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A B S T R A C T

This article summarizes the recommendations on data and methodology issues for studying commercial motor
vehicle driver fatigue of a National Academies of Sciences, Engineering, and Medicine study. A framework is
provided that identifies the various factors affecting driver fatigue and relating driver fatigue to crash risk and
long-term driver health. The relevant factors include characteristics of the driver, vehicle, carrier and en-
vironment. Limitations of existing data are considered and potential sources of additional data described.
Statistical methods that can be used to improve understanding of the relevant relationships from observational
data are also described. The recommendations for enhanced data collection and the use of modern statistical
methods for causal inference have the potential to enhance our understanding of the relationship of fatigue to
highway safety and to long-term driver health.

1. Introduction

Driver fatigue is known to be an important factor in vehicle crash
risk. This is true for both passenger vehicles and commercial vehicles.
The U.S. Department of Transportation’s Federal Motor Carrier Safety
Administration (FMCSA) and National Highway Traffic Safety
Administration (NHTSA) Large Truck Crash Causation Study (LTCCS) in

2001–2003 found fatigue to be an associated factor in 13% of fatal and
injury crashes involving at least one large truck (FMCSA, 2005). At the
request of the FMCSA, the National Academies of Sciences, En-
gineering, and Medicine (NASEM) convened the Panel on Research
Methodologies and Statistical Approaches to Understanding Driver
Fatigue Factors in Motor Carrier Safety and Driver Health to assess the
key factors leading to fatigue experienced by truck and bus drivers
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while driving and the implications for road safety. The Panel was also
asked to assess the relationship of these factors to long-term driver
health. Finally, the Panel was asked to identify potential improvements
in data and research methods that could increase understanding of
these issues. This article summarizes some of the main findings and
recommendations of the Panel’s report (NASEM, 2016) with a focus on
data issues and statistical methodology. The authors were panelists,
NASEM staff, and consultants who served on the panel.

The term fatigue conventionally denotes a subjective sense of tired-
ness. In a scientific sense, the term fatigue refers to objective performance
degradation due to inadequate sleep, physical exertion, extended time-on-
task, and other factors. The review paper by Williamson et al. (2011)
describes the link between various factors and performance decrements
among commercial motor vehicle (CMV) drivers. Sleep disorders, such as
obstructive sleep apnea (OSA), are one factor associated with increased
fatigue and OSA is common in CMV drivers (Howard et al., 2004; Stoohs
et al., 1995). In addition to potential impacts on CMV safety, insufficient
sleep (from any cause) is a known risk factor for a wide range of health
problems including hypertension, diabetes, obesity, depression, and
cardio-vascular disease (Watson et al., 2015). These health problems can
affect driver alertness and safety. They also have a significant impact on
quality and length of life.

FMCSA is charged with monitoring and improving the safety of com-
mercial motor vehicles. FMCSA addresses its mandate to improve CMV
safety through educational programs, regulations, monitoring carrier
performance, and enforcing compliance with safety and other regulations.
The primary regulations through which FMCSA attempts to reduce driver
fatigue are hours of service regulations, which limit driving and work
hours, and a required medical examination. The hours of service regula-
tions restrict hours of driving and on duty per work day and per work
week. The medical examination, required at least every two years, is in-
tended to identify any limitations for safe driving posed by driver health.
Among other health factors, medical examiners check for hypertension,
diabetes, and cardio-vascular disease. Examiners also ask about sleep
problems but partially due to there being no specific guidance from
FMCSA on this topic, there are limitations as to what can be ascertained as
to which drivers are currently having interrupted sleep due to OSA.

FMCSA hours of service and medical exam regulations cannot address
the myriad work-related and non-work-related factors that can influence
fatigue (e.g., stress in different driving environments; time spent loading
and unloading; insufficient sleep while off-duty; life stressors; fitness; etc.).

To provide accurate information about the causes of fatigue, its impact on
driving and driver health, and ways to reduce its occurrence, FMCSA
partnered with several Canadian organizations to create the web-based
North American Fatigue Management Program (NAFMP). NAFMP pro-
vides modules relevant to drivers and other interested parties (e.g., motor
carrier management, driver families).

