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ABSTRACT 

 

Additive manufacturing (AM) is a powerful emerging technology for fabrication of components 

with complex geometries using a variety of materials. However, despite promising potential, due 

to the complexity of the process dynamics, how to ensure product quality and consistency of AM 

parts efficiently during the process still remains challenging. Therefore, the objective of this 

dissertation is to develop effective methodologies for online automatic quality monitoring and 

improvement, i.e., to build a basis for smart additive manufacturing.  

The fast-growing sensor technology can easily generate a massive amount of real-time process 

data, which provides excellent opportunities to address the barriers of online quality assurance in 

AM through data-driven perspectives. Although this direction is very promising, the online sensing 

data typically have high dimensionality and complex inherent structure, which causes the tasks of 

real-time data-driven analytics and decision-making to be very challenging. 

To address these challenges, multiple data-driven approaches have been developed in this 

dissertation to achieve effective feature extraction, process modeling, and closed-loop quality 

control. These methods are successfully validated by a typical AM process, namely, fused filament 

fabrication (FFF). Specifically, four new methodologies are proposed and developed as listed 

below, 

(1) To capture the variation of hidden patterns in sensor signals, a feature extraction approach 

based on spectral graph theory is developed for defect detection in online quality monitoring of



AM. The most informative feature is extracted and integrated with a statistical control chart, which 

can effectively detect the anomalies caused by cyber-physical attack. 

(2) To understand the underlying structure of high dimensional sensor data, an effective dimension 

reduction method based on an integrated manifold learning approach termed multi-kernel metric 

learning embedded isometric feature mapping (MKML-ISOMAP) is proposed for online process 

monitoring and defect diagnosis of AM. Based on the proposed method, process defects can be 

accurately identified by supervised classification algorithms.  

(3) To quantify the layer-wise quality correlation in AM by taking into consideration of reheating 

effects, a novel bilateral time series modeling approach termed extended autoregressive (EAR) 

model is proposed, which successfully correlates the quality characteristics of the current layer 

with not only past but also future layers. The resulting model is able to online predict the defects 

in a layer-wise manner.  

(4) To achieve online defect mitigation for AM process, a closed-loop quality control system is 

implemented using an image analysis-based proportional-integral-derivative (PID) controller, 

which can mitigate the defects by adaptively adjusting machine parameters during the printing 

process in a timely manner.  

By fully utilizing the online sensor data with innovative data analytics and closed-loop control 

approaches, the above-proposed methodologies are expected to have excellent performance in 

online quality assurance for AM. In addition, these methodologies are inherently integrated into a 

generic framework. Thus, they can be easily transformed for applications in other advanced 

manufacturing processes. 
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GENERAL AUDIENCE ABSTRACT 

 

Additive manufacturing (AM) technology is rapidly changing the industry; and online sensor-

based data analytics is one of the most effective enabling techniques to further improve AM 

product quality. The objective of this dissertation is to develop methodologies for online quality 

assurance of AM processes using sensor technology, advanced data analytics, and closed-loop 

control. It aims to build a basis for the implementation of smart additive manufacturing.  

The proposed new methodologies in this dissertation are focused to address the quality issues in 

AM through effective feature extraction, advanced statistical modeling, and closed-loop control. 

To validate their effectiveness and efficiency, a widely used AM process, namely, fused filament 

fabrication (FFF), is selected as the experimental platform for testing and validation. The results 

demonstrate that the proposed methods are very promising to detect and mitigate quality defects 

during AM operations. 

Consequently, with the research outcome in this dissertation, our capability of online defect 

detection, diagnosis, and mitigation for the AM process is significantly improved. However, the 

future applications of the accomplished work in this dissertation are not just limited to AM. The 

developed generic methodological framework can be further extended to many other types of 

advanced manufacturing processes.  
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1 Introduction 

1.1 Background and motivation 

Additive manufacturing (AM), also called 3D printing, refers to a family of processes where a bulk 

shape is formed by progressively adding material in the form of layers [1]. This layer-by-layer 

addition of material leads to revolutionary design flexibility and applications. As one of the fastest 

growing emerging technologies, AM provides powerful solutions in a large variety of industrial 

areas, such as aerospace, automotive industry, healthcare, etc. [2-4]. Nowadays there are various 

technologies which can implement AM using different kinds of materials, such as fused filament 

fabrication (FFF), selective laser sintering (SLS), stereolithography (SLA), etc. [5, 6]. With the 

rapid development of these innovative AM processes, more and more complex geometric 

structures with advanced materials can be fabricated [7, 8].  

Despite the enormous development achieved in AM so far, to consistently produce high-quality 

products using AM still remains challenging. Consequently, although with promising potential, 

the relatively poor quality and inconsistency of AM parts may hinder their broader applications in 

some mission critical industries where the product quality is very essential. Thus, it is imperative 

to develop new techniques for online process monitoring and quality assurance of AM.  

The traditional quality monitoring approaches, such as geometric dimensioning and tolerancing 

(GD&T) and other surface metrology techniques, are primarily applied for offline quality 

inspections [9, 10]. This is not sufficient for quality assurance of AM. Online quality control for 

AM becomes necessary since it is very quick and can also avoid failure of products. The rapid 

development of high resolution and fast frame rate of sensor technologies in recent decades offers 
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new research opportunities to address the challenges in online quality assurance by providing rich 

data to enable data-driven perspectives. Through instrumentation of online sensors, massive real-

time data from AM operations are easily available for in-depth analysis. For example, we may 

install heterogeneous sensors such as thermocouples and accelerometers to collect the data for 

process variables, and utilize some image-based sensing devices such as cameras and 3D scanners 

to inspect the quality status of printing parts. Due to the high dimensionality and complex inherent 

structure of sensor data, it is challenging to extract the most valuable information and make optimal 

decisions therein. Therefore, how to create an effective methodological framework to analyze and 

understand sensor data plays a critical role in successful implementation of online quality 

assurance of AM.  

1.2 Research objectives 

As mentioned in Section 1.1, AM process complexity poses a great challenge for process 

monitoring and product quality assurance. Thus it is difficult to directly apply traditional quality 

monitoring methods for AM applications. Therefore, the overall research goal of this dissertation 

is to develop enabling methods for smart AM systems that can detect, diagnose, and mitigate the 

product defect automatically during printing. More specifically, the above goal consists of four 

research objectives regarding sensor data analytics and online decision making and control in AM, 

(1) Online defect detection: If unexpected defects/anomalies occurred during AM processes, 

how to detect the defects timely and effectively?   

(2) Online defect diagnosis: Using sensor data captured curing AM processes, how to extract 

the most effective information regarding the types of process/part defects in a real time 

manner?  



 3 

(3) Online defect forecasting: How to model the complex layer-wise interaction in AM and 

further forecast the layer-wise defects (quality characteristics) in an online manner?  

(4) Online defect mitigation: Once detects are detected and diagnosed during AM processes, 

then how to adjust the machine parameter automatically and mitigate the defects efficiently 

using closed-loop control?  

By achieving these four objectives, the contribution of this dissertation work can be summarized 

as the following four aspects,  

(1) First, this work builds a novel framework to recognize the variation of hidden patterns in 

sensor signals for defects/anomalies detection based on a data-driven feature extraction 

approach using spectral graph theory.  

(2) Second, it provides effective solutions for online defect diagnosis of AM, which are based 

on a proposed new dimension reduction approach.  

(3) Third, an innovative bilateral time series modeling approach is developed for online layer-

wise quality/defect forecasting which takes a unique physical phenomenon in AM called 

reheating into consideration.  

(4) Finally yet importantly, an effective online closed-loop quality control approach is 

developed to implement online process adjustment and defect mitigation.  

These developed methods are not limited to one specific type of AM process. In practice, they also 

have great potential to be applied to other advanced manufacturing processes with online sensor 

technologies.   
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1.3 Dissertation organization 

The rest of this dissertation is organized as follows. An overview of the overall proposed research 

methodologies and a brief review of the recent related literature as well as a research gap analysis 

are provided in Chapter 2. Then Chapter 3 presents the proposed data-driven spectral feature 

extraction approach to identify the variation of hidden patterns in sensor signals for online defect 

detection. In Chapter 4, an integrated manifold learning-based dimension reduction method to 

understand the underlying structure of high dimensional sensor data is developed for online defect 

diagnosis of AM. Afterwards, a new bilateral time series modeling approach for online layer-wise 

defect/quality forecasting of AM with the consideration of reheating effects is proposed in Chapter 

5. Subsequently, an image analysis-based closed-loop quality control approach for online defect 

mitigation is introduced in Chapter 6. Finally, Chapter 7 summarizes the contribution of the 

research, and expresses the potential future research directions.  
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2 Research overview and literature review 

2.1 Research overview 

As introduced in Chapter 1, this dissertation aims to build a basis for smart AM which is able to 

achieve online process monitoring and quality improvement using online sensor data. Therefore, 

as shown in Figure 2-1, the proposed research methodologies are focused on creating an effective 

and efficient methodological framework which integrates online sensing, advanced data analytics 

and closed-loop control techniques. In this research framework, the instrumented online sensing 

system provides a large amount of real-time process data. Subsequently, several advanced data 

analytics methods are developed to extract the compact but effective information from the sensor 

data, and correlate it with AM product quality. Afterwards, closed-loop control techniques are 

implemented to make decisions timely and effectively for defect mitigation.  

 

Figure 2-1: The overview of the proposed research framework. 

Following this framework, the overall research in this dissertation consists of four specific tasks, 

as shown in Figure 2-2.  
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 Task 1: For the sensor data, develop a data-driven feature extraction approach using 

spectral graph theory that is integrated with statistical control charting techniques to 

implement online anomaly detection for AM (Chapter 3).  

 Task 2: Achieve effective feature extraction from the high dimensional online sensing data 

to diagnose the defects occurring during the AM process based on a proposed new 

integrated manifold learning approach (Chapter 4). 

 Task 3: Based on the reheat effects in AM, quantify the layer-wise correlation of quality 

characteristics with an implementation of online defect/quality forecasting framework, 

which considers the reheating phenomenon through a proposed bilateral time series 

modeling approach (Chapter 5).  

 Task 4: Based on image analysis for defect detection, develop an online closed-loop 

quality control approach to implement automatic defect mitigation during the printing 

process (Chapter 6).  

 

Figure 2-2: The overall structure of the proposed research methodologies in this dissertation. 



 7 

With these four research tasks, three major online sensing systems are developed and utilized in 

this dissertation research:  

(1) A combination of heterogeneous sensors (including vibration, temperature, IR sensor, etc.);  

(2) High-resolution digital microscopes-based real-time image acquisition system;  

(3) A high-speed digital 3D scanner for online layer-wise surface scanning.  

By exploring the data collected from these sensors, innovative data analytics methods and 

statistical models are developed in this dissertation to achieve online quality assurance and process 

improvement in AM.   

2.2 Literature review 

This research is motivated by the online quality assurance of AM processes using advanced data 

analytics. Therefore, this section first introduces the related studies on online sensing and process 

monitoring for AM processes in Section 2.2.1, followed by a brief review of the data analytics and 

statistical modeling based quality assurance approaches for AM and other related applications in 

Section 2.2.2. Subsequently, Section 2.2.3 presents the existing experimental studies for analysis 

of AM product quality. At the end, the shortcomings in the current literature are identified in 

Section 2.3.  

2.2.1 Online sensing for monitoring of AM processes 

Online sensing-based process monitoring approaches for AM have been studied in the recent years. 

In terms of sensing strategies, the existing research works in this direction can be categorized into 

the three broad areas as follows.  

(1) Multi-sensor integration. During AM processes, multiple sensor measurements such as 
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thermal and displacement may be directly related to the actual printing quality [11]. Following this 

direction, how to integrate multiple sensors for AM process online monitoring has been studied. 

Tapia et al. [12] reviewed the existing sensor-based process monitoring approaches for metal AM 

processes, such as temperature sensors and displacement sensors, etc., which are capable to 

monitor other common AM processes as well. Recently, more advanced online sensing approaches 

were investigated. For instance, by using acoustic emission sensor, Wu et al. [13] proposed an in 

situ monitoring framework for FFF to identify both normal and abnormal states of the printing 

conditions. In addition, Kousiatza et al. [14] investigated an approach to monitor the strain and 

temperature distributions of FFF by an integrated fiber Bragg grating (FBG) sensing system. 

Regarding heterogeneous sensing systems, Rao et al. [15] developed an effective method to 

achieve online real-time process monitoring for FFF, based on the combination of vibration 

sensors, thermocouples, and IR sensors. In addition, for metal-based AM, Dunbar et al. [16] 

demonstrated the capability of measuring distortion and temperature measurements online using a 

differential variable reluctance transducer (DVRT) and thermocouple during the laser powder bed 

fusion (LPBF) process. 

(2) Thermal imaging-based sensing system. Thermal variation is a critical physical phenomenon 

in most common AM processes. To achieve effective online process monitoring, infrared thermal 

cameras have been widely utilized in AM processes. Khanzadeh et al. [17] used a thermal camera 

to capture the melt pool images and implement porosity monitoring in the directed energy 

deposition (DED) process. For the LPBF-based AM process, Mahmoudi et al. [18] applied high 

speed thermal imaging to capture melt pool temperature and implemented online layer-wise 

anomaly detection. In addition, Schwerdfeger et al. [19] demonstrated in situ capability to detect 

the flaws that are visible in images using an infra-red (IR) camera during a powder bed, beam-
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based AM process. Grasso et al. [20] illustrated that the information from IR image is effective to 

detect possible flaws during in situ monitoring in the selective laser melting (SLM) process. 

(3) Optical imaging-based quality monitoring. Apart from thermal imaging techniques, with the 

rapid development of optical sensing technologies, high resolution image-based online sensing has 

been explored for the monitoring of AM processes as well. For the applications in the FFF process 

(or the processes resembling FFF), Fang et al. [21] applied machine vision techniques to detect 

defects based on optical imaging of each layer; which can evaluate the geometrical integrity of the 

build via comparing the optical imaging result and its corresponding original CAD design. Fang 

et al. [22] further developed a related online signature analysis-based monitoring approach to 

detect the process anomalies. Cheng et al. [23] proposed an online approach to monitor the surface 

pattern by using image intensity information, and were able to classify the randomly occurring 

defects and anomalies from assignable causes. Subsequently, for metal AM, Craeghs et al. [24] 

implemented a real-time optical process monitoring system for the Layer-wise Laser Melting 

(LLM) process by instantaneously mapping the melt pool data with relative position on the printing 

plane. Kanko et al. [25] deployed a low-coherence interferometric imaging technique to achieve 

in situ surface defect detection of the SLM process. Grasso et al. [26] also develop an online defect 

detection method for SLM process via image analysis. Zhang et al. [27] customized an in situ 

fringe projection system, which combines the projector and camera of the LPBF process to monitor 

layer-by-layer surface quality.  

2.2.2 Data analytics and statistical modeling for quality assurance of AM processes 

As discussed in Section 2.1, development of advanced sensing systems for AM provides effective 

solutions to achieve better performance of online process monitoring. Meanwhile, it also provides 

great opportunities to develop more effective quality control strategies using data analytics-based 
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approaches. To achieve a highly accurate process quality diagnosis, Bastani et al. [28] developed 

an online sparse estimation-based classification approach to effectively identify different printing 

quality status. Khanzadeh et al. [29] proposed a tensor decomposition-based method to analyze 

the thermal image streams for process monitoring of a metal AM process. Using image profiles, 

Yao et al. [30] developed a multifractal analysis-based approach to detect defects in AM. In 

addition, for 3D point-cloud data. Law et al. [31] presented a curvature-based threshold method to 

achieve in process monitoring for the polymer-based powder bed fusion (PBF) process. Then in 

order to further improve the printing quality, Sun et al. [32] developed functional quantitative and 

qualitative models to quantify the correlation between machine parameters and online process 

variables in FFF. In addition, Liu et al. [33] proposed a layer-wise spatiotemporal modeling 

approach to predict porosity in a powder-based AM process.   

Although currently the application of time series analysis-based modeling approaches for AM is 

very limited in the existing literature, it is a powerful option for online quality control and process 

forecasting [34]. As one of the most widely used time series models, ARIMA model-based 

methods are applied in a large variety of applications for process quality control and forecasting. 

In the applications of quality inspection and fault diagnosis, Yao et al. [35] developed a statistical 

pattern recognition algorithm based on an autoregressive (AR) model to achieve damage detection 

in civil structures. Lu et al. [36] implemented an autoregressive exogenous inputs (ARX) model-

based method for structural damage diagnosis using time series analysis of vibration signals. For 

the control chart development, Jiang et al. [37] proposed a control chart based on an autoregressive 

moving average (ARMA) model. Vander Wiel [38] developed a process monitoring approach 

using an integrated moving average (IMA) model. Consider the high dimensional cases, in which 

Jarrett et al. [39] utilized the vector autoregressive (VAR) model to develop a new type of control 
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chart for multivariate auto-correlated processes. As another popular time series model, the 

GARCH model is also very effective for quality control. For example, Ord et al. [40] proposed a 

method to monitor processes with changing variances based on the GARCH model.  

2.2.3 Experimental studies for product quality in AM 

Surface defects are often observed during AM processes. Several experimental studies have been 

conducted to correlate surface defects with machine parameters or process variables. Wang et al.   

[41] proposed and experimentally validated a mathematical model for warp deformation in FFF 

parts. They identified the significance of process variables and machine parameters on the 

occurrences of surface defects, such as ambient chamber temperature, extruded temperature, layer 

thickness, deposition speed, geometric structure of the part, and tool path.  

Anitha et al. [42] applied a robust design method to correlate certain process parameters with the 

surface roughness (i.e., Ra value) of a sample part. Process parameters such as road width, layer 

thickness, and extrusion speed are studied and the testing results are statistically significant. 

Agarwala et al. and Armillotta [43, 44] summarized that FFF errors may result from the material 

deposition rate, continuing start-stop sequence, shrinkage and residual stresses, warping [45], or 

nozzle clogging. The existing literatures also investigated the approaches of ensuring part quality 

by implementing error compensation of the extrusion path [46, 47], identifying the optimal build 

direction [48, 49], and considering trade-off between accuracy and completion time by adaptively 

adjusting the size of outer build layers [50, 51].  

Peng et al. [11] examined the influence of the process variables in FFF that are focused in this 

dissertation research, including extrusion temperature, feed rate, and material flow rate, etc. They 

experimentally obtained appropriate temperature range of ABS material for the FFF process. In 
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addition, they also commented that part defects can be reduced when the ratio of feed rate and flow 

rate approaches one [11, 52].  

2.3 Research gaps analysis 

The related research work introduced in Section 2.2.1 is mainly focused on the sensing system 

design and utilization with anomaly detection for AM processes. However, the in-depth analysis 

for the collected real-time data is very limited, so that comprehensive online process monitoring 

and quality improvement analysis are still insufficient. Although the research efforts summarized 

in Section 2.2.2 have provided comprehensive foundation for quality control and assurance 

strategies in AM based on sensor data analytics, a key shortcoming is the lack of effective feature 

extraction and statistical modeling strategies to precisely capture the most critical information and 

process dynamics. Section 2.2.3 summarizes insights on multiple common quality issues in AM, 

but none of them are capable of online inspection and diagnosis. In addition, these existing studies 

do not take into consideration the strategies for online defect mitigation. Therefore, the proposed 

research methodologies in this dissertation seek to address these gaps by developing new advanced 

data analytics methodologies and quality control strategies.  
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3 A spectral feature extraction approach for online anomaly 

detection 

Due to the process complexity of AM, most of the existing statistical quality control methods are 

not able to provide a timely and effective detection by using sensing signals directly when a process 

anomaly occurs. Therefore, the objective of this chapter is to develop an effective process anomaly 

detection method through feature extraction from sensor data. To achieve this objective, a data-

driven feature extraction approach based on spectral graph theory is proposed for analysis of online 

sensing signals. Then the anomaly detection can be successfully achieved by integrating the 

extracted features with statistical control charting techniques. After the validation based on 

numerical simulation data, the proposed method is also applied to an actual AM platform for online 

cyber-physical attack detection. Both the simulation and real case study results demonstrate that 

the proposed method is superior for detecting the process anomalies over the traditional SPC 

methods. 

