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Monitoring and Preventing Data Exfiltration in Android-hosted
Unmanned Aircraft System Applications

Akshat Malik

(ABSTRACT)

With the dominance of Android in the smartphone market, malware targeting Android

users has increased over time. Android applications are now being used to control unmanned

aircraft systems (UAS) making smartphones the storehouse for all the data that is generated

by the UAS. This data can be sensitive in nature which puts the user at the risk of data

exfiltration. As most Android-hosted UAS applications are proprietary software, their source

code cannot be studied or modified. This thesis discusses an external monitoring system

which is devised in order to assess the threat of data exfiltration. The system is further

used to analyze the network behavior of the popular Android-hosted UAS application, DJI

GO 4. Current methods to limit data exfiltration are discussed along with their limitations

and are categorized based on the ease of deployment. Even though the Android framework

provides a permission system which helps to limit the capabilities of an application, this

security mechanism is coarse-grain in nature. The user either allows access to the required

permissions or the application fails to function. Moreover, there is no system in place to

provide a finer control over the existing permissions that are granted to an application.

This thesis proposes a fine-grain and application-specific access control mechanism based on

system call interposition. The solution focuses on limiting the I/O operations of the target

application without any framework or application modification.
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Akshat Malik

(GENERAL AUDIENCE ABSTRACT)

Advances in smartphone technology has led major consumer and commercial unmanned

aircraft system (UAS) manufacturers to provide users with the feature to fly the UAS using

their smartphones. The UAS generate and store large amounts of data which may be sensitive

in nature. This has led the U.S. Department of Defense to ban the use of all commercial off-

the-shelf UAS due to the threat of data leakage. This thesis discusses an external monitoring

system which maps the network behavior of an Android-hosted UAS application, along

with the existing methods to limit data leakage. To overcome the limitations of existing

techniques, a fine-grain and application-specific access control mechanism is proposed. The

solution provides users with the ability to enforce custom security policies to safeguard their

data.
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Chapter 1

Introduction

The concept of a UAV, or drone as it is commonly known today, witnessed its inception

by the Austrian Army in 1849. A UAV is an aircraft which does not have any on-board

crew or passengers and can be remotely controlled or programmed to perform the desired

tasks. The Austrian Army used unmanned balloons loaded with explosives in an attempt to

bomb Venice. The concept was further exploited in the First World War where unmanned

balloons were used for reconnaissance through aerial photography. With the emergence of

winged aircraft and radio control, the first remote-controlled aircraft was created by Reginald

Denny for the U.S. Army during the Second World War [16]. The UAV technology has

improved significantly since then with the rise in drone warfare.

Along with their military applications, the use of commercial and recreational drones has

increased in the last decade. After realizing the benefits of commercial drones, various

industries worldwide have started using them for a diverse set of applications. With the

rapid advance in image sensing, flight controller and battery technology, drones are now

being used in climate change monitoring, search and rescue operations, photography, and

will soon be employed for package delivery.

In order to target consumers and hobbyists, civilian drone manufacturers have enabled their

aircraft to be controlled using a smartphone. This has allowed an average person with no

prior pilot training to fly consumer drones with ease and has resulted in their widespread use.

However, in doing so, the smartphone-hosted UAS application generates and stores a large

1



2 Chapter 1. Introduction

amount of data such as location or video from the drone, which can be sensitive in nature.

Any instance of an unauthorized transfer or access to a user’s sensitive data is termed data

exfiltration. Since data is a valued commodity, smartphones have become vulnerable to data

exfiltration just as any other computer system.

Sensitive data falling into the wrong hands can lead to consequences such as putting national

security at risk [38]. With such a threat in mind, the U.S. Department of Defence has banned

the use of commercial off-the-shelf drones, particularly the ones manufactured by the Chinese

company DJI [41]. This apprehension can be illustrated through the example of Strava, an

online fitness tracker. It is a social fitness network which allows users to share their fitness

activities tracked by GPS-enabled devices. The company maintains a global activity heat

map of users which can be viewed by anyone. With many Strava users working for various

military and intelligence organizations around the world, security researchers were able to

identify secretive military bases and patrol routes as shown in Figure 1.1.

Figure 1.1: Movement of Soldiers in the U.S. Military Base in Afghanistan [21]

A recent study conducted by the National Oceanic and Atmospheric Administration on the

DJI S-1000 drone revealed that the device is safe to operate. However, when the author of
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this study performed the same test on his personal DJI drone, he discovered that encrypted

data was being sent to unknown servers [53]. The key distinction is that the official study

did not use DJI’s proprietary smartphone application for controlling the drone [32].

This raises the question whether the military or an average user can trust the commercial and

consumer drone manufacturers with the sensitive data generated by their equipment. Hence,

it is imperative to develop ways to monitor and prevent data exfiltration in smartphone-

hosted UAS applications. This thesis assesses the threat associated with using the popular

smartphone-hosted UAS application DJI GO 4 and offers procedures and recommendations

to limit the threat. Additionally, a standalone tracer program leveraging software debugging

technology is proposed for enforcing fine-grain access control based on user-defined rules. As

a proof of concept, the tracer program is used to monitor a simple weather application. A

set of security policies are provided based on the desired behavior of the application. Any

other behavior is disallowed and logged for analysis.

The target application is treated as a black box which cannot be modified as is the case with

all proprietary smartphone-hosted UAS applications. As Android dominates the smartphone

market, it is selected as the base operating system and DJI’s popular Spark quadcopter is

used as the target UAS in this research..

1.1 Contribution

The following contributions are made during the course of this research:

• An external network monitoring system to analyze the network behavior of the target

Android-hosted UAS application.

• Categorization of existing techniques and procedures to limit data exfiltration based
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on their ease of deployment.

• A tracer program to monitor as well as enforce a fine-grain access control security

policy to prevent data exfiltration.

1.2 Thesis Organization

Chapter 2 provides background information to establish the motivation and research objec-

tives. Chapter 3 focuses on the analysis and study of the target UAS software and hardware

equipment in an attempt to find pertinent sources of data exfiltration. An external moni-

toring system is described in Chapter 4 that helps to analyze the network behavior of the

target smartphone application, and the results from the analysis are then discussed to as-

sess the risk associated with using the target UAS. Chapter 5 evaluates existing techniques

and procedures to limit data exfiltration. Chapter 6 provides an overview of the Android

architecture stack, which helps to explain the proposed solution discussed and evaluated in

Chapter 7. Conclusions are presented in Chapter 9, along with future directions for this

research.



Chapter 2

Background

A civilian UAV or drone is a battery powered flying vehicle without a human operator aboard.

It uses aerodynamic forces to lift the vehicle and can fly autonomously or be piloted remotely.

The vehicle carries a payload such as a camera or specialized sensors. The components in a

UAS are:

• UAV: A pilot-less aircraft with an onboard processor, flight controller, specialized

sensors, battery and actuators. Everything is put together using light but sturdy

materials. Commercial off-the-shelf drones usually adopt a multi-rotor design.

• Ground control station (GCS): A ground-based control center which helps to control

and manage a UAV remotely. It can either be human-operated or autonomous. The

traditional radio transmitter and receiver are increasingly replaced by smartphones or

tablets for ease of use.

• Communication: A radio interface is primarily used as the communication medium

which forms the connection between the ground control station and the UAV. A broad-

band link helps to carry command, control, video feed as well as telemetry data on a

single radio link. The MAVLink (Micro Air Vehicle Link) protocol [47] is commonly

used in modern civilian drones for exchanging command and control data.

5



6 Chapter 2. Background

Various commercial and military organizations are taking advantage of inexpensive consumer

and commercial drones to increase the efficiency of their tasks and to use them for safety-

critical operations. Some of the important areas where drones are actively being used are:

• Inspection and monitoring: Drones reduce time, money and manpower which is spent

inspecting critical infrastructure such as oil pipelines, bridges and electrical grids by

using high-end camera technology.

• Search and rescue: By taking advantage of drone’s aerial perspective, rescue squads

around the world are able to increase their efficiency.

• Aerial photography and filming: Film makers and photographers are using drones in

creative ways for their artistic endeavours.

• Condition survey and civil engineering: With their ability to reach and hover above

specific sites, drones are being used for subdividing land, identifying property bound-

aries and surveying sites for construction.

• Climate change monitoring: Researchers are using drones equipped with high-end

image sensors for environmental monitoring in areas where traditional surveying is

expensive.

• Delivery: Drones are being used in the food, healthcare and postal sectors to transport

food, packages and other goods.

Many drone applications involve surveying critical infrastructures or gathering intelligence

for military operations which creates a cyber-espionage risk to any organization which uses

them. As a consequence of this risk, the U.S. Army has prohibited its personnel from using

drones manufactured by the Chinese company DJI [53]. Additionally, the U.S. Cybersecurity
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and Infrastructure Security Agency has cited concerns about technology manufacturers based

in an authoritarian states that permit their intelligence services to have unquestioned access

to their data [22]. With a smartphone acting as the GCS, the drones have direct access to the

Internet which exposes any consumer or commercial UAS to the threat of data exfiltration.

2.1 Risks Associated with a Smartphone-based GCS

In recent years, with the advances in technology, smartphones have increasingly become an

integral part of our daily lives. New applications are being created every day which allow us

to take pictures, share content on social media, access our bank and even help us find the

quickest way to reach our destination. An average user trusts their smartphone with personal

details ranging from medical information to financial credentials for a more personalized and

intuitive experience. Thus, a smartphone acts as a storehouse for sensitive information and

can be a target for anyone with malicious intentions. The following two case studies further

illustrate this risk.