The NASEM panel included a broad range of experts covering trans-
portation, sleep and fatigue, occupational medicine, human factors, and
statistics. In its report, the Panel provided a set of recommendations re-
garding data and statistical methodology to advance the community’s
knowledge about the factors influencing crash risk and about the long-
term health consequences of fatigue. The remainder of this paper is or-
ganized as follows. Section 2 describes a multi-factor framework that is
helpful for understanding the complexity of assessing the impacts of fa-
tigue. Section 3 focuses on the factors associated with fatigue and their
impact on CMV safety. The emphasis is on recommendations for im-
proving available data and for improving the statistical methods applied to
this issue. Section 4 considers long-term driver health effects and data that
would be necessary to better understand the impact of fatigue and other
risk factors on driver health. Section 5 discusses the role of educational
programs and new technology that may potentially enhance the ability to
prevent, detect, and mitigate fatigue, and offers advice on how to ensure
that they are used to maximum benefit. Section 6 provides a closing
summary and discussion.

2. Framework

A challenge in assessing the relationship between driver fatigue, hours
of service regulations, and CMV safety (and long-term driver health) is that
there are a large number of interacting factors associated with crash risk
that go well beyond driver fatigue. Partially due to this complexity, dif-
ferent studies have found different impacts even when studying the same
risk factors. For example Jovanis et al. (2011) found length of driving time
to be a significant predictor of crash risk for less-than-truckload carriers.
On the other hand, Hanowski et al. (2008) found a visible spike in crash
risk during the first hour of driving but no consistent evidence of a time-
on-task effect. The differences in these and other results are likely due to
incomplete handling of various confounding factors. To address this, a
comprehensive multivariate approach is required to provide more con-
vincing estimates of the impact of factors associated with crash risk.
Table 1 provides a framework developed in NASEM (2016) for

Table 1
Selected Factors Associated With Crash Risk.

Predictor domain Sample predictors Possible data sources Outcome variables

Driver • Demographics

• Health history

• Sleep history

• Hours driving; hours on the job

• Medications

• Experience

• Safety Record

• Bureau of Labor
Statistics;

• Driver surveys

• Crash rate

• Serious crash rate

• Fatal crash rate

• Safety critical event rate

• Fatigue

Vehicle • Type of truck/bus

• Maintenance history

• Crash history

• Technology installed

• Carriers

Carrier • Fleet size

• Turnover rate

• Compensation method

• Safety culture

• Safety record

• US DOT

• Carriers

Environment • Weather

• Precipitation

• Traffic density

• Road type

• Safety features

• Police accident reports
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conceptualizing the factors associated with crash risk; the table helps il-
luminate data gaps and research needs. The table lists characteristics of the
driver, the vehicle, the carrier, and the environment that are relevant to
crash risk. Driver factors can include demographic information, health
status, driving history, sleep history and sleep opportunities, hours driving
and hours on the job, medications, experience, and safety record. The age
and maintenance history of the vehicles are important as is the quality of
the tires and brakes, and the technology with which the vehicle is
equipped (e.g., forward collision warning systems, autonomous emergency
braking). Carrier characteristics such as safety record and driver turnover
can be informative as can carrier policies regarding driver compensation
and safety culture. As an example, driver compensation can influence a
driver’s decision to pull over or keep driving: Paying drivers by the mile
incentivizes them to accumulate more miles. Finally, characteristics of the
driving environment including weather, precipitation, traffic density, road
design, and safety features (e.g., rumble strips on the side of the road) can
be crucial factors in crash risk. In assessing relationships between fatigue
and long-term driver health, a similar framework is relevant although it
would include only driver and carrier characteristics.

3. CMV safety

3.1. Data issues

Table 1 illustrates the broad range of factors, beyond time-on-task
or hours of service, that affect crash risk. Isolating the effect of hours of
service, or any other factor addressed by FMCSA regulations therefore
requires a wide range of data to control for potentially confounding
factors. The panel report reviews available data sets and makes a
number of recommendations regarding the collection and sharing of
data; these are discussed below and summarized in Table 2.

