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Introduction

Measurement and control systems are widely used in biosystems engineering. 
They are ubiquitous and indispensable in the digital age, being used to collect 
data (measure) and to automate actions (control). For example, weather stations 
measure temperature, precipitation, wind, and other environmental parameters. 
The data can be manually interpreted for better farm management decisions, 
such as flow rate and pressure regulation for field irrigation. Measurement and 
control systems are also part of the foundation of the latest internet of things 
(IoT) technology, in which devices can be remotely monitored and controlled 
over the internet.

A key component of a measurement and control system is the microcontroller. 
All biosystems engineers are required to have a basic understanding of what 
microcontrollers are, how they work, and how to use them for measurement 
and control. This chapter introduces the concepts and applications of micro-
controllers illustrated with a simple project.
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Concepts
Measurement and Control Systems

Let’s talk about measurement and control systems first. As shown in figure 1, 
signals can be generated by mechanical actuators and measured by sensors, for 
example, the voltage signal from a flow rate sensor. The signal is then input to 
a central control unit, such as a microcontroller, for signal processing, analysis, 
and decision making. For example, to see if the flow rate is in the desired range 
or not. Finally, the microcontroller outputs a signal to control the actuator, e.g., 
adjust the valve opening, and/or at the same time display the system status to  
users. Then the actuator is measured again. This forms an endless loop that 
runs continuously until interrupted by the user or time out. If we view the sys-
tem from the signal’s point of view, the signal generated by the actuators and  
measured by the sensors are usually analog signals which are continuous  
and infinite. They are often pre-processed to be amplified, filtered, or con-
verted to a discrete and finite digital format in order to be processed by the 
central control unit. If the actuator only accepts analog signals, the output 
signal to control the actuator from the central control unit needs to be con-
verted back to the analog format. As you can tell, the central control unit plays a  

Outcomes
After reading this chapter, you should be able to:

•	 Describe the architecture and operating principles of microcontrollers

•	 Explain how to approach programming a microcontroller

•	 Develop a simple program to operate a microcontroller for measurement and control systems

Figure 1. Main components in a measurement and control system (adapted from figure 1.1 in Alciatore and Histand, 2012).
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critical role in the measurement and control loop. Microcontroller is one of the 
most commonly used central control units. We will focus on microcontrollers 
in the rest of the chapter.

Microcontrollers

A microcontroller is a type of computer. A computer is usually thought of as a 
general-purpose device configured as a desktop computer (personal computer; 
PC or workstation), laptop, or server. The “invisible” type of computer that is 
widely used in industry and our daily life is the microcontroller. A microcon-
troller is a miniature computer, usually built as a single integrated circuit (IC) 
with limited memory and processing capability. They can be embedded in larger 
systems to realize complex tasks. For example, an ordinary car can have 25 to 
40 electronic control units (ECUs), which are built around microcontrollers. 
A modern tractor can have a similar number of ECUs with microcontrollers 
handling power, traction, and implement controls. Environmental control in 
greenhouses and animal houses, and process control in food plants all rely on 
microcontrollers. Each microcontroller for these applications has a specific task 
to measure and control, such as air flow (ventilation, temperature) or internal 
pressure, or to perform higher-level control of a series of microcontrollers. 
Understanding the basic components of a microcontroller and how it works 
will allow us to design a measurement and control system.

A microcontroller mainly consists of a central processing unit (CPU), memory 
units, and input/output (I/O) hardware (figure 2). Different components interact 
with each other and with external devices through signal paths called buses. 
Each of these parts will be discussed below.

The CPU is also called a microprocessor. It is the brain of the microcon-
troller, in charge of the primary computation and system internal control. There  
are three types of information that the CPU handles: (1) the data, which are  
the digital values to be computed or sent out; (2) the instructions, which indicate 
which data are required, what calcula-
tions to impose, and where the results 
are to be stored; and (3) the addresses, 
which indicate where a data or an 
instruction comes from or is sent to.  
An arithmetic logic unit (ALU) within 
the CPU executes mathematical func-
tions on the data structured as groups of 
binary digits, or “bits.” The value of a bit 
is either 0 or 1. The more bits a micro-
controller CPU can handle at a time, the 
faster the CPU can compute. Microcon-
troller CPUs can often handle 8, 16, or  
32 bits at a time.

A memory unit (often simply called 
memory) stores data, addresses, and 
instructions, which can be retrieved by  Figure 2. Microcontroller architecture.
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the CPU during processing. There are generally three types of memory: 
(1) random-access memory (RAM), which is a volatile memory used to hold 
the data and programs being executed that can be read from or written to 
at any time as long as the power is maintained; (2) read-only memory (ROM), 
which is used for permanent storage of system instructions even when the 
microcontroller is powered down. Those instructions or data cannot be eas-
ily modified after manufacture and are rarely changed during the life of the 
microcontroller; and (3) erasable-programmable read only memory (EPROM), 
which is semi-permanent memory that can store instructions that need to be 
changed occasionally, such as the instructions that implement the specific use 
of the microcontroller. Firmware is a program usually permanently stored in the 
ROM or EPROM, which provides for control of the hardware and a standard-
ized operating environment for more complex software programmed by users. 
The firmware remains unchanged until a system update is required to fix bugs 
or add features. Originally, EPROMS were erased using ultraviolet light, but 
more recently the flash memory (electrically erasable programmable read-only 
memory; EEPROM) has become the norm. The amount of RAM (described in 
bytes, kilobytes, megabytes, or gigabytes) determines the speed of operation, 
the amount of data that can be processed and the complexity of the programs 
that can be implemented.

