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ABSTRACT 

 
This study examined the effects of computational labs in Business Calculus classes used at a 

single, private institution on student outcomes of conceptual understanding of calculus and 

attitudes towards mathematics.  The first manuscript addresses the changes in conceptual 

understanding through multiple-method research design, a quantitative survey given pre and post 

study and qualitative student comments, found no significant gains in conceptual knowledge as 

measured by a concept inventory, however, student comments revealed valuable knowledge 

demonstrated through reflection on and articulation of how specific calculus concepts could be 

used in real world applications.  The second manuscript presents results to the effects on attitudes 

toward mathematics, studied through multiple-method research design, using a quantitative 

survey given at two intervals, pre and post, and analysis of student comments, which showed that 

students that participated in the labs had a smaller decline in attitude, although not statistically 

significant, than students that did not complete the labs and the labs were most impactful on 

students that had previously taken calculus; student comments overwhelmingly demonstrate that 

students felt and appreciated that the labs allowed them to see how calculus could be applied 

outside the classroom.  Overall students felt the labs were beneficial in the development of 

advantageous habits, taught some a skill they hope to further develop and study, and provided 

several recommendations for improvement in future implementation.  Collectively, this research 

serves as a foundation for the effectiveness of computational tools employed in general 

education mathematics courses, which is not currently a widespread practice. 
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Brielle Tinsley Spencer-Tyree 

 
GENERAL AUDIENCE ABSTRACT 

 
Students from a variety of majors often leave their introductory calculus courses without seeing 

the connections and utility it may have to their discipline and may find it uninspiring and boring.  

To address these issues, there is a need for educators to continue to develop and research 

potentially positive approaches to impacting students’ experience with calculus.  This study 

discusses a method of doing so, by studying students’ understanding of and attitude toward 

calculus in a one-semester Business Calculus course using computational labs to introduce 

students to calculus concepts often in context of a business scenario.  No significant gains in 

conceptual knowledge were found as measured by a concept inventory; however, student 

comments revealed valuable knowledge demonstrated through articulation of how specific 

calculus concepts could be used in real world applications.  Students that participated in the labs 

also had a smaller decline in attitude than students that did not complete the labs.  Student 

comments overwhelmingly demonstrate that students felt and appreciated that the labs allowed 

them to see how calculus could be applied outside the classroom.  The labs were most impactful 

on students that had previously taken calculus.  Overall students felt the labs were beneficial in 

the development of advantageous habits such as persistence, utilizing resources, and precision, 

introduced them to coding, a skill they hope to further develop and study, and students provided 

several recommendations for improvement in future implementation.  This research provides a 

foundation for the effectiveness of computational tools used in general education mathematics 

courses. 
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CHAPTER 1: Introduction 
 

Overview 

Some version of introductory calculus is a requirement in the college careers of numerous 

students from many different majors, and the experience in a calculus classroom can have a great 

impact on students’ conceptual understanding and attitudes.  Too often students leave their 

introductory calculus course without seeing the connections and utility the techniques may have 

to their chosen discipline, may find the course to be uninspiring and boring, and may actually 

develop a negative attitude toward mathematics and their abilities because of such a course.  To 

address the needs of the vast amount of students tasked with taking calculus, their necessity of 

gaining knowledge of the subject, and the impact the course may have on their attitudes, there is 

a need for educators to continue to develop, test, and research potentially positive approaches to 

teaching and helping students experience calculus.   

The President’s Council of Advisors on Science and Technology (PCAST, 2012) reports 

that college students complain that their introductory STEM courses are unwelcoming from 

faculty, provide insufficient math support, and deliver uninspiring environments; there is a need 

to reform STEM classes, including calculus, at the post-secondary level to address some of these 

complaints (Frechtling, Merlino, & Stephenson, 2015).  There is a “long overdue reconsideration 

of the appropriate intellectual content of calculus,” (Kaput, 1997, p. 731).  There have been 

major changes in who is now expected to complete calculus, including most STEM majors and 

most business majors, but there have not been grand changes to how or what is taught in a 

calculus course leading to an increasingly poor fit for today’s students (Kaput, 1997).  The way 

calculus is taught only serves about 10% of the population, which includes the “socio-economic 

and intellectual elite” (Kaput, 1997, p. 731); rethinking the way calculus is taught could open it 
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up to the ignored 90% and allow for deeper understanding for the 10% to whom calculus has 

traditionally been catered (Kaput, 1997). 

Research reveals that beyond finding their introductory calculus classes dull and 

uninspiring, students around the world also have problems with basic conceptual understanding 

of calculus (Epstein, 2013).  Students are finishing first semester calculus courses with little to 

no basic conceptual knowledge that university faculty assumed they were all developing 

(Epstein, 2013).  Students often learn to answer questions involving limits and derivatives 

through routines, algebraic skills, and rules, which does not equate to them understanding the 

concepts of limits and derivatives (Muhundan, 2005).  Many calculus classes become overloaded 

with rules and algebraic manipulation with little time spent on concepts (Ferrini-Mundy & 

Graham, 1991).  Knowing how to find derivatives and integrals is meaningless unless students 

can use them and interpret results in real life contexts (Gordon, 2005).  Numerous studies have 

found that in introductory mathematics courses, students are not learning the intended material 

(Breidenbach et al., 1992; Carlson, 1998; Tallman et al. 2016; Thompson, 1994), students are 

leaving the courses unprepared for other courses (Carlson, 1998; Selden, Selden, Hauk, & 

Mason, 2000; Thompson, 1994), and students lose interest in mathematics after completing the 

course (Bressoud, Mesa, & Rasmussen, 2015; Seymour, 2006), all of which have been seen in 

both small, localized studies but also in national studies of introductory college mathematics 

courses (Bressoud, Mesa, & Rasmussen, 2015).  It could be hypothesized that these issues with 

conceptual understanding may come from a variety of sources including the poor attitudes 

students have towards mathematics, lack of foundational skills before entering the course, 

pedagogy, and other classroom factors.  It appears students are coming away from calculus 

without appreciating its connections to other disciplines, connections to real applications, and 
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viewing it as yet another mathematics course focused on rote memorization and algebraic 

manipulation and thus unproductive; this must be addressed and taken up by mathematics 

educators.   

In addition to content knowledge issues, Bressoud & Rasmussen (2015) reveal that post-

secondary calculus, as currently taught, “is extremely efficient at lowering student confidence, 

enjoyment of mathematics, and desire to continue in a field that requires further mathematics.”  

Instructors of undergraduate calculus are keenly aware that students find calculus to be a 

challenging course and are often fearful of it (Sonnert, Sadler, Sadler, & Bressoud, 2015).  

Factors that may be contributing to these student attitudes toward mathematics include the 

instruction students experience including: pedagogical decisions and use of technology, 

environmental factors, and personal factors including previous interaction with and attitudes 

toward mathematics and the choice of college major (Sonnert, Sadler, Sadler, & Bressoud, 

2015).   

With calculus lowering confidence and enjoyment of mathematics, it is often a filter that 

forces students out of future careers including STEM careers and business (PCAST, 2012; 

Mosina, 2014).  The negative attitudes that are developed or perpetuated in many calculus 

courses may be doing more than simply filtering students out of career fields but may also be 

affecting performance in the classroom since that and learning outcomes can be affected by 

students’ attitudes toward math (Boaler, 2016).  Negative attitudes toward mathematics may be 

severely hindering students’ successes, so developing a more positive attitude toward 

mathematics is vital for potentially increasing success.  Andersson, Valero, and Meaney (2015) 

acknowledged that negative attitudes are influenced by the students’ beliefs and experiences and 

an interaction of classroom and pedagogical experiences, which implies that educators and how 
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they run their classrooms can have a major impact on students’ attitudes toward mathematics.  

Students’ mindset toward math can be changed and affected by the context of the teaching 

(Andersson, Valero, & Meaney, 2015); since attitudes can be changed, there is a need to create 

an environment that fosters more positive attitudes toward mathematics to nurture mathematical 

skills, which could include more relevant contexts, more modern topics, more modern 

approaches, and more technology since research supports that teaching mathematics within 

relevant contexts and with real world connections can impact student attitude positively (Cornell, 

1999; Andersson, Valero, & Meaney, 2015).   

These issues of minimal conceptual knowledge, leaving the course with marginal 

understanding of how calculus can be applied to other disciplines, recognition by students that 

calculus courses are often dull, and the detrimental effects the courses seem to be having on 

students’ attitudes, it is imperative to consider changes to calculus courses that could more 

positively impact students’ attitudes and understanding.  Calculus courses have remained 

relatively stable in their content and pedagogy because change has been inhibited by a desire to 

make changes while stakeholders in education continue to rely on traditions and are not adapting 

to fit the changing world outside of school (Kaput, 1997).  Recommendations for changes to 

post-secondary STEM classes include moving away from lecture courses that focus on facts and 

that “instruction needs to be more engaging, deliberately structured to involve a range of 

cognitive processes, and oriented toward deeper understanding,” (Frechtling, Merlino, & 

Stephenson, 2015, p. 29).  To truly reflect some of these recommendations, changes must be 

made to curriculum and pedagogies (Frechtling, Merlino, & Stephenson, 2015).   

Calculus reforms of the late 1980’s and 1990’s emphasize similar recommendations 

calling for technology to be used to help students move away from as much algebraic 
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manipulation, reduce the amount of tedious calculations, use visualization, and to explore 

mathematical situations and call attention to calculus needing to include more modern 

mathematical ideas, more realistic applications from various disciplines, and more conceptual 

understanding (Muhundan, 2005).  There have been repeated calls to reform mathematics 

education to improve student understanding and performance including making use of 

calculators and computers (National Council of Teachers of Mathematics [NCTM], 1974, 1980, 

1989, 2000).  The change requires mathematics educators to be open to the use of technology, 

organization of topics, and what counts as mathematical thinking (Kaput, 1997).   

Technology in the mathematics classroom has the potential to improve students’ learning 

and students’ attitudes and motivation levels toward mathematics (Muhundan, 2005).  

“Mathematics programs must take full advantage of the power of calculators and computers at all 

levels” (NCTM, 1980, p. 8).  “Computer technology is changing the ways we use mathematics; 

consequently, the content of mathematics programs and methods by which mathematics is taught 

are changing” (NCTM, 1989, p. 2); “technology is essential in teaching and learning 

mathematics; it influences the mathematics that is taught and enhances student’s learning” 

(NCTM, 2000, p. 24).  Technology has the potential to move mathematics instruction away from 

manipulative skills and toward “developing concepts, relationships, structures, and problem-

solving” (Corbitt, 1985, p. 244).  To affect students’ understanding and attitudes, the inclusion of 

technology must be considered and as advances in technology have been made this consideration 

must go beyond the use of a graphing calculator, which is the dominant form of technology in 

calculus classes (Selinski & Milbourne, 2015).  When considering technology, it is important to 

consider technology that could be beneficial outside of the classroom as well.  “With 

mathematics seeing an increasing focus on computation, mathematics education should not be 
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far behind in its pursuit to understand the teaching and learning of computing within 

mathematics” (Lockwood, DeJarnette, & Thomas, 2019, p. 1).  “We are living in an ever-

evolving computerized age, and we are seeing trends in mathematical research and mathematics 

education research that reflect our society” (Lockwood, DeJarnette, & Thomas, 2019, p. 1).  

With the importance of such computational tools growing within mathematics, there has also 

been a rise in research on these tools in mathematics education (e.g., Cline et al., 2019; Jones & 

Hopkins, 2019; Kilty & McAllister, 2019) and must continue to be studied.   diSessa (2018), 

Lockwood, DeJarnette, and Thomas (2019), and others encourage mathematics educators to 

research how their ideas of how computers and computational tools can be used in mathematics 

learning and assert that there is still much to be studied and developed in effective learning and 

learning of computing within mathematics.   

The inclusion of technology and computing into the calculus classroom, however, 

requires more than simply adding it to how students can solve problems.  To best serve students, 

including technology in the mathematics classroom calls for revamping curriculum and 

modifying instruction (Dossey, Mullis, Lindquist, & Chambers, 1988).  In 1987 a national 

colloquium was held to discuss improving calculus and a report was produced titled Calculus for 

a New Century: A Pump Not a Filter, which described support for reforming calculus and to 

modernize it; “We need to teach calculus in a way that facilitates complex and sophisticated 

numerical computation in an age of computers.  Somehow or other we have to make calculus 

exciting to students,” (The Mathematical Association of America, 1988, p. 9).  More than thirty 

years after this recommendation, this is still important to consider. 

The 1970s and 1980s saw rise to publications on a finite approach to calculus 

incorporating computational tools (Gordon, 1979; Ralston, 1984; Hoffman, 1989), and during 
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that time it was identified that computers were only going to grow in importance and use in daily 

life for all and in all facets of life, including mathematics (Gordon, 1979).  The computing power 

at the time was a limiting factor in the implementation in the classroom.  In the early 1990s, in 

response to the mathematics education community’s call for improving calculus, there was a 

flurry of research on innovative ideas of teaching calculus, many of which incorporated 

computers, mathematical programming languages, and other computational tools in calculus 

courses (Tucker, 1990).  There is promise in this prior research on how interventions such as 

these could positively impact students’ understanding of and attitude toward calculus.  Research 

on similar technologies has continued to the present, evolving as technology progresses, 

reporting similar results (e.g., Cline et al., 2019; Cetin & Dubinsky, 2017; Fenton & Dubinsky, 

1996; Heid, 1988; Jones & Hopkins, 2019; Kilty & McAllister, 2019).   

Motivated in part by previous research and the researcher’s own classroom experiences, 

one potential intervention that could have an impact on student achievement and attitude toward 

mathematics, specifically calculus, is to teach calculus, at least for some students, using 

computational labs to introduce students to calculus topics, which could take full advantage of 

today’s computational tools and update how students learn calculus.  The computational labs 

suggested in this project include topics that connect calculus to other disciplines, often include 

real data sets, frequently introduce students to topics through finite and discrete elements, and 

introduce students to new problem-solving techniques with technology new to them.  Analyzing 

real world problems using computational tools is more reflective of how math and other 

professionals, including STEM and non-STEM professionals, use mathematical knowledge 

outside of the classroom.  Computing can bring mathematics education more in line with 

professional practices (Weintrop et al., 2015).  There is a level of authenticity and real world use, 
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both mathematically and for computational tools, when they are applied to mathematics and 

science activities (Weintrop et al., 2015).  Many who use mathematics in their careers or in their 

workplace are not doing it with paper and pencil, especially not for complex scenarios that arise 

from real world situations, but changes have not been reflected in mathematics curricula and 

pedagogy, while changes have arisen in other disciplines including physics, chemistry, and 

economics (The Mathematical Association of America, 1988).   

Demands on today’s college-educated professionals require them to be “creative, 

confident, competent problem-solvers, and clear, critical thinkers”, which can be developed in 

part in their exposure to undergraduate mathematics that includes modeling, inquiry, and using 

technological tools to solve problems from all disciplines (Arney, 2009, pp. 94-95).  When 

looking at student attitudes of mathematics, one major complaint is the lack of relevance and 

connection to the outside world. “Students see mathematical tools for the life sciences and social 

sciences as useful, interesting and beautiful when they learn to use them in realistic applications 

and when computers do the calculations” (Hoffman, 1989).  The use of modern technology can 

be extremely beneficial for students to learn calculus with true business applications, especially 

for students with weak math skills (Liang & Pan, 2009) and negative attitudes.  The use of 

computational labs could provide the relevance and real world applications students are craving. 

Research reveals that there is tension between how calculus can be taught at the post-

secondary level to deal with the diverse needs of students from different majors that are all 

required to take calculus (Rasmussen, Marrongelle, & Borba, 2014) and what those students 

need to be exposed to and learn in their undergraduate calculus course.  Students from economics 

or business do not necessarily need the same calculus as mathematics or engineering majors.  

The President’s Council of Advisors on Science and Technology (2012) details that in response 
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to the negative impact these introductory mathematics courses can have on students, client 

disciplines are no longer satisfied with how students are emerging from calculus courses and 

recommends the faculty from the client disciplines develop curricula for and teach the 

mathematics courses.  Mathematics educators must take note of this and make appropriate 

changes.  Perhaps a more modern approach that reflects technology used in the workforce, 

including coding and applications to real life scenarios, would allow students to see math come 

alive, improve their attitudes toward it, and impact their conceptual knowledge of calculus.   

The current study is an attempt to empirically determine the extent to which using 

computational labs with business applications to introduce students to calculus topics in an 

undergraduate Business Calculus class affects students’ conceptual knowledge gains in calculus 

and their attitudes toward mathematics.  Business Calculus is an ideal course for implementation 

of computational labs to introduce students to calculus topics because it is often extremely 

daunting to undergraduate business students (Depaolo & Mclaren, 2006).  “Business students, 

although able, are often math phobic.  Courses should strive to lessen math phobia, enable 

students to be more comfortable with mathematics, and help students appreciate the relevance of 

mathematics,” (Lamoureux, Beach, & Hallet, 2000, p. 19).   Many universities report Business 

Calculus as a course with high D, F, and withdraw rates, describe it as a course where a high 

level of resistance to mathematics is present, and note that it is often comprised of students that 

are unprepared for and unexcited to take the required course (Depaolo & Mclaren, 2006; Liang 

& Pan, 2009).  Hoffman (1989) points out that calculus has been inappropriate for social and life 

sciences since teachers use concocted real life examples, but students still perceive much of what 

they have been learning in these calculus classes as something they would never use outside of 

the classroom.  Challenges to what is taught and how it is taught also come from students asking 
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when they will ever use any of what they are learning in their future careers and ask why they 

cannot work the problems on the computer like they do in their business classes and as reflected 

by professionals.  Calculus can be reconceived with the computer, which will allow for 

development of courses that can allow for more applications outside of the concocted examples 

(Hoffman, 1989).  Motivation, participation, and interest are all shown to improve in business 

calculus classes when computers are allowed as an aid and more emphasis is placed on 

understanding and application (Judson, 1990).  The age-old student question of “why do I have 

to learn this stuff?” is gone because students are allowed to see the calculus in action with real 

applications and are less mired by the stress of by-hand skills and techniques (Judson, 1990).   

While there is promise in previous research and recently there has been an increase in 

research on computational tools in mathematics education, there is need for further study of such 

tools in various introductory settings to examine how these can affect students’ experiences in 

understanding and attitude of calculus.  More empirical research must be done if mathematics 

educators are to be convinced to use computational tools in calculus to modernize how students 

learn it, which may potentially contribute to gains in understanding and improve students’ 

attitude toward mathematics.  

Purpose of the Study 

 This study investigates students’ conceptual understanding of calculus and attitudes 

toward mathematics in a one-semester Business Calculus course where students are introduced to 

calculus topics using computational labs.  Investigating student gains in conceptual 

understanding from the beginning of the semester to the end of the semester provides empirical 

evidence about the effectiveness of computational lab activities on conceptual knowledge.  

Students’ conceptual understanding of calculus is measured through the administration of the 
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Calculus Concept Inventory, an assessment tool that focuses only on conceptual topics covered 

in first semester calculus, as a pre-test and post-test, and through analysis of student comments 

on labs.  Studying students’ attitudes of mathematics determines if using computational labs in 

Business Calculus has an impact on students’ attitude toward mathematics.  Students’ 

mathematical attitudes are considered through the Mathematics Attitudes and Perceptions Survey 

and student comments.  Findings from this study have implications for mathematics educators 

who are looking to find ways to make mathematics, specifically calculus, more modern, relevant, 

applicable, understandable, and enjoyable for the masses that are now required to take it.   
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Definition of Terms 

 The following definitions are given to familiarize the reader with key terminology used in 

this research.  

Business Calculus.  At the university where this study took place Business Calculus is a 

1000-level mathematics course that is a requirement for all business majors and can fulfill the 

general education mathematics requirement for some other majors as well.  The course is called 

Calculus for Business and Social sciences.  The description of this course is: “An introduction to 

the concepts of differentiation and integration with emphasis on their applications to solving 

problems that arise in business, economics, and social sciences.”  Students that take this class 

often fulfill their mathematics requirement with this course and beyond this they may also be 

required to take a statistics class for business majors.   

Computational.  The use of the word computational or computing follows Lockwood et 

al. (2019) definition of computing within mathematics, which is “the practice of using tools to 

perform mathematical calculations or to develop or implement algorithms in order to accomplish 

a mathematical goal” and “from a calculation perspective, computing involves using a tool to 

complete numerical or symbolic calculations.”  Here the tool used is a computer on which 

Jupyter notebooks running Python were employed.  The 2005 Joint Task Force for Computing 

Curricula report defines computing stating, “In a general way, we can define computing to mean 

any goal-oriented activity requiring, benefiting from, or creating computers” (p. 9).  

 Computational labs.  Computational labs in this project were teacher-generated Jupyter 

notebooks, running Python, in which students were presented with notes, formulas, some teacher 

generated functions and pre-written code, and visuals.  Students were asked to follow along 

through the lab in class as it was projected onto the big screen.  Students had to add lines of code 



 13 

as the teacher did to get the results they wanted.  The teacher and students worked through 

problems together starting with a mathematics problem and having to type out code to work 

toward a solution.  Students also had anywhere from 6-9, often multi-part, problems at the end of 

each lab that they had around one and a half weeks to complete.  Completing each problem often 

involved students executing multiple steps and multiple lines of code.  Some problems involved 

importing data sets from internet sources such as the CDC or financial data from Yahoo, and in 

other problems students were given smaller data sets and asked to input them into a format the 

computer could understand to then work with.  Students employed commands from symbolic and 

numerical libraries as well as the data science library, pandas.  The majority of the problems 

students were asked to complete at the end of labs were presented in context of a business or 

economic problem.  

 Conceptual calculus knowledge.  Conceptual knowledge is defined as “implicit or 

explicit understanding of the principles that govern a domain and of the interrelations between 

units of knowledge in a domain” (Rittle-Johnson et al., 2001, p. 346) and “thus, there is general 

consensus that conceptual knowledge should be defined as knowledge of concepts”, (Rittle-

Johnson & Schneider, 2015).  Using these components of the definition of conceptual knowledge 

and considering the concepts that are almost universally covered in introductory calculus classes, 

which are limits and continuity, derivatives, and integration (Burn & Mesa, 2015), conceptual 

calculus knowledge would include the underlying concepts of these, not including the computing 

of these by hand (i.e. computing derivatives or integrals using the rules).  Epstein, the developer 

of the CCI, uses the term conceptual calculus knowledge in describing what the CCI assesses, 

which he states to have domains of functions, derivatives, and limits/ratios/the continuum. 
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 Visualization.  Discussion of visualization emerges from student comments on how they 

thought the labs helped them learn.  The way the term visualization is used in this study is in 

accordance with Zimmermann and Cunningham (1991), Hershkowitz et al. (1989), Arcavi’s 

(2003) definition of visualization as follows: “visualization is the ability, the process and the 

product of creation, interpretation, use of and reflection upon pictures, images, diagrams, in our 

minds, on paper or with technological tools, with the purpose of depicting and communicating 

information, thinking about and developing previously unknown ideas and advancing 

understandings” (p. 217).  Rosken and Rolka (2006) state:  

This definition emphasizes that, in mathematics learning, visualization can be a powerful 

tool to explore mathematical problems and to give meaning to mathematical concepts and 

the relationship between them. Visualization allows for reducing complexity when 

dealing with a multitude of information. (p. 458) 
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CHAPTER 2: Literature Review 
 

Chapter 2 provides a review of literature in the areas of rationale for studying college 

calculus, calculus and I-STEM education, business calculus, computing technology in 

mathematics education, and attitude.  The literature review also provides an overview of the 

instruments used in this study.   

Introduction 

Students across most STEM majors and business majors are required to finish calculus, 

however, the report of the President’s Council of Advisors on Science and Technology (PCAST) 

reported that college students “describe the teaching methods and atmosphere in introductory 

STEM classes as ineffective and uninspiring” (PCAST, 2012, p. 5), which may mean that what is 

taught and how it is taught may be a poor fit for the vast amount of students tasked with 

completing calculus.  The implications of these findings are a need for better teaching of 

introductory STEM classes such as calculus.  The changes that could have an impact require 

mathematics educators to be more open to the use of technology, organization of topics, what 

counts as mathematical thinking (Kaput, 1997), and to continue to pursue and research ways of 

improving the courses.   

Calculus 

Introductory calculus has long been a required course for most STEM majors and 

business majors as well.  Mathematics educators have continuously been developing and 

studying ways to make this course more effective for their students.  While there have been 

changes, overall the content and pedagogy have remained relatively stagnant and may be 

contributing factors for students lamenting that introductory STEM courses, such as calculus, are 

“over-stuffed” with material that is taught too quickly, typically with lecturing, lacking 
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“application, illustration, or discussion of conceptual material” (Seymour, 2006, p. 4), and 

seemingly disconnected from their interests or intended discipline.   

Introductory calculus classes are affecting students’ attitude and understanding of 

calculus.  Calculus is still a filter causing many students to change majors or career paths.  In any 

given calculus class around 25% of students achieve a D, F, or withdraw from the course 

(Bressoud, Carlson, Pearson, & Rasmussen, 2012).  A national study of calculus found that of 

those students that do complete the course only about two-thirds self-report being able to 

correctly compute derivative and integrals, only 40% feel confident in their ability to use ideas of 

calculus, and less than 30% felt that the course increased their interest in mathematics (Bressoud, 

2015).  This same study found that introductory calculus is exceptionally effective in lowering 

students’ confidence in mathematics, enjoyment of mathematics, and desire to take any more 

mathematics classes (Bressoud, 2015).  Such findings indicate an assiduous need to continue to 

study ways in which calculus may be taught to impact student learning and attitude and research 

suggests that finding more innovative and engaging teaching methods could improve such 

student outcomes.  This study contributes to this literature by examining the effects on students’ 

learning and attitude by one particular innovative strategy in teaching calculus.   

Calculus Content Covered 

The content of a traditional introductory college calculus course covers basic differential 

calculus and some integral calculus (Burn & Mesa, 2015).  A national study found that, in 

general, instructors felt they had enough time to help students understand difficult concepts and 

did not feel rushed to get through all of the required material (Burn & Mesa, 2015), however, 

students do not seem to feel the same way, often reporting feeling rushed, the course is packed 

with too much material, and perceptions of not having enough opportunities to learn the more 
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difficult ideas of calculus in the course (Hagman, Johnson, & Fosdick, 2017).  The content 

covered must be considered:      

The content of Calculus I has remained relatively stable over the decades regardless of 

calls for a ‘lean and lively calculus’ (Douglas, 1986), the calculus reform movement of 

the 1990s (Hughes-Hallett, n.d.), or the general trend toward reducing content in 

mathematics courses (Hillel, 2001).  To be sure, course content in Calculus I has changed 

over time. Delta-epsilon proofs are no longer considered a standard part of the Calculus I 

curriculum. The ‘rule of four’ calling for a mix of graphical, numerical, symbolic, and 

verbal approaches has had a lasting impact on current textbooks. The availability of 

technology has enabled increased emphasis on visualizing graphs of functions and their 

derivatives and other graphical connections. (Burn & Mesa, 2015, p. 46)   

It is not to say that calculus has not changed at all, because indeed it has, but one must continue 

to consider how it is impacting students and what content can benefit the particular population.  

A traditional calculus course is typically targeted toward supporting students of majors 

such as mathematics, chemistry, physics, or engineering, however, students of many other 

disciplines may be tasked with taking an introductory calculus course and thus the traditional 

content may not be wholly appropriate.  There has been some fracturing of calculus into courses 

targeting specific disciplines, however, tailoring specific calculus courses for the various types of 

needs of different disciplines may not be possible at all institutions because of staffing and 

enrollment numbers.  When courses are fractured into different courses based on the discipline 

they are serving some content is changed based on what that discipline needs, and one major 

change is the applications presented, such as the course in this project, but the content largely 

remains the same. 
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The content of first semester calculus courses nationally has four major content areas, 

which cover basic differential and some integral calculus (Burn & Mesa, 2015).  These content 

areas include: limits and continuity, derivatives, integrals, and sequences and series (Burn & 

Mesa, 2015).  This has remained relatively stable over the last several decades (Burn & Mesa, 

2015).  Typically Calculus I includes the “rule of four” – graphical, numerical, symbolic, and 

verbal- and can be seen in current textbooks (Burn & Mesa, 2015, p. 46).  The traditional 

Business Calculus courses in this study aligns with the aforementioned and cover limits, 

continuity, the derivative, differentiation rules, applications of the derivative, exponential and 

logarithmic functions, the definite and indefinite integral, and basic methods of integration much 

like Narasimhan (1993) reports calculus courses for students of non-science client disciplines.   

Limits and Continuity.  Concepts of the limit are seen as important in first semester 

calculus; yet limits are often a stumbling block for students in first semester calculus 

(Parameswaran, 2007).  Students are often “expected to develop an intuitive understanding of the 

limiting process, calculate limits using algebra, estimate limits from graphs or tables, and find 

limits at infinity” (Burn & Mesa, 2015, p. 46).  

The concept of limit is the cornerstone of several related concepts such as continuity, 

differentiability, integration, convergence of sequences and series, etc.  The precise, 

formal definition of the concept of limit is so complex and counterintuitive that it fails to 

bring out readily the simple and intuitively obvious ideas, which led to it in the first 

place.  The definition of a limit involving universal and existential quantifiers is designed 

to solve mathematical difficulties and not psychological ones. (Williams, 2001, p. 342)  

 Limits are used in the limit definition of the derivative and moving from Riemann sum to 

the integral.  Continuity is also often covered and involves an intuitive understanding of it and 



 19 

being able to determine it in terms of limits using the definition (Burn & Mesa, 2015).  All of 

these are covered in the traditional sections of the Business Calculus course in this study.  One 

main change in content in the experimental course in this study is less of a focus on limits, 

especially computing them algebraically.  Students will not be expected to do so, but will need 

an intuitive understanding of limits to extend from finite beginnings to the study of continuous.  

The formal definition is not taught in either variant of the course.  The alternate course 

places less of a focus on limits than the traditional course; the finding of limits algebraically is 

not taught.  Finding limits graphically and an intuitive understanding of limits are taught.  

Continuity is not formally taught, as in using the definition of continuity; continuity was not 

determined to be critical content by calculus experts (Burn & Mesa, 2015), and thus is an area 

that is not stressed.  Continuity also has a lesser place in this section because many of the 

problems will not start as continuous, but rather be situated in finite, discrete data points.  For 

example in the income in equality lab example, the data is five data points, to which later 

students fit a curve.     

Derivatives.  Calculus courses typically cover four areas related to derivatives: the 

concept of derivatives, computation of the derivative, graphical connections and visualization of 

the derivative, and applications of the derivative (Burn & Mesa, 2015).  Teaching the derivative 

often begins with the concept as instantaneous rate of change, the limit of the difference quotient, 

and then progresses into derivatives of basic functions and derivative rules for computing the 

derivative (Burn & Mesa, 2015).  The traditional Business Calculus course covers these areas.  

Derivative rules include the power, sum, product, quotient, and chain rules.  Derivatives of 

exponentials and logarithmic functions are covered, but trigonometric functions are not taught, 

which is standard for Business Calculus at the university where the study took place and similar 
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to Narasiamhan’s (1993) discussion of a calculus course for non-science client disciplines.  

Implicit differentiation and related rates are not covered in this course, although typically 

covered in a standard Calculus I course.  Derivatives and their graphical connections are studied 

including approximating rates of change from graphs and tables and used in the analysis of f, f’, 

and f”.  Applications of derivatives are covered including interpreting rates of change and 

optimization.  Applications of the derivative in the Business Calculus course typically revolve 

around marginal analysis and optimization problems.  In the alternate version of the course, as in 

the traditional class, students are shown how to compute derivatives and learn the rules for 

finding derivatives because at the time of implementation these are required outcomes of the 

course.  Overall less time is spent on computing these to allow time for labs and more time for 

applications of derivatives.  The concept of derivative is developed first through finite 

differences.  Applications of differentiation are covered.  Similar to the traditional course these 

include optimization and marginal analysis. 

Integrals.  Burn and Mesa (2015) found that content involving integrals includes the 

indefinite integral as an antiderivative, the definite integral as a limit of Riemann sums, 

interpretation and applications of the definite integral, and techniques of integration with basic 

functions and substitution.  These are covered in the traditional course.  The traditional Business 

Calculus course in this study tends to include applications of integration related to business such 

as consumer and producer surplus.  In the alternate version of the course some time is spent on 

techniques for integration, as this is still part of the required course content, but overall less time 

is spent on this than in the traditional course.  Time is also spent on definite integrals and their 

applications.   
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Sequences and Series.  While sequences and series were reported to be one of the major 

content areas of calculus courses in Burn and Mesa (2015), these are not typically covered in the 

Business Calculus course at the university where the study took place and are not taught to the 

traditional group in the proposed study.  While sequences and series are given no attention in the 

traditional course, they are briefly touched on in the course with the labs.  Sequences are used in 

a lab to make connections to finite points and functions, connecting arithmetic sequences to 

linear functions and geometric sequences to exponential functions.    

Types of Questions.  In addition to the content covered, the national study of college 

calculus surveyed instructors about the types of questions faculty choose to include on 

assignments or exams of which 50% reported being comprised of skills and methods for 

computation, 20% on graphical interpretations of central ideas, 20% on solving standard word 

problems, 20% on solving complex or unfamiliar word problems, and 10% reported proofs or 

justification (Burn & Mesa, 2015, p. 48).  The highest percentage of problems were centered on 

skills and methods for carrying out computations, which aligned with the fact that two-thirds of 

surveyed faculty believed that understanding concepts in calculus comes after achieving 

procedural fluency (Burn & Mesa, 2015).   

This, however, could be called into question as we are living in a world where students 

have seemingly instant access to technology that can quickly perform some of these 

computations for them.  The time has arrived to question what content needs to be taught and 

how it can be taught in ways that may not compete with the computer but rather compliment it at 

least for certain populations tasked with taking the course where understanding of how the 

calculus concepts can be used in their selected field may be more beneficial.  The labs in this 

project remove some of the focus off of by-hand computations, allowing the computer to 
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perform these, and instead focus on using the concepts and uses of them.  Burn and Mesa (2015) 

recommend, “faculty modify assignments to more frequently include questions that require 

students to apply knowledge, make interpretations, or provide explanations related to the 

calculus I concepts” (p. 53).  These labs have elements that do these things; one such example 

being giving students data and simply asking them to create a model and help a company 

determine how to maximize their profits.   

Pedagogy of Calculus 
 

The relatively stable content in calculus tends to be taught using lecture, as lecture is still 

the dominant style of teaching for Calculus I (Larsen, Glover, & Melhuish, 2015).  Despite 

lecture being shown to be less-effective pedagogy, it is still college faculty’s primary 

pedagogical strategy (Seymour, 2006).  Research suggests that during lecture, students are only 

passively engaged and very few are actively engaged in constructing mathematics during it (Lew 

et al., 2016).  Recently, concern has risen as to undergraduate STEM course quality and 

instructor engagement because many are taught with traditional lecture driven methods 

(Frechtling, Merlino, & Stephenson, 2015).  There is voluminous research on other teaching 

practices in undergraduate calculus such as flipped classroom (e.g., Zack et al., 2015), 

homogenous grouping (e.g., Carnell et al., 2018), modeling approaches (e.g., Kilty & McAllister, 

2019), and many more ambitious teaching methods, but overall there have not been wide spread 

changes in pedagogy.   

The traditional sections of Business Calculus in this study will be taught using 

predominantly lecture.  Outside of lecture, students in this course will also have the opportunity 

to work during most class meetings with classmates on problem sets and during lecture or group 

work times students will be allowed and encouraged to ask questions.  The class also often 

allows for the popular exchange of IRE/F (initiation, response, evaluation/feedback) (Cazden, 
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1986; Hicks, 1995-1996).  All of which are described as typical student teacher interactions in 

the national study of college calculus and overall the course follows the five practices related to 

good teaching of introductory college calculus, which include creating a positive atmosphere 

where students are encouraged to ask questions, maintaining positive attitudes toward students’ 

mistakes, setting high, clear, and attainable expectations, having availability to answer student 

questions, and ensuring reasonable pacing of lectures and time for group work (Mesa, Burn, & 

White, 2015).  

Computational Labs.  The classes that receive the intervention in this project include 

lecture but also include computational lab activities.  There were six labs during the fifteen-week 

semester.  Examples of lab activities in calculus courses of Kowalczyk and Hausknecht (1994) 

and Basson, Krantz, and Thorton (2006) have five to six labs in the fifteen-week semester.  The 

labs were done using Jupyter notebooks.  The lab activities were used to introduce topics.  This 

structure is done because the labs introduce students to calculus topics often using discrete data 

points, elements such as finite differences, and business applications and then extends them to 

the more traditional continuous approach to calculus covered more in the lecture portion of the 

course.   

 Labs in a calculus course are not new and are a suggestion of the Mathematical 

Association of America’s Committee on the Undergraduate program in Mathematics’ 

subcommittee Curriculum Renewal Across the First Two Years (MAA CRAFTY) project’s 

recommendations for business to support student learning (Lamoureux, Beach, & Hallet, 2000).   

A review of literature revealed that labs in calculus courses take on a variety of forms and cover 

a variety of content (Leinbach, 1991).  Some labs are supplemental and optional for extra help, 

some include a separate lab section, some courses are completely laboratory, the content of the 
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labs varies, and the technology varies (e.g., Leinhach, 1991).  A calculus lab can be used as a 

“learning device to see how calculus applies to other courses and disciplines” and “helps students 

relate the rather abstract ideas of mathematics to non-mathematical ideas they have encountered 

in other courses” (Basson, Krantz, & Thorton, 2006, p. 346).  An example of a successful 

implementation of a calculus lab entailed enhancing the existing calculus course and having the 

main goal of the lab not be to teach additional material but to teach students to make connections 

(Basson, Krantz, & Thorton, 2006).  Successful calculus labs also seem to use real data (e.g., 

Basson, Krantz, & Thorton, 2006; Kowalczyk & Hausknecht, 1994), which this project also aims 

to do.  

Technology.  A pedagogical consideration that all teachers must make is the use of 

technology.  This is a distinguishing factor between the traditional and alternative Business 

Calculus courses that was studied.  Selinski and Milbourne (2015) assert that technology in the 

calculus classroom has increased as availability has increased and tends to include graphing 

calculators, computer algebra systems (abbreviated: CAS; i.e., Mathematica, Maple, and 

MATLAB), clickers, online homework systems, and computer simulations.  The graphing 

calculator, however, is the dominant form of technology used in the undergraduate calculus 

classroom (Selinski & Milbourne, 2015).  The graphing calculator was allowed in the traditional 

Business Calculus classes in this study.  The graphing calculator was not used to intentionally 

teach calculus but was used by students for arithmetic computations and graphing.  The national 

study of calculus makes note that some students reported their instructors using computer algebra 

systems (CAS – such as MAPLE, Mathematic, or MATLAB) to demonstrate mathematical ideas 

and some students were expected to use them as well (Sonnert & Sadler, 2015), but the graphing 

calculator was still the dominant form of technology students were expected to use.  Studies on 
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technology in the calculus classroom show mixed results (Selinski & Milbourne, 2015).  It is 

important to consider how different technologies could impact students’ learning and attitude in 

a calculus course.   

The Jupyter notebooks running Python are the technology employed in this study.  

Koehler and Kim (2018) support the use of Jupyter notebooks and Python in the mathematics 

classroom and provide information as to how it can be used.  Koehler and Kim (2018) assert that 

Jupyter notebooks and Python are easy to use even for teachers with little to no background in 

coding and computing and students can easily discover how technology can help them solve 

mathematics problems and communicate solutions to challenging and real problems.  Positive 

results were seen in a course designed for biology and chemistry majors using Jupyter notebooks 

because they can have many different types of cells, easy to use, and are easily shared (Smith, 

2016). Python is a popular, commonly used programming language for scientific computing and 

data science that has a large focus on ease of use and readability (Meurer et al., 2016).  SymPy, 

an open source computer algebra system written in Python, can also provide the basic operations 

of calculus (Meurer et al., 2016).  Technology is playing a growing role in the financial and 

business industries, and Python, with many open source financial libraries, is growing in 

importance (Hilpisch, 2016), so exposing business majors to this computing language could 

teach them a valuable skill they may be expected to use in industry. 

Computational Tools. The national study of calculus (Bressoud, Mesa, & Rasmussen, 

2015) does not mention the use of coding and computing in a programming language as will be 

used in this study, however, the use of software in mathematics has grown of late and it is known 

that these tools are useful for professional mathematicians, so students should be exposed to 

these tools.  Often software can make mathematical computation and inquiry quicker and more 
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accessible to those not advanced in their mathematical careers (Quinlan, 2016).  A recent study 

aimed to look at mathematicians’ attitudes toward software to teach and learn mathematics and 

sought to find any software that mathematicians recommended (Quinlan, 2016).  There is a 

commonly held stereotype that all mathematicians insist on doing calculations with pencil and 

paper although that may not be the case and these misconceptions may even have implications 

for teacher education.  Many university mathematics professors, surveyed in several recent 

studies, reported that technology was significantly important in mathematics and mathematics 

teaching (Lockwood et al., 2019; Quinlan, 2016).  University professors recommended software 

including MATLAB, Maple, and Python as well as others (Quinlan, 2016).  Overall there was 

support for technology in post-secondary mathematics courses, responses varied for technology 

inclusion in K-12, and recommended tools included Python, Maple, and MATLAB (Quinlan, 

2016).  There seems to be an overall lack of research in mathematics education journals 

connecting computational tools to practice, although there is recent growth in this area.  There is 

some research on mathematical programming languages such as Maple, Mathematica, and 

MATLAB but not as much on other tools such as Python that could more easily be used in other 

disciplines outside of mathematics.  With an influx of computational tools used in mathematics, 

it is an area that has seen a rise in research in the mathematics, and specifically calculus, 

classroom and where this project is focused.  “With mathematics seeing an increasing focus on 

computation, mathematics education should not be far behind in its pursuit to understand the 

teaching and learning of computing within mathematics” (Lockwood, DeJarnette, & Thomas, 

2019, p. 1).  diSessa (2018) encourages mathematics educators to empirically and theoretically 

flesh out their ideas of how computers and computational tools can be used in mathematics 



 27 

learning and calls for a clearer vision of how it will progress into the future.  This project is one 

ideation of how computational tools could be used in a specific calculus classroom.   

  Research on the use of Computational Tools.  The use of computational tools in 

mathematics education is not a new concept.  Discussion of computational tools in the classroom 

must include discussion of Seymour Papert, who was part of the creation of the computer 

programming language LOGO, which let students use mathematics to construct on the computer.  

Papert is behind constructionism and asserts that better learning comes from giving the learner 

better opportunities to construct (Harel & Papert, 1991).  In constructionism, learning happens 

when students are constructing a meaningful product, which could be a computer program or 

writing working code.  The theory supports that when students construct things concretely they 

are also constructing knowledge in their minds, and the new knowledge allows for them to 

construct more complexities outside the classroom, which continues to perpetuate the cycle of 

knowledge construction (Harel & Papert, 1991).  By using primitive rules that connect to what 

they currently know, learners can construct, or program, artifacts through which they can 

reorganize, reconstruct, and build on previous knowledge to produce new ideas (Wilkerson-

Jerde, Wagh, & Wilensky, 2015).  In Mindstorms, it is put forth:  

the child programs the computer.  And in teaching the computer how to think, children 

embark on an exploration about how they themselves think.  The experience can be 

heady: Thinking about thinking turns the child into an epistemologist, an experience not 

even shared by most adults. (Papert, 1980, p. 19) 

Papert uses the word computation to emphasize a thinking process not necessarily a sequence of 

linear steps (Jahnke, 1983).  Papert also supports that what was taught in mathematics was 

dependent on the technology available at the time (Jahnke, 1983).  
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Other investigations of computational tools in mathematics, and specifically calculus, 

classrooms have revealed mixed results both in understanding and attitude.  Computational tools 

could allow for mathematics to focus on the concepts rather than a large emphasis on the skills 

(Heid, 1988).  Heid, Blume, Hollebrands, and Piez, (2002) find many benefits to incorporating 

technology into the mathematics classroom including in conceptual understanding.  Analyzing 

previous research, Heid, Blume, Hollebrands, and Piez (2002) find that students perform just as 

well on test items that require computation and procedural skills as students who did not use 

computer algebra systems, CAS, in their class.  Studies have shown that students using CAS 

have overall conceptual understanding at or above a level of those not using CAS and students 

using CAS better understood concepts (Heid, Blume, Hollebrands,& Piez, 2002).  “CAS use 

allows more time for developing conceptual understanding and for enabling students to 

understand real world quantitative situations” (Heid, Blume, Hollebrands,& Piez, 2002, p. 588).   

