to predict the type of action taken in time, e.g., predictions of the
form: player vi takes action type “form word” at time t. Also, if a player action is form
word, and the player has letters that cannot form a word (e.g., letters q, z, and r) then that
model will nevertheless form an unspecified (unrealistic) word from these letters. Moreover,
the models of [202] do not consider the particular letters assigned to players in a game and
hence have no heterogeneity. Consequently, all player behaviors will tend toward the same
mean behavior in agent-based simulations (ABSs).

Our work. In contrast, our work focuses on the three component models of Figure 4.2.
Different models are developed for the actions “form word,” “request letter,” and “reply to
(letter) request.” Our models account for network structure, letter assignments and letters
in-hand (i.e., letters that a player has to form words), and particular player parameter
assignments (detailed below)—all of which can vary among players—so results will remain
distinct across agents. That is, we capture heterogeneity in several ways.

Per Figure 4.2, our ABMS framework uses a composite model: a combination of the ATAT
model (to determine what action types players take in time) and the three component models
developed herein (to predict the specifics of each action). The composite model is our agent-
based model (ABM). This ABMS system simulates GrAG scenarios beyond those of the
experiments.

4.2.3 Novelty of Our Work

First, our work is an exemplar of a detailed procedure for combining mechanistic and data-
driven models to form single models of human reasoning and decision-making that output
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Form Word
Component Model

Request Letter
Component Model

Reply to Request
Component Model

Composite Model

ATAT model:  Model for Action Selection at Each Time

(player action specifics) = (human reasoning) x (aptitude) x (data objects)

Unifying theme across three models for the actions
form word, request letter, reply to request:

Figure 4.2: Structure of the composite (agent-based) model. At each time in a group
anagram game, a player takes one of four actions, consistent with the online game: “form
word,” “request letter,” “reply to letter request,” or “think.” The selection of each action is
determined by a multinomial logistic regression model from [202], which we call the action
type and time (ATAT) model. Each of the first three actions requires a component
model (and software module) that simulates human reasoning and outputs the specifics of
an action. These are expanded on in Figure 4.3 below. These component models in this
figure are the focus of this work. The algorithms for these three actions are in Figure 4.7,
Figure 4.9, and in [45], Figure 16. “Thinking” is an idling action, no model is needed. The
common theme across these models is given in blue. Aptitude is described in Section 4.5.

human actions in a game. Mechanistic models, for our purposes, have the following char-
acteristics: (i) the models are based on first principles and are not tied to any particular
domain; and (ii) the models are specified, implemented, and executed without any ex-
perimental data. To augment mechanistic models by accounting for variability in player
behaviors, data-driven models are constructed from analyses of experimental data. Second,
because the mechanistic models capture player behavior, these models explain behaviors, as
described in our contributions below. Third, our mechanistic models are novel: Levenshtein
Distance (LD) [151] (see Section 4.5.1) and a greedy optimization procedure describe human
decision-making and have not been used in anagrams contexts (we could not find LD used in
any modeling of human behavior, as we do here). Fourth, with these models, we develop an
ABMS platform to model the detailed actions of players in GrAGs beyond the experiment
conditions.

As called for in the social sciences, our focus is on model construction and predictions, and
explanations of human behavior [118, 264].

4.2.4 Contributions

1. A process for combining mechanistic and data-driven approaches to build
models of human reasoning. We provide the details of our process in Section 4.5. See



119

Figure 4.3. First, mechanistic models are conjectured and evaluated by comparing their
predictions to experimental data. This does three things: (i) enables comparisons of model
predictions with experimental data, and if these comparisons are favorable (which they are),
then (ii) the structures of the models provide explanations for human decision-making [31,
124], and (iii) the mechanistic models form the basis of the ABMs. Second, because the
mechanistic models can be improved by including data from experiments, we use data-
driven modeling approaches to introduce stochasticity to account for variability across human
subject game players. Hence we utilize these two modeling approaches in a well-defined
process.

2. Mechanistic models. We use concepts such as LD, word corpora, word proximity
networks (WPNs), and a greedy optimization algorithm (all defined in Section 4.5) to develop
mechanistic models for two of the three player actions (see Figure 4.3). The LD model, used
for word formation, could be used within any agent that is required to form words, and the
greedy optimization algorithm, used for requesting letters, could be used by agents to make
a choice from among a finite set of options. That is, these models are not tied to our GrAG.
But the next contribution presents their utility within the GrAG.

3. New experimental findings and explanations of player behaviors based on
cognitive and economic theories. The analyses focus on data for three types of player
actions: (1) form a word; (2) request a letter; and (3) reply to a letter request. A summary
of some explanations follows. A word w2 that a player forms is explained by considering (i)
the letters that the player has in-hand (i.e., in her possession) and (ii) LD [151] between the
most recently formed word w1 and the next word to be formed w2 from a candidate set of
words (Section 4.5.2). This is motivated by, and consistent with, cognitive load theory [236]
in that people try to reduce cognitive load during learning. Here, the closer the next word
formed is to the previously formed word—as measured by LD—the lesser the cognitive load
in forming a new word. For letter requests, we use the idea that player action is based on
rational choice theory [27]. Our analyses (Section 4.5.3) demonstrate that the letter that
a player requests from her neighbors is explained by identifying the letter that maximally
increases the number of words that the player can form, when also considering the letters
that the player has in-hand (greedy optimization algorithm). This behavior is consistent
with rational choice theory. This is because players’ earnings in games are proportional to
the number of words formed, so it is rational for a player to choose a letter to maximize the
size of their candidate word set. It is interesting that our explanation means that players are
reasoning beyond more naive approaches, such as simply requesting some “most frequently”
used letter (e.g., preferring e over z). (We have modeled this naive approach—results not
shown here—and this model’s results are not consistent with the data.) Finally, we also
show that there are four types of behavior in replying to letter requests (Section 4.5.4).

4. Agent-based models and results. A family of ABMs are developed, yielding a
composite model, where each ABM is comprised of a distinct model for each of the three
actions, with user-specified parameter values for player/agent characteristics, such as the
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Figure 4.3: Component models (i.e., combined mechanistic and data-driven models) for
the three player actions in the GrAG. These are models of human reasoning, which output
specific player actions in the game. The particulars of the mechanistic and data-driven
models are given in the respective boxes under the actions and are detailed in Section 4.5.
Mechanistic models are built first, and then augmented with data-driven models. The player
actions and component models map onto those in Figure 4.2.

agent’s vocabulary and their aptitude, i.e., the degree to which they perform optimally. See
Figure 4.2. The multi-logit regression model based on [202] is adopted to determine which
action type each agent selects at each discrete time in a simulation (time granularity is
seconds). The selected action type then determines the appropriate model developed herein
to predict details of the action. Note that there is a fourth action, a no-operation (no-
op), where the agent does nothing at particular times, which represents agent thinking and
requires no model. We also provide new insights from exercising the ABMs (see Section 4.6),
such as demonstrating how player performance decreases with decreasing player aptitude
and the effects of heterogeneous initial letter assignments to players.

4.3 Related Work

By far, the most relevant study to our work is the modeling in [202], which is agent-based
modeling of anagram games. To the best of our knowledge that is the only work prior
to ours that models the GrAG [202]. That work was discussed in detail in relation to our
work in Sections 4.2.1 and 4.2.2. We now address other topics related to our work.

Anagram experiments. Over 20 experiment works (e.g., [52, 70]) use single player ana-
gram games. The only cooperative GrAG, which is face-to-face, is reported in [51]. The game
is used to foster CI among teammates. Multiple simultaneously-playing teams can change
composition (4-player teams) as players vote others into and off the team. This motivated
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the online experiments in [202] where one team of fixed size plays the game through a web
browser.

Networked experiments and modeling. There are several other online (e.g., [164])
and in-person (e.g., [51]) experiments with interacting participants that can be represented
as networks, and analyses of network populations (e.g., [181, 182]), where edges represent
interaction channels.

Mechanistic and data-driven modeling. Several works use AI methods and data to
model behavior (e.g., tutoring and learning [278]). Also, neuroscientists are using neuro-
imaging to understand human decision-making; [183] discusses optimization methods, such
as the one we use in the model for requesting letters.

Explanatory modeling. There are many works (e.g., [31, 124]) that describe different
definitions of explanations, different types of explanations that models provide, and proce-
dures for arriving at explanations. We follow ideas from [31, 124]: that the structure of
mechanistic models that adequately predict human behavior can be used to explain behav-
ior. As a counter example, [123] discusses the need for visual representations for simulation
explanation when models are not well understood. However, it is precisely our goal in this
paper to describe our modeling approach, our models, and our experimental justification for
them. We present well-motivated, well-defined, formal models in Section 4.5 that are also
used in ABM.

4.4 Online Social-Networked Group Anagram Game

We built a customized web application (web app) for an online GrAG. Players are recruited
through Amazon Mechanical Turk (MTurk), are provided game instructions, participate in
the GrAG through their web browsers, and are paid based on their performance. A total
of 48 experiments were performed using a total of 367 players, with numbers of players per
game ranging from 3 to 17. The game duration is 5 minutes. In the following, we describe
the GrAG/experiment.