Facebook–Cambridge Analytica data scandal

In early 2018, it was revealed that Facebook’s application design allowed a third-party,

Cambridge Analytica, to have access to millions of users’ personal information without their

consent [43]. This data consisted of users’ likes, current residence, birthday, etc. This

personal data harvesting led to the creation of personality profiles of millions of Facebook

users. Various political parties consulted Cambridge Analytica to influence public opinions

by targeted political advertising, which is believed to have had an impact on the U.S. 2016

presidential election. This serves as a clear example of how personal data could be misused

to have a global impact. It shows how people are seen as walking data sources by technology
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giants who use their data for self-serving interests. It also raises questions about privacy and

safety of a user’s personal information in the hands of big technology providers.

Popular Mac application Doctor Adware

In late 2018, security researchers discovered that the popular application Doctor Adware

on Apple’s App store was covertly storing users’ data and sending it to a server located

in China [49]. The application posed as a security tool and disguised its universal access

request as a malware scan permission to bypass Apple’s security policy. As per the policy, an

application is isolated from other applications and runs in a container called sandbox. This

prohibits an application to access more resources than it needs to function unless granted

permission by the user. Due to the positive reviews (likely to be fake) of Doctor Adware on

the App store, a sense of trust was instilled in users. Therefore all necessary permissions

were granted to the application. This allowed the application to access data from other

applications and running processes. The application also maintained a log of the browsing

history from all available browsers installed on the device. The security researchers have

pointed out that application’s suspicious activity began after an update. This shows that

the developer can always add malicious hidden functions and exploit the existing permissions

granted to their application.

Like Apple’s permission system, Google has also equipped Android with a permission system

which informs the user what resources and information the application requires. However,

the caveat here is that the user has to accept all permissions otherwise the application may

not be installed or function properly [9]. Therefore, even though a coarse-grain security

policy already exists on Android, it is inadequate if the application exploits existing broad

permissions for malicious activities. A user cannot deny the application access to selective

information such as specific local files or specific Internet addresses.
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2.2 Application Sandboxing

Sandboxing is a computer security mechanism to isolate a program or application by execut-

ing it in a containerized space. The mechanism creates a safe execution space for untrusted

applications without jeopardizing system security. The fundamental principle behind sand-

boxing is to limit the privileges granted to an application in an attempt to reduce the risk.

If Android-hosted UAS applications cannot be trusted, it makes sense to execute them in

a sandboxed environment. Generic sandboxing solutions available for the Android platform

such as Samsung Knox [13] create an isolated environment for running applications. Even

though the applications run in an isolated environment, they still have complete access to

the broad permissions granted by the user.

Applications like XPrivacy prevent untrusted applications from leaking sensitive data by

restricting the information that the application can access [45]. This is achieved by providing

fake data to the application such as supplying an empty contact list if the application has

access to the user’s contacts. However, there is no ability to restrict access to just a select

list of contacts. Hence, these solutions fail to provide a fine-grain access control on the

permissions granted to the application and thereby cannot limit the Internet activity of the

target application.

2.2.1 Fine-grain Sandboxing

System calls allow a program to interact with the operating system. These are service

requests to the system’s kernel from an application or process [15]. These requests require

a higher privilege level to complete and therefore are managed by the kernel. All I/O

operations including network requests on Android are executed using system calls. Therefore,
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if an application’s system calls are monitored, the application can also be monitored. The

technique to monitor and modify system calls is termed system call interposition [39].

The tracer program proposed in this thesis uses this technique to trace all communication

between the target application and the Android operating system. This not only provides a

way to monitor the application but also helps to enforce a fine-grain access policy. Unlike

the generic sandboxes, this acts as a reference monitor [24] and focuses on limiting the I/O

operations of the target application. Reference monitors check the program execution for

any security violations based on a defined security policy. Similarly, the tracer program

monitors the system calls executed by the target application and verifies the requests based

on a user-defined security policy. For example, the tracer can deny access to a specific file

even though Android has granted the application permission to access the entire file system.



Chapter 3

Target UAS Analysis

Da-Jiang Innovations (DJI) is a Chinese technology company which is based in the heart of

Chinese Silicon Valley, Shenzhen, Guangdong. The company is currently the world leader in

the commercial and civilian UAS industry and has captured nearly 70% of the market [44].

DJI is known for their inexpensive and easy to use UAVs which employ their in-house manu-

factured camera gimbals, camera stabilizers, propulsion systems and flight control systems.

This chapter gives an overview of the hardware architecture of the Spark drone along with

the software tools provided by DJI in order to determine possible sources of data exfiltration.

3.1 DJI Spark

DJI Spark, as depicted in Figure 3.1, is part of the consumer line of DJI drones and is

amongst the lowest cost drones they have to offer. It runs a Leadcore LC1860C ARMv7-A

CPU with Android 4.4. Most of the components that are found in a typical Android image

(as the 4.4.4 build for a Nexus 4) are not included in the DJI build. For example, the DJI

software only uses core components of Android such as the runtime and debugging utilities,

and also some of the camera and video processing libraries.

The device is equipped with a set of external interfaces which can be potential sources of

data exfiltration:

11



12 Chapter 3. Target UAS Analysis

Figure 3.1: DJI Spark

• 2.4/5.8 GHz Wi-Fi

– Provides a medium for the DJI GO 4 application or DJI remote controller to send

commands to control and fly the drone.

– It is not used to form a direct connection to the Internet.

• USB

– Connects DJI Assistant 2 application and the drone.

– Can be used to access data present on the drone.

– It is not used to form a direct connection to the Internet.

• MicroSD slot

– Used for attaching a microSD card.

– MicroSD card can be physically removed from the drone to access the data.
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3.2 Spark Remote Controller

The Spark remote controller is used to get extra range and precision when flying the drone.

The firmware is based on OpenWRT, which is a Linux distribution designed for wireless

routers and embedded devices. It is equipped with a set of external interfaces which can be

potential sources of data exfiltration:

• 2.4/5.8 GHz Wi-Fi

– Used as a bridge between the DJI GO 4 smartphone application and the drone.

– Sends and receives commands in the form of UDP network packets to control the

drone.

– Has an FTP server running mainly to transfer firmware updates to the drone.

– It is not used to form a direct connection to the Internet.

• USB

– Used for charging the remote controller.

– Can be used to form a direct connection to the DJI GO 4 application to avoid

the Wi-Fi interface.

3.3 DJI Assistant 2

It is an application designed to manage the DJI drone from a desktop computer and has an

interface as shown in Figure 3.4. The application enables the user to connect the drone to a

desktop computer via the USB interface. The user can then update the drone firmware, cal-

ibrate sensors, read flight logs and change Wi-Fi settings of the drone using the application.
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Figure 3.2: DJI Spark Remote Controller

The Assistant is developed on the Electron project for building cross-platform apps. The

main application executable is a compiled C/C++ application based on the Qt framework

that implements a basic WebSocket server local to the host. The application when run

launches a new process called the browser which is the Electron-based user interface to the

application.

Communication with the Spark drone takes place using the serial device that is created

on the host system. The application uses WebSockets to form a communication channel

between the browser and assistant processes. Being a desktop application, the potential

source of data exfiltration is:

• Network interface on a computer

– Uses WebSockets for communication between DJI servers and assistant processes.

– Can be used to update the drone’s firmware and geofencing database.
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– Can be used to share location, video or telemetry data saved on the drone with

DJI or third-party servers.

Figure 3.3: DJI Assistant 2 Interface

3.4 DJI GO 4

DJI GO 4 is an Android and iOS application for flying DJI drones and has an interface as

shown in Figure 3.4. It has the feature to capture, edit, and share media content from the

drones. It is used for updating the drone and remote controller’s firmware. The application

requires Internet access to register the drone and to receive regular updates to the geofencing

database. The sensitive permissions required by the Android version of DJI GO 4 are

location, phone, photos, media, camera, microphone and bluetooth/Wi-Fi.
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Potential sources of data exfiltration are:

• 2.4/5.8 GHz Wi-Fi

– Used for connecting the application to the drone for the purpose of flying.

– Used for connecting the application to the Internet for application, firmware, and

geofencing database updates.

– Can be used to share location, video or telemetry data with DJI or third-party

servers.

• Cellular network

– Used for connecting the application to the Internet for application, firmware, and

geofencing database updates.

– Can be used to share real-time location, video or telemetry data with DJI or

third-party servers while flying the drone.

Figure 3.4: DJI GO 4 Interface
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3.5 Gateway to the Internet

After the equipment analysis it can be concluded that DJI GO 4 and DJI Assistant 2 present

the risk of data exfiltration as they have direct Internet access. There is the possibility

of location, telemetry or video data being shared with DJI or third-party servers without

the operator’s knowledge or permission. The permissions granted to the application on an

Android device are broad enough that automatic updates could utilize these permissions for

malicious activities without any notification to the user.



Chapter 4

External Monitor

The data generated and stored by the smartphone-based GCS can be exfiltrated by an

adversary who has physical access to the device or it can be transferred to a remote server

by the application without the user’s consent. With DJI GO 4 acting as the gateway to the

Internet, it is important to monitor the network packets going to and from the application.

To understand and analyze the network behaviour of DJI GO 4 without modifying the

application or the Android operating system, an external monitoring system is described in

this chapter.

4.1 Man-in-the-middle

A man-in-the-middle technique is normally a form of cyber attack where an adversary inter-

cepts network communication between two parties to either eavesdrop or modify the network

packets exchanged. The adversary acts as the man-in-the-middle of the communication with-

out being detected by the targets. An external monitoring system is set up which employs

this technique to capture the network communication between DJI GO 4 and the Internet

router.