There is promise in research of the early 1990s that communicating with the computer 

could potentially enhance the student experience in a calculus course.  A project was undertaken 

at Dartmouth in calculus courses where students explored calculus topics through programming 

in BASIC (Crowell & Prosser, 1991), which did not find overall improvement in understanding 

as measured by final exam scores, found ease of implementation, found mixed results on 

students attitudes toward the computer enhancing calculus, and still asked the questions of what 

is the computer’s place in calculus with CAS systems or programming and how would the 

traditional curriculum and pedagogy be revised to best incorporate the power computers could 

provide (Crowell & Prosser, 1991) both of which are still questions of today.  Fenton and 

Dubinsky (1996) developed ISETL language to help students more effectively learn mathematics 

beginning with the argument that “communicating with a computer requires a level of precision 
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that will help illuminate important mathematical ideas for students” (Lockwood, DeJarnette, & 

Thomas, 2019, p. 17).  In studying using Excel and solving algebra problems, a student 

responded that they improved from pre-test to post-test “because you have to think before you 

type it into the computer anyway . . . so it’s just like thinking with your brain” (Sutherland, 1994, 

p. 183).   

After calls for turning calculus into a pump rather than the filter in the late 1980s, an 

MAA report on Priming the Calculus Pump: Innovations and Resources discussed numerous 

projects on improving calculus at a variety of universities, many of which included the use of 

some type of technology and computing (Tucker, 1990).  These projects ranged from using 

BASIC, ISETL, Mathematica, Maple, and other mathematical programming languages and 

programming languages and in general found that these projects did no harm and did see a 

variety of benefits (Tucker, 1990).  While overall none of them found grand shifts in student 

learning or attitude because of such technology, many of them found overall positive results 

based on students’ comments and did not see negative effects on performance and many of these 

projects had not been long implemented at the time of reporting.  These projects were 

implemented in a time when not every student had his or her own computer, let alone a laptop, to 

bring to class with them daily.  In the early 1990s, it was recognized that the computing power of 

the future could empower students to do mathematics, however, it must be shown to them, which 

is demonstrated by:  

In the future, students are likely to have their own portable computer, which will be 

powerful enough to support a range of programming environments. The majority of 

students will not spontaneously use their computers for mathematical experimentation 
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unless this is supported by the culture of the school mathematics classroom.  (Sutherland, 

1994, p. 186) 

These projects were the start but did not spark wide spread adoption of the use of computers and 

computational tools in calculus education, as currently the graphing calculator is still the leading 

form of technology used in introductory calculus.  

The questions of using coding in mathematics, and overall STEM, education must 

continue to be studied considering the computing power is now more accessible and powerful 

than ever.  There seems to be another wave in researching how these tools can be used in 

mathematics classrooms, perhaps because the technology is now more accessible to all students.  

In teaching an upper level mathematics course for mathematics majors, Lovric (2018) used 

programming to investigate math problems and encourages more research in integrating 

programming and mathematics.  Berkeley Science Books claims to be “calculus without tears” 

and claims that computational calculus is easy compared to traditional analytic methods and does 

so through examples of physics and can be used for a wide variety of physical systems 

(Flannery, 2013).  An example in pre-calculus was found that is said to use “introductory 

programming (in Python) as a vehicle for strengthening student intuition and confidence in pre-

calculus concepts via hands-on simulation of physical phenomena, and thereby stimulate interest 

in more advanced study within these technical areas” (Freudenthal, et al., 2009, p. T4J-1).  

Koeher (2018a) has anecdotally reported positive results in the classroom getting students to 

investigate calculus concepts in Jupyter notebook.  Cetin and Dubinsky (2017) found that 

students learned concepts such as functions more effectively using ISETL; by writing and 

running their code students had to think about what the computer is doing with the code.  They 

explain that students had to define the function correctly in the program and then students really 
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begin to reflect when having to enter “f(2)”, see the result, and have to think about how the 

computer got the result (Cetin & Dubinsky, 2017, p. 74).  Benakli, Kostadinov, Satyanarayana, 

and Singh (2017) also report similar results when using hands on computer programming in R to 

solve problems of calculus, probability, statistics, and data analysis.  Using computational tools, 

like R, improves conceptual understanding of many difficult concepts from complex and abstract 

problems and improves problem-solving skills (Benakli, Kostadinov, Satyanarayana, & Singh, 

2017).  Cline et al. (2019) discuss integrating programming across an undergraduate mathematics 

curriculum that allows students to “actively engage in problem solving and collaboration on 

large-scale problems beyond those that are possible with traditional by-hand techniques” with 

benefits appearing especially for upper level students and upon entering the workforce.  Jones 

and Hopkins (2019) present results of a sophomore-level course that introduces students to 

mathematics and some programming, which include resistance, feeling over burdened trying to 

learn new mathematics and a new way of doing so, and frustration with syntax errors.  They also 

discuss the need for in class time to work on the projects and a buddy system for debugging and 

the importance of having “interesting and demanding problems”.  Kostadinov, Thiel, and Singh 

(2019) report positive student comments from learning to use RStudio with R and Python, which 

note that students felt it helped with visualization, students want to understand it better, and 

students support beginning to learn to solve problems this way as early as possible.  They also 

note that students, even those with some previous programming experience, are fearful of 

programming, and they face common challenges such as syntax and not loading required 

packages (Kostadinov, Thiel, & Singh, 2019).   

Many mathematics majors get exposed to some form of technology such as Maple, 

MATLAB, and LaTex, but it is important to also consider what the impacts of similar 
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technologies could be in a general education course, a course not designed as an upper level 

course, or one primarily composed of non-mathematics majors.  Using RStudio in a mathematics 

modeling and applied calculus course designed primarily for non-mathematics majors, Kilty and 

McAllister (2019) found improvement in “students’ self-perceived understanding of 

mathematical models and calculus” and gains in “students’ self-perceived abilities to recognize 

when the tools of mathematics can be used to describe a situation” (p. 16).  They also found that 

students appreciated the study of mathematics in ways relevant to their discipline and felt more 

comfortable using mathematics and mathematical software for real–life settings (p. 17).  Kilty 

and McAllister (2019) also note that students appreciate being able to study calculus and 

mathematics topics in ways that connect to other courses in their major and that instructors from 

those non-mathematics majors report students being more capable of using mathematics 

concepts in their courses.   

It is important to draw upon the findings of this previous research to further develop how 

computational tools can be effectively used in mathematics education.  It is also important to 

consider how these can be used in general education classes not just classes for STEM majors or 

upper level mathematics classes. 

In addition to research from mathematics education, one can also look to physics 

education for some inspiration. Chabay and Sherwood’s (2008) and Titus’ (2018) work in 

Physics also serves as inspiration for this project with use of computational tools and 

computational modeling.  Computation is a central tool for theory and experiment in physics 

(Chabay & Sherwood, 2008) and the same could become the case for mathematics.  Introductory 

undergraduate physics classes have traditionally introduced students to both theory and 

experiment and some are now evolving to include computation as well (Chabay & Sherwood, 
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2008).  The inclusion of computation brings the course up to date and makes it more in touch 

with real world practice and students’ lives (Chabay & Sherwood, 2008), as could similarly be 

said about traditional introductory undergraduate mathematics classes.  Just as conceptual 

understanding and skills of problem solving are goals for introductory mathematics courses, this 

is true of introductory physics courses, and the inclusion of computational activities can aid 

student learning of both of these (Chabay & Sherwood, 2008).  Also similar to introductory 

mathematics courses that are limited in their real world applications by students’ mathematical 

abilities, physics courses have the same problem; traditional courses were shaped by the limited 

technology and mathematical tools of the time (Chabay & Sherwood, 2008).  Some of the 

benefits of using computational tools in an introductory physics course are using multiple 

representations, combining knowledge to correctly write the concepts into the programs, 

exploration changing parameters, modeling and visualization of complex scenarios can be 

developed by producing simulations for idealized situations and moving to more complicated 

situation, and using a language like Python to write programs from scratch allows for no black 

boxes so students must describe the situations correctly mathematically and apply physics 

principles correctly (Chabay & Sherwood, 2008).  Titus (2018) does similar work getting 

students to use Jupyter notebooks and requiring introductory calculus-based physics classes to 

write programs using GlowScript.  In physics many believe that programming, even at an 

introductory level, is an important component of general education for students today (Chabay & 

Sherwood, 2008).  “Writing a program to solve a problem is a useful skill… programming offers 

practice in algorithmic thinking, which is a powerful intellectual tool” (Chabay & Sherwood, 

2008, p. 308).  Chabay and Sherwood acknowledge that the inclusion of a computational 

component to introductory courses requires a rethinking of the curriculum, but support that that 
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would provide the opportunity to truly evaluate the goals of the course, not assume the traditional 

methods and content are ideal, and to reshape courses since there are no longer such limitations 

in technology and mathematical tools as when traditional courses were conceived (2008).  The 

same can be said if computation is to be included in introductory mathematics course, but it can 

also not be assumed that traditional content and practices in calculus courses are ideal now with 

data from student performance and attitudes supporting that the traditional practices are not.  My 

own experiences in physics classes taught with computational tools, throughout an entire physics 

major, inspired me to implement such tools in my classroom in a mathematics course.  

Calculus Related to STEM 
 

Much of the attention given to calculus and STEM education relates to calculus being 

seen as a challenging course that can force students out of STEM majors as well as out of the 

STEM career pipeline.  STEM fields typically require their majors to complete at least one 

semester of calculus.  Students on the “STEM path should be prepared to apply their 

understanding of various calculus concepts to their STEM fields.  Therefore, current calculus 

students should have the ability to connect and apply their understanding of rate of change to 

another STEM domain” (Zeeuw, Craig, & You, 2013).  Calculus, for many STEM and some 

non-STEM majors, is the course that prevents them from proceeding toward their intended career 

and can often be seen as a filter for weeding students out of that field.  “Calculus is a critical 

filter in this pipeline, blocking access to professional careers for the vast majority of those who 

enroll” (The Mathematical Association of America, 1988, p. xi).  In 1987 a national colloquium 

was held to discuss calculus as a pump not a filter; the attention paid to this was to prepare the 

next generation of scientists, engineers, and an acknowledgement to sustain American 

businesses, academia, and industry (The Mathematical Association of America, 1988).  This 

does not seem to have changed much as Bressoud et al. (2013) emphasized the importance of 
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Calculus I for retention in STEM, finding that each fall semester around 300,000 college and 

university students, many in their first post-secondary semester, take Calculus I; Calculus I for 

many of these students remains a filter, which can dissuade even some of the strongest students 

from pursing careers in science or engineering.  The President’s Council of Advisors on Science 

and Technology (PCAST, 2012) found that students often leave STEM degrees because of 

courses, such as calculus, being taught in an unwelcoming and uninspiring manner with students 

referring to them as “frequently uninspiring, relying on memorization and rote learning while 

avoiding richer mathematical ideas” (PCAST, 2012, p. 28).  Undergraduate STEM retention 

rates have been correlated with success in first calculus courses, which is seen as a gateway 

course for all STEM majors and minors (Mosina, 2014).   

While typically thought of as the filter for STEM degree attainment, calculus can often 

serve as a screening course for business and social science students as well (Brito & Goldberg, 

1988).  Even in 1987 in discussions of calculus for business and social sciences, leaders in the 

field called upon mathematics departments to collaborate with other disciplines including 

interdisciplinary seminars, co-teaching of courses, and revision of content for mutual interest 

(Egerer & Cannon, 1988).  It seems these were calls for interdisciplinary work similar to 

integrative-STEM education.  

Calculus and STEM Integration.  In searching for how calculus has been used for 

integrative-STEM education, it can be seen that this is an area that needs to be developed.  

Calculus is a branch of mathematics that has applications across numerous disciplines, however, 

many students leave the course seeing it as algebraic manipulation, miss the beauty of its 

connections to other disciplines, and only about forty percent report a level of confidence in 

being able to use the ideas of calculus (Bressoud, 2015).  Calculus was developed to solve real, 
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practical problems.  Calculus, including many formal definitions and procedures, developed out 

of investigations of practical problems, which were interdisciplinary in nature such as astronomy, 

probability theory, fluid dynamics, and electromagnetism (Knill, n.d.).  Calculus has applications 

across numerous disciplines from most sciences such as physics, chemistry, and biology, to 

statistics, engineering, and economics, so it should be used as an integrator.  Research suggests 

that when students engage in math problems that are situated in real world contexts, it helps 

reveal students’ conceptual understanding and difficulties with certain math topics (Mkhatshwa, 

2017); this is much like the intentions of Integrative-STEM (abbreviated: I-STEM) education. 

Gravemeijer et al. (2017) assert that mathematics is underemphasized in the current push 

for STEM integration, and the National Council of Teachers of Mathematics emphasizes that 

mathematics cannot be trivialized in integrative-STEM education (Larson, 2017).  These may be 

contributors as to why there is limited research on calculus being used as an integrator for 

STEM.   

There is literature on needing to get STEM majors successfully through calculus (e.g., 

Carver et al., 2017; Norton et al., 2018), but there is limited information as to how calculus can 

be used for integration.  Examples of calculus and integrative-STEM include using e-pathways to 

improve student retention in calculus for STEM majors (Mosina, 2014), use of interactive tools 

such as graphical user interface to get STEM majors to see fundamental concepts in calculus and 

provide them with visual and intuitive understanding of typically abstract mathematics concepts 

(Goncalves, Hobbi, & Golnabi, 2016), incorporating problem based learning into mathematics 

courses for engineering students (Frank & Roeckerath, 2016), use of calculus to model global 

climate change as part of  a multidisciplinary program to show that some questions have to cross 

disciplines to get answers (Hamilton et al., 2010), use of projects that allow students to 
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incorporate calculus with their particular interests and industry (Fox, et al., 2017),  

“interdisciplinary lively application projects in calculus courses” that allow for students to 

experience “the real-world applications of mathematics in science and engineering” (Farrior, et 

al., 2007, p. 50), and an interdisciplinary collaboration between AP Calculus students and 

engineering students to develop CAD and produce cross sectional areas (Berkeihiser & Ray, 

2013).   

The use of calculus as a way to integrate STEM disciplines seems somewhat limited in 

published research.  Some of this may be a result of some students not taking calculus until the 

tertiary level where collaboration between the STEM disciplines and other disciplines outside of 

STEM may be limited and other students taking calculus as a high school course where 

interdisciplinary work may also not be as prominent.  With research revealing that calculus is a 

course that is a gatekeeper and often seen as a challenging course (Bressoud, Mesa, & 

Rasmussen, 2015), it seems that it is a place where integration of other disciplines to show its 

connections and relevance would be wholly appropriate and valuable.  If a first college calculus 

course is taught well, it “could be an opportunity to have them leave not hating math, but 

actually bring them in” and “for those who continue in their chosen non-STEM field, whether 

business or social work having more people who are STEM- and calculus-literate would be 

great” (Ellis as cited in Courage, 2016).   

There is also limited research on how Business Calculus, specifically, could be an 

integrator for STEM.  The National Council of Teachers of Mathematics highlights that there are 

mathematical models involving finance that do not necessarily connect the science, engineering, 

or technology (Larson, 2017) lending to the opportunity for integration of other disciplines as 

well.  There are numerous applications of calculus in the field of business beyond other STEM 
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disciplines, and students of business need to be shown such examples.  Several examples of 

connections between business and STEM include: Brinkmann et al. (2016) suggest that STEM 

students are increasingly choosing business related classes to fill elective spots in their 

undergraduate degree to complement their STEM skills, K-12 schools creating programs to 

facilitate business and technical exploratory programs that have emphasis on business and STEM 

that foster applications of business, science, and math concepts in technological and business 

systems (Chase, 2010), and connecting business and STEM education in undergraduate research 

(Bouldin et al., 2015).  “Business is interdisciplinary.  The practices, policies, and norms that 

govern business are grounded in social science, and the goods and services that businesses 

produce are themselves the fruits of science, engineering, arts, and humanities” (Bouldin et al., 

2015, p. 17).   

While it is acknowledged that the country needs more STEM professionals (PCAST, 

2012), it is also documented that there is an increasing demand for business professionals 

capable of integrating science and technology into their business operation and management 

(Ledley, 2012; Ledley & Holt, 2014; Ledley & Oches, 2013; McCann, 2006).  Focusing on 

science, Bouldin et al. (2015) detail that many business majors take an introductory science 

course that typically fulfills their general education requirement and is the last formal science 

course they take, which is usually introductory in nature and often has little context for applying 

the scientific knowledge outside of the science discipline.  Because of such, Bouldin et al. (2015) 

propose interdisciplinary courses and experiences that allow students to see the connections 

between the disciplines.  The same may be, at least in part, said of Business Calculus.  Business 

students required to take calculus often miss seeing the connection between calculus and the rest 

of their courses leaving many of them “unmotivated and even resentful” (Narasimhan, 1993, p. 
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254), which this project hopes to remedy by providing more interdisciplinary connections 

utilizing modern technology.  

 Connecting this Project to Integrative-STEM.  As addressed above both calculus and 

business have connections across many disciplines.  Research, however, is limited on using 

calculus, specifically Business Calculus, to integrate.  This project would provide some research 

in this area.  Using computational labs would allow for the use of technology, specifically coding 

and real world problems as a method of problem solving and a way to introduce topics in a 

calculus classroom. The project also aligns with the National Council of Teachers of 

Mathematics recommendations of keeping a solid commitment to teaching, and not trivializing, 

mathematics when integrating (Larson, 2017).   

Authentic Contexts.  Integrative-STEM education calls for learning in authentic contexts.  

Introducing students to calculus topics situated within context outside of the classroom may 

allow them to better use the knowledge outside of the specific situation.  Being able to use 

mathematics knowledge, or recontextualize it, is a skill that needs to be developed for all future 

workers in a variety of industries (FitzSimons & Boistrup, 2017).  This is similar to problems or 

design challenges in Integrative-STEM education that foster learning because students are not 

only taught the abstract knowledge, but they are also provided with a context in which they can 

use it, which connects knowing, doing, participation, and authenticity (Sidawi, 2007).  Research 

shows that students are more motivated to learn when they are in integrative classes because the 

content becomes more relevant and connections can be seen between the STEM subjects and 

real-life situations (Satchwell & Leopp, 2002).  By seeing how calculus concepts can be related 

to scenarios outside of the specific discipline of mathematics and the classroom setting, perhaps 

students will be able to transfer and connect calculus concepts or at least have some appreciation 
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of the connections it does have.  For example, in a study looking into transfer of knowledge 

about slope, rate of change, and regression, a student was more able to reason and connect ideas 

of slope and regression when the problem was framed related to a situation of people and movie 

ticket prices rather than a problem situated only in classroom context (Nagle, Moore-Russo, & 

Casey, 2017).  Design challenges in I-STEM education are often situated in an authentic context 

from outside of the classroom (e.g., Wells, 2017).   

Authentic Ways of Doing.  The labs in the current project are not design challenges, such 

as in I-STEM education, but they will be situated in context outside of the mathematics 

classroom and will allow students to do so using tools often employed outside of the classroom.  

Analyzing real world problems using computational tools is also reflective of how math and 

other professionals, including STEM and non-STEM professionals, use mathematical knowledge 

outside of the classroom.  Computing can bring mathematics education more in line with 

professional practices; by 2020 one of every two STEM fields will require some level of 

computing (Weintrop et al., 2015).  There is a level of authenticity and real world use, both 

mathematically and for computational tools, when they are applied to mathematics and science 

activities (Weintrop et al., 2015).  Including computational tools in mathematics education can 

also potentially reach a wider audience than typically reached with traditional methods 

(Weintrop et al., 2015).  Some mathematicians argue that computational mathematics is 

approximation and not pure, but outside of academia many engineering and science problems are 

solved through approximate solutions arrived at computationally and then implemented in the 

“real world” (Gordon, 1979, p. 25).  Many economic marginal analysis problems and growth and 

decay problems are artificial when done continuously, but they are much more real in content 

and practice when done with computational tools (Gordon, 1979).  Many who use mathematics 
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in their careers or in their workplace are not doing it with paper and pencil, especially not for 

their complex scenarios that arise from their real world situation, but changes have not been 

reflected in mathematics curricula and pedagogy, while changes have arisen in other disciplines 

including physics, chemistry, and economics (The Mathematical Association of America, 1988).  

Zevenbergen (2004) asserts that studies of mathematics in the real world and mathematics in 

school have shown educators’ abilities, or lack thereof, to identify real world mathematics and 

introduce students to it in the classroom and that more of a link between school mathematics and 

real world mathematics can provide students with more meaningful activities, which this project 

intends to do.  The labs in this project aim to make meaningful connections between calculus and 

business and given them authentic ways of performing such applications. 

Exposure to undergraduate mathematics that includes modeling, inquiry, and using 

technological tools to solve problems from all disciplines can help students develop into 

“creative, confident, competent problem-solvers, and clear, critical thinkers” (Arney, 2009).  In 

1987 the Mathematical Association of America held a national colloquium to discuss improving 

calculus and a report was produced titled Calculus for a New Century: A Pump Not a Filter; in 

this report there is support for reforming calculus and to modernize it.  “We need to teach 

calculus in a way that facilitates complex and sophisticated numerical computation in an age of 

computers.  Somehow or other we have to make calculus exciting to students” (The 

Mathematical Association of America, 1988, p. 9).  In this report there is also discussion that 

calculus classes tend to be extremely oriented toward skills and techniques, but that they should 

be more concept and application driven (The Mathematical Association of America, 1988).  

There is still great importance placed on wanting students to walk away from first semester 

calculus with increased conceptual understanding, but what is emphasized and taught in the 
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classroom is driven by students spending large amounts of time using sample problems to 

compute derivatives and integrals (Heid, 1988).  Computational tools could allow for 

mathematics to focus on the concepts rather than such emphasis on the skills (Heid, 1988).   “In 

the real world we use computers for calculating, almost universally. In education we use people 

for calculating almost universally” (Wolfram, 2014, p. 1); this changes what mathematics might 

be of importance to be taught. “In school the professor formulates the [mathematical] problem 

and you solve it – you hope. In industry, you formulate the [mathematical] problem and the 

software solves it – you hope” (Keeler & Grandine, 2013, p. 41).  Gravemeijer et al. (2017) 

assert that the previous quote reflects “that we have to shift away from teaching competencies 

that compete with what computers can do and start focusing on competencies that complement 

computer capabilities” (p. S107).   

The National Council of Teachers of Mathematics state the view, “An excellent 

mathematics program integrates the use of mathematical tools and technology as essential 

resources to help students learn and make sense of mathematical ideas, reason mathematically, 

and communicate their mathematical thinking” (NCTM, 2014) and advises that students learn 

about math from problems that arise from outside of mathematics (NCTM, 2000).   This also 

aligns with the National Council of Teachers of Mathematics standards (2010), which call for the 

use for technology in the classroom, making connections to other mathematical topics and other 

disciplines, and for representing mathematical ideas in a variety of ways (National Council of 

Teachers of Mathematics, 2010).  Opening the mathematics classroom to different types of 

thinkers through computational tools and the mathematics that is actually taught could have an 

impact on students’ attitudes and conceptual understanding.  Mkhatshwa (2017), in studying 

Business Calculus students’ reasoning about optimization, discusses that students need to be 
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given opportunity to reason about these topics in multiple representations such as algebraically, 

textually, graphically, and numerically in contexts from outside of the classroom, which could 

also be applied to other topics in Business Calculus.  Since calculus is seen as “efficient at 

lowering students’ confidence, enjoyment of mathematics, and desire to continue in a field that 

require further mathematics” (Bressoud & Rasmussen, 2015, p. 144), perhaps opening space for 

the inclusion of modern technology, enabling different ways of knowing and doing could change 

that for some students required to take it.  

 Using Technology to Intentionally Teach.  The National Council of Teachers of 

Mathematics Principles and Standards for School Mathematics states the view,  

 Technology is not a panacea.  As with any teaching tool, it can be used well or poorly.  

Teachers should use technology to enhance their students’ learning opportunities or 

creating mathematical tasks that take advantage of what technology can do efficiently and 

well. (2000, p. 25) 

The technology used in this project is selected to intentionally support learning and aligns with 

the definition of Integrative-STEM education.  Integrative-STEM Education is defined as, 

the application of technological/engineering-design-based approaches to intentionally 

teach content and practices of science and mathematics education concurrently with 

content and practices of technology/engineering education. Integrative-STEM Education 

is equally applicable at the natural intersections of learning within the continuum of 

content areas, educational environments, and academic levels. (Wells & Ernst, 2012)   

The last sentence is important as the project goes outside of the traditional integrative-STEM 

education areas by also having the connection to business. This definition is also connected in 

that the project uses technology to intentionally teach mathematics concepts.  This project is 
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doing more than placing a computer in students’ hands to do some computation for them.  It is 

using the computer as a tool to intentionally teach calculus content.  Dubinsky and Yiparaki 

(1996) describe that 

 Computer experiences can be an effective way of not only helping students to construct 

reasonable schemas, but also to get them to reconstruct erroneous or incomplete 

conceptions.  The basic principle is that anytime you construct something on a computer 

then, whether you are aware of it or not, you construct something in your head.  By 

studying the connections the connections carefully, we have found it possible to induce a 

considerable amount of learning. (p. 10) 

In studying students using ISETL, Dubinsky and Yiparaki (1996) describe that when students are 

writing code in ISETL they think they are studying the syntax of it but in addition important 

mathematical ideas are learned because of how they have to type things in and the similarities to 

mathematical notation.  Cetin and Dubinsky (2017) found that students learned concepts such as 

functions more effectively using ISETL by writing and running their code, students had to think 

about what the computer is doing with the code.  They explain that students had to define the 

function correctly in the program and then students begin to reflect when having to enter “f(2)”, 

observed the result, and had to think about how the computer got the result (Cetin & Dubinsky, 

2017, p. 74).  In this project, for example, when a student must type “diffs” to compute finite 

differences or “sum” for summation in the introduction to integrals they may be thinking about 

what is going on.  Another example is when students are using Riemann Sums to compute area 

under the curve they must figure out how to type in length times width correctly, which causes 

them to have to determine how to define the width of the rectangle and correctly define the 

changing height of the rectangle based on the function they defined and then further developed 
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as students change the number of rectangles to better their approximations.  Some of the 

problems also involve real data, to which the students must determine how to mathematically 

model this data to the use calculus concepts and answer questions; this is done in part to teach 

students where those “given functions” come from and show them techniques to handle some 

data.   

The computer is used as more than an auxiliary tool and is used to teach calculus 

concepts.  It will allow for some numerical, iterative approaches rather than predominantly 

analytic ones, and describe situations and make predictions by considering small steps, which 

can be done easily on a computer.  Felix Klein argued for teaching calculus in such a way that 

begins with an intuitive and practical approach on which later more abstract concepts can be 

built (Klein, trans. 2007).  Klein discusses that in thinking of teaching calculus, one must 

consider how infinitesimal calculus was developed as such it was built through considering 

discrete and finite pieces or in approximating the area of a circle by considering inscribed, 

circumscribed polygons increasing the number of sides, which is really integration and looking at 

a curve as a collection of finite points finding secant lines, which is the process of derivation, all 

done before extending the limit to these processes.  In the teaching of calculus, Klein asserts: 

We desire that the concepts which are expressed by the symbols y=f(x), dy/dx, ∫ 𝑦 𝑑𝑥 be 

made familiar to pupils, under these designations; not, indeed, as a new abstract 

discipline, but as an organic part of the total instruction; and that one advance slowly, 

beginning with the simplest examples. (Klein, trans. 2007, p. 223) 

Klein also emphasizes introducing these concepts through concrete examples.  Klein’s thoughts 

explain why in the classroom students should be able to consider calculus from a finite 

perspective first before moving to more abstract concepts that are new to them.  Klein’s text was 



 46 

originally produced in 1932, so it was not explicitly calling for implementation on a computer, 

but it can be conceived in such a way now.  This is what these labs intend to do; the computer 

serves as the tool to help teach these concepts.   

The 1970s and 1980s saw rise to publications on a finite or discrete approach to calculus 

incorporating computational tools.  In the 1970s and 1980s there was a push to move away from 

the continuous approach and cover the discrete or finite approach to calculus, especially for non-

STEM majors (Gordon, 1979; Hoffman, 1989; Ralston, 1984).  The driving force behind this 

thought was to use “finite differences and sums as motivation for infinitesimal calculus and as an 

appropriate setting for solving real problems by discrete approximations” (Gordon, 1979, p. 24).  

Findings from Gordon’s (1979) study suggest that students gain more complete understanding of 

the concepts more quickly than when solely introduced to the continuous approach (Gordon, 

1979).  Gordon also supports that when students have gained solid understanding of concepts 

from the finite approach it can be more easily expanded to the continuous approach with the 

introduction to the limit.  Students with weak mathematical foundations can benefit from this 

approach, which can reach a more diverse group of learners (Gordon, 1979).  In studying the 

implementation of the discrete approach with computational tools Gordon presented the benefits, 

which include students gaining stronger understanding of and ability to use basic concepts and 

methods of calculus, students gaining appreciation of the relationship between math and the 

computer, “the approach provides an ideal context in which to develop several simple, yet useful, 

numerical algorithms for approximating functions and for actually finding where all those 

‘given’ functions come from” (1979, p. 23), and it demonstrates a natural context to demonstrate 

the use of discrete and continuous mathematical models and how they are developed (Gordon, 

1979).  Since the 1980s students complained that colleges and universities along with other 
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educational systems have been slow to respond to the need for students to learn and use discrete 

and finite mathematics (Turner, 1983); it seems as though it still may be said that many have not 

responded.  Ralston (1984) argued that with changing economies moving away from production 

to service, a need for solving problems using discrete techniques that not only math and 

computer science students will need, but also students of social and management sciences, 

physical scientists, and engineers will need to translate the problems in to discrete terms to be 

solved on computers.  It is also thought that computational tools would allow for more active 

involvement of students in models and simulations thus enhancing their appreciation for 

mathematics and their capacity to do independent work (Hoffman, 1989).  The use of 

computational tools and a study of some elements of finite calculus will rid students of the need 

to do some of the work through symbolic manipulation with paper and pencil, thus allowing for 

the introduction of more advanced topics and scenarios than many students could do by hand 

(Hoffman, 1989).   Many times the classical techniques of calculus require special cases and a lot 

of time to master for the novice, so teachers must reduce problems to a very simplified version 

(Hoffman, 1989).  Hoffman presents some findings from his combination of calculus and finite 

mathematics course, which reveal that students finish the course with a broad appreciation of 

how mathematics can be used in their discipline, gain confidence in their ability to use and 

understand tools used to work problems, and the ability to use computers for modeling and 

making estimates (Hoffman, 1989).  Echoing a similar sentiment, in 1984 the National Research 

Council put out a report that summarized how numerical computation and applied mathematics 

had been a vital part of the United States’ national defense and industry and laid claims that the 

problems of engineering and science were too complex for exact methods, so they needed to be 

modeled by mathematics and computation and recommended education that aligned with this 
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(Computational modeling and mathematics applied to the physical science, 1984).  This calls for 

an increase in education that reflects the use of computational tools and mathematical models to 

handle the messy, real-world mathematics that are still not widely reflected in classrooms today 

but are part of this project.  Kaput (1994), too, states that drawing upon Leibniz has implications 

for curriculum design in beginning with finite differences even in a student’s study before a 

calculus course and discusses using the computer and graphical representation (MathCars) to get 

students to think about change in position based on change in time in finite steps and then 

decreasing the step intervals to smaller and smaller units thus approximating the derivative of the 

position function.  

This project connects Business Calculus to I-STEM education by integrating multiple 

disciplines and doing so in a way with intentional teaching through technology.  There is also a 

lack of research connecting Business Calculus to I-STEM education, but business is 

interdisciplinary in nature, and this projects aims to fill some of the void.  With much of the 

attention and research relating calculus to STEM education involving calculus being a 

challenging gatekeeper course that students lament is often taught in an uninspiring, 

unwelcoming way (PCAST, 2012), it is important to consider how Business Calculus can be an 

integrative course and potentially increase conceptual knowledge and attitudes toward 

mathematics. 

Attitudes Toward Mathematics 

 Students’ mathematical attitude and beliefs, including self-efficacy, confidence, and self-

concept, strongly relate to achievement in mathematics classes (Pajares & Miller, 1995; Carlson, 

1999, Schommer-Aikins, Duell, & Hutter, 2005) and have important effects on persisting in 

problem-solving.  Introductory college calculus is a place where negative attitudes toward the 
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course and subject are often present and represents a course that is highly adept at negatively 

impacting students’ attitudes.  Literature has demonstrated that students’ attitudes are affected by 

classroom structure and teaching, so it is imperative to continue to develop, study, and document 

ways in which students can potentially develop more positive attitudes.   

Calculus and Business Calculus Attitudes 
 

Undergraduate calculus causes a sharp decrease in students’ enjoyment of mathematics 

and confidence in mathematics ability (Bressoud & Rasmussen, 2015), which raises concern 

since attitudes related to math have been linked to achievement.  Bressoud & Rasmussen (2015) 

reveal that post-secondary calculus, as currently taught, “is extremely efficient at lowering 

student confidence, enjoyment of mathematics, and desire to continue in a field that requires 

further mathematics.”  House (1995) demonstrated the positive relationship between attitude and 

achievement in college calculus courses.  Pyzdrowski et al. (2013) found a strong positive 

correlation between attitude and performance in entry-level college calculus; their findings 

indicated that attitudes affecting course performance were not based simply on previous 

mathematics experiences and preparation but also psychological factors such as confidence.  

Business Calculus is a course that has been shown to have students that are not excited 

and often unprepared to take the required course (Liang & Pan, 2009).  Business Calculus is a 

course with a high level of resistance to and negative attitudes toward mathematics is present 

(Depaolo & Mclaren, 2006; Liang & Pan, 2009).  Depaolo and Mclaren (2006) found that 

attitude towards math was significant in predicting exam scores in Business Calculus courses.  

Findings also support that attitude had a larger effect on calculus performance than it did on 

statistics performance for business students (Depaolo & Mclaren, 2006).   

Important in Depaolo and Mclaren’s (2006) findings is that attitude appeared to have a 

stronger affect on performance for students that had not taken calculus before than ones that had; 
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this is important since many students in Business Calculus are being exposed to the material for 

the first time.   “How to convince business students in the classroom that mathematics will later 

be able to save them time, hence money, remains an open problem” (Nievergelt, 1996, p. 146).  

It is important to consider how attitude can affect performance, how attitude can be improved, 

and how attitude affects one’s overall willingness to use mathematics, which may translate into 

their future careers as well.  

Attitude and Self-Efficacy   
 
 The Mathematical Association of America called for the undergraduate introductory 

mathematics courses to be “effective in positively affecting student attitudes about mathematics” 

(Saxe & Braddy, 2015, p. 66), emphasizing the importance of early college mathematics courses 

positively impacting students’ attitudes toward mathematics, which is also a goal of this project.  

Aiken, (1970) in discussion of attitudes toward mathematics, defines attitude as “a learned 

predisposition or tendency on the part of an individual to respond positively or negatively to 

some object, situation, concept, or another person” (p. 551) and Neale (1969) defined attitude 

toward mathematics as a measure of “liking or disliking mathematics, a tendency to engage in or 

avoid mathematical activities, a belief that one is good or bad at mathematics, and a belief that 

mathematics is useful or useless” (p. 623).  

Links to Achievement.  The relationship between attitude toward mathematics and 

achievement in mathematics is usually positive and practically significant, not always 

statistically significant, at the elementary and secondary school levels (Aiken, 1976). Negative 

attitudes toward math have been linked to drop out rates from math courses (Ma & Willms, 

1999) and to poor engagement leading to failure (Mayes, Chase, & Walker, 2008).  In 

mathematics, positive attitudes have been associated with higher scores on standardized tests and 

higher classroom achievement (Aiken, 1976; Aiken & Dreger, 1961; Stankov & Lee, 2014; 
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Zimmerman, Bandura, & Martinez-Pons, 1992).  University students with negative attitudes 

toward math tend to get lower scores on final exams (Nunez-Pena et al., 2013).  A student’s 

belief about if he or she is a “math person” and his or her attitude toward mathematics has an 

effect on a student’s learning outcomes (Boaler, 2016).  Students’ negative attitudes toward 

mathematics may be hindering their successes, so developing a more positive attitude toward 

mathematics is vital for chances of increasing success.  In contrast, Ma and Kishor (1997) find 

that the relationship of attitudes toward math and achievement has been found to be significant 

and positive but not strong.   

The Mathematics Attitudes and Perceptions Survey (abbreviated: MAPS) (Code et al., 

2016) was used in this study, and this instrument has seven factors of expert-like behavior in and 

views of mathematics (Code et al., 2016).  The seven categories of expert-like behavior include: 

confidence in and attitudes towards mathematics, persistence in problem solving, belief about 

whether mathematical ability is static or developed, motivation and interest in studying 

mathematics, views of the applicability of mathematics to everyday life, learning mathematics 

for understanding, and the nature of answers to mathematical problems (Code, et al., 2016, p. 

920).  While MAPS does not have a specific category for self-efficacy, several of its categories 

are elements of self-efficacy such as confidence, which the creators define as “a person’s 

perceived ability to successfully engage in mathematical tasks” (Code et al., 2016, p. 920).  This 

is noted because it can be seen that mathematical self-efficacy could be linked to attitude toward 

mathematics because students lack confidence in their math abilities because of previous 

experiences, poor grades, a general lack of interest in math, and the inability to relate math to 

usefulness in everyday life (Peters, 2013) and research has revealed that self-efficacy has a 

strong connection to mathematics performance.  Research on self-efficacy and mathematics 
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performance has been going on since the 1980s with studies on self-efficacy’s influence on 

performance (Williams & Williams, 2010, p. 456).  Findings since the 1980s seem to align well 

with the proposition that self-efficacy in mathematics is positively related to academic 

performance in mathematics (Ayotola & Adedeji, 2009; Grigg, Perera, McIlveen, & Svetleff, 

2018; Hacket, 1985; Cooper & Robinson, 1991; Kaya & Bozdag, 2016; Pajares & Miller, 1994; 

Pajares & Graham 1999; Pietsch, Walker, & Chapman, 2003; Schober, Schutte, Koller, 

McElvany, & Gebauer, 2018; Stevens, Olivares, Jr., & Hamman, 2006). The relationship appears 

at many different grade levels from elementary school through college  (Kaya & Bozdag, 2016).  

Pajares and Miller (1994) report a strong connection of math self-efficacy to mathematics 

performance for college students. Grigg, Perera, McIlveen, and Svetleff (2018) demonstrated 

that self-efficacy in mathematics positively predicted mathematics achievement for grade 

received in the class and standardized test score.  Besides final grade in the course as a measure 

of achievement, Collins (1982) demonstrated that students with high self-efficacy in mathematics 

are more accurate in the math computations and are more persistent on difficult mathematics 

items than students with low self-efficacy.  Self-efficacy for college students in mathematics had 

a stronger relationship to mathematics performance and mathematics problem-solving than other 

variables such as math self-concept, high school level mathematics courses, and math anxiety 

(Pajares and Miller, 1994).  All of these demonstrate that there is an identifiable relationship 

between self-efficacy and math achievement.  

Attitude and Classroom Experiences.  Literature has revealed factors that often predict 

student attitudes toward mathematics include: instruction students experience including 

pedagogical decisions, use of technology, environmental factors, and personal factors including 

previous interaction and attitudes toward mathematics and the choice of college major (Sonnert, 
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Sadler, Sadler, & Bressoud, 2015). Students often enter school with a positive mindset toward 

mathematics but lose this early on and enter into a cycle of lack of success in mathematics 

(Westenskow, Moyer-Packenham, & Child, 2017).   Andersson, Valero, and Meaney (2015) 

identify that statements such as “I hate math” or “I am bad at math” do not come from only the 

student but come from an interaction of classroom and pedagogical experiences, implying that 

understanding of the experiences that shape students’ attitudes can help to prevent students from 

hating math.  The math-hating attitudes come attached with very strong emotions reflected by 

words such as sickening, frustrating, and wanting to cry (Larkin & Jorgensen, 2016), and it 

seems that these attitudes begin to appear at a very young age (Cornell, 1999).  Other factors that 

appear to influence students’ attitudes and success are peers’ attitudes (Kotok, 2017), poor 

content knowledge foundations, negative mindset, lack of number sense (Westenskow, Moyer-

Packenham, & Child 2017), finding the subject boring with too much memorization, and their 

teachers (Cornell, 1999).  

Students’ mathematical mindsets can be changed and affected by the context of the 

teaching (Andersson, Valero, & Meaney, 2015); research suggests that the attitude can be 

changed if math is taught in more relevant contexts and real world connections (Andersson, 

Valero, & Meaney, 2015; Cornell, 1999).  Since mindsets can be changed, there is a need to 

create an environment that fosters more positive attitudes toward mathematics (Andersson, 

Valero, & Meaney, 2015) to nurture mathematical skills, which could include more relevant 

contexts, more modern topics, more modern approaches, and more technology and computing 

such as in this project.  “Students see mathematical tools for the life sciences and social sciences 

as useful, interesting, and beautiful when they learn to use them in realistic applications and 

when computers do the calculations” (Hoffman, 1989, p. 65).  Not only do students find 
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mathematics more useful when taught in such a way but achievement is also linked to these 

realistic applications; more specifically research suggests, “mathematical capabilities of children 

are greatly influenced by whether they are in a real world or a classroom context” (Couch & 

Haines, 2004, p. 199).  Classroom activities that represent math as static, unchallenging, and 

boring leave students unable to see the usefulness of the mathematics (Wilkins & Ma, 2003).  

Students that get continuously exposed to mathematics as rote memorization and unchallenging 

develop a negative attitude toward mathematics and its applicability outside of the classroom 

(Greenwood, 1984).  

Attitude and Computational Tools.  In addition to attitude of mathematics being 

supported by being able to see connections outside of the classroom, the use of modern 

technologies could also potentially improve students’ attitudes.  In research from the 1990s on 

different uses of technology such as BASIC, Mathematica, Maple, and others, revealed mixed 

results on the impact of student attitude as well.  Baumgartner and Shemanske (1990) report that 

students who had taken calculus before did not like the computing because they were expecting 

an easy course since they had already been exposed to the material, students new to calculus 

overall liked the new approach, some students thought computing was a great addition to the 

class while others did not see the value in adding it to a mathematics class, but found that even 

students that complained about the computing component did not think that it hindered their 

learning and others thought it helped.  In studying computer labs in a calculus course, Höft and 

James (1990) found that students in the lab sections reported being more interested in the 

material, more responsive, asked more questions, and in general had very positive attitudes 

toward how the computer helped them learn calculus.  Schwingendorf and Dubinsky (1990) also 

report positive impacts on students’ attitudes toward calculus when using ISETL and Maple in a 
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calculus course with a lab.  The three previously mentioned studies all indicate some positive 

impacts on students’ attitude toward calculus when using some computer program, but all three 

also make note of some negative feedback from students particularly noting student complaints 

of an increased workload or having to learn a language in which to communicate with the 

computer in addition to calculus concepts.  Technology, although not specifically the use of 

computing technology, was not significant in affecting students’ attitudes in calculus either 

positively or negatively in the national study of calculus (Sonner & Sadler, 2015).   

Recent research reveals mixed results as well.  In a mathematical programming course, 

Jones and Hopkins (2019) found that students do tend to give up easily because of syntax errors 

and the fact that it is brand new for most students, but those are also mixed with students 

commenting that the course proved challenging but extremely rewarding.  Kilty and McAllister 

(2019) found positive impacts on students’ attitudes when using RStudio in a Mathematical 

Modeling and Applied Calculus course with increases in students’ self-reported confidence in 

using tools of calculus for analyzing real world data, using mathematical software to help 

analyze real world data, using mathematical software in building mathematical models for a real 

world situation, feeling comfortable in a non-mathematics course answering mathematical 

questions, and recognizing when a situation could be described with mathematics without being 

explicitly told; they synthesize that these results show that their approach increases students’ 

self-reported confidence in mathematics and comfort in using software and mathematics in 

studying real world problems.  Kilty and McAllister (2019) also note that students appreciate 

being able to study calculus and mathematics topics in ways that connect to other courses in their 

major.  
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With some promise in previous research, it is important to consider interventions such as 

this one that may impact students’ attitude toward mathematics.  Given the role that attitude 

toward mathematics has on success in mathematics courses and how students’ attitudes and 

perceptions about mathematics play an important role in one’s willingness to use this knowledge 

outside of the classroom, it is important to study interventions, such as this project, so that 

students may develop more positive attitudes toward mathematics and become more willing to 

engage in mathematical tasks, perhaps even in their future careers.  

Attitude to Career.  Anecdotally, when discussing with my students why they chose to 

major in business or how they think math relates to their future business career, many of my 

students usually let me know their feelings about math, typically more negative than positive, tell 

me about their previous perceived failures in math, and then connect those to why they chose 

business as their major thinking that it may not be as math-intensive as a STEM major.  Many of 

these students are in their first few semesters of college.  This anecdote aligns with existing 

literature on how students decide on college majors and future careers.  Research supports that 

students often have their minds made up about going into STEM careers or not upon exiting high 

school (Maltese & Tai, 2011).  Intent to pursue a STEM degree and career is often affected by 

interest in math and science, completion of math and science in high school, social background, 

parental education, self-efficacy in mathematics, and post-secondary support such as financial 

aid, taking remedial courses, and other time demands such as working (Wang, 2013).  “Intent to 

pursue a STEM major is significantly and positively influenced by 12th grade math self-efficacy” 

(Wang, 2013, p. 1101), which would imply that those with lower mathematics self-efficacy are 

less likely to pursue a STEM major or career and may choose other majors and careers such as 

business or something in the humanities.  Wang’s (2013) findings indicate that high school 
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science and math preparation are critical in cultivating student interest in STEM careers and 

majors, and motivation, including mathematics attitude and self-efficacy beliefs, intent to pursue 

a STEM career, and intent to pursue a graduate degree are all positively linked to starting a 

STEM degree.  Attitude and achievement, especially in mathematics, can be seen as influencers 

on a students’ desire to pursue STEM or not.  