Figure 4.1 provides a description of the game setup and actions. A game begins with n
players, v1 through vn. Each player has a degree d that specifies the number of connections
to other players. A connection (edge) between two players denotes a communication channel
where a letter ` can be requested and sent (sending a letter is a reply). Thus, an experiment
configuration is a graph G(V,E) with player set V and communication channels E. In
experiments, G is a k-regular random graph (k ≡ d), with uniform degree 2 ≤ k ≤ 8. Each
player starts the game with n` initial letters, which they can use to form words or share
among their neighbors, when requested. At the beginning of a game, a word corpus CW

is defined with a list of words a player can form during the game. The three major player
actions in a game are now described.
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Player action: forming a word. At any point during a game, a player vi can form a
word wi. All letters in the word wi must come from the set of letters vi has in-hand Lihi
(superscript ih). A single letter ` in Lihi can appear any number of times in a word. For a
word submission to be accepted in the game, the word has to be in the game word corpus
CW . A player can submit a word only once; multiple players can form the same word.

Player action: requesting a letter. At any point during a game, a player vi can request
a letter `reqij from a neighbor vj’s set of n` initial letters Linitj . The anagram game screen
shows all neighbors’ initial letters as available for request. A letter received by vi is put into
the set Lihi .

Player action: replying with a letter. At any point during a game, a player vi can reply
with a letter `repij to a neighbor vj’s request (`repij must be in Liniti ). The anagram game screen
for vi shows all of the letters requested of vi.

To encourage cooperation, any letter in Lihi can be used any number of times in forming
words, and the letter is not lost; the letter bestows an infinite supply of use. Similarly, if vi
requests a letter ` from vj, and vj replies with it, vj still retains a copy of the letter and can
use it. Also, earnings for the team are based on the total number of words formed, and all
players receive (1/n) of the total earnings. Typical player earnings are $7 to $10 per game.

4.5 Data Analysis and Model Development

Figure 4.3 provides the roadmap for building the models for the three player actions, which is
the focus of this section. Ultimately, our goal is to use these models as ABMs (see Figure 4.2)
in an ABMS framework to study GrAGs well beyond those of experiments.

For each action—which is a component model of the ABM—we provide: (i) our premise
for understanding player behavior and the key concepts for this premise, (ii) experimental
analyses and results for these key ideas that construct and justify (i.e., give evidence for) the
component model of the composite ABM, and (iii) a formal algorithm for the component
model for the action in Figure 4.3. Note that the steps of algorithms that we specify below are
not focused on efficient implementation, but rather on conveying the steps of the algorithms
as they relate to the data analyses. First, we address preliminaries.

4.5.1 Preliminaries

We introduce two concepts used in data analysis and modeling. Levenshtein distance
(dL) [151], an edit distance, is prominent in our work and the work’s novelty, and is motivated
by work in linguistics and bioinformatics [226]. It quantifies the difference in letters of two
words. In starting with one word to obtain a second word, a letter substitution counts as one,
as does each of letter insertion and letter deletion. Hence, going from had to hats requires
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dL = 2: one to substitute t for d and one for inserting an s.

A word proximity network (WPN) is a clique graph H(VH , EH) where vertices VH are
words that can be formed, according to a word corpus CW , with the letters that a player
currently has in-hand and EH is the set of edges between pairs of words, labeled with the
dL between the two words.

Each player is assigned a word corpus CW . For this we use a list of the top 5000 words
from the 450 million word Corpus of Contemporary American English, the only large and
balanced corpus of American English [1].

4.5.2 Player Action: Form Word

Basic premise and key concepts. We seek to identify a method that explains the process
of players selecting words to form. Our premise is that given the last word w1 that vi has
formed, the next word w2 that vi will form will be one with minimal dL from w1 because
this requires a minimal number of letter manipulations (i.e., lesser cognitive load [236]). For
the first word, vi selects the most frequent word from the corpus that can be formed with
its letters in-hand Lihi . We note that for each player vi, there is a set Lihi of letters that she
has in-hand and a corresponding set W ih

i ⊆ CW of words that vi can form from the entire
corpus CW of words, based on the letters in Lihi . As vi requests and receives more letters
from her neighbors, the cardinalities of Lihi and W ih

i will (typically) increase. Also note that
for a given word w1 formed by vi in a game, W ih

i can be partitioned based on dL(w1, w2) for
each w2 ∈ W ih

i using the WPN. Let W ih
i (w1, d

L) ⊆ W ih
i be the set of words at dL from w1

that vi can form.

Our data analysis is based on two central ideas, for each player vi. First, we compare dL values
between two consecutive words formed (w1 and then w2), both the actual value dLi,act(w1, w2)
measured from experiments and the optimal (i.e., minimal) value of dL, denoted dLmin(w1, w

∗),
for some w∗ in W ih

i that is at a minimum LD from w1. Both dL values are based on vi’s set
Lihi . (We drop the arguments when they are obvious from context.) Second, for a given set
of words at some dL from w1, denoted W ih

i (w1, d
L), we select w2 based on the popularity of

words as provided by the rank (frequency of use) from [1]. All of these parameters are either
inputs (e.g., CW ), measured in experiments, or computed from experimental data. These
high-level steps enable us to understand players’ behavior in forming words, as described
next.

Data analysis. Analysis step 1. For each player vi in the game, we consider pairs of con-

secutive words formed, (w1, w2). From this, we compute dLi,act(w1, w2), the actual dL. Also
from these data and from Lihi at the time w2 was formed, we can compute dLmin and the word
set W ih

i (w1, d
L
min). We compute ∆dL = dLi,act − dLmin. A value of zero means that the player

is performing optimally according to our premise; a value > 0 means that vi is performing
suboptimally—vi is making more letter edits (expending greater effort) than is required by
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the data.

We rank the players by their average ∆dL, ∆dLave, over all pairs of words (w1, w2) that they
form in a game. We partition the ranking of players into five equi-sized bins, P1 through P5,
such that players in P1 (resp., P5) have the smallest (resp., largest) values of ∆dLave. That
is, the players in P1 perform closest to optimal. A player vi’s aptitude bwfi in forming words
takes a value from P1 through P5. We take this player-centric approach because we want to
produce agent models based on individual player and groups of players’ behaviors.

Analysis step 2. For each of the five groups of players Pj (1 ≤ j ≤ 5), we plot all data

points (x, y) = (dLmin, d
L
i,act(w1, w2)) for each person in that group, in Figure 4.4. In each

plot, for each dLmin on the x-axis (the mechanistic model prediction), there is a range of
dLi,act(w1, w2) (from the data) for all vi in a particular 20% bin. If we break the players
down into 10% bins (instead of the 20% bins), the top 30% of players perform such that
the median value of dLi,act(w1, w2) equals dLmin. That is, in a median sense, these top 30%
of players form words w2 such that dLi,act(w1, w2) = dLmin, and hence w2 is formed optimally
(i.e., according to the mechanistic model). Moreover, if we look at the top 80% of players,
then dLmin ≤ dLi,act(w1, w2) ≤ dLmin + 1. These data for |CW | = 5000 substantiate our premise
that players form word w2 based on dL. Although not shown, similar results are generated
for |CW | = 1000, 2000, 3000, and 4000, if we take these sets as the 1000, 2000, 3000, and
4000 most frequently used words in the original corpus of 5000 words.

Figure 4.4: Comparison of mechanistic model predictions against data for the form word
model. Mechanistic predictions are the values on the x-axis (dLmin); data are on the y-axis
(dLi,act). We use the |CW | = 5000 word corpus. Each plot corresponds to a grouping of
players by 20% bins of player performance in forming words according to dL, and represents,
in turn, Pj, j ∈ {1, 2, 3, 4, 5}, moving left to right. Numbers are numbers of observations in
the data. If dLi,act(w1, w2) = dLmin, then the experimental data correspond exactly with the
mechanistic model.

Analysis step 3. For each box plot in Figure 4.4, we form a frequency distribution DdL as a

function of the triple (CW
i , b

wf
i , dLmin). Figure 4.5 provides one such distribution. In this way,
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given a CW
i , an aptitude bwfi for forming words, and a dLmin, one can sample an actual LD,

dLi,act, in forming w2 from w1.

Figure 4.5: For (CW
i , b

wf
i , dLmin) = (5000 words, P1, 1), the distribution DdL of dLi,act from

experiments is shown. For a given dLmin computed for optimal behavior, the appropriate
distribution is sampled to obtain dLi,act for vi. These distributions are formed from the data
in Figure 4.4 and they are part of the data-driven model of form word.

Analysis step 4. For a given w1 and dLi,act, W
ih
i (w1, d

L
i,act) ⊆ W ih

i is the candidate set of words

that vi can form as w2. The issue is how players extract a particular word from W ih
i (w1, d

L
i,act)

as w2. Figure 4.6 provides the answer. For each vi, we rank the words in W ih
i (w1, d

L
i,act) in

decreasing order of frequency of occurrence (which is obtained from the word corpus itself),
such that the first ranked word is the most frequently used word. This plot shows the number
of times the chosen word w2 is of a particular rank. It is clear that players select w2 based on
the frequency of the word’s use, e.g., the top-ranked word is selected almost 700 times from
the corpus. This result also holds over different corpus sizes from 1000 to 5000 words. These
data support our use of a mechanistic model of selecting the word with highest frequency of
use in a word corpus from the candidate set of words.

Remark: These data analyses substantiate our claim that our models are explanatory. The
data are consistent with the explanation that humans reason about what word to form using
LD and word frequency (familiarity), consistent with cognitive load theory [236].