18
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4.2 Implementation

A laptop or desktop computer is equipped with two network interface controllers (NICs) and

acts as the sniffing device. It is configured to intercept the network traffic between the two

target devices. The two NICs make it possible to reroute the network packets through the

device to capture all the packets sent and received by DJI GO 4 as illustrated in Figure 4.1. A

network capturing tool such as Wireshark [18] allows the device to capture, monitor and filter

all network traffic going through the device. The system treats the smartphone running DJI

GO 4 and the Internet router as the target devices. There are two possible ways to configure

the sniffing device which are discussed below.

Figure 4.1: External Monitor Setup

4.2.1 ARP Poisoning

Communication on a computer network requires both an IP address and a MAC (media

access control) or hardware address. ARP (address resolution protocol) is a networking
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protocol used to resolve or map IP addresses to MAC addresses in a local area network.

When a host on the network needs to send a packet to another host with a given IP address,

it first broadcasts a request to all hosts on the network asking for the MAC address of

the destination IP address. The host with the destination IP address replies with its MAC

address. Important terms associated with ARP are:

• ARP request: Broadcasting a packet over the network to find the destination MAC

address.

• ARP response/reply: A response packet sent by the destination host with its MAC

address.

• ARP Cache: To avoid constant ARP requests, the source host saves all resolved MAC

addresses in a table for future reference.

• ARP Cache Timeout: A time limit after which the ARP Cache is flushed.

ARP poisoning is a process which involves creating forged ARP response packets and flooding

the ARP cache of the target host with them. Figure 4.2 illustrates an ARP packet where

the operation field specifies the action requested by the sender. It could either be an ARP

request or ARP reply. The sniffing device sends forged ARP packets to the Internet router

as well as the smartphone. This causes the ARP cache of both target devices to change.

The smartphone’s updated ARP cache contains an entry linking the router’s IP address with

the MAC address of one of the NIC’s present on the sniffing device. Similarly, the router’s

updated ARP cache contains an entry mapping the smartphone’s IP address with the other

NIC’s MAC address. The device is configured with a forwarding rule to send all network

packets from one NIC to the other. This enables Wireshark to capture all flowing network

packets, making DJI GO 4’s network behavior observable.
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Figure 4.2: ARP Packet Format

4.2.2 Rogue Access Point

Any device equipped with a wireless network card tries to auto-connect to a stored access

point that emits the strongest signal. This feature saves the user from manually connecting

to a network every time the connection fails. Attackers exploit this by setting up a rogue

wireless access point to lure nearby devices to join it. The victim devices easily connect to

the access point as it is set up without any password. The device is configured to forward all

network traffic to another network interface which is connected to the Internet. This allows

attackers to covertly sniff the network packets from victim devices without disrupting their

Internet connection.

The sniffing device can be configured using the same principle to act as a wireless access

point. Hostapd is a userspace software which turns a NIC into a wireless access point. Using
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this utility, one sniffing device NIC is programmed as the rogue access point, and the device

is configured to forward all network traffic to the other NIC connected to the real Internet

router. Wireshark is able to capture all the packets that can be analyzed to understand the

network behavior of DJI GO 4.

4.3 Observations

After configuring and testing the monitoring system using the ARP poisoning and the rogue

access point techniques, it is observed that ARP poisoning is not suited to long duration

network monitoring tasks due to ARP cache timeout. Hence, the external monitoring system

uses the rogue access point configuration to monitor DJI GO 4. It is also important to

mention that the system monitors all network packets sent and received by the smartphone

and cannot perform application-specific monitoring. For the purpose of this experiment,

the only application installed on the smartphone is DJI GO 4 which helps prevent unwanted

network traffic from any other application. The application is monitored under the following

scenarios:

• Initial application login and drone authentication,

• Linking the application to the drone,

• Updating firmware and geofencing database,

• Using the application to fly the drone,

• Using various other application features,

• Application running in background but not connected to the drone.
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The data is captured and stored in the form of .pcap (packet capture) files which are analyzed

using custom filters on Wireshark. The overall analysis revealed that major network traffic

is to and from Amazon Web Services (AWS) servers owned by DJI. As the evaluation is

carried out in the U.S., domestic AWS servers are contacted for all authentication-related

tasks. Some of the major servers communicating with the application are listed in Table 4.1.

An interesting behavior is observed while the application is connected to the drone via Wi-

Fi: the application continuously pings DJI servers in an attempt to connect via the cellular

network. This shows that real-time data sharing with DJI servers can also take place if the

user has enabled the cellular data network. Similar network analysis has been conducted by

engineers managing the website dji.retroroms.info and the results are very similar [29].

Table 4.1: Captured Network Data

Web Address Location Comments
mydjiflight.dji.com Virginia (AWS) DJI service
statistical-report.
djiservice.org

Virginia (AWS) Tracking usage for DJI

pro-dji-service-usa-
cdn.aasky.net

Seattle (AWS) DJI service

www.dji.com Seattle (AWS) DJI official website
flysafe-api.dji.com Virginia (AWS) DJI GEO-related
world.taobao.com Zhejiang, China Chinese online marketplace
stormsend.djicdn.com Seattle (AWS) DJI service
account-api.dji.com Seattle (AWS) DJI account-related service
skypixel-usa.oss-us-
west-1.aliyuncs.com

California (Alibaba) DJI-owned video content site

active.dji.com Seattle (AWS) DJI service
stats.jpush.cn Zhejiang, China A form of push notification inter-

face
astat.bugly.qq.com Shenzhen, China QQ is a Chinese instant messag-

ing platform owned by Tencent
restapi.amap.com Hangzhou, China Chinese Map service

A large amount of communication with servers owned by Tencent is observed. Tencent is

a Chinese multinational conglomerate that has developed the Tinker framework [57]. The
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framework is a hot-patch system for Android. Hot-patch or hot-fix systems are dynamic

repair frameworks which enable developers to push updates to their applications without

releasing a new version. Tinker framework allows silent updates to use existing permissions

in new ways not previously disclosed to the user.

According to DJI, these third-party plugins have been removed to address emerging flight

security concerns as stated in a press release [5]. However, a version update to the application

could revert these changes. In the same press release, DJI claims to have removed the

third-party plugin JPush as their security researchers report that it collects unnecessary

data packets including a list of applications installed on the user’s device. As seen from

the captured packets, connections were still being made to the JPush server which raises

suspicion. These observations confirm the risk associated with using smartphone-hosted UAS

applications and therefore warrant methods to prevent or limit any unsanctioned activity by

the application.
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Limiting Network Access

Although the external monitoring system helps to analyze the network behavior of the

smartphone, it is unable to limit unwanted network activity. This chapter provides ex-

isting techniques and procedures to help reduce the risk of data leakage by DJI GO 4. The

recommendations, along with their trade-offs for the operator, are ordered according to their

ease of use. Two existing advertisement blocking techniques are described, which can be

customized to prevent unwanted network activity by DJI GO 4. Finally, a novel approach

leveraging software debugging technology is introduced to overcome the limitation of existing

techniques.

5.1 Recommendations for Drone Operators

5.1.1 Turn Off Information Sharing

In order to prevent access to device information or other related data, it is important to

opt-out of DJI GO 4’s data collecting programs like the product improvement program, as

shown in Figure 5.1. Through this program, DJI is authorized by the user to access device

information.

Limitations:

25
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• This will not prevent DJI from covertly exfiltrating flight logs and video captures.

Figure 5.1: DJI Product Improvement Program Description Page

5.1.2 Disallowing Data Transfers from the Drone to DJI GO 4

Downloading media present on the drone to the application makes it more susceptible to be

exfiltrated as the application has direct access to the Internet.

Limitations:

• The media content would need to be accessed by physically removing the memory card

present on the drone.

• This technique is not secure against exfiltration of flight logs and cached data stored

by the DJI GO 4 application on the mobile device.
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5.1.3 Airplane Mode

Operators using the application can put their mobile devices in airplane mode to suspend

Internet connectivity. This will prevent the application from using the cellular network to

share data in real-time with DJI or third-party servers during flight mode. The application

will also not be able to detect the operator’s location.

Limitations:

• The real-time map which shows up in flight mode will not work.

• Some of the safety features provided by DJI will not work.

• This technique may fail as soon as the airplane mode is turned off when the application

gets access to the Internet, allowing cached information collected during the flight to

be exfiltrated.

• The operator will not be able to update the drone’s firmware, geofencing database, or

the application.

• Bugs present in the application or the drone firmware will persist.

5.1.4 Airplane Mode (OTG Hack)

The DJI Spark does not officially support this feature, but by using an older version of

DJI GO 4, the USB OTG mini cable can be used to connect the mobile device with the

remote controller to avoid using Wi-Fi as the communication medium. This results in higher

bandwidth communication between the application and the drone, and allows the operator

to switch off all network interfaces on the mobile device.

Limitations:
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• By turning off all network interfaces, this technique suffers from the same trade-offs

as mentioned for the airplane mode.

• USB OTG mini cable is not provided by DJI.

5.1.5 DJI’s Local Data Mode

After hearing concerns related to data leakage, DJI released a feature for government and

enterprise customers called the Local Data Mode. The mode claims to disallow the applica-

tion from using the Internet in order to enhance data privacy assurances. This mode allows

the operator to have all network interfaces active and available to other applications on the

mobile device. However, this mode is unavailable on current versions of the application.