Digital input and output (I/O) ports connect the microcontroller with exter-
nal devices using digital signals only. The high and low voltage in the signal 
correspond to on and off states. Each digital port can be configured as an 
input port or an output port. The input port is used to read in the status of 
the external device and the output port is used to send a control instruction 
to an external device. Most microcontrollers operate over 0 to +5V with lim-
ited current because the voltage signal is not used directly, only the binary 
status. If the voltage and current are to be used to directly drive a device, a 
relay or voltage digital analog convertor is required between the port and 
device. Usually digital I/O ports communicate or “talk” with external devices 
through standard communication protocols, such as serial communication 
protocols. For example, a microcontroller can use digital I/O pins to form 
serial communication ports to talk to a general-purpose computer, external 
memory, or another microcontroller. Common protocols for serial communica-
tion are UART (universal asynchronous receiver-transmitter), USB (universal 
serial bus), I2C (inter-integrated circuit), and SPI (serial peripheral interface). 
Analog input and output (analog I/O) ports can be connected directly to the 
microcontroller. Many sensors (e.g., temperature, pressure, strain, rotation) 
output analog signals and many actuators require an analog signal. The analog 
ports integrate either an analog to digital (A/D) converter or digital to analog 
(D/A) converter.

The CPU, memory, and I/O ports are connected through electrical signal 
conductors known as buses. They serve as the central nervous system of the 
computer allowing data, addresses, and control signals to be shared among all 
system components. Each component has its own bus controller. There are three 
types of buses: the data bus, the address bus, and the control bus. The data bus 
transfers data to and from the data registers of various system components. The 
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address bus carries the address of a system component that a CPU would like 
to communicate with or a specific data location in memory that a CPU would 
like to access. The control bus transmits the operational signal between the 
CPU and system components such as the read and write signals, system clock 
signal, and system interrupts.

Finally, clock/counter/timer signals are used in a microcontroller to synchro-
nize operations among components. A clock signal is typically a pulse sequence 
with a known constant frequency generated by a quartz crystal oscillator. For 
example, a CPU clock is a high frequency pulse signal used to time and coordi-
nate various activities in the CPU. A system clock can be used to synchronize 
many system operations such as the input and output data transfer, sampling, 
or A/D and D/A processes.

Microcontroller Software and Programming

The specific functions of a microcontroller depend on its software or how it is 
programed. The programs are stored in the memory. Recall that the CPU can 
only execute binary code, or machine code, and performs low-level operations 
such as adding a number to a register or moving a register’s value to a memory 
location. However, it is very difficult to write a program in machine code. Hence, 
programming languages were developed over the years to make programming 
convenient. Low-level programming languages, such as assembly language, are 
the most similar to machine code. They are typically hardware-specific and not 
interchangeable among different types of microcontrollers. High-level program-
ming languages, such as BASIC, C, or C++, tend to be more generic and can be 
deployed among different types of microcontrollers with minor modifications.

The programming languages for a specific microcontroller are determined 
by the microcontroller manufacturer. High-level programming languages are 
dominant in today’s microcontrollers since they are much easier for learning, 
interpretation, implementation, and debugging. Programming a microcontroller 
often requires references to manuals, tutorials, and application notes from 
manufacturers. Online digital courses and online community-based learning 
are often good resources as well.

The example presented later in this chapter is a hands-on project using a 
microcontroller board called Arduino UNO. Arduino is a family of open-source 
hardware and software, single-board microcontrollers. They are popular and 
there are many online resources available to help new users develop applica-
tions. The microcontrollers are easy to understand and easy to use in real world 
applications with sensors and actuators (Arduino, 2019). The programming 
language of the Arduino microcontrollers is based on a language called Process-
ing, which is similar to C or C++ but much simpler (https://​processing​.org/). 
The code can be adapted for other microcontrollers. In order to convert codes 
from a high-level language to the machine code to be executed by a specific 
CPU, or from one language to another language, a computer program called a 
compiler is necessary.

Programs can be developed by users in an integrated development envi-
ronment (IDE), which is a software that runs on a PC or laptop to allow the 
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microcontroller code to be programmed and simulated on the PC or laptop. 
Most programming errors can be identified and corrected during the simula-
tion. An IDE typically consists of the following components:

•	 An editor to program the microcontroller using a relevant high-level 
programming language such as C, C++, BASIC, or Python.

•	 A compiler to convert the high-level language program into low-level 
assembly language specific to a particular microcontroller.

•	 An assembler to convert the assembly language into machine code in 
binary bit (0 or 1) format.

•	 A debugger to error check (also called “debug”) the code, and to test 
whether the code does what it was intended to do. The debugger 
typically finds syntax errors, which are statements that cannot be 
understood and cannot be compiled, and redundant code, which are lines 
of the program that do nothing. The line number or location of the error 
is shown by the debugger to help fix problems. The programmer can also 
add error testing components when writing the code to use the debugger 
to help confirm the program does what was originally intended.

•	 A software emulator to test the program on the PC or laptop before 
testing on hardware.

Not all components listed above are always presented to the user in an IDE, but 
they always exist. For the development of some systems, a hardware emulator 
might also be available. This will consist of a printed circuit board connected to 
the PC or laptop by ribbon cable joining I/O ports. The emulator can be used 
to load and run a program for testing before the microcontroller is embedded 
on a live measurement or control system.

Designing a Microcontroller-Based Measurement and Control 
System

The following workflow can help us design and build a microcontroller-based 
measurement and control system.