Remark: It is emphasized that players in the experiments are not given a word corpus,
frequency of letter use, dL concepts and values, etc. Our construction and procedures pre-
sented here are our representation of the mental reasoning processes that players engage in,
resulting in human behavior in the form of detailed actions. In experiments, players are only
given letters and the ability to share them. This remark holds for the next two models, too.

Algorithm for form word. The algorithm is in Figure 4.7, and follows directly from the
above data analysis. This is cast as the agent model in the ABMS.
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Figure 4.6: Experimental data for |CW
i | = 5000. Log-log scale plot (inset) of the distribution

of ranks of words formed by players from the word set W ih
i (w1, d

L
i,act). Lesser rank means

higher word frequency from corpus. Players most often choose words with lesser rank (i.e.,
greater frequency).

4.5.3 Player Action: Request Letter

Basic premise and key concepts. Our goal is to uncover a process that explains how
players select the next letter to request from their neighbors. Our premise is that player vi
will select the next letter to request as the letter from the set of candidate neighboring letters
L′i that produces the greatest increase in the number of words that vi can form. The key
idea is to examine each candidate letter ` and determine the number of new words |W ih`

i |
that can be formed with existing letters in Lihi and the requested letter combined (this word
set is W ih`

i ), rank these letters in decreasing order of |W ih`
i |, and select the letter to request

based on this ranking. This is a greedy process—in the sense of selecting the best letter (i.e.,
the letter that ranks first), one at a time—and is our mechanstic model. This is a rational
choice approach [27] because players are incentivized to form as many words as possible, so
it is rational to select a letter that maximally increases the number of words that can be
formed. Note that as more letters have been requested and received, the number of letters
to request, |L′i|, decreases because once a player has a letter, she can use it any number of
times. We now provide the evidence for behavior that is aligned with this premise.

Data analysis. Analysis step 1. We rank all players by their performance in requesting
letters in the GrAG, as follows. For each vi, and for each actual letter request, we rank the
candidate letters to request in L′i according to our greedy model (given immediately above),
and then identify the rank ri,act of the letter `i,act actually requested. Then we compute an
average rank of letter requests ri,ave for each vi, over the first 1/2 of all vi’s requests. We
use only the first 1/2 of requests in computing ri,ave because as |L′i| decreases, the selected
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Input: Agent vi ∈ V . Agent word-forming aptitude bwf
i . Word corpus or vocabulary CW

i for vi. Letters

in-hand Lih
i . Most recent word formed by vi, w1. Words W f

i formed up to now by vi. Distribution Dwr of

word frequencies from CW
i and distribution DdL

of dLi,act frequency as a function of tuple (CW
i , bwf

i , dLmin).

Output: Next word w2 that vi forms, if any.

Steps:

1. From letters in-hand Lih
i , construct the set W ih

i of words that vi can form (and that vi has not yet
formed). Set VH = W ih

i and let H be the WPN network induced by VH . Let the edge set be EH ,
with edge labels of dL.

2. If VH is empty, terminate algorithm and return no word.

3. From the values of the edge labels dL(w1, wj), for all edges {w1, w
∗} ∈ EH of WPN H, where

w1, w
∗ ∈ VH , determine the minimum LD, dLmin.

4. For the triple (CW
i , bwf

i , dLmin), sample from the distribution DdL

to obtain the actual LD, dLi,act,
that vi will use to form the next word. (Example provided in Figure 4.5.)

5. From the set W dL
i,act ⊆ VH of words at dLi,act from w1, order the words from most frequently used

word to least (CW provides this ranking).

6. From the frequency distribution Dwr of words in W dL
i,act , draw a rank ri of a word. Select the

unique word w2 that corresponds to rank ri. Return w2.

Figure 4.7: Steps of the Algorithm Form Word. This algorithm returns a word that an
agent forms.

rank and the top-ranked letters will be more closely aligned because there are so few letters
left; hence, in order to not bias the results, we use only the first 1/2 of letter requests. The
players vi are ranked by ri,ave, smallest to largest value, and the players are partitioned into
five equi-sized bins Q1 through Q5, where players in Q1 (resp., Q5) select letters to request
that are most (resp., least) conformant to our mechanistic model. A player vi’s aptitude
breqi in requesting letters takes a value from Q1 through Q5. This partitioning is to ensure a
sufficient number of observations for each bin. Again, we partition based on players because
we want to develop agent behaviors based on player behavior.

Analysis step 2. We analyze each Qj, j ∈ {1, 2, 3, 4, 5}, separately, as follows. We take each
vi ∈ Qj, note each ri,act corresponding to each letter request in the first 1/2 of requests,
count the number of occurrences of the ranks of each requested letter, and sum the counts
over all players. Results are shown in the left-most plot of Figure 4.8 for breqi = Q1 = 20%.
(Note that player vi’s aptitude breqi in requesting letters may take values Q1 through Q5.)
These data are for comparison against our mechanistic model (in green), which predicts all
letter requests will be of rank 1 in this plot. Note that for the breqi = Q1 = 20% data, the
number of occurrences of a selected rank generally increases as the rank decreases, though
the effect is sometime less pronounced for some cases. See Figures 11 and 13 of [45] for more
data. We claim that the data support our premise, i.e., our model explains the data. That
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is, players select letters to request that generate the greatest increase in the number of words
that they can form.

Figure 4.8: Comparison of mechanistic model predictions (in green) against data (the
distributions) for the request letter model. Our mechanistic model predicts all letter requests
will be of rank-1 in each of the four plots. (LEFT) Experimental data are for the 5000-word
corpus, aptitude breqi = Q1 = 20% for letter requests (plots for Qj, j ∈ {2, 3, 4, 5} are not
shown). For aptitude Q1, the frequency of the rank of the chosen letter is plotted. These data
show that players most often choose letters with lower rank, meaning that they choose letters
that can form relatively more words. (RIGHT) These three plots break down the left-most
plot by showing distributions for different request numbers rnum by vi. These distributions
D`r(|CW

i |, b
req
i , rnum) are used to sample ri,act based on (CW

i , b
req
i , rnum).

Analysis step 3. We break down each plot of the type in Figure 4.8, at the left, to account for

CW
i , breqi , and the number rnum of the letter request in the three right-most plots of the figure.

By sampling from frequency distributions D`r(|CW
i |, b

req
i , rnum) based on (CW

i , b
req
i , rnum) for

vi, we obtain the rank of the actual letter requested ri,act in the model. This provides finer
modeling granularity by accounting for the number of the letter request.

Algorithm for request letter. The algorithm is in Figure 4.9 and follows directly from
the data analysis just presented. This algorithm is presented in the form of an agent model.

Remark: These analyses and data provide evidence for our claim that this model is ex-
planatory. Players generally request letters by (roughly) maximizing the increase in number
of words that they can form, which follows rational choice theory [27].

4.5.4 Player Action: Reply to Letter Requests

Unlike the previous two models, this model is purely data-driven. A mechanistic-based
model is under development. For space reasons, we provide an abbreviated description here;
a fuller treatment is in [45].
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Input: Agent vi ∈ V . Agent letter requesting aptitude breqi . Word corpus CW
i . Letters in-hand Lih

i . The
set L′i of letters that vi’s neighbors were initially assigned that vi has not yet requested; this is the
candidate set of letters to request. The request number rnum. Distributions D`r(|CW

i |, b
req
i , rnum) of letter

ranks for triples (CW
i , breqi , rnum).

Output: Next letter `∗ that vi requests, if any.

Steps:

1. If L′i is empty, terminate and return no letter.

2. For each candidate letter to request ` ∈ L′i that has yet to be requested, determine the new words
W ih`

i that can be formed from CW with the letters in set Lih
i ∪ {`} (include only words that have

not yet been formed).

3. If every word set W ih`
i for all ` is empty, remove an arbitrary letter `∗ from L′i, terminate this

algorithm and return `∗.

4. Rank the letters in ` ∈ L′i in decreasing values of |W ih`
i |. Let r(`) be the rank of `.

5. Determine the rank ri,act of the letter to select for requesting by sampling from distribution
D`r(|CW

i |, b
req
i , rnum) using as input (CW

i , breqi , rnum). (See Figure 4.8 for three examples.)

6. Select the letter `∗ such that r(`∗) = ri,act. Break ties arbitrarily. Remove `∗ from L′i. Return `∗.

Figure 4.9: Steps of the Algorithm Request Letter. This algorithm returns a letter that
an agent requests.

Basic premise, key ideas, and data analysis. The goal is to produce a model that
explains how players respond to letter requests from their neighbors. The basic premise is
that players can be partitioned into categories of behavior. We determined from the data
these four categories: (1) those players that respond to all queued (pending) letter requests
in their buffer (called FB for full buffer); (2) those that respond to some fraction of all
pending letter requests in their buffer (called LTFB for less than full buffer); (3) those that
sometime behave as FB and sometimes as LTFB (called Mixed); and (4) those that never
reply to letter requests (called NR). The key ideas are that for each category, we need to
determine: (i) how many replies to letter requests are made uninterrupted (i.e., contiguously)
for categories LTFB and Mixed, and (ii) for each number of letter replies, the time duration
over which these letter replies are made (for categories FB, LTFB, and Mixed). See [45] for
results. These are the four values for a player vi’s aptitude brpli in replying to letter requests.

Algorithm for reply to (letter) request. Owing to space limitations, the algorithm is
not provided here, but is provided in a web-accessible version in [45], Figure 16.