Limitations:

• By suspending the application’s Internet connectivity„ this technique suffers from the

same trade-offs as mentioned for airplane mode.

• This technique may fail as soon as the local data mode is turned off when the applica-

tion gets access to the Internet, allowing cached information collected during the flight

to be shared with DJI or third-party servers.

5.2 Advertisement Blocking Mechanisms

In the age of online advertising, some people use advertisement blockers to avoid pop-ups and

banner advertisements that disrupt Internet browsing. The aim of an advertisement blocker

is to restrict unwanted network connections. The majority of blockers work by maintaining a
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blacklist of advertisement serving links which causes the corresponding network connections

to be blocked. The same strategy can be applied to limit DJI GO 4’s network activity.

5.2.1 Host File Loopback

Internet users browse the web using domain names such as google.com or wired.com

whereas a computer system uses unique IP addresses assigned to each of these websites

in order to access them. The domain name system (DNS) can be compared to the yellow

pages of the Internet. It is used to look up a website’s unique IP address by using its domain

name and thereby eliminates the need for users to know a website’s IP address.

When a network request is initiated, the first step taken by the system is to query a DNS

server for domain name resolution. The DNS server resolves the query and responds by

sending the IP address associated with the requested domain name. To save time, these

mappings are cached in the host file present in the system directory of an Android smart-

phone. Before making another DNS request, Android first looks up the host file present

locally. Remote DNS servers are queried only if the local mapping is not found. The process

in action can be seen in Figure 5.2.

The host file loopback mechanism works by modifying this host file to replace the mapping

of blacklisted domain names with local loopback IP (127.0.0.0). Whenever a network

request is generated for any of the malicious domains, the local loopback IP is provided

which inherently blocks the network packet from heading to its destination. By analyzing

the DJO GO 4 network traffic using the external monitoring system described in chapter 4,

a blacklist of suspicious domain names can be created. This can then be used to modify the

host file to restrict DJI GO 4’s network activity.

Limitations:
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• Requires root access to modify the host file,

• If the malicious server’s IP address is hardcoded, no DNS request would be generated,

• Does not provide network monitoring feature.

Figure 5.2: Domain Name Resolution on Android

5.2.2 VPN Gateway

A virtual private network or VPN is a widely available service which routes all network

traffic generated by a device through a privately owned server to protect users’ privacy.

The network data is encrypted by the service to avoid any snooping attempts by malicious

agents. Major VPN service providers have a built-in advertisement blocking mechanism.

All the network packets routed through the private server are compared with a blacklist

containing ad-serving domains to block all advertisement requests.



5.2. Advertisement Blocking Mechanisms 31

VPN service providers develop their VPN client for Android using existing APIs, which

allows their application to act as a VPN gateway. When the client application is active, all

the network traffic generated on the smartphone is routed through the gateway, as illustrated

in Figure 5.3. System-wide advertisement blocking applications on Android use this feature

to block pop-up and banner advertisements on all applications installed on the device [28].

Similarly, this feature can be used to monitor and restrict the network activity of DJI GO 4.

By using the VPN service APIs on Android, all network traffic to and from DJI GO 4 can

be inspected and compared against a blacklist to block connections to suspicious domains.

Unlike host file loopback method, this method serves the dual purpose of monitoring as well

as blocking the network activity of DJI GO 4.

Limitations:

• Unable to perform application-specific network monitoring and filtering.

Figure 5.3: VPN Restricting Network Activity on Android
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5.3 Software Debugging Mechanism

A debugger is a software tool which assists a developer to examine a program’s behavior.

Debuggers are used to track down any defects in a program by observing its runtime behavior.

At any desired point, the debugger can halt the program’s execution and inspect its state

to verify its correctness. However, as programs are compiled into machine code, inspecting

each line of code using a debugger is not a trivial task for a developer. Therefore, to make

it easier to debug complex software programs, debuggers are able to map the machine code

back to the original program source code. This is achieved by embedding comprehensive

information about the source and its relation to the machine code. This technique is termed

source-level symbolic debugging [54] and is used frequently for analyzing user applications.

Figure 5.4: Using gdb to Debug a Program

Debuggers that use this technique rely on a symbol table which connects the machine code

instructions to their corresponding variable or line in the source code. A debug flag must be

set during the compilation process in order to build the symbol table. This table is used to

step through a program line by line and set breakpoints to pause the program execution as

shown in Figure 5.4. A breakpoint is a special instruction inserted at specific locations in a

program’s code which raises a software interrupt. In the event of such an interrupt, the CPU

stops the execution of the program and hands over the control to the debugger which can
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then examine or modify the state of the stopped program. This makes debuggers a useful

tool to monitor and modify a program’s runtime behavior.

5.3.1 Runtime Monitor Using System Call Interposition

All software applications used by consumers are compiled without the debug flag. The lack

of a symbol table and extra debug information makes it difficult to observe their runtime

behavior using a debugger. System call interposition is a technique to monitor and modify

system calls, as described in Section 2.2.1. An application’s I/O operations can be monitored

by tracing the system calls issued by it. Since under the hood common debuggers like gdb [6]

use the system utility ptrace [12] to create breakpoints and observe the program state, this

utility can be used to halt an application whenever a system call is executed. Thus, this

creates an opportunity to monitor or modify the application’s runtime state.

Some of the major system calls which facilitate network-related tasks on Android are:

• SOCKET: Creates an endpoint for communication,

• ACCEPT: Accepts a connection on a socket,

• CONNECT: Initiates a connection on a socket,

• LISTEN: Listens for connections on a socket,

• RECVFROM: Receives a message from a socket,

• SENDTO: Sends a message on a socket.

By using the ptrace utility, these system calls can be intercepted and examined. This makes

it possible to monitor the network packets sent or received by the application. The arguments
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of these system calls can be modified to block blacklisted network requests and thereby limit

the network activity of the target application. If the developers push an update for the

application, policies can be modified to maintain security based on the changed behavior.

This technique is used to develop the tracer program described and evaluated in Chapter 7.



Chapter 6

Android Operating System

This chapter provides an overview of Android’s architecture stack and security policies before

discussing the implementation of the tracer program presented in Chapter 7.

6.1 Architecture Overview

Android is an open source operating system whose foundation is based on the Linux kernel.

It is structured as a software stack where the kernel forms the bottom layer as shown in

Figure 6.1. The kernel provides the device drivers required for the vast majority of applica-

tions and features provided by Android smartphones. When the user wants to do anything

requiring the use of hardware, a request is sent to the kernel. From making a phone call

to increasing screen brightness of the device, anything hardware-related is controlled by the

kernel. These requests to the kernel are made in the form of system calls.

Android uses a customized version of the Linux kernel which has some additional features

important for a mobile embedded platforms such as interprocess communication (IPC) binder

drivers. The binder framework provides a remote procedure call mechanism which allows

client processes (applications) to send or receive information and execute methods in server

processes (system services) such as Wi-Fi and telephone.

The Hardware Abstraction Layer (HAL) is present above the kernel layer and forms a bridge

35



36 Chapter 6. Android Operating System

text

text text

text

Power Management

Bluetooth Camera WIFI

Audio Binder (IPC) Display

Audio Bluetooth Sensors ...

Core Libraries

ART

OpenGL ...

Webkit

OpenMAX AL

Libc

Content 
Providers

View System

textActivity Resource Window

Dialer Email Camera ...

System Apps

Java API Framework

Native C/C++ Libraries Android Runtime

Hardware Abstraction Layer (HAL)

Linux Kernel

Managers

Figure 6.1: Android Stack

between the hardware and the software. The Android framework and applications sitting at

the top of the stack communicate with the hardware using the Java API framework. Since,

the kernel takes requests in the form of system calls, the HAL provides a standard interface

allowing the Android framework to communicate with the hardware resources provided by

the smartphone manufacturer [1].

Android Runtime (ART) is an application runtime environment/virtual machine which

translates the application bytecode into native instructions which are then executed by the
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device’s runtime environment. The Android platform also provides native libraries written

in C and C++ to support system components built using native code. These libraries can

also be accessed by applications using the Android Native Development platform. Just below

the application layer is the Java API Framework which provides services to applications in

the form of APIs written in the Java language. These APIs enable access to all the services

and components provided by the operating system [10].

6.2 Kernel and System Security

The Android platform offers the security features provided by the Linux kernel. Being a

multi-user system, Linux follows a user-based permission model wherein one user cannot

modify or access another user’s files. In Android, each application is treated as a user and

assigned its own user id (UID). This ensures application isolation to protect the system from

malicious applications and is a form of kernel-level application sandboxing. Android versions

4.3+ use SELinux to describe and enforce boundaries on an application [14].

File system permissions ensure that an application’s private files cannot be accessed by other

applications unless explicitly shared by the developer. Android’s kernel, system libraries,

application runtime and framework are all contained on the system partition, which is set to

read-only. IPC mechanisms allow secure communication between different applications [8].

Additionally, new Android versions (8.0+) use a seccomp [20] filter to block specific system

calls which can be exploited by malware. However, this does not prevent an application from

using the whitelisted system calls such as sendto and ioctl for malicious purposes.
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6.3 Application Security

Android applications are mostly written in Java which is compiled to Dalvik byte code and

assembled as .dex files. The bytecode is then translated to native machine code and executed

by either the ART or the Dalvik virtual machine. All .dex files are packaged together along

with configuration files as an APK (Android Application Package).

The Android permission model allows an application to only access a limited range of system

resources. APIs providing access to sensitive functionality must be specified by an appli-

cation in a manifest configuration file. During the installation phase as well as during an

application’s runtime (since Android 6.0), these permissions must be approved by the user.