Existing data include the NHTSA Fatal Analysis Reporting System
(FARS) which provides a census file of motor vehicles (passenger and
commercial) involved in traffic crashes with at least one fatality. The
data are gathered by analysts in each state using police accident reports,
hospital reports, and information from other relevant sources. Separate
censuses of trucks and buses involved in fatal accidents (TIFA=Trucks
Involved in Fatal Accidents, BIFA=Buses Involved in Fatal Accidents)
were collected by the University of Michigan Transportation Research
Institute with support from FMCSA. The TIFA and BIFA files include
data from the FARS file along with additional data collected by re-
searchers. Both TIFA and BIFA were discontinued after 2010. The
National Automotive Sampling System (NASS) General Estimates
System (GES) database compiled by NHTSA is a large statistical sample
(approximately 50,000 police accident reports per year) of crashes with
property damage, injury, or death. The data are collected from police
accident reports. FMCSA maintains the Motor Carrier Management

Information System (MCMIS) crash file, a census of all trucks and buses
involved in a crash that results in a fatality, an injury requiring trans-
portation for immediate care, or a vehicle towed due to disabling da-
mage. FMCSA uses the MCMIS crash and inspection files, along with the
MCMIS carrier file, to identify unsafe carriers and take enforcement
actions.

A key challenge of studying crash risk related to fatigue is that all
crash data ultimately trace back to police crash reports, and the iden-
tification of fatigue on police reports is likely underreported. There is
currently no objective test, such as a specific, sensitive biomarker, for
fatigue that is available to police at crash scenes, as there is for alcohol.
Reporting officers therefore have to rely on driver and witness state-
ments along with their own judgment. Studies of fatigue require the
kind of careful and broad-ranging data collection that was done in the
LTCCS study described at the start of this article. In addition, assessing
the risk of fatigue from observed crash data is challenging without
matching exposure data. For example, if more crashes are found to
occur in the afternoon than in the morning but the volume of trucks on
the road is much higher in the afternoon then the risk per mile driven
might actually be lower in the afternoon than it appears just from the
raw crash counts. Accordingly, exposure data has also been identified as
a critical need in assessing carrier safety (NASEM, 2017).

Other approaches that are used to assess the effect of fatigue on
crash risk rely on naturalistic driving data or simulator studies.
Naturalistic driving studies collect data on driver behavior in the
normal operating environment using trucks equipped with video cam-
eras and other sensors. Data are collected continuously while the truck
is driven and can include video of the driver, traffic in front of and
beyond the vehicle, and various measurements of truck motion and
position. This typically creates an enormous data set. Analyses gen-
erally focus on short time intervals before and after certain triggered
events (sometimes called safety critical events) like sudden braking,
drifting out of lane, or a crash of some sort. Naturalistic driving studies
are useful in that they gather indicators or measures of actual driving
behavior. Also, because data are collected continuously it is possible to
identify “control” segments with which to compare the various trig-
gered events. Limitations include the need for further study to establish
the relationship between safety critical events and crashes to determine
which events are predictive of crashes. For example, crashes frequently
occur when drivers fail to brake when they should; thus it is not clear if
data collected because of a sudden braking event (which may be an
appropriate avoidance maneuver) sheds light on braking-related cra-
shes. Also, since naturalistic driving data often includes intrusive as-
pects like recording the driver himself, the set of drivers willing to
participate may not be representative of the broader population.

In contrast with naturalistic driving studies, simulator studies assess
drivers in a controlled, simulated environment. Although this leads to
concerns about generalizability to the unconstrained real world, simu-
lator studies allow for specific investigation of the effects of fatigue,
drugs, or alcohol that cannot be ethically collected with drivers in real
traffic.