3.1 Introduction 

With the rapid development of advanced manufacturing technologies, products with complex 

geometric structures and new materials can be fabricated effectively and efficiently [53-55]. 

However, the unexpected process changes (i.e., anomalies) during manufacturing processes still 

always pose a significant threat for ensuring the quality of products. Therefore, it becomes more 

and more critical to achieve effective online process anomaly detection.  

As a powerful technique for online process anomaly detection, statistical process control (SPC) 

charts [56] have very broad applications, including manufacturing process monitoring [57, 58], 



 14 

production systems inspection [59], disease surveillance [60], environmental monitoring [61], etc. 

With the capability of online sensing technologies, a large variety of available control charts are 

able to provide effective solutions, such as X-bar chart, CUSUM chart, EWMA chart, etc. [62]. 

Although SPC techniques are very popular in the manufacturing industry, the traditional SPC 

methods typically require very strong assumptions regarding the statistical distributions of the in-

control (IC) data [63], which significantly limit their effectiveness in some applications. In 

addition, another significant issue is that their capability to handle noisy and high dimensional data 

still needs to be improved.  

For the applications of advanced manufacturing processes, e.g., additive manufacturing (AM), it 

is very common that the distribution of IC data is unknown or inappropriate to be described by an 

explicit parametric form, which may impact the performance of SPC charts. In addition, due to the 

complexity dynamics of the process, the online sensing data may have some hidden patterns. To 

detect the process anomaly, it is valuable to track the consistency of these patterns. However, the 

changes of these patterns may not result in significant mean shift or variance change in practice, 

hence it is challenging to detect a process anomaly by using the traditional SPC charts directly.    

One typical example is the online process monitoring for AM processes. Based on the results from 

literature, multiple sensors can be mounted into the AM machine [15]. Then with supervised 

machine learning algorithms, the process quality condition can be identified effectively in a real-

time manner [15, 28]. However, the sensor signals under normal printing status may also have 

different patterns due to the dynamic changes of printing path, i.e., hidden patterns. If the design 

of the printing parts changed but the printing process still remains normal, then the existing SPC 

or machine learning methods may not be able to detect the process change timely.   
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To address this challenge, the objective of this chapter is to develop an effective online anomaly 

detection approach through feature extraction and control charting to track the variation of sensor 

data patterns. Based on real-time sensor data acquisition, this objective is realized by a proposed 

spectral graph theory-based data-driven feature extraction and selection method. Through 

appropriate integration with a statistical control charting technique, this proposed method is able 

to overcome the aforementioned shortcomings in the existing traditional SPC and machine 

learning approaches for online process anomaly detection.  

The rest of this chapter is organized as follows. The proposed methodology is presented in detail 

in Section 3.2; Sections 3.3 and 3.4 provide numerical examples and actual case studies from real-

world applications, respectively, to demonstrate the effectiveness of the proposed method. Finally, 

the conclusion is provided in Section 3.5. 

3.2 Research methodology 

In this section, a data-driven spectral feature extraction-based online process anomaly detection 

method is proposed, which is suitable for the online sensing signals with hidden patterns. As shown 

in Figure 3-1, the overall framework of the proposed methodology consists of four steps: (1) Use 

graph to represent the sequential real-time sensor data (Section 3.2.1); (2) extract the topologic 

features to quantify the graph based on spectral graph theory (Section 3.2.2); (3) select the most 

effective and informative feature to describe the inherent patterns of sensor data (Section 3.2.3); 

and (4) integrate the selected feature with an appropriate SPC chart to detect process anomaly 

(Section 3.2.4).  
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Figure 3-1: The overall research framework for the developed spectral feature extraction based 

online process defect detection approach.  

 

3.2.1 Graph representation for real-time sensor data 

As discussed in Section 3.1, this chapter is focused on process anomaly detection using online 

sensing signals. Typically the sensor data in the time domain can be represented by a time series 

{𝐱𝑡}, where 𝑡 is the time index and 𝐱𝑡  could be either a scalar for single sensor channel, or a 

column vector for multiple sensor channels. Assume all sensor channels have the same sampling 

frequencies. Pre-processing techniques such as up/down-sampling approaches [64] are potentially 

needed to relax this assumption in a general case.  

Then the objective is to quantify the inherent pattern of {𝐱𝑡} and monitor the real-time variability 

for anomaly detection. Since the proposed method is targeted for online application, a natural and 
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cost-effective choice is to analyze the sensor data sequentially in a window-based manner. 

Specifically, with a pre-defined window size, denoted as 𝑛 , the sensing signals within each 

window can be represented as a row vector (single channel) or a matrix (multiple channels) defined 

by Eq. (3-1),  and perform the analysis for each window sequentially.  

  𝐗 = (𝐱1, 𝐱2, ⋯ , 𝐱𝑛) (3-1) 

Subsequently, to quantify the inherent pattern of each window, the key is to capture the similarity 

between each pair of data points, i.e., to create a symmetric similarity matrix 𝐒 with an appropriate 

distance metric. Specifically, 𝐒 can be created by Eqs. (3-2) and (3-3),  

  𝑑𝑖𝑗 = 𝐷(𝐱𝑖, 𝐱𝑗) (3-2) 

 𝐒𝑛×𝑛 = [𝑠𝑖𝑗]  = [𝑑𝑖𝑗] (3-3) 

where 𝐷(∙) represents the operator to quantify the distance (i.e., similarity, [65]) between two data 

points. In general, the following three types of distance metrics are commonly used,  

 Minkowski distance: This is a generalized metric defined in normed vector space which 

can be formulated as Eq. (3-4), where 𝑥𝑖𝑘  represents the 𝑘th element of 𝐱𝑖 . In order to 

satisfy the triangle inequality, typically it requires 𝑝 ≥ 1. In particular, when 𝑝 = 2, the 

metric becomes Euclidean distance. In practice, to make the metric consistent with the 

intuition (the higher the similarity, the closer the two points), another common choice is to 

further convert the Euclidean distance by a kernel function such as the radial basis function 

(RBF) to describe the similarity [66, 67], as demonstrated in Eq. (3-5), which is applied in 

the simulation and actual case studies.  
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 𝑑𝑖𝑗 = ||𝐱𝑖 − 𝐱𝑗||𝑝 = (∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑝

𝑛
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)1/𝑝 (3-4) 
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||𝐱𝑖−𝐱𝑗||2

2

2𝜎2
)
 

(3-5) 

 Cosine distance: This metric is to measure the degree of angle between two points (as 

shown in Eq.(3-6)). It is preferred to be applied when the magnitude between points does 

not matter but the orientation plays a critical role. 

 𝑑𝑖𝑗 =
𝐱𝑖 ∙ 𝐱𝑗

||𝐱𝑖|| ∙ ||𝐱𝑗||
 (3-6) 

 Mahalanobis distance: In this distance metric, from a statistical perspective, it considers 

the covariance matrix 𝑆 into the measurement of similarity, which is represented as Eq. 

(3-7). In addition, several other types of statistical distance metrics also become popular in 

practice, such as Wasserstein distance [68], Cramér–von Mises distance [69], etc.    

 𝑑𝑖𝑗 = √(𝐱𝑖 − 𝐱𝑗)𝑇𝑆−1(𝐱𝑖 − 𝐱𝑗) (3-7) 

Based on the similarity matrix built by a selected distance metric, then there is a unique undirected 

graph 𝐺(𝑉, 𝐸) to represent 𝐒 without information loss. Specifically, 𝑉 represents each data point 

as a node in 𝐺, and 𝐸 is the edges with weight {𝑑𝑖𝑗} to link the nodes. Afterwards, to further 

determine whether two nodes are connected or not, a threshold value 𝑟 could be applied and then 

update the elements of 𝐒. Based on the similarity defined by Eq. (3-5) (selected in this study), this 
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transformation can be presented by Eq. (3-8). To determine the value of  𝑟, typically it can be set 

as the average of 𝑑𝑖𝑗 based on the existing studies with good performance [70, 71].  

 𝑠𝑖𝑗 = {
1,  𝑑𝑖𝑗 ≥ 𝑟

0, 𝑑𝑖𝑗 < 𝑟
 (3-8) 

Therefore, using the above mentioned approach, the online sensor data {𝐱𝑡} can be effectively 

represented as a series of unweighted undirected graphs in the time domain for analysis.  

3.2.2 Graph topologic feature extraction  

After mapping the time series sensor data to a series of graphs, the next step is to effectively 

quantify the properties of the graphs. Based on a created graph 𝐺, a commonly applied matrix 

representation for 𝐺 called the Laplacian matrix (denoted as 𝐋) can be determined [72], which is 

applicable for both weighted and unweighted graphs. Then various in-depth analysis and inference 

can be further performed using the information in 𝐋. For example, clustering analysis (e.g., spectral 

clustering [73], etc.) and manifold learning (e.g. Laplacian embedding [74], etc.).  

In this study, in order to detect the process changes using the graph representation, it is critical to 

find an effective quantification for the graph properties which is related to the process. Based on 

the spectral graph theory [72], the eigenvalues {𝜆𝑖} (in an increased order, i.e., 𝜆𝑖 represents the 

𝑖th smallest eigenvalue) of 𝐋 (as shown in Eq. (3-9)), which contain the topological information 

of the graph, are utilized for further analysis (termed spectral features in this study).  

 𝐋𝒗 = 𝜆𝒗 (3-9) 

Typically, the second smallest eigenvalue (𝜆2 ) is termed the Fiedler number, also known as 

algebraic graph connectivity [75]. Although the application of the Fiedler number for online 
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process monitoring has been reported from several existing literatures [66, 67, 76], the limitation 

is that only using 𝜆2 for analysis may result in a significant information loss, since the Fiedler 

number could not always capture the effective inherent structure information of sensing signals. 

For example, if the signals within a window have more than two significant clusters, then 𝜆2 is 

always close to zero, which is ineffective to detect the potential process changes. In addition, 

another limitation is the lack of investigation for the underlying distribution of spectral features, 

which may impact the performance of anomaly detection.    

On the other hand, it is also unnecessary to use all eigenvalues together for analysis, otherwise the 

monitoring effectiveness and computational efficiency will be significantly reduced due to the 

potential large amount of invalid and redundant information. Consequently, to find the most 

informative topologic representation from the spectral features, a clustering-based automatic 

feature selection method is proposed, which is presented in Section 3.2.3.  

 

3.2.3 Clustering based feature selection 

As introduced in Section 3.2.2, the eigenvalues {𝜆𝑖}  of the Laplacian matrix 𝐋  is a group of 

features to quantify the graph topologic properties. However, with the high dimensionality of 

sensor data and large scale of the window size, it is usually impractical and unnecessary to apply 

all the features for online monitoring. Therefore, to determine the most effective and informative 

feature among the eigenvalues, a data-driven approach for automatic feature selection is presented 

in this section. 

The motivation of this proposed approach is based on the fact that only a few spectral features are 

effective for process change detection. For example, considering a graph with several isolated 

nodes or separated clusters, then the value of 𝜆2 is just zero, regardless of the pattern of the major 
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part. In addition, with a relatively large number of nodes, typically there is no significant variation 

for most of the large eigenvalues when the graph pattern changes. Consequently, it is necessary to 

find the most effective topologic measurement among the eigenvalues.  

Based on spectral graph theory, the topologic properties described by {𝜆𝑖} are highly related to the 

graph clustering effect and connectivity [72]. Theoretically, the number of zero eigenvalues 

indicates the number of individual (i.e., not connected) clusters. In practice, since some clusters 

may be still connected, the number of relatively small eigenvalues is more appropriate to represent 

the cluster numbers in a graph. Therefore, to select the informative spectral feature in a quantitative 

way, the number of clusters should be identified first. Inspired by the spectral clustering method 

[73], it can be determined by finding the maximum value of the Eigengaps {Δ𝜆𝑖}, which is defined 

by Eq. (3-10),  

 Δ𝜆𝑖 = 𝜆𝑖+1 − 𝜆𝑖 (3-10) 

As demonstrated in Figure 3-2, based on the maximum Eigengap Δ𝜆𝑘, the value of 𝑘 is able to 

represent the cluster numbers of the data, and then the corresponding eigenvalue λ𝑘 is an effective 

topologic measurement (i.e., the connectivity) for the graph to quantify the pattern of data. 

Specifically, if the data have a trend to merge together, then λ𝑘  will become larger since the 

connectivity is increasing; on the contrary, if the trend is to split the data into more clusters or even 

new clusters come in, then λ𝑘 will decrease due to the lower connectivity. Consequently, λ𝑘 is 

informative in general for the application of online anomaly detection (described in Section 3.2.4). 

The only special case is 𝜆𝑘 = 0. For example, if 𝑘 = 1, since 𝜆1 is always 0, then 𝜆2 (the Fiedler 

number) will be used instead of 𝜆1. The main reason is that the change of data patterns in this case 
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will result in the change of overall graph connectivity. In general, if 𝜆𝑘 = 0, which implies that 

the graph has 𝑘 independent unconnected clusters, then λ𝑘+1 will be selected instead of 𝜆𝑘.  

 

Figure 3-2: A justification of the proposed spectral feature selection approach based on the 

maximum Eigengap.  

 

3.2.4 Design of control chart for process anomaly detection  

To achieve online process anomaly detection, a natural direction is to integrate the selected spectral 

features with an appropriate statistical control chart. However, the challenge is that the underlying 

distribution of the selected feature is actually unknown and difficult to be quantified. To address 

this challenge, a developed control chart embedding approach is presented in this section, which 

consists of three steps.  

(1) Determine the monitoring statistics: The statistics to be monitored by control chart should 

be identified first. In this study, to track the variation of the underlying distribution, two 

monitoring statistics are utilized based on the selected spectral feature.  
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i. Mean value of the selected spectral feature: It is necessary to detect the existence 

of mean shift for the selected λ𝑘. In this case, the EWMA chart could be applied 

since it is sensitive for small shifts [62] and also relatively robust for the non-

Gaussian data based on several existing studies [77, 78]. Theoretically, the selected 

λ𝑘 represents the graph connectivity by considering the clustering effect. Then in 

practice, the mean shift of λ𝑘  indicates the change of cluster numbers, which is 

validated in the simulation study (Section 3.3).  

ii. Quantile-based statistics: Apart from tracking the mean shift, it is also needed to 

monitor other changes regarding the underlying distribution of λ𝑘. To detect the 

small but critical anomalies such as cyber-physical attacks, this part is mainly 

focused on the change of distribution tails for λ𝑘. In statistics, the quantile function 

is commonly applied to describe the probability distribution and its tails [79], for 

example, the application of risk management in the finance area [80, 81], etc. 

Therefore, a quantile-based statistic for process monitoring is developed in this 

study. Specifically, a pre-defined quantile level (e.g., 80%) should be determined 

at first, and then the corresponding quantile value for the entire phase I data will be 

treated as a threshold for analysis. Afterwards, by using a window-based approach 

for the feature series, the number of features that fall outside of the quantile value 

(i.e., threshold) within each window will be counted as monitoring statistics. Since 

window size is consistent, this monitoring statistic is equivalent to evaluating the 

heaviness of the distribution tail. The effectiveness of this developed statistic is 

validated in the real-world case study (Section 3.4).  
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(2) Build a control chart: Based on the above determined monitoring statistics, the next step is 

to identify the baseline and control limits, which are the key components of a control chart. 

Typically, a well investigated control chart can be applied directly. To monitor the mean-

shift of λ𝑘, the family of EWMA chart or CUSUM chart is able to handle. Then for the 

monitoring of the proposed quantile-based statistics, 𝑝 chart or 𝑛𝑝 chart related approaches 

[82]are appropriate to be applied. Then the control chart performance could be evaluated 

by the in control and out of control testing data. 

(3) Optimize chart and define control rules: In general, a control chart usually has several input 

parameters. For example, if a EWMA chart is selected, it is critical to find an appropriate 

exponential weight 𝜆 [62]. Then the control rules [62] should be defined in a good way as 

well based on the specific real-world problems. In practice, the strategies to optimize 

parameters and define control rules are usually in terms of making a balance between false 

alarms and missed detection rate. 

By these three steps for online application, the process anomaly can be detected in a timely manner 

based on the alarm from the control chart. In addition, to further improve the performance, more 

evolved advanced techniques in data analytics, such as Neural Networks [83, 84], ensemble 

learning methods [85], Bayesian approaches [86, 87], etc., can be potentially integrated with the 

developed anomaly detection framework as well. 

3.3 Numerical simulation studies 

The objective of the numerical simulation studies is to validate the effectiveness of the proposed 

spectral feature extraction-based online control charting approach. In comparison, two widely 

applied statistical control charts, namely, the X-bar chart (with S chart) and EWMA chart are 

selected as benchmark methods.   
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Without loss of generality, this simulation study is focused on the univariate data by considering 

two cases. At first, the phase 1 data (i.e., IC data) that is applied to build baseline and control limits 

are sequentially generated from a mixture Gaussian distribution with three clusters as described 

below,  

 𝑥𝑡~0.3𝑁(3,1) + 0.4𝑁(6,1) + 0.3𝑁(9,1) (3-11) 

Then the phase 2 data with two different cases are generated subsequently. For case 1 (C1), the 

data follows a new mixture distribution as Eq. (3-12), which describes the case that three clusters 

merge to two clusters.  

 𝑥𝑡~0.5𝑁(3.68,1) + 0.5𝑁(8.32,1) (3-12) 

On the contrary, the phase 2 distribution in case 2 (C2) is presented in Eq. (3-13), which implies 

that three clusters split into four clusters.  

 𝑥𝑡~0.18𝑁(2,0.2) + 0.32𝑁(5,0.2) + 0.32𝑁(7,0.2) + 0.18𝑁(10,0.2) (3-13) 

Based on the above pre-defined distributions, 6000 signals are generated for both phase 1 and 

phase 2 data (including C1 and C2), respectively. Since the traditional SPC approaches already 

have strong capability to detect mean/variance shift effectively, to demonstrate the effectiveness 

of the proposed method clearly, there is no significant mean/variance shift in both of the two cases 

based on the simulated distributions (see Table 3-1).  

Table 3-1: The mean and variance of the simulation data.  

Simulation Data Numerical Characteristics 

Mean Variance 

Phase 1 6 6.4 

Phase 2 – C1 6 6.38 

Phase 2 – C2 6 6.44 
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Subsequently, to perform the proposed method, the window size 𝑛 is set as 60 without overlap, 

and the radial basis function (using Euclidean distance) is applied to quantify the similarity 

between data points. Afterwards, to determine the edge connection, the mean value of similarity is 

utilized as threshold. Then 𝜆3 is selected based on the developed maximum Eigengap criterion. 

For the design of the control chart, an EWMA chart with 𝜆 = 0.25, which is a common choice in 

practice, is applied for change detection. The control limits are defined by the traditional three-

sigma rule. Then the results are presented in Figure 3-3. For both C1 and C2, the anomaly can be 

detected immediately when the changes occur, and there is no false alarm in phase 1 status. 

Therefore, the proposed method is not only sensitive for detecting the changes, but also robust for 

the IC status (no false alarm).  

 

Figure 3-3: The anomaly detection performance of the proposed method. (a) The results of C1; 

(b) the results of C2.   