A security exception is thrown whenever an application tries to access protected APIs which

are not declared in its manifest [3].

These protected APIs have broad functionality. For example, an application trying to access

the network or data connection API will either get access to the complete Internet or not.

There is no mechanism to deny permission to specific Internet addresses. For the file system

API, permission cannot be denied to specific files. Hence, the Android permission model is

coarse-grain in nature.

6.4 Android Boot Process

The Android boot process has the following steps:

1. Every Android smartphone starts by pressing the power button, which initiates the

bootrom code. This is the first code executed and is present in a write-protected flash

memory embedded inside the processor. The bootrom is responsible for loading the
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bootloader into the RAM and executing it.

2. The bootloader is a program which is not part of the Android OS and is responsible for

the manufacturer’s specific locks and restrictions. The bootloader starts by detecting

the external RAM and moves on to set up low-level memory management, network

and security options. The bootloader is responsible for loading all OS-specific files.

3. Similar to Linux, the Android kernel executes by setting up the cache, protected mem-

ory, and loads all the drivers. It starts the first process of the system termed init.

4. The init process is responsible for mounting directories such as /sys, /dev and

/proc. It runs the init.rc script and starts native daemons such as bootanimation,

Zygote, Service Manager etc. At this stage, the Android logo animation pops on the

screen.

5. Zygote is a special Android process which is part of the ART environment. It is

responsible for starting new applications by forking itself and loads all classes and

runtime required by an application into system memory to minimize startup time.

6. The first process started by the Zygote is the System Server. It initializes every

system service on Android and registers them with Service Manager started by the

init process.

7. The Activity Manager is started by the System Server. It creates a new Activity

thread process, and maintains the Activity lifecycle and Activity stack. Finally, it

receives onClick events to start new applications.
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6.5 Application Installation and Runtime

An APK is required to install an application. This APK can either be downloaded directly

from Google’s application market or a third-party source. When a user initiates the APK

install process, the Package Manager parses the APK file to display the permission requests

written in the application’s manifest file. After the user grants the permissions, the package

is queued with other packages waiting to be installed. The newly installed application is

provided with a unique UID and a private directory for file storage. The Package Manager

service stores basic information regarding all the installed applications and can be queried

for this information [50].

An application is launched when the user clicks its corresponding icon. This click event

results in a call to the Activity Manager service via the Binder IPC. Information regarding

the application is obtained by querying the Package Manager. If the application is already

running, the existing process is resumed otherwise a new process is created. The Zygote

process uses the fork operation for creating new processes. This operation results in a new

process id (PID) to be assigned and bound to the launched application. The process then

loads the application-specific code and brings the application activity to the foreground [40].
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Tracer

The fundamental idea behind developing the tracer program is to monitor and control the

behavior of the target application. As all hardware-related tasks on Android are handled

by the kernel, the target application uses system calls to communicate with it. The tracer

employs system call interposition to observe the system calls made by the target application.

If undesired behavior is observed, the program prevents the request and logs the attempt,

thus making it easier for users to keep a constant check on the application. This chapter

discusses the tools used to develop the tracer program and looks at its implementation and

evaluation.

7.1 Platform and Tools

7.1.1 Android Native Development Kit

Android applications are generally written in high-level programming language such as Java

or Kotlin to exploit their object-oriented design. As mentioned in Section 6.3, Java code

is executed in a virtual machine and hence is platform architecture agnostic. However, to

interact with the kernel, architecture dependent programs are required. Android’s Native

Development Kit (NDK) provides tools to develop and manage programs at Android’s native

layer using the C or C++ language.

41
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The tracer program is written in C and uses the platform library support provided by NDK.

The ndk-build script is used to compile the tracer program. The script generates native

binaries using the information provided in the build configuration files Android.mk and

Application.mk.

7.1.2 Android Debug Bridge

Android Debug Bridge (ADB) is a command-line utility present in the Android Software

Development Kit (SDK) package. It allows the developer to form a client-server connection

with the Android device, and has three main components:

• Client: Sends commands to the device and is invoked by the adb command on a

terminal.

• adbd: A daemon process on the Android device which executes the commands received

from the client.

• Server: A background process on the development machine that manages the commu-

nication channel.

ADB is used to gain access to the Unix shell on the Android device to transfer and execute

the tracer program.

7.2 Implementation

The foundation of Android is based on the Linux kernel, therefore a utility called ptrace is

available to monitor and debug native layer processes. ptrace is available in the form of a
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system call which can be used by a process to inspect and manipulate the internal state of

another process at runtime. It is the primary mechanism which debuggers employ to monitor

target processes on Unix-like systems as discussed in Section 5.3.

The tracer program uses this to dynamically trace any system call issued by the target

application. The ptrace API is

long ptrace ( int request , pid_t pid , void *addr , void *data ) ;

where pid is the target application’s process ID. The request field selects a specific ptrace

function, some of which are listed in Table 7.1. The value for addr and data depends on the

type of request being passed. PTRACE_SETOPTIONS allows to set specific execution requests

for ptrace. The options required for the tracer program are listed in Table 7.2.

Table 7.1: Ptrace Request Fields

Request Function
PTRACE_ATTACH Attach to the process specified in pid
PTRACE_SYSCALL Stop at the next system call entrance or exit of the target process
PTRACE_GETREGS Get a copy of the target process’s general-purpose registers
PTRACE_SETOPTIONS Set a number of options for tracing the target process
PTRACE_PEEKUSER Read a word at offset addr in the target process’s USER area
PTRACE_POKETEXT Write a word to the address addr in the target process’s memory
PTRACE_SETREGS Modify the target process’s general-purpose registers
PTRACE_DETACH Detach from the target process

Table 7.2: Ptrace Setoption Fields

Option Function
PTRACE_O_TRACESYSGOOD Stops target process at system call occurrences by setting bit

7 of signal trap (SIGTRAP | 0x80)
PTRACE_O_TRACEFORK Stops target process before it executes a fork() system call
PTRACE_O_TRACECLONE Stops target process before it executes a clone() system call

The tracer works by using the PTRACE_ATTACH request to attach to the target application,

using its pid, and temporarily becomes the parent process of the application as shown
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Linux Kernel

Tracer
(pid: 1000)

Tracee
(pid: 1020)

Ptrace

Attach and 
Control

Figure 7.1: Tracer Attach Operation

in Figure 7.1. ptrace permits the tracer to attach to multiple process threads but each

individual thread can have just one process tracing it.

When the target application is traced using ptrace, the tracer is able to suspend the appli-

cation’s execution depending on the option specified by PTRACE_SETOPTIONS. In the event

of a system call execution, the target application receives a SIGTRAP signal which halts its

execution before the system call is serviced as shown in Figure 7.2. Since the tracer is the

parent process, it monitors this using the standard waitpid system call available on Android.

The tracer is then able to inspect the general-purpose registers of the application process

using PTRACE_GETREGS.

Depending on the architecture, the arguments for the system call are stored in the target

process’s general-purpose registers. Table 7.3 lists the registers used to store the arguments

for system calls executed on ARM 32-bit and 64-bit architecture.

Table 7.3: System Call Argument Registers

Architecture System call num-
ber

Return value Argument 1-6

ARM32 r7 r0 r0-5
ARM64 x7 x0 x0-5
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The system call arguments can be modified by changing the values stored in the registers.

PTRACE_SETREGS allows the tracer program to modify the values of the registers thereby

altering the application behavior. This allows the tracer to monitor every system call and

block unwanted behavior based on user-defined rules.

Attach to the tracee
(PTRACE_ATTACH)

Wait for state change in 
tracee

(Waitpid)

Continue now but stop 
at system-call entry or 

exit
(PTRACE_SYSCALL)

Check Signal

Read/Write Register 
Values

(PTRACE_GETREGS)/

(PTRACE_SETREGS)

Detach from the tracee
(PTRACE_DETACH)

Send specific signal for 
system-call event

(PTRACE_SETOPTIO

NS)

SIGKILL

(SIGTRAP|0x80) != 1 (SIGTRAP|0x80)==1 

Figure 7.2: ptrace Flow Diagram

PTRACE_O_TRACEFORK and PTRACE_O_TRACECLONE options need to be set to enable the tracer

to trace all new threads spawned by the target application at runtime. It is important that

every thread is traced because the majority of Android applications hand over their network
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operations to a spawned thread as an AsyncTask. Additional threads would have been

created to perform different tasks if the target application is already running before being

traced. The tracer manually attaches itself to every thread by iterating over the task IDs

(TID) using the proc file system [11] to trace these threads.

7.3 Evaluation

The correctness of the tracer is evaluated by testing it on a simple weather application which

performs the following steps:

1. Get a zip code from the user.

2. Fetch the weather information for the zip code using weather API calls.

3. Display the weather information received from the weather server.

The tracer and the target application are executed on a Moto G smartphone running Android

7.1.2 on the Arm v7 32-bit instruction set. A custom security policy is provided to the tracer

in the form of blacklisted zip codes. The arguments of the sendto system call are monitored

using PTRACE_GETREGS as shown in Figure 7.3. Zip codes being queried are compared with

the ones present in the blacklist. If a blacklisted zip code is encountered, sendto’s message

argument is modified using PTRACE_SETREGS which results in the query’s zip code to be

replaced with a default safe zip code. In Figure 7.4, the weather application on the left

displays the temperature for the blacklisted zip code when the tracer is inactive. The right

side displays the temperature for the default zip code when the tracer is active. This verifies

that the network request can not only be monitored but also modified by the tracer.
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Figure 7.3: Monitoring a Weather Application

7.3.1 Performance

The performance impact of monitoring the simple weather application using the tracer is

measured by referencing the proc/stat file. This file maintains information about the kernel

activity since the system first booted such as the amount of time the CPU spends perform-

ing different tasks. This information is used to calculate the CPU utilization. The file also

provides the number of context switches performed and the time spent waiting for I/O op-

erations by the CPU.



