
Synthesizing Realistic Data for Vision Based Drone-to-Drone
Detection

Sudha Ravali Yellapantula

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Ryan K. Williams, Chair

Pratap Tokekar

A. Lynn Abbott

June 17, 2019

Blacksburg, Virginia

Keywords: GANs, Deep Learning, Object Detection

Copyright 2019, Sudha Ravali Yellapantula

Synthesizing Realistic Data for Vision Based Drone-to-Drone
Detection

Sudha Ravali Yellapantula

(ABSTRACT)

In the thesis, we aimed at building a robust UAV(drone) detection algorithm through which,

one drone could detect another drone in flight. Though this was a straight forward object

detection problem, the biggest challenge we faced for drone detection is the limited amount

of drone images for training. To address this issue, we used Generative Adversarial Net-

works, CycleGAN to be precise, for the generation of realistic looking fake images which

were indistinguishable from real data. CycleGAN is a classic example of Image to Image

Translation technique, and we applied this in our situation where synthetic images from

one domain were transformed into another domain, containing real data. The model, once

trained, was capable of generating realistic looking images from synthetic data without the

presence of real images. Following this, we employed a state of the art object detection

model, YOLO(You Only Look Once), to build a Drone Detection model that was trained on

the generated images. Finally, the performance of this model was compared against different

datasets in order to evaluate its performance.

Synthesizing Realistic Data for Vision Based Drone-to-Drone
Detection

Sudha Ravali Yellapantula

(GENERAL AUDIENCE ABSTRACT)

In the recent years, technologies like Deep Learning and Machine Learning have seen many

rapid developments. Among the many applications they have, object detection is one of the

widely used application and well established problems. In our thesis, we deal with a scenario

where we have a swarm of drones and our aim is for one drone to recognize another drone

in it’s field of vision. As there was no drone image dataset readily available, we explored

different ways of generating realistic data to address this issue. Finally, we proposed a

solution to generate realistic images using Deep Learning techniques and trained an object

detection model on it where we evaluated how well it has performed against other models.

Dedication

To Mom and Dad. This is for you and I love you the most.

iv

Acknowledgments

Firstly, I would like to express my sincere gratitude towards my advisor, Dr. Ryan Williams

for his constant support and his belief in me. I would like to use this opportunity to thank

him for his guidance, unmatched encouragement and the patience he has shown throughout

this time. His passion towards his work has always inspired me and it will continue to do

so. He taught me that it was important to love the work you do and I could not have asked

for a better advisor.

I would like to thank Dr. Pratap Tokekar and Dr. Lynn Abbott for being on my ad-

vising committee and providing their support and feedback. I am grateful to Dr. Tokekar

for being my interim advisor and guiding me in the beginning of my graduate education.

I would like to thank my lab members - Larkin, Pratik, Gavin and Jun for their help and

support in my work. I would like to give a special acknowledgment to Daniel Monzel, for

his invaluable help and expertise.

I would like to thank my friends, Pranavi, Yamini, Naina, Prashant, Vikram and Sourabh

for being there for me and sharing this amazing journey for the past two years. Vignendra

Jannela, thank you for your support, inspiration and humor from the time I’ve known you.

Most importantly, I would like to thank my parents for all the love, sacrifice and under-

standing they have shown since I can remember. I would also like to thank my Brother,

Sister-in-law and Milo for making sure that I could count on them at anytime.

v

Contents

List of Figures ix

1 Introduction to the Problem 1

1.1 Motivation . 1

1.2 Thesis Outline . 3

2 Preliminaries and Related Work 5

2.1 Neural Networks . 5

2.1.1 Activation Function . 6

2.1.2 Back Propagation . 7

2.1.3 Normalization . 8

2.2 Convolutional Neural Networks . 10

2.2.1 Stride . 10

2.2.2 Pooling . 11

2.3 Supervised and Unsupervised Learning . 11

2.4 Generative Adversarial Networks . 12

2.5 Related Work . 15

3 Solution Pipeline 17

vi

3.1 CycleGAN . 17

3.1.1 Motivation . 17

3.1.2 Data Collection . 18

3.1.3 Algorithm . 19

3.1.4 Role of Generators . 21

3.1.5 Role of Discriminators . 22

3.1.6 Network Architecture . 25

3.1.7 Generator Architecture . 26

3.1.8 Discriminator Architecture . 28

3.2 Object Detection : YOLO . 35

3.2.1 Introduction . 35

3.2.2 Working of YOLO Algorithm . 36

3.2.3 Loss Function . 41

3.2.4 Evaluation metrics . 43

3.2.5 IoU (Intersection over Union) . 44

3.2.6 Precision . 45

3.2.7 Recall . 45

3.2.8 mAP (Mean Average Precision) . 47

4 Experiments and Results 49

vii

4.1 CycleGAN Experiments and Results . 49

4.2 YOLO results and Experiments . 53

4.2.1 Results on Synthetic Dataset . 53

4.2.2 Results on Real Dataset . 54

4.2.3 Results on Fake Dataset from CycleGAN 55

4.2.4 Results on Mixed Dataset . 57

4.2.5 Final Detections with Bounding Box 59

5 Conclusions and Future Work 61

5.1 Observations . 63

Bibliography 64

viii

List of Figures

2.1 Operations in a neural network[1] . 6

2.2 A few of the widely used activation functions [2] 7

2.3 Mathematical Representations of different Loss Functions [2] 8

2.4 Mathematical Representation for Bath Normalization. Mean (µi) and Vari-

ance (σ2
i), values are computed as above, where T is the Batch Size, H is the

height and W is the width[3]. 9

2.5 Mathematical Representation for Instance Normalization. Mean (µi) and

Variance (σ2
i), values are computed as above, H is the height and W is the

width [3]. 9

2.6 The process of convolution with a 3x3 filer [4] 10

2.7 Types of Pooling Layers [5] . 11

2.8 Working of Generative Adversarial Networks [6] 13

3.1 High Level working of the CycleGAN [7] . 21

3.2 Illustration of Forward cyclic loss[8] . 24

3.3 Illustration of Backward cyclic loss[8] . 24

3.4 Illustration of the working of CycleGAN [9] 26

ix

3.5 The convolutional layers have the kernal size of 3x3 respectively. Here k

represents the kernel size, f represents the number of filters, and s describes

the stride value. The above architecture is for the image size of 256x256 and

its consists of nine residual blocks. 27

3.6 ResNet Architecture [10] . 28

3.7 This is the PathGAN Discriminator Architecture. The filter size is 4x4, ”s”

denotes the stride value and ”f” is the number of filters used. The input to it

is an image and the output is the decision weather the input image is fake or

real. 29

3.8 A few images from the Real Dataset . 31

3.9 A few images from the Synthetic Dataset . 32

3.10 In our case, the next step in the pipeline is to obtain the generated images

from the CycleGAN, and use these images to train the drone detection model.

The algorithm that we chose for this purpose is YOLO, i.e., You Only Look

Once Algorithm which is explained in the next section. 34

3.11 As described in the figure above, the YOLO algorithm first divides the image

into an N x N grid first. With each grid is associated a feature map, which

talks about all the classes it has identified, the bounding box coordinates and

the its corresponding confidence scores. The above image is that of a 19 x

19 grid and each cell has the capability of predicting 5 bounding boxes each,

which would sum upto a total of 1805 bounding boxes for one image. [11] . 37

3.12 Bounding box representation [12] . 38

3.13 Presence of Multiple Bounding Boxes before Non Max Suppression[13] . . . 39

x

3.14 Network Architecture of YOLOv3 [14] . 41

3.15 Representation of IoU[15] . 44

3.16 Relationship between the bounding boxes and IoU values[16] 45

3.17 Precision[15] . 46

3.18 Recall[15] . 46

3.19 Calculation of Precision and recall Values [17] 47

4.1 Results after 5 epochs . 50

4.2 Results after 20 epochs . 50

4.3 Results after 50 epochs . 51

4.4 Results after 100 epochs . 51

4.5 A few more generated images from CycleGAN are to the left, whereas their

corresponding counter part synthetic images are to the right. In the above

pictures, the transformation of images from one domain to another are seen

clearly. 52

4.6 Loss Curve obtained during training process for Synthetic Dataset 54

4.7 Loss Curve obtained during training process for Real Dataset 55

4.8 Loss Curve obtained during training process for Fake Dataset 56

4.9 Loss Curve obtained during training process for Mixed Dataset 57

4.10 Results of different validation datasets on the Object Detction Model 58

4.11 Performance of various models on the Test Dataset 58

xi

4.12 P-R Curves of all models on the Test Dataset. On Y-axis Precision values are

plotted from 0 to 1 whereas on the X-axis, Recal values are plotted from 0 to 1 59

4.13 A few results from the object detection model 60

xii

Chapter 1

Introduction to the Problem

1.1 Motivation

In the recent years, there have been rapid technological advancements in the fields of Deep

Learning and Computer Vision. Among these, object detection is one such application that

is pervasive in almost every practical application that involves vision. We deal with one such

application where we have multiple agents who are tying to interact and coordinate with one

another. To be precise, in our scenario, we have a swarm of drones where one drone is trying

to interact with another drone in it’s field of vision. In order to accomplish this, the first

step in the process is to locate where a drone is in the field of vision of another drone. The

solution to this problem seemed to be an object detection algorithm, to be more precise, a

drone detection algorithm in the initial glance.