Remark: In these various algorithms, elements of sets are returned, or a distribution cor-
responding to particular inputs is sampled. In some cases, there are no data for specified
conditions. For these types of situations, we implement a recursive search technique to
sample from the distribution or set with the closest set of inputs.
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4.6 Agent-Based Simulations and Results

Remark: Model evaluation is an important step and has been performed. Figures 4.4, 4.5,
and 4.8 are part of this process. We refer the reader to Section VI of [45] for additional work.

Simulation model. We conduct discrete time agent-based simulations (ABSs) of the GrAG.
Each time unit is one second of the 300-second GrAG. At each time and for each agent, an
action is selected. Based on the action chosen, the corresponding model for that action,
developed herein, is executed (Figures 4.7 and 4.9 for “form word” and “request letter,”
respectively, and Figure 16 of [45] for “reply to request”; the thinking action is a no-op). We
run nruns = 100 runs or simulation instances and average the results. We use the 5000-word
corpus CW . These are purely simulation studies and are not tied to the experiments. The
goal is to demonstrate that the models alone provide insights into human behavior.

Study 1: Effects of model aptitude properties. We use a game configuration G(V,E)
consisting of six players that form a circle, with each player having two neighbors. The initial
letter assignments are given in Table 4.1. We systematically vary the aptitudes of players
in forming words bwfi , in requesting letters breqi , and in replying to letter requests brpli . See
Table 4.2. Recall that these aptitudes correspond to the skill levels of players.

Table 4.1: Study 1 initial letter assignments to players in simulations for six players arranged
as 2-regular graph.

Player #: 1 2 3 4 5 6
Init. Ltrs: b, a, t m, e, n l, u, t s, o, p h, u, g r, i, e

Table 4.2: Parameters that are systematically varied in the simulations of Study 1. These
aptitude (bwfi , breqi , brpli ) settings are the same for all agents in a simulation.

Sim. No. bwfi breqi brpli Sim. No. bwfi breqi brpli

1 P1 Q1 FB 5 P5 Q5 FB
2 P2 Q2 FB 6 P5 Q5 LTFB
3 P3 Q3 FB 7 P5 Q5 NR
4 P4 Q4 FB − − − −

Figure 4.10 (left) shows the average number of interactions (requests sent, replies received,
requests received, replies sent) and the average number of words formed per player for the
first five simulation numbers (sim. no.) of Table 4.2. There is a drop-off in performance in
going from bwfi = P1 to P5, breqi = Q1 to Q5, for fixed brpli =FB. We observe that decreasing
the letter request aptitude breqi and the word formation aptitude bwfi decreases the quality of
letters requested and hence the number of words that can be formed.

To determine how brpli affects performance, we plot in Figure 4.10 (right) results from simu-
lation numbers 5, 6, and 7 of Table 4.2. Using bwfi = P5 and breqi = Q5 as a reference, there
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is a large decrease in numbers of reply interactions in going from brpli =LTFB to brpli =NR,
as expected, since NR means that agents do not reply to letter requests. There is a small
decrease in numbers of replies in reducing brpli from FB to LTFB.

Figure 4.10: (Left) Simulation results for Sim. nos. 1 through 5 of Table 4.2. The average
number of words formed per player drops in going from bwfi = P1 to P5, breqi = Q1 to Q5,
for fixed brpli =FB. (Right) Simulation results for Sim. nos. 5, 6, and 7 of Table 4.2. Using
bwfi = P5 and breqi = Q5 as a baseline, these results show a precipitous drop-off in replies
to letter requests, and to words formed, in going from brpli =LTFB to brpli =NR. Results in
counts for brpli =LTFB are slightly less than those for brpli =FB.

Study 2: Effects of heterogeneity: network connectivity and quality of letter
assignments to players. We use a game configuration G(V,E) consisting of four players
vi (1 ≤ i ≤ 4) that form a star. The initial letter assignments are given in Figure 4.11.
All players have the following conditions bwfi = P1, breqi = Q1, and brpli =FB. Players are
assigned heterogeneous numbers and qualities of letters; see the figure caption. The numbers
of requests received and replies sent are greatest for player v1 owing to its centrality; this
affects the number of words player v1 forms, which is less than those for v2 and v3. Players
v2 and v3 have more requests received from v1 (compared to v4) because their letters (i.e.,
popular consonants) create larger sets of possible words to form. The number of words
formed is least for player v4 because of the poorer quality of assigned letters.

4.7 Summary and Future Work

We have developed mechanistic and data-driven models for representing the decision-making
and actions of humans in online networked GrAGs. Our contributions are in Section 4.2.4.
We would like to conduct more experiments with more network structures. This would also
(ideally) produce sufficient data to more finely partition aptitudes—player behavior—into
ten 10% bins (currently, we have five 20% bins). These experiments would be used to further
evaluate the models and improve them.
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Figure 4.11: Simulation for players vi (1 ≤ i ≤ 4), arranged in a star. All players have the
following conditions bwfi = P1, breqi = Q1, and brpli =FB. Player v1 is at the center with three
neighbors. v1 is assigned the four most popular vowels in the alphabet; v2, v3 are assigned
the six most popular consonants, and v4 is assgned the five least popular consonants. See
text for discussion of results.



Chapter 5

Conclusions

Online social science experiments are being used to understand behavior at-scale. Due to the
considerable work required to perform data analytics for custom experiments and to build
models from experimental data, the work in this thesis presents an automated and extensible
system for evaluating social phenomena through iterative experiments and modeling. A set
of five composable and extensible pipelines for studying networked social science phenomena
has been presented, along with data and computational models for formal specification of
experiments and modeling and simulation (MAS), for a particular class of networked social
science experiments. We provide case studies on collective identity, complex contagion, and
structure of communication networks, respectively, to illustrate the successful use of the
system.

Also, we use these pipelines to study collective identity (CI) in a group activity. We formalize
an abductive loop, implement it computationally, and exercise it in an experimental setting
(the group anagram game) designed to induce CI, as operationalized by Swann’s DIFI score.
However, our abductive looping process is not tied to CI. As part of the abductive iterations,
we provide novel experimental insights into CI and build and evaluate three ABMs. This
work establishes the potential of iterative abductive looping for the (computational) social
sciences.

We have presented a process for combining mechanistic and data-driven approaches. We
provide new findings on how players behave and on explanations of behavior based on Lev-
enshtein distance and utility maximization, motivated by cognitive and economic theories.
Finally, mechanistic and data-driven models for representing the reasoning and actions of
humans in networked group anagram games are developed.
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Appendix A

Appendix: Pipelines

A.1 Data Common Specification

This appendix provides a concrete view into the system. The definition of a data common
specification in Figure 2.1 provides the bridge between the abstract data model and the
implementation of the pipelines; see Figure 2.3. JSON schemas provide a detailed specific
view of the implementation aspect of our pipelines. Because we go into detail, this is an
exemplar for other types of problems. These are the types of files we use in the case studies
in Section 2.8.

Figure A.1 shows the “Experiment” definition. Figure A.2 shows the “Phase” definition. Fig-
ure A.3 shows the “Phase Description” definition. Figure A.4 shows the “Player” definition.
Figure A.5 shows the “Action” definition.
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Table A.1: Data Common Specification.

# Component
Name

Parameter
from Data
Model (Table
2.1)

Table in Data
Model UML
(Figure 2.4)

Description

1 Experiment Experiment
Schema

Experiment
Schema

Experiment description and definition
of initial parameters (i.e., experiment
id, number of phasers, number of play-
ers, begin time, duration and list of
players).

2 Phase Phase Schema:
Phase schema id,
Sequence, Phase
Begin, Phase
duration, Unit
of time, Net-
work definition,
Meaning of an
edge.

Phase Schema An experiment can have many phases.
This is the Phase description and defi-
nition of initial parameters (i.e., phase
id, order in experiment, begin time,
duration and list of players, connec-
tions between players, number of play-
ers).

3 Phase De-
scription

Phase Schema:
Node attributes
for a phase, Edge
attributes for
a phase, Initial
conditions for
nodes, Initial
conditions for
edges.

Edge, Initial
Conditions Edge,
Edge Attributes,
Initial Conditions
Node.

A phase has a description (i.e., phase
id, beginning parameters, end param-
eters, actions, relations between ac-
tions).

4 Player Experiment
Schema: Player
id.

Player. Player description (i.e., player id, ex-
periment id, phase id).

5 Action Phase Schema:
Action set, Ac-
tion sequence.

Action, Action
Tuple

A experiment, a phase and players
have actions associated with them (i.e.,
action id, phase id, action tuple id,
player id, timestamp, payload).
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Figure A.1: JSON schema for the “Experiment” of the Data common specification.
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Figure A.2: JSON schema for the “Phase” of the Data common specification.
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Figure A.3: JSON schema for the “Phase Description” of the Data common specification.
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Figure A.4: JSON schema for the “Player” of the Data common specification.
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Figure A.5: JSON schema for the “Action” of the Data common specification.
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A.2 Appendix: Mapping of Model onto the Software

System

In this appendix, we describe the characteristics of the the implementation of an individual
pipeline. Figure A.11 shows an example of a Configuration Input file JSON schema describing
how to execute up to five functions in a pipeline.

Figure A.6: To run a pipeline (called a job), a configuration input file specifies functions and
their order of execution. This figure shows a portion of the schema for a configuration file
that specifies the experiment JSON schema file location.