48 Chapter 7. Tracer

Figure 7.4: Tracer Operation

Table 7.4 shows the performance overhead of using the tracer program to enforce user-defined

security policy on the weather application. The time consumed by a network request when

the tracer is active is compared to when it is inactive. It is inferred that despite having a low

CPU overhead, the system spends more time waiting for I/O operations when the tracer is

operational. This is because the time spent waiting for I/O operations is proportional to the

rate at which system calls are made which is further linked to the high amount of context

switches due to the ptrace-based system call interposition. The time taken to execute a

network request is significantly more due to the extra work spent to inspect and modify the

network-related system calls made by the weather application. The results show an added

overhead of using the tracer program but no performance impact was observed while using

the application.



7.4. Using the Tracer with DJI GO 4 49

Table 7.4: Performance Overhead

Factor Tracer Off Tracer On Overhead
CPU Utilization 28.085% 28.177% 0.327%
I/O Wait 85.2 jiffies1 101.4 jiffies 19.01%
Context Switches 77,567 236,517 67.2%
Time Taken for a Network Request 92.3ms 150.5ms 38.67%

7.4 Using the Tracer with DJI GO 4

When the tracer program tries to attach to the DJI GO 4 process using PTRACE_ATTACH, it

gets an operation not permitted error. The developers at DJI have used anti-debugging

techniques to disallow debuggers or other programs using ptrace from observing the ap-

plication’s runtime behavior. These techniques are presumably used to prevent any reverse

engineering efforts.

7.4.1 Anti-debugging Mechanisms

Anti-debugging techniques are used by programs to ensure that they are not being inspected

by a debugger. An Android application is debugged either on the Java-level using JDWP

(Java Debug Wire Protocol) or on the native layer using ptrace. Given that the tracer

operates on the native layer, the anti-debugging techniques discussed here are focused on

countering native layer debugging. Anti-debugging techniques can either be preventive or

reactive in nature. Preventive techniques disallow a debugger from attaching to an appli-

cation while reactive techniques trigger a set response by an application. To build a strong

defense, a mixture of both these techniques are used.
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Self-debugging

Self-debugging is a ptrace feature which is used as a preventive anti-debugging mechanism

by DJI GO 4. This technique exploits the fact that at a given time, only one process can

attach to another using PTRACE_ATTACH. As mentioned earlier, a process thread can only be

traced by one process. The operation is disallowed if another process tries to attach. DJI

GO 4 exploits this technique to avoid programs with debugging capabilities to attach to its

main process thread. As soon as the application starts, it clones itself to create a dummy

child process whose task is to trace the main process thread as illustrated in Figure 7.5.

Figure 7.5: DJI Using Self-debugging
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Monitoring Thread Status

Each process thread’s status can be read using the proc file system. TracerPID is one of

the fields present in the file /proc/pid/status which keeps track of the PID of the process

tracing the thread. DJI GO 4’s main process thread continuously monitors this field for all

its child threads to ensure that they are not being traced by another process. As a reactive

measure, a kill signal is issued to terminate the application if tracing is detected.

7.4.2 Countering Anti-debugging Mechanisms

A simplistic way to counter self-debugging would be to kill the child process tracing DJI GO

4’s main process thread. This would allow the tracer program to attach to the main process.

However, the child process is monitored by the main process and killing the child process

causes the main process to kill itself.

As mentioned in Section 6.4, Zygote is the parent process of every application running on an

Android device. Therefore, the tracer is able to attach to all new children processes spawned

by attaching to the Zygote process. As a result, the tracer is able to attach to DJI GO

4’s main process thread when it starts. This makes it possible to trace every system call

executed by the application before the detection mechanism kicks in.

After attaching to the main process thread, the next step is to intercept all kill system

calls and modify the arguments to prevent the application from exiting. This results in an

unknown control-flow state and the application gets stuck in a boot loop. The alternate

approach is based on evading the detection mechanism. In other words, to avoid generating

any kill signals, the tracer needs to identify and modify certain system calls issued by the

application such that the tracer’s presence is not detected.
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The following two major observations are drawn from analyzing the system calls issued by

the application before it detects the tracer program:

1. The child as well as the main process keep monitoring the /proc/pid/status file where

pid is the PID of the main process. If an unknown value of TracerPID is detected

then a kill signal is sent to the main process.

2. In order to attach to the main process thread, the child process uses ptrace. However,

the ptrace request fails as the tracer is already attached. This again results in a kill

signal to be generated.

The tracer handles the first event by intercepting the read system call. By modifying the

value of TracerPID in the read buffer, the application is tricked into believing that the tracer

is not attached. The second event also requires the use of system call interposition to modify

the return argument of the ptrace system call. By returning a success signal, the child

process believes that it has successfully attached to the main process.

However, despite countering the observed detection mechanism, the application is unable to

bypass the initial load phase. Therefore further analysis is required to completely counter the

anti-debugging mechanism used by DJI GO 4. Section 9.1 discusses additional techniques

and methods to proceed forward. By countering the anti-debugging mechanism, the tracer

program will be able to trace all the system calls issued by DJI GO 4. Similar to tracing

the weather application, the arguments of system calls such as sendto and connect could

be monitored and modified to enforce a user-defined security policy on DJI GO 4 to limit

its networking activity.
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7.5 Limitations

The major limitation arises from ptrace’s attachment rules. The tracer must have a higher

privilege level in order to attach to the target application. Hence, the tracer must have root

privileges for the attach operation to be successful. Additionally, anti-debugging mechanisms

require reverse engineering to understand and identify the traps set by the target application.

The initial application behavior helps to understand the detection mechanism which can be

countered using system call interposition. However, extensive reverse engineering effort and

complex patchwork are required if complex traps are set as discussed in Section 7.4.2.

The recurring cost associated with the tracer is the modification required to the user-defined

security policy if the target application receives an update. There is also an added overhead

to employ the tracer for enforcing a fine-grain access policy, as discussed in Section 7.3.1.

However, it is important to note that stricter security comes at a cost.
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Related Work

In this chapter an overview of relevant work aimed at improving Android application se-

curity is provided. Several testing and analysis techniques which help in detecting unsafe

applications are discussed followed by existing research on Android application sandboxing.

8.1 Static Analysis

Static analysis is an automated analysis method to find vulnerabilities in the program source

code before the program is executed. Static analysis frameworks and tools for Android

[4, 31, 46] provide a way to map the expected behavior of an Android application. These

tools analyze the application bytecode to detect any malicious behavior. AndroidLeaks is

a static analysis framework developed by Gibler et al. [35] which creates a call graph of

an application’s bytecode and then performs reachability analysis to determine if sensitive

information may be sent over the network. It further uses dataflow analysis to determine if

the data reaches a network sink or not. Similarly another framework developed by Klieber

et al. [42] detects malicious information flow on Android when different applications interact

with each other. It analyzes both dataflow within as well as between different applications.

However these frameworks may fail to find vulnerabilities introduced at runtime.

Some applications may try to dynamically load malicious code during runtime to avoid

detection by static analysis. Although, the static analysis tool proposed by Poeplau et

54



8.2. Dynamic Analysis 55

al. [52] is able to detect improper use of dynamic code loading, it tasks the user with the

responsibility of reusing the tool after every application update. Despite providing a way to

detect suspicious behavior of an application, static analysis tools for Android do not help in

mitigating the risk, unlike the tracer program proposed. It is also important to note that the

majority of static analysis tools for Android operate just on Java bytecode and not on native

code which is written in C or C++. Hence, a large attack surface is left unanalyzed [37].

8.2 Dynamic Analysis

Proprietary applications are often published using code obfuscation to prevent reverse engi-

neering efforts. This creates an issue for static analysis techniques which analyze application

bytecode. Therefore, monitoring an application while it is being executed offers better in-

sights to tracking and countering the malicious behavior. Dynamic analysis tools such as

DroidBox [51] and Androl4b [56] are able to overcome this drawback but these tools test

the target application in a simulated environment which may or may not fully represent

reality [58].

Framework modification can help runtime information flow tracking by using dynamic taint

analysis [55]. Taint analysis is a technique wherein a software program is monitored to

measure the effect of untrusted data sources on various functions performed by the program.

TaintDroid [33] employs this to track sensitive data by marking it with a label (tainting the

data). If the tainted data exits the system, the framework logs the data label, its destination

and the application responsible for it. Since TaintDroid requires a framework modification,

it raises problems during widespread deployment [36].

AppGuard developed by Backes et al. [25] extends the existing Android permission system

by supporting stricter fine-grain security policies for applications. It avoids Android frame-
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work modification by embedding the security monitor inside the untrusted application’s

code, thereby making AppGuard an inline reference monitor [34] unlike the tracer program

proposed which acts as an external reference monitor. Aurasium developed by Xu et al. [60]

enforces custom security policies by using libc interposition wherein it reroutes all invocation

to native layer functions via its monitoring interface. This allows it to observe and modify all

application and Android framework interaction similar to the tracer program. However, it

relies on modifying the application bytecode to achieve libc interposition. Another applica-

tion bytecode modification framework I-ARM-Droid developed by Davis et al. [30] achieves

similar functionality by modifying an application’s method calls. I-ARM-Droid not only

depends on the user to identify the methods which require modification but also lacks a

monitoring interface to check for any security violations. Injecting custom code in an appli-

cation to enforce security policies during runtime requires repackaging and resigning of the

application. This adds an additional burden on the user to download and modify the new

version of the application every time an update is released. The tracer program proposed

in Chapter 7 is able to enforce custom security policies without any framework modification

or application repackaging and therefore tries to reduce the user’s workload. If the target

application is updated, the user would just need to update the security policy provided to

the tracer.