The current model we have takes the help of April tags[18] to approach this problem. A

unique April tag was assigned to every drone in the network. This process used traditional

Machine Learning techniques as opposed to the more advanced Deep Learning techniques.

The model gave good results in under laboratory settings where there was uniform light

distribution, no sudden movements and the clarity and position of the camera maintained.

This was a good sign, but this approach failed to match up to these standards in the real

world environment. The main reasons behind this digression of behaviour were observed to

1

2 Chapter 1. Introduction to the Problem

be unequal distribution of light on and around the drone surfaces, blurriness of the images

while trying to capture the scene, inability of the April tags to be stationary without any

movement due to their flimsy structure, etc.

These were the problems faced by the current model and this helped us realize that us-

ing traditional methods alone to solve this problem was not enough. We realized that to

detect a new object like drone, it was necessary to rely on sources like the Deep Learn-

ing methods. It was expected that an object like a UAV that resembles our drone, is a

hard object class to find in the pre-trained object detection datasets like COCO etc. This

meant that there is an additional task of Data Collection to be handled before tackling the

problem of Object Detection. There was a paper earlier on Drone Monitoring[19], but we

realized that they collected a lot of data through videos to train the drone detection systems

but end result and the type of data required was different in both the cases as they have

used base station to collect the drone videos. Since there is no ready to use Drone dataset

out there, it meant that we have to generate our own data for the later stages in the pipeline.

In order to minimize the human involvement and to achieve the baseline results as to what

to expect, the object detection model was first tried out on a Synthetic dataset. We used

one of the state of the art detection algorithms like YOLO(You Only Look Once)[20] for

the detection purpose. The Synthetic dataset consisted of 3D rendered images of our Drone

model (DJI Matrice 100) in the background that resembled the place we usually conduct

our experiments with drones. The accuracy of the results were about 6 percent, which was

not a good enough value that we expect our final model to have. This meant that realistic

images were required for the purpose of building a custom drone detection model. One way

to collect real images include flying two drones in order to obtain videos of the drone in

flight, followed by converting it into images which should be cropped close enough to see the

1.2. Thesis Outline 3

drone clearly. All of the above steps take a lot of time and resources, and obtaining a huge

number of images from the above method is not an easy solution.

Generation of a large number of images is not a difficult task for Generative Adversarial

Networks[21]. Recent advancements in this field gave rise to GANs which could produce

images using Image to Image translation techniques. This was a better alternative to choose

from in order to generate any number of different realistic looking images while greatly reduc-

ing the human effort. CycleGANs[8] were chosen for this purpose of generation of realistic

data. The CycleGAN uses both Real and Synthetic datasets for the model to learn the distri-

bution of each and convert images of one domain to another. Once the model is trained, we

would only need synthetic images, images which are rendered through a 3D model, to obtain

the realistic looking images that we use as the dataset for the Object Detection purpose.

This is the proposed completely Deep Learning based solution to the problem, and through

our experiments, we aimed to see if the real data could be supplemented by fake data.

1.2 Thesis Outline

The thesis is organized into five chapters.

In the chapter, ”Preliminaries and Related Work”, the basic introduction to the concepts

that were made use of in this process is discussed along with the previous work that has

been done in the same domain.

In the chapter, ”Solution Pipeline”, the proposed solution is explained which begins with

the explanation as to why CycleGAN was chosen and how it works. Following this, we

4 Chapter 1. Introduction to the Problem

discussed how we integrated the results obtained from this process with the YOLO Object

Detection Model. The working of YOLO is described in detail along with the metrics chosen

to evaluate results from different datasets.

In the final chapter, ”Experiments and Results”, all the experiments conducted are discussed

in detail. The results are tabulated and the observations made are listed.

The thesis is concluded with the conclusions drawn and observations made in the experiments

and including the scope for future work.

Chapter 2

Preliminaries and Related Work

2.1 Neural Networks

Today, Deep Learning[22] is becoming responsible for producing one of the most advanced

artificially intelligent systems we have in our world. Deep Learning is a specialized branch in

Machine Learning and is surfacing to be one of the most sought out fields in Computer and

Cognitive Science. The neural networks[23] are the building blocks of Deep Learning. These

are essentially a huge collection of interconnected nodes with computing abilities which are

densely connected. The nodes are stacked up into layers and together, they help in the for-

mation of directed graph which is a neural network. The working of the neural network can

be explained with an example, where a node in a certain later receives and computes data

from several interconnected nodes in the previous layer, and sends the computed information

to the nodes in the above layer.

By now, it can be understood how the neurons are the fundamental units of the neural

network. To be precise, in Machine Learning, the node receives a certain number of values

and bias as input. These input values are multiplied by the weights associated with them

and is given to the output node along with the bias. This can be understood in a better way

with the help of the diagram 2.1.

5

6 Chapter 2. Preliminaries and Related Work

Figure 2.1: Operations in a neural network[1]

In the figure 2.1, it can be seen how each connection holds a certain weight and this get

multiplied to the signal values in the following way. In the diagram, it can be seen that the

output of the node is written as g(z), which is known as the activation function. Since it is

an output layer, let us assume this activation function to be sigmoid function which can be

written as :

g(z) = 1

1 + e−z
(2.1)

Here b is called the bias or the offset value and is almost always set to 1. This is useful to

maintain the activation of the neuron even when all the input signals are 0.

Some of the important concepts of neural networks that we would use are listed as follows:

2.1.1 Activation Function

While building the neural networks, we can choose the kind of activation function[24] we

want to assign to different hidden layers in the network. The function g(z) in the equation

2.1. Neural Networks 7

1.1 is one such example of an activation function. The main purpose of using this activa-

tion function is so that non-linearity is introduced in the neural networks and the values

are readjusted to a smaller range. In this way, depending on the threshold set, it can be

concluded in a better way, if the neuron could be ”fired”, i.e., activated or not. There are

different kinds of activation functions available, including sigmoid, tanh, ReLu etc.

Mostly, ReLu functions are used in the hidden layers and sigmoid function is used in the

output layer due to their output range. Some of the activation functions can be represented

as in the figure 2.2.

Figure 2.2: A few of the widely used activation functions [2]

2.1.2 Back Propagation

When we arrive at the output layer of the neural network, we use loss function to see what

the value of the error turned out to be. This is done by comparing the predicted value to that

of the actual value that we expect. A few of the commonly used loss functions include sum

of squares, Binary Cross-Entropy function[25], etc. They can be represented mathematically

8 Chapter 2. Preliminaries and Related Work

as seen in the figure 2.3.

Figure 2.3: Mathematical Representations of different Loss Functions [2]

The next step here is to calculate the derivative of this error value with respect to each

weight in the existing neural network. To achieve this, Chain Rule of Differential Calculus is

applied where the derivatives of the errors with respect to the values of the weights are ap-

plied to the final layer. These derivatives are known as gradient descents and these gradients

are used to calculate the gradients of the earlier layers. This process continues till gradients

of all the weights in the neural network are obtained after which the gradient value is sub-

tracted from the weights. In this way, we use back propagation to obtain smaller error values.

2.1.3 Normalization

Normalization helps in bringing all the features in the model to a similar scale, which in turn

helps in obtaining a more symmetric, circular cost function rather than an elongated, ellipti-

cal cost function that could have formed had the features not been normalized. This process

helps in accelerating the training process by decreasing the number of steps for gradient

descent to reach the local minima faster, thus eliminating the need to use smaller learning

rate and improving it’s speed.

2.1. Neural Networks 9

One of the most widely used normalization methods is Batch normalization[26]. As the

name suggests, this kind of normalization involves normalizing the inputs from the whole

batch at a time and tries to limit the mean and variance values of the batch lie between 0

and 1.

Figure 2.4: Mathematical Representation for Bath Normalization. Mean (µi) and Variance
(σ2

i), values are computed as above, where T is the Batch Size, H is the height and W is the
width[3].