Step 1. Understand the problem and develop design objectives of the mea-
surement and control system with the end-users. Useful questions to ask include:

•	 What should be the functions of the system? For example, a system is 
needed to regulate the room temperature of a confined animal housing 
facility within an optimal range.

•	 Where or in what environment does the measurement or control occur? 
For example, is it an indoor or outdoor application? Is the operation in 
a very high or low temperature, a very dusty, muddy, or noisy environ-
ment? Is there anything special to be considered for that application?

•	 Are there already sensors or actuators existing as parts of the system or 
do appropriate ones need to be identified? For example, are there already 
thermistors installed to measure the room temperature, or are there fans 
or heaters installed?
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•	 How frequently and how fast should things be measured or controlled? 
For example, it may be fine to check and regulate a room temperature 
every 10 seconds for a greenhouse; however, the flow rate and pressure of 
a variable-rate sprayer running at 5 meters per second (about 12 miles per 
hour) in the field need to be monitored and controlled at least every second.

•	 How much precision does the measurement and control need? For 
example, is a precision of a Celsius degree enough or does the application 
need sub-Celsius level precision?

Step 2. Identify the appropriate sensors and/or actuators if needed for the 
desired objectives developed in the previous step.

Step 3. Understand the input and output signals for the sensors and actua-
tors by reading their specifications.

•	 How many inputs and outputs are necessary for the system functions?
•	 For each signal, is it a voltage or current signal? Is it a digital or analog signal?
•	 What is the range of each signal?
•	 What is the frequency of each signal?

Step 4. Select a microcontroller according to the desired system objective, the 
output signals from the sensors, and the input signals required by the actuators. 
Read the technical specifications of the microcontroller carefully. Be sure that:

•	 the number and types of I/O ports are compatible with the output and 
input signals of the sensors and actuators;

•	 the CPU speed and memory size are enough for the desired objectives;
•	 there are no missing components between the microcontroller, the 

sensors, and actuators such as converters or adapters, and if there are 
any, identify them; and

•	 the programming language(s) of the microcontroller is appropriate for 
the users.

Step 5. Build a prototype of the system with the selected sensors, actuators, 
and microcontroller. This step typically includes the physical wiring of the 
hardware components. If preferred, a virtual system can be built and tested in 
an emulator software to debug problems before building and testing with the 
physical hardware to avoid unnecessary hardware damage.

Step 6. Program the microcontroller. Develop a program with all required 
functions. Load it to the microcontroller and debug with the system. All code 
should be properly commented to make the program readable by other users later.

Step 7. Deploy and debug the system under the targeted working environment 
with permanent hardware connections until everything works as expected.

Step 8. Document the system including, for example, specifications, a wiring 
diagram, and a user’s manual.
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Applications

Microcontroller-based measurement and control systems are commonly used 
in agricultural and biological applications. For example, a field tractor has many 
microcontrollers, each working with different mechanical modules to realize 
specific functions such as monitoring and maintaining engine temperature and 
speed, receiving GPS signals for navigation and precise control of implements 
for planting, spraying, and tillage. A linear or center pivot irrigation system 
uses microcontrollers to ensure flow rate, nozzle pressure, and spray pattern 
are all correct to optimize water use efficiency. Animal logging systems use 
microcontrollers to manage the reading of ear tags when the animals pass a 
weighing station or need to be presented with feed. A food processing plant uses 
microcontroller systems to monitor and regulate processes requiring specific 
throughput, pressure, temperature, speed, and other environmental factors. A 
greenhouse control system for vegetable production will be used to illustrate 
a practical application of microcontrollers.

Modern greenhouse systems are designed to provide an optimal envi-
ronment to efficiently grow plants with minimal human intervention. With 
advanced electronic, computer, automation, and networking technologies, 
modern greenhouse systems provide real-time monitoring as well as auto-
matic and remote control by implementing a combination of PC communica-
tion, data handling, and storage, with microcontrollers each used to manage a 
specific task (figure 3). The specific tasks address the plants’ need for correct 
air composition (oxygen and carbon dioxide), water (to ensure transpiration is 
optimized to drive nutrient uptake and heat dispersion), nutrients (to maxi-
mize yield), light (to drive photosynthesis), temperature (photosynthesis is 
maximized at a specific temperature for each type of plant, usually around 
25°C) and, in some cases, humidity (to help regulate pests and diseases as 
well as photosynthesis). In a modern greenhouse, photosynthesis, nutrient 
and water supplies, and temperature are closely monitored and controlled 

using multiple sensors and 
microcontrollers.

As shown in figure 3, the 
overall control of the green-
house environment is divided 
into two levels. The upper-
level control system (fig-
ure 4) integrates an array of 
lower-level microcontrollers, 
each responsible for specific 
tasks in specific parts of the 
greenhouse, i.e., there may 
be multiple microcontrollers 
regulating light and shade in 
a very large greenhouse.

At the lower level, micro-
controllers may work in Figure 3. A diagram of a modern greenhouse system.
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sub-systems or indepen-
dently. Each microcontroller 
has its own suite of sensors 
providing inputs, actuators 
controlled by outputs, an 
SD (secure digital) card as a 
local data storage unit, and 
a CPU to run a program to 
deliver functionality. Each 
program implements its rules 
or decisions independently 
but communicates with the 
upper-level control system 
to receive time-specific com-
mands and to transmit data 
and status updates. Some 
sub-systems may be exam-
ined in more detail and more 
frequently.