On the other hand, the results for the benchmark methods are presented in Figure 3-4. By using 

the same three-sigma control limits, both the X-bar (and S chart) and EWMA chart are not able to 

detect the anomaly effectively. Consequently, the proposed method significantly outperforms the 

benchmark methods.   
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Figure 3-4: The results of the benchmark methods. (a) X-bar chart for C1; (b) X-bar char for C2;  

(c) S chart for C1; (d) S chart for C2; (e) EWMA chart for C1; (f) EWMA chart for C2.  
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3.4 Case study 

In this section, the proposed data-driven spectral feature extraction approach for process anomaly 

detection is applied in an actual FFF 3D printing platform, by using the in situ vibration sensing 

signals (side channel). The real-world problem and experimental setup are introduced in Section 

3.4.1, followed by the results interpretation and discussion in Section 3.4.2. 

3.4.1 Problem introduction and experimental setup 

The objective of this case study is to detect the unintended process anomalies in AM caused by 

cyber-physical attacks based on side channel monitoring. Nowadays, with the rapid development 

of Internet and smart systems, the cyber-physical security concern has become one potential 

important risk for manufacturing systems [88-90], including AM systems [91-93]. For instance, a 

cyber-physical attack may insert a small void in the STL file (i.e., the 3D design) before printing 

(Figure 3-5). Compared with the case study problems that are investigated in Chapter 4, the major 

difference is that the process itself is still healthy (i.e., no quality issue from the machine side) in 

this problem. Therefore, it is impractical to directly apply the existing methods in this case.  

 

Figure 3-5: Demonstration for an example of cyber-physical attack to the AM process. 

On the other hand, due to the high complexity of the AM process, when the design is changed, the 

variability of inherent patterns in the sensor signals under healthy printing may also exist. Although 
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the process is still under the same printing condition, the cyber-physical attack may change the 

patterns due to the significant difference of G-code, which will be apparent in the variation of the 

underlying distribution for the spectral features. Therefore, the proposed anomaly detection 

method could be an effective solution for this problem.   

In this case study, a desktop FFF-based 3D printer (detailed information for this experimental 

platform is demonstrated in Chapter 6), namely, Hyrel System 30M, is applied to conduct the 

experiments. Then to monitor the process, two vibration sensors (i.e., MEMS accelerometers) are 

mounted to the extruder and printer hot bed (see Figure 3-6) as side channels, respectively, which 

are capable of tracking the real-time vibrations in terms of 𝑥, 𝑦, 𝑧 three axis with 4Hz sampling 

frequency.  

 

Figure 3-6: The configuration of the FFF printer along with the locations of the accelerometers. 

Both accelerometers are three-axis Micro-Electro Mechanical System (MEMS) accelerometers. 

For the testing part of this case study, a replicate of a General Electric (GE) aviation jet engine 

bracket is designed. The original design is used to affix jet engines for an airplane, which is from 

a GE aviation CAD competition [94] and scaled down for the investigation purpose. The reason 

to use a CAD model based on commercially available parts is to bring attention to the vulnerability 
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in the current applications. Embedding a void in this bracket may cause significant damages for 

the real-world applications. Therefore, to simulate a cyber-physical attack for this case, a void (a 

small hole) that is approximately 5% of the volume of the part is embedded in the center of the 

part through the change of STL file. Consequently, as demonstrated in Figure 3-7(a), the printing 

process for this case can be summarized as three stages, where the stage 2 is attacked and stage 3 

is also impacted by the attack. This instance may result in debilitating consequences because the 

difference after attack is hidden from view and it will be susceptible to pass traditional human 

inspection. As displayed in Figure 3-7(b), it is very difficult to distinguish the printed normal and 

attacked parts. In addition, since the volume of void is very small, it is also hard to identify the 

attacked parts by comparing the weight.  

To perform the experimental study, six normal parts (i.e., no void) were printed and then three 

“attacked” parts were printed. Meanwhile, the side channel information, i.e., vibration sensor data, 

is also collected from the extruder and hot bed. Then based on the real-time sensing signals for 

both the normal and attacked parts, the analysis and detection performance are presented in Section 

3.4.2.  

 

Figure 3-7: (a) The difference between normal and attacked parts; (b) printed sample of the 

normal part; (c) printed sample of the attacked part.  
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3.4.2 Sensor signal analysis and detection results 

As introduced in Section 3.4.1, sensing signals from two vibration sensors are applied for analysis. 

The format of sensor output is in the form of “𝑥”, “𝑦”, and “𝑧” coordinates stored in discrete time 

increments with a sampling frequency of 4 Hz. Then based on the experimental setup (see Section 

3.4.1), six normal parts and three attacked parts are printed for analysis. To validate the 

performance of the proposed method, four of the normal parts and one of the attacked part are 

applied to build the control chart (i.e., to determine the input parameters and control limits), and 

the other parts (i.e., two normal and two attacked parts) are used to test the detection sensitivity 

and false alarm rate.  

To represent the sensor data as a graph, the window size is set as 20 without overlap and the radial 

basis function-based similarity (using Euclidean distance) with the threshold using the overall 

median of the similarity matrix is applied. The reason to use median instead of mean in this case 

is that typically median is a more robust statistic in practice. Then for the feature extraction step, 

𝜆3  is extracted based on the maximum Eigengap-based feature selection rule. Afterwards, as 

discussed in Section 3.2.4, to investigate the underlying distribution change of 𝜆3 when attack 

occurs, the developed quantile-based statistics are utilized to detect the cyber-physical attack. In 

this case, a 30% lower quantile is selected. Then to calculate the monitoring statistics for control 

charting, window size 60 with overlap 59 (i.e., to perform consecutive windows) is applied for 

online application.  

Subsequently, for the design of the control chart, due to high complexity dynamics, the baseline 

and control limits during the process will change dynamically. Since the applied monitoring 

statistic is essentially a type of attribute, a 𝑛𝑝 chart with dynamic control limits is designed for 
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process anomaly detection. The detailed procedure for control charting in this case is described 

below.   

 Baseline: for each time instant 𝑡, calculate the average of the monitoring statistics among 

the four training normal parts (i.e., to estimate 𝑛𝑝(𝑡)̂, where 𝑛 = 60) as the baseline.  

 Control limits: estimate the control limits based on 𝑛𝑝 chart (see Eq. (3-14)), where 𝑘 =

2.5 based on the performance evaluated by training data (i.e., the selected four normal and 

one attacked parts).  

 

UCL(𝑡) = 𝑛𝑝(𝑡)̂ + 𝑘√𝑛𝑝(𝑡)̂(1 − 𝑝(𝑡)̂) 

LCL(𝑡) = 𝑛𝑝(𝑡)̂ − 𝑘√𝑛𝑝(𝑡)̂(1 − 𝑝(𝑡)̂) 

(3-14) 

 Control role: for online application, if the monitoring statistic is out of lower or upper 

control limits, then a cyber-physical attack alarm will be given.  

Afterwards, to validate the effectiveness of the proposed method, two aspects are considered: (1) 

the detection sensitivity for the three attacked parts; and (2) the false alarm rate for the two normal 

parts. The detection results for these five tests are demonstrated in Figure 3-8. It can be seen that 

all three attacked parts are detected successfully and there is no false alarm for the two normal 

parts. Therefore, the analysis and results demonstrate that instances of abnormal behavior can be 

detected effectively. 
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Figure 3-8: The performance of the developed online anomaly detection method for cyber-

physical attack detection in AM.  

 

3.5 Conclusions 

This chapter develops a data-driven feature extraction-based online process anomaly detection 

approach using spectral graph theory. Compared with the existing process monitoring and change 

detection methods, the novelty and contribution of this study is to take consideration of the 

variation of inherent structure inside the sensing signals based on a graph perspective. Then the 

change of inherent structure can be effectively tracked by control charts using appropriate feature-

based monitoring statistics. The numerical simulation study with different cases demonstrates that 

the proposed method is capable of effectively detecting the process anomaly with high sensitivity 

but low false alarm rate, which significantly outperforms the benchmark methods. For the real-

world application in AM, the preliminary results show that the proposed method is very promising 

to implement effective online process anomaly detection in AM, such as the detection of cyber-

physical attacks.  
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For the future work, there are two potential directions. First, it is necessary to find an effective rule 

to optimize the input parameters such as window size and window overlap. Second, the 

preliminary studies show that the proposed method is very effective, but the number of 

experiments is still limited. Therefore, with more experimental studies, more data sets will be 

collected to further validate this proposed method, which could make the results more convincing.  
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4 An integrated manifold learning approach for online 

defect diagnosis 

As a powerful dimension reduction technique, manifold learning algorithms have been widely 

applied to high-dimensional data analytics. With the rapid development of sensor technologies, 

one of the most critical potential applications for manifold learning is online sensing signal 

analytics. Consequently, the objective of this chapter is to develop a manifold learning-based 

online process defect diagnosis method for AM using online sensing data. However, due to the 

limitation of the existing manifold learning research, how to improve the performance of metric 

preserving and noise resistance in analytics is still very challenging. To address this issue, this 

chapter develops a new integrated manifold learning approach termed the multi-kernel metric 

learning embedded isometric feature mapping (MKML-ISOMAP) method for online real-time 

dimension reduction. With the application of supervised machine learning algorithms, an online 

process monitoring framework for AM is enabled to identify the defective printing status. In the 

numerical simulation and real-world case studies, the proposed method demonstrates excellent 

performance in data compression and feature extraction. In addition, it is also applicable to extend 

the current generic integrated learning framework to other real-world dimension reduction 

problems that involve different types of manifold learning algorithms. 

4.1 Introduction 

As introduced in Chapter 1, AM technologies have great potentials in a large variety of 

applications. [2]. However, how to effectively monitor the process and printing status still remains 

challenging due to the inherent complexities of AM. 
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To address this challenge, the objective of this chapter is to develop an effective methodology for 

online process monitoring of AM processes. Based on the AM experimental apparatus with online 

sensing capabilities [15], massive real-time data with the process quality information are available 

for analysis. Therefore, it is very promising to identify the quality status through appropriate 

supervised machine learning algorithms, particularly, the classification algorithm. Nowadays a 

large variety of research in machine learning has been accomplished in classification, such as 

support vector machine (SVM), k-nearest neighbors (k-NN), discriminant analysis (e.g., 

LDA/QDA), neural networks (NN), etc. [95]. However, in real world applications, such as AM 

and other related advanced manufacturing processes, since the online sensing signals are usually 

high dimensional and very noisy, the existing classification algorithms may provide inaccurate 

results, e.g., false alarm or miss detection, which may result in waste of resources and reduce the 

monitoring effectiveness significantly. The key reason is that the direct application of classification 

algorithms cannot effectively utilize the most useful information for the noisy high dimensional 

sensing data, so that the classification performance may be negatively impacted. Therefore, an 

effective dimension reduction algorithm for feature extraction is needed for this study.  

Manifold learning [96-98] is an effective approach to implement non-linear dimensionality 

reduction, and has been applied in many real-world applications. The main idea of manifold 

learning is to seek an appropriate embedding of the original observed data from high-dimensional 

space 𝒳 into a lower dimensional space 𝒴, while still preserving the structure of the underlying 

manifold of the raw data.  

 𝒳
𝑚𝑎𝑝𝑝𝑖𝑛𝑔
→      𝒴 + 𝜖 (4-1) 
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In general, the basic assumption is that input data sets lie on a lower dimensional smooth manifold 

which is embedded in the ambient Euclidean space. The first two manifold learning algorithms 

were reported in [99, 100], and nowadays a large number of related methods have been proposed 

based on different types of problems [96]. Compared with the traditional linear approaches, 

manifold learning has a superior capability in capturing the true data structure of nonlinear data 

sets (Figure 4-1). 

 

Figure 4-1: A demonstration of effective manifold learning; (a) “Swiss roll” shaped data (2D 

manifold in a 3D space), (b) PCA results (failed), (c) manifold learning results.  

However, most of the existing manifold learning algorithms assume that the data has a very low 

level of noise and a sufficient number of sample points are available. Unfortunately, in practice, 

these assumptions are hardly satisfied. Furthermore, due to the requirement of real-time process 

monitoring, fast computation is also an important aspect of the algorithm, which is another 

limitation of the current manifold learning work due to intensive computation caused by the non-

parametric nature.  

Thus, to overcome the above challenges, it is necessary to develop a novel manifold learning 

methodology, and apply it to AM process monitoring. To achieve this goal, this chapter proposes 

a new integrated manifold learning approach for dimension reduction, which is realized by a 

developed multi-kernel metric learning embedded isometric feature mapping (MKML-ISOMAP) 

algorithm. This proposed MKML-ISOMAP algorithm is to overcome the above shortcomings by 
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achieving the following three aims: (1) improve the classification accuracy and computational 

efficiency for real-time applications; (2) provide more timely diagnosis information in the 

extracted features, e.g., the severity of incurred defects; and (3) identify the invalid input data 

points (e.g., online sensor signals and real-time images) automatically.  

The rest of this chapter is structured as follows: the proposed research methodology is discussed 

in detail in Section 4.2; Section 4.3 presents the numerical simulation study, followed by the 

validation of real-world case studies in AM, which is demonstrated in Section 4.4; finally, the 

conclusions are summarized in Section 4.5. 

4.2 Research methodology  

The overall research approach of this work is summarized in Figure 4-2. It has two main aspects: 

(1) a high accuracy dimension reduction method by an integrated manifold learning framework; 

and (2) online process monitoring implementation based on fast and accurate sample extrapolation 

with classification algorithms. 

 

Figure 4-2: The overall research framework for the proposed online process monitoring method.   
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4.2.1 Isometric feature mapping (ISOMAP) 

Isometric feature mapping (ISOMAP) [99] is one of the most popular global approaches in 

manifold learning that aims to preserve the metrics at all scales, thereby offering an appropriate 

embedding. The key idea to implement the ISOMAP is to estimate the geodesic distance between 

faraway points instead of using the Euclidean distance in linear dimension reduction (Figure 

4-3(a)). More specifically, from the input data, a distance matrix 𝐃 can be obtained based on a 

specified distance metric such as the Euclidean distance,  

 𝐃(𝑖, 𝑗) = 𝑑𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗||  (4-2) 

where 𝑥𝑖  and 𝑥𝑗  are two sample points in the input high-dimensional space. Afterwards, a 

neighborhood graph can be constructed. The connection relationship between each pair of nodes 

is summarized by a similarity matrix 𝐒, as shown in Eq. (4-3),  

 𝐒(𝑖, 𝑗) = 𝑠𝑖𝑗 = {
𝑑𝑖𝑗 ,  𝑑𝑖𝑗 ≤ 𝜖

∞,   𝑑𝑖𝑗 > 𝜖
 (4-3) 

where 𝜖  is a threshold, termed the neighborhood size, to determine the connection. Then the 

geodesic distance between two points, i.e., the two nodes in the constructed neighborhood graph, 

is computed by the shortest path algorithm [101]. Based on this geodesic distance matrix, the low-

dimensional embedding can be implemented by using existing linear dimension reduction 

methods, e.g., classical multidimensional scaling (MDS) [99]. Figure 4-3(b) summarizes the 

procedure of the ISOMAP method. For the detail of this manifold learning approach, please refer 

to Ref. [99]. 



 40 

 

Figure 4-3: (a) The key idea of ISOMAP is to use the estimated geodesic distance instead of 

Euclidean distance [99]; (b) the procedure of ISOMAP. 

Due to the excellent properties and convergence, ISOMAP has been widely applied to a large 

variety of areas. However, it also requires high sampling rate and low noise level to guarantee its 

performance [102], which are very difficult to satisfy for the data collected from AM processes. 

Consequently, a direct application of ISOMAP for AM process monitoring does not work well. 

4.2.2 Proposed multi-kernel metric learning (MKML) method 

As an important direction of manifold learning, kernel embedding based methods have also been 

reported in the literature [103, 104] to implement nonlinear mappings. The general idea is to use 

the kernel trick [105] to reformulate the manifold learning method as a linear projection problem 

(e.g., PCA, MDS, etc.). More specifically, the original data samples {𝑥𝑖} are mapped into an 

unknown Hilbert space ℋ through a nonlinear feature mapping 𝜓: ℝ𝑛 → ℋ, and then the k-th 

component of the embedded samples {𝑦𝑖} can be written in term of 𝜓(𝑥𝑖) as Eq. (4-4),  

 𝑦𝑖
𝑘 = 𝑤𝑘

𝑇𝜓(𝑥𝑖) (4-4) 
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Although it is usually difficult to provide an explicit mapping, the dimension reduction algorithms 

just need the distance metric between variables or samples. Fortunately, the inner product, which 

is one of the most common metric in the feature space ℋ, can be represented via a symmetric 

function 𝐾: 𝒳 ×𝒳 → ℝ named as kernel function,  

 𝐾𝑖𝑗 = 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝜓(𝑥𝑖), 𝜓(𝑥𝑗))ℋ (4-5) 

Based on the general properties of the kernel function, the distance metric in ℋ  also can be 

formulated as follows,  

 ||𝜓(𝑥𝑖) − 𝜓(𝑥𝑗)||
ℋ
= (𝜓(𝑥𝑖) − 𝜓(𝑥𝑗), 𝜓(𝑥𝑖) − 𝜓(𝑥𝑗))ℋ = 𝐾(𝑥𝑖−𝑥𝑗 , 𝑥𝑖−𝑥𝑗)            (4-6) 

Since the dimension of ℋ is usually high enough, it can be further considered that the sample 

distance in ℋ is equal to the metric in the embedded lower dimension space 𝒴, i.e.,  

 ||𝜓(𝑥𝑖) − 𝜓(𝑥𝑗)||
ℋ
= ||𝑥𝑖 − 𝑥𝑗||𝒴 (4-7) 

Then the embedding problem can be implemented by a linear reduction algorithm if the kernel 

function is determined. One promising advantage of the kernel embedding based methods is that 

it can utilize the existing kernel extrapolation (KE) [106] techniques to determine the location of 

new data samples in the low-dimensional space. However, the challenge is how to obtain the 

optimal kernel function for a specific data set. Weinberger et al. [103] proposed the semidefinite 

embedding (SDE) algorithm, which learns a kernel matrix for the input samples. However, the 

output is only a kernel matrix rather than an explicit expression of kernel function.  

As discussed in Section 4.2.1, the ISOMAP algorithm may not provide a high learning accuracy 

for the data with low sampling rate or relative high noise level. One of the reasons is that the 

shortest path based distance metric cannot filter the noise in the raw data. Also if the data sample 

is not dense enough, the estimated geodesic distance will not be the best approximation. Therefore, 
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the key issue is how to improve the accuracy of the estimated distance matrix for the proposed 

method.  