Career choice is a process involving many influencers, which are on-going both in and 

out of school.  Attitudes and achievement in the discipline are not the only influencers of 

students’ career choice.  Students’ educational experiences, interests, and attitudes, not just their 

success in STEM subjects in K-12 schooling, are predictors in students choosing a STEM major 

and career (Maltese & Tai, 2011).  Dick and Rallis (1991) provide a model of career choice 

where students make career choices based on beliefs of themselves, their abilities, and different 

values of careers, which can all be influenced by internal factors such as intellectual interest, 

interpretation of past experiences, perception of expectations and attitudes of others, and external 

factors such as length and cost of training or schooling for a career, expected salary, and cultural 

stereotypes of careers.  Dick and Rallis (1991) provide their adaptation of a model of student 

career choice seen below in Figure 1 (p. 283).  As the arrows in Figure 1 display, socializers play 

a major two-way part in influencing what experiences students have and how they interpret those 

experiences (Dick & Rallis, 1991).  Academically strong students may choose careers different 

from their academic strengths because of socializers and cultural norms that may affect students’ 

self-concept and valuation of careers (Dick & Rallis, 1991).   Maltese and Tai (2011) found that 

providing students with opportunities to see how math and science are vital and woven into their 

every day lives is extremely important to their perception of these subjects and thus their 

decision to pursue them.  
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Figure 1:  Model of career choice. From Dick and Rallis, 1991, Factors and Influences on High School 
Student Career Choice. Journal of Research in Mathematics Education, 22(4), 281-292.  
 

Mathematics and Career Choice.  Attitude toward, self-efficacy in, and past 

experiences with mathematics all factor in to choice of college major and future career.  Attitude 

and self-efficacy appear to be very strongly related to career choice.  Perceived mathematical 

self-efficacy contributes more significantly to educational and career choices making use of 

quantitative skills than does the amount of mathematical preparation in high school, level of 

math ability and past achievement, and anxiety over math activities (Betz & Hackett, 1983; 

Hackett, 1985; Hackett & Betz 1989).  In a study of undergraduates, mathematics self-efficacy 

was found to be an important factor in career choice (Lent, Lopez, & Bieschke, 1991).  “Past 

success experiences in a particular performance domain may promote self-efficacy; viewing 

oneself as efficacious likely enhances interest in that domain; and such interest then motivates 

further exposure to, and choice of, correspondent educational and vocational activities” (Lent, 

Lopez, & Bieschke, 1991, p. 429).  Attitudes toward mathematics are significantly and positively 

correlated with community college students’ perceptions of careers that were mathematically 

intensive, and students that expressed interest or reported entertaining the idea of a 

mathematically intensive career had higher average attitude towards math than those that had 

never thought about pursuing a math intensive career (Dogbey, 2010).  It is important to note that 
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educational and social factors influence these, highlighting the importance of positive 

educational environments for mathematics, such as shown in the Dick and Rallis model (1991).  

Calculus for a New Century: A Pump not a Filter (The Mathematical Association of 

America, 1988) called for calculus to not act as a filter, filtering students out of particular majors 

and potentially careers but rather as a pump to increase the number entering fields and careers 

requiring mathematics knowledge.  Despite more than 30 years since that report and 

recommendation, calculus is often still serving as that filter (Bressoud, Mesa, Rasmussen, 2015).  

Calculus, a requirement for almost all STEM majors and often business majors (Dahl, 2014), can 

act as a gatekeeper and as an “insurmountable obstacle or discourages from the pursuits of fields 

that build upon the insights of mathematics” (Bressoud, Mesa, & Rasmussen, 2015, p. v).  This is 

cause for both pause and concern.  

Why Business Calculus.  Business Calculus is one place that aligns for the placement of 

computational labs as pointed out by Hoffman (1989) explaining that calculus, as traditionally 

approached, has been inappropriate for social and life scientists.  Teachers use concocted real life 

examples, but students still perceive much of what they have been learning in these calculus 

classes as something they would never use outside of the classroom (Hoffman, 1989).  Students 

question what is taught and how it is taught asking when they will ever use any of what they are 

learning in their future careers and why they cannot work the problems on the computer like they 

do in their business classes and what is reflected by professionals.  Calculus can be reconceived 

with the computer, which will allow for development of courses that can allow for more 

applications outside of the concocted examples (Hoffman, 1989).  The use of modern technology 

can be extremely beneficial for students to learn calculus with true business applications, 

especially for students with weak math skills (Liang & Pan, 2009) and negative attitudes.  
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Motivation, participation, and interest are all shown to improve in Business Calculus classes 

when computers are allowed as an aid and more emphasis is placed on understanding and 

application (Judson, 1990).  The age-old student question of “why do I have to learn this stuff?” 

is gone because students are allowed to see the calculus in action with real applications and are 

less mired by the stress of algebraic manipulation, skills, and techniques (Judson, 1990, p. 154). 

Given that mathematics preparation, past achievement in mathematics, self-efficacy 

toward mathematics, and attitude toward mathematics have been found to be factors in career 

choice and that math sometimes serves as a “critical filter” (Bleyer, Pedersen, & Elmore, 1981, 

p. 46) in the career choice process and that Business Calculus is a course where students tend to 

be unprepared mathematically and show a dislike toward mathematics (Liang & Pan, 2009), it 

could be inferred that some of these students’ are choosing to major in business and potentially 

choosing it as a career because of their previous experiences with mathematics.  Students’ 

mathematics test scores influence choice of major; students with higher mathematics test scores 

were more likely to choose a technical major rather than health, business, public service, or 

liberal arts (Simpson, 2001).  The more mathematics preparation a student has from high school 

is indicative of the student choosing a more technical major than a non-technical one (Simpson, 

2001), which would include business (Pritchard, Potter, & Saccucci, 2004).  In analyzing basic 

skills tests for algebra and students majoring or concentrating in different fields of business, 

Pritchard, Potter, and Saccucci (2004) found that students with higher computational and 

algebraic skills chose to major in more quantitatively focused business concentrations such as 

accounting or finance while students with lower scores tended to select a concentration or major 

in less mathematically focused ones such as management or marketing.  Some business students 

chose less quantitatively focused concentrations because they perceive them to have less 
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demanding quantitative requirements (Pritchard, Potter, & Saccucci, 2004) implying that 

mathematics does play a role in the selection of major and potentially future career.  A quick 

Google search also reveals forums and question threads where people ask if business majors 

have to take calculus and why business majors have to take calculus, which indicates 

mathematics is at least weighing on some students’ minds when thinking about majoring in 

business.  Undergraduate calculus classes teach students important skills and concepts in 

mathematics and also have a large impact on students’ attitudes, which can affect their career 

aspirations and choice of taking future mathematics classes (Sonnert, Sadler, Sadler, & Bressoud, 

2015). 

Employers and future trends indicate that there is a great need for mathematically 

proficient individuals.  There is a need for mathematically literate individuals for the twenty-first 

century business world (Yıldırım  & Sidekli, 2018), and mathematics knowledge is becoming 

imperative for many career opportunities (Bureau of Labor Statistics, 2016).  A 2013 poll of 200 

employers revealed the second most important skill they look for in potential employees is the 

ability to make decisions and solve problems, and the ability to analyze quantitative data and use 

computer software programs are also in the top ten (Adams, 2015).  The National Network of 

Business and Industry Association (2014) lists using mathematics to solve problems as one of its 

necessary employability skills.  Employment of mathematics occupations has a projected growth 

of twenty-eight percent from 2016 to 2022, and growth in the areas of business and government 

needing mathematicians or people comfortable using math is expected to grow as business and 

data analytics continue to grow (Bureau of Labor Statistics, 2016).  Sales and marketing, 

research and development, supply chain management, and workplace management are all areas 

in which analytics, including big data analytics, are growing (Columbus, 2018); the need to have 
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a better disposition toward mathematics or willingness to use it in daily and workplace life will 

likely increase as analytics becomes an even larger role in the business world and leaders must 

interact with the outputs to make decisions.   

A student’s “mathematical disposition is related to his or her beliefs about and attitude 

toward mathematics may be as important as content knowledge for making informed decisions in 

terms of willingness to use this knowledge in everyday life” (Wilkins & Ma, 2003, p. 52) which 

may very well include his or her willingness to use it in the workplace.   Because attitude and 

achievement are linked to career choice and willingness to use math in the workplace, this 

project aims to improve both, which in turn may increase one’s willingness to use mathematics 

in the workplace, potentially increase confidence to work with mathematics outside of the class 

room, and potentially choose more mathematically involved careers.   

 “Business students, although able, are often math phobic.  Courses should strive to 

lessen math phobia, enable students to be more comfortable with mathematics, and help students 

appreciate the relevance of mathematics” (Lamoureux, Beach, & Hallet, 2000, p. 19). Some of 

the intentions of this project are to do just that.  If the project succeeds in doing so, perhaps it 

will answer Nievergelt’s (1996) question, “how to impart just enough mathematics to business 

majors, so that they may understand the potential power and limitations of mathematics, decide 

when to hire mathematicians, and consult with them profitably” (p. 146), but also inspire 

students to be more appreciative of and willing to work with mathematics in their careers.  

Mathematics, being able to interact with technology, and appreciating some of the 

interdisciplinary nature of problems will be valuable skills for future careers. “Across a wide 

range of industries and occupations, people are required to use, develop, and communicate 

mathematical ideas and techniques in a diversity of ways with others who have differing 
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expertise, experience, and interests including in mathematics itself” (FitzSimons & Boistrup, 

2017, p. 330).  In observations of the workplace, students and teachers find it hard to distinguish 

mathematical activities that are occurring other than number and measurement because they are 

looking for the formal mathematics they experienced in the classroom, which is often not how 

math presents itself in the workplace (FitzSimons & Boistrup, 2017).  Aspects of theoretical 

math such as geometry and algebra can be seen in the workplace in spreadsheets, machining, and 

quality control systems, yet hidden, but still very much functioning in the work place, is formal 

mathematics that are the foundation for management and production technologies and enable 

predictive modeling and analysis of business analytics and financial math (FitzSimons & 

Boistrup, 2017).  Students that participate in this project may emerge from the class with a more 

expert-like disposition toward mathematics that will allow them to see mathematics as a valuable 

tool in the work place.  “Professional and skilled workers are able to integrate relevant 

disciplinary domain knowledge, mathematical and vocational, as well as knowledge of 

professional or vocational contexts developed through formal and informal learning, including 

social and cultural knowledges” (FitzSimons & Boistrup, 2017, p. 331).  Gravemeijer et al. 

(2017) take the position that part of mathematics education is preparing students to apply math to 

“all sorts of work- and everyday- life situations” (p. S108). Perhaps students that are participants 

in this project will immerge with a more expert-like disposition towards mathematics and thus be 

more willing to use it in everyday life.  

 With the boom of big data and the growing use of data analytics, there will be an 

increasing need for professionals to interpret and appreciate the outputs.  Hilgers et al. (2015) 

discuss the need for creating courses with content within computing and business preparing 

students for big data work with companies.  While the labs in this project certainly will not 
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prepare students for careers in big data or analytics, being exposed to tackling concrete 

mathematics problems using the computer and coding could influence attitudes of some students 

creating an interest in or appreciation of careers such as ones in big data or business analytics.  

Students by no means will be proficient but they will have experienced working with some very 

introductory coding in Python.  “Employees’ understanding of both technology and business 

processes are becoming valuable commodities” (McBane, 2003, p. 2).  Many of the world’s 

leading financial institutions are requiring Python, and other computing languages, courses for 

their employees since the way they do business is evolving (Rayome, 2019).  This is happening 

across other sectors as well, so as a business major having some knowledge of computational 

tools may become a marketable, if not even required, skill for the future.   

Students may walk away from the course with the appreciation and willingness to 

problem solve using computational tools and to mathematize real problems they encounter 

outside of the classroom.  This project could perhaps inspire some business majors to add other 

mathematics, data analytics, business analytics, or computer science courses to their 

undergraduate coursework, such as Brinkmann et al. (2016) say that some STEM students are 

doing with business courses currently, which may in turn affect their career aspirations or future 

careers.  

Instruments Used in this Study 

 The Calculus Concept Inventory and the Mathematics Attitudes and Perceptions Survey 

were the instruments selected for this study.  Development, use, psychometric properties, and 

limitations of each instrument are discussed below.   

Calculus Concept Inventory   
 

The Calculus Concept Inventory was the first instrument developed to define the basic 
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understanding from a first semester differential calculus course (Epstein, 2013).  The CCI was 

developed to measure conceptual understanding of differential calculus and designed to measure 

foundational knowledge of that subject (Epstein, 2007).  Conceptual knowledge is defined as 

“implicit or explicit understanding of the principles that govern a domain and of the 

interrelations between units of knowledge in a domain” (Rittle-Johnson et al., 2001, p. 346).  

Students are finishing first semester calculus courses with little to no basic conceptual 

knowledge that university faculty assumed they were all developing (Epstein, 2013, p. 1019).  

Evidence such as this demanded the need for a validated tool to determine conceptual content 

gains to gather hard, scientific evidence that students can gain basic concepts of first semester 

calculus that can be used to determine the impact of different teaching methodologies on 

students' conceptual understanding (Epstein, 2013).   

To measure conceptual knowledge, concept inventories have emerged in many 

disciplines and are usually multiple-choice tests given as a pre-test and post-test involving little 

or no computation.  The Force Concept Inventory (abbreviated: FCI) sparked a large amount of 

research in physics education and began to cause reform (Epstein, 2013).  The FCI started the 

movement of studying and analyzing students’ conceptual understanding of basic principles in a 

variety of STEM disciplines through concept inventories (Gleason et al., 2015a).  Research in 

undergraduate physics has shown that an increase in basic conceptual knowledge has been 

strongly dependent on the teaching methodology employed by the teacher, and classes that were 

taught in a nontraditional way with more interactive engagement by students had greater growth 

in conceptual knowledge from the beginning to the end of the semester (Epstein, 2013).  

Subsequent concept inventories have followed in many STEM disciplines such as in statistics 

(Allen, 2006), pre-calculus including the Calculus Concept Readiness Instrument and the Pre-
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Calculus Concept Assessment  (Carlson, Madison, & West, 2010; Carlson, Oehrtman, & 

Engelke, 2010), the Biological Concepts Instrument (Klymkowsky, Underwood, & Garvin-

Doxas, 2010), the Chemical Concepts Inventory for chemistry (Mulford & Robinson, 2002), 

astronomy such as the Star Properties Concept Inventory (Bailey et al., 2011), and many others.  

The FCI has taken physics education and research ahead of many others disciplines in using 

concept inventories to analyze effectiveness of teaching practices and has inspired change in 

teaching methods (Epstein, 2013; Gleason et al., 2015a). The Calculus Concept Inventory was an 

attempt to do the same to calculus education. 

Much like Hake (1998), Epstein (2013) began using the Calculus Concept Inventory to 

compare traditional teaching methods with interactive engagement methods.  Using Hake’s 

(1998) definition of interactive engagement: 

Interactive engagement methods are those designed at least in part to promote conceptual 

understanding through interactive engagement of students in heads-on (always) and 

hands-on (usually) activities which yield immediate feedback through discussion with 

peers and/or instructors (p. 65), 

large studies were done in calculus courses at the University of Michigan in 2008 where many 

sections were taught using interactive engagement, with the highest normalized gains occurring 

in the classes that were reported to have the most interactive engagement (University of 

Michigan Department of Mathematics, 2009).  Thomas (2013) studied conceptual knowledge 

gains in interactively engaged classrooms measuring gains using the CCI.  Studies using the CCI 

that involve studying IE classrooms typically contrast them to traditional classrooms with 

passive student learning involving lectures (Bagley, 2014; Epstein, 2013; Thomas, 2013).   

Many studies in mathematics using the Calculus Concept Inventory use it to study the 
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effectiveness of a specific type of interactive engagement, a flipped classroom, which is similar 

to how the instruments of other STEM disciplines are using their concept inventories (Freeman 

et al., 2014).  Anderson and Brennan (2015), Macejewski (2016), Schroeder, McGiveny-Burelle, 

and Fue (2015), and Ziegelmeier and Topaz (2015) all use the CCI in studies of flipped calculus 

classrooms.  These studies all had populations of undergraduate students in calculus classrooms; 

some were classrooms with a variety of STEM and non-STEM majors (e.g., Schroeder, 

McGiveny-Burelle, & Fue, 2015; Anderson & Brennan, 2015), and Macejewski (2016) studied 

calculus exclusively for life sciences majors. 

The Calculus Concept Inventory has also been used to study differences in different types 

of Calculus I classrooms such as in Bagley’s (2014) study of traditional lecture, lecture with 

discussion, lecture with discussion and technology, and an inverted classroom. Thomas (2013) 

used the CCI to investigate student gains in interactively engaged calculus classrooms and what 

influence individual variables, such as gender and previous math exposure, and instructor level 

variables had on CCI gain scores.  The CCI was also used in gathering nationwide data on the 

impact of ambitious teaching, such as active learning and student centered teaching, and found 

that students that had graduate student instructors that had training in ambitious teaching had 

students that scored just as well on the CCI as students of faculty members teaching the course 

(Larsen, Glover, & Melhuish, 2015).  In this, the proponents of the ambitious teaching program 

used CCI scores to defend their use of non-traditional teaching practices to the administration 

pointing to positive results of students conceptual understanding as demonstrated by their CCI 

scores (Larsen, Glover, Melhuish, 2015).   

Besides uses for studying teaching using interactive engagement in calculus classrooms, 

the CCI has been used to study differences in students’ performance across different nations.  
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Chai, Friedler, Wolff, Li, and Rhea (2015) used the CCI to compare student gains between 

Chinese and American students, studying both gains and normalized gains on the overall test and 

in subsets of the test.  Certain questions on the CCI have also been used in isolation as a 

component of studying students’ understanding of the derivative (Park, 2013).   

When used as a pre-post test the CCI is typically analyzed with normalized gains and 

often overall gains as well (e.g., Chai et al., 2014; Maciejewski, 2016).  Besides using the CCI 

for measuring gains over a period of time, some studies use the CCI as a baseline measure of 

calculus knowledge (Schroeder, McGiveny-Burelle, & Xue, 2015; Ziegelmeier & Topaz, 2015). 

The “Calculus Concept Inventory is a test of conceptual understanding (and only that—

there is essentially no computation) of the most basic principles of differential Calculus” 

(Epstein, 2013, p. 1018).  The CCI is a twenty-two question multiple-choice test that is 

administered as a pre- and post-test with gains analyzed.  The CCI has been used to determine 

conceptual knowledge gains in calculus and used to study differences in calculus gains 

comparing different interventions or student populations. 

The test has undergone development and validation and was funded by the National 

Science Foundation (Epstein, 2013).  “It was developed by a panel of respected calculus 

educators and a consultant, nationally known for development and validation of standardized 

tests” (Epstein, 2013, p. 1019).  Funding for the CCI development began in 2004 and began pilot 

testing on its first version in 2005 (Epstein, 2013) administering it to about 1100 students 

between twelve American universities and one university in Finland (Epstein, 2007).  After the 

pilot testing, the test was revised to bring the questions to a more basic level (Epstein, 2013, p. 

1021).  The CCI was administered in the fall of 2008 to all of the University of Michigan’s 

Calculus I sections, totaling 1,342 students (Epstein, 2013).  The test was administered in a 
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proctored setting with the pre-test taking place the first week of class and the post-test in the last 

week of class (Epstein, 2013).  Cognitive laboratories, which are structured interviews where 

individual students express their thoughts verbally as they work through a problem and questions 

are asked to determine the student’s mental process, were performed on the CCI in fall 2006 and 

brought the test to the twenty-two questions that are on it now (Epstein, 2013).  Epstein (2013) 

presents that the “discrimination numbers were all acceptable” (p. 1023).  The final test with 

twenty-two items was said to have two dimensions that “correlated well internally but not as well 

with each other” with the two dimensions being functions and derivatives, and a smaller 

dimension on limits, ratios, and the continuum (Epstein, 2007, p. 168).  The measure of internal 

reliability, Cronbach’s alpha, was 0.7, which was considered “modestly respectable” but falls 

short of the 0.8 which professional test developers wish to see (Epstein, 2013, p. 1023).  Epstein 

(2013) reported that there was more data analysis possible with the data they already had and 

were continuing to receive and expected to report more on validation in the future, however, 

more reporting on validation from the CCI developers has yet to come.  Other studies of its 

psychometric properties confirm the reported 0.7 Cronbach’s alpha, but highlight other issues 

with the instrument (Bagley et al., 2017; Gleason et al., 2015a; Gleason et al., 2015b). 

For internal reliability, Cronbach’s alpha of 0.7 as reported by Epstein (2013) was 

confirmed (Bagley et al., 2017; Gleason et al., 2015a).  Bryman and Cramer (1990) suggest that 

alpha of 0.8 is acceptable.  Cohen, Manion, and Morrison’s (2009) guidelines for the alpha 

coefficient rank 0.7 in the reliable category, although just above marginally reliable.  This 0.7 

level of internal consistency is on the lower end for an acceptable instrument that is created to 

measure mean differences between groups with twenty-five to fifty members (Gleason et al., 

2015b).  
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Bagley and colleagues’ (2017) factor analysis showed issues with internal structure 

validity.  Epstein (2013) claims that the CCI measures calculus in three factors (functions, 

derivatives, and limits/ratios/the continuum), but other studies reveal that the CCI has at most 

two components and potentially just one (Bagley et al., 2017; Gleason et al., 2015b).  Bagley et 

al. (2017) revealed “item responses are so closely correlated that the total CCI score is explained 

by one factor, which appears to be an overall knowledge of calculus content.”  Analysis by 

Gleason et al. (2015b) shows that a unidimensional model is assumed to fit the data well.  This 

reveals that the CCI cannot be used to gain information about the conceptual understanding of 

various parts of calculus (Bagley et al., 2017).  Gleason et al. (2015b) highlight that Epstein 

(2013) and colleagues reporting on the CCI having three dimensions but then using total percent 

correct to compute normalized gains is contradictory.  The use of normalized gains implies 

measuring a single element, which Bagley et al. (2017) and Gleason et al. (2015a) analyze the 

CCI to have, which is overall calculus knowledge, over the twenty-two items.  

While reporting on validity and reliability has not come from the developers, critiques of 

the instrument have emerged from others.  Bagley et al. (2017) present that the CCI is, “ a good 

starting point toward measuring calculus understanding” but some recent uses of it in studies 

have highlighted some issues of the instrument, but also acknowledge that both formally and 

informally the CCI is growing in use.  One issue of the CCI is that it contains mathematical 

notation and terminology, such as derivative and f’(x), which would not have been seen by 

students before an introductory calculus course (Bagley, et al., 2017) and presents issues with 

content validity raising concerns with whether it is really measuring what it is supposed to be 

measuring (Gleason, et al., 2015b).  Of the twenty-two questions, nine of them have language 

that is not standard before a calculus course (Gleason et al., 2015b).  This presents issues in 
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several ways. One issue is that the CCI is supposed to assess understanding of calculus concepts 

not explicit vocabulary (Bagley et al., 2017).  Another issue is that this notation and terminology 

may confuse students that have not seen it before and cause answering by random chance, which 

would bring the validity of pre-test scores into question (Bagley et al., 2017).  If normalized 

gains are used to analyze the pre-post test change, students that have taken calculus before may 

score higher on the pre-test in spite of any conceptual knowledge and then have lower 

normalized gain scores (Gleason et al. 2015b) and users may underestimate conceptual 

understanding at the beginning of the course simply because students that have not taken 

calculus before are unfamiliar with terminology but may understand the underlying ideas of 

calculus (Bagley et al., 2017).  The specific language that is questionable on the pre-test is 

common language in a typical calculus course and thus may measure conceptual understanding 

at the end of a one semester calculus course, but the specific language on the pre-tests brings in 

the question of normalized gains for evaluation (Gleason et al., 2015b).  One proposed change to 

analysis is to use Item Response Theory (Gleason et al., 2015b; Thomas & Lozano, 2013).  

Thomas and Lozano (2013) found in comparing normalized gains and item response theory gains 

the two measures were strongly correlated. Normalized gain scores are related to pre-test score 

and favor the group with the higher pretest scores (Wallace & Bailey, 2010).  The group with the 

higher pre-test score will have a higher normalized gain score.  Normalized gain scores are also 

test-specific, so normalized gains, especially cut off values from Hake (1998) of high, medium, 

and low gain scores may not be completely transferable to the CCI (Thomas & Lozano, 2013).  

Thomas and Lozano (2013) assert that there is no objective way to choose which model to use 

before the test and each method has its own advantages, which are that normalized gains are 

much easier to compute and interpret but item response theory results in measure that are test and 
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population independent.  The debate over how to analyze student gains, normalized gains or item 

response theory, is a limitation of the CCI; many published studies found using the CCI used 

normalized gains (e.g., Anderson & Brennan, 2015; Bagley, 2014; Maciejewski, 2016), and 

Thomas (2013) developed IRT models for the CCI and was the only study found to detail item 

response theory of the CCI.  Despite being relatively widely used in formal and informal settings 

(Bagley et al., 2017), the Calculus Concept Inventory has its shortcomings.  The 0.7 Cronbach’s 

alpha level of internal consistency is on the lower end for an acceptable instrument that is created 

to measure mean differences between groups with twenty-five to fifty members (Gleason et al., 

2015b).  

Pros and Cons of the CCI as Related to this Study.  The Calculus Concept Inventory 

has been selected for use in the current study because it is the only validated instrument currently 

available for measuring calculus concepts.  Despite some of its limitations and Gleason and 

colleagues’ (2015a) calls for a better instrument, the CCI is still used in formal and informal 

settings (e.g., Anderson & Brennan, 2015; Maciejewski, 2016; Schroeder McGivney-Burelle, & 

Xue, 2015; Ziegelmier & Topaz, 2015; Peters et al., 2019) and another instrument has not been 

developed.  The CCI was developed and tested on undergraduate students in a first semester 

calculus courses, which is the same population on which this study will focus.  The Calculus 

Concept Inventory has been found to have only one factor, which can be explained as “overall 

knowledge of calculus content” (Bagley et al., 2017).  While this could be seen as a drawback, 

the proposed study does not plan to study the effects of the treatment on specific sub-categories 

of calculus knowledge but rather on conceptual calculus knowledge as a whole, so the one factor 

of the CCI fits.  
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The limitations of the Calculus Concept Inventory, as presented previously, are the 

drawbacks for selecting this instrument for the current study.  One concerning element is that the 

CCI seems more capable of detecting large differences in sample means or when the sample size 

is large (Gleason et al., 2015b).  The sample size for this study will be four sections of 

undergraduate Business Calculus with each section having twenty-five to thirty students.  

Gleason et al. (2015b) state that the CCI is able to differentiate between sample means if the 

sample size reaches about one hundred students each.  The total sample is likely to be over or 

near one hundred students total based on pre-post data, but each group will not have one 

hundred, so the inventory may not differentiate between the sample means because of small 

sample size.   

Another draw back to using the CCI is that while developed to measure conceptual 

knowledge, which is defined as, “implicit or explicit understanding of the principles that govern 

a domain and of the interrelations between units of knowledge in a domain” (Rittle-Johnson et al. 

2001, p. 346), it does have some specific vocabulary of calculus.  While this is not thought to 

present a problem at the end of the course, many students in the population of interest have not 

previously been exposed to calculus and may not know the terminology, which may 

underestimate pre-test knowledge of some students and skew the gain results (Bagley et al., 

2017).  Because of this, in data analysis it is then necessary to compare the results when having 

previously taken calculus or not is controlled for.  Another limitation of the CCI is the debate 

over how to analyze the results as previously discussed.   

The Calculus Concept Inventory has limitations, as discussed above, however, it is the 

only validated measure of conceptual understanding in calculus and provides a more standard 

measure on which to compare students rather than final grades or end of course exam scores.  
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The Calculus Concept Inventory is also an appropriate measurement tool for this project since it 

is typically used to study different teaching methods.  While this study will not use it specifically 

for interactive engagement following Hake’s (1998) definition, which has been studied often 

through flipped classrooms, the study does have elements of interactive engagement because the 

CCI will be used to compare the use of computational labs motivated by finite calculus to a 

traditional lecture course.  The treatment is not necessarily the same interactive engagement in 

previous studies, but it is interactive engagement since “students cannot be passive observers in 

programming activities; rather they have to be actively engaged in reframing a given math 

problem, in writing and testing the computer code, and in making necessary adjustments and 

modifications” (Lovric, 2018, p. 2); it is a hands-on, minds-on process. 

Mathematics Attitudes and Perceptions Survey 
 

The tool selected to measure students’ attitudes toward mathematics is the Mathematics 

Attitudes and Perceptions Survey (abbreviated: MAPS).  Bressoud & Rasmussen (2015) reveal 

that post-secondary calculus, as currently taught, “is extremely efficient at lowering student 

confidence, enjoyment of mathematics, and desire to continue in a field that requires further 

mathematics” (p. 144), which is much the opposite of the following goal of what an 

undergraduate mathematics course should do.  “One goal of undergraduate education in 

mathematics is to help students develop a productive disposition toward mathematics…A way of 

conceiving of this is as helping mathematical novices transition to more expert-like perceptions 

of mathematics” (Code et al., 2016, p. 917).  The Mathematics Attitudes and Perceptions survey 

has seven factors of expert-like behavior which were determined to be confidence in and 

attitudes towards mathematics, persistence in problem solving, belief about whether 

mathematical ability is static or developed, motivation and interest in studying mathematics, 

views of the applicability of mathematics to everyday life, learning mathematics for 
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understanding, and the nature of answers to mathematical problems.  MAPS is a thirty-two 

question survey with one filter question on a five point Likert scale. Development of MAPS was 

done iteratively with interviews of faculty and students, multiple rounds of responses from 

different populations of students, and factor analysis and model confirmation (Code & 

Maciejewski, 2017).  The Mathematics Attitudes and Perceptions survey is a relatively new 

instrument published in 2016.  Development began in 2010 and the instrument underwent 

multiple pilot runs and revisions to develop the final version, which had factor analysis and 

model confirmation to establish the categories that appear on the final version and efforts to 

establish reliability and concurrent validity were performed (Code et al., 2016).  Factor analysis 

helped to arrive at seven categories with which the creators then attached names to the factors by 

matching themes with existing constructs in literature (Code et al., 2016).  Using the full set of 

student data, N=3411, Cronbach’s alpha value was found to be 0.87 for the whole instrument, 

without the filter statement (Code et al., 2016).  This value indicated good reliability in using 

guidelines of Cohen, Manion, and Morrison (2009), which would indicate that it has an alpha 

level that indicates that the instrument is highly reliable.   

The creators attempted to establish concurrent validity through patterns in course levels, 

patterns in correlations with course grades, and comparing findings to results from the Colorado 

Learning Attitudes about Science Surveys (Code et al., 2016).  Concurrent validity, a type of 

criterion-related validity, provides a measure as to how well the new instrument compares to a 

previously well-established instrument or instrument measuring the same construct and does so 

by having the data gathered from the one instrument correlated highly to data from another 

instrument (Cohen, Manion, & Morrison, 2009).  To also establish this validity, in comparing 

student groups and MAPS expertise score, it was found that students in Calculus I with no 
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previous experience had the lowest mean expertise scores where an introduction to proofs class 

had the highest mean expertise score (Code et al., 2016); this was believed to be because the 

students in the introduction to proofs group had taken the most mathematics specific courses, 

thus developing their expert disposition more, and the students in the Calculus I courses tended 

to not be mathematics majors (Code et al., 2016).  This aligned with longitudinal CLASS-Phys 

data, which found that students that complete a physics degree tend to have the expert-like 

orientations toward physics early on in their collegiate physics education (Perkins & Granty, 

2010).  In correlating MAPS scores with course grades, it was found that overall expertise index 

is correlated with course grade for the groups observed (Code et al., 2016).  All correlations were 

found to be significant at the p < 0.01 level, except mindset, which was the lowest correlation for 

all groups, and confidence, real world, and sense making categories were not significant at this 

level for the introduction for proofs students with the creators noting that that was the smallest in 

sample size (Code et al., 2016).  Findings also indicated that confidence was the most highly 

correlated with course grade in comparing the categories (Code et al., 2016), which aligns with 

research that confidence and self-efficacy are predictors of course grade (Code et al., 2016).  The 

creators also compared trends over an academic year for students in first year mathematics 

courses on MAPS expertise score.  The results align with results from CLASS-survey 

instruments where overall students move away from expert orientations in the first year course 

(Code et al., 2016).  However, in comparing students in courses with more active teaching 

approaches, such as a flipped classroom, the findings indicate that these students decline less 

than students in a traditional first year calculus class, which aligns with results from studies in 

physics with CLASS-type instruments (Code et al., 2016).  At this time, there are no further 

psychometric studies available on the Mathematics Attitude and Perceptions Survey.  
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The Mathematics Attitudes and Perceptions Survey is a new instrument and has limited 

published results.  In the uses of the instrument and reports on new data from the creators, it has 

yielded similar findings to the Mathematical Association of American’s National Study of 

calculus findings (Sonnert & Sadler, 2015) and results similar to the CLASS surveys with which 

the creators of this instrument drew inspiration including overall decrease in attitudes over a 

semester of first year calculus and men reporting higher attitudes in many categories on MAPS 

than women (Code & Maciejewski, 2017).  Validation was done on a large set of student data 

involving 3,411 students (Code et al., 2016), however, there are no further studies on 

psychometric properties of this instrument, but the one published study that uses it (Maciejewski, 

2016) does find similar results to what the developers found in change in MAPS scores from pre-

test to post-test.  Because of the limited usage, the MAPS also does not have enough data for 

comparison across demographic variables or comparison based on teaching method (Code & 

Maciejewski, 2017). 

 The Mathematics Attitudes and Perceptions Survey was adapted from the expert/novice 

instruments for undergraduate STEM education from the group of Colorado Learning Attitudes 

about Science Surveys (Code et al., 2016).  These attitude surveys were originally developed for 

physics with CLASS-Phys (Adam et al., 2006) and have been extended to other science domains 

such as biology (Semsar et al., 2011), chemistry (Barbera et al., 2008), earth science (Jolley et 

al., 2012), and computer science (Dorn & Tew, 2015).  Each of these, as is MAPS, is a 

multidimensional survey with subscales related to expert-like thinking in the specific discipline 

(Code et al., 2016).  Attitude surveys that measure expert-novice perspectives must be domain-

specific to reflect expert-like thinking of the respective discipline (Code et al., 2016).  Adams et 

al. (2006) reveal that students cannot decide on an answer if the questions are too general and 
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gives an example when students are asked about science they report having different feelings 

based on the type of science.  Because of the need for more specificity in the questions relating 

to the domain of interest, MAPS was developed for undergraduate mathematics specifically.   

MAPS shares similar statements to and aspects of development of these expert/novice 

surveys (Code & Maciejewski, 2017).  The CLASS statements were written to be as “clear and 

concise as possible and suitable for use in a wide variety of physics courses,” with students 

responding on a five-point Likert scale (Adams et al., 2006, p. 010101-1).  CLASS “was 

designed to address a wider variety of issues that educators consider important aspects of 

learning physics” and “the wording of each statement was carefully constructed and tested to be 

clear and concise and subject to only a single interpretation by both a broad population of 

students and a range of experts,” which “make the survey suitable for use in many different 

courses covering a range of levels, and also allows most of the statements to be readily adapted 

for use in other sciences” (Adams et al., 2006, p. 010101-2) on which MAPS then built on for 

mathematics.  Wording for CLASS statements was created by listening to and writing down 

statements that students said in interviews to word the statements in ways students will easily 

understand and represent their ideas about wording (Adams et al., 2006).  Comparing the 

statements on the CLASS-Phys (Adams et al., 2006) with statements on MAPS (Code et al., 

2016), it can be seen that the wording is similar for many statements but the discipline is 

changed.  CLASS instruments were developed so that statements could be used for students that 

had never taken physics (Adams et al., 2006), which is also an important consideration for 

MAPS in the proposed study.  CLASS instruments were also designed to be administered 

quickly, requiring ten minutes or less for thoughtful responses, and ease of administration and 

scoring (Adams et al., 2006).  MAPS follows this same format.   
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MAPS is also multi-dimensional and can be analyzed as a complete expert index and can 

also be analyzed by category.  MAPS has seven categories, which include growth mindset, real 

world, confidence, interest, persistence, sense making, and answers (Code et al., 2016).  Other 

mathematics attitudes surveys are unidimensional, such as the Conceptions of Mathematics 

Survey, which expresses students’ views of mathematics as fragmented or cohesive (Crawford et 

al., 1994); the Fennema-Sherman Mathematics Attitude Scales are multi-dimensional but has 

over one hundred questions and has dimensions, such as mathematics as a male domain, that 

may no longer be as applicable based on the way the questions are asked (Forgasz, Leder, & 

Gardner, 1999).  The multi-dimensionality is of interest in the proposed study.   

The different categories on the Mathematics Attitudes and Perceptions Survey are 

defined below. 

§ Confidence: This category is described as confidence in mathematics.  

“Confidence in mathematics is a person’s perceived ability to successfully engage 

in mathematical tasks.  Confidence is known to affect a student’s willingness to 

engage with a task, the effort they expend in working the task, and the degree to 

which they persist when encountering setbacks.” (Code et al., 2016, p. 920).  A 

statement representative of this category is given by, “No matter how much I 

prepare, I am still not confident taking math tests” (Code et al., 2016, p. 920).  

§ Persistence: Persistence is referencing persistence in problem solving.  The 

developers of MAPS describe it as, “How students approach solving a non-routine 

mathematical problem (i.e., one where they can ‘get stuck’) is just as important as 

their ability to solve that problem. It is now well established that experts and 

novices differ in how they solve problems.  Experts have a wealth of knowledge – 
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in terms of knowledge of facts and definitions, but also of problem types and 

solution strategies – and this aids in their problem solving.  Experts also attend to 

different features of problems than novices,” and “experts grouped the problems 

according to their deep structure, that is, according to the underlying principles 

needed to solve them.  Novices tended to group the problems according to their 

surface structure, concerning superficial features of the problem setup.  Moreover, 

experts engage metacognitive skills while solving problems, monitoring their own 

progress, looking for relevant choices among their broad set of known solution 

strategies, and are willing to abandon strategies when they are judged to be no 

longer applicable… We may thus consider perseverance in problem solving as 

relatively distinct from issues of anxiety or laziness and more in terms of the 

ability to select appropriately from a sufficiently large set of strategies and to 

continue selecting and attempting strategies based on one’s progress” (Code et al., 

2016, p. 921).  The statement that represents the persistence category is, “If I get 

stuck on a math problem, there is no chance that I will figure it out on my own” 

(Code et al., 2016, p. 921). 

§ Growth mindset: The representative statement for growth mindset is “‘Math 

ability is something about a person that cannot be changed very much” (Code et 

al., 2016, p. 921).   Code et al. (2016) state, “This category rates students’ belief 

about whether mathematical ability is innate or can be developed” (p. 921).  

§ Interest: The interest category is described as interest in mathematics with the 

representative statement given as “I only learn math when it is required” and the 

developers describe the scale as quantifying students’ interest in engaging with 
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mathematics (Code et al., 2016).   

§ Real world:  The real world category rates students’ beliefs in the relationships 

between mathematics and the real world.  The statement given as the 

representative statement is, “Reasoning skills used to understand mathematics can 

be helpful to me in my everyday life” (Code et al., 2016, p. 922).  

§ Sense making:  The sense making category is “intended to quantify students’ 

perspectives on the nature of their personal mathematical knowledge. Students 

tend to structure and apply their mathematical knowledge in two broad ways: as 

certain tools to solve learned problem types or as a coherent body of knowledge 

that can be interpreted and applied equally to known and novel problems” (Code 

et al., 2016, p. 922).  Experts have the belief that mathematics is a coherent body 

of knowledge.  The statement that represents this category is, “In math, it is 

important for me to make sense out of formulas and procedures before I use 

them” (Code et al., 2016, p. 923).  

§ Answers: The developers of the MAPS describe this category as the nature of 

answers with the representative question being, “I expect the answer to math 

problems to always be numbers” (Code et al., 2016, p. 923).  “This category 

characterizes students’ views on the nature of solutions to mathematics problems. 

Students may view answers in mathematics as being either right or wrong and the 

solutions supporting these answers as having a certain degree of rigidity” (Code et 

al., 2016, p 923). 

Because of its recent development, the Mathematics Attitudes and Perceptions Survey 

has not been widely used in published research yet.  Maciejewski (2016) uses this instrument, 
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along with the Calculus Concept Inventory, to study flipping a calculus classroom.  His findings 

indicate, similar to CLASS data, there is a decline in MAPS expert scores over the semester, but 

that students in the flipped section had a smaller decrease in MAPS score than students in a 

traditional course.  Also while there were no statistically significant differences in pre-test MAPS 

scores, the flipped section had statistically significant higher post-test MAPS scores than the 

traditional group (Maciejewski, 2016).   

Pros and Cons of the MAPS as Related to this Study. The Mathematical Attitudes and 

Perceptions Survey was selected for this study because of its focus on undergraduate 

mathematics students.  The developers of MAPS state, “one goal of an undergraduate education 

in mathematics is to help students develop a productive disposition towards mathematics” (Code 

et al., 2016, p. 917), which this project aims to do.  MAPS was developed for the study of and 

through administration to undergraduate students, which are from whom this study will get its 

sample, whereas several other instruments were developed on high school students or younger.  

MAPS was also selected for this study in part because of its motivation from instruments 

in other STEM disciplines.  MAPS was selected over several other mathematics attitude 

inventories because of its relative short length compared to other instruments for measuring 

attitude toward mathematics; longer surveys can cause survey fatigue.  The creators of MAPS 

“intentionally kept the survey brief enough to be used as a pre- and post-test instrument in 

authentic course settings” (Code et al., 2016, p. 932).  MAPS was selected over the Fennema-

Sherman Scales because they are 108 items long and take around forty-five minutes to complete 

making survey fatigue a serious consideration as participants become bored or uninterested and 

no longer give effort on answering the questions; the Fennema-Sherman Scales are also more 

than thirty-years old and some of the constructs they measure such as mother and father 
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education scale, math as a male dominant field, and teacher scale (Fennema & Sherman, 1976) 

are not of interest for this study. MAPS was also chosen over the Attitudes Toward Mathematics 

Inventory, which is forty questions (Tapia, 1996).   

MAPS was selected because it is multidimensional and was developed with 

mathematicians’ input throughout the process (Code et al., 2016).  The multidimensionality is 

fitting for the current study.  MAPS, as with other inventories from mathematics and other 

STEM disciplines, shows that students tend to move away from expert-like thinking throughout 

the semester (Code et al., 2016).  The results from MAPS can be analyzed as a whole but can 

also be broken down into seven specific categories to see if there is change in sub-categories 

individually.  While there may be no positive effect on the expert-like disposition as a whole, 

based on previous findings in mathematics (Code et al., 2016) there may be effects on sub-

categories, which include growth mindset, real world, confidence, interest, persistence, sense 

making, and answers.  Of particular interest is the real world category.  Previous research 

(Gordon, 1979; Hoffman, 1989; Ralston, 1984) has revealed that using a finite approach to 

calculus can make mathematics more real and relevant for students as it can be more concrete 

and can include less concocted examples; in addition, students tend to support the use of 

technology in the mathematics classroom (Heid et al., 2002; Zevenbergen, 2004) and that 

technology can make mathematics also more real and relevant, so being introduced to some 

calculus topics using the labs may enhance student beliefs that mathematics is more connected to 

the real world outside of the classroom than those that do not use the technology as much.  The 

developers of MAPS encourage others to use it “in any undergraduate mathematics education 

setting where student beliefs and perceptions are suspected to play a role” (Code et al., 2016, p. 

933), which Business Calculus fits with well since students in these classes are thought to have 
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relatively negative attitudes toward mathematics (Depaolo & Mclaren, 2006; Liang & Pan, 

2009).  