The other kind of normalization technique that has proven to work well with Generative

Adversarial Networks for Style Transfer applications is Instance Normalization[3]. This

works a lot like Batch normalization, but instead normalizing the whole batch at once, it

normalizes each of them individually.

Figure 2.5: Mathematical Representation for Instance Normalization. Mean (µi) and Vari-
ance (σ2

i), values are computed as above, H is the height and W is the width [3].

10 Chapter 2. Preliminaries and Related Work

2.2 Convolutional Neural Networks

Convolutional neural networks[27] are a specific type of neural networks whose applications

mostly lie in the field of computer vision. The input to the convolutional layers is almost

always an image. Convolutional Neural Networks, most commonly known as CNNs use a

smaller kernel or filter that is convolved with the image. In each step, the dot product of

the corresponding cells of the image and the filter are computed and these values become

the part of the feature map of the particular filter. The weights of this filter act as the

parameters we plan to learn when a CNN is trained. Pictorial representation of it can be

seen in the figure 2.6.

Figure 2.6: The process of convolution with a 3x3 filer [4]

2.2.1 Stride

In regular convolutions, the usual scenario is when a filter is applied and moved one step

at a time on the previous feature map. In the above described case, the stride is 1 as only

one step is taken incremented by the filter at a time. Therefore, stride can be defined as the

number of pixels moved by the filter at each step. As the value of the stride increases, the

size of the output keeps on decreasing proportionally.

2.3. Supervised and Unsupervised Learning 11

2.2.2 Pooling

Pooling[28] layers are a different kind of layers used to reduce the size of the representation

so that the process can be speeded up. There are two different types of pooling, namely Max

Pooling and Average Pooling. In Max Pooling, each feature map of the input is operated

by the pooling layer individually and the maximum value is passed as the output, whereas

in Average Pooling, the average of the values is passed out as the output. Max Pooling is

mostly used in most of the CNNs. Different kinds of Pooling are pictorially represented in

the figure 2.7.

Figure 2.7: Types of Pooling Layers [5]

2.3 Supervised and Unsupervised Learning

Supervised learning is when we provide the model with input and want to map it to output

labels or continuous output, as in the case of classification and regression respectively. In

12 Chapter 2. Preliminaries and Related Work

simpler words, it is the learning with input variables (x) and output variables (Y), and also

makes use of an algorithm to learn the mapping from the input to the output and expects

the model to learn and apply the transformation accurately when new input is given to it.

Object classification is a good example to demonstrate Supervised Learning, as the training

process learns the mapping using both the input and output values. Once trained, it tries

to apply this learned mapping on to new examples.

In Unsupervised Learning[29], the model is given only input data and doesn’t have any

output data to map to. The main aim of Unsupervised Learning is for the model to learn

the inherent structure or the distribution of the input data and apply it to the new un-

seen data once trained. The term ”unsupervised” is used as there is no mapping involved

and the output has no correct answer. The algorithms or models are left to learn the re-

quired distribution by themselves and make their decisions on how to discover and interpret

the structure within the data. Examples of algorithms that use Unsupervised Learning are

Clustering, Auto-encoders[30], Generative Adversarial Networks[21], etc.

2.4 Generative Adversarial Networks

Generative Adversarial Networks[21] is a type of Machine learning model that is an example

of Unsupervised Learning. Generative Adversarial Networks consists mainly of two deep

neural networks, namely, the Generator network and the Discriminator network. These two

networks are pitted against each other, and hence the term ”Adversarial” is used.

One of the most impressive characteristics of Generative Adversarial Networks, i.e., GANs is

that they can mimic the distribution of the data they were provided as part of the training

2.4. Generative Adversarial Networks 13

process. The Generator network creates new data instances, image instances in our case,

whereas the Discriminator has to predict weather it is real or fake, i.e., if it is a sample from

the original data or if it is generated by the Generator network. GANs output 0 for what

they think is a fake image and 1 for a real image.

In traditional GANs, the Generator network learns how to map from a random latent distri-

bution to the image distribution that resembles the training data. The discriminator which

has access to the real data, makes a call whether the sample it receives is a generated one

or is from the training data. Back propagation is applied to both the deep neural networks

so that the Generator can produce better samples to fool the discriminator while the Dis-

criminator can distinguish in a better way the fake image from the real one, i.e., generator’s

output to that of the real sample.

Figure 2.8: Working of Generative Adversarial Networks [6]

14 Chapter 2. Preliminaries and Related Work

Here, both the Generator and the Discriminator play a mini-max game where the Gen-

erator tries to increase the error rate of the Discriminator by tricking it into believing that

the samples are from the Generator while the Discriminator tries to reduce the same error

rate. The worst case input for one networks is generated by the other network, and the ad-

versarial training process includes the networks being trained on their worst case inputs. The

cost function of the Discriminator and Generator can be seen in the following equations[21].

J (D) = −1

2
Ex∼p data logD(x)− 1

2
Ez log(1−D(G(z))) (2.2)

J (G) = −1

2
Ez logD(G(z)) (2.3)

In the above equations, the Discriminator tries to minimize it’s error rate D(G(z)) whereas

the Generator tries to maximize the same log probability of the Discriminator being mistaken.

Mode Collapse is a phenomenon when a GAN is no longer able to generate all modes of image

distribution as that target data. This happens when there is an image which minimizes the

loss for the Generator and tricks the Discriminator, the Generator instead of going to different

mode may learn to map every input to that point alone. This phenomenon can be detected

when the output images all look the same instead of having varied distributions. This can

be mitigated upto an extent using Mini-batch features approach described by Salimans et al

2016[31].

2.5. Related Work 15

2.5 Related Work

The first stage of our proposed solution is to generate realistic looking images from the syn-

thetic images generated through the 3D model that shares a similar background to our real

images. Using conventional methods like DCGAN[29] was one of the approaches we wanted

to try in the beginning but we later realized that DCGAN could not possibly help us over

the issue of generating realistic images in different angles we aimed for, and neither is it

robust enough to generate diverse range and number of images we desired to obtain through

the GAN for the purpose of object detection in the later stages.

Though the initial instinct would have been to use a Generative Adversarial Networks,

there have been many improvements in this field that pushed us to look at more advanced

GANs that were capable of producing realistic images with better resolution. The final ap-

proach chosen, CycleGAN, build on the algorithm pix2pix which uses conditional generative

adversarial networks to map the images from the input to the output. But CycleGAN was a

more suitable approach to our problem as pix2pix[32] required paired training images in the

corresponding datasets unlike CycleGAN which can learn from unpaired training examples.

Other developments in the field of Image Translation using GANs include CoGAN[33] which

uses weight-sharing[34] technique in order to learn similar representations present across

both the domains. Another interesting algorithm is SimGAN[35] which successfully gener-

ates realistic looking images from the synthetic refined images, much like our task here but

it also relies on the input and output image data[35], [36], [37] to share specific content and

use additional terms like class label space, image pixel space etc, which makes it harder to

work with. CycleGAN does not have any of the constraints mentioned above and is also

robust enough to generate as a huge number of images without facing the phenomenon of

16 Chapter 2. Preliminaries and Related Work

mode collapse easily.

Drone Detection problems and related questions[38] has been previously addressed before

by researchers from University of Southern California[19] and few other universities[39], [40].

But all of them have made their own custom dataset and applied it on different object detec-

tion models according to their requirements and needs. They all have obtained the data for

the training using some base station as reference which is a different viewpoint from what

we wanted for our experiments. For our use case, we for the first time have supplemented

real data with fake data for the purpose of drone detection.

Chapter 3

Solution Pipeline

In this chapter, the entire pipeline of the proposed solution is discussed which is condensed

into two parts. The first part talks about choosing the appropriate method for the generation

of realistic data, it’s network architecture, the working of the algorithm etc. The second part

of it deals with the downstream task of object detection, where we discuss reasons as to why

the algorithm was chosen, working mechanism that it employs etc.

3.1 CycleGAN

3.1.1 Motivation

In this section, we discuss the reason for choosing CycleGAN for the purpose of generat-

ing realistic looking images. In the recent times, we have seen how Generative Adversarial

Networks have successfully been applied to problems such as Style Transfer[41],[42], [43]

Image-to-Image translation, which is a class of vision and graphics problems where the goal

is to learn the mapping between an input image and an output image using a training set

of aligned image pairs. Unlike the previous approaches discussed in the earlier chapter, the

CycleGAN formulation does not rely on any predefined similarity function between the in-

put and output, nor do it place any restrictions on the data that they must lie in a same

low dimensional embedding space. All of the mentioned reasons, along with the fact that

17

18 Chapter 3. Solution Pipeline

CycleGAN uses unpaired training data makes it a very practical solution.