Figure A.7: To run a pipeline (called a job), a configuration input file specifies functions and
their order of execution. This Figure shows a portion of the schema for a configuration file
that specifies the phase description JSON schema file location.

Figure A.8: To run a pipeline (called a job), a configuration input file specifies functions and
their order of execution. This Figure shows a portion of the schema for a configuration file
that specifies the phase JSON schema file location.
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Figure A.9: To run a pipeline (called a job), a configuration input file specifies functions and
their order of execution. This Figure shows a portion of the schema for a configuration file
that specifies the action description JSON schema file location.

Figure A.10: To run a pipeline (called a job), a configuration input file specifies functions
and their order of execution. This Figure shows a portion of the schema for a configuration
file that specifies the player description JSON schema file location.
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Figure A.11: To run a pipeline (called a job), a configuration input file specifies functions
and their order of execution. In this configuration file there are five possible functions that
can be executed in any order. This Figure shows a portion of the schema for a configuration
file that specifies how to compose and execute one or more functions of a simple pipeline. For
example, here it defines that a parameter called “actionId” is only necessary for functions
h2 through h5.
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A.3 Appendix: Examples of the Software System

This Appendix shows examples of input files for the Experimental Data Transformation
Pipeline (Figure A.12), and the Data Analytics Pipeline (Figure A.13). Here we show how a
function is executed in a generic pipeline. Input files are validated against their corresponding
JSON schema. If necessary, file contents are transformed (possibly outputs from upstream
functions) to obtain the direct input for a function in the correct format. After verification
of formats by the corresponding JSON schemas, the function is executed and output files are
generated (these digital object outputs may be, e.g., plot files, ASCII data files, and binary
data files).

Figure A.12 shows an example of the (1) Experimental Data Transformation Pipeline input
files and the transformations they go through. Here, the function h1 takes experimental raw
data and transforms it to our Data Common Specification. CSV files are transformed into
JSON files, then verified for input before executing function h1. After execution, function
h1 outputs JSON schemas that become inputs for the Data Analytics Pipeline.

Figure A.13 shows an example of the (2) Data Analytics Pipeline execution of function
h7 with configuration input files examples. Here, the input JSON files are verified, then
transformed into function h7 direct input. After verifying the input for the function, h7 is
executed and the output files returned. In this example, the output file is an input for the
(3) Property Inference pipeline.
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A.4 Appendix: Pipeline Functions

In this Appendix, we describe the characteristics of the the atomic element of a pipeline: the
function. If a new component is added to the pipeline, it is introduced by a new function.
We provide a listing of types of functions as microservices within each of the five pipelines.
We show five tables, one for each pipeline, with a list of available functions. Table A.2 shows
one function for the (1) Experimental Data Transformation Pipeline (EDTP). Table A.3
shows fourteen functions for the (2) Data Analytics Pipeline (DAP) Table A.4 shows four
functions for the (3) Property Inference Pipeline (PIP). Table A.5 shows five functions for
the (4) Modeling and Simulation Pipeline (MASP). Table A.6 shows five functions for the
(5) Model Evaluation and Prediction pipeline (MEAPP).

The functions provide a range of capabilities from simple plotting routines to cleaning and
organizing, storing and accessing data sets, and inferring properties and running simula-
tions. Users may add other functions and continue community-based development, as these
functions are not exhaustive. Each function completes one well-defined task. Many of these
functions can be used in multiple contexts; functions use the pipeline as a universal interface.
For example, the action progression function h3 of the Data Analytics Pipeline generates a
plot of the number of actions ai per player in time ∀ai ∈ A. Also, often a function represents
a category of operation; e.g., there are six different agent-based models (ABMs) under h1

of the Modeling and Simulation Pipeline. Currently, functions are written in the following
Programming Languages (PLs) C++, Python, and R.

Table A.2: Listing of types of functions as microservices for the (1) Experimental Data Trans-
formation Pipeline (EDTP). Many functions may be considered as collections of functions
because they can handle multiple types of data through the data model.

Pipeline: Experimental Data Transformation (EDTP)

# Name Description Significance Output
type

h1 Raw data
into Data
common
specification

Transform experimental raw data into
our data common specification.

This is the only way an
experiment data can go
through our pipelines.

Data files
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Table A.3: Listing of types of functions as microservices for the (2) Data Analytics Pipeline
(DAP). Many functions may be considered as collections of functions because they can handle
multiple types of data through the data model.

Pipeline: Data Analytics (DAP)

# Name Description Significance Output
type

h1 Player interac-
tions

Generate a timeline of individual and between-
players actions. Each player represents a lane.
Each action has a unique color.

Detect common patterns between
players and actions.

Visualization

h2 Timestamp
Delta between
related actions

Construct a visualization of the timestamp
delta between related actions. A request ac-
tion has a correspondent receive action. Each
request action represents a lane, a horizontal
line represents the length of time it takes to
receive a requested action.

Detect bursts in types of actions.
Detect time patterns in types of
actions.

Visualization

h3 Action pro-
gression

Generate a cumulative distribution plot for an
action, by player.

Show how an action progresses in
time during an experiment phase.

Data files
and plot

h4 Average ac-
tion

Generate plot of the average number of actions
between players in a window size s.

Show how an average action pro-
gresses in time between experi-
ments phases.

Data files
and plot

h5 Action his-
togram

Generate a histogram of timestamps of an ac-
tion.

Compare histograms among all
experiment phases.

Data files
and plot

h6 Histogram of
related actions

Generate a histogram of timestamp delta be-
tween related actions.

Compare histograms between all
experiments phases.

Data files
and plot

h7 Discrete ac-
tion sequence
in timeline

Generate a discrete-time action sequence by
phase. Each action, from the action set A has
a unique id definition.

Generate input for the Property
Inference pipeline.

Time series
data files

h8 Summary of
actions.

Generate for each unique action the number
of occurrences at the end of a phase, and the
number of occurrences at the end of all exper-
iments in the pipeline run.

Compare action occurrences
among all experiments.

Data files

h9 Player cate-
gories.

Categorize players by performance in each ac-
tion.

Analyze player performance by
clustering them in categories.

Data files
and plot

h10 Actions heat-
map.

Generate heat-map by player for actions in a
phase.

Analyze player performance by a
heat-map visualization.

Data files
and plot

h11 Summary
of related
actions.

Generate a summary at the end of a phase with
the possible actions between neighbors and the
occurred actions.

Compare related action occur-
rences among all experiments.

Data files

h12 Distance be-
tween actions.

Generate a file with distance between two ac-
tions. The distance has to be provided by the
analyst (e.g, for the action of forming a word,
the Levenshtein distance between two words
formed).

Compare action characteristics in
an experiment.

Data files

h13 Rank of ac-
tions.

Generate a file with rank of an action. The
rank has to be provided by the analyst (e.g,
for the action of requesting a letter, the letter
rank comes from a specified list).

Compare action characteristics in
an experiment.

Data files

h14 Score of ac-
tions.

Generate a file with a score of an action. The
method to calculate the score has to be pro-
vided by the analyst (e.g, for the action of
forming a word, the scrabble score for a word
formed).

Compare action characteristics in
an experiment.

Data files
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Table A.4: Listing of types of functions as microservices for the (3) Property Inference
Pipeline (PIP). Many functions may be considered as collections of functions because they
can handle multiple types of data through the data model.

Pipeline: Property Inference (PIP)

# Name Description Significance Output
type

h1 Properties
for Marko-
vian transi-
tion matrix.

Use of the sequences of discrete actions
to generate the probability of transition
from an action ai to an action aj as
measured in the experiment data.

Generates the properties for
a Markovian transition ma-
trix.

Data files

h2 Properties
for an
adapted
CRF model

Use of the sequences of discrete actions
to generate a derived feature vector ac-
counting for history effects, where the
vector corresponds to the discrete-time
sequences from the Data Analytics h7
output.

Generates properties for an
adapted conditional random
fields (CRF) model.

Data files

h3 Coefficients
in a hi-
erarchical
model

Generalize the model to take the num-
ber of neighbors into consideration, and
also digest the additional experiment
data where player degree increases or
decreases.

Generate coefficients in a hi-
erarchical model to augment
the CRF model.

Data files

h4 Multilinear
regression
model

Construct multilinear regression model
on action set A.

Generate structure of the
model and parameter values

Data files
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Table A.5: Listing of types of functions as microservices for the (4) Modeling and Simulation
Pipeline (MASP). Many functions may be considered as collections of functions because they
can handle multiple types of data through the data model.

Pipeline: Modeling and Simulation (MASP)

# Name Description Significance Output
type

h1 Agent based
model
(ABM)

Execute agent based simulation models.
Currently, six different models (station-
ary, dynamic conditional random fields
(CRF).

Generate Agent Based
Model Simulations outputs
for self-consistency checks
and predictions.

Data files

h2 Statistical
regression

Compute a relation between selected
and observed values.

Predict most probable value
of the observed values for any
selected values.

Data files

h3 Statistical
regression

Regression equation that uses results
from Phase 1 ABM to predict the Phase
2 DIFI.

Predict the Phase 2 DIFI
(i.e., DIFI2) score per player.

Data files

h4 Statistical
regression

Regression equation that uses results
from ABM Phases to predict the
Publics Good Game Contributions in
the corresponding Phase.

Predict the Publics Good
Game Contributions per
player.

Data files

h5 Component
model pre-
diction

Execute agent based simulation compo-
nent models to compare outputs with
real actions from a real experiment.