The ventilation sub-system is designed to maintain the temperature and 
humidity required for optimal plant growth inside the greenhouse. A schematic 
of a typical example (figure 5) shows the sub-system structure. Multiple tem-
perature and humidity sensors are installed at various locations in the green-
house and connected to the inputs of a microcontroller. Target temperature and 
humidity values can be input using a keypad connected to the microcontroller 
(figure 6) or set by the upper-level control system. Target values are also called 
“control set points” or simply “set points.” They are the values the program is 
designed to maintain for the greenhouse. The microcontroller’s function is to  
compare the measured temperature and humidity with the set point val-
ues to make a decision and 
adjust internal temperature. 
If a change is needed, the 
microcontroller controls 
actuators to turn on a heat-
ing device to raise the tem-
perature (if temperature is 
below set point) or a cooling 
system fan (if temperature is 
above set point) to bring the 
greenhouse to the desired 
temperature and humidity.

The control panel in a 
typical ventilation system 
is shown in figure  6. Here 
a green light indicates that 
the heating unit is running, 
while the red lights indicate 

Figure 4. The overall structure of a greenhouse measurement and control system.

Figure 5. Schematic of ventilation system.
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that both the cooling unit 
and exhaust fans are off. The 
LCD displays the measured 
temperature and relative 
humidity inside the green-
house (first line of text), the 
set point temperature and 
humidity values (second line 
of text), the active compo-
nents (third line of text) and 
system status (fourth line of 
text). As the measured tem-
perature is cooler than the 
set point, the heating unit has 
been turned on to increase 
the temperature from 22°C 
to 25°C. When the measured 

temperature reaches 25°C, the heating unit will be switched off. It is also pos-
sible to program alarms to alert an operator when any of the measured values 
exceed critical set points.

The nutrient and water supply sub-system (figure 7) provides plants with 
water and nutrients at the right time and the right amounts. It is possible to pro-
gram a preset schedule and preset values or to respond to sensors in the grow-
ing medium (soil, peat, etc.). As in the temperature and humidity sub-system, 
the user can manually input set point values, or the values can be received 
from the upper-level system. Ideally, multiple sensors are used to measure 

soil moisture and nutrient 
levels in the root zone at var-
ious locations in the green-
house. The readings of the 
sensors are interpreted by 
the microcontroller. When 
measured water or nutri-
ent availability drops below 
a threshold, the microcon-
troller controls an actuator 
to release more water and/
or nutrients.

The lighting sub-system 
(figure  8) is designed to 
replace or supplement solar 
radiation provided to the 
plants for photosynthesis. 
Solar radiation and light 
sensors are installed in the 
greenhouse. The microcon-
troller reads data from these Figure 7. The nutrient and water supply system.

Figure 6. The control panel in a ventilation system.
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sensors and compares them 
with set points. If the mea-
sured value is too high, the 
microcontroller actuates a 
shading mechanism to cover 
the roof area. If the measured 
value is too low, the micro-
controller activates the shad-
ing mechanism to remove all 
shading and, if necessary, 
turns on supplemental light 
units.

The upper-level control 
system is usually built on a 
PC or a server, which pro-
vides overall control through 
an integration of the subsys-
tems. All of the sub-systems 
are connected to the central 
control computer through 
serial or wireless commu-
nication, such as an RS-232 
port, Bluetooth, or Ethernet. The central control computer collects the data from 
all of the subsystems for processing analysis and record keeping. The upper-level 
control system can make optimal control decisions based on the data from all 
subsystems. It also provides an interface for the operator to manage the whole 
system, if needed. The central control computer also collects all data from all 
sensors and actuators to populate a database representing the control history 
of the greenhouse. This can be used to understand failure and, once sufficient 
data are collected, to implement machine learning algorithms, if required.

This greenhouse application is a simplified example of a practical complex 
control system. Animal housing and other environmental control problems 
are of similar complexity. Modern agricultural machinery and food processing 
plants can be significantly more complex to understand and control. However, 
the principle of designing a hierarchical system with local automation managed 
by a central controller is very similar. Machine learning and artificial intel-
ligence are now being used to achieve precise and accurate controls in many 
applications. Their control algorithms and strategies can be implemented on 
the upper-level control system, and the control decisions can be sent to the 
lower-level subsystems to implement the control functions.

Figure 8. The schematic of lighting system.
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Example
Example 1: Low-Cost Temperature Measurement and Control 
System

Problem:
A farmer wants to develop a low-cost measurement and control system to 
help address heat and cold stresses in confined livestock production. Spe-
cifically, the farmer wants to maintain the optimal indoor temperature of 18° 
to 20°C for a growing-finishing pig barn. A heating/cooling system needs to 
be activated if the temperature is lower or higher than the optimal range. 
The aim is to make a simple indicator to alert the stock handlers when the 
temperature is out of the target range, so that they can take action. (Auto-
matic heating and cooling control is not required here.) Design and build a 
microcontroller-based measurement and control system to meet the speci-
fied requirements.

Solution:
Complete the recommended steps discussed above.

Step 1. Understand the problem.
•	 Functions—We need a system to monitor the ambient temperature and 

make alerts when the temperature is out of the 18° to 20°C range. The 
alert needs to indicate whether it is too cold or too hot, and the size of 
the deviation from that range.

•	 Environment—As a growing-finishing pig barn can be noisy, we will use 
a visual indicator as an alert rather than a sound alert.

•	 Existing sensors or actuators—For this example, assume that heating 
and cooling mechanisms have been installed in the barn. We just need to 
automate the temperature monitoring and decision-making process.

•	 Frequency—The temperature in a growing-finishing pig barn usually does 
not change rapidly. In this example, let’s assume the caretakers require 
the temperature to be monitored every second.