In order to satisfy the above requirement, this proposed method utilizes the geodesic distance 

learned from ISOMAP as an initial metric, based on which a multi-kernel metric learning (MKML) 

algorithm is developed. This integration of non-parametric (ISOMAP) and parametric (MKML) 

aspects will improve the accuracy of distance matrix, and also achieve a fast computation for online 

application enabled by MKML. In the proposed approach, the multi-kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) is 

created by a linear combination of multiple kernel basis as follows,  

 𝐾(𝑥𝑖 , 𝑥𝑗) = ∑𝛽𝑛𝐾𝑛(𝑥𝑖 , 𝑥𝑗 , Θ𝑛)

𝑝

𝑛=1

 (4-8) 

Then the distance metric in 𝒴 can be represented as Eq. (4-9),  

 𝐷𝒴(𝑥𝑖, 𝑥𝑗) = ||𝑥𝑖 − 𝑥𝑗||𝒴 = 𝐾(𝑥𝑖−𝑥𝑗 , 𝑥𝑖−𝑥𝑗) = ∑𝛽𝑛𝐾𝑛(𝑥𝑖 − 𝑥𝑗 , 𝑥𝑖 − 𝑥𝑗 , Θ𝑛)

𝑝

𝑛=1

 (4-9) 

Suppose the input data 𝑋 can obtain a topology-preserving mapping based on ISOMAP, and then 

by considering the effect of noise 𝜖, the geodesic distance metric 𝐷𝑔 measured by ISOMAP can 

be further denoted by 𝐷𝑔 = 𝐷𝒴 + 𝜖, i.e.,  

 𝐷𝑔(𝑥𝑖 , 𝑥𝑗) = ∑𝛽𝑛𝐾𝑛(𝑥𝑖 − 𝑥𝑗 , 𝑥𝑖 − 𝑥𝑗 , Θ𝑛)

𝑝

𝑛=1

+ 𝜖 (4-10) 

where {𝛽𝑛} and {𝜃𝑛} are the groups of parameters to be estimated. Based on this relationship 

between 𝐷𝑔  and 𝐷𝒴 , the parameters estimation can be solved by the following optimization 

problem,   

 argmin ||𝐷𝑔(𝑥𝑖, 𝑥𝑗) −∑𝛽𝑛𝐾𝑛(𝑥𝑖, 𝑥𝑗 , Θ𝑛)

𝑝

𝑛=1

||  (4-11) 
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𝑠. 𝑡.  𝛽𝑛 ≥ 0 

Since the objective function is nonlinear, the optimization process may be computationally 

intensive by using a traditional optimization algorithm. An iterative approach is proposed to solve 

the above optimization problem, which is based on orthogonal matching pursuit (OMP) [107] and 

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [108]. OMP is an effective and fast sparse 

approximation algorithm [109] which can be applied to estimate the coefficients {𝛽𝑛} in the kernel 

function. BFGS is a popular numerical optimization algorithm for solving unconstrained nonlinear 

optimization problems [110], i.e., obtain the optimal {𝜃𝑛} when the values of {𝛽𝑛} are assigned by 

OMP. The procedures of the proposed MKML is summarized in Figure 4-4.  

Algorithm 4-1: MKML algorithm 

Input: Initial distance matrix 𝐷𝑔, the basis kernel functions with initial parameters {𝜃𝑛} 

Output: Estimated coefficients {𝛽𝑛}, parameters {𝜃𝑛} and the updated distance matrix 𝐷𝒴 

Step 1 Initialize {𝜃𝑛: 1,2,⋯ , 𝑝} 

Step 2 Compute the sparse solution for {𝛽𝑛: 1,2,⋯ , 𝑝} by non-negative OMP 

Step 3 Solve the unconstraint optimization for {𝜃𝑛: 1,2,⋯ , 𝑝} by BFGS algorithm and update 𝜃𝑘 

Step 4 If the residual is lower than the target value or the local minimal is achieved, stop and 

output 𝐷𝒴. Otherwise go back to step 2     

Figure 4-4: MKML algorithm for kernel metric learning.  

In the following, a mathematical proof (i.e., Theorem 4-1) is provided to delineate the correctness 

of MKML method. 

 Theorem 4-1. The fitting residual 𝑟 = ||𝐷̂𝒴 − 𝐷𝑔||  can be continuously reduced and 

finally converges with the increase of iterations.    

 Proof: Denote the residual as 𝑟(𝛽𝑖, 𝜃̃𝑖), where 𝑖 is the number of iteration. The theorem is 

equivalent to 

                         𝑟(𝛽𝑖, 𝜃̃𝑖) ≥ 𝑟(𝛽𝑖+1, 𝜃̃𝑖+1) (4-12) 
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First, considering the updated residual 𝑟(𝛽𝑖+1, 𝜃̃𝑖) after step 2 in 𝑖-th iteration, since {𝛽𝑛} 

is improved under same {𝜃𝑛 }, (𝛽𝑖+1, 𝜃̃𝑖)  should be a better solution compared with 

(𝛽𝑖, 𝜃̃𝑖) , i.e., 𝑟(𝛽̃𝑖, 𝜃̃𝑖) ≥ 𝑟(𝛽𝑖+1, 𝜃̃𝑖) . Similarly, under identical {𝛽𝑛} , since {𝜃𝑛}  is 

optimized, then 𝑟(𝛽𝑖+1, 𝜃̃𝑖+1) ≤  𝑟(𝛽𝑖+1, 𝜃̃𝑖). Therefore, the following inequality can be 

achieved,  

                                      𝑟(𝛽𝑖, 𝜃̃𝑖) ≥ 𝑟(𝛽𝑖+1, 𝜃̃𝑖) ≥ 𝑟(𝛽𝑖+1, 𝜃̃𝑖+1) (4-13) 

Also since the fitting residual has lower bound, 𝑟(𝛽𝑖, 𝜃̃𝑖) is a convergent series. Q.E.D.  

 

4.2.3 Integrated manifold learning framework: MKML-ISOMAP 

Based on the developed MKML method, the proposed integrated manifold learning framework 

MKML-ISOMAP consists of two phases. Phase 1 provides a global data structure estimation based 

on geodesic distance measurement using the classical ISOMAP algorithm. In this phase, the input 

high dimensional data will be converted to a weighted nearest neighbor graph based on an 

appropriate neighborhood size, and then an estimated distance matrix 𝐷𝑔 will be calculated by the 

shortest path algorithm. Phase 2 applies the proposed MKML approach to refine the estimated 

distance metric in phase 1. More specifically, 𝐷𝑔 will be utilized as a reference to learn the optimal 

kernel distance metric and a refined distance matrix 𝐷𝒴 by Algorithm 4-1 (see Figure 4-4). The 

final embedding 𝑌  can be effectively achieved by classical MDS. The procedure of MKML-

ISOMAP is described in Figure 4-5. 

 

 

 



 45 

Algorithm 4-2: MKML-ISOMAP algorithm 

Input: Input data matrix 𝑋, the basis kernel functions with initial parameters 𝜃𝑘 

Output: Low dimensional data 𝑌, learned kernel functions 

Assumption: There exists a mapping between high and low dimensional representations 

Step 1 Compute 𝐷𝑔 by ISOMAP with neighborhood size optimization 

Step 2 Learn the optimal kernel metrics by MKML and obtain 𝐷𝒴 (i.e. Algorithm 1) 

Step 3 Implement low dimensional embedding by classical MDS (i.e., get 𝑌)      

Figure 4-5: The proposed integrated manifold learning approach MKML-ISOMAP algorithm. 

 

4.2.4 The implementation of online process monitoring 

In order to achieve online process monitoring, one of the most important aspects is to identify the 

location of the online input data samples in the learned manifold, i.e., out of sample extrapolation 

[111]. For the proposed algorithm, a natural idea is to embed the online collected sample into the 

low dimensional manifold by learned kernel function. Since the explicit expression of the learned 

kernel function has been obtained via the MKML algorithm (see Figure 4-5), it can effectively 

measure the similarity between the new input and original samples in an efficient manner.  

In real world applications such as AM process monitoring using a machine vision system, a 

challenging problem is that sometimes the observation may be invalid or useless. For example, 

some data observations are collected from an unrelated object, or the sensing environment has 

changed (the process itself is still healthy) if a machine vision system is being used. Therefore, it 

is necessary to identify the homogeneity of the new data point before embedding it into the low 

dimensional space. To achieve that, an identification procedure is implemented as below:   

 Nearest distance vector 𝑣: 𝑣𝑖 = ||𝑥𝑖 − 𝑥𝑛𝑛||, where 𝑥𝑛𝑛 is the nearest neighbor of 𝑥𝑖 
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 Hypothesis: 𝑋 are uniformly sampled from 𝒳, if the new sample 𝑥𝑛𝑒𝑤 is significantly far 

away from 𝑋, then it should be invalid.  

 Evaluation index: The distance 𝑑𝑒 between 𝑥𝑛𝑒𝑤 and its nearest neighbor in 𝑋. 

 Decision rule: If 𝑑𝑒 is high than 95% quantile of 𝑣, then reject 𝑥𝑛𝑒𝑤, otherwise accept.    

After the sample identification, the accepted sensor observations can be embedded into the lower 

dimensional space by the learned kernel metric, and then be used to determine the quality status 

of the manufacturing processes, or products based on some simple classification methods.  

4.3 Numerical simulation studies    

In the numerical simulation study, the classical nonlinear data set “Swiss roll” [99] is generated 

with different levels of noise and sample size. One sample set of the simulation data is shown in 

Figure 4-6. To demonstrate the effectiveness of the proposed method, the classical ISOMAP is 

selected as the benchmark method. Then the performance between ISOMAP and the proposed 

MKML-ISOMAP is compared using RMSE based on different level of Gaussian noise (i.e., 𝜎2) 

and sample size. 

 

Figure 4-6: The demonstration of “Swiss roll” data, (a) true underlying manifold, (b) sample 

data without noise, (c) sample data with Gaussian noise.  

From the comparison results shown in Figure 4-7(a), it can be seen that under the same noise level, 

the proposed MKML-ISOMAP can significantly improve the learning performance when the 
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sample size decreases. In addition, Figure 4-7(b) demonstrates that under the same sample size, 

the proposed method also outperforms the ISOMAP in terms of RMSE at different noise levels.  

 

Figure 4-7: (a) RMSE under different sample size, (b) RMSE under different noise level. 

4.4 Case studies 

In this section, two real-world case studies regarding online defect diagnosis of the AM process 

are performed to validate the effectiveness of the proposed integrated manifold learning approach. 

A process state diagnosis study using heterogeneous real-time sensor data is demonstrated in 

Section 4.4.1, followed by an image-based surface defect diagnosis investigation in Section 4.4.2.    

4.4.1 Process states classification based on heterogeneous sensors 

In this case study, multiple temperature (thermocouples) and vibration (accelerometers) sensors 

are mounted at several different locations including extruder and hotbed on a MakerBot Replicator 

2X experimental 3D printer (see Figure 4-8). The objective is to implement real-time process state 

diagnosis by analyzing the online sensing data, where the process states are labeled as three 

categories: normal state (stable extrusion with smooth surface), abnormal state (inconsistent or 

stringy extrusion), and failure state (nozzle clogged with scraped surface) [15].   
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Figure 4-8: The schematic of the applied online sensing system for FFF machine [15]. 

To achieve this objective, the proposed MKML-ISOMAP method is applied to perform online 

feature extraction (i.e., dimension reduction). Subsequently, a commonly applied classification 

method, namely, k-nearest neighbor (k-NN) [112], is selected to identify the printing process states 

of the FFF machine. To demonstrate the performance of the proposed approach, the following two 

groups of methods are selected as benchmarks for comparison: (1) several popular classification 

algorithms in the literature including linear/quadratic discriminant analysis (LDA/QDA), k-NN, 

naïve Bayes (NB), and support vector machine (SVM) [112]; and (2) traditional nonlinear 

dimension reduction including NL-PCA [113] and ISOMAP with the proposed online process 

monitoring framework.  

Based on the sensor data, the extracted quality evaluation index (i.e., the 1st dimension in 𝒴) 

obtained by the proposed approach illustrates that the process quality has a significant continuous 

decreasing trend (see Figure 4-9). For the performance of diagnosis, the classification algorithms 

are trained and then applied to predict the three labeled printing states. The prediction performance 

is evaluated by a commonly applied statistic, namely, F-score (the higher F-score indicates the 

more correct classification result) [114]. The results are shown in Table 4-1, from which we can 
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conclude that the proposed MKML-ISOMAP has the superior performance over the benchmark 

methods. 

 

Figure 4-9: Process state identification using the feature extracted by MKML-ISOMAP.  

Table 4-1: The comparison of classification performance between the proposed method and 

benchmark methods.  

Groups Algorithms Average F-score Computation time (ms) 

1 QDA 0.774 0.72 

1 k-NN 0.799 0.15 

1 NBC 0.809 0.18 

1 SVM 0.752 0.91 

2 NL-PCA 0.842 2.2 

2 ISOMAP 0.952 >1000 

Proposed MKML-ISOMAP 0.984 1.7 

 

4.4.2 Surface defect diagnosis based on real-time image data 

The objective of this case study is to implement online surface defect diagnosis for the printing 

parts in the FFF process using a developed machine vision system. The experimental platform for 

online image acquisition, as shown in Figure 4-10(a), consists of a Hyrel System 30M 3D printer 

and two digital microscopes with illumination, which are fixed on two sides of the extruder with 

an approximate 45o inclination. The collected images have 640 × 480 resolution with about 15 
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times magnification. A detailed introduction for this image acquisition system is presented in 

Chapter 6.  

 

Figure 4-10: (a) Image acquisition system, (b) surface showing normal condition, (c) surface 

showing defect.  

In this study, one frequently occurring defect caused by insufficient material feed, namely, under-

fill, with multiple severity levels, is considered for diagnosis. The image data sets are collected 

using different material feed rates. For the collected images, in order to evaluate the real time 

quality status, only the region of interest (ROI) is used, which is cropped from the small region 

(80 by 80 pixels) below the nozzle (see Figure 4-10). Then the images can be represented by the 

input samples in a 𝑑 = 6,400 dimensional vector space. Since the raw input data is very high 

dimensional, the proposed MKML-ISOMAP is applied to implement dimension reduction, i.e., 

feature extraction, with the application of k-NN classification for defect diagnosis. In addition, to 

illustrate the online diagnosis performance of MKML-ISOMAP, the same groups of methods 

introduced in Section 4.4.1 are used as benchmarks.  
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Figure 4-11: The defective printing status can be effectively detected by MKML-ISOMAP. 

From a preliminary demonstration result in Figure 4-11, it can be seen that only the 1st dimension 

in 𝒴 extracted by the proposed approach is able to provide an excellent discrimination between 

the images from normal and defective printing (50% under-fill) with good interpretability. 

Furthermore, to diagnose the under-fill defects with different severity levels, after k-NN 

classification using the extracted features, the proposed method achieves the highest F-score 

compared with the benchmark methods, which implies this method provides the most effective 

surface defect diagnosis. Although ISOMAP-based diagnosis can also provide relatively good 

performance in terms of classification accuracy, the computational efficiency is not good enough 

for online applications (see Table 4-2).  

Table 4-2: The comparison of surface defects diagnosis between the proposed method and 

benchmark methods.  

Algorithms Average F-score Computation time (s) 

LDA 0.914 0.0035 

k-NN 0.936 0.0025 

NBC 0.881 0.0038 

SVM 0.948 0.0061 

NL-PCA 0.947 0.0190 

ISOMAP 0.967 >40 

MKML-ISOMAP 0.986 0.0110 
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4.5 Conclusions 

In this work, a novel manifold learning framework MKML-ISOMAP is proposed by integrating 

the strength of the non-parametric and parametric oriented data structure learning approaches. The 

proposed MKML-ISOMAP can successfully improve the learning accuracy for the noisy and low 

sampling rate data. At the same time, it also provides an efficient out of sample extrapolation 

framework due to the explicit distance metric expression. The case studies show that the proposed 

method is very promising in online process monitoring of AM processes.  

The future work and investigation along these lines are mainly in two directions. First, the 

performance of the proposed MKML-ISOMAP still can be further improved. For example, how 

to further optimize the neighborhood size in graph construction. Second, since this method has 

excellent properties in noise resistance and feature extraction, it is also very promising to apply it 

to other advanced manufacturing processes. 
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5 A bilateral time series modeling approach for online 

quality/defect forecasting  

The objective of this chapter is to investigate the layer-wise quality correlation in additive 

manufacturing (AM) processes, which can online forecast the AM quality more accurately. This 

objective is achieved by developing a data-driven modeling approach incorporated with a unique 

physical thermal phenomenon in AM termed reheating. The layer-by-layer manner of material 

deposition in AM results in unique thermal phenomena. For instance, in fused filament fabrication 

(FFF), layers of hot thermoplastic material are melted and deposited by a nozzle. The material of 

already deposited layers is subjected to repeated heating from the subsequent layers. This continual 

reheating of the layers has a consequential effect on the part quality. It is therefore important to 

model and forecast the quality characteristics of layers due to reheating, so that part defects can be 

forecasted accurately. Existing forecasting methods, such as autoregressive (AR) time series 

models, consider the effect of past evolutions of the process on the current states, i.e., forecast the 

outcome at the current time, given information from the past. These models, however, cannot 

incorporate the effect of forthcoming evolutions in the future on the current time step, in the 

context of the reheating phenomena in AM. To overcome this limitation, in this chapter a bilateral 

time series modeling approach is proposed, termed the extended autoregressive (EAR) model, to 

incorporate the thermal effects of both preceding and forthcoming layers in AM processes. The 

effectiveness of the approach is demonstrated in the context of a FFF-based 3D printing platform. 
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5.1 Introduction 

The root cause of the poor quality in AM processes, where heat is used to join the layers, stems 

from the complex thermal interactions ranging across the microstructure-level to the part-level. 

One such thermal phenomenon is the repeated heating of a layer, as hot material is continually 

deposited on top. Thus, one layer of material will be reheated multiple times when new layers are 

deposited, which is termed as reheating effect in this dissertation (Figure 5-1(a)). The reheating 

effect slows down the material solidification process, or even re-melts the materials in the 

deposited layers, which may result in several defects, such as large geometric deviation (Figure 

5-1(b)) or even significant porosity, etc. These defects will deteriorate mechanical properties of 

the printed parts [55]. Consequently, forecasting the reheating phenomena is a critical first step 

towards quality assurance in AM parts. The need for such a forecasting model in AM is further 

compelled due to the experimental difficulties in obtaining the quality measurement of the printed 

layers. 

  

Figure 5-1: (a) The schematic of reheating effects in the layer-by-layer fabrication process; (b) 

the geometric deviation in an AM part impacted by reheating effects.   

Accordingly, this chapter develops a new time series method for forecasting the reheating effect, 

so that the impact of reheating can be thoroughly understood and possibly controlled. Therefore, 

the objective of this chapter is to implement the reheating effect modeling and quality 

characteristics forecast based on an effective time series modeling approach.  
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The key challenge in modeling the reheating effect stems from the fact that the instantaneous heat 

in the current layer comes not only from past but also future layers. A large body of research work 

has been accomplished in time series modeling, such as autoregressive integrated moving average 

(ARIMA) model [115], generalized autoregressive conditional heteroscedasticity (GARCH) 

model, etc. [116]. However, these existing time series modeling approaches only take into 

consideration the impact of the past states on the current one, but do not include the future states, 

which cause reheating in the AM context. The proposed EAR model presented in this chapter is a 

substantial improvement over the existing techniques, because it provides a comprehensive 

framework for modeling the reheating phenomena. 

The rest of this chapter is organized as follows. The proposed research methodology is presented 

in detail in Section 5.2; Section 5.3 and 5.4 provided numerical examples and actual case studies 

of AM, respectively, to demonstrate the effectiveness of the proposed method. Finally, the 

conclusion is discussed in Section 5.5. 

5.2 Research methodology 

This chapter proposes a bilateral time series model for online quality forecasting in AM processes. 

This model takes into consideration the impact of both past and future states on the current state. 

As shown in Figure 5-2, the overall framework of the proposed methodology consists of four parts: 

(1) the reheating phenomenon in AM in terms of the aspect of statistical modeling is discussed in 

Section 5.2.1; (2) a new bilateral time series-based forecasting model termed the extended 

autoregressive (EAR) model, to capture the reheating effects in AM, is proposed in Section 5.2.2; 

(3) an approach to estimate the parameters of the proposed model is developed in Section 5.2.3; 

and finally (4) the strategy and technical details for online layer-wise quality forecasting for AM 

parts, based on the proposed bilateral time series model, are discussed in Section 5.2.4. 
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Figure 5-2: Overall methodology of the proposed bilateral time series modeling approach for 

online quality forecasting in AM processes. 