 As previously discussed, a limitation of MAPS is that it is a relatively new instrument 

without much published usage for comparison.  Maciejewski (2016) uses both MAPS and the 

CCI in a study of flipping undergraduate calculus classrooms.  Maciejewski’s (2016) findings do 

align with the findings of the validation of the instrument; his findings indicate that overall 

students move away from expert-like dispositions and did so on all subscales but none were 

statistically significant comparing the two groups (p. 195).  The findings indicate that while there 

were no statistically significant differences between the two groups in the beginning on MAPS 

expertise score, there were significant differences on post-test MAPS expertise score at the 

p=0.01 level with the flipped section having higher overall scores.  Maciejewski (2016) does not 

present data or findings on other demographic variables, which may be considered in this study, 

and MAPS does not have data on other demographic variables.   
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CHAPTER 3: Manuscript 1 
Computational Labs and Conceptual Understanding 

 
Abstract 

This study investigates the impact of computational labs on students’ conceptual 

understanding of calculus in a one-semester Business Calculus course.  Investigating students’ 

gains in conceptual understanding from the beginning to the end of the semester provides 

empirical evidence about and student experiences of the use of computational labs with business 

applications.  Students’ conceptual understanding of calculus was measured through the 

administration of the Calculus Concept Inventory as a pre-test and post-test.  Overall gains were 

not significant and reasons for this are explored.  Student comments were also analyzed for 

students’ perceptions of computational labs and calculus; these comments do indicate several 

important impacts and suggest a number of changes that may improve the impacts.   

Introduction 

Over 300,000 students enroll in college or university calculus every semester (Bressoud, 

2015).  There have been major changes in who is now expected to complete calculus, including 

most STEM majors and most business majors, but what is taught in a calculus course and how it 

is taught have been relatively stagnant, leading to an increasingly poor fit for today’s students 

(Kaput, 1997).  Calculus has long served as a stumbling block and a “critical filter” that is 

“blocking access to professional careers for the vast majority of those who enroll” (The 

Mathematical Association of America, 1988, p. xi) and appears to remain as a filter today, even 

for some strong students (Bressoud et al., 2013) in STEM majors and business majors.  The last 

thirty years have involved mathematics educators discussing pedagogy and curricula for calculus 

to improve the courses.  Many of these changes desire calculus as a pump not a filter for 
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numerous disciplines and helping students get through it with meaningful understanding (Axtell, 

Doree, & Dray, 2016). 

Not only is calculus serving as a weeding-out course for many disciplines, but students 

that complete calculus are finishing first semester calculus courses with little to no basic 

conceptual knowledge that university faculty assumed they were all developing (Epstein, 2013).  

Students very often struggle with calculus and it is thought to be a difficult subject because “it is 

a coherent theory that builds on all of high school mathematics and then builds on itself.  That is 

one must thoroughly understand what has come before in order to go on” (Douglas, 1985).   

To address the issues of lack of conceptual knowledge and the issues of students leaving 

their intended majors and potential careers because of calculus, recommendations have been 

made to better serve the vast, diverse population of students that are required to take it.  The 

Mathematical Association of America has two reports on partner disciplines both suggesting that 

partner disciplines desire calculus to “increase emphasis on conceptual understanding, problem-

solving skills, mathematical modeling, and communication of ideas; provide a better balance of 

perspectives (such as exact and approximate); and make appropriate use of technology” (Axtell, 

Doree, & Dray, 2016, pp. 33-34).  These recommendations also include more modeling, 

examples from a variety of contexts, and applied projects (Axtell, Doree, & Dray, 2016).   

One way these recommendations could be implemented would be through computational 

tools.  “With mathematics seeing an increasing focus on computation, mathematics education 

should not be far behind in its pursuit to understand the teaching and learning of computing 

within mathematics” (Lockwood, DeJarnette, & Thomas, 2019, p. 1).   This project aims to 

fulfill some of these recommendations and studies one example of teaching and learning in 
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calculus, by using computational labs, in Jupyter notebooks, in a one-semester Business Calculus 

course. 

Literature Review 

Students around the world have problems with basic conceptual understanding of 

calculus often finishing the course with little to no basic conceptual knowledge that university 

faculty assumed they were developing (Epstein, 2013).  The recent national study of calculus 

found that in any introductory calculus class about one-fourth of students attain a D, F, or 

withdraw from the course; of the students that do complete the course about two-thirds self-

report being able to correctly compute derivatives and integrals and 40% feel confident in their 

ability to use ideas of calculus (Bressoud, 2015).  Research repeatedly suggests that in 

introductory mathematics courses, students are not learning the intended material (Breidenbach 

et al., 1992; Carlson, 1998; Tallman et al. 2016; Thompson, 1994), students are leaving the 

courses unprepared for other courses (Carlson, 1998; Selden, Selden, Hauk, & Mason, 2000; 

Thompson, 1994), and students lose interest in mathematics after completing the course 

(Bressoud, Mesa, & Rasmussen, 2015; Seymour, 2006), all of which have been seen in both 

small, localized studies but also in national studies of introductory college mathematics courses 

(Bressoud, Mesa, & Rasmussen, 2015).   

To address the needs of the vast amount of students tasked with taking calculus and their 

need to gain conceptual knowledge of the subject, there is a “long overdue reconsideration of the 

appropriate intellectual content of calculus,” (Kaput, 1997, p. 731).  Kaput argues that what is 

taught and how it is taught in a calculus course have largely remained unchanged because they 

have “served traditional purposes and populations extremely well” (Kaput, 1997, p. 731).  

However, there have been major changes in who is now expected to complete calculus, including 
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most STEM majors and most business majors, but there have not been striking changes to how 

or what is taught in a calculus course leaving it misaligned with the needs of today’s students 

(Kaput, 1997).  Client disciplines are also not pleased with students completing calculus courses 

that have been extremely stagnant, and suggestions have been made to have experts from these 

client disciplines teach the calculus courses rather than mathematics educators (PCAST, 2012).  

Rethinking the way calculus is taught and what content is necessary today could make it more 

accessible to more students, but that that will require mathematics educators to be more open to 

the use of technology, organization of topics, and what counts as mathematical thinking (Kaput, 

1997).  

Calculus as a Filter 
 

For many years, calculus has served as a challenging course that is a “critical filter” that 

is “blocking access to professional careers for the vast majority of those who enroll” (The 

Mathematical Association of America, 1988, p. xi) and appears to remain as a filter today 

(Bressoud et al., 2013).  The President’s Council of Advisors on Science and Technology 

(PCAST, 2012) found that students often leave STEM degrees because of courses, such as 

calculus, being taught in an unwelcoming and uninspiring manner with students referring to them 

as “frequently uninspiring, relying on memorization and rote learning while avoiding richer 

mathematical ideas” (PCAST, 2012, p. 28) and struggle to get through them.  Some students 

simply cannot successfully get through the barrier of calculus.   

Though often thought of as the filter for STEM degrees, calculus can also serve as the 

screening course for business and social science students (Brito & Goldberg, 1988) thus ways to 

improve these courses must be explored.  While it is acknowledged that the country needs more 

STEM professionals (PCAST, 2012), it is also documented that there is an increasing demand for 

business professionals capable of integrating science, technology, and mathematics into their 
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business operations and management (Ledley, 2012; Ledley & Holt, 2014; Ledley & Oches, 

2013; McCann, 2006). Leaders in mathematics education have long called upon mathematics 

departments to collaborate with other disciplines, such as business, for the revision of course 

content for mutual interest (Egerer & Cannon, 1988).  It seems these were calls for 

interdisciplinary work since “business is inherently interdisciplinary…the practices, policies, and 

norms that govern business are grounded in social science, and the goods and services that 

businesses produce are themselves the fruits of science, engineering, arts, and humanities” 

(Bouldin et al., 2015, p. 17). 

The business leaders of tomorrow, and therefore the business students of today, need to 

understand the conceptual basis of algebra, calculus, and statistics.  They must be able to 

interpret and use the results of calculations… For business executives to be successful, 

they need proficiency in the technology that produces the data they need, understanding 

of the algebra, calculus, and statistics underlying these data, and knowledge of how 

sensitive the results are to changes in the input data. (Lamoureux, Beach, & Hallet, 2000, 

p. 20)   

Bouldin et al. (2015) detail that many business majors take an introductory science course 

that usually satisfies a general education requirement and is the last formal science course they 

take, but this course is commonly purely introductory, often has little context for applying the 

scientific knowledge outside of the science discipline, and may leave them feeling that the course 

was pointless and unrelated to anything they will be doing in the future.  To combat this, Bouldin 

et al. (2015) propose interdisciplinary courses and experiences that allow students to see the 

connections between the disciplines.  The same may be, at least in part, said of Business 

Calculus.  Many of these students finish the course feeling that it was simply a mathematics 
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course they had to complete to fulfill a requirement and nothing more, but a more 

interdisciplinary course with authentic contexts and realistic ways of problem solving could 

remedy this situation.   

The Mathematical Association of America’s Curriculum Renewal Across the First Two 

Years (abbreviated: CRAFTY) subcommittees report The Curriculum Foundations Project: 

Voices of the Partner Disciplines emphasizes that there is a need for “a shift from business 

mathematics viewed as a method of weeding out students to business mathematics with the 

purpose of adding value” (Lamoureux, Beach, & Hallet, 2000, p. 22).  It recommends doing so in 

part by stating 

 Calculus in the business mathematics curriculum should emphasize the basic concepts 

and how they apply to business problems, with more attention to numerical methods and 

less to techniques of symbolic differentiation and integration.  The Business Calculus 

curriculum should include an introduction to rates of change, and the dynamic nature of 

real world systems, constrained optimization, and interpretations of area under a graph. 

(Lamoureux, Beach, & Hallet, 2000, p. 20) 

Business students required to take Business Calculus often miss seeing the connection 

between calculus and the rest of their courses, which causes them to be uninterested in the 

material, “unmotivated and even resentful” (Narasimhan, 1993, p. 254), which may be hindering 

the effort they put in and their performance.  “Students learn more when they are intensely 

involved in their education and have opportunities to think about and apply what they are 

learning in different settings” (Kuh, 2003), which in a business mathematics course needs to be 

in applications to business.  Students cannot be filtered out of their desired field of study because 

they are unable to get through a challenging course that is often presented in a way that leaves 
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them missing the connections and value for their intended careers.  Business mathematics 

courses should help students appreciate the relevance of mathematics (Lamoureux, Beach, & 

Hallet, 2000, p. 19), which this project hopes to aid by introducing students to calculus topics 

with more interdisciplinary connections utilizing modern technology to also help them gain 

greater understanding.     

Recommendations for Improving the Courses 
 

Many recommendations as to how to do improve a Business Calculus course include 

using technology to show students tools they will use in the work place, to enhance the 

efficiency of the learning process, and to enrich and maintain student interest (Lamoureux, 

Beach, & Hallet, 2000).  One recommendation calls on instructors to use such technology in the 

classroom and allow for hands-on experiences for students through introductory data analysis, 

creating models, and applications such as optimization and other simulations (Lamoureux, 

Beach, & Hallet, 2000), which the project aims to do through the use of Jupyter notebook labs 

with business applications to introduce calculus topics.   

Labs.  The MAA CRAFTY project recommendations for business mathematics also 

include the use of labs to support student learning (Lamoureux, Beach, & Hallet, 2000).  A 

review of literature revealed that labs in calculus courses take on a variety of forms, use various 

technologies, and cover a variety of content (Leinbach, 1991).  A calculus lab can be used as a 

“learning device to see how calculus applies to other courses and disciplines” and “helps students 

relate the rather abstract ideas of mathematics to non-mathematical ideas they have encountered 

in other courses” (Basson, Krantz, & Thorton, 2006, p. 346).  Successful calculus labs are used 

for enhancing the existing calculus course and having the main goal of the lab not be to teach 

additional material but to teach students to make connections (Basson, Krantz, & Thorton, 2006), 
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which is a goal of this project.  Successful calculus labs also seem to use real data (e.g., Basson, 

Krantz, & Thorton, 2006; Kowalczyk & Hausknecht, 1994), which this project does as well.  

Labs are a suggestion for engaging students in the mathematics they will be learning: 

Another potentially useful method for drawing students into the lecture is to start the 

lecture with a real-world (or realistic) business problem.  If students are convinced that 

the problem is worthy of their attention, and that they do not know how to solve it, they 

are much more likely to pay attention and to retain what they learn.  It is important to get 

the buy-in at the beginning. (Lamoureux, Beach, & Hallet, 2000, p. 21)   

The labs in this project are used to introduce students to calculus topics and are situated in the 

context of a business or financial problem.  The choice to begin with the labs rather than use 

them as extension labs aligns with the aforementioned recommendations and is done to introduce 

students to calculus concepts so that concepts are introduced through simple, concrete examples. 

“It is essential here to make it clear to the pupil that he is dealing, not with something mystical, 

but with the simple things that anyone can understand” (Klein, trans. 2007, p. 223).  Felix Klein 

argued for introducing calculus in such a way that,  

We desire that the concepts which are expressed by the symbols y=f(x), dy/dx, ∫ 𝑦 𝑑𝑥 be 

made familiar to pupils, under these designations; not, indeed, as a new abstract 

discipline, but as an organic part of the total instruction; and that one advance slowly, 

beginning with the simplest examples. (Klein, trans. 2007, p. 223) 

Research from 1970s and 1980s emphasized them same and suggests doing so on the 

computer, especially for non-STEM majors (Gordon, 1979; Hoffman, 1989; Ralston, 1984).  

These studies suggest using “finite differences and sums as motivation for infinitesimal calculus 

and as an appropriate setting for solving real problems by discrete approximations” (Gordon, 
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1979, p. 24).  Findings from Gordon’s (1979) study suggest that students gain more complete 

understanding of the concepts faster than when solely introduced to the continuous approach and 

can be easily expanded to the continuous approach with the introduction to the limit.  Students 

with weak mathematical foundations can benefit from this approach (Gordon, 1979).  Gordon 

claims that students gain appreciation of the relationship between math and the computer, which 

“provides an ideal context in which to develop several simple, yet useful, numerical algorithms 

for approximating functions and for actually finding where all those ‘given’ functions come 

from” (Gordon, 1979, p. 23).   

The use of computational tools through these labs will rid students of the need to do some 

of the work through symbolic manipulation with paper and pencil, thus allowing for the 

introduction of more advanced topics and scenarios than many students could do by hand 

(Hoffman, 1989).  Teachers often reduce problems to a very simplified version so that they are at 

a level students can complete with the tools at there disposal, but using computational tools could 

allow for more advanced examples (Hoffman, 1989).  This is also following recommendations of 

Kaput (1994) for calculus in which “the power of new dynamic interactive technologies should 

be exploited in ways that reach beyond facilitating the use of traditional symbol systems 

(algebraic, numeric, and graphical), and especially, in ways that allow controllable linkages 

between measurable events that are experienced as real by students and more formal 

mathematical representations of those events” (p. 42).  To which Dubinsky (n.d.) expands on and 

gives an example of that “calculus may be needed to analyze DNA or understand behaviors of 

the market.  In the latter case, we might wish to reverse the traditional use of calculus in which 

the discrete is an approximation of the continuous and study fluctuation of prices in which the 

continuous is a model for the discrete” (pp. 6-7).  This may help students find the mathematics 
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more relevant, but also may increase achievement as research suggests that learning in a real 

world context greatly influences mathematical capabilities (Couch & Haines, 2004).   

The labs in this project were done using Jupyter notebooks, which allows for coding in 

Python.  Juypter notebook is thought to be an easy to use program even for teachers with little to 

no background in coding and computing, and students can easily discover how technology can 

help them solve mathematics problems and communicate solutions to challenging and real 

problems (Koehler and Kim, 2018).  “The Jupyter Notebook is an open-source web application 

that allows you to create and share documents that contain live code, equations, visualizations 

and narrative text.  Uses include: data cleaning and transformation, numerical simulation, 

statistical modeling, data visualization, machine learning, and much more” (Project Jupyter, 

n.d.).  Jupyter notebooks support multiple programming languages, can be easily shared, can 

produce interactive output with images, videos, LaTex, and more, and can support big data tools 

(Project Jupyter, n.d.).  The notebooks used in this project were running Python, which was 

chosen since Python is a popular, commonly used programming language that has a large focus 

on ease of use and readability (Meurer et al., 2016).  Technology is playing a growing role in the 

financial and business industries, and many companies, such as big banks, are requiring Python 

courses for analysts and other employees (Hilpisch, 2016; Rayome, 2019), so exposing business 

majors to this computing language could introduce them to a valuable skill they may be expected 

to use in industry.   

 Computational Tools.  The national study of calculus (Bressoud, Mesa, & Rasmussen, 

2015) does not highlight the use of computing in a programming language as used in this study, 

however, the use of software in mathematics has grown recently and it is known that these tools 

are useful for professional mathematicians, so students should be exposed to these tools.  Often 
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software can make mathematical computation and inquiry quicker and more accessible to those 

not advanced in their mathematical careers (Quinlan, 2016).  Many university mathematics 

professors reported that technology was significantly important in mathematics and mathematics 

teaching and recommended software including MATLAB, Maple, and Python as well as others 

(Quinlan, 2016).  Lockwood, DeJarnette, and Thomas (2019) found from interviewing 

mathematicians: 

Computing is an activity that can be performed with a variety of tools, including paper 

and pencil.  At the same time, given that the advances in technology can increase the 

efficiency, accuracy, and utility of computational work, it is reasonable to expect that 

computing is particularly salient practice in this era, at least inasmuch as mathematicians 

may recognize it as an integral part of the work of doing mathematics. (p. 4)   

With the importance of such tools growing within mathematics, there has also been a rise in 

research on computational tools in mathematics education (e.g., Cline et al., 2019; Jones & 

Hopkins, 2019; Kilty & McAllister, 2019).  Lockwood, DeJarnette, and Thomas (2019) call on 

practice and research to reflect practices of society since we live in a progressingly computerized 

time.  diSessa (2018), Lockwood, DeJarnette, and Thomas (2019), and others encourage 

mathematics educators to research how their ideas of how computers and computational tools 

can be used in mathematics learning and that there is still much to be unearthed in effective 

learning and learning of computing within mathematics.   

“In the real world we use computers for calculating, almost universally.  In education we 

use people for calculating almost universally” (Wolfram, 2014, p. 1); this changes what 

mathematics might be of importance to be taught.  Because of such, Gravemeijer et al. (2017) 

assert “that we have to shift away from teaching competencies that compete with what computers 
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can do and start focusing on competencies that complement computer capabilities” (p. S107).  

Students tend to align with the research that the inclusion of technology in the classroom can be 

beneficial for focusing on problem solving and more real situations and being reflective of the 

work place, but this is not always reflected in the mathematics classroom (Zevenbergen, 2004).  

“In school the professor formulates the [mathematical] problem and you solve it – you hope. In 

industry, you formulate the [mathematical] problem and the software solves it – you hope” 

(Keeler & Grandine, 2013, p. 41).  It is often difficult for students to engage in mathematical 

modeling, or translating a real world situation into a mathematical representation, because they 

have learned math decontextualized and have a hard time switching between real world and 

mathematics because of the lack of practice they get with this in school (Couch & Haines, 2004).  

These, however, are important skills because, “when mathematics is applied in the modern world 

for a practical purpose, we almost always require a computer to deal with a realistic level of 

complexity or to manage the data involved” (Cline et al., 2019).    

Impacting Learning.  Some previous research indicates positive results on impacting 

understanding using computational tools in the mathematics classroom.  Heid, Blume, 

Hollebrands, and Piez, (2002) report many benefits to incorporating technology into the 

mathematics classroom including on conceptual understanding and time for more focus on 

concepts instead of such large emphasis on skills (Heid, 1988).  Heid, Blume, Hollebrands, and 

Piez (2002) also report students perform just as well on test items that require computation and 

procedural skills as students who did not use computer algebra systems, CAS, in their class; 

studies have shown that students using CAS have overall conceptual understanding at or above a 

level of those not using CAS and students using CAS better understood concepts (Heid, Blume, 

Hollebrands,& Piez, 2002) because it allows more time for developing conceptual understanding 
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and for enabling students to understand real world quantitative situations” (Heid, Blume, 

Hollebrands,& Piez, 2002, p. 588).   

Research from the 1990s in using computers and a variety of programming languages in 

calculus courses did not find major improvement in student learning because of such technology, 

but many of them found overall positive results based on students’ comments and did not see 

negative effects on performance (e.g., Schwingendorf & Dubinsky, 1990; Höft & James, 1990).  

Fenton and Dubinsky (1996) developed ISETL language to help students more effectively learn 

mathematics beginning with the argument that “communicating with a computer requires a level 

of precision that will help illuminate important mathematical ides for students” (Lockwood, 

DeJarnette, & Thomas, 2019, p. 17).  In a calculus courses where students explored calculus 

topics through programming in BASIC, Crowell and Prosser (1991) did not find overall 

improvement in understanding as measured by final exam scores, but did find ease of 

implementation, mixed results on students attitudes toward the computer enhancing calculus, and 

still asked the questions of what is the computer’s place in calculus with programming and how 

would the traditional curriculum and pedagogy be revised to best incorporate the power 

computers could provide (Crowell & Prosser, 1991), both of which are still questions of today. 

Cetin and Dubinsky (2017) found that students learned concepts such as functions more 

effectively using ISETL by writing and running their code students had to think about what the 

computer is doing with the code, which can help students internalize concepts.  They explain that 

students had to define the function correctly in the program and then students really begin to 

reflect when having to enter certain code, see the result, and have to think about how the 

computer got the result (Cetin & Dubinsky, 2017).  Benakli, Kostadinov, Satyanarayana, and 

Singh (2017) also report similar results when using hands on computer programming in R to 
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solve problems of calculus, probability, statistics, and data analysis.  Using computational tools 

can improve conceptual understanding of many difficult concepts from complex and abstract 

problems and improve problem-solving skills (Benakli, Kostadinov, Satyanarayana, & Singh, 

2017).  Rich, Bly, and Leatham (2014) in studying the impacts that learning computer 

programming can have on the way students approach mathematics claim that learning to code 

“provided participants with context, application, structure, and motivation for mathematics” that 

was long lasting.  Further developing such tools that utilize the computing power that is now at 

most students’ fingertips could provide valuable opportunities for students to learn calculus 

concepts in a modern way.   

Research Question 

This study was designed to determine the impact, if any, of the use of computational labs 

on students’ conceptual understanding of calculus in a one-semester undergraduate Business 

Calculus course.  The overarching research question used to guide this study is: 

To what extent will students demonstrate gains in conceptual calculus knowledge when 

introduced to calculus concepts through computational labs in a Business Calculus 

course?     

This project studies the implementation of computational labs and their impact on 

conceptual understanding through a quasi-experimental, multi-method design.  The Calculus 

Concept Inventory was used to collect data on students’ conceptual calculus knowledge, and the 

data was statistically examined to determine the impact of the labs on this variable.  Students’ 

comments from the end of each lab were collected and analyzed as well.  The main purpose of 

this research is to determine the effectiveness of computational labs as a method to affect 

students’ conceptual knowledge of calculus and further inform teaching practices.  
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Participants   
 

Participants in this study were undergraduate students at a medium-sized private 

university, with undergraduate enrollment of around 4,500 students, enrolled during the spring 

semester of 2019.  At this university the liberal arts general education curriculum currently 

includes a mathematics requirement of which approximately 39% of students meet by taking 

Calculus I or Business Calculus during their freshman year.  Students in both groups ranged from 

freshmen to seniors at the university, but the majority of students enrolled were freshmen.    

There were a total of four sections of Business Calculus participating in this study all 

taught by the same instructor.  Thirty students were enrolled in each section to begin the 

semester with numbers dropping by a few students in each class as the semester progressed.   

The semester began with 120 students enrolled across the four sections, with 60 eligible students 

in each of the experimental and control groups.  Of the 120 students enrolled at the beginning of 

the semester, 113 elected to participate in the first day administration of the Calculus Concept 

Inventory.  By the end of the semester, enrollment across the four sections was down to 106 

students, of which 94 participated in the end of semester Calculus Concept Inventory.  Despite 

94 responses on the post-test, only 79 responses gave consent and were successfully matched to 

their corresponding pre-test code.  Demographic information about the 79 participants for which 

matched data was acquired and analyzed is presented in the following table. 
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Table 1 
 
Student Demographic Characteristics 

Demographic 
Characteristic 

Number of Respondents 
Control 
(n=39) 

Experimental 
(n=40) 

TOTAL 
(n=79) 

Gender    
     Male  25 21      46 
     Female 14 19      33 
Major    
     Business 35 36      71 
     Undecided 3 4       7 
     Other 1 0       1 
Previous Calculus     
      Yes 17 12      29 
      No 22 28      50 
 
 

In addition to demographic information, students were asked to provide their intended 

major and the concentration of their major if applicable.  The table below details the different 

majors that were present among the participants, which included Business and the different 

concentrations within, non-business, and undecided.  

Table 2 
 
Student Major and Concentration  

College Major and 
Concentration 

Number of Respondents 

Control 
(n=39) 

Experimental 
(n=40) 

Total 
(n=79) 

Business 35 36 71 
      Business Admin.     13    12     26 
      Marketing     9      6     15 
      Accounting     2      5       7 
      Entrepreneurship     5      4       9 
      Finance     2      4       6 
      International Bus.     3      4       7 
      Sales     1      1       2 
Non-Business Major 1 0 1 
Undecided 3 4 7 
 

 

 



 101 

Methodology 

This project studies the implementation of computational labs and the effects on 

conceptual understanding through a quasi-experimental, multi-method design including an 

experimental group and a control group.  Gains in students’ conceptual understanding of calculus 

were quantitatively measured using the Calculus Concept Inventory.  In addition to the 

quantitative data, student comments were also gathered and analyzed to provide additional 

insight into what students learned from the computational labs and how they perceived the labs 

as impacting their learning.  This study used a multi-method Quan + qual design (Morse, 2003).  

In this design “the description is primarily from the quantitative data with qualitative description 

enhancing particular aspects of the study” (Morse, 2003, p. 204). 

Description of Intervention  
 

Students in the experimental group completed six computational labs throughout the 

semester.  The labs were completed using Jupyter notebook with Python. The lab activities were 

used to introduce topics.  In this study, students worked through the beginnings of the labs with 

the instructor as a class followed by a problem set that involved some of the techniques covered 

in the beginning to tackle the problems on their own.  Students were typically given one and a 

half weeks to complete the problem set on the lab.  During that time, the topics from the lab were 

expanded on in the lecture portion of the course.  Students were also given time each class 

meeting to work on the lab problems while the instructor circulated.  

The first lab assignment was done on the second-class meeting.  The first lab allowed 

students to download and install the appropriate software and set up a folder where they would 

store their work.  The purpose of the first lab was to introduce students to Jupyter notebooks, 

demonstrate some of the different types of cells they would need throughout the semester (code 

or markdown), discover different ways to type text in markdown, insert images, use code cells to 
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do simple mathematics operations, create lists and arrays, use simple loops, append elements, 

and define and plot functions.  Students worked through the lab in class on their personal 

computers as the instructor projected the notebook on the board and worked through it with 

them.  The end of the notebook had a set of four problems that students were to complete on their 

own, which asked students to implement what they had learned working through the beginning 

part and referring back to the beginning part to write the appropriate code to complete the tasks.  

The tasks included navigating to the appropriate type of cell to answer questions about 

themselves or insert a picture; performing simple mathematics operations; producing specified 

arrays; printing numbers from the NumPy library; and translating sentences into mathematical 

expressions, defining these expressions as functions, and plotting these functions on a specified 

domain and in a specific format.  Students were also asked to write a paragraph at the end of the 

lab reflecting on what they learned, which occurred on all subsequent labs as well.  This 

notebook had many of the basic commands students would need to progress into future labs and 

students often referred back to this first assignment.  

The second lab was focused on functions with its goals including a review of linear, 

quadratic, and exponential functions, relating functions to sequences, and using functions to 

model situations.   

The third lab was titled Introduction to the Derivative.  In this lab students were tasked 

with computing limits, slopes and finite differences, working with the definition of the 

derivative, interpreting the derivative as slope of tangent line, interpreting the derivative as a 

function, and using Python to symbolically compute derivatives and use these examples to 

conjecture rules for computing derivatives.   

The fourth lab was centered on applications of the derivative.  In this lab students 
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explored applications of derivatives to shapes of curves, finding relative and absolute extrema, 

and optimization.  Students used pre-written code to graph the function and first and second 

derivatives to make conjectures about the connections between them.  Students then learned how 

to find critical points, describe intervals of increase/decrease and concavity, and determine where 

there were maxima or minima.  Students used this knowledge to analyze sales of smokeless 

tobacco products, complete examples of the law of diminishing returns, and optimization 

problems relating to maximizing revenue or profit.  

Lab five focused on the study of integration.  In this lab students had to conjecture how 

they would determine area under the curve and were then shown how to approximate the area 

under the curve using rectangles.  They then improved their approximation by increasing the 

number of rectangles, which lead to the introduction of the definite integral.  Students used 

numerical integration to apply this concept to applications including net change and average 

value.   

The concentration of the sixth and final lab was area between curves.  Students created 

graphs of several curves and made determinations about how they would then find the area 

between the curves.  This was extended to examples of income inequality, consumer and 

producer surplus, and future value of income streams.   

Employing the computational labs creates both content and pedagogical differences 

between the experimental and control groups, which are discussed below. 

Overall, since the intervention was a series of labs, the content between the two groups 

largely overlapped throughout the semester.  Some content was changed to allow time for the 

labs.  To maintain more consistency between the courses, the order in which topics were covered 

mostly remained the same between the two courses.  The time spent on each topic was around 
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the same number of class meetings, but the experimental method spent some class meetings on 

the labs of that topic where the control course had lecture on that topic.  The course timelines are 

shown in Appendix A.  

In addition to slight content differences between the courses, there are also pedagogical 

differences.  The control sections of Business Calculus in this study was taught using 

predominantly lecture, which is still the dominant style of teaching for Calculus I nationwide 

(Larsen, Glover, & Melhuish, 2015).  Outside of lecture, students in the control course had the 

opportunity to briefly work during most class meetings with classmates on problem sets in 

addition to receiving lecture.  Students in the control course also completed four projects, which 

included solving a calculus problem related to business and writing a letter about their findings.  

These projects were teacher-generated; project one covered analysis of cost, revenue, and profit 

functions, project two was a marginal analysis of cost, revenue, and profit functions, project 

three was optimization of how to construct a pipeline, and project four was a research paper on 

how mathematics and calculus could potentially be used in their intended future careers.   

Another pedagogical consideration was the use of technology.  This was a distinguishing 

factor between the control and experimental Business Calculus courses that were studied.  The 

control course included the use of a graphing calculator, and the experimental course included 

the use of Jupyter notebooks.  The graphing calculator was allowed in the control Business 

Calculus classes in this study.  The graphing calculator was not used to intentionally teach 

calculus but was used by students for arithmetic computations and graphing.  This differed from 

the pedagogical decision to use technology, specifically Jupyter notebooks, to intentionally teach 

calculus topics, not simply support students in computation. 
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Procedures  
 

Approval from the university Institutional Review Board was obtained before the 

semester began.  The previously described intervention took place over a fifteen-week semester 

in Business Calculus courses all taught by the same instructor.  All four sections of the course 

were ninety-minute classes that met twice each week.  Students self-selected the sections with no 

prior knowledge as to how the courses were going to be taught.  All of the courses had the same 

instructor, so students were not selecting different sections based on listed instructor, and all of 

the courses were listed as the same course number with the identical course description.  The 

only variation in the courses as seen by the students when they were registering for classes were 

the different times the courses were offered.  None of the courses were at extremes of the day 

with none occurring very early or late in the day.  To randomly select which courses were to 

receive the intervention and which were not to account for being at different times of day, the 

courses were assigned numbers one through four and then selected with a random number 

generator.  Two sections of the course were taught with traditional, currently used practices in 

Business Calculus, which includes students learning continuous calculus with some business 

applications using lecture.  Two sections of the course were taught using the intervention, which 

was the use of computational labs that were used to introduce Business Calculus students to 

calculus concepts.    

Students in both groups took the pre-test Calculus Concept Inventory (CCI) on the first 

day of class.  The pre-tests were completed via online test in Qualtrics, a secure survey collection 

software system, and the post-tests were done in the same format.  The pre-test CCI had a 

consent statement that students signed (see Appendix C online consent statement).  In addition to 

the pre-CCI, on the first day of class survey students also provided a yes/no response to if they 
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had taken a calculus course before, and provided their gender, major and major concentration, 

and in which section of the course they were enrolled.   

 After the pre-tests were completed, the semester progressed with the control group 

receiving lecture and the experimental group receiving labs to introduce calculus topics that were 

then extended in lecture with tests and labs following the provided timelines.  For the most part, 

the two groups covered material in the same order and around the same time in the semester.  

The two groups also took tests at the same time, which were identical tests, and took the same 

final exam.  The two groups also had similar grading scales with the only difference being the 

control group had projects where the experimental groups had labs, but both carried the same 

weight in the gradebook.    

As students progressed through their six lab assignments, they were asked on each one to 

reflect on what they learned in the lab.  Each lab concluded with the following statement, “Think 

about what you learned and write about it! Write a short paragraph about what you learned in 

this notebook.  This needs to be a thoughtful, reflective paragraph. There should be reflection on 

the mathematics content you learned.  You may want to review the goals of this notebook (listed 

at the top).”  This statement was generated by the researcher and was intended to get students to 

reflect on the mathematics covered in the lab and inspire them to pull together what they had 

learned in the assignment.  Students used this solicitation to provide what they learned 

mathematically but also took the opportunity to reflect on the technology, how they felt about 

doing these labs, and how the labs impacted their learning.  Every student that signed a consent 

form had his or her comments saved verbatim at the end of the semester.  These student 

comments from the end of the labs were analyzed after the semester ended.  The lab comments 

were each studied individually for specific content knowledge on the lab.  The comments from 
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all six labs were also analyzed as a whole to determine the themes occurring throughout the 

comments over the entire semester.  The student comments were analyzed using initial coding 

with in vivo codes (Saldaña, 2016), a second cycle of coding was done with pattern coding 

(Saldaña, 2016), and then themes emerged from these categories.  

On the final-exam day, students in both groups took the post-CCI.  The post-CCI was 

given on final exam day when all students must be present.  This was done to attempt to avoid 

issues of student apathy and missing data as was seen in Anderson and Brennan (2015).  On the 

final-exam day students were given a written consent form to sign as well (see Appendix D for 

consent form).  A helper administrator gathered this consent rather than the instructor-researcher 

to mitigate any pressure the students might have felt if the instructor collected consent and to 

maintain more anonymity.  Final grades were also collected to compare the classes and compare 

grades with the CCI scores.  

For the pre- and post-CCI students chose a code, following Self-Generated Identification 

Code procedures (Yurek et al., 2008), to identify themselves.  The code was consistent for each 

student, which allowed for information from the different sources to be linked when the semester 

was complete.  On the final exam day, students wrote their name and code on a notecard when 

written consent was explained and gathered so that final grade could be matched to their other 

data sources.  The helper administrator collected the codes and matched the data. 

Instrument.  The Calculus Concept Inventory was used to collect data on conceptual 

calculus knowledge administered as a pre- and post-test with scores and change in score 

analyzed.  The Calculus Concept Inventory was the first instrument developed to define the basic 

understanding from a first semester differential calculus course (Epstein, 2013).  This instrument 

has been used to gather evidence to determine the impact of different teaching methodologies on 
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students' conceptual calculus understanding (Epstein, 2013).   

Calculus Concept Inventory has often been used to study the effectiveness of a specific 

type of interactive engagement, a flipped classroom; Anderson and Brennan (2015), Macejewski 

(2016), Schroeder, McGiveny-Burelle, and Fue (2015), and Ziegelmeier and Topaz (2015) all 

use the CCI in studies of flipped calculus classrooms.  These studies all had populations of 

undergraduate students in calculus classrooms.  The Calculus Concept Inventory has also been 

used to study differences in different types of Calculus I classrooms such as in Bagley’s (2014) 

study of traditional lecture, lecture with discussion, lecture with discussion and technology, and 

an inverted classroom.  Thomas (2013) used the CCI to investigate student gains in interactively 

engaged calculus classrooms and what influence individual variables, such as gender and 

previous math exposure, and instructor level variables had on CCI gain scores.  The CCI was 

also used in gathering nationwide data on the impact of ambitious teaching, such as active 

learning and student centered teaching, and found that students that had graduate student 

instructors that had training in ambitious teaching had students that scored just as well on the 

CCI as students of faculty members teaching the course (Larsen, Glover, & Melhuish, 2015).  

The CCI has been used to study team-based learning in large calculus classes (Peters et al., 

2019).  Besides uses for studying teaching using interactive engagement and other interventions 

in calculus classrooms, the CCI has been used to study differences in students’ performance 

across different nations; Chai, Friedler, Wolff, Li, and Rhea (2015) used the CCI to compare 

student gains between Chinese and American students, studying both gains and normalized gains 

on the overall test and in subsets of the test.  Certain questions on the CCI have also been used in 

isolation as a component of studying students’ understanding of the derivative (Park, 2013).   

The Calculus Concept Inventory has twenty-two items and is said to have two 
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dimensions that “correlated well internally but not as well with each other” with the two 

dimensions being functions and derivatives, and a smaller dimension on limits, ratios, and the 

continuum (Epstein, 2007, p. 168).  The measure of internal reliability, Cronbach’s alpha, was 

0.7, which was considered “modestly respectable” but falls short of the 0.8 which professional 

test developers wish to see (Epstein, 2013) and is confirmed but brought into question by other 

researchers (Bagley et al., 2017; Gleason et al., 2015a).  Bryman and Cramer (1990) suggest that 

alpha of 0.8 is acceptable, so this instrument does fall short.  Cohen, Manion, and Morrison’s 

(2009) guidelines for the alpha coefficient rank 0.7 in the reliable category, although just above 

marginally reliable.  This 0.7 level of internal consistency is on the lower end for an acceptable 

instrument that is created to measure mean differences between groups with twenty-five to fifty 

members (Gleason et al., 2015b).   

The Calculus Concept Inventory has limitations, however, it is the only validated 

measure of conceptual understanding in calculus.  Limitations of the CCI include the Cronbach’s 

alpha of 0.7 (Gleason et al., 2015b), how to analyze the results (Gleason et al., 2015b; Thomas & 

Lozano, 2013, and how many dimensions the test has (Bagley et al., 2017; Gleason et al., 

2015b).  Another major limitation of the CCI is that it contains mathematical notation and 

terminology, such as derivative and f’(x), which would not have been seen by students before an 

introductory calculus course (Bagley, et al., 2017) and presents issues with content validity 

raising concerns with whether it is really measuring what it is supposed to be measuring 

(Gleason, et al., 2015b).  This presents issues in several ways.  One issue is that the CCI is 

supposed to assess understanding of calculus concepts not explicit vocabulary (Bagley et al., 

2017).  Another issue is that this notation and terminology may confuse students that have not 

seen it before and cause answering by random chance, which would bring the validity of pre-test 
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scores into question (Bagley et al., 2017).  The specific language that is questionable on the pre-

test is common language in a typical calculus course and thus may measure conceptual 

understanding at the end of a one semester calculus, but the specific language on the pre-tests 

brings in the question of normalized gains for evaluation (Gleason et al., 2015b).  Despite some 

of its limitations and Gleason and colleagues’ (2015a) calls for a better instrument, the CCI is 

still used in formal and informal settings (e.g., Anderson & Brennan, 2015; Maciejewski, 2016; 

Schroeder McGivney-Burelle, & Xue, 2015; Ziegelmier & Topaz, 2015; Peters et al., 2019) and 

another instrument has not been developed. 

The Calculus Concept Inventory was an appropriate measurement tool for this project 

since it is typically used to study different teaching methods.  While this study did not use it 

specifically for interactive engagement, following Hake’s (1998) definition and motivation of 

Epstein’s development (2007 & 2013) which has been studied often through flipped classrooms, 

the study did have elements of interactive engagement because the CCI was used to compare the 

use of computational labs to a traditional lecture course.  The intervention was not necessarily 

interactive engagement as in previous studies, but it was interactive engagement since “students 

cannot be passive observers in programming activities; rather they have to be actively engaged in 

reframing a given math problem, in writing and testing the computer code, and in making 

necessary adjustments and modifications” (Lovric, 2018, p. 2); it was a hands-on minds-on 

process.  The CCI was developed and tested on undergraduate students in first semester calculus 

courses, which is the same population on which this study focused.  The Calculus Concept 

Inventory has been found to have only one factor, which can be explained as “overall knowledge 

of Calculus content” (Bagley et al., 2017).  While this could be seen as a drawback, this study 

did not look at effects of the intervention on specific sub-categories of calculus knowledge but 
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rather on conceptual calculus knowledge as a whole, so the one factor of the CCI fit and most of 

the course focuses on differential calculus.   

When used as a pre-post test the CCI is typically analyzed with normalized gains (e.g., 

Chai et al., 2014; Maciejewski, 2016) and statistical analyses of scores are recommended as well.  

Besides using the CCI for measuring gains over a period of time, some studies use the CCI as a 

baseline measure of calculus knowledge (Schroeder, McGiveny-Burelle, & Xue, 2015; 

Ziegelmeier & Topaz, 2015), which was done in this study. 

Additional Information Gathered.  In addition to the Calculus Concept Inventory 

scores, students’ gender, college major, and previous calculus exposure were collected, which 

are displayed in Tables 1 and 2.   

Previous Calculus Exposure.  An important piece of descriptive data was whether 

students have taken a calculus course before or not.  With the CCI having terminology and 

notation only used in calculus, this is important.  Other studies using the CCI have collected this 

data as well (e.g., Anderson, & Brennan, 2015; Schroeder, McGivney-Burelle, & Xue, 2015).  

Information on prior calculus exposure, as previously discussed, was used to compare the two 

groups at the beginning of the semester to determine if there were significant differences 

between the groups in the count of students that have previously taken calculus.  This data was 

also used when analyzing the results of the intervention to control for prior calculus exposure 

(e.g., Anderson & Brennan, 2015).   

While the Calculus Concept Inventory baseline score, from the student’s first attempt at 

the test before any calculus instruction had been delivered, factored into analysis of the 

dependent variable of change in conceptual knowledge of calculus, it also served as a measure to 

determine if the groups were similar before taking the calculus course.  This was used to 
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compare the groups before the intervention in addition to whether they had previous exposure to 

calculus as even though students may have had previous exposure to calculus their conceptual 

knowledge may be varied (as in Schroeder, McGivney-Burelle, & Xue, 2015).   This 

measurement was also used in analysis of comparing scores using it as a covariate.   

Gender.  Literature on STEM students highlights that there may be differences based on 

gender and success in the discipline.  Ellis et al. (2016) find that women are 1.5 times more 

likely to drop out of STEM majors after taking calculus than men are, and these findings remain 

true after controlling for preparedness academically, career intentions, and instructional methods 

(Ellis et al., 2016).  With this dramatic number of women changing majors after calculus, it was 

important to also look at the intervention’s impact on gender.  Because gender has been seen as 

having an effect on achievement, it was collected and analyzed as well to see if there are gender 

differences.  There are also studies on the Force Concept Inventory (FCI) detailing differences in 

gender (Traxler et al., 2018); while this is not the instrument used in the proposed study, the CCI, 

which was used, was modeled from the FCI, so gender was an important consideration.   

  Major.  The intervention took place in a Business Calculus course, which is required for 

all business majors at the university where the study took place, however the class sometimes has 

students from other majors since it can fulfill a general education requirement for some majors 

and some students place in that class based on SAT or ACT score.  Because of this, students’ 

college major and major concentration were collected.  This provided information on how the 

intervention worked based on a student’s major and allowed for the data to be analyzed based on 

what a student’s intended business concentration was.   

 Anecdotally, when discussing with my students why they chose to major in business or how 

they think math relates to their future business career, many of my students usually let me know 
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their feelings about math, typically more negative than positive, tell me about their previous 

perceived failures in math, and then connect those to why they chose business as their major 

thinking that it may not be as math-intensive as a STEM major; these students are not incapable, 

many simply have negative feelings towards mathematics.  This anecdote aligns with existing 

literature on how students decide on college majors and future careers.  Research supports that 

students often have their minds made up about going into STEM careers or not upon exiting high 

school (Maltese & Tai, 2011).  Pritchard, Potter, and Saccucci (2004), in studying business 

students and their basic algebraic skills, found that students with higher computational and 

algebraic skills chose to major in more quantitatively focused business concentrations such as 

accounting or finance while students with lower scores tended to select a concentration or major 

in less mathematically focused ones such as management or marketing, and some business 

students choose less quantitatively focused concentrations because they perceive them to have 

less demanding quantitative requirements (Pritchard, Potter, & Saccucci, 2004).  It was of 

interest to see if students from more quantitatively focused concentrations or majors differ from 

their less quantitatively focused counterparts in achievement. 

Results 

To address the research question as to what extent students demonstrate gains in 

conceptual calculus knowledge when introduced to calculus concepts through computational labs 

in a Business Calculus course, demographic information and Calculus Concept Inventory scores 

were collected and input into SPSS to compile and analyze the data.  Normalized gains, 

independent samples t-tests, chi-square test, ANCOVA, and correlation were used to analyze the 

results.  Student comments from the end of the labs were analyzed as well looking for reflection 

on understanding, students’ evaluation of and recommendations for the labs, and common 
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themes that resulted from the students’ experiences with computational labs in a Business 

Calculus course.  

Equivalence of Groups to Start the Semester 

On the pre-CCI on the first day of the semester, students answered whether or not they 

had taken calculus before.  Responses to this question for the two groups were analyzed using a 

chi-square test for independence.  This was used to compare the two groups at the beginning of 

the semester to determine if there were significant differences between the groups in count of 

students that have previously taken calculus (as in Schroeder, McGivney-Burelle, & Xue, 2015).  