After a lot of research and examining the problem at hand closely, we have decided that

in order to generate a number of realistic looking images, we need to have two datasets.

One consisting of synthetic images rendered from the 3D Model and the other dataset that

consists of real images from which synthetic images can learn the image distribution from.

For this type of architecture, Image to Image translation is the most ideal approach where

image distribution in one domain can be translated to image distribution in another domain.

In the recent years, there have been dozens of papers on this concept but all of them re-

quired paired dataset of two different kinds, this meant that there should be pixel to pixel

correspondence between the two datasets . This kind of data is hard to obtain and often is

very small in number and obtaining this kind of paired data for this application is almost

impossible.

As a solution, we are modifying CycleGAN which is one of the few algorithms where image

distribution can be learnt between two datasets, one consisting of synthetic images and one

consisting on the real images without the requirement of paired dataset. Our main focus

is for the simulated images to learn from the real image distribution. The job of the dis-

criminator is to differentiate the real image from the generated one and add realism to the

synthetic so as to trick the discriminator.

3.1.2 Data Collection

To obtain images for the Real dataset, images are first gathered from the video taken by one

drone capturing another drone in flight. The second drone was ripped off of all the extra

circuits, to maintain resemblance between the 3D model and the actual drone. We mounted

3.1. CycleGAN 19

a GoPro 7 camera on one of the drones and used it to collect the necessary data. Later these

pictures are zoomed in and cropped so as to get the close up images of the drone. All the

drone images obtained had very similar background of the drone cage where we conducted

our experiments. We collected around 3000 such images for the preparation of this dataset.

To obtain images for the synthetic dataset, we have chosen to render images from a 3D

Drone Model that was purchased online. The 3D model is of the drone, DJI Matrice 100

which is the exact drone model we used to conduct our experiments. Efforts were made to

edit the 3D model for it to look very similar to the actual drone we were using. The images

from the 3D model were rendered using the Autodesk Maya software. The camera was set

up in such a way that it could capture the drone in a 360 degree circle using a turntable

animation. This was done at different elevation angles so that we had pictures of the drone

at various angles and positions. The background image used was HDRI in nature so that

realistic illumination conditions could be produced. The background in the synthetic images

is intentionally kept similar to the background we see in images of the real dataset so that

CycleGAN model does not have to put in a lot of effort in translating the real image distri-

bution to the images in the synthetic domain. Around 3000 such images were generated to

make this dataset.

3.1.3 Algorithm

CycleGAN is a Generative Adversarial Network that is designed for image-to-image trans-

lation of unpaired images, where the main objective is to translate images from one source

domain X to another target domain Y. The main objective for this algorithm is to learn the

mapping between two image collections, rather than between two specific images, by trying

to capture correspondences between higher-level appearance structures.

20 Chapter 3. Solution Pipeline

The goal is to learn a mapping G : X→Y , such that the distribution of images from G(X)

is indistinguishable from the distribution Y using an adversarial loss. Because this mapping

is highly under-constrained, we couple it with an inverse mapping F : Y →X and introduce

a cycle consistency loss to enforce F (G(X)) ≈ X (and vice versa).

The CycleGAN architecture consists of two Generative Adversarial Networks, one for trans-

lating from domain X to Y and another for translating from domains Y to X. The model

consists of two mapping functions through the generators :

GX : X → Y (3.1)

and

FY : Y → X (3.2)

Along with the generators, there exist two adversarial discriminators of the two GANs,

namely, DX and DY , where DX aims to distinguish between images {x} and translated

images {F (y)}; in the same way, DY aims to discriminate between {y} and {G(x)}. These

can be represented with the below functions :

DX : X → R (3.3)

and

DY : Y → R (3.4)

3.1. CycleGAN 21

Figure 3.1: High Level working of the CycleGAN [7]

3.1.4 Role of Generators

The generator GX maps the images from domain X to domain Y. The images generated by

GX are mapped back to the original domain by FY . The other generator FY should make

sure that the image generated by it should accurately represent the original image that was

the input of GX . Here the concept of the cycle-consistency loss is introduced[35] which helps

in minimizing and optimizing the distance between the actual input image given and the

regenerated or reconstructed input image.

22 Chapter 3. Solution Pipeline

3.1.5 Role of Discriminators

The discriminator DX encourages the generator, GX to translate images from domain X to

produce outputs that can not be distinguished from domain Y, and vice versa. The role of

the discriminator DX is to discriminate between the images of the domain X and translated

images F (Y).

There are mainly two types of losses we encounter, adversarial loss and cycle consistency

loss. Adversarial losses is used for matching the distribution of generated images to the

data distribution in the target domain; and cycle consistency losses to prevent the learned

mappings G and F from contradicting each other.

Adversarial Loss for the Generator X [44], GX can be defined as :

L GAN (G,DY , X, Y) = Ey∼p data (y) [logDY (y)] +Ex∼p data (x) [log (1−DY (G(x))] (3.5)

where Ey∼p data (y) [logDY (y)] is the loss obtained for the original images from the domain

Y and Ex∼p data (x) [log (1−DY (G(x))] is the loss for corresponding to the fake generated

images produced by generator GX .

In this case, the generator, GX tries to generate images G(X) which share similarity to

the images corresponding to the domain Y , while DY focuses on discriminating between

the transformed images G(X) and real samples y. In a nutshell, the generator, GX tries

to minimize this objective against the adversary DY that tries to maximize it, using the

function minG maxDY
L GAN (G,DY , X, Y), thus playing a minimax game amongnst them.

3.1. CycleGAN 23

In the same way. a similar loss function can be calculated for the other generator FY and

minF maxDX
LGAN (F,DX , Y,X).

It is known that adversarial training can make it possible to learn mappings G and F from

their respective domains, and can also generate images which are as identically distributed

as the original domains X and Y. Even when this is the usual scenario, with a huge capacity,

it is possible for the model to map one input image or a set of input images to any random

permutation or combination of images in the respective target domain, where any trained

learned mappings can produce an output image distribution which is similar to required

target domain distribution.

Because of the above reason, it can be safe to say that adversarial losses alone cannot ensure

that a learned network can map a single image xi in the domain X to a similar looking image

in the domain Y to produce the respective image yi. To further overcome and reduce the

space of other possible image mapping functions, it was argued that the learned mapping

functions should be cycle-consistent.

The concept of cycle-consistency can be explained through the following pictures where

a for particular image xi of domain X, where mappings G and F are applied consecutively

on in, i.e., when image translation cycle is applied the original image xi will be produced.

Mathematically, this can also be understood as : x → G(x) → F (G(x)) ≈ x. This was

called forward cycle consistency. This can be observed in the figure 3.2.

Similarly the illustrated figure 3.3 shows that for every image in the domain Y, G and F map-

pings must also satisfy the backward cycle consistency law where y → F (y) → G(F (y)) ≈ y.

24 Chapter 3. Solution Pipeline

Figure 3.2: Illustration of Forward cyclic loss[8]

Figure 3.3: Illustration of Backward cyclic loss[8]

This cycle consistency loss can be mathematically represented as :

L cyc (G,F) = Ex∼p data (x) [∥F (G(x))− x∥1

+ Ey∼p data (y) [∥G(F (y))− y∥1]
(3.6)

The full objective function of CycleGAN can be written as :

L (G,F,DX , DY) = L GAN (G,DY , X, Y)

+ L GAN (F,DX , Y,X)

+ λL cyc (G,F)

(3.7)

3.1. CycleGAN 25

Where the relative significance of the above two objective functions is dictated or decided

by the value λ.

The CycleGAN is compared against the objectives that were formed by changing the full-

objective function, such as only taking into consideration the adversarial loss, or taking only

cycle-consistency loss into account etc. Studies showed that both the objectives or losses

have a crucial role in delivering the best quality results that were witnessed through Cy-

cleGAN. It was therefore concluded that both the objectives were an important part of the

objective function to get good results.

Apart from the above changes, it was also seen that training the CycleGAN in only one

direction did not produce good results. It was observed that when trained with the for-

ward loss alone like in the case of Generative Adversarial Network + forward Cycle-loss, i.e.,

Ex∼p data (x) [∥F (G(x))− x∥1], the training was not stable and often caused the problem of

mode-collapse, mainly in the direction that was not used for training, in this case, the back-

ward loss. Similarly results were observed when Generative Adversarial Network+Backward

cycle-loss were used, i.e., Ey∼p data (y) [∥G(F (y))− y∥1].