 

5.2.1 Bilateral time series model for reheating phenomenon in AM 

As introduced in Section 5.1, reheating effect is a unique thermal phenomenon in AM processes. 

For example, in FFF, the layer thickness is usually less than one millimeter (e.g., 0.3 mm in our 

case studies). Therefore, the deposition of one layer may significantly influence the quality of the 

previous layers. Since reheating may re-melt or partially re-melt the deposited materials, it will 

bring extra variation to the part being printed, so that defects such as larger geometric deviation 

may occur.  

Due to the layer-to-layer interaction in AM processes, the dependence of the quality characteristics 

of a given layer 𝑡 comes from two directions, namely, (1) past layers, and (2) future layers (i.e., 

reheating effects). Since all the impacts from previous layers will accumulate to the immediate 
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past layer 𝑡-1 when layer 𝑡 is being printed, only layer 𝑡-1 needs to be considered. In the other 

direction, the reheating effects from the future layers will influence the layer 𝑡 sequentially (see 

Figure 5-3). Although theoretically all the future layers will reheat the current layer 𝑡, the effect 

will be diminished gradually when future layers are eventually moved away from the current, due 

to the reduction of heat transfer [117]. Therefore, only the nearest 𝑝 future layers have actual 

significant reheating effect to the current layer. The value of 𝑝 needs to be determined in the model 

estimation stage (Section 5.2.3).   

 
 

Figure 5-3: A demonstration of the reheating phenomenon in AM process.  

In order to model this reheating phenomenon, let 𝑥𝑡 be the layer-wise quality characteristic of layer 

𝑡. Based on the above qualitative analysis, 𝑥𝑡 actually depends on not only the past layer state 𝑥𝑡−1 

but also the future layer states {𝑥𝑡+𝑖} (𝑖 = 1,2, … , 𝑝). For a simple autoregressive model AR(1), 

the autocorrelation is at only one direction to the past, i.e., the current state of the random variable 

depends on its previous state 𝑥𝑡−1. If the impact from the future layer state 𝑥𝑡+1 is also considered, 

then a corresponding bilateral autoregressive model can be formulated as follows [118],  

 𝑥𝑡 = 𝜇 + 𝑎𝑥𝑡−1 + 𝑏𝑥𝑡+1 + 𝜖𝑡 (5-1) 

where 𝑎 and 𝑏 are the coefficients for the past and future layer states, respectively, and 𝜖𝑡 is the 

noise term with constant variance 𝜎2. Based on the reheating effect (see Figure 5-3), it is also 

necessary to extend the Eq. (5-1) to a higher order model, which is formulated as follows,   
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 𝑥𝑡 = 𝜇 + 𝑎𝑥𝑡−1 +∑𝑏𝑖𝑥𝑡+𝑖

𝑝

𝑖=1

+ 𝜖𝑡 (5-2) 

where 𝑝 is the order of the extended model. The value of 𝑝 indicates that layer 𝑡 will be reheated 

𝑝 times by the future 𝑝 layers. Although the bilateral time series model in Eqs. (5-1) and (5-2) has 

been proposed by Ref. [118], unfortunately, it does not fully capture the mechanism of  reheating 

phenomenon in AM, which is justified as follows. 

 
 

Figure 5-4: Illustration of reheating process in AM.  

Based on the physical process of the reheating effect, it can be seen that 𝑥𝑡 essentially consists of 

two phases: (1) phase 1 state 𝑥𝑡,1, which is the initial quality characteristics of layer 𝑡 right after it 

is deposited, and (2) phase 2 state 𝑥𝑡,2, which is the characteristics of layer 𝑡 after layer 𝑡+1 has 

been deposited (Figure 5-4). Transition from 𝑥𝑡,1 to 𝑥𝑡,2 is actually caused by the reheating effect 

(deposition of layer 𝑡+1). Clearly, the existing bilateral time series model in Eq. (5-2) proposed 

by Ref. [118] cannot capture the reheating effect in AM processes. Consequently, to address this 

limitation, a new two-phase bilateral time series model for reheating effect modeling is proposed 

in Section 5.2.2. The term of two-phase is named based on the aforementioned phases 1 and 2 sub-

states.  

5.2.2 Proposed extended autoregressive model EAR(1,−𝑝) 

Based on the definition of the two-phase sub-states introduced in Section 5.2.1, 𝑥𝑡 is represented 
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as follows,  

 𝐱𝒕 ≝ (𝑥𝑡,1, 𝑥𝑡,2)
𝑇 (5-3) 

Using this definition, the new EAR model is proposed and illustrated in Figure 5-5. Since 𝑥𝑡,1 

corresponds to the state of layer 𝑡 without any effects from future layers, it is only impacted by the 

immediate past state, i.e., 𝑥𝑡−1,1, termed historical impact (Figure 5-5). Then for 𝑥𝑡,2, since it 

describes the state of layer 𝑡 after the future layers (namely, layer 𝑡 + 𝑖, 𝑖 = 1, … , 𝑝) deposition, it 

is influenced by the future layer states, i.e., {𝑥𝑡+𝑖,1}, termed future impact (Figure 5-5). Therefore, 

based on these relationships, two connected statistical models for 𝑥𝑡,1 and 𝑥𝑡,2, namely, phase 1 

and phase 2 models, can be developed, respectively, as depicted in Figure 5-5.  

 

Figure 5-5: The basic framework of the proposed bilateral 𝐸𝐴𝑅(1,−𝑝) model 

Phase 1 model is proposed to quantify phase 1 sub-state 𝑥𝑡,1, assuming the effect derived from the 

previous state is based on linear correlation, and then the historical phase can be described by an 

autoregressive model AR(1) with coefficient 𝑎, as shown in Eq. (5-4),  

 𝑥𝑡,1 = 𝜇 + 𝑎𝑥𝑡−1,1 + 𝜖𝑡,1 (5-4) 

where 𝜇 is a constant and 𝜖𝑡,1 is the noise term with zero mean and variance 𝜎1
2; the condition of 

|𝑎| ≤ 1 is required to guarantee model stationarity. Many methods can be applied to fit Eq. (5-4), 
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such as Yule-Walker, OLS, and MLE [119].  

Phase 2 model is developed to capture the transition from 𝑥𝑡,1 to 𝑥𝑡,2. Assume the future 𝑝 layers 

will significantly impact 𝑥𝑡,2 through reheating; then 𝑥𝑡,2 can be quantified by a constrained 𝑝-

order linear regression as shown in Eq. (5-5),  

  

𝑥𝑡,2 = 𝑏0𝑥𝑡,1 +∑𝑏𝑖𝑥𝑡+𝑖,1

𝑝

𝑖=1

+ 𝜖𝑡,2 

|𝑏𝑖| ≥ |𝑏𝑖+1| 

𝑏𝑖𝑏𝑖+1 ≥ 0 

(5-5) 

where 𝑏0, 𝑏𝑖 (𝑖 = 1,… , 𝑝) are the coefficients to be estimated, and 𝜖𝑡,2 is the noise term with zero 

mean and variance of 𝜎2
2. In general, parameter estimation and order determination for this model 

can be conducted using existing regression analysis methods, e.g., stepwise regression with 

statistical criterion, ridge regression and Lasso algorithm, etc. [120]. However, for the coefficients 

𝑏𝑖  in the model, two constraints, namely, |𝑏𝑖| ≥ |𝑏𝑖+1|  and 𝑏𝑖𝑏𝑖+1 ≥ 0  for 𝑖 = 1,2,⋯ , 𝑝 − 1 

should be added, which can be justified by the fact that closer layers will have higher impact on 

current layers and the impact should be homogeneous (either all positive or negative).  

To address the difficulties of model fitting caused by the above constraints, this study proposes a 

Lasso-based method, which is discussed in detail in Section 5.2.3. Compared with the traditional 

time-lagged regression, the explanatory variables include not only past but also future states in this 

model. Thus, this model is termed time raised regression in this chapter. Combining Eqs. (5-4) 

and (5-5) together based on Eq. (5-3), the proposed two-phase bilateral model can be formulated 

as follows,  
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 𝐂𝐱𝑡 = 𝝁 + 𝐀𝐱𝑡−1 +∑𝐁𝒊𝐱𝑡+𝑖

𝑝

𝑖=1

+ 𝛜𝒕 (5-6) 

where 𝛜𝒕 = (𝜖𝑡,1, 𝜖𝑡,2)
𝑇, and 𝛍 = (𝜇, 0)𝑇. 𝐀, 𝐁𝒊 and 𝐂 are the coefficients matrix of states 𝐱𝑡−1, 

𝐱𝑡+𝑖 and 𝐱𝑡, respectively, which are represented by,   

 𝐀 = (
𝑎 0
0 0

) , 𝐁𝒊 = (
0 0
0 𝑏𝑖

) , 𝐂 = (
1 0
−𝑏0 1

) (5-7) 

It also can be seen that Eq. (5-6) will be reduced as an AR(1) model for 𝑥𝑡,2 if 𝑝 = 0,  

 𝑥𝑡,2 = 𝑎𝑥𝑡−1,2 + 𝜖𝑡 (5-8) 

which is based on the same historical dependence of Eq. (5-4). Therefore, this proposed model is 

termed the extended autoregressive (EAR) model since it is essentially a bilateral extension of the 

AR model. In addition, the order of the EAR model is (1, −𝑝) since the dependence of the phase 

2 model is from the future. To achieve online forecasting, the next step is to provide an effective 

model-fitting algorithm, which is presented in Section 5.2.3.  

5.2.3 Homogeneous ordered lasso method (HOLA) 

A novel bilateral time series model EAR(1,−p) for online quality forecasting of AM processes is 

proposed in Section 5.2.2. This section develops an effective new method named homogeneous 

ordered lasso (HOLA), which can fit the EAR model accurately and efficiently.  

For the phase 1 model (Eq. (5-4)), its model parameter estimation can be accomplished using the 

existing methods such as Yule-Walker, OLS and MLE [119]. Therefore, the major challenge is to 

fit the phase 2 model (Eq. (5-5)) due to the additional constraints in the regression model. To 

formulate the problem conveniently, let 𝑥𝑡,2 (i.e., dependent variable) and 𝑥𝑡+𝑖,1 (i.e., explanatory 

variables) be denoted as 𝑦 and 𝑥𝑖, respectively. The identification of the time-raised regression 
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model Eq. (5-5) can be reformulated as the following constrained Lasso problem, 

 

argmin
𝑏𝑖
 ||𝑦 − 𝑏0𝑥0 −∑𝑏𝑖𝑥𝑖

𝑃

𝑖=1

|| + 𝜆∑|𝑏𝑖|

𝑃

𝑖=0

 

𝑠. 𝑡.   𝑏𝑖𝑏𝑖+1 ≥ 0,   𝑖 = 1,2,⋯ , 𝑃 − 1 

|𝑏𝑖| ≥ |𝑏𝑖+1|,   𝑖 = 1,2,⋯ , 𝑃 − 1 

(5-9) 

where 𝜆 is the tuning parameter and 𝑃 is the maximum feasible order of the phase 2 model (i.e., a 

relatively big integer). The regularization term in the objective function encourages sparsity of the 

optimal solution, since only the 𝑝  (an integer smaller than 𝑃 ) nearest future layers have a 

significant reheating effect on the current layer, as justified in Section 5.2.1. Then the estimated 

model order 𝑝̂ is determined by the number of non-zero estimated coefficients 𝑏̂𝑖 (exclude 𝑏̂0).  

Due to the additional homogeneous ordered constraints, the optimization problem in Eq. (5-9) is 

nonconvex due to the following constraint with nonconvex set, 

 𝑆 = {𝐛|𝑏𝑖𝑏𝑖+1 ≥ 0, |𝑏𝑖| ≥ |𝑏𝑖+1|, 𝑖} = 1,⋯ , 𝑃 − 1}           (5-10) 

To address this non-convex challenge, a two-level optimization algorithm termed homogeneous 

ordered lasso (HOLA) is developed in this study.  

The main idea of the HOLA algorithm is to narrow down 𝑆 as a convex subset without loss of 

optimal solution (level one) and then solve the problem as a lasso-type convex optimization (level 

two). First, 𝑆 can be represented as a union of two convex subsets 𝑆1 and 𝑆2, as shown in Eqs. 

(5-11) and (5-12), respectively, 

 𝑆1 = {𝐛|𝑏𝑖 ≥ 0, 𝑏𝑖 ≥ 𝑏𝑖+1, 𝑖 = 1,2,⋯ , 𝑃 − 1} (5-11) 

 𝑆2 = {𝐛|𝑏𝑖 ≤ 0, 𝑏𝑖 ≤ 𝑏𝑖+1, 𝑖 = 1,2,⋯ , 𝑃 − 1}    (5-12) 

If 𝑆 can be replaced by either 𝑆1 or 𝑆2, then the optimization problem Eq. (5-9) becomes convex. 
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Following this rationale, the aim in level one is to identify to which subset the optimal solution 

belongs. Actually this aim is equivalent to determining the sign of 𝑏1. If the correlation between 𝑦 

and 𝑥1  is positive, then 𝑏1 > 0 and 𝑆1  will be selected as the updated feasible set due to the 

homogeneity of the coefficients. On the contrary, 𝑆2 will be selected if the correlation is negative. 

To determine sgn(𝑏1), a natural idea is to use sgn(𝑥1
𝑇𝑦) as an approximation, which is easy to 

solve. In the following, a mathematical proof (Proposition 5-1) is provided to delineate the 

correctness of this idea. 

Proposition 5-1: The sign of 𝑏̂1 estimated by the optimization problem in (5-9) is consistent 

with 𝑥1
𝑇𝑦, if |𝑥1

𝑇𝑦| ≥ max|𝑥𝑖
𝑇𝑦|, where 𝑖 ≥ 2.   

Proof: Expanding out the first term of the objective function in (5-9), and then it can be 

rewritten as 

 argmin 
𝑏
(𝑦𝑇𝑦 − 2𝑦𝑇𝑋𝑏 + 𝑏𝑇𝐷𝑏) + 𝜆||𝑏||1 (5-13) 

where 𝐷 = 𝑋𝑇𝑋. In Eq. (5-13), 𝑦𝑇𝑦 can be discarded since it does not contain any of the variables 

of interests. Afterwards, (5-13) can be further represented as,  

 argmin
𝑏
 −2𝑦𝑇𝑥1𝑏1 − 2∑𝑦𝑇𝑥𝑗𝑏𝑗

𝑃

𝑗=2

+ 𝑏𝑇𝐷𝑏 + 𝜆∑|𝑏𝑖|

𝑃

𝑖=1

 (5-14) 

Since we have |𝑥1
𝑇𝑦| ≥ max|𝑥𝑖

𝑇𝑦|, then statistically the correlation between 𝑥1 and 𝑦 is higher 

than other (𝑥𝑖, 𝑦), which implies 𝑏1 is farther from zero than the other 𝑏𝑖. Subsequently, with the 

homogeneous ordered constraints, consider the optimal solution for 𝑏1, namely, 𝑏̂1. If 𝑏̂1 such that 

𝑦𝑇𝑥1𝑏1 < 0, then there must exist a better solution −𝑏̂1 to make the objective function (5-14) even 

smaller. Therefore, 𝑦𝑇𝑥1𝑏1 > 0. Q.E.D. 

Proposition 5-1 provides a theoretical support to determine sgn(𝑏1) based on 𝑥1
𝑇𝑦. In addition, if 
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there is no correlation between 𝑥1 and 𝑦, then only 𝑥0 needs to be fitted, which indicates that the 

reheating effect in the process is not significant. Therefore, before estimating sgn(𝑏1) in level one, 

a statistical hypothesis test for 𝑏1 is necessary. If the correlation is significant, then choose the 

feasible subset 𝑆1 or 𝑆2. Otherwise fit 𝑦 = 𝑏0𝑥0 and apply it to Eq. (5-5).  

Afterwards, based on the selected convex feasible subset in level one, the updated optimization 

problem is convex. Considering the case 𝑏1 > 0, then the problem can be rewritten as follows,  

 
argmin

𝑏𝑖
 ||𝑦 − 𝑏0𝑥0 −∑𝑏𝑖𝑥𝑖

𝑃

𝑖=1

|| + 𝜆∑𝑏𝑖

𝑃

𝑖=0

 

𝑠. 𝑡.  𝑏𝑖+1 − 𝑏𝑖 ≥ 0,   𝑖 = 1,2,⋯ , 𝑃 − 1 

    

(5-15) 

It can be seen that the problem has been converted to a standard quadratic programming problem. 

A similar result can be obtained as well if 𝑏1 < 0. Therefore, the standard quadratic optimization 

algorithm [121] is utilized at level two to obtain the optimal solution for the constrained Lasso 

problem. The detailed procedures of the HOLA algorithm are summarized in Figure 5-6.  

Algorithm 5-1: HOLA Method 

Input: 𝑿 = [𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝑷] ∈ ℝ
𝑁×(𝑃+1), 𝒚 ∈ ℝ𝑁 

Output: Estimated coefficients {𝑏𝑖, 𝑖 = 0,1,⋯ , 𝑃} and estimated order 𝑝̂ 

Step 1 Calculate sgn(𝑥1
𝑇𝑦) and test correlation between 𝒚 and 𝒙𝟏 

Step 2 If no correlation, fit 𝑦 = 𝑏0𝑥0 and output. Otherwise go step 3 

Step 3 Use 𝑆1 (positive) or 𝑆2 (negative) to replace the current feasible set 𝑆  

Step 4 Solve the updated problem by the standard quadratic optimization algorithm    

Figure 5-6: The developed HOLA algorithm 

Based on the proposed HOLA method, for a fixed 𝜆, the global optimal solution can be obtained 

in an efficient manner. Then the model identification for the phase 2 model can be implemented 

by testing different values of 𝜆 using the HOLA algorithm, e.g., based on cross validation [122]. 
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In addition, regarding the confidence interval of the estimated coefficient, typically it can be 

implemented by bootstrap [123]. After the parameter estimation, this EAR(1,−p) model is able to 

forecast 𝒙𝑡 with consideration of the reheating effect, which is presented in Section 5.2.4. 

5.2.4 Online quality forecasting in AM processes 

The HOLA method proposed in Section 5.2.3 provides an effective approach to quantify the 

reheating effects by fitting the phase 2 model in Eq. (5-5). Then with the estimated model and 

observed sensor data, the state of the current layer 𝒙𝑡 can be forecasted by taking into consideration 

the impact from both past and future layers. Specifically, phase 1 sub-state 𝑥𝑡,1 can be measured 

directly in general [15, 124]. In addition, the phase 1 model of Eq. (5-4) proposed in Section 5.2.2 

also enables a direct forecast for 𝑥𝑡,1 based on 𝑥𝑡−1,1 [119]. On the other hand, the forecast for 

phase 2 sub-state 𝑥𝑡,2 is challenging due to the twofold causes, (1) 𝑥𝑡,2 is the state after reheating, 

i.e., the final status of layer 𝑡; (2) the previous layer will be blocked by the new deposited layers, 

hence it may be technically difficult to measure 𝑥𝑡,2 directly in general. Therefore, this section 

focuses on how to implement online forecast of 𝑥𝑡,2.     