A chi-square was chosen for this analysis because chi-squared tests can be used to determine if 

there are significant differences between frequencies in the two groups.  Chi-square tests can be 

used to determine statistical independence in the frequency distribution of a variable is the same 

for all levels of some other variable (Chi-square independence test – What and why?, n.d.), with 

calculus or not frequency being compared between the experimental and the control group.  This 

test is also appropriate because the observations were independent and all expected counts were 

greater than five.  The chi-square test of independence was calculated comparing the frequency 

of students that had previously taken calculus in the experimental and control groups and 

revealed no statistically significant differences between the groups, χ2(1, N=79)=1.570, p=0.219.  

There was also no statistically significant difference between the groups on gender, χ2(1, 

N=79)=1.093, p=0.296, or college major, χ2(1, N=79)=1.144, p=0.564, as well. 

Pre-CCI scores were also analyzed to determine if there was a difference between the two 

groups; this was done to compare the groups before the intervention in addition to whether they 

had previous exposure to calculus as even though students may have had previous exposure to 

calculus their conceptual knowledge may be varied (i.e.; Schroeder, McGivney-Burelle, & Xue, 
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2015).  An independent samples t-test was run for this comparison.  The pre-CCI percent scores 

for the control group (M=29.02, SD=9.48) and the experimental group (M=28.29, SD=10.67) 

were not significantly different, t(77)= -0.319, p=0.75.  Based on the responses to whether 

students had taken calculus before, the comparison of pre-CCI scores, and comparison of 

frequencies of gender and college major students in the two groups were not significantly 

different on their previous knowledge of calculus.   

Normalized Gains Results 

  “Normalized gains are almost always used in concept inventory studies measuring gains” 

(Thomas & Lozano, 2013).  Normalized gains, <g>, as defined by Hake (1998), are measured by 

< 𝑔 >=
𝜇! − 𝜇!
100− 𝜇!

 

where 𝜇! is the mean percentage score of the class at the end of the observation period and 𝜇! is 

the mean percentage score of the class at the beginning of the period.  Normalized gains can be 

calculated using class averages of pre-test and post-test scores to look at the effect on an entire 

class or they can be calculated using individual gain scores with pre-test and post-test data for 

each student (Thomas & Lozano, 2013).  Hake (1998) used class averages to compute gain 

scores.  Bao (2006) discussed the differences in class verses individual gain scores; the two ways 

yielding very close results (Bao, 2006).  Using individual normalized gain scores allows for 

analysis of class level variables and individual student variables as well (Thomas & Lozano, 

2013).  Individual normalized gains were collected to allow for individual level variables such as 

previous calculus exposure, gender, and/or major to be analyzed as well.   

  An example of interpreting gain score is, “if a student correctly answered 50% of the 

questions on the pre-test and 75% on the post-test, the normalized gain would be <g>=0.5, 

meaning that student correctly answered half of the 50% of the material they did not know at the 
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beginning of the class” (Thomas & Lozano, 2013).  Normalized gains are measured in many 

published uses of the CCI (e.g., Anderson & Brennan, 2015; Bagley, 2014).  Hake (1998) 

defines levels of gain with greater than 0.7 being high, between 0.7 and 0.3 as medium, and 

under 0.3 as low gain, which he argued that the normalized gain allows for “consistent analysis 

over diverse student populations with widely varying initial knowledge states” (p. 66).  However, 

it is unclear that these cut-off gain levels transfer to a different concept inventory (Thomas & 

Lozano, 2013).  Using normalized gains is also problematic when post-test score is not higher 

than pre-test score and the value of g may not have a sensible interpretation (Miller et al., 2010).  

Normalized gains have been widely used on concept inventories and thus they cannot be 

completely ignored, but they do not align with practices of the broader fields of social sciences 

(Nissen et al., 2018).  Normalized gains also favor those that have higher pretest scores, so 

Nissen et al. (2018) recommend that researchers use statistical analyses as well.   

  The two groups had similar results on both the pre- and post-CCI as shown in Table 3. 

Table 3 
 
Experimental and Control Group CCI Percentage Score Statistics 

 

 

 

 

 

 

Both group averages and individual normalized gains were computed.  Normalized gains 

computed from pre- and post-CCI group mean percentage are shown in Table 4 and show that 

there was no gain in either group.  

Statistic 

Group 

Control Experimental 

Pre-CCI  Post-CCI Pre-CCI Post-CCI 
n 39 39 40 40 
Mean  29.021 28.904 28.29 27.50 
Median  27.273 22.727 29.55 27.27 
Standard 
Deviation 

9.478 11.399 10.67 10.08 

Minimum 13.64 13.64 9.09 13.64 
Maximum 59.09 68.18 54.55 50 
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Table 4 
 
Normalized Gains Computed from Group Averages on Pre- and Post-CCI  

CCI Percentage  Group 
Control Experimental 

Pre-CCI Group Mean 
Percentage  

29.02 28.29 

Post-CCI Group Mean 
Percentage  

28.90 27.50 

Normalized Gain 
Computed from Group 
Mean Percentage 

-0.0016 -0.011 

 

Normalized gains computed for each student and then averaged for the group produce similar 

results with the control group average normalized gain of -0.0068 and the experimental group 

average normalized gain as -0.0205.  Neither group had any improvement in gain score, which 

will be discussed in a later section.   

 

 

 

 

 

 

 

 

 

Figure 2. Frequency of individual normalized gains for experimental and control groups.  
 

 

Individual Normalized Gain 



 118 

 

 

 

 

 

 

 

 

 

Figure 3. Scatterplots of pre-CCI percent and normalized gain for each group.  

Comparing Calculus Concept Inventory Scores 
 

Since normalized gains can be affected by pre-test scores, different methods of 

computing gain score exist, and normalized gains do not align with the practices of the broader 

fields of social sciences, statistical analyses were done as well.   

Differences from Pre to Post-CCI.  To statistically assess the effect on calculus 

conceptual understanding, an independent samples t-test was run to determine the statistical 

significance of the change in pre-test to post-test scores.  The difference between post-test and 

pre-test was computed and the mean difference between the experimental and control groups was 

tested.  The samples met the assumptions for independent samples t-tests as follows.  

An independent samples t-test was selected for analysis in part because the samples were 

independent.  No person was in both groups and students do not have the option to attend a 

different section of the course, so the values from one population are not related or linked to 

values from the other population as needed for an independent samples t-test (Bowen, 2016).  If 
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the size of each sample is greater than or equal to thirty, the t-test for independent groups can be 

used without much error even if there are moderate violations in the normality or equal variance 

assumptions (Pagano, 2004, p. 339).  The sample size for each group was over thirty, so the 

normality assumption should be met.  Homogeneity of variances was met as assessed by 

Levene’s F Test for Equality of Variance, p>.05.   

With the independent samples t-test run, there was no significance difference in Calculus 

Concept Inventory pre-post percentage difference for the group without labs (M= -0.117, 

SD=9.92) and the group with labs (M=-0.796, SD=9.59), t(77)= -0.309, p=0.758. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Change in percentage of CCI scores.  
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samples t-test since the samples were independent, the sample size was large enough that a t-test 

can be used even with minor violations to the normality assumption, and homogeneity of 

variances was met as assessed by Levene’s F Test for Equality of Variance, p>.05.  Examining 

post-CCI scores, also revealed no significant differences between the group with labs (M=27.50, 

SD=10.08) and the one without (M=28.90, SD=11.40 ), t(77)= -0.580, p=0.563.  

Controlling for Prior Calculus Knowledge.  For the CCI data, additional analysis was 

performed because of the need to control for having previously taken calculus or not.  This was 

done on the CCI because of the issues with specific calculus terminology on the inventory.  

Analysis of covariance (ANCOVA) was done when analyzing the data to control for the 

covariate of previous calculus exposure as measured by baseline pre-test CCI scores; pre-test 

scores are often used as a covariate in pre-test post-test experimental design (Huang, n.d.; 

ANCOVA, n.d.).  Covariates should be measured on an interval or ratio scale (Huang, n.d.; 

ANCOVA, n.d.).  The ANCOVA is a type of statistical control, which is using a statistical 

technique to isolate or subtract the variance in the dependent variable that are attributable to the 

variables that are not the subject of study (Vogt, 1999).  An ANCOVA must meet the following 

assumptions; this study’s data is addressed for these assumptions below:  

1. The dependent variable is continuous – The post-CCI score was a continuous variable 

2. The independent variable is categorical – The assigned group variable was categorical 

with two groups 

3. The samples are independent – no students are in both groups and students self-

selected into the course with no prior knowledge of how the course would be taught 

4. The dependent variable is approximately normally distributed – While the Shaprio-

Wilk’s test was significant, so the post-CCI scores did deviate from a normal distribution, 
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Norman (2010) states, “both theory and data converge on the conclusion that parametric 

methods examining differences between means, for sample sizes greater than five, do not 

require the assumption of normality, and will yield nearly correct answers even for 

manifestly non-normal and asymmetric distributions like exponentials.”  The sample 

sizes are greater than five. 

5. Homogeneity of variances – There was homogeneity of variances F(1, 78)=0.149, 

p=0.701 

6. For each independent variable the relationship between the dependent variable and the 

covariate is linear, r(77)=0.565, the correlation was significant at the 0.01 level 

7. Homogeneity of regression slopes was met, F(1, 78)=0.426, p=0.516  

8. The independent variable and the covariate are independent of each other, F(1, 

77)=0.102, p=0.75  

A one-way ANCOVA was conducted to determine the statistically significant difference 

between the group that did not have labs and the group that did have labs on their post-CCI 

scores controlling for the pre-CCI score.  There was not a significant effect of labs on post-CCI 

score when controlling for pre-CCI score, F(1, 78)=0.232, p=0.632.  There was also not a 

significant effect of labs on the post-CCI score when controlling for previously taken calculus by 

the response to whether students had taken calculus or not, F(1, 78)=0.112, p=0.739.  In the 

experimental group those that had previously had calculus had higher pre and post-CCI scores, 

only separated by about five percentage points on both, higher average normalized gains, and 

growth from pre to post-CCI than those without, but none of these were statistically or 

practically significant.  For the control group the results on all of these measures were very 

similar, also none of which were statistically or practically significant.    
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Controlling for Other Variables.  Other variables such as gender and college major 

were of interest.  These other variables were analyzed using ANCOVA methods as well, which 

“although covariates are typically measured on a continuous scale, they can also be categorical” 

(One-way ANCOVA in SPSS Statistics, n.d.), which they would be for gender, major, and 

concentration.  

When controlling for gender, the computational labs had no statistically significant effect 

on students CCI percent difference, F(1,76)=0.063, p=0.802.  Controlling for the effects of 

college major the intervention also had no statistically significant results on students’ CCI 

difference, F(1,76)=0.226, p=0.636.  Nor were there statistically significant results when 

controlling for major concentration, F(1,76)=0.188, p=0.667.  

Final Grades. Comparing the changes in conceptual knowledge as measured by the 

Calculus Concept Inventory for the groups with and without computational labs, revealed little 

difference between the groups.  Overall the two groups also had very similar final grades.  The 

control group (M=87.641, SD=11.946) was slightly, but not statistically significantly (t(77)=  -

1.155, p=0.252), higher than the experimental group (M=84.727, SD=10.458).  During the 

semester, however, it was noted by the instructor that within each of the groups, each comprised 

of two sections of the course, there was clearly a higher and lower performing section, simply by 

chance since the courses that received the intervention were randomly chosen.  In each, the 

higher performing section had overall higher class averages, had higher office hour attendance, 

and were overall more engaged in class daily.  Comparing the mean final grades of the lower and 

higher performing classes within each group, they were not statistically significantly different, 

but they were practically different both of which were separated by more than five percentage 

points.  There were also no statistically significant differences on CCI scores of these groups.  
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 Final grade percentage was positively correlated with the post-CCI score for both groups 

and slightly stronger for the experimental group (r(38)=0.430, p=0.006) than the control group 

(r(37)=0.399, p=0.022), as in other studies (Bagley, 2014; Epstein, 2007).  Pre-CCI and post-

CCI score were also significantly correlated with each other (r(77)=0.565, p<0.01), similar to 

(Bagley, 2014).  

Qualitative Results and Discussion from Student Comments  

 In an attempt to understand what students’ learned and how their experiences with the 

computational labs helped them learn the calculus content and gain understanding, students’ 

comments were analyzed.  Students’ comments were first examined for reflection on calculus 

content, which revealed that overall students did comment on specific elements of calculus that 

were supposed to be learned in each lab and glaring errors or erroneous statements were 

minimal.   

Students also used the paragraph at the end of each lab to remark on how they felt the lab 

did or did not help them learn and even how the labs could be improved to better help them 

understand the calculus.  All of the consenting students’ comments were inspected through 

several analytic passes through the data.  The comments were coded using initial coding with in 

vivo coding using participants own language as codes (Saldaña, 2016).  A second cycle of 

coding was done using pattern coding to group the segments of data from the first cycle into a 

smaller number of categories (Saldaña, 2016).  From the categories, two themes emerged that 

expressed elements of students’ experiences with the computational labs.  Additionally, students’ 

comments were analyzed using evaluative coding (Saldaña, 2016) to assign judgments about the 

merit, worth, or significance of programs (Rallis & Rossman, 2003), which can be used to make 

changes for future implementation.  
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 Student Comments on Content.  During the semester as the labs were graded, student 

comments were read for reflection on content and they received credit for simply writing the 

paragraph and did not lose points for what was said.  Reading through all of the comments, there 

were minimal glaring errors in students’ descriptions of what they learned.  Some students 

provided more detailed accounts of exactly what they learned, whereas others simply stated 

minimal descriptions of what the lab covered.   

While overall students may not have demonstrated measurable gains in conceptual 

knowledge, as measured by the CCI, students were able to explicitly articulate how calculus 

concepts could be used outside of the classroom.  This in itself highlights a level of 

understanding.  Throughout the student comments there were very specific explanations of how 

they were able to use a calculus concept and apply it to a real world situation.  A comment that 

exemplifies this is: 

I was able to take a company’s profit data, fit a curve to it, find the derivative, and use 

the derivative and critical points to determine when the profits were increasing, 

decreasing, and where it was at a maximum.  From that I was able to think about under 

their current business model how many units they should aim to sell to maximize profits.   

Similarly another student remarked:  

I liked that we learned about derivatives early on with the real data.  Like the smokeless 

tobacco sales problem where I had to fit a curve to the year and sales, then find the 

derivative of that curve, and then tell you about the rate of change of sales in certain years 

and when that was the greatest; that really helped remind me throughout the chapter 

about the derivative being a rate of change.  I just thought back to this example, when the 

derivative was positive the sales were increasing.  It also made me think about like what 
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else might be going on in those years that would have made sales higher.   

These last two student quotes are important because in both the student comments on the 

calculus content but does so in a way where he or she is also reflecting on what might be going 

on in the business that could be affecting the sales or profits.  In each of these, the student is 

taking his/her understanding of calculus and connecting it to his/her knowledge about business 

and acknowledging that perhaps the business model could be changed or the outside factors 

could be considered, which could affect the mathematics of the situation as well.  These students 

are realizing that their mathematics understanding and their knowledge of business can indeed 

intersect and affect one another.    

Another student commented on how he or she believed that doing some lab problems 

about the derivative helped him/her learn the material by stating:  

During this notebook, I learned how to apply derivatives to math problems without the 

question flat out saying that you need to find the derivative.  I learned how to work with 

derivatives when dealing with functions and slope and rate of change. Learning how to 

apply the equations to real life problems is something that I will be able to use in the 

future. Importing a table of values and also using that to find the derivative is useful in 

the sense of being able to apply this to the real world.  

Regarding integration, a student stated:  

The goals of this notebook were summation, integration, and applications of integration.  

I was able to develop more knowledge about these three topics throughout the lab and the 

various applications.  More so, I became familiar with the idea of integration and letting 

the computer numerically integrate and discover the area under the curve.  From that I 

was able to integrate a population growth function to find the net change in population 
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over some years, how to integrate the average workers production rate over different 

blocks of time and think about what might be happening when the units they made started 

to drop, and use the average value of different quantities like advertising spending. 

Comments such as these and similar ones demonstrate that students did learn calculus 

concepts and were able to then state how they used these concepts in applications.  The 

Mathematical Association of America calls for calculus in the business math curriculum to 

highlight basic calculus concepts and how they apply to business problems (Lamoureux, Beach, 

& Hallet, 2000), which students specifically articulated in their comments and shows valuable 

understanding they gained.  

 By the end of the semester, a few students began to use Jupyter notebooks to complete 

assignments outside of lab questions.  One student in particular defaulted to Jupyter notebook 

over paper and pencil.  In observing her work through some problems, I noted she had become 

comfortable using the technology and the techniques she had learned.  In watching her work 

through an optimization problem, I asked her to talk about what she was doing.  She said:  

I just think it is easier on here and to me it reinforces the steps.  See like here I defined 

the function, and then I know I need to take the derivative, so I type the command for 

that. Defined the derivative as a function so I can use it later. Then I need to find the 

critical points, well how do you do that you see where it doesn’t exist or equals zero so I 

then used the solve command.  Now I can easily plug points in around those to the 

derivative using the function I defined and make determinations about max or min.  I 

think typing in these commands helps me remember what I am doing. 

While this student was an exception rather than the rule and only a few other students got to the 

point of using Jupyter notebooks outside of labs over the semester, like the quote above others 



 127 

also reiterated that using the commands reminded them of the steps of the calculus problem.  A 

student explained how he or she felt typing the commands in helped understanding of integration 

by stating: 

We found the area under the curve by writing a function that found the sum of the area of 

rectangles between the curve and the x-axis.  We had to define the width of the rectangles 

as the width of the interval divided by the number of rectangles and we had to define the 

height of the rectangle to be the value of the function at those different widths.  Then we 

defined the area as the width times the height that we just defined.  Having to define the 

height this way reminded me that that the height of the rectangle actually came from 

evaluating the function there.  Also if I increase the rectangles to a really big number I 

can find the area under the curve there, so the definite integral.  

The previous two quotes are reflective of additional quotes of this nature and demonstrate 

that for some students the new technology of the labs aided their understanding by forcing them 

to think through what they were typing into the computer helped them to reflect on the 

mathematics.  This aligns with previous research that students have to think through the 

mathematics as they are communicating with the computer (e.g., Benakli et al., 2017; Cetin & 

Dubinsky, 2017). 

This, however, was not true of all students and some comments suggest that for some 

students the technology may have interfered with the learning of the calculus content.  A student 

remarked: 

I feel like I understand things when it is being taught or explained but once I have to 

execute something dealing with math, I just lose everything I was taught.  In class I felt 

like I understood about derivatives but then I still don’t understand how to use these labs.  
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I just can’t do them on my own and put together the new math and how to type it in the 

computer.   

Another student said a very similar sentiment:  

It is really like trying to learn a whole new language with how intricate and different it is 

for someone who has never had experience with it before this class.  With already being 

confused with the “normal” assignments out of the labs, it makes all the derivative rules 

that much harder.  To be honest I really have no idea if what I am plugging in is the right 

thing or not, i.e. struggling to finish the question in full.  I don’t think it is a good idea to 

mix coding with math when kids already struggle enough with the math.  

 Statements such as these illustrate that while for many students, the labs provided them 

with a new and effective way to learn the calculus content, for others the work of the labs 

actually added an extra burden, which they felt may have hindered them from learning the 

calculus concepts as well.    

 Aside from specifically stating that the labs seemed to interfere with their learning of 

calculus, plenty of students made comments with words such as frustrating, difficult, 

challenging, hard, intimidating, and stressful, which were focused on the technology they were 

being asked to use.  Statements that reflect these are: 

§ “One thing that I need to work on is to not get frustrated at a single problem and then 

give up and move on, but to stick with it and try and figure out why it isn’t working.” 

§ “At first it was very challenging and I wasn’t sure I would be able to finish it.  After 

toying around with it and spending a lot of time on it, most of it was okay.  I think in 

the future I can better my work on the lab by starting right away so I know what I am 

doing wrong and figuring out why for future labs”  
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§ “Even though I was extremely frustrated when I was beginning, I kept trying to get 

through it.”   

§ “I found this lab very tedious and requiring extreme focus.  I learned to become more 

patient and that I need to slow down and make sure everything is in the right place…. 

It is very frustrating and complicated.  It takes being very diligent and making sure 

you make no mistakes or the whole cell will be wrong and error will occur.”   

§ “Even if you get one little punctuation error, then everything can be wrong.  Some of 

these problems were pretty hard and I had to refocus my attention and look at the 

problems in great detail.” 

§ “Not only that we had to use our notes from last lab to get the correct answer. So it’s 

not just do it and forget it. No, it’s do the lab and remember what you did to complete 

other labs. Using information from the past to complete this lab.” 

§ “I really struggled with some parts but I began to understand better when I went back 

and kept rereading the instructions and examples.”   

Many of the more negative statements occurred at the beginning of the semester and the 

comments became more positive as the semester progressed and students became more 

comfortable using the technology and doing mathematics problems this way, which shows that in 

the beginning of the semester mixing the two proved to be challenging and may have impacted 

understanding.  Statements later in the semester for many students were ones such as, “Although 

this lab was difficult, I think I’m getting better at understanding how to use coding to do math.”   

Other students, however, remained frustrated and extremely challenged all semester.  

These students made statements such as: 
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§ “After doing several of these labs I figured out that I do not like this and am not 

good at it at all.” 

§ “I feel like I know the basic math, but I can’t get it with the code and running 

thing, but I’m gonna need a lot more help to understand this.” 

§ “This lab was hard and required a lot more work and thought putting together 

different math concepts in a way the computer could understand to get the 

answers needed.” 

§ “I learned that even if I ask for help I am not very good at this type of thing.” 

Statements, such as the ones above, show that some students were challenged by the 

technology and mathematics and were burdened by such all semester.  These students may not 

have shown gains in understanding because they were hampered by trying to understand the 

technology and did not feel that they could devote enough time to both understanding the 

technology and the calculus concepts.   

How Students Viewed Labs as Beneficial in Impacting Understanding.  Aside from 

reflection on content, several themes emerged as to how students thought the labs helped them 

learn.  There were two main themes, which were real world connections and visualization.  Both 

of these themes help to demonstrate ways in which the labs were beneficial for many students 

gaining conceptual understanding of calculus.   

 Theme 1: Real World Connections.  The theme that was the most prominent throughout 

student comments was real world connections.  This can be seen in part in how they reflected on 

what they learned as presented above.  The words such as real world, real world applications, 

outside of the classroom, real life stuff, and business problems occurred throughout the labs.  The 

theme of real world connections was a two-pronged theme.  One part is that students reflected on 
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being able to connect the mathematical concepts to real world scenarios or applications.  The 

other prong is that some students felt that how they were problem solving was more realistic, 

authentic, or how they might approach problems when they are in the working world.  Out of the 

comments analyzed over 50% mentioned something about “real” and many of the others, while 

not using the word real, stated how they could use the calculus concepts in some other context 

and talked about a scenario such as supply and demand or cost and revenue for example.     

Real Applications. Mentions of real applications, real life scenarios, or explicitly stating 

these “real” concepts ran throughout students’ reflections.  These comments were found 

throughout labs one through six.  A student remarked: 

Through this notebook, I have been able to actually see how mathematical models and 

exponential equations are actually applicable to real world situations since usually 

random scenario word problems in a textbook don’t do a good job of illustrating these 

things for me.   

In response to students being asked to import stock trends from a company of their choice 

and simply use their knowledge of slope to roughly determine the support and resistance lines 

and determine if they thought they would buy the stock or not, a student commented, “Seeing 

how stocks can be analyzed with the help of this program makes the math feel like it is not 

pointless and I might actually use this math.”  Another student stated,  

As much as we go over the material in class and homework, I like having a ‘real life’ 

example and to see ‘real’ graphs from the imported data in these labs... I feel like having 

the opportunity to see the importance of derivatives and how they actually work (in the 

real world) is something that has definitely improved my understanding and appreciation 

for the concept. 
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Many students also commented both in class and in their lab reflections that they liked 

that some of what we were doing connected directly to content they were learning in some of 

their business classes.  A student remarked, “The questions in this lab have also helped me 

connect the information I have learned in another class to the math we’re studying, making 

everything as a whole feel useful since I can form a relationship between the two in my mind.”  

This student and others felt and expressed that being able to make connections between the 

material of this class and their business classes helped them form important connections and 

aided their understanding. 

The most salient quote demonstrating this point was: 

Once again, I found this lab to be extremely helpful in ‘driving home’ some of the key 

concepts that we are working on in the classroom. Specifically, I learned how to graph 

and predict stocks using elements of coding (which I never thought I would learn in 

business calc). This could definitely help me as I continue to 'dip my foot' into the stock 

market and day trading. To be honest, question 6 helped me learn that sometimes a model 

can ‘over predict’ and give you extremely incorrect information. This lab clearly was 

designed to challenge students into looking at concepts from class from a different, real-

life perspective. I really like doing these labs and trying to figure out how functions, 

graphs, exponents and other ‘class material’ will be used after college in the ‘business 

world.’ I look forward to some of the future labs. The truth of the matter is: I am not 

really fond of math, but these labs help me want to learn more. I have always been a 

believer that a lot of these concepts will never be used after graduation. I am starting to 

change my mind! 



 133 

Making real world connections can be valuable for students and may have aided their 

understanding as real world connections have been shown to promote understanding.  Boaler 

(1998) indicates that getting students to experience meaningful real world connections makes 

them better equipped to use their mathematics knowledge and adapt to new situations.  The 

likelihood of being able to transfer mathematics skills is increased if students learn mathematics 

in real life contexts and “the connections between mathematics in school and real life are made 

explicit” (Boaler, 1993, p. 12).  When students are provided with a context in which they can use 

their abstract knowledge, it can connect the knowing, doing, participation, and authenticity 

(Sidawi, 2007).  Overall students that participated in these labs made statements that reflect that 

they felt that the labs and the real world connections and applications did in fact help them learn 

the material and gain conceptual understanding.   

An Authentic Way of Doing.  Some students also believed that the labs gave them a more 

authentic or “real” way of doing mathematics.  On the first lab a student recognized that 

potentially learning more about using a computer could be a valuable skill and connect to his 

future stating, “This coding thing is going to be hard, but I am excited to learn a new skill. 

Especially one that might be valuable since everything seems to be done on the computer now. 

This might actually be helpful later on.”  In the second lab of the semester a student stated, “I 

learned there is more to math than just learning how to do problems on paper.”   

Another student, finding value in this different way of solving problems stated the belief, 

“If I continue to practice this, I may actually be able to use it in a job in the business world one 

day.”  As the semester progressed this same student was observed using Jupyter notebooks 

almost exclusively when tackling homework problems not from the labs.  When she was asked 
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why, she explained that she thought they made the work quicker, easier, and more like she would 

do if she were solving a problem outside of her math class.   

For some students their comments reflect that the labs created a seemingly more 

authentic way of doing mathematics and afforded them different ways to problem solve.  Leaders 

in mathematics education call for technology in business mathematics to allow students to use 

realistic data, use technology as an analytic tool, and encourage alternative approaches to solve 

problems in part because “technology has revolutionized the way in which business is practiced” 

which has changed what students of today must be able to do and understand (Lamoureux, 

Beach, & Hallet, 2000).  This is especially important since the Mathematical Association of 

America has recommended:  

The business leaders of tomorrow, and therefore the business students of today, need to 

understand the conceptual basis of algebra, calculus and statistics…For business 

executives to be successful, they need proficiency in the technology that produces the 

data they need, understanding of the algebra, calculus and statistics underlying these data, 

and knowledge of how sensitive the results are to changes in the input data. (Lamoureux, 

Beach, & Hallet, 2000, p. 20)   

Students’ comments demonstrate that, at least some, students did walk away connecting the 

technology and mathematics as ways to solve problems that they might outside of the classroom.   

 Other students, however, did not find value in this and may have thought that it was a 

meaningless addition to the course.  A few students stated that they could not understand why 

coding had anything to do with business and questioned why a business major needed to be 

exposed to this.  These students were very closed to learning how to work with the labs, and for 
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these students the computational labs certainly did not improve their understanding of calculus 

concepts.   

 Theme 2: Visualization.  A common theme throughout student comments was that doing 

the labs helped them visualize what was going on.  Students used words such as visualize, see, 

showed, picture, image, and graphs to express a manner in which they thought the labs added to 

their understanding.   The theme of visualization occurred across many of the labs and associated 

the idea of visualization helping them make connections between real data points and functions, 

rates of change and differences, applications of the derivative, and integration.  

 In labs one and two the theme of visualization occurred most when students talked about 

connecting real data points to models of that data.  Several students commented on how fitting a 

function to these data points and graphing such allowed them to “see” where the “given 

functions come from”.  A student remarked:  

I guess I never really thought about where the functions my teacher gave me came from.  

But doing this I can literally see that I was able to fit a model that goes through or near a 

lot of the data points, so it did actually come from somewhere.    

Along these same lines another student commented on being able to graph the data points 

and the model on the same axes also made him think about how that model might not predict the 

specified quantity in the future well because the model looked different from the data at the end.  

A different student stated, “I also enjoy how I can literally SEE what is happening in equations, 

functions, and graphs and what inputs create specific outputs when I change them.” 

 Regarding derivatives students also found that visualizing them helped their 

understanding.  Several students relayed that using the prewritten command for graphing the 

function, first derivative, and second derivative all on the same axes at the same time and the 
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prewritten code for plotting the tangent line aided seeing and connecting the concepts without 

getting bogged down to start with on computing the derivative and tangent line and figuring out 

how to plot them.  A student stated, “Being able to easily see the derivatives helped me with the 

increasing, decreasing, max/min, and concavity parts. It was very good for the visualization of 

that because I was struggling to get those with the lecture in class.”  

 Students also stated similar feelings on visualizing with integration.  Students expressed 

value in being able to quickly see the rectangles under the curve and being able to expediently 

increase the number of rectangle and observe how that changed the approximation.   

 Visualization in learning mathematics is valuable for understanding, and students in this 

project echoed this sentiment.  Visualization is at the root of many powerful mathematical ideas 

such as the development of the ideas of functions, limits, continuity, the fundamental theorem of 

calculus, among others (Tall, 1991; Perkins, 2012).  Visualization can be powerful: 

Before there can be proof, there must be an idea of what theorems are worth proving, or 

what theorems might be true.  This exploratory stage of mathematical thinking benefits 

from building up an overall picture of relationships and such a picture can benefit from 

visualization.  It is not accident that when we think we understand something we say ‘oh, 

I see!’ (Tall, 1991, p. 2)  

All of the labs had multiple graphs, plots, or other images, which the students remarked 

helped them explore and understand different topics, which were made quicker through the 

technology.  Tall (1991) determines that visualizing and using technology to do so can aid 

students in numerous topics in calculus such as limits, tangent lines, differentiation, and 

integration, which student comments seem to echo.  Tall (1992) suggests research in and use of 

computer graphics, computer programming, and symbolic manipulators, which can be used to 
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“build up intuitions for later formalizations” (p. 9) and thus the need for the three representations 

(graphic, numeric, symbolic).  Tall (2009) suggests that students, especially those needing extra 

remediation, may benefit from visual and graphical representations to help make sense of 

something, but they still may have difficulty linking the visual with the symbolic, which is 

important since many of the students enrolled in this classes had not taken calculus before and 

some had not even taken pre-calculus.  Galindo’s research (1995), in the midst of the calculus 

reform in the US in the 1990’s, suggests that technology, including software with multiple 

representations, can be used to promote conceptual understanding for both college students that 

tend to be visualizers and those that are more non-visual.  Bishop (1989) states, “There is 

evidence that there is value in emphasizing visual representation in all aspects of the 

mathematics classroom” (p. 14), and Dreyfus (1994) agrees that “visualization is generally 

considered helpful in supporting intuition and concept formation in mathematics learning” (p. 

33).  Kostadinov, Thiel, and Singh (2019) also report that tools similar to those used in this 

project can be employed as visualization tools.  Students’ comments align with research that 

visualization in mathematics education can help students make valuable connections and aid in 

learning concepts.  Students that participated in this project articulated that they felt that the 

visuals they were provided, the visuals they were able to create themselves, being able to 

produce visuals of data sets, and being able to manipulate their created graphical representations 

helped their understanding of calculus concepts.   

Analysis of Student Comments Through an Evaluative Lens.  The reflection on 

content and the themes discussed above represent important impacts these labs had on students’ 

understanding of calculus concepts and habits they developed.  In addition to the themes 

previously presented, student comments highlighted several ways they evaluated the labs and 
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recommendations for the future to better impact students.  Comments of this nature were 

analyzed through evaluation coding, which assigns judgments about the merit, worth, or 

significance of programs (Rallis & Rossman, 2003).  According to Rallis and Rossman (2003) 

evaluation data can describe, compare and predict.  Describing “focuses on the patterned 

observations or participant responses of attributes and details that assess quality.  Comparison 

explores how the program measures up to a standard or ideal.  Prediction provides 

recommendation for change, if needed, and how those changes might be implemented” (Saldaña, 

2016, p. 141).  Comments of this nature provide valuable insight into how the students believed 

that the labs contributed to them gaining understanding and how the course could be improved to 

further increase understanding for more students.  

Starting with Labs.  One defining element of the computational labs in this project was 

to begin instruction of calculus topics within the lab and then extend the topic in lecture.  This 

was done for several reasons.  One reason for this was so that students may not view the labs as 

an extension activity or something else to do, but rather students might view them as a tool that 

was helping them learn.  This also followed the recommendation of the MAA CRAFTY projects 

(Lamoureux, Beach, & Hallet, 2000).  Another important reason was to introduce students to the 

calculus concepts beginning with finite elements and discrete data points.  This was done in the 

introduction to derivatives, applications of derivatives, summation and integration, and area 

between curves labs.  The goal of this was to introduce students to these concepts in a concrete 

way and then extend to more abstraction in lecture.  Many students reflected on the placement of 

the lab at the beginning of new content and voiced their support for the placement on helping 

them learn.  Student comments relating to going through the lab first were present in reflections 

on labs two through six.  These statements on the placement of the labs demonstrate that many 
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students believed that beginning with the labs actually helped them understand the material 

better when it was extended upon in lecture.  

 On lab three one student remarked, “I like that we started this lab before learning the 

material because it made it easier to understand the content when we went to take notes in class.  

I liked that I got a little experience with these topics, then took ‘paper’ notes on them, and then 

was able to go back and practice with the questions at the end of the lab.”   

 On lab 5 another student echoed a similar sentiment stating, “Overall, this lab was helpful 

because it introduced the ideas of integration before I learned it on paper, which helped me to 

understand some of the significance of it to the real world.”  Lab 5 drew out similar statements 

from others such as, “I really liked this lab.  It helped me learn a lot about chapter 6 (integration) 

before we went through it in lecture.”  

 Students also remarked on, in their words, “differences and rectangles” and how starting 

with these concepts aided their understanding.  While yes, either of these can be and often are 

done with paper and pencil, students recognized that doing these on the computer made these 

calculations and visualizations quicker and easier, and much simpler to then extend to “a really 

large number of them to help see what happens going to infinity” or “make the differences really 

really small”.  To start, students were introduced to finite differences.  Students first had to plot a 

given sequence of a few numbers, then find the differences between the terms, and plot the 

sequence and differences on graphs side by side; students began by looking at one plot that 

looked linear, then one that looked quadratic, followed by an exponential.  During the lesson 

going through this lab, students quickly remarked that the differences from the linear one were 

all the same.  When we moved to the quadratic we first only plotted a few differences and 

students did not immediately see a pattern, but when we added many more points, looking at 
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smaller and smaller intervals, they realized that these differences looked linear.  In some of the 

problems students were asked to do on their own they had to investigate other functions and start 

recognizing patterns.  A comment that was similarly echoed throughout student comments on 

this lab can be summarized by this student comment:  

I was able to spot similarities throughout the problems and was able to recognize the 

connections between different functions and their differences.  Looking at the points and 

the little differences beside each other helped.  I was especially able to recognize the 

connections to slope.    

Students said analogous statements about starting integration with adding up deposits into 

an account followed by computing area using rectangles and increasing the number of rectangles.  

A student stated, “We used summation and area with rectangle boxes to find area under the 

curve, which we then used to determine net change and average value in business problems.  

With these rectangles we were able to start with 10, get an okay approximation, and then 

continue to increase the number of rectangles to get a more exact approximation.”  One student 

reflected, “I really liked having the computer do all of those rectangles for me.  I wouldn’t do 

100 rectangles by hand.  I have done these type of Riemann Sum problems by hand, but never 

had to do it via computer before.”  Another student that had taken calculus before remarked: 

In this notebook, I learned an easier way of doing Riemann Sum than by hand. I always 

enjoyed doing them by hand previously but it didn’t dawn on me until now that to really 

get accurate with it, you have to draw an insane amount of rectangles, and doing it by 

computer was the easiest way.  

 Beginning instruction with the labs, extending the concepts introduced in the labs during 

lecture, and then allowing the students time to pull this knowledge together to complete the 



 141 

problems at the end of the lab let them see concrete examples of the topics and then continue to 

practice and apply their acquired knowledge.  Student comments revealed support for this and 

expressed ways in which they believe they helped them learn the calculus concepts.   

 A Different Way of Problem Solving.  Some students come into these Business 

Calculus classes having previously taken calculus.  It is always a goal to challenge these students 

or to get them to walk away from the class learning something different than they had seen in 

their high school calculus courses formerly.  For this instructor, while the business applications 

are usually new for students, previous discussions with students have revealed that they had seen 

most of the content before.  The labs alleviated this issue to an extent because most students had 

not had practice using such tools and the very few that had had not seen them in use within a 

math class.  These students were also better able to step up to the challenge of learning to use the 

labs and the content because they had previously learned the material and were not as challenged 

by learning both.  Looking at comments from only students that had taken calculus before 

revealed that they learned a new way of problem solving and were indeed challenged in the 

course.   

These students made mention of the new experiences of seeing the calculus concepts in 

concert with business applications, but they also remarked on the labs helping clear up confusion 

they still had and how they were able to solve problems differently.  A student that had taken 

calculus before remarked, “I have learned all of this calculus stuff before but not with these 

applications and certainly not doing it on the computer.  I honestly didn’t even realize you 

could.”  A quote demonstrative of this point was:  

Overall, I feel like the mathematical content from this lab was information I have seen in 

my previous calc course, but the way the questions in the lab presented the same 
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information has helped me to see what the point of learning that mathematical content 

was.  In high school if we did word problems to reinforce the topics we were learning the 

situations seemed too made up for me to find them relevant. But some of these they just 

seem more real.   

A similar sentiment was reiterated by a student stating:  

I have also enjoyed using more real world data to find the derivatives.  When I took 

calculus before we didn’t get to use as much realistic data as we are using in these labs.  I 

thought that the np.polyfit to fit a curve to the data has been very cool.  It is nice to know 

that the computer can do a lot of time consuming or seemingly impossible calculations 

that we might face elsewhere. 

 Another student that had taken calculus before commented that doing these labs gave her 

a different way to problem solve.  This student stated that in doing her homework problems she 

no longer pulled out paper and pencil; instead she opened a Jupyter notebook and worked 

through the steps.  She remarked that to her it actually seemed easier and quicker to do it that 

way and that was a “totally different way of doing things”.   

For some students this “totally different way of doing things” seemed to help them to 

understand some of the content and how it was related to calculations that had previously seen.  

The labs also showed how the content connected to outside of the classroom, which helped to 

give the problems more meaning and context and could then help them transfer the knowledge to 

other settings.  This was certainly not all students and seemed most impactful for students that 

had previously taken calculus because it provided them with a new way of doing mathematics 

they had already learned, reinforced content they had seen before, provided them with 
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opportunities to explore mathematical situations, and they were most able to focus on the coding 

and not as burdened by the new mathematics. 

Student Challenges with Calculus and Coding.  When starting this project, it was 

known that there would be challenges and a steep learning curve to get students to use the 

computer in a way many had probably never done before.  A concern was getting students to 

learn calculus concepts while balancing that with learning new skills of coding.  This proved true 

throughout the semester and was reflected in student comments.  Students being intimidated by 

and resistant to the coding element along with thinking an approach similar to this expects too 

much out of them has been reiterated in other research on computing in mathematics classes 

(Jones & Hopkins, 2019; Tonkes et al., 2005; Lockwood, DeJarnette, & Thomas, 2019).  

 A student comment that reflects how some students felt is well expressed by this 

student’s comment on lab 3:  

In this lab, we began to use what we learned in the past two labs and apply it into this lab. 

It was really tricky having to go back and forth to find exactly what to type in due to how 

one mistake can mess up a whole strain of coding. It was also tough trying to figure out 

which exact lines of code were needed because of the lack of labeling on the problems, 

which was intentional. It is really like trying to learn a whole new language with how 

intricate and different it is for someone who has never had experience with it before this 

class. With already being confused with the "normal" assignments out of the labs, it 

makes all of the derivative rules that much harder.  To be honest I really have no idea if 

what I am plugging in is the right thing or not, i.e. struggling to finish the question in full. 

I don't think it is a good idea to mix coding with this math when kids already struggle 

enough with the math.  The amount of time that is necessary to be put into the lab really 
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equates for more credit hours.  This isn't a coding class and it is just making kids struggle 

that much more. Yes I do admit that I can see the helpfulness of learning this program, I 

just think it should be offered in a different class. I struggled with understanding what the 

questions were asking for but after figuring out the necessary formulas and codes for 

derivatives and functions my codes stopped running to where there would just be a blue * 

so I did not know if I was doing the problems right.  

 Other students certainly felt this way too but did not express their thoughts quite so 

explicitly in their comments.  Words such as frustrating, difficult, stressful, intimidating, hard, 

and time consuming were especially present throughout labs 1-3 as students were getting used to 

working in Jupyter notebook.  These comments decreased greatly in labs 4-6 and were in some 

instances replaced with sentiments such as “this is still hard but I’m starting to get the hang of it 

a little” and “I’m beginning to be a little more confident in using this program”.   

 It is important to note that students explicitly stated that learning calculus concepts in 

conjunction with learning to use Jupyter notebooks proved to be extremely challenging.  These 

comments reflect that undoubtedly many students were challenged by this and could have 

minimized the impacts on conceptual understanding for some.  It is imperative to listen to 

students’ evaluations of this and develop ways in which the balance can be better struck, so that 

more students can see the technology as useful for developing understanding of the calculus 

concepts. 

Discussion 

The data from the Calculus Concept Inventory reveals minimal gains and no significant 

difference between the groups in conceptual understanding.  Several factors and limitations of 

this study may have impacted the lack of gains and will be discussed in later sections.  The 
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qualitative data from student comments, however, does demonstrate that the computational labs 

did have important impacts on many students’ learning of calculus.  The qualitative data also 

reveals the challenges that some students faced that may have also adversely impacted their 

understanding.  The mixed students’ comments help to explain why there were no overall gains 

for students in the group with computational labs.  The qualitative data helps to demonstrate that 

for some students the labs were thought to increase understanding while for others the labs 

interfered with that.  Some students articulated that combining the labs with content was 

challenging but not impossible.  An example of this was,  

This lab was by far the most challenging simply due to the fact that to do it correctly, you 

have to both recall the previous information that was used in previous labs, as well as 

understanding the use and right timing from the new math topics at hand.  Which is safe 

to say is one of the more challenging ones.  Much like the other labs, while I feel like 

they are really challenging, I believe that they are very useful in learning this stuff and we 

can actually see what the real world use of the topics are and in a way that I might use in 

the future.  

Statements such as this one combined with both very positive and very negative comments 

demonstrate reasons as to why there was overall minimal impact on conceptual calculus 

understanding as measured by the Calculus Concept Inventory.  The mixed results also align 

with previous research as Crowe and Zand (2000) noted that computer programming helps 

students explore mathematics often in a constructivist manner but they also note that it can be an 

extreme challenge for many students and adds a burden to rigorous mathematics courses that can 

have negative consequences.  
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The content of the computational labs allowed students to see calculus concepts used in 

what they deemed “a real world setting” or application.  Students were able to articulate how 

different calculus concepts could be used in settings outside of the classroom, which 

demonstrated understanding.  Students explicitly commented on the real world relevance they 

could see.  Being able to make real world connections can be valuable for students and can aid 

understanding of the mathematics concepts.  Getting students to experience meaningful real 

world connections makes them better equipped to use their mathematics knowledge and adapt to 

new situations (Boaler, 1998).   

Despite the fact that students were able to articulate and discuss calculus concepts in 

connection with other situations and that students stated that they thought the real world 

connections helped them better understand, this knowledge did not come out as assessed with the 

Calculus Concept Inventory.  This may have occurred in part because none of the questions on 

the Calculus Concept Inventory related to real world situations of business, which is the context 

in which students experienced the calculus concepts in this class.  The qualitative data reveals 

that students were able to discuss the calculus concepts in context of business situations such as 

profits, sales, and supply and demand and make valuable connects in regards to these situations, 

but when asked about calculus concepts on the quantitative assessment the questions did not 

relate to the field of business.  Perhaps this disconnect between how students had seen calculus 

concepts used in what they deemed as “real world scenarios” and the scenarios in which they 

were asked on the Calculus Concept Inventory contributed to the lack of gains as quantitatively 

measured.   