3.1.6 Network Architecture

In this section we will go over the architecture adopted for the Generator and Discriminator

in the CycleGAN model. In CycleGAN, two inputs are fed into each discriminator. One

input is the original image from domain X and the other image is the transformed image

through the generator X to Y. In both the cases, the role of the discriminator is to distinguish

if it is a real or a fake(generated) image so that it can trick the generator and recognize

images generated by it. At the same time, each Generator aims to generate images that

26 Chapter 3. Solution Pipeline

Figure 3.4: Illustration of the working of CycleGAN [9]

closely resemble images from the original domain. In this way, both the Generator and

Discriminator play this game to attain equilibrium so that the distribution of each generator

is that of the target domain distribution. This process can be seen in the figure 3.4.

3.1.7 Generator Architecture

The network architecture of the Generator network has been heavily inspired from Johnson

et al[41], who have displayed impressive results for their work involving Perceptual Losses

for Neural Style Transfer and Super-Resolution. The architecture of the generator can be

seen in the figure 3.5.

The architecture of CycleGAN comprises of layers that involve three levels of computa-

tion. The first level comprises of series of three convolutional layers which are used for

3.1. CycleGAN 27

Figure 3.5: The convolutional layers have the kernal size of 3x3 respectively. Here k repre-
sents the kernel size, f represents the number of filters, and s describes the stride value. The
above architecture is for the image size of 256x256 and its consists of nine residual blocks.

downsampling of images. The three layers help in extracting the image features, here the

representation size keeps decreasing while the number of channels keeps increasing. The re-

sulting activation is then passed to the next level, where it helps in transforming the features

from the input domain to the target domain. A series of nine connected residual blocks is

responsible for this transformation.

The resnet blocks comprise of ResNet layers[45] which come from Residual Networks. Each

of them consist of two convolution layers where the residual input is added to the output.

The intuition behind this is so that the performance of the ResNet block would not be worse

than the identity mapping as the availability of the input is always available. In this way,

the properties of the previous input layers is present for the future layers as well. They

try to retain the characteristics of input objects like size, shape etc in the output images so

that there won’t be any drastic deviations from the input images. Moreover, the residual

networks also help in alleviating the gradient vanishing problem for deep networks. The

28 Chapter 3. Solution Pipeline

Figure 3.6: ResNet Architecture [10]

architecture of the ResNet can be seen in the figure 3.6.

In the later stage, upsampling of the images is carried out to enlarge the representa-

tion size. Here two deconvolution layers are used to decode the transformed features to

obtain the final output image which would be of the same size as that of the input image.

This can be seen clearly in the figure 3.5. As the architecture of the generator network is

completely convolutional, it hence would be equipped to handle arbitrarily large input once

the model is trained.It should be noted that in the figure 3.5, every layer is followed by

instance normalization and a ReLU layer.

3.1.8 Discriminator Architecture

The architecture of the discriminator network has been adopted from PatchGAN[32], [46]

which was described in the pix2pix paper. In order to restrict attention to the structure in

local image patches, rather than classifying the whole image, PatchGAN only computes if

NxN patches of the images are real or fake. The PatchGAN discriminator are completely

3.1. CycleGAN 29

Figure 3.7: This is the PathGAN Discriminator Architecture. The filter size is 4x4, ”s”
denotes the stride value and ”f” is the number of filters used. The input to it is an image
and the output is the decision weather the input image is fake or real.

convolutional neural networks that just look at a patch of image, and determines the prob-

ability of the it being real or fake. The architecture of it can be seen in the figure 3.7.

This works computationally better as PatchGAN now has to deal with comparatively lesser

number of parameters and in a way, it is also faster than classifying the whole image. This

also is more effective and helps in giving better results as more focus can be put on high level

features like texture, etc. After testing it in various experiments, the authors determined

that 70x70 patch size was able to give the best results.

One training modification that needs attention is that the discriminator is trained on a

previous history of batch of generated images rather than just the previous generated image.

30 Chapter 3. Solution Pipeline

This is a technique first employed in the SimGAN paper[35] where they saw an improvement

in the stability of training. An image buffer of size 50 is used for this purpose that stores

the last 50 generated images to update the discriminator. The code for this method is used

from the publicly available official github repository [44].

After training the CycleGAN model with the two datasets as input, the model is now ready

to transform any number of images from Domain X to Domain Y. These images will look

quite similar to the target distribution which consists of real data.

3.1. CycleGAN 31

Figure 3.8: A few images from the Real Dataset

32 Chapter 3. Solution Pipeline

Figure 3.9: A few images from the Synthetic Dataset

Above are some of the sample images from Real dataset and Synthetic dataset. We aim

to transform synthetic data to look like real images so that we can obtain any number of

realistic looking images we want, from any perspective we choose.

3.1. CycleGAN 33

In our case, the next step in the pipeline is to obtain the generated images from the Cy-

cleGAN, and use these images to train the drone detection model. The algorithm that we

chose for this purpose is YOLO, i.e., You Only Look Once Algorithm which is explained in

the next section.

The entire pipeline of the complete process can be seen in the figure 3.10.

34 Chapter 3. Solution Pipeline

Figure 3.10: In our case, the next step in the pipeline is to obtain the generated images from
the CycleGAN, and use these images to train the drone detection model. The algorithm that
we chose for this purpose is YOLO, i.e., You Only Look Once Algorithm which is explained
in the next section.

3.2. Object Detection : YOLO 35

3.2 Object Detection : YOLO

3.2.1 Introduction

Object Detection is the process of identifying one or more type of objects in a picture or

video and specifying its location with the help of drawing a bounding box around the iden-

tified objects. YOLO, i.e., You Only Look Once algorithm is one of the fastest and accurate

real-time object detection algorithms that are available. For this reason we have chosen the

state of the art YOLO algorithm for the purpose of detecting drones in our datasets.

The first version of YOLO was introduced in the year of 2015. Since then, there have

been quite a few improvements on the initial algorithm and currently we made use of the

latest version of YOLO, i.e., YOLOV3[14].

Earlier object detection algorithms repurposed localizers to perform detection of objects.

Those algorithm was applied to an image at multiple location with varying scales[47] to

detect the presence of the object they were looking for and depending on the probability

scores of the bounding box in each image region, the final bounding boxes were constructed

and object detection was carried out this way.

YOLO[20] on the other hand uses a completely different approach to detect objects. In

this method, only a single neural network is applied on the entire image. This network then

divides this image into different grid like regions and predicts bounding boxes for each with

their corresponding probabilities. When compared to the other detection algorithms that

use region proposal networks like Fast RCNNs[48], etc, which perform detection on various

region proposals and end up performing detection multiple times on various scales of the

36 Chapter 3. Solution Pipeline

image, the architecture of YOLO is a lot more efficient as it is like a Fully Convolutional

Neural Network. The image gets passed into the network once and gives out the image with

the corresponding prediction.

3.2.2 Working of YOLO Algorithm

In the algorithm, the system first takes the input image and divides in such that it becomes

an N × N grid. Each grid is responsible for detecting the midpoint of that object. In the

scenario where the midpoint of the object is present in a particular grid, that grid would

be responsible for the detection of that object. The output of every image comprised of a

bounding box that makes five predictions which include the x, y, w, h coordinates and the

confidence score or the probability of the object being a drone. This can be seen in the figure

3.11.

The coordinates x and y describe the center of the grid relative to it. The width and height

are predicted relative to the whole grid cell. They can sometimes be below the value 1.0,

and if the object crosses the bound of the grid, they can be of values greater than 1.0 , this

is the the border of the bounding box goes beyond the grid region. In YOLO, each cell was

capable of drawing 2 bounding boxes, this number went up till 5 later in the YOLOv2 stage.

As part of one of the outputs, the confidence score is also mentioned which is based on the

IoU score using the relationship between the predicted bounding box region and the ground

truth established. This score helps in indicating the probability by which the model thinks

that the highlighted object is a drone.

The confidence scores of the object detected talks about how confident and accurate the

model is about the detected object being a drone. In a more deeper sense, confidence score

3.2. Object Detection : YOLO 37

Figure 3.11: As described in the figure above, the YOLO algorithm first divides the image
into an N x N grid first. With each grid is associated a feature map, which talks about all the
classes it has identified, the bounding box coordinates and the its corresponding confidence
scores. The above image is that of a 19 x 19 grid and each cell has the capability of predicting
5 bounding boxes each, which would sum upto a total of 1805 bounding boxes for one image.
[11]

38 Chapter 3. Solution Pipeline

is the Pr(Object)*IoU score. If the object sees no object in the bounding box, the confidence

score associated will be 0 and there would not be any coordinates detected. This can be

demonstrated in the figure .