 

Figure 5-7: Procedure to online forecast 𝑥𝑡,2 based on 𝐸𝐴𝑅(1, −𝑝) model 
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In general, the overall framework to implement online quality forecasting is illustrated in Figure 

5-7. Considering the real-world scenario of AM processes online monitoring, with effective 

sensing devices, assume both 𝑥𝑡,1 and all {𝑥𝑡+𝑖,1} in Eq. (5-5) are known. Then the phase 2 model 

in Eq. (5-5) is used for forecast of 𝑥𝑡,2, which is based on the result of the phase 1 model. Under 

this circumstance, the online quality forecasting for the mean value of 𝑥𝑡,2 can be implemented as 

follows, 

  𝑥̂𝑡,2 = 𝑏̂0𝑥𝑡,1 +∑𝑏̂𝑖𝑥𝑡+𝑖,1

𝑝

𝑖=1

          (5-16) 

Then the next step is to estimate the confidence interval of 𝑥̂𝑡,2. To achieve this, the key is to 

estimate the forecasting error. If all {𝑥𝑡+𝑖,1} are known, then the only forecasting uncertainty 

comes from the error of model fitting by HOLA, which can be estimated by bootstrap, as 

mentioned in Section 5.2.4. Then the confidence interval of 𝑥̂𝑡,2 can be represented as follows 

using bootstrap [125],     

 (𝑥̂𝑡,2 − 𝑒̂
2.5, 𝑥̂𝑡,2 + 𝑒̂

97.5) (5-17) 

where 𝑒̂2.5 and 𝑒̂97.5 are the 2.5% and 97.5% percentiles of the bootstrap forecasting errors 𝑒̂, 

respectively, for a 95% confidence interval.  

Additionally, it is also possible that the information of phase 1 sub-state {𝑥𝑡+𝑖,1} in Eq. (5-16) is 

only partially known, i.e., some influential future layers have not been deposited yet. However, 

𝑥𝑡,2 is still of interest for forecasting. Without loss of generality, suppose layers {𝑡,⋯ , 𝑡 + 𝑘} have 

been deposited but layers {𝑡 + 𝑘 + 1,⋯ , 𝑡 + 𝑝̂} have not yet. Then in order to forecast 𝑥𝑡,2, since 

some of {𝑥𝑡+𝑖,1} are unknown, they need to be forecasted first, which can be obtained by the fitted 

phase 1 model, i.e., Eq. (5-4). Afterwards, the mean value of 𝑥𝑡,2 can be estimated as below using 
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phase 2 model,  

 𝑥̂𝑡,2 = 𝑏̂0𝑥𝑡,1 +∑𝑏̂𝑖𝑥𝑡+𝑖,1

𝑘

𝑖=1

+ ∑ 𝑏̂𝑗𝑥̂𝑡+𝑗,1

𝑝

𝑗=𝑘+1

 (5-18) 

where {𝑥̂𝑡+𝑗,1} are the forecasted phase 1 sub-state value, which have not been deposited yet.   

5.3 Numerical simulation studies 

The objective of this numerical simulation study is to validate the performance of model estimation 

and online forecasting accuracy. In this case, the datasets with layer-wise reheating relationships 

are numerically generated from an EAR(1,−2) model. Specifically, the phase 1 model is an AR(1) 

model with 𝜇 = 5 and 𝑎 = 0.2, as shown in Eq. (5-19),  

 𝑥𝑡,1 = 𝜇 + 0.2𝑥𝑡−1,1 + 𝜖𝑡,1 (5-19) 

And the phase 2 model is a second order time raised regression model, as shown in Eq. (5-20),  

 𝑥𝑡,2 = 0.8𝑥𝑡,1 + 0.5𝑥𝑡+1,1 + 0.3𝑥𝑡+2,1 + 𝜖𝑡,2 (5-20) 

where 𝜎1 = 0.2, 𝜎2 = 0.3. To validate the mode estimation performance of the proposed HOLA 

algorithm (with 𝜆 chosen by cross-validation), the step regression based on common criterions 

(AIC and BIC) and Lasso (with 𝜆 chosen by cross-validation as well) are selected as benchmark 

methods.  

First, a single dataset with 100 simulated continuous layers is generated. Then the proposed and 

benchmark methods are performed using this dataset. As shown in Table 5-1, comparing the true 

value of the model parameters, the proposed method HOLA achieves a higher accuracy than the 

benchmark methods. In addition, the order of model is also successfully identified by HOLA, 

which outperforms the benchmark methods. Moreover, considering the capability of online 

application, the computational time for model fitting is about 0.15s on average (with Intel® Xeon® 
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Processor E3-1220 v3 at 3.10GHz). Compared with the typical printing time for each layer in 

practice, the computational time is fast enough. 

Table 5-1: Model-fitting performance comparison between the proposed HOLA and benchmark 

methods 

 

Fitting Methods 

Model Parameters (true values) 

𝑏0 (0.8) 𝑏1 (0.5) 𝑏2 (0.3) 𝑝 (2) 

Stepwise (AIC) 0.89 0.47 0.37 3 

Stepwise (BIC) 0.89 0.47 0.37 3 

Lasso 0.76 0.57 0.26 3 

HOLA (proposed) 0.82 0.49 0.28 2 
 

To validate the forecasting accuracy of the proposed EAR model, a layer-wise online forecast with 

95% confidence interval is performed to compare with the actual value (see Figure 5-8). In this 

case, using 𝑥𝑡,1, 𝑥𝑡+1,1 and 𝑥𝑡+2,1 to forecast 𝑥𝑡,2, the testing data is a new simulation set with 50 

pairs of observations from the same model. The results show that the fitted model can provide an 

effective forecast, which is very close to the actual value. In addition, the forecasting performance 

between classical AR(1) (i.e., ignore reheating effect) and the fitted EAR(1,−2) is also compared 

in terms of the averaged absolute relative error based on the forecast of {𝑥𝑡,2, 𝑥𝑡+1,2, 𝑥𝑡+2,2} without 

the information of {𝑥𝑡+3,1, 𝑥𝑡+4,1}. The results (see Table 5-2) show that the forecasting error of 

the EAR model is significantly lower than the existing AR model.   
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Figure 5-8: The results for the dynamic 1-step forecasting by using the fitted 𝐸𝐴𝑅(1,−2) 

model. The solid line and gray area represent the forecasted mean value and 95% confidence 

interval, respectively. 

Table 5-2: Accuracy for 3-layer forecasting by the classical 𝐴𝑅(1) and proposed 𝐸𝐴𝑅(1,−𝑝). 

 

Layers to be forecasted 
Models to do forecasting 

AR(1) 𝐄𝐀𝐑(𝟏,−𝟐) 

1st Layer (|𝑒|%) 5.9% 0.4% 

2nd Layer (|𝑒|%) 11.9% 1.5% 

3rd Layer (|𝑒|%) 14.4% 2.1% 

Averaged (%) 10.7% 1.3% 

 

5.4 Case studies 

To validate its effectiveness in real-world AM applications, this section further validates the 

performance of the proposed method based on an actual 3D printing process. The objective of the 

case study is to achieve online layer-wise geometrical deviation forecasting in an FFF process [1]. 

In this study, the average geometrical deviation in the front edge of each layer is considered the 
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quality characteristics of interest (namely, the state of each layer) to measure and forecast, which 

is a very common type of variability caused by the reheating effect. 

 

5.4.1 Experimental setup and tests 

The experimental platform for the case studies consists of an FFF-based 3D printer and an online 

3D structured light scanning system (Figure 5-9(a)). The digital 3D scanner (Figure 5-9(b)) is a 

fast and effective device to implement non-contact high accuracy measurement for layer-wise 

geometrical deviation. The basic principle of the 3D scanner is based on high-resolution image 

acquisition and efficient 3D reconstruction algorithms. The output of the scanning result is 3D 

point cloud data (Figure 5-9(c)) and it takes less than one second to scan each layer. Further 

detailed technical information of this type of 3D scan technology is available in Ref. [126, 127].  

 

Figure 5-9: (a) The scheme of the 3D scan system; (b) the digital 3D scanner; (c) two sample 

scanned layers.  

Based on the developed 3D printing and online 3D scan platform, the following case studies are 

conducted.  

1) Case E1: A small cuboid with dimension 8mm×8mm×20mm (see Figure 5-10(a)). Since 

the area for the each layer is small (16 mm2), the printing of one layer is very fast so that 
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each layer will be reheated after a short time. Hence, the reheating effect will significantly 

impact the solidification process.   

2) Case E2: A relatively big model with dimension 70mm×35mm×20mm (see Figure 

5-10(b)). Although each layer has enough time to solidify and cool down, the layer will 

still be reheated and the dimension deviation may occur in the edge regions.  

During the printing experiments, the printing process was paused when the one layer was finished, 

and then the 3D scan was conducted subsequently. The process would be resumed immediately 

after the scan was complete. The time for each scan is 4-6 seconds (pause, scan, and resume) per 

layer, which is sufficient to perform online data acquisition and monitoring.   

For both case studies, the side surfaces at the front edge of the parts were fully scanned and the 

point cloud data for each printed layer was collected. For each scanned layer, only the points within 

the ROI (the white region in Figure 5-10) are used for analysis. Subsequently, the actual layer-

wise geometrical deviation in 𝑥 direction (Figure 5-10) was obtained by comparing the 3D point 

cloud with the original CAD model.  

 
Figure 5-10: The designed samples for case studies, (a) a designed part for case E1; (b) a 

designed part for case E2. The white region is the ROI and only the points within the ROI are 

used for analysis. 
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In this case, the spatial resolution is about 16-25 points within 1 mm2 (i.e., 4-5 points with 1 mm). 

Since the setting of layer thickness is 0.3mm, the geometric deviation for all of the printed layers 

can be obtained from the point cloud. In the case study, the average deviation of the scanned points 

with ROI in each layer (about 30-40 points and 40-50 points in each layer for case E1 and E2, 

respectively) is used as the quality characteristic for analysis. 

 

5.4.2 Application and validation of the EAR model in FFF 

As described in Section 5.4.1, the data collected from the front side of the parts (demonstrated in 

Figure 5-10(b)) are utilized as the ROI to perform the analysis. Specifically, the proposed 

EAR(1,−p) model is fitted by using the data of 20 scanned layers for case E1 and case E2, 

respectively. Afterwards, the forecasting performance of the trained models is validated using 

additional scanned 20 layers.   

The model estimation results are listed in Table 5-3. For both cases E1 and E2, with the fitted 

phase 1 model, the order of the estimated phase 2 model, i.e., the value of  𝑝̂, is 1, which means 

only the nearest future layer has significant impact for the current layer. The main reason is that 

the layer thickness in FFF is usually relatively high (0.3mm in this study), and thus the future 

layers do not have enough heat to penetrate the immediate future layer to reheat the current layer.  

Table 5-3: Model estimation results for case E1 and E2. 𝑎̂ and (𝑏̂0, 𝑏̂1) are the estimated 

coefficient of phase 1 and phase 2 model, respectively.  
 

Fitting results Case E1 Case E2 

Model order (𝑝̂) 1 1 

𝑎̂ (𝑝-value) 0.26 (<0.1) 0.24 (<0.1) 

𝑏̂0 (𝑝-value) 0.18 (<0.05) 0.95 (<0.001) 

𝑏̂1 (𝑝-value) 0.86 (<0.001) 0.06 (<0.01) 
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The estimation of model coefficients in case E1 demonstrates that the value of 𝑏̂1 is relatively large 

compared to 𝑏̂0, i.e., the reheating effect produces the major contribution to geometric deviation. 

In this case, the area of each layer is small, which means that the deposited materials in the previous 

layers do not have sufficient time to fully solidify, and the reheating effects will therefore result in 

significant geometric deviation. On the contrary, in case E2, due to the relatively large area of each 

layer, the deposited material has enough time to be solidified. Consequently, the impact from the 

future layers should be much lower than case E1, which causes a large 𝑏̂0 but small 𝑏̂1.  

Then the online forecasting performance is validated by the estimated models. First, using 𝑥𝑡,1 and 

𝑥𝑡+1,1 to forecast 𝑥𝑡,2, the results for cases E1 and E2 are presented in Figure 5-11 and Figure 5-12, 

respectively. The forecasted mean value and 95% confidence interval of both cases are close to 

the actual measurement.  

 

 
Figure 5-11: The forecasted vs. actual values of edge dimension deviation at each layer for case 

E1. The solid line and gray area represent the forecasted mean value and 95% confidence 

interval, respectively. 
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Figure 5-12: The forecasted vs. actual values of edge dimension deviation at each layer for case 

E2. The solid line and gray area represent the forecasted mean value and 95% confidence 

interval, respectively. 

 

Subsequently, consider the forecast of {𝑥𝑡,2, 𝑥𝑡+1,2}, in which {𝑥𝑡,1, 𝑥𝑡+1,1} are known but 𝑥𝑡+2,1 is 

unknown. To validate the effectiveness of the proposed EAR model, the ARIMA time series model 

is applied as a benchmark method to do comparison. The averaged forecasting errors are listed in 

Table 5-4. For the results of the benchmark method, the analysis starts from the ARIMA(p, d, q) 

model, and the automatic order determination algorithm finally shows that the optimal model is 

AR(1) for both E1 and E2. Then compared with the forecasting results from the fitted AR(1) 

model, the proposed model provides a significant performance improvement in terms of the 

forecasting error. Therefore, the proposed model is very effective to handle the layer-wise 

geometrical deviation caused by reheating effects. 
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Table 5-4: Model fitting results and forecasting performance compared with the benchmark 

AR(1). 

 

Forecasting 

results (𝒆̅%) 

Case E1 Case E2 

AR(1) EAR(1,−1) AR(1) EAR(1,−1) 

1st layer 14.7% 2.8% 13.2% 2.4% 

2nd layer 18.5% 6.6% 12.1% 5.8% 

Average 17.1% 4.7% 12.7% 4.1% 
 

5.5 Conclusions 

This chapter developed a novel bilateral time series model termed EAR(1,−p) for online forecast 

of the layer-wise quality characteristics in AM processes. The novelty of the approach is that it 

considers the effect of not only previous but also subsequent layers on the current one. This 

bilateral aspect is the key to understanding the effect of reheating phenomena in AM, wherein a 

layer is repeatedly heated by subsequent layers. As a result, this work enables accurate modeling 

of quality characteristics affected by the reheating phenomenon, such as geometric deviation. 

Consequently, this chapter addresses one of the significant challenges regarding the quality issues 

in AM applications. 

The effectiveness and efficiency of this approach are validated using numerical simulation study, 

finite element AM simulations, and real world study of layer-wise geometric deviation of AM 

parts. The proposed bilateral time series model effectively captures the impact of reheating 

phenomenon. With the developed model estimation method HOLA, the reheating effects can be 

quantified accurately. In contrast, the traditional time series model is not able to consider and 

quantify the effects from future layers. The relative forecasting error of the proposed model is 

typically under 5%, which is much more accurate than the performance of the benchmark methods 

(>10%). Therefore, the proposed method significantly outperforms the traditional time series 
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models such as AR(1).  
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6 An image-based closed-loop quality control approach for 

online defect mitigation 

One of the major challenges in the AM industry is how to ensure product quality and consistency 

by detecting and then mitigating the defects, which otherwise can severely deteriorate the quality 

of AM products and even the sustainability of AM technology. Although optimizing machine 

parameter settings offline and post-processing of AM products can improve the quality, the effects 

may be still limited, particularly for the parts with complex geometries. The objective of this 

chapter is to develop an image-based closed-loop quality control system for a typical AM process, 

namely, fused filament fabrication (FFF). This system is implemented by a customized online 

image acquisition system with a proposed image diagnosis-based closed-loop quality control 

method. Based on this novel approach, the typical quality issues can be addressed by efficient and 

effective defect mitigation via online automatic machine parameter adjustment. The case studies 

based on an actual FFF platform demonstrate the effectiveness and applicability of the proposed 

approach. 

6.1 Introduction 

The frequently occurring defects of FFF include voids, over-fill, under-fill, etc. [43, 52] (a typical 

under-fill defect is shown in Figure 6-1(b)). Some of these defects can be avoided by optimizing 

the machine parameter settings before printing via design of experiments (DoE) or eliminated by 

post-processing after printing. However, due to the highly complex interactions in consecutive 

layers during printing, especially with varying cross-sectional geometries, large process variations 

may still occur, which ideally require changing machine parameters continuously during printing, 
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and thus cannot be resolved by offline optimal parameter settings, i.e., design of experiments 

(DoE). Post-processing, such as machining or polishing, is only effective for the external surface 

quality of AM parts. However, some typical defects, such as over-fill and under-fill (Figure 

6-1(c)), occur in between layers that exist inside of the printed parts, and consequently cause severe 

deterioration in the quality of AM products in terms of strength, internal structure precision, and 

surface quality [43, 128].  

 
Figure 6-1: (a) Schematic of the FFF process; (b) typical under-fill defects occurring in the FFF 

parts (top view); (c) the internal surface defects (under-fill) occurring between layers (side view). 

To further justify the significance of this research challenge, i.e., DoE is not sufficient to eliminate 

the defects even if the predefined machine parameters are already “optimal”, a preliminary 

experiment for a part with simple geometry was conducted to verify the common existence of the 

in-process quality issues. A typical cuboid with side length of two inches was designed as a testing 

artifact. Then through DoE (the procedure is discussed in detail in Section 6.3.2), the optimal 

parameter settings can be obtained. Based on the optimal settings, most of the printed testing 

artifacts are of good quality, however defects still occur in a few samples. For the defective 

samples, the surface quality is defect-free at the beginning of the printing process. However, due 

to the accumulation of the process uncertainties from different sources, e.g., extrusion and machine 

vibration, some non-negligible under-fill defects were observed in the subsequent layers (Figure 

6-2).  
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Figure 6-2: The under-fill defects occurred in the testing artifact during printing based on the 

predefined “optimal machine parameters”, (a) normal printing at the beginning; (b) under-fill 

defects observed during printing.  

Therefore, due to the occurrence of defects, the predefined “optimal machine parameters” are no 

longer considered optimal, which implies that the machine parameters need to be adjusted in order 

to maintain good quality of the parts. Even though the offline quality assurance techniques such 

as DoE can obtain excellent initial machine settings of the process, the experiment planning still 

cannot guarantee the perfect elimination of defects during printing even for the parts with simple 

geometry. The main explanation of this observation may be that some significant factors were not 

included in the machine parameters, such as the thermal variations between layers due to the 

physics of the FFF process, which belong to a nuisance factor that cannot be controlled by machine 

parameters. If the machine cannot perfectly control those factors, the defects may occur and 

accumulate during the printing process.  

To ensure the quality of AM parts, an effective real-time in situ feedback quality control system 

for AM processes is needed to diagnose the defects and adjust the machine parameters 

automatically to mitigate defects [15, 28, 129]. To achieve this objective, this chapter proposes an 

image analysis-based feedback quality control approach for the FFF process. The applicability of 

the proposed approach is demonstrated by using the acquired image data from the experiments 
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collected on an actual FFF platform. Accordingly, in this work, our investigation was 

accomplished through the following three major tasks:  

(1) An FFF-based real-time image acquisition system was developed, which can capture the 

high-resolution images for monitoring the surface quality of the material being extruded. 

(2) The relationship between the severity of occurring defects in FFF and the related machine 

parameters was identified using experimental studies.  

(3) An effective image-based classification method was implemented to diagnose specific 

defects and was integrated with a Proportional-Integral-Derivative (PID) based feedback 

quality control mechanism so that automatic parameter adjustment can be enabled when 

defects occur during the printing process.  

The rest of this chapter is organized as follows. The experiment setup and the significance of the 

problem are presented in Section 6.2. The proposed research methodology is introduced in Section 

6.3, followed by the case studies for testing and validation of the proposed approach in Section 

6.4. Finally, the conclusions and future work are discussed in Section 6.5. 

6.2 Experimental platform development 

A desktop FFF 3D printer, a Hyrel System 30M 3D printer, was used to conduct the experiments 

(see Figure 6-3(a)). The machine has an extruder with 0.5mm nozzle diameter and uses 

acrylonitrile butadiene styrene (ABS) with a diameter of 1.75mm as filament for printing. The 

printer comes with an enclosed chamber, which is an important feature to ensure the printing 

quality since it can reduce the influence of ambient temperature variations. Another excellent 

feature of this printer is that it deploys an open communication-based software controller, with 
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which an external computer/program can directly communicate to adjust the machine parameters 

(in the form of G-code) online during the printing process (Figure 6-3(b)).  