Additional data relevant to the effects of fatigue may exist in other
sources such as driver logs, roadside vehicle/driver inspection reports,
records of large truck carriers, and data collected by private research
organizations (e.g., the American Transportation Research Institute).
New technology such as electronic logging devices, on-board safety
systems (electronic stability control, lane departure warning, forward
collision warning, etc.) and telematics used for locating and tracking
vehicles also have the potential to assist researchers by providing data
on hours driven, miles driven, decrements in vehicle control, and other
data relevant to exposure and driver performance. However, it should
be noted that the problem of directly and objectively identifying fatigue
remains.

Table 2
Recommendations Regarding Data Collection.

• There should be regularly scheduled surveys (every 5 to 10 years) to understand
demographics and employment circumstances of all CMV drivers in various
industry segments.

• Records from electronic on-board recorders could offer substantial research
benefits. (This is currently prohibited by law.)

• Data from electronic data recorders on trucks and buses involved in serious
crashes can provide relevant data that would be valuable to investigators and
safety researchers.

• Those that capture driver performance data (e.g., large carriers, firms collecting
telematics data, insurance companies) should be incentivized to increase the
availability of such data for research on fatigue and highway safety.

• Baseline data on driving exposure is critical. It is required for different driving
environments (types of roads) and at low levels of geographic aggregation

• Ongoing collection of objective and subjective data (longitudinal or repeated
cross-sectional studies) from CMV drivers is critical to track changes in fatigue
and alertness and in health status and the factors associated with such changes.
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3.2. Statistical methods

The key question in much research on driver fatigue is the degree to
which fatigue is a causal factor for highway crashes. Assessing whether
fatigue is a cause in a particular incident is challenging for several
reasons. First, there is no reliable way after a crash to tell whether fa-
tigue played a critical role. Frequently fatigue determinations are made
by a police officer at the scene primarily to ensure victims and the
public are safe. Second, crashes often result from a combination of
factors including driver condition, actions of other drivers, roadway
and weather conditions, etc. If a runoff crash occurs involving a drowsy
driver on a curved road segment with light precipitation, then it is not
really possible to identify the contribution of any one factor.

Indeed, the statistical literature distinguishes between the effects of
causes (what would be the effect if a particular cause or intervention
occurred, i.e., a particular change was made such as a change in the
lighting on a road segment or a change in the law about legal blood
alcohol levels) and the causes of effects (what caused the particular
observed effect, i.e., what caused the above mentioned crash involving
the drowsy driver in light precipitation) (see, e.g., Dawid et al., 2014).
It is generally noted in that literature how difficult it is to determine the
causes of effects. Instead, statistical research frequently focuses on as-
sessing the causal effect of a particular exposure or treatment of interest
with all other factors held constant (i.e., the effect of one cause in
comparison to another) (Holland, 1986).

Randomized clinical trials are often used in medical contexts to
estimate causal effects. In such trials a sample of individuals with a
given condition are randomly assigned to one of two or more different
treatments. The random assignment ensures that the treatment groups
should be similar with respect to all other factors that might also affect
the outcome. In the context of fatigue, randomized studies are possible
in the laboratory (e.g., in a simulator study) but such studies do not
necessarily generalize to real world situations.

An alternative to randomized controlled trials (RCT) that is often
more feasible is referred to as randomized encouragement designs,
which retain many of the benefits of RCT trials (West et al., 2008). In
randomized encouragement designs, subjects are not randomized to the
treatment of interest (e.g., using a continuous positive airway pressure
(CPAP) machine to address OSA), but rather to some “encouragement”
to use the treatment (e.g., a coupon for a substantially reduced price on
a CPAP machine). These designs allow the estimation of the effect of the
encouragement (using standard RCT methods), as well as the effect of
actually taking the treatment of real interest (using instrumental vari-
ables estimation approaches).

For the most part, though, insights into driver fatigue rely on ob-
servational studies where researchers do not assign the treatment of
interest (e.g., a particular work-rest schedule). As noted above, the key
difficulty with observational studies is there are generally many other
potentially confounding factors (e.g., those identified in Table 1) that
may differ between the groups being compared. In such cases it is cri-
tical to try to adjust for such confounding factors through the design of
the data collection or through the analysis of the observational data (or
through a combination of both). Rosenbaum (2010) provides an over-
view of observational studies and Imbens and Rubin (2015) discuss
approaches to causal inference with observational studies.