•	 Precision—In this project, let’s set the requirements for the precision at 
one degree Celsius for the temperature control.

Step 2. Identify the appropriate sensors and/or actuators.
The sensor that will be used in this example to measure temperature is the Texas 
Instruments LM35. It is one of the most widely used, low-cost temperature 
sensors in measurement and control systems in industry. Its output voltage 
is linearly proportional temperature, so the relationship between the sensor 
output and the temperature is straightforward.

We will use an RGB LED to light in different colors and blink at different rates 
to indicate the temperature and make alerts. This type of LED is a combination 
of a red LED, a green LED, and a blue LED in one package. By adjusting the inten-
sity of each LED, a series of colors can be made. In this example, we will light the 
LED in blue when a temperature is lower than the optimal range, in green when 
the temperature is within the optimal range, and in red when the temperature is 
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higher than the optimal range. In addition, the further the tem-
perature has deviated from the optimal range, the faster the LED 
will blink. In this way, we alert the caretakers that a heating or 
cooling action needs to be taken and how urgent the situation is.

Step 3. Understand the input and output signals.
The LM35 series are precision integrated circuit temperature 
sensors with an output voltage linearly proportional to the 
Celsius (C) temperature (LM35 datasheet; http://​www​.ti​.com/​
lit/​ds/​symlink/​lm35​.pdf). There are three pins in the LP pack-
age of the sensors as shown in figure 9. A package is a way that 
a block of semiconductors is encapsulated in a metal, plastic, 
glass, or ceramic casing.

•	 The +VS pin is the positive power supply pin with voltage between 4V and 
20V (in this project, we use +5V);

•	 The VOUT pin is the temperature sensor analog output of no more than 6V 
(5V for this project);

•	 The GND pin is the device ground pin to be connected to the power sup-
ply negative terminal.

The accuracy specifications of the LM35 temperature sensor are given with 
respect to a simple linear transfer function:

	 VOUT = 10 mV /°C × T	 (1)

where VOUT is �the temperature sensor output voltage in millivolts (mV) and T is the 
temperature in °C.

In an RGB LED, each of the three single-color LEDs has two leads, the anode 
(or positive pin) where the current flows in and the cathode (or negative pin) 
where the current flows out. There are two types of RGB LEDs: common anode 
and common cathode. Assume we use the common cathode RGB LED as show 
in figure 10 but the other type would also work. The common cathode (–) pin 2 
will connect to the ground. The anode (+) pins 1, 3, and 4 will 
connect to the digital output pins of the microcontroller.

Step 4. Select a microcontroller.
There are many general-purpose microcontrollers available 
commercially, such as the Microchip PIC, Parallax BASIC 
Stamp 2, ARM, and Arduino (Arduino, 2019). In this example, 
we will select an Arduino UNO microcontroller board based 
on the ATmega328P microcontroller (https://​store​.arduino​
.cc/​usa/​arduino​-uno​-rev3) (figure 11). The microcontroller 
has three types of memory: a 2KB RAM where the program 
creates and manipulates variables when it runs; a 1KB EEPROM 
where long-term information such as the firmware of the 

Figure 9. Texas Instruments LM35 precision 
centigrade temperature sensor in the LP package 
and its pin configuration and functions (from LM35 
datasheet http://​www​.ti​.com/​lit/​ds/​symlink/​lm35​.pdf).

The sensor measurement 
needs to be calibrated.  
To do this, you can use  
an ice-water bath to cre-
ate a 0°C environment, 
a cup of boiling water to 
create a 100°C environ-
ment, and an accurate 
thermometer to measure 
a room temperature. 
Derive a regression line. 
Its slope and intercept 
represent the relationship 
between the sensor 
measurements and the 
true values. For the 
example below, the slope 
is 1 and the intercept is 
0.5°C.

Figure 10. (a) a 5-mm common cathode RGB LED
and (b) its pin configuration (https://www.sparkfun 
.com/products/105).

http://www.ti.com/lit/ds/symlink/lm35.pdf
http://www.ti.com/lit/ds/symlink/lm35.pdf
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microcontroller is stored, 
and 32KB flash memory that 
can be used to store the pro-
grams you developed. The 
flash memory and EEPROM 
memory are non-volatile, 
which means the informa-
tion persists after the power 
is turned off. The RAM is 
volatile, and the informa-
tion will be lost when the 
power is removed. There 
are 14 digital I/O pins and 
6 analog input pins on the 
Arduino UNO board. There 
is a 16  MHz quartz crystal 
oscillator. ATmega-based 
boards, including the Ardu-

ino UNO, take about 100 microseconds (0.0001 s) to read an analog input. So, 
the maximum reading rate is about 10,000 times a second, which is more than 
enough for our desired sampling frequency of every second. The board runs 
at 5 V. It can be powered by a USB cable, an AC-to-DC adapter, or a battery. 
If an USB cable is used, it also serves for loading, running, and debugging the 
program developed in the Arduino IDE. The Arduino UNO microcontroller is 
compatible with the LM35 temperature sensor and the desired control objec-
tives of this project.

Step 5. Build a prototype.
The materials you need to build the system are:

•	 Arduino UNO board × 1
•	 Breadboard × 1
•	 Temperature sensor LM35 × 1
•	 RGB LED × 1
•	 220 Ω resistor × 3
•	 Jumper wires

Figure 12 shows the hardware wiring.