8.3 Application Sandboxing

The work done by Bianchi et al. [27] also employs ptrace-based system call interposition

to create a policy based application sandboxing environment termed NJAS. In their work,

the target application is executed in the context of their sandboxing application NJAS. This

allows NJAS to monitor and modify every operation performed by the target application.
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To properly execute an application in the context of another application, engineering effort

is required to identify important system calls relating to file system I/O and IPC binder

communications that need to be intercepted and modified. Any failure in modifying these

system calls will result in faulty execution of the application.

To avoid the trouble of executing the target application in its own context, the proposed

tracer program primarily focuses on using system call interposition to enforce user-defined

security policy and acts as an external reference monitor. Further, NJAS does not handle

anti-debugging mechanisms which would prevent their sandbox from working correctly.

The sandboxing application Boxify proposed by Backes et al. [26] uses Android’s isolated

process feature wherein an application runs without any permission. The target application

is granted specific permissions based on a custom security policy using a broker process

and is run in the context of the Boxify application. This requires Boxify to reimplement

major Android system services and broker all IPC binder communications. Unlike the tracer

program, Boxify would require constant complex code modification to keep up with the

newer versions of Android.
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Conclusions

Keeping in view the rising security threats, this thesis provides an analysis of the target UAS

and explores potential sources of data exfiltration. With the DJI GO 4 application acting as

the gateway to the Internet for DJI Spark quadcopter, an external monitor based on the man-

in-the-middle technique is devised to monitor its network behavior. This investigation raises

concerns warranting a fine-grain access control on Android applications. Procedures and

recommendations are provided for drone operators in order to limit data leakage. Existing

techniques to monitor data exfiltration for Android applications are discussed along with

ways to prevent it.

Limitations of existing techniques and the Android security framework led to the develop-

ment of the tracer program using system call interposition to monitor and modify system

calls issued by a target application. The tracer program is evaluated against a simple weather

application by providing it with a user-defined security policy. The tracer is further extended

to monitor and modify system calls issued by the more complex DJI GO 4 application. Anti-

debugging mechanisms to prevent attempts at reverse engineering DJI GO 4 are observed

and methods to counter it are discussed.

With the majority of Android applications requesting network access, it is important to

keep a constant check on them. Applications that have ties with authoritarian governments

always present a risk of cyber-espionage [59]. Although the tracer program is designed to

focus mainly on Android-hosted UAS applications, it is able to work with any Android
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application available on the Google Play store. The tracer is not limited to monitoring the

network operations of an application and could also be used to monitor any I/O operation

such as file system access to prevent an application from exploiting the coarse-grain Android

permissions.

9.1 Future Work

The tracer program has been implemented successfully and applied to work with a sim-

ple weather application. It is further extended to monitor DJI GO 4’s network activity.

However, several anti-debugging mechanisms were encountered while testing the tracer on

DJI GO 4. In order to counter the anti-debugging mechanisms, workarounds using system

call interposition to evade detection are discussed. However, further analysis is required to

completely trace the DJI GO 4 application.

There is no generic way to bypass anti-debugging mechanisms but to better understand and

analyze the defenses set by DJI GO 4, the application APK can be decompiled and studied

by using tools such as APKtool [2] and Java decompiler [7]. This will help to develop better

counter-approaches. Additionally, all the system calls executed during the load process of

the application must be carefully observed to identify patterns which could help map the

behavior of the application when the tracer is active.

Another way to analyze an application’s behavior is by using dynamic binary instrumen-

tation (DBI) frameworks. DBI frameworks analyze an application at runtime by injecting

instrumented code [17]. This instrumented code gathers information about the process to

help analyze the application behavior. Debuggers are able to achieve the same end by cre-

ating breakpoints as discussed in Section 5.3. However, DBI frameworks are immune to

anti-debugging mechanisms. This is because the original code of the application is not exe-
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cuted by DBI. A copy of the original code injected with the instrumented code is generated

and executed [48]. Popular reverse engineering tools such as Frida [23] and Xposed [19] are a

form of DBI framework used for hooking and code injection. They could be used to analyze

DJI GO 4 and the observations could help in countering the anti-debugging mechanisms.

If the constraints on application bytecode modification are relaxed then these reverse engi-

neering tools could help in completely monitoring and modifying an application’s behavior.

Different target applications would require different approaches to counter anti-debugging

mechanisms. Testing the tracer on other Android-hosted UAS applications would help in

adapting to the new complex ways in which these traps could be set. Further, the tracer

could be packaged into a standalone application using the Java Native Interface (JNI). This

would make it easier for the users to invoke the program directly from the smartphone while

using any Android-hosted UAS application.



Bibliography

[1] Architecture | Android open source project. https://source.android.com/devices/

architecture.

[2] Apktool- A tool for reverse engineering 3rd party, closed, binary Android apps. https:

//ibotpeaches.github.io/Apktool/.

[3] Application security | Android open source project. https://source.android.com/

security/overview/app-security.

[4] Argus saf. http://pag.arguslab.org/argus-saf.

[5] DJI Enhances Software Security In Its Apps. https://www.dji.com/newsroom/news/

dji-enhances-software-security-in-its-flight-control-apps.

[6] GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/.

[7] Android apk decompiler. http://www.javadecompilers.com/apk.

[8] System and kernel security | Android open source project. https://

source.android.com/security/overview/kernel-security.html.

[9] Permissions overview | Android Developers. https://developer.android.com/guide/

topics/permissions/overview.

[10] Platform architecture | Android developers. https://developer.android.com/guide/

platform.

[11] /proc. https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html.

61

https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://source.android.com/security/overview/app-security
https://source.android.com/security/overview/app-security
http://pag.arguslab.org/argus-saf
https://www.dji.com/newsroom/news/dji-enhances-software-security-in-its-flight-control-apps
https://www.dji.com/newsroom/news/dji-enhances-software-security-in-its-flight-control-apps
https://www.gnu.org/software/gdb/
http://www.javadecompilers.com/apk
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html


62 BIBLIOGRAPHY

[12] ptrace(2) - Linux manual page. http://man7.org/linux/man-pages/man2/

ptrace.2.html.

[13] Samsung Knox | Secure mobile platform and solutions. https://www.samsungknox.com/

en.

[14] Security-Enhanced Linux in Android | Android open source project. https://

source.android.com/security/selinux.

[15] System Calls (The GNU C Library). http://www.gnu.org/software/libc/manual/

html_node/System-Calls.html.

[16] A Short History of Unmanned Aerial Vehicles. https://consortiq.com/media-

centre/blog/short-history-unmanned-aerial-vehicles-uavs.

[17] Uninformed | DBI vol 7 article 1. http://uninformed.org/index.cgi?v=7&a=1&p=3.

[18] Wireshark. https://www.wireshark.org/.

[19] Xposed. https://repo.xposed.info/module/de.robv.android.xposed.installer.

[20] Seccomp filter in Android Oreo, Jul 2017. https://android-

developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html.

[21] Fitness app Strava lights up staff at military bases, Jan 2018. https://www.bbc.com/

news/technology-42853072.

[22] US warns of threat from Chinese drone companies, May 2019. https://www.bbc.com/

news/technology-48352271.

[23] Frida, Jun 2019. https://www.frida.re/docs/android/.

http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.samsungknox.com/en
https://www.samsungknox.com/en
https://source.android.com/security/selinux
https://source.android.com/security/selinux
http://www.gnu.org/software/libc/manual/html_node/System-Calls.html
http://www.gnu.org/software/libc/manual/html_node/System-Calls.html
https://consortiq.com/media-centre/blog/short-history-unmanned-aerial-vehicles-uavs
https://consortiq.com/media-centre/blog/short-history-unmanned-aerial-vehicles-uavs
http://uninformed.org/index.cgi?v=7&a=1&p=3
https://www.wireshark.org/
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://www.bbc.com/news/technology-42853072
https://www.bbc.com/news/technology-42853072
https://www.bbc.com/news/technology-48352271
https://www.bbc.com/news/technology-48352271
https://www.frida.re/docs/android/


BIBLIOGRAPHY 63

[24] JP Anderson. Computer Security Technology Planning Study. Technical Report

ESD-TR-73-51 Air Force Electronic Systems Division (AFSC). AD-758 206, ES-

D/AFSC.(Also available as Vol. I, DITCAD-758206. Vol. II, DITCAD-772806), 1972.

[25] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von

Styp-Rekowsky. Appguard - Real-time policy enforcement for third-party applications.

2012. https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/25262.

[26] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von Styp-

Rekowsky. Boxify: Full-fledged app sandboxing for stock Android. In 24th USENIX

Security Symposium (USENIX Security 15), pages 691–706, 2015.

[27] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna. NJAS:

Sandboxing unmodified applications in non-rooted devices running stock Android. Pro-

ceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones

and Mobile Devices - SPSM 15, 2015. doi: 10.1145/2808117.2808122.

[28] Blokadaorg. blokadaorg/blokada, Apr 2019. https://github.com/blokadaorg/

blokada.