Examples of observational study designs that can help identify
causal effects include cohort studies and case-control studies. In a co-
hort study, a set of individuals (perhaps drivers with sleep apnea) are
identified and the causal factor of interest (e.g., frequency of use of
sleep apnea treatment) is measured. The cohort is then followed pro-
spectively (or records examined retrospectively) to estimate the effect
of the factor of interest on outcomes (e.g., crashes). A case-control study
identifies a set of cases (individuals) who experience an event of in-
terest (e.g., a crash) for which data about a potential cause are available
along with information on confounding factors. Then one attempts to
identify controls (individuals) who did not experience the event of

interest (e.g., did not experience a crash) which match the cases on a set
of possible confounding factors. The relative frequency of the potential
cause is then compared across the two groups. Case-control studies
have been used in studying crash risk, e.g., Dingus et al. (2016) applied
the approach in a naturalistic driving study.

Analysis techniques for observational data use observed values of
collected variables to achieve a fair and balanced comparison between
the two groups of interest (treatment and control). The simplest ap-
proaches are regression models of various types that relate the outcome
of interest to a factor of interest while controlling for potential con-
founders. This is relatively simple to apply and used often; however, it
requires that the assumed regression model is a reasonable re-
presentation of the real situation. More modern methods, like pro-
pensity score methods and marginal structural models, weight or adjust
observations taking into account the likelihood of an individual re-
ceiving the treatment of interest. With propensity score methods
(Imbens and Rubin, 2015), the likelihood of receiving a particular
treatment (in an observational data set) is modeled in terms of pre-
treatment variables. Then the researcher chooses a subset of exposed
and unexposed (or “treated” and “control”) individuals that have
matching (or similar) propensities to compare, or individuals can be
weighted by their propensity of receiving the treatment. Such methods
create comparison groups (exposed and unexposed) that are balanced
on the potential confounding factors. These methods only balance
confounding factors that are measured; sensitivity analysis methods can
be used to examine how sensitive results are to imbalance on un-
measured confounding factors (Rosenbaum, 2010). Other analysis
techniques are possible depending on the specific circumstance: Re-
gression discontinuity can be used when some treatment of interest is
given only above (or below) a certain threshold (e.g., when sleep apnea
symptoms hit a threshold); interrupted time series can be used when a
change occurs at a given point in time; and instrumental variables can
be used if there is an “instrument” that affects receipt of the exposure of
interest but does not directly affect the outcome.

A recent congressionally-mandated, naturalistic study to evaluate the
operational, safety, fatigue, and health impacts of CMV driver hours-of-
service restart provisions (Dinges et al., 2015) illustrates how observa-
tional studies can be used to evaluate the effects of work-hour regulations
and driver practices on fatigue and safety. The goal was to compare driver
performance and fatigue between CMV drivers using a 1-night rest period
before restarting the hours-of-service “clock” and those using a 2-night rest
period. The study also compared those with fewer than 168 h (one week)
between restart periods and those with more than 168 h. The study in-
cluded 235 drivers, using electronic logging devices to gather data on
driving and working hours, onboard monitoring systems to gather data on
safety-critical events, wrist actigraphs to gather data on sleep-wake times,
and smartphone apps for collecting self-reported driver behaviors and
driver alertness measures (using the PVT-B mentioned in Section 5 below).
A total of 3287 restart/duty cycle units were analyzed using a variety of
regression models to control for potential confounders. The study did not
find performance differences between drivers using 1-night restarts and 2-
night restarts but drivers indicated greater fatigue and lower quality sleep
during 1-night restarts. Driver response times were slower and attentional
lapses more frequent when restarts occurred after more than 168 h versus
prior to 168 h.