•	 Pin 1 of the temperature sensor goes to the +5V power supply on the 
Arduino UNO board;

•	 Pin 2 of the temperature sensor goes to the analog pin A0 on the Arduino 
UNO board;

•	 Pin 3 of the temperature sensor goes to one of the ground pin GND on 
the Arduino UNO board;

•	 Digital I/O pin 2 on the Arduino UNO board connects with pin 4 (the blue 
LED) of the RGB LED through a 220 Ω resistor;

Figure 11. An Arduino UNO board and some major components (adapted from 
https://​store​.arduino​.cc/​usa/​arduino​-uno​-rev3).

https://store.arduino.cc/usa/arduino-uno-rev3
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•	 Digital I/O pin 3 on the 
Arduino UNO board 
connects with pin 3 (the 
green LED) of the RGB 
LED through a 220 Ω 
resistor;

•	 Digital I/O pin 4 on the 
Arduino UNO board con-
nects with pin 1 (the red 
LED) of the RGB LED 
through a 220 Ω resistor; 
and

•	 Pin 2 (cathode) of the 
RGB LED connects to the 
ground pin GND on the Arduino UNO 
board.

An electronics breadboard (figure 13) is 
used to create a prototyping circuit with-
out soldering. This is a great way to test 
a circuit. Each plastic hole on the bread-
board has a metal clip where the bare end 
of a jumper wire can be secured. Columns 
of clips are marked as +, −, and a to j; and 
rows of clips are marked as 1 to 30. All clips 
on each one of the four power rails on the 
sides are connected. There are typically 
five connected clips on each terminal strip.

Step 6. Program the microcontroller.
The next step is to develop a program that 
runs on the microcontroller. As we men-
tioned earlier, programs are developed in 
IDE that runs either on a PC, a laptop, or a cloud-based online platform. Arduino 
has its own IDE. There are two ways to access it. The Arduino Web Editor 
(https://​create​.arduino​.cc/​editor/) is the online version that enables develop-
ers to write code, access tutorials, configure boards, and share projects. It works 
within a web browser so there is no need to install the IDE locally; however, a 
reliable internet connection is required. The more conventional way is to down-
load and install the Arduino IDE locally on a computer (https://​www​.arduino​
.cc/​en/​main/​software). It has different versions that can run on Windows, Mac 
OS X, and Linux operating systems. For this project, we will use the conventional 
IDE installed on a PC running Windows. The way the IDE is set up and operates 
is similar between the conventional one and the web-based one. You are encour-
aged to try both and find the one that works best for you.

Follow the steps on the link https://​www​.arduino​.cc/​en/​Main/​Software​
#download to download and install the Arduino IDE with the right version 

Resistors are passive 
components that can 
reduce current and divide 
voltage. The resistors used 
in this project all have a 
resistance of 220 Ω. If you 
are interested in learning 
how to recognize the 
resistance of a resistor 
by the color codes, 
check here: https://​www​
.allaboutcircuits​.com/​
textbook/​reference/​chpt​
-2/​resistor​-color​-codes/.

Figure 12. Wiring diagram for setting up the test platform. The Arduino is wired to a 
breadboard with three resistors and the LM35 temperature sensor.

	 (a)	 (b)
Figure 13. A breadboard: (a) front view (b) back view with the adhesive 
back removed to expose the bottom of the four vertical power rails on 
the sides (indicated with arrows) and the terminal strips in the middle. 
(Picture from Sparkfun, https://​learn​.sparkfun​.com/​tutorials/​how​-to​-use​-a​
-breadboard/​all).

https://www.allaboutcircuits.com/textbook/reference/chpt-2/resistor-color-codes/
https://www.allaboutcircuits.com/textbook/reference/chpt-2/resistor-color-codes/
https://www.allaboutcircuits.com/textbook/reference/chpt-2/resistor-color-codes/
https://www.allaboutcircuits.com/textbook/reference/chpt-2/resistor-color-codes/
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for your operating system. Open the 
IDE. It contains a few major compo-
nents as shown in figure 14: a Code 
Editor to write text code, a Message 
Area and Debug Console to show 
compile information and error mes-
sages, a Toolbar Ribbon with buttons 
for common functions, and a series 
of menus.

Make sure that you disconnect the 
plug-ins of all the wires and pins 
the first time you power on the Ardu-
ino board either with a USB cable or 
a DC power port. It is a good habit 
to never connect or disconnect any 
wires or pins when the board is power 
on. Connect the Arduino UNO board 
and your PC or laptop using the USB 
cable. Under “Tools” in the main menu 
(figure 15) of the Arduino IDE, select 
the right board from the drop-down 
menu of “Board:” and the right COM 
port from the drop-down menu of 
“Port:” (which is the communication 
port the USB is using). Then discon-
nect the USB cable from the Arduino 
UNO board.

Now let’s start coding in the Code 
Editor of the IDE. An Arduino board 
runs with a programming language 
called Processing, which is similar to 
C or C++ but much simpler (https://​
processing​.org/). We will not cover 
the details about the programming 
syntax here; however, we will explain 
some of them along with the pro-
gramming structure and logic. At the 
same time, you are encouraged to go 
to the websites of Arduino and the 
Processing language to learn more 
details about the syntax of Arduino 
programming.

Arduino programs have a minimum 
of 2 blocks—a setup block and an exe-
cution loop block. Each block has a 
set of statements enclosed in a pair 
of curly braces:Figure 15. Select the right board and COM port in the Arduino IDE.

Figure 14. The interface and anatomy of the Arduino IDE.
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There must be a semicolon (;) after 
every statement to indicate the finish of a 
statement; otherwise, the IDE will return 
an error during compiling. Statements 
after “//” in a line or multiple lines of 
statements between the pair of “/*” and 
“*/” are comments. Comments will not 
be compiled and executed, but they are 
important to help the readers understand 
the code.