[29] czokie. Network Analysis Findings, Sep 2017. https://dji.retroroms.info/faq/

dataleakage/chatter.

[30] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. I-arm-droid: A

rewriting framework for in-app reference monitors for Android applications. Mobile

Security Technologies, (2012):1–7, 2012.

[31] Dorneanu. dorneanu/smalisca, Mar 2017. https://github.com/dorneanu/smalisca.

[32] Edward J. Dumas and T. S. Wood. Network traffic study of a DJI S-1000 small un-

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/25262
https://github.com/blokadaorg/blokada
https://github.com/blokadaorg/blokada
https://dji.retroroms.info/faq/dataleakage/chatter
https://dji.retroroms.info/faq/dataleakage/chatter
https://github.com/dorneanu/smalisca


64 BIBLIOGRAPHY

manned aircraft system (sUAS), Jan 2017. https://repository.library.noaa.gov/

view/noaa/15960.

[33] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,

Landon P. Cox, Jaeyeon Jung, Patrick Mcdaniel, and Anmol N. Sheth. Taintdroid.

ACM Transactions on Computer Systems, 32(2):1–29, 2014. doi: 10.1145/2619091.

[34] Ulfar Erlingsson. The inlined reference monitor approach to security policy enforcement.

PhD thesis, 2004.

[35] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks: Au-

tomatically detecting potential privacy leaks in Android applications on a large scale.

Trust and Trustworthy Computing Lecture Notes in Computer Science, page 291–307,

2012. doi: 10.1007/978-3-642-30921-2_17.

[36] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni

Stroulia. Understanding Android fragmentation with topic analysis of vendor-specific

bugs. 2012 19th Working Conference on Reverse Engineering, 2012. doi: 10.1109/

wcre.2012.18.

[37] Stephan Heuser. Towards modular and flexible access control on smart mobile devices.

PhD thesis, 2016.

[38] Jeremy Hsu. The Strava Heat Map Shows Even Militaries Can’t Keep Secrets from

Social Data, Apr 2018. https://www.wired.com/story/strava-heat-map-military-

bases-fitness-trackers-privacy.

[39] Kapil Jain and R Sekar. User-Level Infrastructure for System Call Interposition: A

Platform for Intrusion Detection and Confinement. In NDSS, 2000.

https://repository.library.noaa.gov/view/noaa/15960
https://repository.library.noaa.gov/view/noaa/15960
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy


BIBLIOGRAPHY 65

[40] Radhika Karandikar. Android application launch, Apr 2010. http://multi-core-

dump.blogspot.com/2010/04/android-application-launch.html.

[41] Haye Kesteloo. Department of Defense bans the purchase of commercial-over-the-shelf

UAS, Jun 2018. https://dronedj.com/2018/06/07/department-of-defense-bans-

the-purchase-of-commercial-over-the-shelf-uas-including-dji-drones.

[42] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android

taint flow analysis for app sets. Proceedings of the 3rd ACM SIGPLAN International

Workshop on the State of the Art in Java Program Analysis - SOAP 14, 2014. doi:

10.1145/2614628.2614633.

[43] Issie Lapowsky. How Cambridge Analytica Sparked the Great Privacy Awakening,

Mar 2019. URL https://www.wired.com/story/cambridge-analytica-facebook-

privacy-awakening/.

[44] Fiona Lau. Chinese drone maker DJI seeking at least $500 million in funds, Mar 2018.

https://www.reuters.com/article/us-dji-tech-fundraising/chinese-drone-

maker-dji-seeking-at-least-500-million-in-funds-sources-idUSKBN1GY0A7.

[45] M66B. M66B/XPrivacy, Jan 2018. https://github.com/M66B/XPrivacy.

[46] Maaaaz. maaaaz/androwarn, May 2019. https://github.com/maaaaz/androwarn/.

[47] MAVLink. MAVLink Developer Guide. https://mavlink.io/en/.

[48] Ncr. Anti-instrumentation techniques: I know you’re there, Frida!, Nov 2015.

https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-

techniques-i-know-youre-there-frida/.

[49] Lily Hay Newman. One of Most Popular Mac Apps Acts Like Spyware, Sep 2018.

https://www.wired.com/story/adware-doctor-mac-app-store-spyware/.

http://multi-core-dump.blogspot.com/2010/04/android-application-launch.html
http://multi-core-dump.blogspot.com/2010/04/android-application-launch.html
https://dronedj.com/2018/06/07/department-of-defense-bans-the-purchase-of-commercial-over-the-shelf-uas-including-dji-drones
https://dronedj.com/2018/06/07/department-of-defense-bans-the-purchase-of-commercial-over-the-shelf-uas-including-dji-drones
https://www.wired.com/story/cambridge-analytica-facebook-privacy-awakening/
https://www.wired.com/story/cambridge-analytica-facebook-privacy-awakening/
https://www.reuters.com/article/us-dji-tech-fundraising/chinese-drone-maker-dji-seeking-at-least-500-million-in-funds-sources-idUSKBN1GY0A7
https://www.reuters.com/article/us-dji-tech-fundraising/chinese-drone-maker-dji-seeking-at-least-500-million-in-funds-sources-idUSKBN1GY0A7
https://github.com/M66B/XPrivacy
https://github.com/maaaaz/androwarn/
https://mavlink.io/en/
https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida/
https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida/
https://www.wired.com/story/adware-doctor-mac-app-store-spyware/


66 BIBLIOGRAPHY

[50] Ketan Parmar. In Depth: Android Package Manager and Package Installer - DZone

Mobile, Oct 2018. https://dzone.com/articles/depth-android-package-manager.

[51] Pjlantz. pjlantz/droidbox, Oct 2017. https://github.com/pjlantz/droidbox.

[52] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and

Giovanni Vigna. Execute This! Analyzing unsafe and malicious dynamic code loading

in Android applications. Proceedings 2014 Network and Distributed System Security

Symposium, 2014. doi: 10.14722/ndss.2014.23328.

[53] Ben Popper. A government study found DJI drone, banned by US Army, kept data

safe, Aug 2017. https://www.theverge.com/2017/8/7/16106810/dji-drone-banned-

government-study-data-safety.

[54] Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Structures, and Ar-

chitecture. John Wiley & Sons, Inc., New York, NY, USA, 1996. ISBN 0-471-14966-7.

[55] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted

to know about dynamic taint analysis and forward symbolic execution (but might have

been afraid to ask). 2010 IEEE Symposium on Security and Privacy, 2010. doi: 10.1109/

sp.2010.26.

[56] sh4hin. sh4hin/androl4b, Apr 2019. https://github.com/sh4hin/Androl4b.

[57] Tencent. Tencent/tinker, Feb 2019. https://github.com/Tencent/tinker.

[58] Bläsing Thomas, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and

Sahin Albayrak. An Android application sandbox system for suspicious software detec-

tion. 2010 5th International Conference on Malicious and Unwanted Software, 2010.

doi: 10.1109/malware.2010.5665792.

https://dzone.com/articles/depth-android-package-manager
https://github.com/pjlantz/droidbox
https://www.theverge.com/2017/8/7/16106810/dji-drone-banned-government-study-data-safety
https://www.theverge.com/2017/8/7/16106810/dji-drone-banned-government-study-data-safety
https://github.com/sh4hin/Androl4b
https://github.com/Tencent/tinker


BIBLIOGRAPHY 67

[59] Dustin Volz. Trump signs into law U.S. government ban on Kaspersky Lab software, Dec

2017. https://www.reuters.com/article/us-usa-cyber-kaspersky/trump-signs-

into-law-u-s-government-ban-on-kaspersky-lab-software-idUSKBN1E62V4.

[60] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium: Practical policy enforcement

for Android applications. In Presented as part of the 21st USENIX Security Symposium

(USENIX Security 12), pages 539–552, 2012.

https://www.reuters.com/article/us-usa-cyber-kaspersky/trump-signs-into-law-u-s-government-ban-on-kaspersky-lab-software-idUSKBN1E62V4
https://www.reuters.com/article/us-usa-cyber-kaspersky/trump-signs-into-law-u-s-government-ban-on-kaspersky-lab-software-idUSKBN1E62V4

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Contribution
	Thesis Organization

	Background
	Risks Associated with a Smartphone-based GCS
	Application Sandboxing
	Fine-grain Sandboxing


	Target UAS Analysis
	DJI Spark
	Spark Remote Controller
	DJI Assistant 2
	DJI GO 4
	Gateway to the Internet

	External Monitor
	Man-in-the-middle
	Implementation
	ARP Poisoning
	Rogue Access Point

	Observations

	Limiting Network Access
	Recommendations for Drone Operators
	Turn Off Information Sharing
	Disallowing Data Transfers from the Drone to DJI GO 4
	Airplane Mode
	Airplane Mode (OTG Hack)
	DJI’s Local Data Mode

	Advertisement Blocking Mechanisms
	Host File Loopback
	VPN Gateway

	Software Debugging Mechanism
	Runtime Monitor Using System Call Interposition


	Android Operating System
	Architecture Overview
	Kernel and System Security
	Application Security
	Android Boot Process
	Application Installation and Runtime

	Tracer
	Platform and Tools
	Android Native Development Kit
	Android Debug Bridge

	Implementation
	Evaluation
	Performance

	Using the Tracer with DJI GO 4
	Anti-debugging Mechanisms
	Countering Anti-debugging Mechanisms

	Limitations

	Related Work
	Static Analysis
	Dynamic Analysis
	Application Sandboxing

	Conclusions
	Future Work

	Bibliography