Some of the ways in which students were able to discuss calculus concepts in connection 

to real world scenarios demonstrates that they did gain understanding of calculus concepts and 
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how they can be applied.  Some of the valuable connections between the calculus concepts and 

applications could have been done without the use of the computational labs, however, some 

applications such as importing live stock data and analyzing rates of change and support and 

resistance lines were facilitated through the use of the labs.  Other applications, such as the 

analysis of a larger data set of Center of Disease Control data, were also made easier by the use 

of the labs.  In many ways the labs allowed for the use of more real data and “real world 

problems” beyond the use of a typical word problem.  This study of the use of computational 

labs in a Business Calculus course provides a foundation on which they can be expanded to 

include even more real and relevant content in connection to calculus concepts.   

Students’ comments revealed that learning calculus concepts at the same time as learning 

to do such on the computer proved to be a challenging task.  This is not an unexpected result.  

Other studies integrating elements of coding into mathematics class have found resistance by 

students stemming from several factors such as the disconnect between computers working 

numerically while being shown analytic techniques in lecture, missing the connections between 

the lab exercises and course concepts, difficulty with errors and debugging, and the combination 

of learning mathematics and coding being perceived as too much work by students (Tonkes et 

al., 2005; Jones & Hopkins, 2019).  Students having to learn new mathematics concepts and 

learning to communicate with a computer in ways they never have appeared to be a challenge for 

some students in these courses.  Students also complained that they felt like it was time-

consuming and a lot of work; some stating that it was too much work and “more work than the 

other class got”.  The students did not seem to realize that the workload of other assignments was 

reduced to create roughly equivalent demands of their time as compared to the other class.  This 

too was not unexpected, as research from the early 1990’s on different computational tools in 
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tertiary calculus classrooms often cited complaints from students of workloads being increased 

(Tucker, 1990).  

The qualitative data certainly highlights that balancing learning new technology with new 

mathematics concepts was a major challenge for numerous students.  This challenge combined 

with that students felt that the course was too much work may have been such hurdles that these 

students’ conceptual understanding may have been hindered by the labs.  These students may 

have been so burdened by trying to learn the technology and the time commitment that required 

that they might not have been able to devote appropriate time to learning the calculus concepts.  

Listening to what students said throughout the semester and adjusting as necessary did lead to 

changes throughout the semester such as allowing more time for work on the labs in class.  

Student comments on labs and discussions with students will lead to changes in future iterations 

of this project.   

This is also echoed in that the students that discussed how the labs helped them learn 

were those that had previously taken calculus.  These students were not stressed with learning the 

new calculus concepts with new technology.  A reflective statement of this was, “When you 

incorporate the math knowledge you already have, it makes the lab a lot easier to complete.”  

These students were not as challenged with combining learning new mathematics material and 

learning a new technology, so they may have learned more of the calculus.  These students 

benefited the most and may have had gains in understanding where as those without previous 

calculus exposure may have not made gains and exhibited losses, which influenced the overall 

lack of gains in the calculus concept inventory especially since 70% of these students in the 

course had not previously taken calculus.   
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The computational labs used in this project also showed students new ways of solving 

problems, which was reflected throughout students’ comments.  For both students who had seen 

calculus before and those who had not, the labs added a challenging new layer to their business 

calculus course and an element that may translate to their future careers.  Students were able to 

see other methods of solving mathematics problems aside from paper and pencil and algebraic 

manipulation.  While students were not proficient in coding or programming when they left this 

class, which was not an intended outcome of the course, they were at least exposed to some very 

introductory skills and were able to discover some of the power and utility these tools could 

have.  A few students expressed interest in wanting to pursue learning more about programming, 

acknowledged that they thought it could be a useful skill to develop, and one student mentioned 

after doing these labs she was thinking about perhaps picking up a data analytics minor.  

Knowing how to code is becoming an increasingly important and marketable skill for those in 

business, evidenced by examples such as Citigroup announcing all new analysts would get 

training in Python, Goldman Sachs traders are expected to know how to code, and Columbia’s 

Business School adding elective courses that teach programming languages (Kurczy, 2018).  

Some students are finding that having exposure to and strong knowledge of such programming 

languages are resume builders and “give them a leg up” (Kurczy, 2018).  There are now 

numerous masters degree programs Business Analytics, such as one at the University of 

Virginia, which include learning about programming languages.  For many of the students 

participating in this project this was their first time using the computer in this manner, which 

may spark their interests in learning more about this and could end up being valuable. 
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Improving this Class  

A limitation of this study was this was the first iteration of using these labs in this class. 

While I had used Jupyter notebooks myself in my own work and had been a student where using 

computational tools had been a large part of my classes and learning, as an instructor I had not 

yet used them in my classroom.  Because of such, the semester proved to be a learning process 

for all of us involved.  Through my experience implementing the labs, the experiences and 

conversations with students throughout the semester, and in reviewing student comments, there 

are numerous changes that should be made to the class going forward and informing future 

research.     

One change that should be made in the future is the implementation of the computational 

tools as labs.  The computational tools were employed as labs in this study in part to keep the 

control and experimental classes more similar and comparable.  Before the semester began, in 

discussing the implementation with a university Physics educator who uses Jupyter notebooks in 

his classes, he warned that by doing them as labs rather than daily use and fully intertwined in 

the class, students may see them as something extra, a completely separate entity, and not part of 

their accessible problem solving methods.  He raised these points because he said he had seen 

them when doing so in physics classes (Titus, 2018).  Having more incorporation of Jupyter 

notebooks throughout his courses rather than an additional piece to the class, he had seen 

students’ views on them evolve and students had grown to use Jupyter notebooks as a way to 

solve physics problems rather than always pulling out paper, pencil, and a calculator to tackle 

problems.  The issue of students seeing these labs as more assignments to complete and a 

separate entity was echoed in student comments and was observed in how many students 

approached problems.  One issue was that to keep the two groups similar, students were not 
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allowed to use Jupyter notebooks on their tests, but they could use them any other time.  Another 

issue was while much of the content was introduced using the computational labs and the notes 

that followed built on and expanded the content covered in the labs, students were shown how to 

do concepts with paper and pencil as well because this was still an expected outcome of the 

course.  This seemed to cause a bit of a disconnect.  With knowledge that they were not going to 

be used on the test and being shown multiple ways to solve the problems, students tended to 

gravitate towards traditional methods of paper and pencil.  There were exceptions to this, 

however.  By the end of the semester, several students began using Jupyter notebooks to 

complete their homework assignments.  As discussed and demonstrated in the section on 

students’ comments on content, some students found these notebooks to help them more quickly 

do their homework, reinforce concepts because of the commands they had to employ, and feel 

more authentic in how they would do math problems outside of the classroom, it can be seen that 

some students did progress to considering Jupyter notebooks as another way to solve calculus 

problems.  These students were in the minority, however, and most students still resorted to 

traditional techniques.  Because the labs were not used everyday and some students viewed them 

as separate from the class, this may have minimized the overall impact.  Students also 

commented that they desired more time in class to work on Jupyter notebooks.  In future 

research the computational tool, Jupyter notebook, must be more intertwined throughout the 

entire class, so that students increase their willingness to use them to solve problems and thus the 

impact may grow.  As the use of these tools grow and evolve in my classroom I will increase 

more independent practice in the class and getting students to code more of their own functions, 

which could potentially increase the impact.  
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Another change that took place throughout the semester and should evolve in the future 

iterations of the project is allowing more time for students to work in pairs.  There was some 

time for this, however, students remarked that they would have like even more time to work in 

class with other students.  On lab three one student stated, “Working with others really helped 

me as well, especially given the class time to work on this.”  On the same lab another student 

said, “Being able to work on this in class was a big help to me because I have found that these 

labs are very frustrating, but it really helped to go through it with someone else.  They could help 

me figure out if I was missing something with the syntax and try to fix it.  I also found it helpful 

to talk to someone else about the math stuff too.”  Allowing this time could help students work in 

pairs to help each other, especially to find syntax errors.  Other examples of using computational 

tools in a mathematics classroom make similar recommendations (e.g., Jones & Hopkins, 2019).  

Students’ comments reflect that they believe that working with others may help them understand 

the mathematics and work through the challenges with the computational labs.  

Limitations and Future Research  

 Student comments revealed that the computational labs used in this study did have an 

impact on what and how they learned, but no impact immerged in the quantitative data.  There 

are several notable limitations in this study.   

 Some noteworthy limitations to this study include the instrument used and the timing of 

administration of the post-test.  Some issues with the Calculus Concept Inventory results likely 

happened because of random guessing on the pre-test and apathy on the post-test.  As seen in the 

description of the participants, most students in this study had not taken calculus, at any level 

before; in the traditionally taught sections of the course 56.4% of students had not taken calculus 

before and in the sections participating in the computational labs 70.7% of students had not taken 
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calculus before.  With most students unfamiliar with the notation and terminology of calculus on 

the pre-test CCI, random guessing undoubtedly occurred and likely affected, perhaps inflating, 

pre-test CCI scores.  Miller et al. (2010) in studying gains raise the question that do losses come 

from actual conceptual losses or rather “correct guesses on the pre-test that, by chance, became 

incorrect on the post-test?”   The random guessing on the pre-test is of great importance since in 

both groups most students had not taken calculus before and the test contains numerous 

questions with calculus terminology and notation.  It is unlikely that the losses came from actual 

conceptual losses since so few had seen calculus concepts before, and the three tests students 

took throughout the semester that were not multiple choice did not have large failure rates.  

Other studies have found difficulty detecting differences between classes when using the CCI 

and call the instrument’s validity into question (e.g., Bagley, 2014). 

Another serious limitation was that the post-test CCI was given on final exam day, which 

did ensure all students were present, however, also presented issues.  Students had ample time 

during the final exam period to complete all that was required of them and there was a block of 

thirty minutes during the final exam period where they were to work on the CCI if agreeing to 

participate.  Since the CCI did not count towards their grade in anyway many students did not 

appear to give much effort in completing it.  Numerous students appeared to rush through it, 

closing their computers after less than ten minutes.  Understandably students were more 

concerned about getting to their actual final exam that would affect their final grade.  In future 

studies, the post-test should not occur on the same day as the final exam and other methods of 

making students take the post-test more seriously must be considered.  The apathy from students 

on the CCI certainly affected the results and was likely part of the reason for the negative gains.  

This study made the assumption that students would honestly and intentionally answer the 
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questions on the CCI, a violation of this assumption could have impacted the results.  Violations 

to this assumption would call into question the use of normalized gains.  Hake’s (1998) g has the 

implicit assumption that gains will be positive (Miller et al., 2010).  Miller et al. (2010) assert 

that when losses are normalized with respect to possible gain, the normalized gain does not have 

a “sensible interpretation”.  Going forward in future research, normalized gains will not be used, 

instead Dewello’s G and L will be computed, which according to Miller et al (2010) normalizes 

gains with respect to potential gains and losses with respect to potential losses rather than g 

normalizing all to gains only.  

Some students, including very strong students, remarked how hard they thought the CCI 

was.  Multiple students commented on how they thought the wording of the questions confused 

them.  Even students that had taken calculus before and knew the calculus specific notation and 

terminology on the pre-test struggled.  Wording of many of these questions was different than 

problems seen by students throughout the semester, so they may have had issues translating their 

knowledge of calculus concepts and the way they had been asked them during the semester to the 

types of questions on the CCI.  Also students grew accustomed to seeing calculus concepts asked 

in context of a business problem, which do not appear on the CCI and could have added to the 

lack of growth seen.  Another issue of using the Calculus Concept Inventory was that it did not 

assess concepts of integration, which were part of the class.  While this was known before 

implementation, with a majority, over two-thirds, of the semester focused on concepts of 

functions, limits, and differentiation (the topics on the CCI) and only the last bit of the semester 

centered on integration, it seemed that the CCI would be appropriate.  Two of the computational 

labs did focus on integration, so an instrument that had concepts on integration would be more 

suitable.    
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 In future research, a different instrument should be used to quantitatively gauge student 

gains in conceptual knowledge.  While it still remains that no new similar instrument has been 

developed, in future studies a department generated assessment could be used.  At the university 

where this study took place, common finals are not given but a short department-developed 

assessment is given to randomly selected classes each semester.  This assessment was not used in 

this study, however, this intervention and study did spark conversation about how to modify that 

assessment to perhaps make it more focused on concepts and applications rather than algebraic 

manipulations and by-hand computation of derivatives and integrals, which may allow for 

changes in this assessment that would make it more suitable for use in future research.  As 

changes to this assessment are made, this would also allow for future research to compare this 

method with students from other instructors.  This study further echoed calls of Bagley (2014) 

and Gleason et al. (2015a) for a better instrument for use in research to assess conceptual 

calculus knowledge.  

 Another limitation of this study is the way in which the qualitative data was gathered.  

The qualitative data in this study was very unstructured.  The students reflected on how they felt 

about the labs without solicitation specifically and thus there may be more to be gleaned from 

what students thought if they were specifically asked about their thoughts.  In the comments 

from the end of the labs students appeared to be rather open and honest perhaps because they did 

not feel any pressures since they knew they would not be penalized on their grade for what they 

said and would receive credit for completing the paragraph.  There, however, could still be some 

bias in their responses as they may have responded more positively since they knew their 

instructor would be looking at the paragraph.  There were certainly negative comments 

throughout the labs and some students were very open about how they did not think the labs 
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helped, but other students may have kept some of these thoughts to themselves as well.  It is 

recommended that in future research interviews could also be conducted to help to better explain 

how the computational labs affected students.  Interviews may also give students an opportunity 

to express their thoughts without the solicitation being any part of an assignment in the class.  

This would also help to differentiate whether students felt that it was the selected technology that 

was used that helped them learn, if it was the content of the labs that helped, or if it was some 

combination of both.  It was not possible to fully make this determination from the student 

comments as they were gathered in this study.  

General Conclusions 

 Increasing students’ conceptual understanding of calculus is certainly a goal of 

undergraduate calculus classes and was an objective of using computational labs to introduce 

students to calculus concepts in this project.  Within this study there was no statistically 

significant difference in calculus conceptual understanding when students participate in these 

computational labs, however, there was evidence from students’ comments that the labs did help 

many students learn calculus, most importantly making connections of calculus concepts to their 

chosen field of interest business.  These labs helped a majority of students see the applicability of 

calculus to the “real world” and left them not asking the question of when are we ever going to 

use this outside of this classroom; there were, however, also negative comments of the labs.  

Thus I hypothesize that this is an area for future work further developing courses that employ 

such tools.  This project sparked real conversations about ways to engage students in learning 

calculus, about what we really want them to walk away with having taken the course, and what 

role technology can play in this venture at the university where this took place.    
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Many students’ comments revealed that the technology did help them learn concepts in 

the course, helped them make connections with business applications, and discover a different 

way of approaching problems and new problem solving tools.  Others however did express their 

distaste of the labs, the challenges they felt the technology added, and some even felt that the 

labs made the class more challenging and did not learn much calculus from them.  Because of the 

mixed feelings and experiences, the use of computational tools in this course should continue to 

undergo revisions to enhance students’ experiences and learning of calculus concepts.   

Based on the results of this study and experiences in these classrooms, I will continue to 

use computational tools in this class and several other instructors at the university where this 

study took place have expressed interest in further developing this class and others using such 

tools.  How computational tools can be employed in undergraduate general education 

mathematics classes to help students better understand mathematical concepts is an area that 

needs further study.   
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CHAPTER 4: Manuscript 2 
Computational Labs and Attitude Toward Mathematics 

 
Abstract 

This study investigates the change in students’ attitude toward mathematics during a one-

semester Business Calculus course taught using computational labs with business applications.  

Investigating students’ attitudes and perceptions of mathematics provides empirical evidence 

about the intervention of computational labs in Business Calculus having an impact on students’ 

attitude toward mathematics.  Students’ mathematical attitudes are considered through the 

Mathematics Attitudes and Perceptions Survey.  Overall significant gains in attitude were not 

found, however, important gains were present in certain populations and reasons for this are 

discussed.  Student comments were also analyzed for effects the labs had on attitudes and 

perceptions, which revealed several notable impacts and help to explain the quantitative results.  

Findings from this study may have implications for mathematics educators who are looking to 

find ways to make mathematics, specifically calculus, more relevant, applicable, understandable, 

and enjoyable for the masses that are now required to take it.   

Introduction 

“One goal of an undergraduate education in mathematics is to help students develop a 

productive disposition towards mathematics” (Code et al., 2016, p. 917).   In addition to 

imparting knowledge of important mathematics skills and concepts on students, undergraduate 

calculus classes also have an impact on students’ attitudes, which can affect their willingness to 

use mathematics, career aspirations, and choice of taking future mathematics classes (Sonnert, 

Sadler, Sadler, & Bressoud, 2015).  Students often find undergraduate calculus to be challenging 

and are fearful of it, a fact of which instructors are keenly aware (Bressoud & Rasmussen, 2015).  

Bressoud & Rasmussen (2015) present that as post-secondary calculus is currently taught it “is 
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extremely efficient at lowering student confidence, enjoyment of mathematics, and desire to 

continue in a field that requires further mathematics.”  This applies to STEM students, but also 

extends to business students as well, most of whom are required to take calculus.  This also has 

implications in that calculus has long served as a stumbling block and a “critical filter” that is 

“blocking access to professional careers for the vast majority of those who enroll” (The 

Mathematical Association of America, 1988, p. xi) and appears to remain as a filter today, even 

for some strong students (Bressoud et al., 2013).  Calculus can be a filter for students because 

instead of helping students develop a willingness to use mathematics and a productive 

disposition toward it, it may be lowering their confidence in their mathematical abilities, their 

desire to take more mathematics courses, and their ability to see its connections beyond the 

classroom walls and other disciplines.   

Considering how courses, including Business Calculus, could impact attitude toward 

mathematics is important because how students feel about mathematics may have an impact on 

their performance in the course as well.  Attitude toward mathematics and mathematics 

achievement are often thought to be positively associated and has been demonstrated to be a 

positive relationship in college calculus courses (House, 1995).  Research suggests that attitude 

can be positively changed if math is taught in more relevant contexts and real world connections 

(Andersson, Valero, & Meaney, 2015; Cornell, 1999), which is part of this project.  The 

Mathematical Association of America called for introductory undergraduate mathematics 

courses to be “effective in positively affecting student attitudes about mathematics” (Saxe & 

Braddy, 2015, p. 66), emphasizing the importance of early college mathematics courses 

positively impacting students’ attitudes toward mathematics, which is a goal of this project.  This 
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project uses computational labs, using Jupyter notebooks, making use of connections to business 

applications, in a one-semester Business Calculus course to introduce students to calculus topics. 

Literature Review 

“Business students, although able, are often math phobic.  Courses should strive to lessen 

math phobia, enable students to be more comfortable with mathematics, and help students 

appreciate the relevance of mathematics” (Lamoureux, Beach, & Hallet, 2000, p. 19).  Some of 

the intentions of this project are to do just that.  If the project succeeds in doing so, perhaps it 

will answer Nievergelt’s (1996) question, “how to impart just enough mathematics to business 

majors, so that they may understand the potential power and limitations of mathematics, decide 

when to hire mathematicians, and consult with them profitably” (p. 146), but also inspire 

students to be more appreciative of mathematics outside of the classroom and be more willing to 

use mathematics by impacting their attitudes positively.  

Business Calculus is often daunting to undergraduate business students (Depaolo & 

Mclaren, 2006).  Business Calculus tends to have high D, F, and/or withdraw rates even though it 

is a 1000 level class and a requirement for graduation for all business majors at the small, 

private, liberal arts university where this study took place.  This is the case at other universities 

as well, many of which report that Business Calculus is a course where students tend to have 

high levels of resistance to mathematics (Depaolo & Mclaren, 2006; Liang & Pan, 2009).  In this 

course, it is often seen that students are unprepared and not excited to take the required course 

(Liang & Pan, 2009), and unfortunately business students required to take Business Calculus 

often miss seeing the connection between calculus and the rest of their courses leaving many of 

them “unmotivated and even resentful” (Narasimhan, 1993, p. 254).  Early college mathematics 

courses, such as Business Calculus, should help students overcome some of these negative 
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feelings and perceptions about mathematics and positively affect students’ attitudes about 

mathematics, which how to effectively do so is still very much an open question.  

Attitudes Toward Mathematics 

Aiken (1970), in discussion of attitudes toward mathematics, defines attitude as “a 

learned predisposition or tendency on the part of an individual to respond positively or 

negatively to some object, situation, concept, or another person” (p. 551), and Neale (1969) 

defined attitude toward mathematics as a measure of “liking or disliking mathematics, a tendency 

to engage in or avoid mathematical activities, a belief that one is good or bad at mathematics, 

and a belief that mathematics is useful or useless” (p. 623).  These are the definitions used to 

guide this study of attitude toward mathematics.   

It is important to consider attitudes toward mathematics outside of following 

recommendations to positively affect them but also because attitudes have been linked to 

achievement.  The relationship between attitude toward mathematics and achievement in 

mathematics is usually positive and practically significant, not always statistically significant, at 

the elementary and secondary school levels (Aiken, 1976).  Ma and Kishor (1997) find that the 

relationship of attitudes toward math and achievement has been found to be significant and 

positive but not strong.  Research has suggested that mathematics attitude is a critical construct 

in learning mathematics (Singh, Granville, & Dika, 2002).  In mathematics, positive attitudes 

have been associated with higher scores on standardized tests and higher classroom achievement 

(Aiken, 1976; Aiken & Dreger, 1961; Stankov & Lee, 2014; Zimmerman et al., 1992).  Negative 

attitudes toward math have been linked to drop out rates from math courses (Ma & Willms, 

1999) and to poor engagement leading to failure (Mayes, Chase, & Walker, 2008, pp. 28-29).  

University students with negative attitudes toward math tend to get low scores on final exams 
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(Nunez-Pena et al., 2013).  This research implies that a student’s attitude toward math and belief 

in oneself as a “math person” has an effect on a student’s learning outcomes.  Students’ negative 

attitudes toward mathematics may be hindering their successes, so developing a more positive 

attitude toward mathematics is vital for chances of increasing success.  The degree to which 

students enjoy math, find and place value on mathematics, and believe it is valuable for success 

in school and the future affects students’ motivation to learn (Ismail, 2009; Middleton & Spanias, 

1999).  Belief in one’s abilities to do math could be linked to attitude toward mathematics 

because students lack confidence in their math abilities because of previous experiences, poor 

grades, a general lack of interest in math, and the inability to relate math to usefulness in 

everyday life (Peters, 2013).  Self-efficacy for college students in mathematics had a stronger 

relationship to mathematics performance and mathematics problem-solving than other variables 

such as math self-concept, high school level mathematics courses, and math anxiety (Pajares and 

Miller, 1994).  Since students around the world have problems with basic conceptual 

understanding of calculus (Epstein, 2013), and since attitude has been linked to academic 

achievement, it is important to consider how a course is impacting students’ attitudes.  

Calculus and Business Calculus Attitudes.  Undergraduate calculus causes a sharp 

decrease in students’ enjoyment of mathematics and confidence in mathematics ability (Bressoud 

& Rasmussen, 2015), which raises concern since attitudes related to math have been linked to 

achievement and since we live in a world that requires many professionals to interact with 

mathematics at some level.  The extreme efficiency post-secondary calculus, as currently taught, 

has in lowering student confidence, enjoyment of math, and likelihood to continue to other math 

class is much the opposite of the following goal of what an undergraduate mathematics course 

should do (Bressoud & Rasmussen, 2015).  The relationship between calculus attitude and 
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achievement has been seen at the college level.  House (1995) demonstrated the positive 

relationship between attitude and achievement in college calculus courses.  Pyzdrowski et al. 

(2013) found a strong positive correlation between attitude and performance in entry-level 

college calculus; their findings indicated that attitudes affecting course performance were not 

based simply on previous mathematics experiences and preparation but also link to psychological 

factors such as confidence.  

Business Calculus is a course that often has students that are not excited to take this 

required course (Liang & Pan, 2009); this is not to say that the students are incapable, however, 

some have, over their years of schooling, developed unpleasant feelings towards math.  Likely 

because of perceived negative prior experiences, Business Calculus is a course where students 

walk in the door with a high level of resistance to and negative attitude toward mathematics 

(Depaolo & Mclaren, 2006; Liang & Pan, 2009).  In studying these students, Depaolo and 

Mclaren (2006) found that attitude towards math in Business Calculus was significant in 

predicting exam scores.  Findings also support that attitude had a larger effect on calculus 

performance than it did on statistics performance for business students (Depaolo & Mclaren, 

2006).  An important point to highlight in Depaolo and Mclaren’s (2006) findings is that attitude 

appeared to have a stronger affect on performance for students that had not taken calculus before 

than ones that had; this is important since many students in Business Calculus are being exposed 

to the material for the first time.  

Anecdotally, when discussing with my students why they chose to major in business or 

how they think math relates to their future business career, many of my students usually let me 

know their feelings about math.  They are usually more negative than positive, they tend to 

identify and hold onto their previous perceived failures in math, and they connect those to why 
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they chose business as their major thinking that it may not be as math-intensive as a STEM 

major.  This anecdote aligns with existing literature on how students decide on college majors 

and future careers.  Research supports that students often have their minds made up about going 

into STEM careers or not upon exiting high school (Maltese & Tai, 2011).  Pritchard, Potter, and 

Saccucci (2004), in studying business students and their basic algebraic skills, found that 

students with higher computational and algebraic skills chose to major in more quantitatively 

focused business concentrations such as accounting or finance, while students with lower scores 

tended to select a concentration or major in less mathematically focused ones such as 

management or marketing, and some business students choose less quantitatively focused 

concentrations because they perceive them to have less demanding quantitative requirements 

(Pritchard, Potter, & Saccucci, 2004). 

Students enter the class with their minds often already made up, so in trying to positively 

influence a student’s attitude it is important to consider from where those attitudes derived.  

Many students have mathematical biographies littered with perceived negative experiences, 

which cause students to dislike math and blame their negative experiences on mathematics itself 

or believe that they are lacking some innate ability to do math.  Van Damme et al. (2004) showed 

that differences in mathematics attitude could be explained related to the way students 

experience the teaching of mathematics.  These attitudes were likely influenced by a combination 

of student level factors and classroom experiences. The math-hating attitudes also come attached 

with very strong emotions reflected by words such as sickening, frustrating, and wanting to cry 

(Larkin & Jorgensen, 2016), appear at a very young age (Cornell, 1999), and may become very 

much engrained. 
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Attitude and Pedagogy   

Attitudes toward mathematics and calculus are linked to the instruction students 

experience including pedagogical decisions, use of technology, environmental factors, and 

personal factors including previous interaction and attitudes toward mathematics and the choice 

of college major (Sonnert, Sadler, Sadler, & Bressoud, 2015).  Other factors that appear to 

influence students’ attitudes and success are peers’ attitudes (Kotok, 2017), poor content 

knowledge foundations, negative mindset, lack of number sense (Westenskow, Moyer-

Packenham, & Child 2017), finding the subject boring with too much memorization, and their 

teachers (Cornell, 1999).  Andersson, Valero, and Meaney (2015) identify that statements such 

as “I hate math” or “I am bad at math” do not come from only the students’ internal feelings but 

come from an interaction of classroom and pedagogical experiences, implying that understanding 

of the experiences that shape students’ attitudes can help to prevent students from hating math.  

Research suggests that attitude can be changed if math is taught in more relevant contexts 

and real world connections (Andersson, Valero, & Meaney, 2015; Cornell, 1999).  Challenging, 

innovative, meaningful, and stimulating classroom activities influence students’ satisfaction and 

growth, which helps a positive attitude toward learning (e.g., Strauss & Volkwein, 2002).  There 

is a need to create an environment that fosters more positive attitudes toward mathematics to 

nurture mathematical skills, which could include more relevant contexts, more modern topics, 

more modern approaches, and more technology and computing such as in this project.  “Students 

see mathematical tools for the life sciences and social sciences as useful, interesting, and 

beautiful when they learn to use them in realistic applications and when computers do the 

calculations” (Hoffman, 1989).  Not only do students find mathematics more useful when taught 

in such a way but achievement is also linked to these realistic applications; more specifically 
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research suggests, “mathematical capabilities of children are greatly influenced by whether they 

are in a real world or a classroom context” (Couch & Haines, 2004, p. 199).  Classroom activities 

that represent math as static, unchallenging, and boring leave students unable to see the 

usefulness of the mathematics (Wilkins & Ma, 2003).  Students that get continuously exposed to 

mathematics as rote memorization and find it unchallenging develop a negative attitude toward 

mathematics and its applicability outside of the classroom (Greenwood, 1984).   

Considering this with a focus on Business Calculus, The Mathematical Association of 

America Calculus for a New Century: A Pump Not a Filter report supports reforming calculus 

and to modernize it; “We need to teach calculus in a way that facilitates complex and 

sophisticated numerical computation in an age of computers.  Somehow or other we have to 

make calculus exciting to students” (The Mathematical Association of America, 1988, p. 9).   

The Mathematical Association of America’s report The Curriculum Foundations Project: Voices 

of the Partner Disciplines emphasizes a “potentially useful method for drawing students into the 

lecture is to start the lecture with a real-world (or realistic) business problem.  If students are 

convinced that the problem is worthy of their attention, and that they do not know how to solve 

it, they are much more likely to pay attention and to retain what they learn.  It is important to get 

the buy-in at the beginning” (Lamoureux, Beach, & Hallet, 2000, p. 21).  Gordon asserts that 

students gain appreciation of the relationship between math and the computer, which “provides 

an ideal context in which to develop several simple, yet useful, numerical algorithms for 

approximating functions and for actually finding where all those ‘given’ functions come from” 

(Gordon, 1979, p. 23).  Many times the classical techniques of calculus require special cases and 

a lot of time to master for the novice with teachers then reducing problems to a very simplified 

version (Hoffman, 1989), but the labs in this project allow for students to see more realistic, 



 167 

advanced business topics.  The labs in this project are used to introduce students to calculus 

topics and are often situated in context of a business or financial problem. This may help 

students find the mathematics more relevant and in turn positively affect their attitudes.   

One recommendation that the class in this project aims to fulfill is: 

Calculus in the business mathematics curriculum should emphasize the basic concepts 

and how they apply to business problems, with more attention to numerical methods and 

less to techniques of symbolic differentiation and integration. The Business Calculus 

curriculum should include an introduction to rates of change, and the dynamic nature of 

real world systems, constrained optimization, and interpretations of area under a graph. 

(Lamoureux, Beach, & Hallet, 2000, p. 20)   

Recommendations as to how to do so include using technology to show students tools 

they will use in the work place, to enhance the efficiency of the learning process, and to enrich 

and maintain student interest (Lamoureux, Beach, & Hallet, 2000).  Suggestions, such as these, 

call on instructors to use technology in the classroom and allow for hands-on experiences for 

students potentially through labs to support student learning (Lamoureux, Beach, & Hallet, 

2000).   

Attitude and Technology.  The use of modern technology can be extremely beneficial 

for students to learn calculus with true business applications, especially for students with weak 

math skills (Liang & Pan, 2009) and negative attitudes.  Motivation, participation, and interest 

are all shown to improve in Business Calculus classes when computers are allowed as an aid and 

more emphasis is placed on understanding and application; by doing so the age-old student 

question of “why do I have to learn this stuff?” is gone because students are allowed to see the 

calculus in action with real applications and are less mired by the stress of by-hand skills and 
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techniques (Judson, 1990).  In a calculus course with Mathematica, Brown, Porta, and Uhl 

(1990) report that students were excited and ready to experiment and discover using a technology 

that was new to them.  Using R, which has some similarities to using Python, students can write 

programs to model, simulate, analyze data, and more is shown to have produced strong 

enthusiasm for many students (Benakli, Kostadinov, Satyanarayana, & Singh, 2017, p. 422).  

These along with other results are promising.  Since “how to convince business students in the 

classroom that mathematics will later be able to save them time, hence money, remains an open 

problem” (Nievergelt, 1996, p. 146), it is important to consider interventions such as this project 

that may impact that.     

The national study of calculus (Bressoud, Mesa, & Rasmussen, 2015) does not mention 

the use of coding and computing in a programming language as used in this study, however, the 

use of software in mathematics has grown of late and it is known that these tools are useful for 

professional mathematicians, so students should be exposed to these tools.  Often software can 

make mathematical computation and inquiry quicker and more accessible to those not advanced 

in their mathematical careers (Quinlan, 2016).  Lockwood, DeJarnette, and Thomas (2019) found 

from interviewing mathematicians that:  

Computing is an activity that can be performed with a variety of tools, including paper 

and pencil.  At the same time, given that the advances in technology can increase the 

efficiency, accuracy, and utility of computational work, it is reasonable to expect that 

computing is particularly salient practice in this era, at least inasmuch as mathematicians 

may recognize it as an integral part of the work of doing mathematics. (p. 4) 

With the importance of such tools growing within mathematics, there has also been a rise in 

research on computational tools in mathematics education (e.g., Cline et al., 2019; Jones & 
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Hopkins, 2019; Kilty & McAllister, 2019).  diSessa (2018), Lockwood, DeJarnette, and Thomas 

(2019), and others encourage mathematics educators to research how their ideas of how 

computers and computational tools can be used in mathematics learning and that there is still 

much to be discovered in effective learning and learning of computing within mathematics.  

Computational Tools.  “The emergence of accessible computational technology enables 

a wholly different mathematical experience for university students” (Koehler, 2017).  Some 

previous research indicates positive results of using computational tools in the mathematics 

classroom.  Computational tools could allow for mathematics to focus on the concepts rather 

than a large emphasis on the skills (Heid, 1988) and students in such classes benefit, including in 

conceptual understanding from incorporating technology (Heid, Blume, Hollebrands,& Piez, 

2002).  Fenton and Dubinsky (1996) developed ISETL language to help students more 

effectively learn mathematics beginning with the argument that “communicating with a 

computer requires a level of precision that will help illuminate important mathematical ides for 

students” (Lockwood, DeJarnette, & Thomas, 2019).  Schwingendorf and Dubinsky (1990) also 

reported that students felt that the computer labs helped them explore the mathematics in a new 

way, which helped understanding and was something of which many were appreciative.  Cetin 

and Dubinsky (2017) found that by using ISETL for writing and running code, students learned 

concepts such as functions more effectively and had to think about what the computer is doing 

with the code.  Using computational tools, like R, improves conceptual understanding of many 

difficult concepts from complex and abstract problems and improve problem-solving skills 

(Benakli, Kostadinov, Satyanarayana, & Singh, 2017).  Because computational tools can aid 

students in effectively interacting with and learning mathematical concepts, the tools may be 

effectual in positively influencing attitudes as students gain confidence in successfully 
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understanding and completing challenging mathematical tasks.  When students are successful, 

they are more motivated and willing to engage in mathematical tasks, which could positively 

affect how they feel about mathematics; 

Research indicates that success in mathematics is a powerful influence on the motivation 

to achieve.  Students perceive success as reinforcing and they will engage in mathematics 

if they expect to be successful.  In addition, students will not only engage more, they will 

also tend to enjoy tasks for which they have a moderately high probability of success 

more than tasks for which the probability of success is near chance. (Middleton and 

Spanias, 1991, p. 68) 

The use of Jupyter notebooks running Python is a pedagogical decision to intentionally 

teach calculus topics, not simply support students in computation.  Schwingendorf and Dubinsky 

(1990) found through evaluation of student comments that using a mathematical programming 

language, ISETL, helped them realize that mathematics was more than using a formula or pattern 

but instead involved a lot of thinking, and these students could articulate that calculus was a 

method and thought process involved in solving problems.  Cetin and Dubinsky (2017) discuss 

that writing and running code and thinking about what the computer is doing with that code can 

help students to internalize concepts, specifically understanding of functions.  A project at 

Dartmouth in calculus courses where students explored calculus topics through programming in 

BASIC (Crowell & Prosser, 1991) found ease of implementation, mixed results on students 

attitudes toward the computer enhancing calculus, and still asked the questions of what is the 

computer’s place in calculus with CAS systems or programming and how would the traditional 

curriculum and pedagogy be revised to best incorporate the power computers could provide 

(Crowell & Prosser, 1991, pp. 151-155) both of which are still questions of today.  Rich, Bly, 
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and Leatham (2014), in studying the impacts that learning computer programming can have on 

the way students approach mathematics, claim that learning to code “provided participants with 

context, application, structure, and motivation for mathematics” that was long lasting.  Kilty and 

McAllister (2019) found that students in their calculus modeling course using RStudio reported 

increases in self-confidence in mathematics, comfort in using mathematics and software to study 

real-life situations, and are appreciative of being able to study calculus in a manner relevant to 

their other courses.   

Technology and Labs in Calculus Courses.  A review of literature revealed that labs in 

calculus courses take on many forms, cover a variety of content, and use a variety of technology 

(Leinbach, 1991).  A calculus lab can be used as a “learning device to see how calculus applies 

to other courses and disciplines” and “helps students relate the rather abstract ideas of 

mathematics to non-mathematical ideas they have encountered in other courses” (Basson, 

Krantz, & Thorton, 2006, p. 346).  Numerous examples of labs in a calculus course with some 

programming or mathematical programming language emerged in the late 1980s and early 

1990s, which reported overall positive results (Tucker, 1990).  Höft and James (1990) found that 

students in a calculus course with computer labs were more interested in calculus material, more 

responsive, and more engaged with questions than students in a traditionally taught course.  An 

example of a successful implementation of a calculus lab entailed enhancing the existing 

calculus course and having the main goal of the lab as teaching students to make connections not 

teaching additional material but (Basson, Krantz, & Thorton, 2006).  Successful calculus labs 

also often use real data (e.g., Basson, Krantz, & Thorton, 2006; Kowalczyk & Hausknecht, 

1994), which this project will do. 
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The labs in this project will be done using Jupyter notebooks, which allows for coding in 

Python and is thought to be an easy to use program (Koehler and Kim, 2018).  Koehler and Kim 

(2018) assert that Jupyter notebooks and Python are easy to use even for teachers with little to no 

background in coding and computing, and with them students can easily discover how 

technology can help them solve mathematics problems and communicate solutions to 

challenging and real problems.  Jupyter notebooks are open-source and can include creation and 

sharing of documents that can contain live code, visualizations, equations, and text (Project 

Jupyter, n.d.).  Jupyter notebooks support multiple programming languages, can be easily shared, 

can produce interactive output with images, videos, LaTex, and more, and can support big data 

tools (Project Jupyter, n.d.).  The labs in this project ran Jupyter notebook with Python.  Python 

is a popular, commonly used programming language for scientific computing and data science 

that has a large focus on ease of use and readability (Meurer et al., 2016).  Technology is playing 

a growing role in the financial and business industries, and Python, with many open source 

financial libraries, is growing in importance (Hilpisch, 2016), and there is an increase in business 

analytics masters degrees with some coding component, so exposing business majors to a 

programming language could introduce them to a valuable skill they may be expected to use in 

industry.   

There is promise in the research reported about the use of different computing tools, 

computer assignments, and computer labs to positively affect attitudes toward mathematics, 

especially in the research from the late 1980s and early 1990s, but this is an area that must 

continue to be studied as the computing capabilities are more powerful, accessible, and prevalent 

than ever before.  
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Use of Technology for Preparing for the Future.  “In the real world we use computers 

for calculating, almost universally.  In education we use people for calculating almost 

universally” (Wolfram, 2014, p. 1); this changes what mathematics might be of importance to be 

taught.  Gravemeijer et al. (2017) assert that the previous quote reflects “that we have to shift 

away from teaching competencies that compete with what computers can do and start focusing 

on competencies that complement computer capabilities” (p. S107).  Students tend to align with 

the research that the inclusion of technology in the classroom can be beneficial for focusing on 

problem solving and more real situations and being reflective of the work place, but this is not 

always reflected in the mathematics classroom (Zevenbergen, 2004).  Students have difficulty 

engaging in mathematical modeling, or translating a real world situation into a mathematical 

representation, because they have learned math decontextualized and have a hard time switching 

between real world and mathematics because of the lack of practice they get with this in school 

(Couch & Haines, 2004).  These however are important skills because, “when mathematics is 

applied in the modern world for a practical purpose, we almost always require a computer to deal 

with a realistic level of complexity or to manage the data involved.” (Cline et al., 2019).   

Today’s college-educated professionals need to be “creative, confident, competent 

problem-solvers, and clear, critical thinkers,” which can be developed in part in their exposure to 

undergraduate mathematics that includes modeling, inquiry, and using technological tools to 

solve problems from all disciplines (Arney, 2009, pp. 94-95).  Mathematics, being able to 

interact with technology, and appreciating some of the interdisciplinary nature of problems will 

be valuable skills for future careers.  “Across a wide range of industries and occupations, people 

are required to use, develop, and communicate mathematical ideas and techniques in a diversity 

of ways with others who have differing expertise, experience, and interests including in 
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mathematics itself” (FitzSimons & Boistrup, 2017, p. 330).  Employers and future trends indicate 

that there is a great need for mathematically proficient individuals.  There is a need for 

mathematically literate individuals for the twenty-first century business world (Yıldırım  & 

Sidekli, 2018), and mathematics knowledge is becoming imperative for many career 

opportunities (Bureau of Labor Statistics, 2016).  A 2013 poll of 200 employers revealed the 

second most important skill they look for in potential employees is the ability to make decisions 

and solve problems, and the ability to analyze quantitative data and use computer software 

programs are also in the top ten (Adams, 2015).  The National Network of Business and Industry 

Association (2014) lists using mathematics to solve problems as one of its necessary 

employability skills.  Employment of mathematics occupations has a projected growth of twenty-

eight percent from 2016 to 2022, and growth in the areas of business and government needing 

mathematicians or people comfortable using math is expected to grow as business and data 

analytics continue to grow (Bureau of Labor Statistics, 2016).  Sales and marketing, research and 

development, supply chain management, and workplace management are all areas in which 

analytics are growing (Columbus, 2018).  This project aims to study changes in students’ 

attitudes and perceptions about mathematics because these play an important role in one’s 

willingness to use this knowledge outside of the classroom; “A person’s mathematical 

disposition related to her or his beliefs about and attitude toward mathematics may be as 

important as content knowledge for making informed decisions in terms of willingness to use 

this knowledge in everyday life” (Wilkins & Ma, 2003).  Perhaps students that are participants in 

this project will immerge with more expert-like dispositions towards mathematics and thus be 

more willing to use it in everyday life, which may very well include willingness to use it in the 

workplace.  
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Given that mathematics preparation, past achievement in mathematics, and attitude 

toward mathematics have been found to be factors in career choice and that math sometimes 

serves as a “critical filter” (Bleyer, Pedersen, & Elmore, 1981, p. 46) in the career choice process 

and that Business Calculus is a course where students tend to be unprepared mathematically and 

show a dislike toward mathematics (Liang & Pan, 2009), it could be inferred that some of these 

students’ are choosing to major in business and potentially choosing it as a career because of 

their previous experiences with mathematics.  Students’ mathematics test scores influence choice 

of major; students with higher mathematics test scores were more likely to choose a technical 

major rather than health, business, public service, or liberal arts (Simpson, 2001).  The more 

mathematics preparation a student has from high school is indicative of the student choosing a 

more technical major than a non-technical one (Simpson, 2001), which would include business 

(Pritchard, Potter, & Saccucci, 2004).  Some business students chose less quantitatively focused 

concentrations because they perceive them to have less demanding quantitative requirements 

(Pritchard, Potter, & Saccucci, 2004) implying that mathematics does play a role in the selection 

of major and potentially future career.  A quick Google search also reveals forums and question 

threads where people ask if and why business majors have to take calculus and why business 

majors have to take calculus, which indicates mathematics is at least weighing on some students’ 

minds when thinking about majoring in business.   

Undergraduate calculus classes teach students important skills and concepts in 

mathematics and also have a large impact on students’ attitudes, which can affect their career 

aspirations and choice of taking future mathematics classes (Sonnert, Sadler, Sadler, & Bressoud, 

2015), and is thought to be the case in the classes of this study.  If a first college calculus course, 

such as Business Calculus, is taught well, it “could be an opportunity to have them leave not 



 176 

hating math, but actually bring them in” and “for those who continue in their chosen non-STEM 

field, whether business or social work, having more people who are STEM- and calculus-literate 

would be great” (Ellis as cited in Courage, 2016).  Acknowledging that attitude toward 

mathematics may play an important role in success in mathematics courses, it is important to 

consider interventions, such as this project, that aim to make more connections to applications 

outside of the classroom, so that students’ attitudes may improve. 

Research Question 

This study was designed to determine the impact, if any, of computational labs on 

students’ attitudes towards mathematics in a one-semester undergraduate Business Calculus 

course.  The research question guiding this investigation is as follows:  

To what extent will attitudes toward mathematics change as a result of being introduced 

to calculus concepts through computational labs in a Business Calculus course?  