The program logic flowchart is shown 
in figure  16. To better understand the 
code, we will separate the code into a 
few parts according to the logic flow-
chart. Each part will have its associated 
code shown in a grey box with explana-
tions. You can copy and paste them into 
the Code Editor in the Arduino IDE. When 
writing the codes, be sure to save them 
frequently.

Program Part 1—Introductive Comments
Here we use multiple lines of statements 
to summarize the general purpose and 
function of the code. Figure 16. Program logic flowchart.

/*

Setup Block

*/

void setup() {	 // Opening brace here

Statements 1;	 //Semicolon after every statement

Statements 2;

...

Statements n;

}	 // Closing brace here

/*

Execution Loop Block

*/

void loop() {	 // Opening brace here

Statements 1;	 // Semicolon after every statement

Statements 2;

...

Statements n;

}	 // Closing brace here
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Program Part 2—Declarations of Global Variables and Constants
In this part of the program, we define a few variables and constants that will be 
used later for the entire program, including the upper and lower thresholds of 
the optimal temperature range and the numbers of the digital pins for the red, 
green, and blue LEDs inside the RGB LED, respectively. For example, the first 
statement here, “const int hot = 20” means that a constant (“const”) integer (“int”) 
called “hot” is created and assigned to the value of “20” which is the upper limit of 
the optimal temperature range. The third statement here, “const int BluePin = 2,” 
means that a constant (“const”) integer (“int”) called “BluePin” is created and 
assigned to the value of “2” which will be used later in the setup block of the 
program to set digital pin 2 as the output pin to control the blue LED.

/*

This program works with an Arduino UNO board, a temperature sensor and an RGB 

LED to measure and indicate the ambient temperature.

If the temperature measured is within 18 and 20 degree Celsius, it is considered 

as optimal temperature and the LED is lit in green color.

If the temperature measured is lower than 18 degree Celsius, it is considered 

as cold and the LED is lit in blue color and blinks. The colder the temperature, 

the faster the LED blinks.

If the temperature measured is higher than 20 degree Celsius, it is considered 

as hot and the LED is lit in red color and blinks. The hotter the temperature, 

the faster the LED blinks.

*/

const int hot = 20;  

// Set a threshold for hot temperature in Celsius

const int cold = 18;  

// Set a threshold for cold temperature in Celsius

const int BluePin = 2;  

// Set digital I/O 2 to control the blue LED in the RGB LED

const int GreenPin = 3;  

// Set digital I/O 3 to control the green LED in the RGB LED

const int RedPin = 4;  

// Set digital I/O 4 to control the red LED in the RGB LED

Program Part 3—Setup Block
As mentioned earlier, the setup block must exist even if there are no statements 
to execute. It is executed only once before the microcontroller executes the 
loop block repeatedly. Usually the setup block includes the initialization of 
the pin modes and the setup and start of serial communication between the 
microcontroller and the PC or laptop where the IDE runs. In this example, we 
set the analog pin A0 as the input of the temperature sensor measurements, 
digital pins defined earlier in Part 2 of the code as output pins to control the 
RGB LED, and start the serial communication with a typical communication 
speed (9600 bits per second) so that everything is ready for the microcontroller 
to execute the loop block.
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Program Part 4—Execution Loop Block
The loop part of the program is what the microcontroller runs repeatedly 
unless the power of the microcontroller is turned off.

Program Part 4.1—Start the loop and read in the analog input from the 
temperature sensor:

void setup() {

    pinMode(A0, INPUT);  

// Temperature sensor analog input pin

    pinMode(BluePin, OUTPUT);  

// Blue LED digital output pin

    pinMode(GreenPin, OUTPUT);  

// Green LED digital output pin

    pinMode(RedPin, OUTPUT);  

// Red LED digital output pin

    Serial.begin(9600);  

// Set up baud rate as 9600 bits per second

}

Here you see two types of variables, the integer (“int”) and the float (“float”). 
For an Arduino UNO, an “int” is 16 bit long and can represent a number rang-
ing from −32,768 to 32,767 (−2^15 to (2^15) − 1). A “float” in Arduino UNO is 
32 bit long and can represent a number that has a decimal point, ranging 
from −3.4028235E+38 to 3.4028235E+38. Here, we define the variable of the 
temperature measured from the LM35 sensor as a float type so that it can 
represent a decimal number and is more accurate.

void loop() {

    int sensor = analogRead(A0);  

// Read in the value from the analog pin connected to

    // the temperature sensor

    float voltage = (sensor / 1023.0) * 5.0;  

// Convert the value to voltage

    float tempC = (voltage – 0.5) * 100;  

// Convert the voltage to temperature using the

  �  /* scale factor; 0.5 is the deviation of the output voltage versus 

temperature from the best-fit straight line derived from sensor  

calibration */

    Serial.print(“Temperature: ”);

  �      Serial.print(tempC);  

// Print the temperature on the Arduino IDE output console
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Program Part 4.2—Check if the temperature is lower than the optimal 
temperature range. If yes, turn on the LED in blue and blink it according to 
how much the temperature deviated from the optimal range:

    if (tempC < cold) {  

// If the temperature is colder than the optimal temperature range

    Serial.println(“It’s cold.”);

    float temp_dif = cold - tempC;  

// Calculate how much the temperature deviated from

// the optimal range

        if (temp_dif <= 10) {

        int LED_blink_interval = (1.0 - (temp_dif / 10.0)) * 1000;