4. Long-term driver health

4.1. Data issues

FMCSA is also concerned about the impact of fatigue on the health
of CMV drivers. There is a large literature relating insufficient sleep
with health risk. For example Sleep Disorders and Sleep Deprivation: An
Unmet Public Health Problem (Institute of Medicine, 2006) reports that
long-term sleep loss and sleep deprivation is associated with increased
risk of hypertension, diabetes, obesity, depression, cardiovascular
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disease, and stroke. Importantly, the relationship can work in the op-
posite direction as well with certain diseases also increasing the risk of
fatigue (Czeisler, 2015).

A framework similar to the one described by Table 1 in the context
of driver safety is appropriate. The major differences are that we are
focused on health outcomes rather than safety outcomes and that we
would not expect environmental or vehicle characteristics to help pre-
dict or understand these outcomes.

There is limited data available about the health of the CMV driver
population. Sieber et al. (2014) collected data on the behaviors, habits
and health status of 1670 long-haul truck drivers. FMCSA’s Commercial
Driver Individual Risk Factors Study (CDIRFS) (Hickman et al., 2018) is
a cohort study that collected demographic, medical, attitudinal, and
behavioral data for more than 20,000 drivers who were then followed
for up to three years. Though the ultimate aim of the CDIDS is to assess
factors associated with crash risk (through a case-control design), the
CDIDS cohort data collection provides a unique view of the driver po-
pulation.

These studies can provide useful information, but to obtain a more
complete understanding of driver health and the determinants of driver
health it would be valuable to obtain longitudinal data on the popu-
lation. The panel recommended that such data be gathered through a
longitudinal study of a sample of drivers. Data should be collected
concerning job characteristics (type of work, hours of work), lifestyle
(sleep, diet and exercise habits), and medical conditions (weight, blood
pressure, disease status, medications). Certain conditions and diseases
like obesity, obstructive sleep apnea (OSA), and cardiovascular disease
are common in the driver population. A longitudinal study would allow
researchers to identify factors associated with CMV drivers developing
these health issues. Though the longitudinal study is superior for ad-
dressing questions of this type, such studies can be costly and chal-
lenging to execute (especially given the turnover in the CMV driver
population). Repeated cross-sectional studies may also be useful in
providing regular information about the population and identifying
trends in population behaviors and health.

Obstructive sleep apnea (OSA) is a health condition that requires
special attention for CMV drivers due to the incidence of obesity in the
population. In OSA, the airway becomes partially blocked during sleep,
resulting in the subject waking frequently during the night. Thus, OSA
is associated with insufficient sleep as well as with other medical con-
ditions such as diabetes and cardiovascular diseases. OSA is a special
concern for CMV drivers for several reasons. First, studies have esti-
mated that 20% or more of CMV drivers have at least mild OSA (Pack
et al., 2006; Berger et al., 2012). Second, there is a substantial literature
that severe OSA is associated with increased crash risk for the non-
professional driver (see Smolensky et al., 2011, for a summary). Though
there is no corresponding literature on CMV drivers, the NASEM panel
concluded that there is no reason to believe the increased crash risk
would not apply to the CMV population as well (Chapter 8 in NASEM,
2016). This argues that there is a substantial need for data collection
and research that can provide information regarding the prevalence of
OSA, appropriate screening tools that might be used in the CMV med-
ical examination, the relationship of OSA to driver safety (preferably as
function of OSA severity), and the impacts of OSA treatment on driver
health and safety.

4.2. Statistical methods

Longitudinal studies of the type recommended above would gather
repeated observations of driver variables associated with health and
fitness (e.g., frequency and duration of sleep, blood pressure, etc.).
There is a rich literature of methods for longitudinal modeling (see, e.g.,
Diggle et al., 2002). Many of the topics discussed above in Section 3.2
regarding statistical methods for causal inference from observational
data are relevant to longitudinal studies of driver health. The situation
can be complex because of the possibility that exposure can vary over

time (e.g., severity of sleep apnea) as can the confounding factors.
There can also be feedback between the exposure, outcome, and con-
founding factors over time (e.g., sleep can affect employment which can
affect subsequent sleep). Robins and Hernán (2009) describe an ap-
proach to causal inference in longitudinal settings.