Compare outputs between
models.

Data files
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Table A.6: Listing of types of functions as microservices for the (5) Model Evaluation and
Prediction pipeline (MEAPP). Many functions may be considered as collections of functions
because they can handle multiple types of data through the data model.

Pipeline: Model Evaluation and Prediction (MEAPP)

# Name Description Significance Output
type

h1 Model Vali-
dation

Compares experiment outputs with
simulation outputs.

Demonstrate that the model
is a reasonable representa-
tion of the actual system.

Data files
and plot

h2 Model Pre-
diction

Generates statistical models to predict
outcomes.

Forecast outcomes in an ex-
periment.

Data files
and plot

h3 Model
Fusion

Generates model to predict outcomes
by combining outputs from different
models.

Predict the Phase 2 DIFI
(i.e., DIFI2) score per player.

Data files

h4 Model Eval-
uation

Generates R-squared values by compar-
ing experiment outputs with simulation
outputs.

R-squared is a statistical
measure of how close the
data are to the fitted regres-
sion line.

Data files

h5 Cross-
Validation

The original experiment sample is ran-
domly partitioned into k equal size sub-
samples. Of the k subsamples, a sin-
gle subsample is retained as the vali-
dation data for testing the model, and
the remaining k-1 subsamples are used
as training data. The cross-validation
process is then repeated k times, with
each of the k subsamples used exactly
once as the validation data.

Demonstrate that the model
is a reasonable representa-
tion of the actual system.
All observations are used for
both training and validation,
and each observation is used
for validation exactly once.

Data files
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A.5 Appendix: Microservices

A.5.1 Characteristics

We provide a compact description of microservices [49, 152, 153, 178, 206, 237]. While there
is no universally accepted of what a microservice is, we take the term to have the following
features;

1. Autonomous (isolated, simple entity): a microservice is a separate entity. Although
isolated services can add overhead, the resulting simplicity is worth it. This is analogous
to the trade-offs between a distributed system and a shared memory system.

2. Smallness: the code for a microservice can be rewritten (constructed, tested, verified,
documented) in two weeks. Often, they are less than 100 lines of code.

3. Smallness: people tend to have good intuition when a code base is too large; so suffi-
ciently small is when this intuition does not hint at being too large.

4. Smallness: if the code base is too large to be managed by a small team, then it is not
small enough.

5. Interdependence: there should be interdependence among a collection of services. As
services get smaller, the benefits of interdependence increase. But smaller services
create complexity (the “edges” between services). But teams should learn to handle
this complexity.

6. Communication among services: all cooperation among services is through network
calls (versus direct invocation) to avoid tight coupling.

7. Change/upgrade: all microservices should be capable of changing independent of other
microservices. In practice, this can be hard to do it, for example, a collection of services
depend on lower level infrasctructure.

8. Independent deployment: each microservice should be deployable, independent of all
others.

9. Weary of Sharing Capability Between Services: the more multiple microservices share,
the more services become coupled to internal representations and decreases autonomy.

10. APIs (Application Programming Interfaces): specify/select/prefer technology-agnostic
APIs so that the services are not constrained by technology. Achieve decoupling:
the success of the “Change/upgrade” feature is an evaluation of decoupling success.
Decoupling also requires good models.
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A.5.2 Benefits

Many of the benefits of microservices stem from their isolated, independent scope [49, 152,
153, 178, 206, 237].

1. Technology heterogeneity, including technology stacks, across microservices.

2. Technology changeout.

3. Technology evaluation in a controlled, limited way.

4. Easier to isolate problems and failures.

5. Scale-up can be focused to particular services. So, too, with on-demand provisioning.

6. Deployments/redeployments can be isolated to particular microservices. Smaller in-
crements of (re)deployment means reducing the possibility of adverse ripple effects.

7. Improvements/new versions are eased in and old versions are eased out.

8. Smaller services translates to smaller teams.

9. Composability, reuse.

10. Choices to throw away code are made more easily (less ownership, less cost of con-
struction).

11. Easier unit testing (generating, executing, and interpreting tests). For example, there
are fewer paths through the code.

A.5.3 Microservices as a Type of Service Oriented Architecture

Pipelines are intimately tied to microservices. While microservices may be used individually,
typically, the small scope and limited features (or one feature) per service implies that
they must be composed to accomplish many tasks. This composition can be accomplished
with pipelines. This is not necessarily true with larger, more monolithic service oriented
architectures (SOAs): these may provide broader-scope services within one module.

Microservices are one type of service oriented architecture (SOA). One example of the dif-
ference between the two is that microservices generally tend to avoid shared libraries that
are used across microservices. This is because use of shared libraries means increased cou-
pling of services. Based on the authors’ experiences, this difference between microservices
and SOAs in general is analogous to the difference between shared memory multi-process
systems versus distributed systems, as described next.
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By multi-process shared memory systems, we mean a software system that is composed of
multiple processes that run asynchronously and use shared memory to exchange information
(e.g., no message passing). In this environment, the processes are tightly coupled because if
one process requires changes in shared storage structures, these will affect all other processes
that use those storage structures. That is, the software for these other processes needs to be
changed, too, leading to increased maintenance. Hence, there are a lot of interdependencies.
However, in an asynchronous distributed system, each process has its own storage structures
and memory, so that changes in storage structures for one process has no effect on other
processes. While it is the case that additional infrastructure is required for distributed
systems (e.g., for message passing), this additional requirement is offset by the autonomy
realized for each process. The analogy here is that a multi-process shared memory system
is a classic SOA, while microservices are the distributed system.



Appendix B

Appendix: Iterative Abduction
Framework

B.1 Experimental Data

B.1.1 Timestamp for Letter Request

Figure B.1 shows histograms with 10 bins of 30-seconds each for the timestamps of request
sent for experiments with k= 2, 3, 4, 5, 6, 8. The same trends exist for each value of k.
However, if there are few neighbors (k=2) and consequently fewer available letters (3 letters
per neighbor), there are fewer letter requests and letter replies near the end of the game.
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Figure B.1: Probability density distribution for requests sent over the 300 second anagram
game. Each of the bins on the x-axis correspond to 30-second intervals. (a) shows 1 ex-
periment, for 28 experiments with k=2; (b) shows 1 experiment with k=3; (d) shows 9
experiments with k=4; (a) shows 2 experiments with k=5; (e) shows 3 experiments with
k=6; (f) shows 4 experiments with k=8. A kernel-density estimation with Gaussian kernels
is used. Letter requests are made throughout the game, rather than solely at the outset.
However, if there are few neighbors (k=2) and consequently fewer available letters (3 letters
per neighbor), there are fewer letter requests and letter replies near the end of the game.

B.1.2 Timestamp for Letter Reply

Figure B.2 shows histograms with 10 bins of 30-seconds each for the timestamps of Reply
Sent for experiments with k= 2, 3, 4, 5, 6, 8. Similar trends are obtained when data are
broken down by k. We find that letter reply are made throughout the game, rather than
solely at the outset.
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Figure B.2: Probability density distribution for reply sent over the 300 second anagram game.
Each of the bins on the x-axis correspond to 30-second intervals. (a) shows 28 experiments
with k=2; (b) 1 experiment with k=3; (c) 9 experiments with k=4; (d) 2 experiments with
k=5; (e) 3 experiments with k=6; (f) 4 experiments with k=8. A kernel-density estimation
with Gaussian kernels is used to estimate the probability density function. Letter replies are
made throughout the game, rather than solely at the outset.

B.1.3 Timestamp delta between Reply Received and Request Sent

Figure B.3 shows histograms with 10 bins of 30-seconds each for the timestamps of duration
between Reply Received and Request Sent for experiments with k= 2, 3, 4, 5, 6, 8. The
number of neighbors doesn’t affect this type of action, players generally respond relatively
quickly to their neighbors letter requests with replies typically made within 30 seconds of
the request.
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Figure B.3: Probability density distribution for the time duration between Reply Received
and Request Sent over the 300 second anagram game. (a) shows 28 experiments with k=2;
(b) shows 1 experiment with k=3; (c) shows 9 experiments with k=4; (d) shows 2 experiments
with k=5; (e) shows 3 experiments with k=6; (f) shows 4 experiments with k=8. A kernel-
density estimation with Gaussian kernels is used to estimate the probability density function.
Players generally respond relatively quickly to their neighbors letter requests with replies
typically made within 30 seconds of the request, the number of neighbors doesn’t affect this
type of action.

B.1.4 Timestamp for Word Formed

Figure B.4 show histograms with 10 bins of 30-seconds each for Word Formed timestamps
for experiments with k= 2, 3, 4, 5, 6, 8. Word submissions are made throughout the game,
and the number of neighbors and available letters, doesn’t affect this type of action.
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Figure B.4: Probability density distribution for the time of words formed over the 300 second
anagram game. Each of the bins on the x-axis correspond to 30-second intervals. (a) shows
28 experiments with k = 2; (b) shows 1 experiment with k = 3; (c) shows 9 experiments
with k = 4; (d) shows 2 experiments with k = 5; (e) shows 3 experiments with k = 6; (f)
shows 4 experiments with k = 8. A kernel-density estimation with Gaussian kernels is used
to estimate the probability density function. Word submissions are made throughout the
game, and the number of neighbors and available letters, doesn’t affect this type of action.