This project studied the implementation of computational labs and their impact on students’ 

attitudes through a quasi-experimental, multi-method design.  The Mathematics Attitudes and 

Perceptions Survey was employed in this study to gather data on students’ attitudes toward 

mathematics, and the data was statistically examined to measure the effect of the labs on 

students’ attitudes toward mathematics.  Students’ comments from the end of each lab were 

collected and analyzed as well.  The main purpose of this research is to determine the 

effectiveness of computational labs as a method to positively affect students’ attitude toward 

mathematics and further inform teaching practices.  

Participants   

Participants in this study were undergraduate students at a medium-sized private 

university, with undergraduate enrollment around 4,500 students, enrolled during the spring 
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semester of 2019.  At this university the liberal arts general education curriculum currently 

includes a mathematics requirement of which approximately 39% of students meet by taking 

Calculus I or Business Calculus during their freshman year.  The majority of students in both 

groups were freshmen, but there were students from freshmen to seniors.    

Four sections of Business Calculus all taught by the same instructor participated in this 

study.  Thirty students were enrolled in each section to begin the semester with numbers 

dropping by a few students in each class as the semester progressed.  The semester began with 

120 students enrolled across the four sections, with 60 eligible students in each of the 

experimental and control groups.  Of the 120 students enrolled at the beginning of the semester, 

113 elected to participate in the first day administration of the Mathematics Attitudes and 

Perceptions Survey.  By the end of the semester, enrollment across the four sections was down to 

106 students, of which 94 participated in the end of semester MAPS.  Despite 94 responses on 

the post-test, only 79 responses gave consent and were successfully matched to their 

corresponding identifying pre-test code.  Demographic information about the 79 participants for 

which matched data was acquired and analyzed is presented in the following table. 

Table 5 
 
Student Demographic Characteristics 

Demographic 
Characteristic 

Number of Respondents 
Control 
(n=39) 

Experimental 
(n=40) 

TOTAL 
(n=79) 

Gender    
     Male  25 21      46 
     Female 14 19      33 
Major    
     Business 35 36      71 
     Undecided 3 4       7 
     Other 1 0       1 
Previous Calculus     
      Yes 17 12      29 
      No 22 28      50 
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In addition to demographic information, students were asked to provide their intended major and 

the concentration of their major if applicable.  The table below details the different majors that 

were present among the participants, which included Business and the different concentrations 

within, non-business, and undecided.  

Table 6 
 
Student Major and Concentration  

College Major and 
Concentration 

Number of Respondents 

Control 
(n=39) 

Experimental 
(n=40) 

Total 
(n=79) 

Business  35 36 71 
      Business Admin.     13    12     26 
      Marketing     9      6     15 
      Accounting     2      5       7 
      Entrepreneurship     5      4       9 
      Finance     2      4       6 
      International Bus.     3      4       7 
      Sales     1      1       2 
Non-Business Major 1 0 1 
Undecided 3 4 7 
 

Methodology 

This project studies the implementation of computational labs and the effects on attitude 

toward mathematics through a quasi-experimental, multi-method design including an 

experimental group and a control group.  Students’ attitudes were quantitatively measured using 

the Mathematics Attitude and Perceptions Survey.  In addition to the quantitative data, student 

comments were also gathered and analyzed to provide additional insight into students’ attitudes 

and how they perceived the labs as impacting their attitude.  Student comments were also 

analyzed with evaluative coding to gather students’ assessment of the course to help guide 

improvement to better impact attitude.  
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This study used a multi-method Quan + qual design (Morse, 2003).  In this design “the 

description is primarily from the quantitative data with qualitative description enhancing 

particular aspects of the study” (Morse, 2003, p. 204). 

Description of Intervention  

Students in the experimental group completed six computational labs throughout the 

semester.  The labs were completed using Jupyter notebook with Python.  The lab activities were 

used to introduce topics.  This structure was used because the labs introduce students to calculus 

topics using business applications often starting with discrete data and ideas of finite calculus 

and then extend them to the more traditional continuous approach to calculus, which was 

covered more in the lecture portion of the course.  The labs were distributed electronically as 

Juypter notebook files or through Google Colab links.  In this study, students worked through the 

beginnings of the labs with the teacher as a class followed by a problem set that involved some 

of the techniques covered in the beginning to tackle the problems on their own.  Students were 

typically given one and a half weeks to complete the problem set on the lab.  During that time, 

the topics from the lab were expanded on in the lecture portion of the course.  Students were also 

given time each class meeting to work on the lab problems while the instructor circulated.  

The first lab assignment was done on the second-class meeting.  The first lab allowed 

students to download and install the appropriate software and set up a folder where they would 

store their work.  The purpose of the first lab was to introduce students to Jupyter notebooks, 

demonstrate some of the different types of cells they would need throughout the semester (code 

or markdown), discover different ways to type text in markdown, insert images, use code cells to 

do simple mathematics operations, create lists and arrays, use simple loops, append elements, 

and define and plot functions.  Students worked through the lab in class on their personal 
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computers as the instructor projected the notebook on the board and worked through it with 

them.  The end of the notebook had a set of four problems that students were to complete on their 

own, which asked students to implement what they had learned working through the beginning 

part and referring back to the beginning part to write the appropriate code to complete the tasks.  

The tasks included navigating to the appropriate type of cell to answer questions about 

themselves or insert a picture, performing simple mathematics operations, producing specified 

arrays, printing numbers from the NumPy library, and translating sentences into mathematical 

expressions, defining these expressions as functions, and plotting these functions on a specified 

domain and in a specific format.  Students were also asked to write a paragraph at the end of the 

lab reflecting on what they learned, which occurred on all subsequent labs as well.  This 

notebook had many of the basic commands students would need to progress into future labs and 

students often referred back to this first assignment.  

The second lab was focused on functions with its goals including review of linear, 

quadratic, and exponential functions, relate functions to sequences, and use exponential functions 

to model situations.   

The third lab was titled “Introduction to the Derivative”.  In this lab students were tasked 

with computing limits, slopes and finite differences, understanding the definition of the 

derivative, interpreting the derivative as slope of tangent line, interpret the derivative as a 

function, and using Python to symbolically compute derivatives and using these examples to 

conjecture rules for computing derivatives.   

The fourth lab was centered on applications of the derivative.  In this lab, students 

explored applications of derivatives to shapes of curves, finding relative and absolute extrema, 

and optimization.  Students used pre-written code to graph the function and first and second 
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derivatives to make conjectures about the connections between them.  Students then learned how 

to find critical points, describe intervals of increase/decrease and concavity, and determine where 

there were maxima or minima.  Students used this knowledge to analyze sales of smokeless 

tobacco products, complete examples of the law of diminishing returns, and optimization 

problems relating to maximizing revenue or profit.  

Lab five focused on the study of integration.  In this lab students had to conjecture how 

they would determine area under the curve and were then shown how to approximate the area 

under the curve using rectangles.  They then improved their approximation by increasing the 

number of rectangles, which lead to the introduction of the definite integral.  Students used 

numerical integration to apply this concept to applications including net change and average 

value.   

The concentration of the sixth and final lab was area between curves.  Students created 

graphs of several curves and made determinations about how they would then find the area 

between the curves.  This was extended to examples of income inequality, consumer and 

producer surplus, and future value of income streams.   

Employing the computational labs creates both content and pedagogical differences 

between the experimental and control groups, which are discussed below. 

Overall, since the intervention was a series of labs, the content between the two groups 

largely overlapped throughout the semester.  Some content was changed to allow time for the 

labs.  To maintain more consistency between the courses, the order in which topics are covered 

mostly remained the same for the two courses.  The time spent on each topic was around the 

same number of class meetings, but the experimental sections spent some class meetings on the 

labs of that topic where the control sections had lecture on that topic.  The course timelines are 
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shown in Appendix A and excerpts from several labs are in Appendix B.  

In addition to content differences between the courses, there were also pedagogical 

differences.  The control sections of Business Calculus in this study were taught using 

predominantly lecture, which still the dominant style of teaching for Calculus I nationwide 

(Larsen, Glover, & Melhuish, 2015).  Outside of lecture, students in the control course had the 

opportunity to briefly work with classmates during most class meetings on problem sets in 

addition to receiving lecture.  Students in the control course also completed four projects, which 

included solving a calculus problem related to business and writing a letter about their findings. 

Use of technology was also a pedagogical difference between the groups.  This was a 

distinguishing factor between the control and experimental Business Calculus courses.  The 

control course included the use of a graphing calculator, and the experimental course included 

the use of Python to facilitate business application.  The graphing calculator was allowed in the 

control Business Calculus classes in this study but was not used to intentionally teach calculus 

but was used by students for arithmetic computations and graphing.  This differed from the 

pedagogical decision to use technology, specifically Jupyter notebooks with Python, to 

intentionally teach calculus topics, not simply support students in computation.  

Procedures  

Approval from the university Institutional Review Board was obtained before the 

semester began.  The described intervention occurred over a traditional fifteen-week semester in 

four Business Calculus courses all thought by the same instructor.  Each of the four sections of 

the course was a ninety-minute class meeting twice a week.  Students self-selected the sections 

with no prior knowledge as to how the courses were going to be taught.  All of the courses had 

the same instructor, so students were not selecting different sections based on the listed 
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instructor, and all of the courses were listed as the same course number with the identical course 

description.  The only variation in the courses as seen by the students when they were registering 

for classes was the different times the courses were offered.  None of the courses were at 

extremes of the day with none occurring very early or late in the day.  To randomly select which 

courses were to receive the intervention and which were not to account for being at different 

times of day, the courses were assigned numbers one through four and then selected with a 

random number generator.  Two sections of the course were taught with traditional, currently 

used practices in Business Calculus, which includes students learning continuous calculus with 

some business applications using lecture.  Two sections of the course were taught using the 

intervention, which was the use of computational labs that were used to introduce Business 

Calculus students to calculus concepts.    

Students in both groups took the pre-test Mathematics Attitudes and Perceptions Survey 

on the first day of the class.  The pre-tests were completed via computer, as were the post-tests.  

These tests were done through Qualtrics, a secure survey software system.  The pre-test had a 

statement of consent, which the students electronically elected to sign (see Appendix C for the 

electronic MAPS consent statement).  In addition to pre-MAPS, students provided a yes/no 

response to if they had taken a calculus course before, selected their gender, wrote in their major 

and major concentration, and designated which section of the course in which they were 

enrolled. 

 After the MAPS pre-tests were completed, the semester progressed with the control 

group receiving lecture and the experimental group receiving labs to introduce calculus topics 

that were then extended in lecture.  For the most part, the two groups covered material in the 

same order and around the same time in the semester.  The two groups also took tests at the same 
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time, were given identical tests throughout the semester, and took the same final exam.  The two 

groups also had similar grading scales with the only difference being the control group had 

projects where the experimental groups had labs, but both carried the same weight in the 

gradebook. 

Through the six lab assignments, students were asked on each one to reflect on what they 

learned in the lab.  Each lab concluded with the following statement, “Think about what you 

learned and write about it! Write a short paragraph about what you learned in this notebook.  

This needs to be a thoughtful, reflective paragraph.  There should be reflection on the 

mathematics content you learned.  You may want to review the goals of this notebook (listed at 

the top).”  This was a teacher-generated question that was originally intended solely for data on 

conceptual understanding.  Students used this solicitation to provide what they learned 

mathematically but also took the opportunity to reflect on the technology and how they felt about 

doing these labs.  Every student that signed a consent form had his or her comments saved 

verbatim at the end of the semester.  These student comments from the end of the labs were 

analyzed after the semester ended.  The student comments were analyzed using initial coding 

with in vivo codes (Saldaña, 2016), a second cycle of coding was done with pattern coding 

(Saldaña, 2016), and then themes emerged from these categories.  Separately, student comments 

were analyzed through evaluative coding to make determinations about how students evaluated 

the labs and what recommendations they would make for future iterations.  

On the final-exam day, students in both groups took the post-MAPS test.  The post-

MAPS was given on final-exam day when all students must be present.  This was done to avoid 

issues of missing data.  Final grades were recorded at the end of the semester for comparison.  

Students were given a written consent form on the final-exam day (see Appendix D).  A helper 
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administrator gathered this consent rather than the instructor-researcher to maintain more 

anonymity and to mitigate any pressure the students might have felt if the instructor collected 

consent. 

For the pre- and post-MAPS students chose a code, following Self-Generated 

Identification Code procedures (Yurek et al., 2008), to identify themselves.  The code was 

consistent for each student, which allowed for information from the different sources to be linked 

when the semester was complete.  On the final exam day, students wrote their name and code on 

a notecard when written consent was explained and gathered so that all data sources could be 

matched.  The helper administrator collected the codes and matched the data.  

Instrument.  The tool used to measure students’ attitudes toward mathematics in this 

study was the Mathematics Attitudes and Perceptions Survey.  The MAPS is a thirty-two 

question survey with one filter question on a five-point Likert scale.  The MAPS was adapted 

from the expert/novice instruments for undergraduate STEM education from the group of 

Colorado Learning Attitudes about Science Surveys (Code et al., 2016).  Factor analysis helped 

to arrive at seven categories with which the creators then attached names to the factors by 

matching themes with existing constructs in literature (Code et al., 2016), which include growth 

mindset, real world, confidence, interest, persistence, sense making, and answers (Code et al., 

2016).  The MAPS has Cronbach’s alpha value of 0.87 for the whole instrument, without the 

filter statement (Code et al., 2016).  This value indicated good reliability using guidelines of 

Cohen, Manion, and Morrison (2009), which would indicate that it has an alpha level that 

indicates that the instrument is highly reliable.  The creators of MAPS attempted to establish 

concurrent validity through patterns in course levels, patterns in correlations with course grades, 

and comparing findings to results from the Colorado Learning Attitudes about Science Surveys 
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(abbreviated: CLASS) (Code et al., 2016).  Concurrent validity, a type of criterion-related 

validity, provides a measure as to how well the new instrument compares to a previously well-

established instrument or instrument measuring the same construct and does so by having the 

data gathered from the one instrument correlated highly to data from another instrument (Cohen, 

Manion, & Morrison, 2009). At this time, there are no further psychometric studies available on 

the MAPS.  

The MAPS shares similar statements to and aspects of development of these 

expert/novice surveys (Code & Maciejewski, 2017).  The CLASS instruments’ statements were 

written to be as “clear and concise as possible and suitable for use in a wide variety of physics 

courses,” with students responding on a five-point Likert scale (Adams et al., 2006, p. 010101-

1).  CLASS “was designed to address a wider variety of issues that educators consider important 

aspects of learning physics” and “the wording of each statement was carefully constructed and 

tested to be clear and concise and subject to only a single interpretation by both a broad 

population of students and a range of experts,” which “make the survey suitable for use in many 

different courses covering a range of levels, and also allows most of the statements to be readily 

adapted for use in other sciences” (Adams et al., 2006, p. 010101-2) on which MAPS then built 

for mathematics.  Wording for CLASS statements was created by listening to and writing down 

statements that students said in interviews to word the statements in ways students will easily 

understand and represent their ideas about wording (Adams et al., 2006).  Comparing the 

statements on the CLASS-Phys (Adams et al., 2006) with statements on MAPS (Code et al., 

2016), it can be seen that the wording is similar for many statements but the discipline is 

changed. 

The Mathematics Attitudes and Perceptions Survey is a fairly new instrument and has not 



 187 

been as widely used as other mathematics attitudes surveys.  The MAPS, unlike some other 

mathematics attitude surveys, was developed specifically for undergraduate mathematics 

students and developed with input from mathematicians about what constitutes expert-like 

thinking (Code et al., 2016).  The MAPS was selected for this study in part because of its focus 

on undergraduate students.  The MAPS is shorter than other mathematics attitudes instruments 

and typically takes less than ten minutes to complete (Code et al., 2016), thus reducing issues of 

test fatigue that could be present on longer surveys.  The authors proposed that MAPS can 

“usefully be employed in any undergraduate mathematics education setting where student beliefs 

and perceptions are suspected to play a role” (Code et al., 2016, p. 933), which is indicative of 

why it was selected for use in this study since students in Business Calculus are thought to have 

relatively negative attitudes toward mathematics (Depaolo & Mclaren, 2006; Liang & Pan, 

2009).  The authors of this instrument kept it intentionally short and intend for it to be used as a 

pre-post instrument (Code et al., 2016).   

MAPS is also multi-dimensional and can be analyzed as a complete expert index and can 

also be analyzed by category.  The multi-dimensionality was of interest in this study.  The results 

from MAPS can be analyzed as a whole but can also be broken down into seven specific 

categories to see if there is change in sub-categories individually.  While there may be no 

positive effect on the expert-like disposition as a whole, based on previous findings in 

mathematics (Code et al., 2016) there may be effects on sub-categories.  Of particular interest 

was the real world category.  Previous research (Gordon, 1979; Hoffman, 1989; Ralston, 1984) 

has revealed that using a finite approach to calculus with computers can make mathematics more 

real and relevant for students as it can be more concrete and can include less concocted 

examples; in addition, students tend to support the use of technology in the mathematics 
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classroom (Heid et al., 2002; Zevenbergen, 2004), and that technology can make mathematics 

also more real and relevant, so being introduced to some calculus topics using the labs may 

enhance student beliefs that mathematics is more connected to outside of the classroom than 

those that do not participate in the labs.  

Because of its recent development, the Mathematics Attitudes and Perceptions Survey 

has not been widely used in published research yet, which is a limitation of this instrument.  

Maciejewski (2016) uses this instrument, along with the Calculus Concept Inventory, to study 

flipping a calculus classroom, and Code et al. (2016) use it across numerous undergraduate 

mathematics classes during the development.  

Additional Information Gathered.  In addition to the Mathematics Attitudes and 

Perceptions Survey, students’ gender, college major, and previous calculus exposure were 

collected.   

Previous Calculus Exposure.  An important piece of descriptive data was whether 

students have taken a calculus course before or not.  Students that are further along in their 

mathematics careers tend to have better attitudes toward math (Code et al., 2016), and projects 

on computational tools from the 1990s show mixed results for those with previous calculus 

exposure (Tucker, 1990).  Maciejewski (2016) using MAPS found that higher ability groups 

tended to have more positive expertise scores.  Information on prior calculus exposure, as 

previously discussed, was used to compare the two groups at the beginning of the semester to 

determine if there were significant differences between the groups in the count of students that 

have previously taken calculus. 

Gender.  Literature on STEM students highlights that there may be differences based on 

gender and attitude.  Ellis et al. (2016) find that women are 1.5 times more likely to drop out of 
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STEM majors after taking calculus than men are, and these findings remain true after controlling 

for preparedness academically, career intentions, and instructional methods (Ellis et al., 2016).  

With this dramatic number of women changing majors after calculus, it was important to also 

look at the intervention’s impact on gender.  In a large study of college calculus students, 

Sonnert and Sadler (2015) found that overall males scored significantly higher than females in 

attitude toward mathematics composite score.  Code and Maciejewski (2017) reference that 

Maciejewski found that male students overall reported higher attitudes in most categories on the 

MAPS including confidence in their mathematical abilities.  Because gender has been related to 

attitude, it was collected and analyzed as well to determine if there were gender differences. 

  Major.  The intervention took place in a Business Calculus course, which is required for 

all business majors at the university where the study took place, however the class sometimes has 

students from other majors since it can fulfill a general education requirement for some majors 

and some students place in that class based on SAT or ACT score.  Because of this, students’ 

college major and major concentration were collected.  Sonnert and Sadler (2015) also collected 

information on students’ intended career path, which was done in this study as intended major, as 

they acknowledged that students’ career path may be related toward their attitude toward 

mathematics.  This provided information on how the intervention worked based on a student’s 

major and also allowed for the data to be analyzed based on what a student’s intended business 

concentration was.  Pritchard, Potter, and Saccucci (2004), in studying business students and 

their basic algebraic skills, found that students with higher computational and algebraic skills 

chose to major in more quantitatively focused business concentrations such as accounting or 

finance while students with lower scores tended to select a concentration or major in less 

mathematically focused ones such as management or marketing, and some business students 
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choose less quantitatively focused concentrations because they perceive them to have less 

demanding quantitative requirements (Pritchard, Potter, & Saccucci, 2004).  There may be 

differences in students’ attitudes from more quantitatively focused concentrations than less 

quantitatively focused counterparts.  It was of interest to see if students from more quantitatively 

focused concentrations or majors differ from their less quantitatively focused counterparts in 

achievement. 

Results 

To address the research question as to what are the effects of computational labs on 

students’ attitudes toward mathematics, MAPS scores and demographic information were 

collected and input into SPSS to compile and analyze the data.  Independent samples t-tests, 

paired samples t-tests, chi-square test, ANCOVA, and correlation were used to analyze the 

results.  Students’ comments from the end of the labs were analyzed as well looking for 

reflection on how the labs affected students’ attitudes, students’ evaluation of and 

recommendations for the labs, and common themes that resulted from the students’ experiences 

with computational labs in the Business Calculus course.   

Group Equivalence at the Beginning of the Semester 

On the pre-Mathematics Attitudes and Perceptions Survey on the first day of the 

semester, students answered whether or not they had taken calculus before.  Responses to this 

question were analyzed using a chi-square test.  This was used to compare the two groups at the 

beginning of the semester to determine if there were significant differences between the groups 

in count of students that have previously taken calculus (as in Schroeder, McGivney-Burelle, & 

Xue, 2015).  A chi-squared test was chosen for this analysis because chi-squared tests can be 

used to determine if there are significant differences between frequencies in the two groups.  
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Chi-square tests can be used to determine statistical independence in the frequency distribution 

of a variable is the same for all levels of some other variable (Chi-square independence test – 

What and why?, n.d.), with calculus or no calculus frequency being compared between the 

experimental and the control group.  This test was also appropriate because the observations 

were independent and all expected frequencies met the requirements (Chi-square independence 

test- What and why?, n.d.).  The chi-square test of independence was calculated comparing the 

frequency of students that had previously taken calculus in the experimental and control groups 

and revealed no statistically significant differences between the groups, χ2(1, N=79)=1.570, 

p=0.219.  There was also no statistically significant difference between the groups on gender, 

χ2(1, N=79)=1.093, p=0.296, or college major, χ2(1, N=79)=1.144, p=0.564, as well.  Using an 

independent samples t-test to compare the two groups on the pre-MAPS assessment at the start 

of the semester, it was determined there was also no statistically significant difference between 

the control group (M=42.216, SD=19.20) and the experimental group (M=41.518, SD=20.035), 

t(77)=-0.159 p=0.874.  Based on responses to the pre-MAPS and across other variables, students 

in the two groups were not significantly different at the beginning of the semester.   

Differences from Pre- to Post-MAPS 

For the Mathematics Attitudes and Perceptions Survey, respondents are scored based on 

if they align with the expert response.  For each response that a student answers in the direction 

of the expert he or she receives positive one point and for each response in the opposite direction 

of the expert he or she receives zero points.  This scoring creates an overall expertise index that 

is the average score for all questions.  The subscale or categories are scored the same way with 

the average calculated from the total number of questions in that category.  The expertise scores 

are reported here as percentages.  
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To determine differences in Mathematics Attitudes and Perceptions Survey expertise 

scores between the two groups, a two-samples t-test was performed for mean difference between 

pre-test and post-test expertise scores.  A variable was computed for the change in attitude, as 

measured by the MAPS, from pre- to post-assessment by subtracting the pre-MAPS percentage 

from the post-MAPS percentage.  An independent samples t-test was selected for analysis in part 

because the samples are independent.  No person was in both groups and students do not have 

the option to attend a different section of the course, so the values from one population were not 

related or linked to values from the other population as needed for an independent samples t-test 

(Bowen, 2016).  If the size of each sample is greater than or equal to thirty, the t-test for 

independent groups can be used without much error even if there are moderate violations in the 

normality or equal variance assumptions (Pagano, 2004).  The sample size for each group was 

over thirty, so the normality assumption should be met.  To test homogeneity of variances a 

Levene’s F Test for Equality of Variance was run, p>0.05.  The null hypothesis was no change in 

expertise score and was tested against a two-sided alternative.  As Henrich et al. (2016) detail 

using a two-tailed test is appropriate because this approach allows for detection of significance of 

improvement while also allowing for the possibility of detecting negative effect if one did occur.  

Since previous MAPS data and CLASS data has shown a decrease in expertise score over a 

semester of instruction, a test that allowed for detecting negative effects was necessary.  

With the independent samples t-test run, there was no significant difference in 

Mathematics Attitudes and Perceptions Survey pre-post test difference for the group without labs 

(M= -3.205, SD=18.662) and the group with labs (M= -2.054, SD=20.522), t(77)=0.261, 

p=0.795.  There was minimal change between pre-MAPS and post-MAPS for both of the groups, 

both of which, however, had very large standard deviations.  Both differences were somewhat 
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negative with the control group of slightly higher magnitude, however, this was not unexpected 

as previous research indicates that there is often a decrease in attitude when students are taught 

using an innovative method they have not experienced before (Sonnert et al., 2014) and even 

over the semester in general (Sonert & Sadler, 2015).  Overall, the experimental group had a 

smaller decline in attitude over the semester. 

Table 7 

Control and Experimental Group MAPS Statistics 

Statistic 

Group 

Control Experimental 

Pre-MAPS Post-MAPS Pre-MAPS Post-MAPS 

n 39 39 40 40 
Mean 
Percentage 

42.216 39.011 41.518 39.464 

Median  42.857 32.123 41.071 39.286 
Standard 
Deviation 

19.20 42.615 20.035 21.926 

Minimum 0 0 3.75 0 
Maximum 82.14 89.29 78.57 92.86 
 

Maciejewski (2016) compares MAPS scores between the experimental and control 

groups by comparing pre-test scores, finding no significant difference between the groups, and 

then comparing post-test scores of the groups using a two-sample t-test finding that the  

experimental group had higher expertise scores that were statistically significant.  This was done 

in this study as well.  With the groups being roughly equivalent at the beginning of the semester 

as reported in the previous section, post-MAPS scores were compared as well using an 

independent samples t-test.  There was no statistically significant difference between the two 

groups, t(77)=0.086, p=0.932.  Neither group had significant change in attitude over the 
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semester.   

  Using a paired samples t-test for only the experimental group also revealed no significant 

differences between the pre- to post-MAPS, t(39)=0.633, p=0.531; the same was determined of 

the control group, t(38)=1.073, p=0.290.  For the experimental group MAPS percent difference 

was significantly correlated to post-MAPS percentage r=0.566 and for the control group 

r=0.650, so for both groups in general as the change from pre- to post-MAPS got larger the post-

MAPS expertise score also went up.   

MAPS Categories Analysis  

The individual categories on MAPS scores were compared as well.  The two groups were 

not significantly different at the beginning of the semester in any categories of the MAPS 

assessed through independent samples t-tests.  Comparing percent difference for the two groups 

from beginning to end of the semester was performed through independent samples t-tests on all 

categories, shown in Table 8. 
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Table 8 
 
MAPS Construct Differences  

 Labs N Percent 
Difference 

Standard 
Deviation 

df t p 
MAPS 
Construct 
Growth 
Mindset 

Yes 40 0.625 34.197 77 0.614 0.541 

No 39 -4.487 39.683 

Real World Yes 40 -4.375 36.641 77 -0.868 0.388 

No 39 2.564 34.314 

Confidence Yes 40 7.500 40.112 77 0.891 0.376 
No 39 0 34.412 

Interest Yes 40 0 31.123 77 0.239 0.812 
No 39 -1.709 32.398 

Persistence Yes 40 -3.750 29.171 77 -1.088 0.280 
No 39 3.205 27.613 

Sense 
Making 

Yes 40 -7.50 25.894 77 0.769 0.444 

No 39 -12.308 29.599 

Answers Yes 40 -2.08 30.473 77 0.837 0.405 
No 39 -7.692 29.081 

 

Individual categories were also analyzed comparing differences between pre- and post-

MAPS scores using paired-sample t-tests, considering change in individual categories for the 

students in the each group.  This is similar to analyzing changes in pre- and post-test attitude 

categories as in Ng et al. (2005, p. 66).  For the control group, the only statistically significant 

pair was the sense making category, t(38)=2.597, p=0.013.  For the experimental group none of 

the categories were statistically significant using a paired samples t-test at the 0.05 level.  At the 

0.1 level, sense making was the only significant difference, t(39)=1.832, p=0.075.  When 

comparing only the post-MAPS scores using a two-samples t-test, none of the categories were 

significantly different.  

Pearson correlation coefficients were also computed between the seven subscales and the 

overall expertise score since the categories may be related to each other and similarly to attitude 
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subscales in Ng et al. (2005, p. 67).  Pearson’s correlation assesses linear relationships between 

two continuous values, which these MAPS construct scores would be.  The correlations between 

categories and post-MAPS expertise score for the experimental group are shown in Table 9.  

Very similar correlations were found in the control group, which are shown in Table 10. 

Table 9  
 
MAPS Constructs Correlations for the Experimental Group  

**Correlation is significant at the 0.01 level (2-tailed) 

*Correlation is significant at the 0.05 level (2-tailed) 

Table 10  
 
MAPS Constructs Correlations for the Control Group  

**Correlation is significant at the 0.01 level (2-tailed) 

*Correlation is significant at the 0.05 level (2-tailed) 

Construct Growth 
Mindset 

Real 
World 

Confidence Interest Persistence Sense 
Making 

Answers Post-
MAPS 
Expertise 

Growth 
Mindset 

-- 0.354* 0.506** 0.441** 0.438** 0.565** 0.231 0.655** 

Real World -- -- 0.383** 0.473** 0.580* 0.360* 0.236 0.687** 
Confidence -- -- -- 0.581** 0.551** 0.451 0.264 0.769** 
Interest -- -- -- -- 0.362* 0.507** 0.337* 0.729* 
Persistence -- -- --  -- 0.344* 0.251 0.724** 
Sense 
Making 

     -- 0.414** 0.744* 

Answers       -- 0.582** 

Construct Growth 
Mindset 

Real 
World 

Confidence Interest Persistence Sense 
Making 

Answers Post-
MAPS 
Expertise 

Growth 
Mindset 

-- 0.419** 0.635** 0.353** 0.537** 0.396** 0.481 0.709** 

Real World -- -- 0.407** 0.491** 0.292 0.586** 0.104 0.640** 
Confidence -- -- -- 0.618** 0.796** 0.504** 0.306 0.803** 
Interest -- -- -- -- 0.522* * 0.601** 0.204 0.735** 
Persistence -- -- --  -- 0.548* 0.478** 0.806** 
Sense 
Making 

     -- 0.396* 0.823** 

Answers       -- 0.595** 
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As displayed in Table 9, all correlations were positive and numerous were significant at 

the 0.05 level and some at the 0.01 level.  This implies that in general as students increased in 

one category they also went up in the others.  For both groups, all categories were statistically 

significantly correlated to the post-MAPS expertise score all at the 0.01 level.  For the 

experimental group the strongest correlations were between confidence and interest (r=0.581), 

persistence and real world (r=0.580), and confidence and persistence (r=0.551).  For the control 

group the strongest correlations were between confidence and persistence (r=0.796) and interest 

and confidence (r=0.618).  

Controlling for Previous Calculus Exposure.  A piece of descriptive data that was 

collected was whether students have taken a calculus course before or not.  Information on prior 

calculus exposure was used to compare the two groups at the beginning of the semester and 

found no significant differences.  Previous MAPS data has revealed that students that have taken 

more advanced math classes tend to have more positive attitudes toward mathematics (Code et 

al., 2016).  As seen in the description of the participants, most students in this study had not 

taken calculus, at any level before; in the control sections of the course 56.4% of students had 

not taken calculus before and in the experimental sections 70.7% of students had not taken 

calculus before.  

When controlling for previous calculus exposure using an ANCOVA with previous 

calculus exposure as the covariate, the difference in post-MAPS expertise score between the two 

groups was not significant, F(1,76)=0.205, p=0.652.  In both groups there were no significant 

differences between those with previous calculus exposure and those without on overall pre-

MAPS percentage or in any of the categories.   

In analyzing only the experimental group for the effects of previous calculus exposure, it 
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can be seen that the MAPS expertise score at the end of the semester was statistically 

significantly higher for students that had taken calculus before (N=12, M=57.123, SD=23.739) 

than those that had not taken calculus (N=28, M=31.888, SD=16.321), as assessed by an 

independent samples t-test, t(38)=3.899, p= 0.00, d=1.239.  This was not seen in the control 

group as students that had taken calculus before did have higher post-MAPS scores (N=15, 

M=44.524, SD=31.073) than those that had not taken calculus before (N=24, M=35.566, 

SD=19.912) but was not statistically significant, t(37)=1.10, p=0.278.  In the experimental group 

those with calculus (M=8.036, SD=13.287) had statistically significant more growth from pre to 

post test than the group without calculus (M=-6.378, SD=21.721), t(38)=2.125, p=0.040, 

d=0.801.  This was not seen for the control group, where those with calculus (M=0.00, 

SD=18.211) and those without (M=-5.208, SD=19.043) were not statistically significantly 

different, t(37)=0.845, p=0.404.  

For the experimental group, those with calculus had more improvement from pre- to post-

MAPS in every category with growth mindset (previous calculus: M=29.167 SD=39.648, no 

calculus: M= -1.786, SD=37.223, t(38)=2.364, p=0.023, d=0.805) and sense making (previous 

calculus: M=5.00 SD=22.764, no calculus: M=-12.857, SD=25.655, t(38)=2.082, p=0.044, 

d=0.736) being statistically different.  Whereas for the control group, the real world category 

was the only statistically significant difference between those previously taken calculus 

(M=16.667 SD=33.630) and those that had not (M=-6.25 SD=32.345), t(37)=2.012, p=0.041, 

d=0.695.  

Additional Variables Analysis.  There were not statistically significant differences 

between the two groups on post-MAPS percentage on neither gender nor college major.  Using 

an ANCOVA, when controlling for gender the results were not statistically different between the 
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two groups, F(1,76)=0.007, p=0.933.  Similar results occur when considering difference from 

pre- to post-MAPS score.  At the beginning of the semester there were no significant differences 

in the pre-MAPS score of females compared to males in either group.  Considering only the 

experimental group, significant differences in post-MAPS scores or in difference from pre- to 

post-MAPS based on gender were not found using an independent samples t-test, t(38)=-1.035, 

p=0.307 and t(38)=-1.101, p=0.278 respectively, however, females did have a higher mean 

percentages post-MAPS score but with more variability (N=21, M=43.233, SD=27.611) than 

males (N=19, M=36.054, SD=15.021).  Females (M=44.388, SD=23.006) also had higher mean 

percentage post-MAPS expertise score than males (M=36.00, SD=25.711) in the control group 

as well.  There were not statistically significant differences in percent changes from beginning of 

the semester to end of the semester when controlling for gender for the experimental group or 

control group.   

While there were not statistically significant differences in overall post-MAPS expertise 

score between the genders in the experimental group, analysis on the numerous categories of the 

MAPS was also performed.  None of the differences from pre- to post-assessment were 

significantly different for males and females.  Comparing only post-scores from the experimental 

group, of note were the results that females had higher mean post-MAPS percentage in all 

categories.  None of these were significant at the 0.05 level and only interest was significant at 

the 0.1 level, (Females: N=19, M=36.842, SD=42.882; Males: N=21, M=15.873, SD=24.987) 

t(38)=-1.912, p=0.063, d=0.598.  Also the growth in the interest category was statistically 

significant, (Females: N=21, M=10.526, SD=31.530; Males: N=21, M= -9.524, SD=28.172), 

t(38)=-2.124, p=0.040, d=0.671.  For males and females in the control group, no categories 

revealed difference in post-MAPS score or growth.  
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Controlling for college major also revealed that there were not statistically significant 

differences between the two groups, tested using an ANCOVA, F(1,76)=0.023, p=0.880).  There 

were no significant differences between the group with labs and the one without, when 

controlling for concentration as well also using an ANCOVA, F(1,76)= 0.004, p=0.950. 

  Final Grades.  The two groups under consideration had very similar final grades.  The 

control group had slightly higher final averages (M=87.64, SD=11.945) than the experimental 

group (M=84.726, SD=10.458).  Previous research using the MAPS found that overall expertise 

index is correlated with course grade (Code et al., 2016, p. 930), which was found in this study.  

Pearson’s correlation evaluates the linear trend between continuous variables, which course 

grades as percentages and MAPS score are.  For the experimental group the pre-MAPS expertise 

score was correlated with final grade (r=0.575) and for the control group, however it was not 

(r=0.044).  For the experimental group, the post-MAPS score and final course grade were 

correlated with r=0.634 and for the control group post-MAPS score and final course grade were 

also statistically significantly correlated, r=0.440, however not as strongly; both were shown to 

be significant at the 0.01 level, which is similar to results in other uses of the MAPS.  

Qualitative Results from Student Comments  

 To understand the effects of the computational labs on students’ attitudes and what 

students’ experiences were with labs, students’ comments were analyzed.  Students were asked 

to reflect on the mathematics content of the labs, however, in addition to that they used this 

solicitation to comment on how they felt about the lab, how the labs did or did not help them 

learn, and even how the labs could be made better.  All of the consenting students’ comments 

were inspected through several analytic passes through the data.  The comments were coded 

using initial coding with in vivo coding using participants’ own language as codes (Saldaña, 
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2016).  A second cycle of coding was done using pattern coding to group the segments of data 

from the first cycle into a smaller number of categories (Saldaña, 2016).  From these categories, 

several themes emerged that expressed elements of students’ attitudes that were affected by the 

computational labs.   

Student comments that were of the evaluative nature were analyzed through evaluation 

coding, which assigns judgments about the merit, worth, or significance of programs (Rallis & 

Rossman, 2003) and can be used for the further development of the computational labs.  These 

comments are discussed separately.  Comments of the evaluative nature provide valuable insight 

into how students believed that the labs benefited or negatively impacted their attitudes and ways 

in which they believe the labs could be improved for more impact.    

 Theme 1: Real World Connections.  Throughout student comments were reflections on 

and mentions of real world connections, which was the most prominent theme.  Words such as 

real world, real world applications, outside of the classroom, real life stuff, and business 

problems occurred throughout the labs.  The theme of real world connections was echoed in two 

ways.  One way was that students reflected on being able to connect the mathematical concepts 

to real world scenarios or applications.  The other way was that some students felt that the way 

they were problem solving was more realistic, authentic, or even how they may approach 

problems when they are in the working world.  Over 50% of the comments analyzed mentioned 

something about “real” and many of the others, while not using the word real, stated how they 

could use the calculus concept in some other context and talked about scenarios such as cost and 

revenue, supply and demand, or net change.     

Real Applications.  Mention of real applications, real life scenarios, or explicitly stating 

these “real” concepts ran throughout many students’ reflections.  These comments were found 
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throughout labs one through six and were typically stated with affirmative wording.  An example 

of this was, “Overall, I really enjoyed this lab because it tied in several aspects of the real world 

and emphasized the significance of math within the field of business.”  Another example was, 

“This lab was very useful because it showed how a real life business world would use math in 

their everyday life, and it is very interesting for me because I am a business major.”   In response 

to lab three, a student commented: 

The truth of the matter is: I am not really fond of math, but these labs help me want to 

learn more.  I have always been a believer that a lot of these concepts will never be used 

after graduation.  I am starting to change my mind! 

Another student remarked: 

Through this notebook, I have been able to actually see how mathematical models and 

exponential equations are actually applicable to real world situations since usually 

random scenario word problems in a textbook don’t do a good job of illustrating these 

things for me.   

In response to students being asked to import stock trends from a company of their choice 

and simply use their knowledge of slope to roughly determine the support and resistance lines 

and determine if they thought they would buy the stock or not, a student commented, “Seeing 

how stocks can be analyzed with the help of this program makes the math feel like it is not 

pointless and I might actually use this math.”  Many students also commented both in class and 

in their lab reflections that they liked that some of what we were doing connected directly to 

content they were learning in some of their business classes.  One student stated:  

Once again, I found this lab to be extremely helpful in ‘driving home’ some of the key 

concepts that we are working on in the classroom.  Specifically, I learned how to graph 
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and predict stocks using elements of coding (which I never thought I would learn in 

business calc)…This lab clearly was designed to challenge students into looking at 

concepts from class from a different, real-life perspective. I really like doing these labs 

and trying to figure out how functions, graphs, exponents and other ‘class material’ will 

be used after college in the ‘business world.’  

The quotes from students’ comments demonstrate that they were clearly able to see how 

the mathematics they were learning in class was meaningful and actually connected to the “real 

world”.  Their comments convey an attitude toward math that shows that they can clearly see 

some of the value and power of mathematics beyond what they learn in the classroom. 

Comments on “real world” were almost exclusively expressed in a positive way and exhibit a 

positive impact on attitude toward mathematics that the labs had.  Students, using more positive 

language, made statements such as “I liked” or “I changed my mind about”.  There were no 

student comments that explicitly stated that they could not see the relevance of the content, but 

not all comments remarked on the perceived realness so some students may not have felt that the 

labs were beneficial in showing them the relevance.  Since some students did not comment on 

the real applications and appreciating them, some may not have viewed the labs as relevant to 

business applications as others did.   

Being able to articulate that they felt it was real shows a positive benefit on 

understanding that mathematics has connections to other domains and positive effects on 

attitude.  Seeing connections may “improve their motivation to study mathematics and have 

longer-term effects on their academic achievement in mathematics” (Code et. al, 2016, p. 923).   

Research has suggested that authentic situations, which students find relevant, are likely to 

positively change students’ attitudes toward math (Simonson & Maushak, 2001).  Tobias and 
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Weissbrod (1980) find that focusing on concepts and creating meaning and relevance improves 

students’ motivation to learn mathematics.  Students were afforded many opportunities to see 

mathematics in relevant context of business.  Students explicitly articulated that the opportunity 

to interact with the labs helped them see real connections and how some of what they learned 

could be used outside the classroom.  This shows that for many students there was a positive 

impact on how they viewed mathematics as real.   

An Authentic Way of Doing.  Some students also felt that the labs gave them a more 

authentic or “real” way of doing mathematics.  A student commented on the first lab that 

potentially learning more about using a computer could be a valuable skill and connect to his 

future stating:  

This coding thing is going to be hard, but I am excited to learn a new skill.  Especially 

one that might be valuable since everything seems to be done on the computer now.  This 

might actually be helpful later on.  

In the second lab of the semester a student stated, “I learned there is more to math than just 

learning how to do problems on paper.”   

Another student, found benefit in this different way of solving problems and learning a 

skill that may be useful in her future career, stated the belief, “If I continue to practice this, I may 

actually be able to use it in a job in the business world one day.”  As the semester progressed this 

same student was observed using Jupyter notebooks almost exclusively when tackling homework 

problems not from the labs.  When she was asked why, she explained that she thought they made 

the work quicker, easier, and more like she would do if she were solving a problem outside of 

her math class, which demonstrated that she felt that using these tools to perform mathematics 
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computations and problem solve was more realistic to how she would approach problems beyond 

the classroom walls.   

There were a few comments that expressed that students did not appreciate this new way 

of solving mathematics problems and could not understand why this was a requirement of the 

course.  An example of this is, “This isn't a coding class and it is just making kids struggle that 

much more. Yes I do admit that I can see the helpfulness of learning this program, I just think it 

should be offered in a different class.”  Another instance when this sentiment occurred was a 

student stating, “I’m not majoring in anything that requires coding, so I cannot understand why 

these labs were necessary in this class.”  Comments, such as these, reflect that for some students 

the new, authentic way of problem solving did not benefit their attitude and perhaps could have 

negatively impacted their attitude of how they felt mathematics was real or not.   

For some students their comments reflect that the labs created a seemingly more 

authentic way of doing mathematics and afforded them different ways to problem solve.  Leaders 

in mathematics education call for technology in business mathematics to allow students to use 

realistic data, use technology as an analytic tool, and encourage alternative approaches to solve 

problems in part because “technology has revolutionized the way in which business is practiced” 

which has changed what students of today must be able to do and understand (Lamoureux, 

Beach, & Hallet, 2000); these labs seem to have done that for many based on students’ 

comments.  Students’ comments demonstrate that at least some did leave the class connecting the 

technology and mathematics as ways to solve problems that they might encounter outside of the 

classroom.  Fostering this “real” way of problem solving may influence students to view 

mathematics as more relevant in contexts applicable to their future careers and the world external 

to the classroom.  
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 Theme 2: Persistence.  Examples of persistence occurred throughout student comments.  

Persistence is defined as “firm or obstinate continuance in a course of action in spite of difficulty 

or opposition” (Lexico, n.d.).  In analyzing students’ reflections it can be seen that completing 

the labs using technology completely new to most of them in conjunction with learning concepts 

of calculus, demanded a great deal from these students but in facing these challenges they 

continued to work through the obstacles and challenges.  Their comments reflect that many of 

them acknowledged that the labs were indeed a challenge but with perseverance and work they 

were able to get through the task.  Numerous student comments demonstrate this such as: 

§ “I worked on this lab for over 12 hours.  I doubt you meant for it to take me that long, 

but it did.  I just kept working to get it.  One of my estimates was still a little off.  I 

am slowly getting the hang of this.  Knowing I have five more of these labs I think I 

can do this.”  

§ “Even though I was extremely frustrated when I was beginning, I kept trying to get 

through it.”   

§ “However, I also learned how to overcome my frustration when dealing with 

something that is new to me.  My favorite part of this has been going out of my 

comfort zone and trying something new, despite the fact that it was very 

challenging.”  