5. Evaluating technology and educational programs

A variety of technological developments including electronic on-
board recorders, electronic logging devices, electronic data recorders,
on-board safety systems, actigraphy and smart phones for real-time
ambulatory monitoring of drivers, and telematics have the potential to
radically transform the CMV industry and improve safety outcomes.
Section 3.1 describes the potential benefit of data collected from such
devices in understanding the link between fatigue and crash risk. In
addition, there is the potential for technology to play a role in detecting
driver fatigue (one example is real-time assessment of eyelid closure
(Wierwille et al., 1994)), and assessing driver fitness for duty (e.g., the
PVT-B psychomotor vigilance test (Basner and Dinges, 2011; Basner
et al., 2011)).

The NASEM panel recommended that such technologies be carefully
evaluated using a human-systems integration approach. The goal in
such evaluations is to study the effect on drivers and crash risk while
monitoring any unintended consequences of the technologies. One
concern is whether the use of such technologies will modify driver
behavior and decision-making (e.g., drivers may continue to drive de-
spite being fatigued because of confidence in on-board safety systems).
Thus, understanding driver decision-making should also be a priority.

Educational programs like NAFMP and incentive-based health pro-
grams may be useful in reducing CMV crashes by improving driver
sleep behavior, health, and fitness. The latter use incentives or rewards
for drivers who participate in health-promoting behaviors (e.g., joining
a health club). As with a new technology, it is critical to carefully
evaluate the effectiveness of such programs through rigorous studies.
Surveys of NAFMP participants can be used to assess the knowledge
obtained through the program and any (self-reported) resulting changes
in behavior. For programs that are being developed, either randomized
experimental studies or observational studies (designed and analyzed
using the techniques described in Section 3.2) can determine effec-
tiveness and identify potential improvements.

6. Discussion and conclusions

Understanding the relationship of CMV driver work schedules and
fatigue, and their impact on highway safety and long-term driver health
is a complex topic due to the presence of many confounding factors.
Driver demographics and behavior, vehicle properties, carrier policies,
and the environment can all contribute to crash risk. Thus it is im-
perative that studies attempt to gather relevant data and use appro-
priate methods to address these important questions. This article has, in
summarizing the NASEM (2016) report, focused on a number of ways in
which this might be done.

Section 2 outlines a comprehensive framework for assessing the
factors that can produce fatigue and the factors that are related to crash
risk and long-term driver health. Studies frequently rely on observed
crash data to isolate factors associated with risk. Unfortunately existing
crash data files are derived primarily from police accident reports
which have only a limited number of variables recorded. It is important
that as many relevant factors (driver, vehicle, carrier, environment) be
obtained for such studies as possible, perhaps by combining data from
multiple sources. Further, it is important to have data from non-crash
drive-time in order to understand whether a factor is more prevalent in
crash events than in non-crash events. As a result, improved data on
exposure (i.e., the travel of CMVs and other vehicles) is critical for such
analyses. To study long-term health, some kind of ongoing study of
CMV drivers is critical. This will provide data on the incidence of
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different health issues (e.g., OSA and cardiovascular disease) and their
impact on long-term driver health.

Observational studies are the primary tool for assessing the de-
terminants of fatigue and the relationship of fatigue to highway safety.
As always, it is important with such data to ensure that comparisons
adjust for potential confounding factors. Section 3.2 describes a number
of statistical approaches that have proven useful in obtaining reliable
inferences from observational data. New technologies and educational
programs have the potential to provide novel data and to play a role in
enhancing CMV driver health and safety. Careful evaluation of the ef-
fectiveness of educational programs or technological innovations is
critical to make sure drivers find them helpful and that they do not have
unintended consequences. Improving the available data and applying
appropriate statistical methods have the potential to continue advan-
cing knowledge about the factors associated with fatigue in CMV dri-
vers, with the ultimate goal of reducing the impact of fatigue on
highway safety and driver health.
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