Figure 3.12: Bounding box representation [12]

The next step of the algorithm consists of a certain step that deal with something called

Non-max suppression. It sometimes may happen that one may find multiple bounding boxes

around one object as it might have been detected multiple times. This could be possible due

to the reason that more than one grid cell might think that it possess the center of the same

object. So for this reason instead of identifying it just once, multiple bounding boxes might

appear identifying the same object multiple times as shown in the figure below. Non-max

suppression, as the name suggests is one of the ways to ensure that only once is the object

3.2. Object Detection : YOLO 39

detected.

In the figure 3.13, if a 19 by 19 grid is places on it, it can be seen how multiple cells

would think that the mid point of the car in their grid and each of them predict the pres-

ence of the car. In practice, the object classification and localization task must be running

for each of these grid cells. In this way, we see how multiple detections are possible for the

same image. Non-max suppression cleans and eliminates the extra detection bounding boxes

such that each object would end up having only one bounding box with highest confidence

score. [h] The algorithm first looks at the probabilities associated with each of these detec-

Figure 3.13: Presence of Multiple Bounding Boxes before Non Max Suppression[13]

40 Chapter 3. Solution Pipeline

tions. Through a series of steps, it essentially eliminates the bounding boxes with low object

probability and the bounding boxes that share the highest IoU with the bounding box with

highest probability score so that one object would have only one bounding box. This process

is called Non-max suppression where that the bounding boxes with maximum probability

would be sent as the output but the near by ones, that are not of that great probability

would get suppressed.

The first YOLO algorithm was a fully convolutional network with about 24 convolutional

layers followed by 2 fully connected layers. However over time, the architecture of the YOLO

network keeps changing and the for the present YOLOv3 version, the network architecture

for this looks like the image below.YOLOv3 includes improved architecture which includes

most important elements like ResNets, skipping connections, upsampling etc. YOLOv3 now

uses Darknet-53 which means that it uses 53 convolutional layers in the network architec-

ture. Both YOLOv2 and v3 use batch normalization.

The latest proposed network architecture of latest YOLO algorithm, i.e., YOLOv3 can be

seen in the figure 3.14.

3.2. Object Detection : YOLO 41

Figure 3.14: Network Architecture of YOLOv3 [14]

3.2.3 Loss Function

Previously, the loss function of YOLO v2 looked something like the following :

42 Chapter 3. Solution Pipeline

λ coord
∑S2

i=0

∑B
j=0 I

obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2]

+λ coord
∑S2

i=0

∑B
j=0 I

obj
ij

[(√
wi −

√
ŵi

)2
+
(√

hi −
√

ĥi

)2
]

+
∑S2

i=0

∑B
j=0 I

obj
ij

(
Ci − Ĉi

)2

+λnoobj
∑S2

i=0

∑B
j=0 I

noobj
ij

(
Ci − Ĉi

)2

+
∑S2

i=0 I
obj
i

∑
c∈ classes (pi(c)− p̂i(c))

2

(3.8)

YOLO made use of the sum squared loss to calculate the error loss between the predictions

made and the ground truth declared.

The first two terms represent the localization loss which describes the errors in the pre-

dicted bounding box coordinates and its sizes. To be more precise only the bounding box

chosen to represent the object is held responsible for this loss. Iobjij is equal to 1, if jth

bounding box is responsible for detecting the object in cell i, else it is equal to 0. As it

is not fair to weigh the absolute errors in the large and small bounding boxes equally, the

authors take the square root of bounding box width and height as it can be seen in the above

equation.In order to increase the weight of the loss in the bounding box coordinates and put

more emphasis on the precision of the boundary box, the loss is multiplied by λcoord.

The next two terms represent the confidence loss in the above equation which can be de-

scribed as the measure of the presence of the object in the box. Also, it should be kept in

mind that not every grid cell contains an object in it, which makes their confidence score

move towards 0, which leads to the domination of gradient from grid cells that do not con-

tain objects. in every image many grid cells do not contain any objects. To balance this

problem, the loss belonging to the bounding box coordinate predictions is increased and the

confidence prediction loss for the bounding box that does not contain an object is decreased.

3.2. Object Detection : YOLO 43

The two terms used here are λcoord of default value 5 and λnoobj of default value 0.5.

The last term in the loss function is the classification loss which is the squared error loss of

class conditional probability for each class in every grid of the image. The term I obj
i is 1

when object appears in the cell, or it is 0.

The above loss function is the one that was used previously by YOLOv2, but in the lat-

est version of YOLOv3 the last three terms which were the squared errors, were replaced by

cross-entropy error terms. This means that the object confidence loss and the class predic-

tions loss functions in YOLOv3 are now calculated using logistic regression.

In the revised version of YOLO v3, to detect images it replaces previously used softmax

function and performs multi-label classification for detecting the objects. Here, the class

score for each class is predicted with the help of logistic regression and a threshold is as-

signed to it to predict multiple labels for a object. Classes which have higher threshold

value are then assigned to the that particular bounding box. We used the code for Object

Detection model from Alexey’s github repository[15].

3.2.4 Evaluation metrics

In this section, we will go over the metrics used to define the results we obtain during the

testing phase after the training process is complete. The main metrics that were made use

of to make few important observations are the following.

44 Chapter 3. Solution Pipeline

3.2.5 IoU (Intersection over Union)

Intersection over Union is one of the evaluation metrics used to measure how accurate the

object detector is. As the name describes, it is the ratio of the are of the overlapped region

between the predicted bounding box and the ground truth bounding box to the union of the

areas of their respective bounding boxes. This can be understood in a better way with the fig-

ure 3.15. To use this metric on a object detector model, there are two things one would need :

Figure 3.15: Representation of IoU[15]

• Ground-truth bounding boxes : These are the hand labelled bounding boxes over the

images in the dataset hwere the location of the object, in our case, drone, is provided.

• Predicted bounding boxes that the object detection model generates.

This is an excellent metric that describes the accuracy of the bounding boxes drawn in our

test or validation dataset. Generally, predicted bounding boxes that overlap heavily with

the ground truth bounding boxes are considered more accurate. The pictorial representation

3.2. Object Detection : YOLO 45

Figure 3.16: Relationship between the bounding boxes and IoU values[16]

of the same can be seen in the figure 3.16.

3.2.6 Precision

Precision is a metric used to measure how accurate the predictions turned out to be, i.e., it

can be described as the percentage of correct predictions made out of all predictions. It can

be seen as the ratio of number of True Positives to that of all the elements that were labeled

as belonging to the positive class.

Here, false positives are the elements that were labelled incorrectly and true positives are

the elements that actually belong to that certain class and labelled correctly.

3.2.7 Recall

Recall measures how well all the positives were found. Recall can be defined as the ratio

of number of positives that were correctly identified to that by the total number of existing

relevant elements that belong to the particular class. In this scenario, it can be is defined as

46 Chapter 3. Solution Pipeline

Figure 3.17: Precision[15]

the number of true positives divided by the total number of elements that actually belong to

that particular class, which might include elements that were not labelled correctly to this

class.

Here, false negatives are the elements that were in fact a part of the labelled class, but were

Figure 3.18: Recall[15]

not taken into consideration as they were incorrectly labelled. Below are the equations that

explain precision and recall in a better way.

3.2. Object Detection : YOLO 47

Figure 3.19: Calculation of Precision and recall Values [17]

3.2.8 mAP (Mean Average Precision)

:

Before we understand mAP scores, we need to plot Precision-Recall curves, with precision on

the Y axis and Recall on the X-axis. The precision-recall curve is computed from the model’s

detection output, by varying the model score threshold that determines what is counted as

a model-predicted positive detection of the class. The final graph would look similar to that

of the above picture.

The next step to calculate the Average Precision score is to take the average value of the

precision across all recall values. The general and a more broader definition for the Average

Precision (AP) is finding the area under the precision-recall curve. As both Precision and

recall values are ratios, their values are always going be less than 1. Therefore, the Aver-

age precision, which we define to be the area below the curve is also always between 0 and

1. Each unique point is used on the Precision Recall curve to calculate the area it covers

without any approximations. This definition is also called the Area Under Curve (AUC).

AP =

∫ 1

0

p(r)dr (3.9)

48 Chapter 3. Solution Pipeline

Therefore, mAP (mean average precision) is the average of AP for all the classes or cat-

egories. In some context, AP is first computer for all classes and then averaged. This metric

is one of the most important metric that speaks about how accurate the object detection

model is performing.

Chapter 4

Experiments and Results

In this chapter, the experiments carried out and their results obtained are discussed in detail.

Let us go through the CycleGAN experiments first followed by the experiments conducted

and the results obtained for YOLO object detection Algorithm.