 
Figure 6-3: The selected experimental platform, Hyrel System 30M 3D printer. (a) Overall 

setup; (b) the control panel with an external interface. 

The developed image acquisition system consists of two digital microscopes with an adjustable 

sampling frequency (Figure 6-4), which were mounted near to the extruder of the 3D printer to 

collect high-quality images of the surface of the printed part surface. In order to avoid blind spots 

during data collection, the microscopes were installed on opposite sides of the extruder (Figure 

6-4(b)). The image resolution for online acquisition is 640×480 pixels at a typical sampling 

frequency of 1 Hz. For other types of AM processes, similar image acquisition system can be 

implemented as well according to the recent related work [26, 130, 131].   

 

Figure 6-4: (a) The designed image acquisition system; (b) the actual setup in the test platform. 
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The overall architecture of the experimental closed-loop quality control system is illustrated in 

Figure 6-5. The communication between the 3D printer and the external program for defect 

detection and mitigation was implemented through virtual serial ports (RS-232). The basic 

procedure is to convert the commands for machine parameter adjustment to corresponding G-

codes and then send them to the printer through the virtual serial ports. Certain delays were 

observed for the G-codes to be executed from the time they were received. Based on our 

experiments, the delays for adjustment of cooling fan and flow rate were quantified in Table 6-1.   

 

Figure 6-5: The overall architecture of the designed closed-loop quality control system with 

machine-computer interaction. 

Table 6-1: Delay of machine response to parameter adjustment. 

Action Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average (Stdev) 

Turn on cooling fan 1.84s 1.85s 1.46s 1.75s 1.47s 1.67s(0.19s) 

Turn off cooling fan 1.16s 1.86s 1.51s 1.05s 1.39s 1.39s(0.32s) 

Change flow rate 2.86s 2.44s 3.73s 4.92s 3.16s 3.42s(0.96s) 
 

6.3 Research methodology 

Based on the developed online data acquisition system, this section aims to implement online 

defect mitigation by automatic machine parameter adjustment. 
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6.3.1 Methodology overview 

The overall proposed research methodology in this study is summarized in Figure 6-6, which 

consists of the following three major steps:  

(1) Experimental design study: The relationship between the selected typical defects and 

machine parameters is investigated using an experimental design, which is presented in 

Section 6.3.2. Meanwhile, the image data collection and labeling procedure is introduced 

as well. 

(2) Defect diagnosis algorithm: A textural analysis-based image classification algorithm for 

surface defect recognition is developed in Section 6.3.3.  

(3) Defect mitigation strategy: A PID equation-based feedback quality control system for 

automatic machine parameter adjustment was implemented to mitigate the defects in 

Section 6.3.4. 

 
Figure 6-6: Framework of the proposed research approach integrating experimental study, 

diagnosis algorithm development, and control system design for online closed-loop quality 

control. 
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6.3.2 Experimental design study 

The objective of the experimental design study is to understand the relationship between online 

adjustable machine parameters and printing defects. Based on this relationship, the feedback 

quality control system can identify which parameter should be adjusted when defects occur during 

printing.  

To identify this relationship, the appropriate defects and adjustable machine parameters must be 

determined. For the adjustable machine parameters, based on the control capability of the 3D 

printing platform and the existing literature [11, 44, 132], three parameters including material flow 

rate (𝑅), extruder temperature (𝑇), and layer height (𝐻) were selected. Specifically, 𝑅 refers to the 

rate at which material is being extruded through the nozzle; 𝑇 controls the extruder temperature 

and governs the viscosity of the extrusion; and 𝐻 represents the nominal distance between the 

nozzle tip and the part surface. All three parameters may possibly have impacts on the occurrence 

of defects during printing. The nozzle feed rate (travel speed in the horizontal plane) was not 

selected as a factor since it cannot be adjusted online during printing in the 3D printer used in this 

study. For the defects of interest, two commonly occurring surface defects in FFF, namely, under-

fill and over-fill are chosen for the investigation [43]. The test artifact is a cuboid of dimensions 2 

inches × 2 inches × 2 inches as introduced in Section 6.1. 

To identify the relationship model between the selected parameters and defects in this study, a full 

factorial experimental design [133] is applied, and the severity of defects is chosen as the output. 

The results of these experiments can provide a strategy to mitigate the defects effectively. The 

experimental runs were designed at two levels of the three selected machine parameters, namely, 

a 23 full factorial experimental design is utilized (Table 6-2). With two replicates a total of 16 runs 
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were performed and the experimental results are presented in Table 6-3. The results listed in Table 

6-3 present the printing quality of each experiment. The experimental conditions that result in a 

normal printing process (i.e., no defect occurs) are defined as optimal machine parameters. Then 

different types of printing defects are also marked based on the collected images.  

Table 6-2: The treatment conditions for defects investigation in experimental studies. 

 

Machine Parameters 

Level of Treatment 

For Under-fill For Over-fill 

Extruder temperature (𝑇) 200/230oC (low/standard) 230/250oC (standard/high) 

Material flow rate (𝑅) 50/100% (low/standard) 100/150% (standard/high) 

Nozzle height for flow (𝐻) 0.3/0.4mm (standard/high) 0.2/0.3mm (low/standard) 

Table 6-3: The full factorial design table and experiments results. 

Treatment Conditions T R H Results 

TC1 230oC 100% 0.3mm Normal printing 

TC2 230oC 100% 0.4mm Normal printing 

TC3 230oC 50% 0.3mm Under-fill with regular pattern 

TC4 230oC 50% 0.4mm Under-fill with regular pattern 

TC5 200oC 100% 0.3mm Under-fill with irregular pattern 

TC6 200oC 100% 0.4mm Under-fill with irregular pattern 

TC7 200oC 50% 0.3mm Severe under-fill (low extrusion) 

TC8 200oC 50% 0.4mm Severe under-fill (low extrusion) 

TC9 230oC 100% 0.3mm Normal Printing 

TC10 230oC 100% 0.2mm Normal Printing 

TC11 230oC 150% 0.3mm Over-fill 

TC12 230oC 150% 0.2mm Over-fill 

TC13 250oC 100% 0.3mm Normal printing 

TC14 250oC 100% 0.2mm Normal printing 

TC15 250oC 150% 0.3mm Over-fill (wider spread extruding) 

TC16 250oC 150% 0.2mm Over-fill (wider spread extruding) 
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Figure 6-7: The half-normal to show the statistical significance of each effect for (a) under-fill 

and (b) over-fill experiments. 

The experimental results show that material flow rate 𝑅 and extruder temperature 𝑇, as well as 

their interaction, significantly affected the printed surface quality, as evidenced by the half-normal 

plot in Figure 6-7. More specifically, it can be observed that an inappropriate setting for material 

flow rate 𝑅 caused under-fill defects with regular pattern (50% flow rate, Figure 6-8(a)) and over-

fill defects (150% flow rate, Figure 6-8(b)). For the effect of extruder temperature 𝑇 , the 

experimental results indicated that low temperature led to the under-fill defect with irregular 

pattern (Figure 6-8(c)). This is because low temperature will reduce the material flowability, which 

may cause the voids between printing tracks. In addition, if flow rate 𝑅  is suboptimal, an 

inappropriate extruder temperature 𝑇 will cause even more serious defects (i.e., interaction effect). 

The result also showed that the machine parameter 𝐻 did not significantly affect the surface quality 

(Figure 6-8(d), when 𝐻 is higher than the standard setting). The range of 𝐻 is between 0.2mm and 

0.4mm on the Hyrel 30M 3D printer, and it is set as 0.3mm in this study.  
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Figure 6-8:: (a) Under-fill defects with regular pattern caused by low flow rate 𝑅; (b) Over-fill 

defects caused by high flow rate 𝑅; (c) Under-fill defects with irregular pattern caused by low 

temperature 𝑇; (d) no significant defects occur when nozzle height 𝐻 is higher than the standard. 

In this study, to detect defects online during printing, the supervised classification method using 

image data (based on the data collection system shown in Figure 6-4) is utilized. Therefore, apart 

from utilizing DoE to identify the defect-parameter relationship, extensive experiments are also 

performed to collect training and validation data for image classification. Since the classification 

output will be used as input of the closed-loop quality control system, it is necessary to quantify 

the definition of the labels in mathematical formulas. To label the images, two key aspects should 

be considered, namely, types and severity. The type of defects shown in Table 6-3 can be 

represented by combination of two indicator variables 𝐼1(𝑡)  and 𝐼2(𝑡) , which are defined as 

follows,  

 𝐼1(𝑡) = {
1
0
−1

under − fill
normal
over − fill

 (6-1) 

 𝐼2(𝑡) = {
1  
0  

caused by temperature
caused by flow rate

 (6-2) 

These definitions are based on the defects categorized and listed in Table 6-3. Then for the 

severities, in this study, the defects with different severities are purposely generated by changing 

the specific machine parameters, e.g., setting flow rate 𝑅  as 75% to generate 25% under-fill 

defects. For labeling purposes, the severity of defects is denoted as 𝑠(𝑡) by considering the root 

cause. Specifically, if 𝐼2(𝑡) = 0, then 𝑠(𝑡) is determined by the difference between the current and 
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optimal value of 𝑅. For example, for under-fill defects 𝐼1(𝑡) = 1, 𝑠(𝑡) = 0.25 represents that only 

75% materials are deposited compared with normal printing (i.e., the difference from the optimal 

setting is 25%). Otherwise if 𝐼2(𝑡) = 1, then define 𝑠(𝑡) = 1 to represent the irregular under-fill 

defects caused by low temperature. Overall, the labels for image classification in this study are 

defined in Table 6-4.  

Table 6-4: The defined labels for image classification. 

Image label Printing quality Quantified classification output 

0 Normal printing 𝐼1(𝑡) = 0, 𝑠(𝑡) = 0 

1 25% Under-fill with regular pattern 𝐼1(𝑡) = 1, 𝐼2(𝑡) = 0, 𝑠(𝑡) = 0.25 

2 50% Under-fill with regular pattern 𝐼1(𝑡) = 1, 𝐼2(𝑡) = 0, 𝑠(𝑡) = 0.5 

3 125% Over-fill 𝐼1(𝑡) = −1, 𝐼2(𝑡) = 0, 𝑠(𝑡) = 0.25 

4 Under-fill with irregular pattern 𝐼1(𝑡) = 1, 𝐼2(𝑡) = 1, 𝑠(𝑡) = 1 

In the experiments, a significant decrease (from 230oC to 200oC) in the extruder temperature 

during printing was observed, which was caused by the cooling fan attached to the extruder. 

Conversely, turning off the cooling fan increased the extruder temperature quickly. Therefore, 

turning on/off the cooling fan is an effective action to adjust the extruder temperature. Although 

the 3D printer used in the experiments has a machine parameter that directly adjusts the extruder 

temperature, its actual response was observed to be slower than turning on/off the cooling fan. 

Therefore, turning on/off the cooling fan is used to adjust extruder temperature in this study for 

the closed-loop control purpose. As a summary, a qualitative relationship between defects and the 

related mitigation actions in this study is illustrated in Figure 6-9.   
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Figure 6-9: The causal relationship between defects and the related mitigation actions. 

A timely adjustment of the machine parameters is critical, otherwise the deterioration of the surface 

quality of printed layers and failure of printing may occur. As shown in Table 6-5, the nozzle will 

be clogged within a short time (25s-30s) if the temperature of the extruder cannot be adjusted in 

time. The reason is that the filament is very difficult to be melted and extruded under low 

temperature. A similar problem for the over-fill defect may occur and can cause the printing 

process to stop since the excessive amount of filament cannot be deposited in time, thus blocking 

the nozzle. Although the under-fill defect will not cause clogging, the resulting low infill density 

will weaken the mechanical property of the printed part substantially [134, 135]. 

Table 6-5: The risk for process if no adjustment when defects occur. 

Defects Cause Risk for process Remarks 

Under-fill Temperature/Cooling fan Clog in 25-30s Under-fill rate will increase very fast 

Under-fill Material flow rate Poor printing quality Infill density will be very low 

Over-fill Material flow rate Clog in 1-1.5min Lots of filament unable to be deposited 

 

6.3.3 Textural analysis-based image diagnosis (TA-ID) algorithm for defect detection 

This section describes implementation of an online defect detection based on a textural analysis-

based image diagnosis (TA-ID) algorithm. The image acquisition system introduced in Section 6.2 

can collect image data in an online manner to monitor the surface quality of the part being printed. 
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In order to implement an effective automatic online adjustment of machine parameters, it is 

necessary to identify both types and severity of the occurring defects. Figure 6-1, Figure 6-2, and 

Figure 6-8 clearly show that the images of the printed surface have evident textural features under 

different printing quality conditions. Thus, the proposed TA-ID algorithm integrates the 

advantages of image textural analysis [136] and a supervised classification algorithm, so that the 

occurring defects can be identified accurately and quickly.   

In this study, for each image a region of interest (ROI) was utilized, which was cropped from the 

original image (640 by 480 pixels) to a smaller region (80 by 80 pixels) right below the nozzle 

(Figure 6-10). Then, the raw RGB images were converted to grayscale to improve the efficiency 

of image analysis. Although the grayscale transformation may result in some information loss, 

most of the textural information representing the defects’ characteristics is still preserved.   

 

Figure 6-10: The real-time collected image samples and the region of interest. (a) Normal 

printing; (b) defects occurred.  

It is observed that the defects with different type and severity have different textural characteristics. 

Thus, the proposed TA-ID algorithm utilizes an image textural feature extraction approach to 

improve the performance of image classification. The procedure of the feature extraction approach 

consists of two steps. The first step is to capture image textural information using the gray level 

co-occurrence matrix (GLCM) [137]. The second step is to extract the effective yet compact 
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features from the resulting GLCM. In order to achieve this, four typical statistics of GLCM, which 

is very effective to capture the spatial variation features, were utilized in this study. Through the 

experimental studies conducted in Section 6.3.2, the labels of the training images are identified 

based on the definition introduced in Section 6.3.2. Afterward, supervised classification algorithm 

(such as k-NN, SVM, LDA, etc.) is applied to detect the type of defects. Therefore, the overall 

framework of the proposed TA-ID algorithm can be summarized in Figure 6-11.  

 

Figure 6-11: The framework of the proposed textural analysis-based image diagnosis (TA-ID) 

algorithm. 

 

6.3.3.1 Textural representation via gray level co-occurrence matrix 

Hypothetically, for the investigated FFF case, different types of surface defects can be identified 

by surface image textures. Since the collected image data contain various surface textural 

information, image texture analysis-based approaches have the potential to provide effective 

features for classification. One of the most effective image textural representations is called the 

co-occurrence matrix [138], which was chosen in this study because it can effectively describe the 

spatial correlation of the pattern in the images generated by tracks of printing [139] and therefore 

is the key feature to differentiate different levels of surface quality (normal, defective, etc.). 

The co-occurrence matrix, also referred to as the co-occurrence distribution, represents the 

distance and angular spatial relationship over an image sub-region of a specific size [138]. In order 

to reduce the computational complexity of real world applications, the gray level co-occurrence 

matrix (GLCM) [140], which is transformed from a grayscale image, is commonly applied. More 
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specifically, for a grayscale image 𝐼 with dimension 𝑀 × 𝑁, the GLCM of 𝐼, termed by 𝐺, is a 

matrix where the numbers of rows and columns are equal to the number of the gray levels in 𝐼. 

The element of 𝐺, 𝐺(𝑖, 𝑗|∆𝑟, ∆𝑐) is defined by the occurring frequency of a two-pixel combination 

with intensity 𝑖  and 𝑗  respectively, and the spatial distance of these two pixel is defined by 

(∆𝑟, ∆𝑐). Suppose the number of gray levels in 𝐼 is 𝐾, then the dimension of the corresponding 

GLCM will be (𝐾 × 𝐾), and the elements in GLCM can be obtained by,  

 𝐺(𝑖, 𝑗|∆𝑟, ∆𝑐) =
1

(𝑀 − ∆𝑐)(𝑁 − ∆𝑟)
∑ ∑ 𝑔

𝑁−∆𝑟

𝑛=1

𝑀−∆𝑐

𝑚=1

 (6-3) 

where 

 𝑔 = {
1      𝑖𝑓 𝐼(𝑚, 𝑛) = 𝑖  𝑎𝑛𝑑  𝐼(𝑚 + ∆𝑟, 𝑛 + ∆𝑐) = 𝑗
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                           

 (6-4) 

Therefore, the element located in row 𝑟 and column 𝑐 of the GLCM refers to the number of the 

pairs (𝑟, 𝑐) appearing in the intensity matrix. 

A single image 𝐼 has multiple GLCMs by different ways of selecting the spatial distance (∆𝑟, ∆𝑐). 

Equivalently, (∆𝑟, ∆𝑐) also can be represented as (𝜃, 𝑑), where 𝜃 is the angle of direction and 𝑑 is 

the distance. For example, (∆𝑟, ∆𝑐) = (1,0)  is equal to (𝜃, 𝑑) = (
𝜋

2
, 1) . In order to achieve 

rotationally invariant feature extraction, 𝜃 = (0,
𝜋

4
,
𝜋

2
,
3𝜋

4
) with a constant 𝑑 will be calculated as a 

group in this work due to the relationship 𝐺(𝑖, 𝑗|𝜃, 𝑑) = 𝐺𝑇(𝑖, 𝑗|𝜃 + 𝜋, 𝑑) , where 𝐺𝑇  is the 

transpose of 𝐺. Figure 6-12 shows an example of how a GLCM was created. For a given 8-level 

grayscale image with dimension 5 by 5, set (∆𝑟, ∆𝑐) = (0,1) and then the corresponding GLCM 
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is an 8 by 8 matrix. Just for convenience, let us denote these obtained four GLCMs as 𝐺(𝑑) =

{𝐺1, 𝐺2, 𝐺3, 𝐺4}, where 𝑑 is the selected constant to calculate GLCM.  

 

Figure 6-12: Procedure of the GLCM transformation. 

 

6.3.3.2 Feature extraction and online classification implementation 

As mentioned in Section 6.3.3.1, the GLCMs of an image 𝐺(𝑑), i.e., the textural representation, is 

still high dimensional. Therefore, it is necessary to extract the most effective features from 𝐺(𝑑), 

i.e., the features that maximize the variation between different defects. To achieve that, some 

effective statistical features are generated based on the GLCM and utilized to perform 

classification analysis. From a specific GLCM, a variety of statistics with textural interpretation 

can be obtained [140, 141], and the following features are used in this work. 

 Contrast: Quantify the intensity contrast between the pixel and the neighbor. Obviously, 

contrast is zero for a constant image. 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =∑(𝑖 − 𝑗)𝐺(𝑖, 𝑗)

𝑖,𝑗

 (6-5) 

 Correlation: Measurement of the correlation between a pixel and its neighbor. The range 

of correlation is [−1,1], and the boundary can be achieved only when the image is perfectly 

correlated. In particular, the correlation measurement is meaningless for a constant image. 
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 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝐺(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

 (6-6) 

 Energy: Energy is calculated by the sum of squares from the GLCM, which is also known 

as the angular second moment (ASM). The range of energy is [0,1], and the value is equal 

to 1 for a constant image. 

 𝐸𝑛𝑒𝑟𝑔𝑦 =∑𝐺(𝑖, 𝑗)2

𝑖,𝑗

 (6-7) 

 Homogeneity: The measurement for the closeness of the distribution of elements to the 

diagonal of GLCM, and its range is also [0,1]. When the GLCM is diagonal, the value of 

homogeneity can achieve 1.  