B.1.5 Temporal Comparisons of Distributions Between Model M0
and Experiments for Individual Player Actions

This section shows the figures resulting from the temporal analysis by minute of distributions
between Model M0 and Experiments for k = 2. Each plot contains data over a time window.
Figure B.5 shows temporal analysis for the number of replies received at the end of each
minute. Figure B.6 shows temporal analysis for the number of replies sent at the end of each
minute. Figure B.7 shows temporal analysis for the number of requests received at the end
of each minute. Figure B.8 shows temporal analysis for the number of requests sent at the
end of each minute. Figure B.9 shows temporal analysis for the number of words formed at
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the end of each minute. For all these plot the SubFigures show the following intervals (a)
the 0-1 minute, (b) the 1-2 minute, (c) the 2-3 minute, (d) the 3-4 minute, and (e) the 4-5
minute, of the 5-minute anagram game (gray bars) for all k = 2 experiments, compared to
Baseline M0 predictions (green) for 100 simulations of an n = 10 player game. Often, but
not always, the largest discrepancies between the model predictions and experiments occur
in the first minute of the game.
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Figure B.5: ABM M0 predictions of the k = 2 experiments for the distributions of letters
Replies Received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to Baseline M0 predictions (green) for 100
simulations of an n = 10 player game. These plots show that for Model M0, replies received
predictions are better in the second half of the five-minute anagram games.
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Figure B.6: ABM M0 predictions of the k = 2 experiments for the distributions of letters
Replies Sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray bars)
for all k = 2 experiments, compared to Baseline M0 predictions (green) for 100 simulations
of an n = 10 player game. These plots show that for Model M0, replies sent predictions are
better in the second half of the five-minute anagram games.
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Figure B.7: ABM M0 predictions of the k = 2 experiments for the distributions of letters
Requests Received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to Baseline M0 predictions (green) for 100
simulations of an n = 10 player game. These plots show that for Model M0, requests received
predictions, compared to the other variables, are good through the five minutes of the game.
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Figure B.8: ABM M0 predictions of the k = 2 experiments for the distributions of letters
Requests Sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray bars)
for all k = 2 experiments, compared to Baseline M0 predictions (green) for 100 simulations
of an n = 10 player game. These plots show that for Model M0, requests sent predictions,
compared to the other variables, are good through the five minutes of the game.
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Figure B.9: ABM M0 predictions of the k = 2 experiments for the distributions of Words
Formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3
minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray bars) for
all k = 2 experiments, compared to Baseline M0 predictions (green) for 100 simulations of
an n = 10 player game. These plots show that for Model M0, words formed predictions are
better in the first two minutes of the five-minute anagram games.
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B.1.6 Temporal Comparisons of Distributions Between Models
M0, M1 and Experiments for Individual Variables

This section shows the figures resulting from the temporal analysis by minute of distributions
between Models M0, M1 and Experiments for k = 2. Each plot contains data over a time
window. Figure B.10 shows temporal analysis for the number of replies received at the end of
each minute. Figure B.11 shows temporal analysis for the number of replies sent at the end
of each minute. Figure B.12 shows temporal analysis for the number of requests received at
the end of each minute. Figure B.13 shows temporal analysis for the number of requests sent
at the end of each minute. Figure B.14 shows temporal analysis for the number of words
formed at the end of each minute. For all these plot the SubFigures show the following
intervals (a) the 0-1 minute, (b) the 1-2 minute, (c) the 2-3 minute, (d) the 3-4 minute, and
(e) the 4-5 minute, of the 5-minute anagram game (gray bars) for all k = 2 experiments,
compared to M1 predictions (red) for 100 simulations of an n = 10 player game. The baseline
model M0 is shown in green for comparison. It is clear from visual inspection that model
M1 predictions are in better agreement with the experiment data than are M0 predictions.
Often, but not always, for Model M1 the largest discrepancies between the model predictions
and experiments occur after the first minute and in larger magnitude for the words formed
variable.
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Figure B.10: ABM M0 and M1 predictions of the k = 2 experiments for the distributions of
letters Replies Received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 simulations
of an n = 10 player game. The baseline model M0 is shown in green for comparison. These
plots show that for Model M1, replies received predictions are better in minute 3, and minute
5 of the five minute anagram games.
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Figure B.11: ABM M0 and M1 predictions of the k = 2 experiments for the distributions of
letters Replies Sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 simulations
of an n = 10 player game. The baseline model M0 is shown in green for comparison. These
plots show that for Model M1, replies sent predictions are better in minute 1, minute 3, and
minute 5 of the five minute anagram games.
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Figure B.12: ABM M0 and M1 predictions of the k = 2 experiments for the distributions of
letters Requests Received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-
2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 simulations
of an n = 10 player game. The baseline model M0 is shown in green for comparison. These
plots show that for Model M1, requests received predictions are good throughout the five
minute anagram games.
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Figure B.13: ABM M0 and M1 predictions of the k = 2 experiments for the distributions of
letters Requests Sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 simulations
of an n = 10 player game. The baseline model M0 is shown in green for comparison. These
plots show that for Model M1, requests sent predictions are good throughout the five minute
anagram games.
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Figure B.14: ABM M0 and M1 predictions of the k = 2 experiments for the distributions of
Words Formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray
bars) for all k = 2 experiments, compared to M1 predictions (red) for 100 simulations of an
n = 10 player game. The baseline model M0 is shown in green for comparison. These plots
show that for Model M1, words formed predictions are good only in the first minute of the
five minute anagram games.
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B.1.7 Comparisons of Distributions Between Models M1, M2 and
Experiments for Individual Variables at the End of the Ana-
gram Game.

This section shows the comparisons of distributions between models M1, M2 and experiments
for individual variables at the end of the 5-minute anagram game. Figure B.15 shows data
distributions (gray bars) for all k = 6 compared to M2 predictions (blue bars). Figure B.16
shows data distributions (gray bars) for all k = 8 compared to M2 predictions (blue bars).
The model M1 is shown in red for comparison. Figure (a) shows the distributions of replies
received, Figure (b) shows the distributions of replies sent, Figure (c) shows the distributions
of requests received, Figure (d) shows the distributions of requests sent, and Figure (e) shows
the distributions of Words Formed. M2 gives much better performance, as expected, as it
explicitly accounts for agent degree. As expected, M1 and M2 perform equally well for k = 2
as M1 is learned from k = 2 experimental data. For k > 2, M2 performs better. Figure 3.21
shows data distributions for all k = 2 and Figure 3.22 shows data distributions for all k = 4.

B.1.8 Temporal Comparisons of Distributions Between Models
M1, M2 and Experiments for Individual Variables.