4.1 CycleGAN Experiments and Results

The CycleGAN is given two input datasets, namely the Real Image dataset and the Synthetic

Image dataset. Below we can see how, iteration wise, a particular image gets transformed

from one domain to another (Synthetic to Real) during the training period of CycleGAN :

49

50 Chapter 4. Experiments and Results

Figure 4.1: Results after 5 epochs

Figure 4.2: Results after 20 epochs

4.1. CycleGAN Experiments and Results 51

Figure 4.3: Results after 50 epochs

Figure 4.4: Results after 100 epochs

Some more generated images from CycleGAN from their respective Synthetic images can be

shown below :

52 Chapter 4. Experiments and Results

Figure 4.5: A few more generated images from CycleGAN are to the left, whereas their
corresponding counter part synthetic images are to the right. In the above pictures, the
transformation of images from one domain to another are seen clearly.

4.2. YOLO results and Experiments 53

4.2 YOLO results and Experiments

The YOLO algorithm is trained and tested on different datasets so as to establish a fair

way to evaluate the performance of each dataset. We have carried out the object detection

model on four types of datasets. Each of their composition and results obtained are discussed

below. In each of the cases, validation dataset contains images from its own dataset that it

has not been trained on. The validation dataset consists of 10 percent of randomly chosen

images from the dataset. The test dataset contains around 1500 images we see in the real

world consisting of images that contain and around 500 images in the dataset do not contain

images of drones and remain unlabelled.

4.2.1 Results on Synthetic Dataset

The synthetic dataset consists of images rendered from the 3D alone. Around 5,500 synthetic

images were labelled for both the training and testing processes together. The model worked

very well with the following values of accuracy :

• mAP : 99 percent

• IoU : 90 percent

Though it worked very well on the validation dataset, it could not perform well on the test

dataset as it produced a mAP accuracy of 5.7 percent. The loss curve during it’s training is

plotted below :

54 Chapter 4. Experiments and Results

Loss vs. Iterations Synthetic Dataset Training Curve.png Loss vs.bb

Figure 4.6: Loss Curve obtained during training process for Synthetic Dataset

4.2.2 Results on Real Dataset

The real images are obtained from the data collected though the videos which captured the

drone in flight. For both the training and validation process, around 3000 images were used.

The model worked well on both validation dataset and test dataset. The following are the

performance results obtained for both the validation and test datasets respectively.

• mAP : 99 percent

• IoU : 81 percent

Accuracy values on the test dataset :

4.2. YOLO results and Experiments 55

• mAP : 98.5 percent

• IoU : 64.76 percent

The loss curve obtained during the training process is shown below :

Figure 4.7: Loss Curve obtained during training process for Real Dataset

4.2.3 Results on Fake Dataset from CycleGAN

The images obtained that compose this dataset are the images that are generated from

CycleGAN once the training process is complete. A set of 3000 synthetic images, which were

not used to train CycleGAN, were sent to the the trained model where the results image

distribution resembles that of the real image distribution. 3000 images were used for the

process of training and validation. The following are the results obtained on the validation

56 Chapter 4. Experiments and Results

dataset:

• mAP : 82.5 percent

• IoU : 64 percent

Accuracy values when tested on the test dataset are :

• mAP : 91.54 percent

• IoU : 69 percent

The loss curve obtained during the training process is shown below :

Figure 4.8: Loss Curve obtained during training process for Fake Dataset

4.2. YOLO results and Experiments 57

4.2.4 Results on Mixed Dataset

This dataset consisted of 3000 labelled images each from the Real and Fake datasets. They

were taken in the ratio 1:1 to see if there is any imporvement of accuracies over their re-

spective datasets and the following accuracy values were observed. The following results are

obtained when tested on the validation dataset :

• mAP : 97.5 percent

• IoU : 75 percent

Accuracy values when tested on the test dataset are :

• mAP : 99.2 percent

• IoU : 74 percent

The loss curve observed during the training is plotted below :

Figure 4.9: Loss Curve obtained during training process for Mixed Dataset

58 Chapter 4. Experiments and Results

The table containing all the results of different datasets on Validation dataset is shown in

the figure shown below 4.10.

Figure 4.10: Results of different validation datasets on the Object Detction Model

Apart from the above mentioned datasets, the object detection model was also trained on a

dataset consisting of 6000 real images as well. This is done so that there can be a proper

comparison of results made between the Mixed dataset and the Real dataset, which are of the

same size. The results of the performance of various datasets on the object detection model

can be seen in the figure 4.11. In the figure 4.11, it can be seen how both the Mixed and the

Figure 4.11: Performance of various models on the Test Dataset

Real datasets consisting of 6000 images have very similar performance results. From this

4.2. YOLO results and Experiments 59

result, we can make an observation on how real data could be supplemented by generated

images from CycleGAN.

The Precision Recall curve for all the above mentioned datasets is plotted in the figure

4.12

Figure 4.12: P-R Curves of all models on the Test Dataset. On Y-axis Precision values are
plotted from 0 to 1 whereas on the X-axis, Recal values are plotted from 0 to 1

4.2.5 Final Detections with Bounding Box

Here are examples of few test images which were detected by the object detection model.

60 Chapter 4. Experiments and Results

Figure 4.13: A few results from the object detection model

Chapter 5

Conclusions and Future Work

When we started out with this research, we aimed to see if Deep Learning techniques like

Generative Adversarial Networks can help with our problem of data collection and genera-

tion of a huge amount of realistic data. CycleGAN[8] in theory seemed to align with what

we were aiming to accomplish but we only got confident about this technique after looking

at the realistic looking output images the trained model delivered. The CycleGAN model

was successfully able to change the image distribution from the synthetic dataset to that of

the domain of real images. Not only the background, even the resultant drone image seems

to bare almost identical resemblance to the drone we used during our experiments without

any problem.

The drone structure was maintained in most of the images and we were able to obtain

images of drones in different angles and positions but with same image distribution as seen

in the realistic images, mimicking it’s environment, background etc. We knew that once we

were able to train a model that could generate as realistic looking images from synthetic

data, the next job in the pipeline was to add a downstream task to it to verify it’s per-

formance and see how viable this solution is. Suiting our needs, in order to see where the

drone is in our field of view of another drone, we chose Object Detection as our downstream

task, which is a well established problem in the field of Machine Learning and Deep Learning.

61

62 Chapter 5. Conclusions and Future Work

We chose one of the state of the art object detection model, YOLO(You Only Look Once),

to find the performance of various datasets. All of the datasets were tested on 1500 real

images. Though the model trained on real images performed very well on the test dataset,

the model that trained on fake images alone, from CycleGAN, also performed quite well

with an accuracy of 91.5 percent. Finally, it was observed that the model trained on Mixed

dataset, containing both the real and generated fake images, was the best performing model.

Through this way, it can be seen how there is a good possibility that the addition of fake

images, generated from CycleGAN, has only helped the model in detecting the drones, but

has not led to the decrease of accuracy by confusing the model.

As a part of the bigger picture, one of the main steps that has always been a part of the

control pipeline was to measure the distance between two drones. Identifying the position

of the drone in the field of vision of another drone has been one of the first steps to achieve

that. Now that the drone can be localized, the next step would be to come out with ways to

measure how far the target drone is from the other respective drone. Though the training

and testing datasets involved images with no drones, there is a possibility that the model

would learn better if it was trained on other classes of objects which bared resemble to the

structure of the drone, like a bird or an airplane etc, which are some of the common object

we might find in the sky as well. One of the other important plans for the future works is

to train the CycleGAN using different 3D models of drones, which are available in our lab.

After the CycleGAN, few other GAN models were built as an extension to CycleGAN where

they try to improve translation learning across large geometry variations[49] and enforce

a better consistent mappings during the translation[50]. We can try using these advanced

GANs in place of CycleGAN to see if there is an performance improvement in the generated

images obtained over the prior method.

5.1. Observations 63

5.1 Observations

• The CycleGAN model is successfully able to change the image distribution from the

synthetic dataset to that of the domain of real images. Not just the background of the

image, even the drone in the generated image seems to bare alot of resemblance to the

drone we used during our experiments without any problem.

• It has been observed that increasing the diversity within images and the number of

images used, gives better results during the training process of CycleGAN with much

less number of iterations.

• Roughly about 20 percent of the synthetic images, used in the testing phase for image

translation, turned out to have a distorted output. This could be due to the possibility

that there was a great difference in the background between the images seen in those

synthetic dataset when compared to the background we observe in the real images.

• Another interesting observation made during the evaluation of CycleGAN is that,

though the initial drone angle and position has been maintained for a lot of images,

this cannot be quite clearly seen in the case of a few images though the structure of

the drone seems to be preserved.

• The mixed dataset evaluation results on the test dataset were very similar to that

of the real dataset results when compared against each other. This shows how the

addition of data is only helping the model detect the drones, but has not decreased

the accuracy by confusing the model.