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =∑
𝐺(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 (6-8) 

Based on the above four features, classification algorithms can then be applied to detect the defects 

by using the labeled training image data (see Section 6.3.2 for details). Through classification 

performance comparison via cross-validation, the best classification algorithm can be selected (k-

NN is used for this study based on the preliminary comparison, see Section 6.4.1). The classifier 

is trained offline and then applied to the image data collected online. The detailed procedure to 

perform the proposed TA-ID algorithm are presented in Figure 6-13.  
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Algorithm 6-1: TA-ID Algorithm 

Input data: Image training set with a label (i.e., defective status), online collected images  

Input parameters: Constant 𝑑 for GLCM, a region of ROI  

Output: The predicted defective status of the online collected images 

Step 0 Image cropping (for ROI) and grayscale transformation (preprocessing)  

Step 1 Calculate the GLCMs 𝐺(𝑑) for the images in the training set  

Step 2 Obtain the textural features based on Eqs. (6-5) to (6-8).  

Step 3 Train the standard classifier by using the extracted features   

Step 4 Select the best classification algorithm for online application via cross-validation 

Step 5 Perform the same feature extraction process for the online collected images  

Step 6 Predict the defective status via the trained classifier  

Figure 6-13: The detailed procedure to implement the proposed TA-ID algorithm. 

6.3.4 Automatic action determination for defect mitigation 

As presented in Section 6.3.3, the proposed TA-ID algorithm can identify the types and severity 

of the defects which occur, and the results can be represented by the indicator variables, 𝐼1(𝑡) and 

𝐼2(𝑡), and severity function, 𝑠(𝑡), respectively, as introduced in Section 6.3.2. Based on this 

outcome, this section implements a method for defect mitigation through online parameter 

adjustment.  

The proposed method is based on the proportional-integral-derivative (PID) control technique, 

which provides simple but effective solutions to many industrial control systems [142, 143]. The 

basic principle of the PID control is to continuously update the control variable, 𝑢(𝑡), i.e., the 

adjustable machine parameters, based on the proportional, integral and derivative of the error term 

𝑒(𝑡) estimated from the online measurement. The error term 𝑒(𝑡), is defined as the difference 

between the desired and the actual measurements. In this study, at time 𝑡, 𝑒(𝑡) is updated by the 
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defect severity estimation function 𝑠(𝑡) based on classification. Mathematically, the framework of 

PID control can be represented in the time domain as follows [142], 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (6-9) 

where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are the tuning parameters corresponding to the proportional, integral gain, 

and derivative terms. For a discrete-time system, e.g., the control problem in this work, the integral 

and derivative terms will be replaced by summation and difference, respectively.  

Although PID control is a well-investigated technique, it is challenging to apply it to this study 

directly. There are three main reasons: (1) PID control assumes the desired setting (e.g., targeted 

value for a physical variable) is given, but the optimal parameters in this study are unknown since 

they will change during the process (see Sec.1); (2) in this research, the measured signals (i.e., 

image diagnosis results) and adjusted parameters are different variables, which cannot be handled 

by PID control directly; and (3) the existing PID equation is only valid when 𝑢(𝑡) is a continuous 

variable without any constraints, however, the adjustment of machine parameters in additive 

manufacturing is usually discrete, that is, they cannot be adjusted continuously.   

In the proposed method, the error term 𝑒(𝑡) is represented by the defect severity 𝑠(𝑡) that is 

estimated by classification analysis, i.e., 𝑒(𝑡) = 𝑠(𝑡) . Therefore, the first challenge has been 

addressed. Subsequently, the physical units of image classification and adjustable parameters are 

connected by the defect type and root cause diagnosis, i.e., indicator variables 𝐼1(𝑡) and 𝐼2(𝑡). 

Based on the combination of indicator variables, the parameter that needs to be adjusted can be 

identified. For example, 𝐼1(𝑡)𝐼2(𝑡) can be used as the indicator function for the adjustment of the 

cooling system. Then, for the constraints of the adjustable machine parameters, the adjustment 
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cannot be purely continuous. Based on the description in Section 6.3.2, the proposed control 

system consists of two adjustable machine parameters, namely, on/off control of the cooling fan 

(𝐶) (to adjust extruder temperature) and the adjustment of material flow rate (𝑅). 𝐶 is a binary 

variable which indicates the action to turn on or off the cooling fan, whereas 𝑅 is a discrete variable 

to represent the adjustment value of flow rate and the minimal unit to adjust is 5%. Therefore, 

based on Eq. (6-9), the output of the PID control equation usually cannot satisfy these discrete 

constraints. To address this challenge, the proposed strategy introduces the link functions to build 

the relationship between the PID output (i.e., 𝑢(𝑡)) and the control variables (i.e., the adjustable 

machine parameters). First, in terms of the cooling fan on/off control, due to its binary property, 

the logistic link function, 𝐿(𝑥) =
1

1+𝑒−𝑥
 is integrated to the control equation. Then, the equation 

for cooling fan adjustment can be written as, 

 
𝐶(𝑡) =

𝐼1(𝑡)𝐼2(𝑡)

1 + exp{− [𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

]}
 

(6-10) 

Similarly, due to the discrete property of material flow rate 𝑅, an exponential link function is 

introduced, which is inspired by the Poisson regression model [144]. With an indicator function 

(1 − 𝐼2(𝑡))𝐼1(𝑡), the equation for flow rate adjustment can be expressed by,  

 𝑅(𝑡) = (1 − 𝐼2(𝑡))𝐼1(𝑡) ∙ exp{𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
} (6-11) 

Therefore, consider 𝑅 and 𝐶 together, and then the overall framework of the improved closed-loop 

control system can be illustrated as Figure 6-14.  
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Figure 6-14: The improved closed-control system.  

Moreover, for the PID part in the designed controller, usually not all of the three components will 

be utilized. As concluded in the experimental studies, first, a small steady-state error is allowed. 

For instance, the surface quality is also good enough in the case of a slightly low material flow 

rate. In addition, since there is a delay between the changes of some parameters and machine 

response, the controller should have a fast rise time but a small overshoot. Therefore, the 

proportional and derivative components are selected for the controller without including the 

integral part. In practice, tuning parameter estimation is another significant and challenging 

problem. From the literature, there are some well-developed tuning methods which are effective 

for some specific cases, such as the Ziegler-Nichols method, Tyreus-Luyben method, and Cohen-

Coon method, etc. [145]. Since this work does not have to consider complex control loops in the 

system, and the investigated defects can be simulated by different parameter settings, the tuning 

parameters can be trained by offline experiments prior to online application.   

In summary, since the online adjustment is not continuous in practice and only PD terms are 

selected in this study, Eq. (6-9) needs to be discretized as,  

 

𝑢̃(𝑡𝑘) = 𝑢̃(𝑡𝑘−1) + 𝐾𝑝[𝑒̃(𝑡𝑘) − 𝑒̃(𝑡𝑘−1)]

+ 𝐾𝑑 [𝑒̃(𝑡𝑘) − 2𝑒̃(𝑡𝑘−1) + 𝑒̃(𝑡𝑘−2)] (𝑡𝑘 − 𝑡𝑘−1)⁄  

(6-12) 

and the discretized version of the developed control mechanism can be reformatted as,  
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 𝐶(𝑡𝑘) =
𝐼1(𝑡𝑘)𝐼2(𝑡𝑘)

1 + exp{−𝑢̃(𝑡𝑘)}
 (6-13) 

 𝑅(𝑡𝑘) = (1 − 𝐼2(𝑡𝑘))𝐼1(𝑡𝑘) ∙ exp{𝑢̃(𝑡𝑘)} (6-14) 

where the discretized error term 𝑒̃(𝑡𝑘) is defined by the estimated severity of the defects, i.e., the 

over-fill/under-fill rate diagnosed by online classification. Therefore, the error term 𝑒(𝑡) is able to 

be updated in an online manner.  

6.4 Case Studies  

Based on the implemented image-based closed-loop quality control system, multiple case studies 

are performed in this section. The effectiveness of defect detection (Section 6.4.1) and automatic 

machine parameter adjustment (Section 6.4.2) are validated. 

6.4.1 Image-based classification for defect recognition 

This case study validates the performance of the developed defect recognition method named the 

TA-ID algorithm based on the image data captured by the image acquisition system introduced in 

Section 6.2. A total of 656 sample images with different surface printing quality (i.e., normal or 

with various defects) were collected. 75% (i.e., 492 images) of them were selected as the training 

set and the others as the testing set. The defects with different severities were purposely generated 

by changing the machine parameter settings based on the results of experimental studies (Section 

6.3.2).  

To implement the developed classification framework proposed in Section 6.3.3, the ROI of the 

collected images are first converted to grayscale images. Based on the experiments, the 10-level 

grayscale is the most effective option to represent the textural information of defects, i.e., the range 

of the pixel intensity is (1-10), and subsequently, the dimension of the GLCM is 10 by 10. To 
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further extract the most important textural information, the four statistics (see Section 6.3.3.2) of 

GLCM were obtained as the features for classification analysis to identify the defects. In 

classification, k-Nearest Neighbor (k-NN) [112] is selected to perform classification analysis 

based on preliminary performance comparison with other popular classification algorithms, and 

thus detect the defects of under-fill and over-fill. 

For comparison of the performance, four widely used classification algorithms (directly applied to 

the image set after preprocessing without textural feature extraction) were selected as benchmarks. 

The criterion to evaluate overall classification performance in this chapter is the F-score, which is 

a combination of precision and recall [114]. Precision and recall are directly related to Type I and 

Type II errors, respectively. Eq. (6-15) indicates the calculation method of the F-score. In this 

work, for one specific type of defect, precision represents the percentage of real defects among all 

the predicted defects, and recall indicates the percentage of correctly predicted defects among all 

the real defects. Since multiple defects are investigated, the averaged F-score is used to evaluate 

one classification method.  

 F − score = 2 ×
Precision × Sensitivity

Precision + Sensitivity
 (6-15) 

The average F-scores along with the average results of accuracy, precision and recall for the 

proposed approach and the selected benchmark methods using the testing image set are 

summarized in Table 6-6, from which it is evident that the proposed method has the best 

performance in classification, i.e., diagnosing the defects. The CPU of the computer used in the 

experiments is an Intel® Xeon® Processor E3-1220 v3 (Quad Core, 3.10GHz Turbo, 8MB). The 

average computational time for classification of a single observation is 0.0029 seconds (equivalent 

to 345 Hz) for the proposed TA-ID algorithm. It can be seen from Table 6-6 that although it is not 
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as fast as other benchmark methods, it is sufficient for online defect diagnosis of FFF processes 

since the computational speed (about 345 Hz) is much faster than the sampling rate for the images 

(1 Hz) during the printing process. 

Table 6-6: Performance comparison between the proposed method and benchmark algorithms 

(for detection for the defects of under-fill caused by flow rate and cooling system, and over-fill) 

Method Accuracy Precision Recall F-score Computation time (s) 

k-NN 0.61  0.98 0.35 0.52  0.0024 

NBC 0.83 0.81 0.83 0.82 0.0036 

LDA 0.77 0.66 0.81 0.73 0.0032 

SVM 0.82 0.69 0.87 0.77 0.0058 

TA-ID (proposed) 0.85 0.81 0.89 0.85  0.0029 

Although the classification analysis was conducted for each individual data point (an image), the 

decision to trigger machine parameter adjustment was based on a window-based approach (with 

no overlap). In this case study, a window size of five is used, namely, the classification analysis 

were accomplished for five consecutive images, and the classification result with the most votes 

is used for defect identification and the subsequent closed-loop quality control analysis. Since the 

image sampling frequency of the system is 1 Hz, the action of the adjustable machine parameters 

will be updated once per five seconds through the closed-loop control system.  

6.4.2 Validation of the closed-loop control for defect mitigation 

To verify the performance of the closed-loop control system for automatic machine parameter 

adjustment, two case studies for mitigation of flow rate caused defects and cooling system caused 

defects are performed. 
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6.4.2.1 Mitigation of flow-rate-caused defects through closed-loop quality control 

The flow rate caused defects commonly occurred in the FFF process. In practice, due to the 

complexity of geometric design and limitation of slicing algorithms, the desired flow rate and 

actual setting may not be consistent during printing, which may result in under-fill or over-fill. The 

optimal setting for flow rate is set at 100% based on the experiments. A defect (i.e., 50% under-

fill) is generated with a flow rate of 50%. For the application of the developed control system, the 

severity estimation is the error term 𝑒(𝑡𝑘) and the adjustment value of the material flow rate refers 

to 𝑅(𝑡𝑘) in Eq. (6-14). In addition, the values of 𝐼1 and 𝐼2 determine the type of defects.  

The detailed testing procedure includes three steps. In the first step three normal layers were 

printed; in the second step the corresponding machine parameters were changed to generate 

defects, i.e., set the flow rate as 50% to generate the under-fill defect; and then in the third step the 

developed closed-loop quality control system is activated to detect and then mitigate the defects 

by implementing image-based classification and automatic machine parameter adjustment.  

   
Figure 6-15: The performance of the designed control system when defects occur due to low 

flow rate. (a) Controller performance; (b) initial surface (under-fill defects appear) (c) surface 

after closed-loop control adjustment (back to normal printing).  

The results show that the control system identifies the defects successfully (𝐼2 = 0) and the surface 

quality appears to return to normal after an additional 30-40 seconds of printing based on the 
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adjustment of flow rate (see Figure 6-15). Considering the delay of machine reaction (Table 6-1), 

the control system only takes about half a minute to correct the printing quality. The performance 

of the controller is acceptable and promising. In addition, although steady-state error exists due to 

resolution (5%) of flow rate adjustment, the layer surface after adjustment is the same as the normal 

condition.  

6.4.2.2 Mitigation of flow-rate-caused defects through closed-loop quality control 

The verification for mitigation of the cooling system-caused defects is performed in this section. 

The occurrence of the cooling system-caused defects is due to the low temperature causing the 

filament to not be fully melted and extruded. Therefore, turning the cooling fan on/off is a very 

important way to mitigate defects. It can also be seen from the experimental study that choosing 

an inappropriate setting for the cooling fan will cause major defects. In this study, the optimal 

temperature target is 230oC, and the real-time temperature of the nozzle is measured by the built-

in thermal sensor as verification.  

 

Figure 6-16: The performance of the designed control system when defects occur due to cooling 

system. (a) The change of temperature when the control system starts running; (b) initial surface 

(under-fill defects appear); (c) surface after closed-loop control adjustment (back to normal 

printing). 
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The testing procedure is similar to the flow rate case (Section 6.4.2.1). After three layers of normal 

printing in the first step, the second step is to turn on the cooling fan to reduce the nozzle 

temperature 𝑇 (lower than 205oC), followed by running the developed closed-loop control system 

in the third step. The results indicated that the system correctly identified the type of defects (𝐼2 =

1) and the temperature comes back to the optimal target (230oC) with an improved printing quality 

in a short time after turning off the cooling fan (see Figure 6-16). To quantify the process 

variability, a total of five trials were performed and the results were almost the same. The control 

system can always turn off the cooling fan within 15 seconds once defects appear and the surface 

quality will come back to normal status within 45 seconds of turning off the fan. The timely 

adjustment also saves the process since the cooling system-caused defects can result in clogging 

if the defects are not mitigated in time.  

6.5 Conclusions 

This chapter developed image-based online defect recognition with a closed-loop feedback quality 

control system for defect mitigation in AM with FFF. For defect recognition, an effective feature 

extraction method using image textural analysis was proposed to extract the appropriate textural 

features of defects from the input images. The extracted features were very effective for 

classification analysis-based defect detection. In the case studies, the resulting F-scores showed 

that the proposed method has the best performance for image classification compared with the 

benchmark methods. To implement online defect mitigation, a PID-based feedback closed-loop 

quality control system was developed. The case studies showed that the proposed control 

framework is very effective for combating the defects in the FFF process by adjusting the related 

machine parameters automatically. This chapter is a preliminary work for online closed-loop 
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quality control system development in the AM process, and the results demonstrate that this 

research direction is quite promising for significant improvement of the quality of AM parts.  

The future work is mainly in three directions. First, since the current online monitoring device only 

has two microscopes, the coverage may be improved, as blind spots could still exist which may 

affect the diagnosis results. Embedding new image-based sensing devices, such as a thermographic 

camera, may also improve the system performance. Second, more types of defects can be 

investigated. As additional types of defects are considered, further experimental studies are 

required as a more comprehensive relationship model between defects and machine parameters is 

created. Third, for the currently designed closed-loop quality control system, the PID framework-

based controller still has some limitations. For example, the optimal tuning parameter settings may 

vary at different layers if the part is complex, or the relationship between defects and machine 

parameters may not be very clear when considering more types of defects. Also, the response time 

may still be reduced. Therefore, a further goal of the future work is to introduce some strategies 

from fuzzy control theory [146], reinforcement learning [147], and transfer learning [148] to 

overcome the limitations of the current control system. 
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7 Conclusions and future work  

This dissertation aims to build a basis for smart additive manufacturing in terms of the capability 

for online intelligent quality assurance. Several new methodologies are developed to achieve this 

goal. This chapter summarizes the contributions and conclusions of this dissertation research, as 

well as provides a brief discussion of the future work directions. 

7.1 Research contributions and conclusions 

The major contribution of this research is to create several data-driven methodologies for online 

quality monitoring and control of AM processes. The proposed methods successfully overcome 

some typical challenges in online quality assurance of AM processes. Specific contributions and 

conclusions are summarized as three categories (Figure 7-1):  

(1) Feature extraction: Two effective feature extraction approaches are proposed based on 

spectral graph theory (Chapter 3) and nonlinear dimension reduction (Chapter 4). These 

two methods are successfully tested using both simulation and actual data sets. The 

dimension reduction-based method is able to extract the critical quality information from 

high dimensional sensor signals. The spectral graph theory-based approach demonstrates 

the great potential for cyber-physical attack detection in AM.      

(2) Process modeling: A unique physical phenomenon called reheating in AM is investigated, 

with the development of a new bilateral time series modeling approach. This developed 

model is capable of incorporating the impact from reheating effects. Therefore, this method 

is able to provide high accuracy forecasting for the layer-wise quality characteristics.   
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(3) Defect detection and mitigation: An image analysis and PID control theory-based online 

defect detection and mitigation approach is implemented. With this approach, the AM 

platform has initial capability to automatically adjust machine parameters without human 

operation, which makes the AM process more intelligent to treat the quality issues.  

 

Figure 7-1: The proposed methods to build a basis for smart additive manufacturing.  

7.2 Directions of future work 

Based on the promising demonstration from case studies, future work and investigation along these 

lines is highly valuable to pursue. Overall, based on the major components of smart manufacturing, 

the direction of future work has three main aspects:  
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(1) Sensing: More types of sensors should be explored for data acquisition purposes, which 

are helpful to reduce the information loss. Meanwhile, with new sensors, how to design 

appropriate sensing systems is essential as well.  

(2) Analytics: To handle the massive amount of real-time sensor data, more big data analytics 

methodologies are valuable to be investigated, such as efficient deep learning and robust 

representation learning algorithms, etc.  

(3) Control: Further increase the intelligence of the closed-loop quality control framework. 

More artificial intelligence (AI) related methods could be integrated with the current 

system. For example, using a reinforcement learning-based approach to improve the quality 

control capability when new defects or other quality issues occur.     

In addition, all the developed methods in this dissertation are also very promising to be extended 

to other manufacturing systems, or even other application areas such as healthcare systems, so 

long as the process has a similar mechanism or the collected sensor data have similar formats. This 

research aims to resolve the problems regarding the quality monitoring, forecasting, and control, 

which are also very critical for many other real-world cases.   
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