This section shows the temporal analysis by minute of distributions between Models M1, M2
and Experiments for k = 2, 4, 6, 8. Each plot contains data over a time window, SubFigures
(a) the 0-1 minute, (b) the 1-2 minute, (c) the 2-3 minute, (d) the 3-4 minute, and (e) the 4-5
minute, of the 5-minute anagram game experiments (gray bars), compared to M2 predictions
(blue) for 100 simulations of an n = 10 player game. The model M1 is shown in red for
comparison. Figure B.17, B.22, B.27, and B.32 shows temporal analysis for the number of
replies received at the end of each minute for k = 2, 4, 6, 8 accordingly. Figure B.18, B.23,
B.28, and B.33 shows temporal analysis for the number of replies sent at the end of each
minute for k = 2, 4, 6, 8 accordingly. Figure B.19, B.24, B.29, and B.34 shows temporal
analysis for the number of requests received at the end of each minute for k = 2, 4, 6, 8
accordingly. Figure B.20, B.25, B.30, and B.35 shows temporal analysis for the number of
requests sent at the end of each minute for k = 2, 4, 6, 8 accordingly. Figure B.21, B.26,
B.31, and B.36 shows temporal analysis for the number of words formed at the end of each
minute for k = 2, 4, 6, 8 accordingly. M2 gives much better performance, as expected, as it
explicitly accounts for agent degree. As expected, M1 and M2 perform equally well for k = 2
as M1 is learned from k = 2 experimental data. For k > 2, M2 performs better.
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Figure B.15: ABM M1 and M2 predictions of the k = 6 experiments and experimental
data. (a) Distribution of replies received, (b) distribution of replies sent, (c) distribution
of requests received, (d) distribution of requests sent, and (e) distribution of words formed,
each at the end of the 5-minute anagram game (gray bars are experimental data) for all
k = 6 experiments, compared to M2 predictions (blue) for 100 simulations of an n = 10
player game. The model M1 predictions are shown in red for comparison. It is clear from
visual inspection that model M2 predictions are in better agreement with the experiment
data than are M1 predictions (with the exception of the words formed variable). We make
this comparison more precise using KL-divergence in Figure B.37.
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Figure B.16: ABM M1 and M2 predictions of the k = 8 experiments and experimental
data. (a) Distribution of replies received, (b) distribution of replies sent, (c) distribution
of requests received, (d) distribution of requests sent, and (e) distribution of words formed,
each at the end of the 5-minute anagram game (gray bars are experimental data) for all
k = 8 experiments, compared to M2 predictions (blue) for 100 simulations of an n = 10
player game. The model M1 predictions are shown in red for comparison. It is clear from
visual inspection that model M2 predictions are in better agreement with the experiment
data than are M1 predictions (with the exception of the words formed variable). We make
this comparison more precise using KL-divergence in Figure B.38.
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Figure B.17: ABM M1 and M2 predictions of the k = 2 experiments for the distributions of
letters replies received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The baseline model M1 is shown in red for comparison. These
plots show that for replies received, M1 and M2 perform equally well for k = 2 throughout
the five minute anagram games.
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Figure B.18: ABM M1 and M2 predictions of the k = 2 experiments for the distributions
of letters replies sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for replies sent Model M1 predictions are slightly better in minute 1, minute 2, minute
3, and minute 5 of the five minute anagram games.
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Figure B.19: ABM M1 and M2 predictions of the k = 2 experiments for the distributions of
letters requests received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for requests received Model M2 predictions are slightly better than M1 throughout the
five minute anagram games.
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Figure B.20: ABM M2 and M1 predictions of the k = 2 experiments for the distributions of
letters requests sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for requests received Model M1 predictions are slightly better than M2 throughout the
five minute anagram games.
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Figure B.21: ABM M1 and M2 predictions of the k = 2 experiments for the distributions of
words formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray
bars) for all k = 2 experiments, compared to M2 predictions (blue) for 100 simulations of
an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for words formed Model M1 predictions are slightly better than M2 throughout the five
minute anagram games.
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Figure B.22: ABM M1 and M2 predictions of the k = 4 experiments for the distributions of
letters replies received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 4 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The baseline model M1 is shown in red for comparison. These
plots show that for replies received Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.23: ABM M1 and M2 predictions of the k = 4 experiments for the distributions
of letters replies sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 4 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots
show that for replies sent Model M2 predictions are better than M1 (except for minute 3)
throughout the five minute anagram games.
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Figure B.24: ABM M1 and M2 predictions of the k = 4 experiments for the distributions
of letters requests received. Each plot contains data over a time window: (a) 0-1 minute,
(b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram
game (gray bars) for all k = 4 experiments, compared to M2 predictions (blue) for 100
simulations of an n = 10 player game. The model M1 is shown in red for comparison. These
plots show that for requests received Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.25: ABM M2 and M1 predictions of the k = 4 experiments for the distributions of
letters requests sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 4 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for requests sent Model M2 predictions are slighlty better than M1 throughout the five
minute anagram games.
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Figure B.26: ABM M1 and M2 predictions of the k = 4 experiments for the distributions of
words formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray
bars) for all k = 4 experiments, compared to M2 predictions (blue) for 100 simulations of
an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for words formed Model M2 predictions are better than M1 for minute 2, minute 4 and
minute 5 of the five minute anagram games.
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Figure B.27: ABM M1 and M2 predictions of the k = 6 experiments for the distributions of
letters replies received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 6 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The baseline model M1 is shown in red for comparison. These plots
show that for replies received most Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.28: ABM M1 and M2 predictions of the k = 6 experiments for the distributions
of letters replies sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 6 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for replies sent Model M2 predictions are better than M1 throughout the five minute
anagram games.
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Figure B.29: ABM M1 and M2 predictions of the k = 6 experiments for the distributions
of letters requests received. Each plot contains data over a time window: (a) 0-1 minute,
(b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram
game (gray bars) for all k = 6 experiments, compared to M2 predictions (blue) for 100
simulations of an n = 10 player game. The model M1 is shown in red for comparison. These
plots show that for requests received Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.30: ABM M2 and M1 predictions of the k = 6 experiments for the distributions of
letters requests sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 6 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for requests sent Model M2 predictions are better than M1 throughout the five minute
anagram games.
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Figure B.31: ABM M1 and M2 predictions of the k = 6 experiments for the distributions of
words formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray
bars) for all k = 6 experiments, compared to M2 predictions (blue) for 100 simulations of an
n = 10 player game. The model M1 is shown in red for comparison. These plots show that
for words formed, Model M2 predictions are better than M1 after the first two minutes of
the five minute anagram game.
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Figure B.32: ABM M1 and M2 predictions of the k = 8 experiments for the distributions of
letters replies received. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 8 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The baseline model M1 is shown in red for comparison. These
plots show that for replies received, Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.33: ABM M1 and M2 predictions of the k = 8 experiments for the distributions
of letters replies sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 8 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots
show that for replies received Model M2 predictions are better than M1 throughout the five
minute anagram games.
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Figure B.34: ABM M1 and M2 predictions of the k = 8 experiments for the distributions
of letters requests received. Each plot contains data over a time window: (a) 0-1 minute,
(b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram
game (gray bars) for all k = 8 experiments, compared to M2 predictions (blue) for 100
simulations of an n = 10 player game. The model M1 is shown in red for comparison. These
plots show that for requests received, Model M2 predictions are better than M1 throughout
the five minute anagram games.
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Figure B.35: ABM M2 and M1 predictions of the k = 8 experiments for the distributions of
letters requests sent. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2
minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game
(gray bars) for all k = 8 experiments, compared to M2 predictions (blue) for 100 simulations
of an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for requests sent Model M2 predictions are better than M1 throughout the five minute
anagram games.
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Figure B.36: ABM M1 and M2 predictions of the k = 8 experiments for the distributions of
words formed. Each plot contains data over a time window: (a) 0-1 minute, (b) 1-2 minute,
(c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute anagram game (gray
bars) for all k = 8 experiments, compared to M2 predictions (blue) for 100 simulations of
an n = 10 player game. The model M1 is shown in red for comparison. These plots show
that for words formed, Model M2 predictions are better than M1 throughout the five minute
anagram games.

B.1.9 Comparisons of KL Divergence Distributions Between Mod-
els M1, M2 and Experiments for Individual Variables at the
End of the Anagram Game.

This sections shows the KL divergence values for comparing distributions of models M1 and
M2 outputs with corresponding distributions of experimental data, for the end of the five
minute anagram game. The models are M1 (red bars) and M2 (blue bars) and the data sets
used in comparison are for experiments with n = 10, with Figure B.37 experiments with
k = 6, and Figure B.38 experiments with k = 8. Figure 3.23 shows experiments with k = 2
and Figure 3.24 shows experiments with k = 4. For each experiment/model combination,
the variables (and hence distributions) compared are: number of replies received, number
of replies sent, number of requests received, number of requests sent, and number of words
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formed. Thus, there are 5 distributions and correspondingly 5 DKL values in each distribu-
tion. KL-divergence values for the baseline M1 and M2 models across the five parameters
of x are shown, lower values are better. Although M1 performs well for k = 2, M2 betters
M1 for k > 2, as M2 incorporates experimental data with 2 ≤ k ≤ 8. This improvement is
consistent among other x variables as shown in Figure 3.28.
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Figure B.37: The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 6 M1 and
M2 models predictions to the experiments across the five parameters of x: lower values are
better. This figure shows that M2 gives much better performance than M1 predicting the
time to generate an action for an agent. M2 gives much better performance, as expected, as
it explicitly accounts for agent degree.
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Figure B.38: The plot shows on the x axis KL-divergence values for the M1 and M2 models
predictions at the end of the 5 minute anagram game. Here we compare k = 8 M1 and
M2 models predictions to the experiments across the five parameters of x: lower values are
better. This figure shows that M2 gives much better performance than M1 predicting the
time to generate an action for an agent. M2 gives much better performance, as expected, as
it explicitly accounts for agent degree.
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B.1.10 Temporal Comparisons of KL Divergence Distributions
Between Models M1 and M2, and Experiments for Indi-
vidual Player Actions.

This section shows the temporal KL-divergence values for the model M1 and M2 predictions
across the five parameters of x. Lower values are better. Figure B.39 shows k = 6 experi-
ments, and Figure B.40 shows k = 8 experiments. Figure 3.25 shows k = 2 experiments, and
Figure 3.26 shows k = 4 experiments. Each plot contains data over a time window: (a) 0-1
minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and (e) 4-5 minute, of the 5-minute
anagram game. It is clear from visual inspection that model M2 predictions are in better
agreement with the experiment data than are M1 predictions for k > 2.
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(c) 2-3 minute
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(d) 3-4 minute
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Figure B.39: KL-divergence values for the Models M1 and M2 predictions of the k = 6
experiments across the five parameters of x: lower values are better. Each plot contains data
over a time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute, and
(e) 4-5 minute, of the 5-minute anagram game. M2 gives much better performance than M1
predicting the time to generate an action for an agent after the minute two. M2 gives much
better performance, as expected, as it explicitly accounts for agent degree.

B.1.11 Temporal Comparisons of KL Divergence Values Between
Models M0, M1 and M2, and Experiments by k.
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(a) 0-1 minute
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(b) 1-2 minute
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(c) 2-3 minute
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(d) 3-4 minute
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Figure B.40: KL-divergence values for the Models M1 and M2 predictions of the k = 8
experiments across the five parameters of x: lower values are better. Each plot contains
data over a time window: (a) 0-1 minute, (b) 1-2 minute, (c) 2-3 minute, (d) 3-4 minute,
and (e) 4-5 minute, of the 5-minute anagram game. M2 gives much better performance than
M1 predicting the time to generate an action for an agent after the minute three. M2 gives
much better performance, as expected, as it explicitly accounts for agent degree.
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Figure B.41: KLD values from the comparison of models M0 (Baseline), M1, M2, versus
the experimental data. On the x axis we show the anagram game by the minute of the five
minute game (i.e. [0-1), [1-2), [2-3), [3-4), [4-5)). Each box, by type of k, contains five values
of KLD corresponding to the five x variables at the end of each minute. Our models show
highest median values on the first two minutes of the game.