• When detection model was trained on 6000 real images, the performance for those

number of real images versus the mixed dataset was essentially identical which indicates

that we can use fake data to supplement real data.

Bibliography

[1] “Everything you need to know about neural networks.” https://hackernoon.

com/everything-you-need-to-know-about-neural-networks-8988c3ee4491.

Accessed:2019-06-08.

[2] R. Elbers and T. Heskes, “On the replication of cyclegan,” 2018.

[3] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing in-

gredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[4] “Different kinds of convolutional filters.” https://www.saama.com/blog/

different-kinds-convolutional-filters/. Accessed:2019-06-08.

[5] “A comprehensive guide to convolutional neural

networks — the eli5way.” https://towardsdatascience.com/

a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53/.

Accessed:2019-06-08.

[6] M. A. Ponti, L. S. F. Ribeiro, T. S. Nazare, T. Bui, and J. Collomosse, “Everything you

wanted to know about deep learning for computer vision but were afraid to ask,” in 2017

30th SIBGRAPI conference on graphics, patterns and images tutorials (SIBGRAPI-T),

pp. 17–41, IEEE, 2017.

[7] “Artificial data generation with generative adversarial networks

(gans) – part 2: Cyclegan.” https://neurosys.com/article/

artificial-data-generation-with-generative-adversarial-networks-gans-part-2-cyclegan/.

Accessed:2019-06-08.

64

https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://www.saama.com/blog/different-kinds-convolutional-filters/
https://www.saama.com/blog/different-kinds-convolutional-filters/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53/
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53/
https://neurosys.com/article/artificial-data-generation-with-generative-adversarial-networks-gans-part-2-cyclegan/
https://neurosys.com/article/artificial-data-generation-with-generative-adversarial-networks-gans-part-2-cyclegan/

BIBLIOGRAPHY 65

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks,” in The IEEE International Conference on

Computer Vision (ICCV), Oct 2017.

[9] “Understanding and implementing cyclegan in tensorflow.” https://hardikbansal.

github.io/CycleGANBlog. Accessed:2019-06-08.

[10] “Introduction to cyclegan.” https://rubikscode.net/2019/02/04/

introduction-to-cyclegan/. Accessed:2019-06-08.

[11] “How to implement a yolo (v3) object detector from

scratch in pytorch: Part 1.” https://blog.paperspace.com/

how-to-implement-a-yolo-object-detector-in-pytorch/. Accessed:2019-06-

08.

[12] “What is object detection? introduction to yolo algorithm.” https://appsilon.com/

object-detection-yolo-algorithm. Accessed:2019-06-08.

[13] “Non-max suppression.” https://www.coursera.org/learn/

convolutional-neural-networks/lecture/dvrjH/non-max-suppression.

Accessed:2019-06-08.

[14] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[15] B. A. S. S. Redmon, J., “Darknet: Yolov3 - neural network for object detection.” https:

//github.com/AlexeyAB/darknet, 2019.

[16] “Intersection over union (iou) for object detection.” https://www.pyimagesearch.

com/2016/11/07/intersection-over-union-iou-for-object-detection/.

Accessed:2019-06-08.

https://hardikbansal.github.io/CycleGANBlog
https://hardikbansal.github.io/CycleGANBlog
https://rubikscode.net/2019/02/04/introduction-to-cyclegan/
https://rubikscode.net/2019/02/04/introduction-to-cyclegan/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/
https://appsilon.com/object-detection-yolo-algorithm
https://appsilon.com/object-detection-yolo-algorithm
https://www.coursera.org/learn/convolutional-neural-networks/lecture/dvrjH/non-max-suppression
https://www.coursera.org/learn/convolutional-neural-networks/lecture/dvrjH/non-max-suppression
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

66 BIBLIOGRAPHY

[17] “map (mean average precision) for object detection.” https://medium.com/@jonathan_

hui/map-mean-average-precision-for-object-detection-45c121a31173/.

Accessed:2019-06-08.

[18] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detection,” in

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 4193–4198, IEEE, 2016.

[19] Y. Chen, P. Aggarwal, J. Choi, and C.-C. Jay, “A deep learning approach to drone

monitoring,” in 2017 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA ASC), pp. 686–691, IEEE, 2017.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Infor-

mation Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,

and K. Q. Weinberger, eds.), pp. 2672–2680, Curran Associates, Inc., 2014.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436,

2015.

[23] D. F. Specht, “A general regression neural network,” IEEE transactions on neural net-

works, vol. 2, no. 6, pp. 568–576, 1991.

[24] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning activation functions

to improve deep neural networks,” arXiv preprint arXiv:1412.6830, 2014.

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173/
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173/

BIBLIOGRAPHY 67

[25] J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy

and the principle of minimum cross-entropy,” IEEE Transactions on information theory,

vol. 26, no. 1, pp. 26–37, 1980.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Advances in neural information processing systems,

pp. 1097–1105, 2012.

[28] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional

architectures for object recognition,” in International conference on artificial neural

networks, pp. 92–101, Springer, 2010.

[29] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[30] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training gans,” in Advances in neural information processing

systems, pp. 2234–2242, 2016.

[32] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with condi-

tional adversarial networks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 1125–1134, 2017.

[33] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Advances in

neural information processing systems, pp. 469–477, 2016.

68 BIBLIOGRAPHY

[34] Y. Aytar, L. Castrejon, C. Vondrick, H. Pirsiavash, and A. Torralba, “Cross-modal scene

networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 40,

no. 10, pp. 2303–2314, 2017.

[35] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning

from simulated and unsupervised images through adversarial training,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2107–2116,

2017.

[36] Y. Taigman, A. Polyak, and L. Wolf, “Unsupervised cross-domain image generation,”

arXiv preprint arXiv:1611.02200, 2016.

[37] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsupervised

pixel-level domain adaptation with generative adversarial networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 3722–3731, 2017.

[38] J. Liu and R. K. Williams, “Optimal intermittent deployment and sensor selection for

environmental sensing with multi-robot teams,” in IEEE International Conference on

Robotics and Automation, pp. 1078–1083, IEEE, 2018.

[39] M. Wu, W. Xie, X. Shi, P. Shao, and Z. Shi, “Real-time drone detection using deep

learning approach,” in International Conference on Machine Learning and Intelligent

Communications, pp. 22–32, Springer, 2018.

[40] M. Saqib, S. D. Khan, N. Sharma, and M. Blumenstein, “A study on detecting drones

using deep convolutional neural networks,” in 2017 14th IEEE International Conference

on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–5, IEEE, 2017.

[41] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and

BIBLIOGRAPHY 69

super-resolution,” in European conference on computer vision, pp. 694–711, Springer,

2016.

[42] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional

neural networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 2414–2423, 2016.

[43] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture networks: Feed-

forward synthesis of textures and stylized images.,” in ICML, vol. 1, p. 4, 2016.

[44] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networkss,” in Computer Vision (ICCV), 2017 IEEE

International Conference on, 2017.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

[46] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution using

a generative adversarial network,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 4681–4690, 2017.

[47] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection

with discriminatively trained part-based models,” IEEE transactions on pattern analysis

and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[48] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on com-

puter vision, pp. 1440–1448, 2015.

70 BIBLIOGRAPHY

[49] W. Wu, K. Cao, C. Li, C. Qian, and C. C. Loy, “Transgaga: Geometry-aware unsuper-

vised image-to-image translation,” arXiv preprint arXiv:1904.09571, 2019.

[50] R. Zhang, T. Pfister, and J. Li, “Harmonic unpaired image-to-image translation,”

CoRR, vol. abs/1902.09727, 2019.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	Introduction to the Problem
	Motivation
	Thesis Outline

	Preliminaries and Related Work
	Neural Networks
	Activation Function
	Back Propagation
	Normalization

	Convolutional Neural Networks
	Stride
	Pooling

	Supervised and Unsupervised Learning
	Generative Adversarial Networks
	Related Work

	Solution Pipeline
	CycleGAN
	Motivation
	Data Collection
	Algorithm
	Role of Generators
	Role of Discriminators
	Network Architecture
	Generator Architecture
	Discriminator Architecture

	Object Detection : YOLO
	Introduction
	Working of YOLO Algorithm
	Loss Function
	Evaluation metrics
	IoU (Intersection over Union)
	Precision
	Recall
	 mAP (Mean Average Precision)

	Experiments and Results
	CycleGAN Experiments and Results
	YOLO results and Experiments
	Results on Synthetic Dataset
	Results on Real Dataset
	Results on Fake Dataset from CycleGAN
	Results on Mixed Dataset
	Final Detections with Bounding Box

	Conclusions and Future Work
	Observations

	Bibliography