    �    /* Calculate LED blink interval in milliseconds based on the 

temperature deviation from the optimal range; the further the 

deviation, the faster the LED blinks until turning into a solid blue */

    // Blink the LED in blue:

    digitalWrite(BluePin, HIGH);  

// Turn on the blue LED

    digitalWrite(GreenPin, LOW);  

// Turn off the green LED

    digitalWrite(RedPin, LOW);  

// Turn off the red LED

    delay(LED_blink_interval);  

// Keep this status for a certain amount of time in milliseconds

    digitalWrite(BluePin, LOW);  

// Turn off the blue LED

    delay(LED_blink_interval);  

// Keep this status for a certain amount of time in milliseconds

}

else {

    digitalWrite(BluePin, HIGH);  

// Turn off the blue LED

    digitalWrite(GreenPin, LOW);  

// Turn off the green LED

    digitalWrite(RedPin, LOW);  

// Turn on the red LED

}

}

Here, we define an integer variable called “LED_blink_interval” which is 
inversely proportional to the deviation of the temperature from the optimal 
range “temp_dif.” A coefficient 4000 is used here to convert the number to 
something close to 1000. Arduino always measures the time duration in mil-
lisecond, so delay(1000) means delay for 1000 millisecond, or 1 second.
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Program Part 4.3—Check if the temperature is higher than the optimal 
temperature range. If yes, turn on the LED in red and blink it according to how 
much the temperature deviated from the optimal range:

    else if (tempC > hot) {

    // If the temperature is hotter than the optimal temperature range

    Serial.println(“It’s hot.”);

    // Calculate how much the temperature deviated from the optimal range

    float temp_dif = tempC - hot;

    if (temp_dif <= 10) {

    int LED_blink_interval = (1.0 - (temp_dif / 10.0)) * 1000;

/* Calculate LED blink interval in milliseconds based on the temperature

    deviation from the optimal range; the further the deviation, the faster 

the LED blinks until turning into a solid red */

    // Blink the LED in red:

    digitalWrite(BluePin, LOW); // Turn off the blue LED

    digitalWrite(GreenPin, LOW); // Turn off the green LED

    digitalWrite(RedPin, HIGH); // Turn on the red LED

    delay(LED_blink_interval); // Keep this status for certain time in ms

    digitalWrite(RedPin, LOW); // Turn off the red LED

    delay(LED_blink_interval); // Keep this status for certain time in ms

    }

    else {

    digitalWrite(BluePin, LOW); // Turn off the blue LED

    digitalWrite(GreenPin, LOW); // Turn off the green LED

    digitalWrite(RedPin, HIGH); // Turn on the red LED

    }

Program Part 4.4—If the temperature is within the optimal range, turn on the 
LED in green:

    else {  

// Otherwise the temperature should be fine; turn the LED on in solid green

    Serial.println(“The temperature is fine.”);

    digitalWrite(BluePin, LOW);  

// Turn off the blue LED

    digitalWrite(GreenPin, HIGH);  

// Turn on the green LED

    digitalWrite(RedPin, LOW);  

// Turn off the red LED

    }

delay(10);

}
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After the program is written, use the “verify” button in the IDE to compile the 
code and debug errors if there are any. If the code has been transcribed accurately, 
there should be no syntax errors or bugs. If the IDE indicates errors, it is necessary to  
work through each line of code to make sure the program is correct. Be aware 
that sometimes the real error indicated by the debugger is in the lines before 
or after the location indicated. Some common errors include missing variable 
definition, missing braces, wrong spelling for a function, and letter capitalization 
error. Some other errors, such as the wrong selection of variable type, often 
cannot be caught during the compile stage, but we can use the “Serial.print” 
function to print the results or intermediate results on the serial monitor to 
see if they look reasonable.

Once the program code has no errors, connect the PC or laptop with the Ardu-
ino UNO board without any wire or pin plug-ins using the USB cable. Check if the 
selections for the type of board and port options under “Tools” in the main menu 
are still right. Use the “upload” button in the IDE to upload the program code to 
the Arduino board. Disconnect the USB cable from the board, and now plug in  
all the wires and pins. Re-connect the board and open the “Serial Monitor” from the  
IDE. The current ambient temperature should display in the serial monitor, and  
the LED lights color and blink accordingly. If any further errors occur, they will show 
in the message area at the bottom part of the IDE window. Go back to debugging 
if this happens. If there are no errors and everything runs correctly, test how the 
measurement system works by changing the temperature around the sensor to 
see the corresponding response of the LED color and blinking frequency. This can  
be done by breathing over the sensor or placing it close to a cup of iced water 
or in a fridge for a short time. When the room temperature is in the set point 
range (about 18°C to 20°C) the green LED should be lit. Once the temperature is 
too high, only the red LED should be lit. When the temperature is too low, only 
the blue LED should be lit. If this does not work, check that you have created 
different temperatures by using a laboratory thermometer and then check the 
program code.

Step 7. Deploy and debug.
Deploy and debug the system under the targeted working environment with 
permanent hardware connections until everything works as expected.

We leave this step of making the permanent hardware connections for you 
to complete if interested. In practice, the packaging of the overall system will 
be designed to accommodate the working environment. The completed final 
product will be tested extensively for durability and reliability.

Step 8. Document the system.
Write documentation such as system specifications, wiring diagram, and user’s 
manual for the end users. At this stage, an instruction and safety manual would 
be written, and, if necessary, the product can be sent for local certification. 
Now the system you developed is ready to be signed off and handed over to 
the end users!
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