§ “One thing that I need to work on is to not get frustrated at a single problem and then 

give up and move on, but to stick with it and try and figure out why it isn’t working.” 

§ “At first it was very challenging and I wasn’t sure I would be able to finish it.  After 

toying around with it and spending a lot of time on it, most of it was okay.  I think in 
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the future I can better my work on the lab by starting right away so I know what I am 

doing wrong and figuring out why for future labs”  

§  “These are hard but I might be getting better at them.  Knowing I have four more of 

these, I think I can do them.”  

§ “Throughout working through this notebook, I struggled in some areas but I learned 

to overcome my hardships with patience and diligence.”  

§  “It also taught me patience and persistence.”   

§ “This was very hard but also intriguing and interesting.  I need to be patient and 

review my work.  But I look forward to improving my skills.”  

§ “This lab was difficult and I tried my best but I feel like I learned a lot out of it.”  

Many of the students that remarked on being frustrated but demonstrating a willingness 

to try made statements that got more positive as the semester went on.  Running throughout the 

comments and reviewing comments from lab one through lab six, the comments begin by 

mentions of students feeling intimidated and this being a stressful process, however, as they 

progressed through the semester the comments became more positive as they used the program 

more and students seemed more confident in their abilities.  In comments on labs that occurred 

later in the semester references to frustration were replaced with sentiments of “I’m getting better 

at these” and “feeling more comfortable doing math this way.”  Students’ comments reflect 

feeling more confident in their abilities with the labs as they increased their practice.  Another 

student demonstrated her growth in persistence when faced with an error message.  This student 

was working through a problem in my office and when she ran her cell an error message popped 

up.  I had skimmed her code quickly and missed the syntax error, so when the error message 

appeared I reacted with an “uh-oh, let’s see what’s wrong.”  The student chuckled and said:  
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Oh these things don’t bother me any more.  In the beginning they made me so mad and 

like panic as to what might be wrong, but now it’s like they just give me an opportunity 

to fix what I did wrong and they don’t scare me anymore. I can learn from my error and 

fix it.  

 Not all comments on persistence were positive however; some students were resistant and 

put off entirely.  Many of the students that echoed these sentiments remained very immobile in 

their willingness to try throughout the semester.  A student remarked on lab one, “After doing 

this I realize I do not like this and I am not good at this either.”  This same student later said, “I 

learned that even if I ask for help I am not very good at this type of thing” and in the next to last 

lab stated, “What I have learned is that I am still terrible at remembering how to do math.”  This 

student’s comments reflect both a fixed mindset in learning how to use Jupyter notebooks but 

also in mathematics ability.  A different student commented, “I definitely learned I cannot do 

this, and this coding thing is going to be the most difficult part of the course.”  

Some students that expressed comments of negative feelings toward the technology did 

not present it in a way that demonstrates persistence such as:   

§ “These labs are extremely stressful.” 

§ “Math is not my strong suit and to be honest I don’t feel great.” 

§ “Doing this was an extreme challenge, it was not easy to follow step by step what 

you had to put and it was hard to make sure everything was exactly right.” 

§ “I learned how bad my computer skills are and that coding is like trying to read 

another language.”  

§  “I really don’t know what to do but I’m trying it mainly through trial and error.” 
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§ “Other than that I really have no idea what I am doing on here so I really need to 

get help on the next one so I don’t fail the class.” 

Student comments, such as these, show that for some students the labs and calculus were 

extreme challenges and did not help them learn to push through challenges but instead reinforced 

their perceptions of being “bad” at something or encouraged them to easily give up. 

 Students that were more open to the idea of trying something new and persisting through 

the challenges they faced kept this throughout the semester and their comments got more positive 

as the semester progressed.  Students, however, that were immediately opposed to the challenge 

and made statements aligned with a fixed mindset remained negative and stagnant in their 

feelings throughout the semester.   

Persistence and pushing through challenges is a valuable trait and something we wish for 

all students to have.  Perseverance is a very beneficial characteristic for success in mathematics 

(Schwartz, 2005).  Persistence is also a desirable workplace trait and is listed as one of eight 

secrets of success (St. John, 2005).  Many students reflected that this experience demanded 

persistence of them and hopefully by developing this they will carry this on through out their 

future.  Others, however, remained opposed to persisting through challenges, and the labs did not 

positively affect this.   

 Analysis through Evaluative Coding.  The themes discussed above represent important 

impacts these labs had on students’ attitudes.  In addition to the themes previously presented, 

student comments highlighted several other key takeaways that may shed light on how these labs 

affected their attitudes and recommendations students had that could potentially benefit students’ 

attitudes in the future.  Comments of this nature were analyzed thorough evaluation coding, 

which assigns judgments about the merit, worth, or significance of programs (Rallis & Rossman, 
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2003).  According to Rallis and Rossman (2003) evaluation data can describe, compare, and 

predict.  Describing “focuses on the patterned observations or participant responses of attributes 

and details that assess quality.  Comparison explores how the program measures up to a standard 

or ideal.  Prediction provides recommendation for change, if needed, and how those changes 

might be implemented” (Saldaña, 2016, p. 141).  The perceptions revealed through the 

evaluative coding provide valuable insight into developing new assignments and structuring the 

course in the future.  

 Some general comments that students made about the course overall reflect that there 

were truly mixed feelings and mixed evaluations of how the labs affected students.  These 

comments ranged from loving the labs, the labs sparking greater interest, enjoying learning about 

coding to do mathematics, and liking the variety of ways to learn and practice, to the negative 

end of the spectrum with comments of the labs being insurmountable obstacles, the labs making 

the class too challenging and time consuming, the labs causing much frustration, and the labs 

being overwhelming and unfair.  Besides these mixed general remarks on labs through analysis 

of students’ evaluative comments, several prominent themes emerged as to how the labs and 

course structure could be improved to more positively influence students attitudes.   

 Feeling Like More Work.  Students articulated in their comments that they felt like the 

labs added more work and added extra time demands; this also came out in discussion with them.  

Students felt as if the labs added “too much work” and thought that more was being expected of 

them than was of students in the control sections of the course.  Students seemed to fail to realize 

that because they had to complete the computational labs they had less traditional homework; 

they also seemed to think that so much more was required of them than the other sections even 
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though the other sections had more homework and projects.  Despite the fact that this was 

specifically articulated to them, it still came out in their comments.  

Most of the thoughts of the course requiring too much work related to having to work 

through the challenges and a steep learning curve to get students to use the computer in a way 

many had never done before.  A concern going into this study was getting students to learn 

calculus concepts while balancing that with learning new skills of coding.  This proved true 

throughout the semester and was reflected in student comments.  Students being intimidated by 

and resistant to the coding element along with thinking an approach similar to this expects too 

much out of them has been reiterated in other research on computing in mathematics classes 

(Johns & Hopkins, 2019; Tonkes et al., 2005; Lockwood, DeJarnette, & Thomas, 2019).  

 A student comment that reflects how some students felt is well expressed by this 

student’s comment on lab 3,  

It is really like trying to learn a whole new language with how intricate and different it is 

for someone who has never had experience with it before this class. To be honest I really 

have no idea if what I am plugging in is the right thing or not, i.e. struggling to finish the 

question in full.  I don't think it is a good idea to mix coding with this math when kids 

already struggle enough with the math. The amount of time that is necessary to be put 

into the lab really equates for more credit hours.  This isn't a coding class and it is just 

making kids struggle that much more. Yes I do admit that I can see the helpfulness of 

learning this program, I just think it should be offered in a different class. I struggled with 

understanding what the questions were asking for but after figuring out the necessary 

formulas and codes for derivatives and functions my codes stopped running to where 

there would just be a blue * so I did not know if I was doing the problems right.   
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Other students certainly felt this way too but did not express their thoughts quite so explicitly in 

their comments.  Words such as difficult, time-consuming, and a lot of work were especially 

present throughout labs 1-3 as students were getting used to working in Jupyter notebook.  These 

comments decreased greatly in labs 4-6 and were in some instances replaced with sentiments 

such as “this is still hard but I’m starting to get the hang of it a little” and “I’m beginning to be a 

little more confident in using this program”.   

 This is not an unexpected result and the feeling of increased work and time demands may 

have had negative effects on students’ attitudes.  Numerous innovations that involved using some 

type of computing in a calculus classroom in Priming the Calculus Pump: Innovations and 

Resources cite that students often felt like courses that incorporated these tools were more work 

and time-demanding even though they were not (Tucker, 1990), which may have an influence on 

students’ attitudes.  In a project at Dartmouth that required computing in calculus classes found 

that students viewed the computer problems as “add-on” and additional work, despite the fact 

that they were made more relevant to the course material (Baumgartner & Shemanske, 1990).  

Baumgartner and Shemanske (1990), Schwingendorf and Dubinsky (1990), and Brown, Porta, 

and Uhl (1990) report that students thought that the computing component added more work.  

Kilty and McAllister (2019) note that in their study using RStudio students struggled to get 

comfortable to the technology, but they note that these struggles are an important part of 

students’ growth and development.  Sonnert and Sadler (2015) also found that college calculus 

often has a negative effect on students’ attitudes because of the increased rigor and demands 

compared to pre-college coursework.   

The computational labs used in this project were challenging, were an increase in rigor 

for most of them, and did demand a lot from students, however, the course was modified and 
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other assignments were adjusted to make time requirements roughly equivalent to those in the 

control sections of the course.  Students failed to see this though and felt more was required of 

them, which likely resulted from them having to learn something entirely new to most of them.  

This perceived extra burden on time very likely influenced a negative attitude toward the course, 

which then swayed the lack of growth in attitudes as measured by the Mathematics Attitudes and 

Perceptions Survey.  The labs were undoubtedly challenging for many students because they 

required learning something completely new to most of them and did require a large time 

commitment to combine these skills and the calculus knowledge.  Student comments of more 

work are certainly an important factor for demonstrating why some students had negative 

attitudes and the lack of overall growth in attitude at the end of the semester.   

 Facilitating Group Work.  The need for more work in groups was revealed through 

analysis of student comments and could be a change that could improve attitudes in the future.  

Students had challenges combining mathematics knowledge with how to then implement that on 

the computer.  Comments demonstrated that students thought that this would have been made 

easier by more time for in class work with their classmates.  There was some time for this, 

however, students remarked that they would have liked even more time to work in class with 

other students.  On lab three one student stated, “Working with others really helped me as well, 

especially given the class time to work on this.”  On lab four a student remarked:  

Having time in class to work with other students really helped me because I was able to 

talk with them about how to translate the problem into symbols and then talk about how it 

connected to other topics from class.  Like talking to someone about the rate of change 

and connecting that to the derivative helped me and then we talked about how we could 

put it into the Jupyter notebook.  I think that made things easier. 
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 Another challenge faced by students that they evaluated would have been remedied in 

part by group work was debugging their code and having another set of eyes look through their 

code to find syntax errors.  Many students commented on liking having time in class for “another 

set of eyes to look through it and even just find typos or missing symbols”.  On lab three another 

student said, “Being able to work on this in class was a big help to me because I have found that 

these labs are very frustrating, but it really helped to go through it with someone else. They could 

help me figure out if I was missing something with the syntax and try to fix it.  I also found it 

helpful to talk to someone else about the math stuff too.”  A student stated, “Working with one of 

my buddies helped because my code wasn’t running but his was so we were able to figure out 

what was wrong in mine.  That helped me because previously I had gotten stuck and given up.”  

Students specifically said that group work helped them feel better about the material and the labs.  

Students’ comments certainly reflect that they believed that working with other students 

benefited them and made them feel better about completing the labs.  Other examples of using 

computational tools in a mathematics classroom make similar recommendations (e.g., Jones & 

Hopkins, 2019).  Based on students’ reflections, providing them with more time in class and 

more group work could help to improve their attitudes.  

 Students’ recommendation of more group work could potentially benefit student 

attitudes.  If students have opportunities to see other students struggling with the labs, they may 

feel less defeated.  All students struggled with learning how to communicate with the computer 

in a new way, from very strong students to others that did not give much effort to learn this.  

Having more time for group work in class, could help all students see that this was not something 

intended to be easy and that everyone makes syntax errors, everyone has to utilize notes and old 

labs to figure out the problems, and that this is new for almost everyone.  Students could see they 



 215 

were not the only ones struggling, which could help improve attitudes.  Also having more in-

class time for work on the labs could provide students with opportunities to get help from other 

students and from the instructor, which could improve attitudes because some students were 

burdened by being unable to find a tutor that could help with this aspect of the course.  All of the 

comments relating to wanting more group work are stated in such a way that the inference can be 

made that working with others could benefit and facilitate growth in attitude by reducing the 

frustration of syntax errors, discussion of challenging mathematics concepts, and seeing that 

others too are having difficulties.   

 The Use of Data.  Students evaluated the use of real data to be a beneficial aspect of the 

computational labs.  Students liked that they saw the data from which the function was written.  

Students’ comments on the use of data seemed to be positive and mention of it mostly went 

along with liking how they could see the connections to the real world.  A student remarked:  

I guess I never really thought about where the functions my teacher gave me came from.  

But doing this I can literally see that I was able to fit a model that goes through or near a 

lot of the data points, so it did actually come from somewhere.  

Along these same lines another student commented on being able to graph the data points and the 

model on the same axes also made him think about how that model might not predict the 

specified quantity in the future well because the model looked different from the data at the end.  

Another student commented: 

To be honest, question 6 helped me learn that sometimes a model can ‘over predict’ and 

give you extremely incorrect information.  This lab clearly was designed to challenge 

students into looking at concepts from class from a different, real-life perspective. I really 

like doing these labs and trying to figure out how functions, graphs, exponents and other 
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‘class material’ will be used after college in the ‘business world.’ 

 Overall there were no specific negative comments about the use of data; the negative 

comments were on the use of coding to handle the data.  The numerous positive comments on the 

use of data, however, went along with the parts of the labs that were most aided by the 

technology, such as the stock data and large CDC data file.  The many positive comments on the 

use of data and appreciating seeing where functions came from help to emphasize that students 

viewed this as a positive element of the lab and should be further incorporated to positively 

impact students’ attitudes.    

Discussion 

 The data from the Mathematics Attitude and Perceptions Survey revealed slight decreases 

in attitude and no significant difference between the groups on overall attitude, as measured as an 

expertise score.  When further analyzing the data, several differences can be seen on individual 

categories of the survey and across the variables of previous calculus exposure and gender.  

Overall much of the data aligns with previous uses of the Mathematics Attitudes and Perceptions 

Survey and other studies of attitude.  Several factors and limitations of this study may have 

impacted the lack of gains and will be discussed in later sections.  The qualitative data from 

student comments does demonstrate that the computational labs did have important impacts on 

students’ attitude toward mathematics for many students while for other students highlight some 

negative impacts.  The mixed comments from students on attitudes in the qualitative data help to 

explain why overall there were minimal changes in attitudes as shown in the quantitative 

measure.  

 The overall lack of improvement in attitude toward mathematics after only a one-

semester course was not a surprising result.  Previous research suggests that it takes more than a 



 217 

semester to positively affect students’ attitudes (Carlson, Buskirk, & Halloun, 1998).  Townsend 

and Wilton (2003) assert that students’ beliefs about mathematics are formed through their 

history of experiences and are built over time, which implies that changing attitudes and beliefs 

is not something that can be done quickly.  The slight shift away from expert-like attitudes and 

perceptions aligns with previous results from MAPS and related CLASS surveys (Adams et al., 

2006; Barbera et al., 2008; Gray et al., 2008; Semsar et al., 2011; Jolley et al., 2012; Code et al., 

2016).  The change in attitude in this study corroborated results as in Maciejewski (2016) where 

even though both groups showed a slight decline in expertise score, the experimental group had a 

smaller decline in this.   

The results of this study also align with outcomes from other studies.  Sonnert and Sadler 

(2015) have found that technology was shown to have a non-significant impact on attitude, 

although they did not include the study of the type of technology used in this project.  Final 

grade was also strongly correlated to end of semester expertise score, which has been seen in 

other studies (Carlson, Buskirk, & Halloun, 1998), implying that course achievement is certainly 

linked to expert-like mathematics beliefs.  Sonnert and Sadler (2015) found that students in 

classes with ambitious and innovative teaching tend to have slightly negative shifts in attitude 

and that ambitious teaching has a more positive influence on students’ attitudes for those that had 

more positive attitudes initially than students starting with more negative attitudes (Sonnert & 

Sadler, 2015), both of which occurred in this study as well.  Sonnert and Sadler (2015) have also 

found that initial attitude was a powerful predictor in end of semester attitude, which was found 

in this study for both groups with pre- and post-attitude being significantly correlated (control: 

r=0.630; experimental: r=0.521).  
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 The qualitative comments also align with data from previous research on computational 

tools in a calculus classroom (e.g., Baumgartner & Shemanske, 1990) where mixed reviews are 

very much expected because some students find benefit to learning a new way of problem 

solving and learning math content in conjunction with new technology while others are opposed 

to the expectation of learning computing in a mathematics class and find this to be a large burden 

in addition to learning the calculus content.  There were many positive comments but also 

numerous negative comments, so this demonstrates that some students greatly benefited while 

others were negatively impacted.  This qualitative data helps to explain why there was minimal 

change in attitudes as measured by the Mathematics Attitudes and Perceptions Survey.  

 The quantitative data does not reveal overall growth in the real world and persistence 

categories, however, much of the qualitative data does reveal positive impact the labs had on 

both of these.  Student comments overwhelmingly support that the labs helped students see the 

connections calculus had to business applications and other real world settings, but the data from 

the MAPS revealed the opposite with the group with labs having a decline in this category.  

Elements of persistence ran throughout the comments, but this too did not emerge as a difference 

between the groups in the MAPS results.  Despite the many positive comments on persistence 

and elements of having a growth mindset, it appears that many of these were in connection to the 

elements of coding, however, that did not translate over to having a growth mindset or 

persistence in problem solving in mathematics.  In analysis of students’ comments, it can be seen 

that most of the negative comments were related to the coding aspect of the course but were not 

related to specifically disliking mathematics.  The negative comments made mention of being 

frustrated by the technology not by the mathematics content.  Frustration with and challenges 

caused by the technology may have negatively influenced students’ attitudes, which came out in 
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the lack of improvement in attitude as measured by the Mathematics Attitudes and Perceptions 

Survey.  Students may not have been able to separate their feelings toward the technology and 

their attitude toward mathematics and demonstrated these on the way they responded on the 

MAPS including in these categories.  It should also be noted that attitudes toward mathematics 

have also previously been positively linked to attitudes toward computers; students with the 

highest level of mathematics attitude also had the highest scores on a multidimensional computer 

attitude scale (Jennings & Onwuegbuzie, 2001).  Understanding the impact on attitude about 

mathematics is difficult also because some students make minimal effort to learn the 

programming language which makes the assignments very challenging and was something seen 

by Baumgartner and Shemanske (1990) as well.  The mixed reviews and the discussion of 

negative impacts mainly regarding the technology in the qualitative data help illuminate why 

there was overall minimal change in the quantitative data in overall attitude towards mathematics 

and these categories.   

 In this study, students that had previously taken calculus before benefited the most from 

the computational labs.  Students with previous calculus exposure had higher expertise scores in 

both the control and experimental groups, which aligns with previous uses of the Mathematics 

Attitude and Perceptions Survey as students further along in their mathematics careers tend to 

have higher expertise scores (Code et al., 2016: Macejewski, 2016).  Students in the 

experimental group with previous calculus exposure had statistically significantly higher 

expertise scores at the end of the semester than those without previous calculus; this result was 

not present in the control group however.  For students in the experimental group, those that had 

taken calculus before had much higher scores in all categories with large differences in the 

categories of growth mindset, interest, and sense making, with the overall highest difference in 
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the confidence category.  The separation of post-MAPS expertise score in the individual 

categories was much smaller between those that had and had not taken calculus before in the 

control group.  In the experimental group, the change in attitude over the semester was greater 

for those who had taken calculus with categories of growth mindset and sense making both 

statistically significant.  Their overall change in attitude over the semester was also higher than 

those without calculus.  The comments by students that had previously taken calculus were also 

very positive and discussed how they were appreciative of the different way of problem solving, 

the use of real data, and the opportunities to see calculus used in context of the field they have 

chosen to study, business.  These were positive impacts of the computational labs on attitude.   

 Some students come into these Business Calculus classes having previously taken 

calculus.  Many instructors make it a goal to challenge these students or to get them to walk 

away from the class learning something different than they had seen in their high school calculus 

courses formerly.  For me, while the business applications are usually new for students, previous 

discussions with students have revealed that they had seen most of the content before and thus 

some students leave the class somewhat bored or unchallenged, which may have previously 

negatively impacted their attitudes.  The labs alleviated this issue to an extent because most 

students had not had practice using such tools and the very few that had had not seen them in use 

within a math class.  Looking at comments from only students that had taken calculus before 

revealed that they learned a new way of problem solving and were challenged in the course.  

These students made mention of the new experiences of seeing the calculus concepts in concert 

with business applications, but they also remarked on the labs helping clear up confusion they 

still had and how they were able to solve problems differently.  A quote demonstrative of this 

point was:  
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Overall, I feel like the mathematical content from this lab was information I have seen in 

my previous calc course, but the way the questions in the lab presented the same 

information has helped me to see what the point of learning that mathematical content 

was.  In high school if we did word problems to reinforce the topics we were learning the 

situations seemed too made up for me to find them relevant. But some of these they just 

seem more real.   

A similar sentiment was reiterated by a student stating:  

I have also enjoyed using more real world data to find the derivatives.  When I took 

calculus before we didn’t get to use as much realistic data as we are using in these labs.  I 

thought that the np.polyfit to fit a curve to the data has been very cool.  It is nice to know 

that the computer can do a lot of time consuming or seemingly impossible calculations 

that we might face elsewhere.   

Another student that had taken calculus before remarked, “I have learned all of this calculus stuff 

before but not with these applications and certainly not doing it on the computer.  I honestly 

didn’t even realize you could.”  Another student that had taken calculus before commented that 

doing these labs gave her a different way to problem solve.  This student stated that in doing her 

homework problems she no longer pulled out paper and pencil; instead she opened a Jupyter 

notebook and worked through the steps.  She remarked that to her it actually seemed easier and 

quicker to do it that way and that was a “totally different way of doing things”. 

 Challenging these students with a different way of working through mathematics 

problems and using problems that allowed them to practice their calculus knowledge in context 

of business, which they have interest in and are choosing as their major, positively impacted their 

attitude about mathematics.  These students seemed to benefit from experiencing mathematics in 
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a new way.  Their attitudes may have been more positively affected because they were not as 

challenged to learn the calculus content because it was not entirely new to them, which allowed 

them devote more time to understanding how to interact with the technology.  This result is 

different than previous results where students that had previously taken calculus were actually 

dissuaded by the technology because they were hoping for an easy class with material they had 

already seen, thought that they would not be challenged because calculus was simply derivatives 

and antiderivatives and did not want to be convinced otherwise, or thought the computing 

component should not be in a math class (Baumgartner & Shemanske, 1990).  Some of these 

students have continued to reach out to me after the semester about having enjoyed the course, 

the material, and the overall challenge; several of whom have now expressed an interest in 

learning more about data analytics and potentially picking up a minor in that, which can certainly 

be beneficial for them going forward.   

For these students that had previously taken calculus the quantitative and qualitative data 

align demonstrating that for this group there was indeed benefit and was reflected in both sources 

of data, but for those students without previous calculus quantitatively there was no overall 

benefit on attitudes and their attitudes may have been negatively impacted.  These results from 

students that had previously taken calculus help to explain the quantitative results as well.  Upon 

inspection of the quantitative data that revealed no overall impact for the group with labs as a 

whole but that students that had taken calculus before had substantial growth in attitude, it was 

conjectured that this may have occurred because these students were less burdened by the 

content since they had seen it before and could devote more time to the understanding the 

technology and having the technology clear up confusion they previously had.  The qualitative 

data helps to substantiate this conjecture as these students’ comments were much more positive 
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and explicitly stated that the labs helped resolve confusion they had from that last time they 

learned calculus, showed them how they could use the calculus, and demonstrated a new way of 

problem solving, all of which likely contributed to their growth in attitude over the semester.  

Those students that had not taken calculus before appear to have been encumbered by mixing 

learning calculus with learning how to do so on the computer thus likely contributing to their 

decrease in attitude over the semester.  There were certainly positive comments from some 

students that had not taken calculus before, but they were not predominantly positive as the ones 

from those that had seen the calculus content before were, which indicates that for some there 

were negative impacts on attitude.  Overall, however, there was only a very small decline in 

attitude for the experimental group as a whole, but over 70% of these students had not previously 

taken calculus, so it is not likely that all of these students’ attitudes were negatively impacted by 

the labs and that the labs were only beneficial for students had previously taken calculus.  

 Revealed in the data is also that female students’ attitudes appeared to profit more from 

the computational labs than males’.  While there were not significant changes in overall expertise 

score, females in the experimental group did have higher post-MAPS expertise scores, higher 

changes from pre- to post expertise score, and more growth in almost all categories of the 

MAPS.  Females had statistically significantly more growth in the interest category.  These 

results need to be further investigated to determine the benefit computational tools may have on 

females’ study of calculus.  The positive results on females’ attitude toward math that emerged in 

this study are important because in the national study of calculus Sonnert and Sadler (2105) 

found that males had significantly higher mathematics attitudes than their female counterparts 

after taking calculus and Ellis et al. (2016) found that females are 1.5 times more likely to leave 
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STEM degrees as a result of their calculus course, so it is important to consider interventions that 

may positively affect the female experience in a calculus class.     

Limitations and Future Research  

 Many student comments revealed that the computational labs used in this study did have 

effects on their attitudes and perceptions about mathematics, but minimal impact emerged in the 

quantitative data from the Mathematics Attitudes and Perceptions Survey.  There are several 

notable limitations in this study.   

 A noteworthy limitation to this study includes the timing of administration of the post-

test.  Some issues with the Mathematics Attitudes and Perceptions Survey results likely 

happened because of apathy on the post-test.  The post-test MAPS was given on final exam day, 

which did ensure all students were present, however, also presented issues.  Students were given 

sufficient time during the final exam block to complete all requirements and time was set-aside 

during the exam period specifically for the survey.  Since the MAPS had no influence on their 

grade in anyway, many students did not appear to give much effort in completing it.  Some other 

studies have suggested giving a very small grade incentive to complete it, which is recommended 

for future studies.  Numerous students appeared to rush through it, closing their computers after 

only a few minutes; it can reasonably be inferred that students were more concerned about 

getting to their actual final exam that would affect their final grade.  In future studies options 

should be explored to ensure students take the post-MAPS more seriously, perhaps not giving it 

the same day as the final exam.  The apathy from students on the MAPS likely affected the 

results and may have influenced the small changes over the semester.  This study made the 

assumption that students would honestly and intentionally answer the questions on the MAPS, a 

violation of this assumption could have impacted the results.   
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Another limitation that was exposed especially through the qualitative data was the 

technology, which was brand new for many students, caused the frustration and challenges.  

Many of the more negative comments were about being frustrated by the technology and not by 

the mathematics.  When answering the questions on the MAPS, students may not have been able 

to separate their feelings and attitudes, sometimes negative, of the technology versus how they 

actually felt about the mathematics.  The qualitative and quantitative data are especially 

conflicting in the “real world” category.  Overwhelmingly, student comments revealed that they 

felt the mathematics they were learning was real and they could see how it could be used outside 

of the classroom, with over 50% of the comments analyzed mentioning something about “real” 

and many of the others stated how they could use the calculus concept in some other context and 

talked about scenarios such as supply and demand or cost and revenue, although there were some 

comments on not seeing why learning this way was important, which could have negatively 

impacted some.  The voluminous positive comments on seeing the real world connections do not 

align with the data from the MAPS category of real world, where the group with labs actually 

saw a decline in this category over the semester and scored lower than the group without labs.  

The groups that did not have labs did have four projects throughout the semester, as described in 

the methodology section.  These projects all had connections to a business application and 

required students to write up their findings in a report or letter to their “boss”.  The students in 

the control group were also afforded the opportunity to use what they were learning in context, 

so this certainly may have impacted their positive views of mathematics being applicable in the 

real world.  However, it is important to note that none of these projects in the control group 

began with data and most included students being given the functions that represented the 

scenario or were more closely connected to a problem that the students had done before, but the 
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writing component may have influenced the feeling of realness as well.  This is certainly an area 

that requires further investigation.   

Because of these results and the need to tease out the differences the technology 

specifically had on attitude, going forward in future research it is imperative to have more 

structured qualitative data collection.  The qualitative data gathered in this project was very 

unstructured and was originally intended to provide insight into what students were learning.  

Students, however, used the opening to discuss how they were feeling and their thoughts about 

the labs.  The solicitation for comments on content at the end of the lab may have induced some 

bias as students may not have felt completely comfortable making negative comments when they 

knew their instructor would be reading them during the semester.  However, the fact that 

students knew they would not be penalized for what they wrote and would be given credit for 

writing the paragraph, appears to have let them give honest responses as evidenced by the 

numerous negative comments that were present in the data.  Having more structured collection of 

qualitative data going forward would allow for more information to be gleaned and understand 

how the interaction of the technology used and the content on the labs helped to influence 

attitudes toward mathematics.  Future research designs should include interviews as a method of 

data collection.  Conducting interviews with students would allow for more targeted questions 

about how the labs contributed to students’ attitudes, what content of the labs was most 

beneficial, how the labs could be improved to increase the benefit, how the course could be best 

structured to positively impact attitude, and more.  Conducting interviews may allow the 

researcher to discern how overall attitudes toward math were influenced by the new technology 

and students’ struggles with it as well. 

Interviews would also provide valuable insight into students’ evaluative thoughts on the 
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computational labs and could help guide future development of the course, which could lead to 

making the intervention more beneficial in positively shaping students’ attitudes.  In future 

research students from the control group could be interviewed as well to help triangulate results.  

In this study, this group was not used to gather qualitative data, which was a limiting factor of 

this study.  Going forward, however, this group should be interviewed to help understand what 

helped shape their attitudes.  Information from these students along with data from the students 

in the experimental group could shed light on what was most beneficial and how elements of 

both classes could be combined to improve the course overall.   

Also to increase understanding as to the impact of the lab and substantiate the 

impressions I got as the instructor and from the student comments, a questionnaire, such as ones 

used by Höft and James (1990), is recommended to get students to respond to statements such as 

“using a computer in the classroom contributed to my understanding of the course material”, “the 

computer assignments could be completed in a reasonable amount of time”, and “using a 

computer in the laboratory enhanced my interest in the course material” (p. 147). 

Improving this Class  

A limitation of this study was this was the first iteration of using these labs in this class.  I 

had used Jupyter notebooks myself in my own work and had been a student where using 

computational tools had been a large part of my classes and learning, but as an instructor I had 

not yet used them in my classroom.  Because of the first iteration this was a learning experience 

for all of us involved.  Through my process implementing the labs, the experiences and 

conversations with students throughout the semester, and in reviewing student comments, there 

are numerous changes that could be made to the class going forward and informing future 

research.     
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One change that could be made in the future is the implementation of the computational 

tools more intertwined in the entire class not as labs.  The computational tools were employed as 

labs in this study in part to keep the control and experimental classes more similar and 

comparable and to fulfill the way the course content had to be structured at the time.  Before the 

semester began, in discussing the implementation with a university physics educator who uses 

Jupyter notebooks in his classes, he cautioned that by doing them as labs rather than fully 

intertwined in the class for daily use, students may see them as a completely separate entity, an 

extra burden on their time, and not part of their accessible problem solving methods.  He made 

such comments because he said he had seen these issues when doing so in physics classes.  By 

having more incorporation of Jupyter notebooks, or other similar tools, throughout his courses 

rather than an additional piece to the class, he had seen students’ views on them develop and 

students had grown to use Jupyter notebooks as a way to solve physics problems rather than 

always pulling out paper, pencil, and a calculator to tackle problems.  The issue of students 

seeing these labs as more assignments to complete and a separate entity was echoed in student 

comments and was observed in how many students approached problems.  The students also 

made it abundantly clear in their comments that they thought there was an increased time 

demand because of the labs.  Another issue was that to keep the two groups similar, students 

were not allowed to use Jupyter notebooks on their tests, but they could use them any other time.  

An additional issue was while much of the content was introduced using the computational labs 

and the notes that followed built on and expanded the content covered in the labs, students were 

shown how to do concepts with paper and pencil as well because this was still an expected 

outcome of the course.  This seemed to cause a bit of a disconnect.  With knowledge that they 

were not going to be used on the test and being shown multiple ways to solve the problems, 
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students tended to gravitate towards traditional methods of paper and pencil.  There were 

exceptions to this, however.  By the end of the semester, several students began using Jupyter 

notebooks to complete their homework assignments.  Some students found these notebooks to 

help them more quickly do their homework, reinforce concepts because of the commands they 

had to employ, and a feel of more authenticity in how they would do math problems outside of 

the classroom.  It can be seen that some students did progress to considering Jupyter notebooks 

as another way to solve calculus problems; these students had positive attitudes toward them and 

many were students that had previously taken calculus before, which was reflected in their 

overall attitudes.  These students were in the minority, however, and most students still resorted 

to traditional techniques.  Because the labs were not used everyday and some students viewed 

them as separate from the class, this may have minimized the overall impact.  Students also 

commented that they desired more time in class to work on Jupyter notebooks.  In future 

research the computational tool, Jupyter notebook, should be more intertwined throughout the 

entire class, so that students increase their willingness to use them to solve problems and thus the 

impact on attitude may grow.  As the use of these tools grow and evolve in my classroom, I will 

increase more independent practice in the class and getting students to code more of their own 

functions, which could potentially increase the effects including using students’ evaluative 

comments a guide to help to increase the impact.  

Another change that could possibly take place during another iteration of the project is 

allowing more time for students to work in pairs, which arose from the evaluative analysis of 

student comments and in discussion with students throughout the semester.  There was some 

time for this, students remarked that they wanted even more time to work in class with other 

students.  Allowing this time could help students pair up to discuss how to translate mathematics 
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problems to something they can approach on the computer and to find syntax errors.  Other 

examples of using computational tools in a mathematics classroom make similar 

recommendations (e.g., Jones & Hopkins, 2019).  Allowing more time for this may increase 

students’ comfort with the technology, give them more confidence as they see others struggling 

and working through errors, and overall ease some of their frustration, which could positively 

impact their attitudes.  

Following student recommendations that arose through analysis of student comments 

with evaluative coding, in future iterations of this project even more data should be incorporated.  

Students’ comments revealed their support for the inclusion of data, “seeing where the function 

came from”, and the data adding an element of realness.  Going forward, the use of more data to 

motivate problems must be incorporated.  Additionally, the use of larger data sets would be 

beneficial.  Some of the comments revealed that where the labs had the most impact revolved 

around using stock data imported directly from Yahoo Finance and the large data set from the 

CDC on smokeless tobacco products.  Both of these stood out to students more than the 

problems with smaller data sets, which could cause one to infer that students could see the 

benefits of the computational tools in handling a larger data set than they had probably ever 

tackled using their graphing calculator.  By dealing with more and larger data sets, students 

would likely be able to see the power of the tools and could see that the data sets were not 

concocted just for the example, which may more positively impact attitudes especially in the real 

world category.  The relevance of the content and connection to the real world would be 

undeniable.  

Even since implementation of computational labs, the Business Calculus course 

discussed in this project has undergone revisions.  Several major changes have occurred which 
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open up more opportunities for the use of computational tools.  One major change is the course 

now begins with an introduction to linear algebra topics such as systems of equations, matrices, 

and applications of these.  Tools, such as those in this project, could open up this study to 

handling more complicated problems of these applications.  An example of this is in input-output 

models; many of the examples used by the textbook in use involve examining only a few sectors 

of the economy at a time, but the United States economy has over 500 sectors and even a 

simplified model still has close to 100 sectors, so using computational tools may allow for 

handling of problems incorporating more sectors, which, similar to the larger data sets, may help 

students appreciate the computing power and increase the sense of applicability to the real world.  

Another change in the course is a smaller focus on computing derivatives and integrals through 

rules and by-hand manipulation.  This was already done in this project; however, it further 

sparked conversation of how much of that needed to be in this particular course and it was 

decided that that focus could be lessened.  With a decreased focus on computing these by-hand, 

it was decided that there should be more concentration of applications and interpreting answers.  

Decisions such as these were made in collaboration with the School of Business, which is a 

necessity.  All of these changes further open up occasions for computational tools and afford 

more time in the course that they could be used daily, as discussed previously, rather than as 

isolated labs, which student comments imply could help increase the impact.  The results of this 

study of computational labs in Business Calculus provide a strong foundation on which further 

revisions of the intervention could be made and studied.  

General Conclusions 

 Increasing students’ attitude toward mathematics, or at least not destroying it, is 

undoubtedly a goal of undergraduate calculus classes and was an objective of using 
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computational labs to introduce students to calculus concepts in this project.  Within this study 

there are no statistically significant differences in attitude towards mathematics when students 

participate in computational labs, however, there was evidence from students’ comments that the 

labs did help many students make connections of calculus concepts to their chosen field of 

interest business, see how mathematics can be used in the real world, and develop their 

willingness to push through challenges.  These labs aided many students in seeing the 

applicability of calculus to the “real world” and left them not asking the question of when are we 

ever going to use this outside of this classroom.  The labs used in this project also demonstrated a 

different way of problem solving than many students had previously been exposed and positively 

impacted attitudes of students that had previously taken calculus.  Because of the aforementioned 

results, this is an area for future work further developing courses that can employ such tools.  

 One area that helped students perceive the mathematics in this course as more “real” or 

related to their field was the use of data.  This cannot be ignored.  Students remarked on 

appreciating seeing where the “given” function came from and being able to fit curves to the data 

to model the data and make inferences and predictions.  In this project Jupyter notebooks with 

Python were used as the technology to handle the data, however, more traditionally employed 

technology, such as a graphing calculator, could also be used to handle some data sets and curve 

fitting.  Whatever method of technology is chosen, it is recommended that students have the 

opportunity to see some problems that arise from data.  This project revealed that it appears 

important and valuable for students to see where the given functions come from and the use of 

data, modeling that data, and then interpreting answers may allow students to make more sense 

of what they are learning.  Not only is this valuable for students to acknowledge, but it aligns 
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with that fact that business leaders must have an understanding of algebra, calculus, and statistics 

and be proficient with technology to do so (Lamoureux, Beach, Hallet, 2001).  

Many students’ comments revealed that the technology did help them make connections 

with business applications especially with real data and discover a different way of approaching 

problems and new problem solving tools.  Others, however, did express their aversion to the 

labs, the challenges they felt the technology added, and some even felt that the labs made the 

class more challenging and thus likely negatively influenced their attitudes.  Because of the 

mixed feelings and experiences, the use of computational tools in this course must continue to 

undergo revisions to enhance students’ experiences using my experiences and student comments 

as foundations for the changes.  

Based on the results of this study and experiences in these classrooms, I will continue to 

use and develop computational labs in this class and several other instructors at the university 

where this study took place have expressed interest in further developing this class and others 

using such tools.  The mixed results of this study and the increase in research on computational 

tools in educational settings, including in mathematics classes, demonstrate this is an area that 

still needs to be studied and further researched to continue to evaluate how computational tools 

can be effectively used to increase the student experience in undergraduate mathematics classes 

such as business calculus.   
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CHAPTER 5: Conclusions and Recommendations 

 This chapter discusses the conclusions and recommendations resulting from the data 

analysis as presented in the previous two chapters and discussed in regard to future practice. 

Recommendations for applications of the findings to both research and practice follow.   

Conclusions and Implications 

In describing introductory college calculus, Bressoud (2017) states, “Today we teach a 

greater numbers of students, who are less prepared, using fewer resources, and with increased 

expectations for student success” creating a perfect storm and “this is why we can’t keep doing 

things the way we have always done them”.  This perfect storm has lead to college calculus 

negatively affecting students by decreasing their desire to continue their study of mathematics, 

lessening their overall enjoyment of mathematics, and lowering their confidence in their 

mathematical abilities (Bressoud & Rasmussen, 2015).   

Students complain that their introductory STEM courses, including calculus, are 

uninspiring as they deliver material in a traditional manner of lecturing despite that being shown 

to be ineffective pedagogy (PCAST, 2012; Frechtling, Merlino, & Stephenson, 2015).  “It would 

be difficult to design an educational model that is more at odds with the findings of current 

research about human cognition than the one being used today at most colleges and universities” 

because most college faculty teach the way they were taught themselves (Halpern & Hakel, 

2003, p. 38).  There is a growing body of research that students are switching out of STEM 

majors and other majors, such as business, where first year mathematics courses, such as 

calculus, are serving as a critical filter, but not simply because of academic preparedness as one 

might think (Berrett, 2011; Seymour & Hewitt, 1997) rather because of poor experiences in 

introductory-level courses (PCAST, 2012; Seymour & Hewitt, 1997).  Research repeatedly 
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suggests that in introductory mathematics courses, students are not learning the intended material 

(Breidenbach et al., 1992; Carlson, 1998; Tallman et al. 2016; Thompson, 1994), students are 

leaving the courses unprepared for other courses (Carlson, 1998; Selden, Selden, Hauk, & 

Mason, 2000; Thompson, 1994), and students lose interest in mathematics after completing the 

course (Bressoud, Mesa, & Rasmussen, 2015; Seymour, 2006), all of which have been seen in 

both small, localized studies but also in national studies of introductory college mathematics 

courses (Bressoud, Mesa, & Rasmussen, 2015).  In addition to these detriments, other disciplines 

“are no longer content with seeing their students taking calculus courses that haven’t changed 

over 30, 40, or 50 years” (Bressoud, 2017) and are even considering teaching the required 

calculus courses themselves rather than mathematicians.   

Because of such issues, improving student success in first-year introductory mathematics 

courses is a growing concern.  Bressoud and Rasmussen (2015) and Rasmussen et al. (2019) 

make numerous recommendations for making more successful introductory mathematics 

programs by studying currently successful programs, suggesting active learning strategies and 

challenging, engaging courses that focus more on concepts rather than skills.  Mesa, Burn, and 

White (2015) along with Larsen, Glover, and Melhuish (2015) report that lecturing, in some 

form, is still the dominant style of teaching in Calculus I; they also report that good teaching in 

calculus involves a positive atmosphere with ample interactions between students and the 

instructor, high levels of student engagement, high standards and expectations, and can include 

ambitious teaching incorporating active learning such as small group collaboration and solving 

non-routine and application problems.  Technology can help calculus courses be successful, but 

not simply by using technology but rather because of trying innovative teaching with the selected 

technology and being intentional about how that technology can support learning (Selinski & 
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Milbourne, 2015).  Innovations building upon elements of good teaching of calculus must be 

developed and researched to improve students’ experiences and conceptual understanding in 

introductory calculus classes.   

If mathematicians really are tired of teaching a calculus of algebraic manipulation and 

‘inert material,’ if mathematicians really are tired of over-stuffed textbooks, if 

mathematicians really are tired of high failure rates and low retention of what is taught, 

then it is time to try something new.  We owe it to our students.  We owe it to ourselves.  

We owe it to mathematics.  And it can be done… There are no obstacles other than our 

own indifference and the constant lack of fair reward for good undergraduate education. 

(Tucker, 1990).  

We must consider changes to calculus courses that can modernize it and better serve the 

abundant amount of students from numerous STEM and other client disciplines.  Interventions 

that make use of interdisciplinary content and practices are imperative.  At a time when college’s 

value is being questioned it is crucial to create courses that can positively affect conceptual 

understanding and attitude, has demonstrable value such as making explicit connections to other 

disciplines, and teaches students to use current technology that could prove to be marketable, 

valuable skills.  This project is one such example.  These two manuscripts support the efforts to 

make college calculus more efficacious at positively impacting attitudes and teaching content 

with applications from client disciplines with new technology implemented through 

computational labs.   

 The first manuscript, Computational Labs and Conceptual Understanding, presents a 

study that examined the impacts of computational labs in a Business Calculus course on 

conceptual calculus knowledge on college students as compared to college students in traditional 
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sections of the course.  Results did not show any significant increase in conceptual understanding 

as measured by the Calculus Concept Inventory.  The two groups were roughly equivalent in 

conceptual calculus knowledge over the semester using the CCI as a measure.  Through analysis 

of student comments from the students participating in the labs, it can be seen that through the 

labs many students did learn to make valuable connections between the calculus concepts and 

applications in business and some students appreciated the new technology they could employ to 

problem-solve.  Students found the mixture of learning a technology new to them and calculus 

concepts simultaneously to be challenging, however, research indicates that students actually 

want their introductory STEM courses to provide a challenge, and having challenging courses 

that had “high expectations for students including engaging, conceptually oriented content 

beyond an emphasis on procedures and skills related to calculus” (Rasmussen et al., 2019, p. 

100) is one of the seven characteristics of a successful calculus program.  A majority of students 

that completed the six computational labs over the semester left the course being able to 

specifically articulate ways in which calculus concepts can be applied to business situations and 

can be derived from real data, which is valuable.  These students also finished the course 

learning a bit about a technology that may be beneficial in their future.  

 The second manuscript, Computational Labs and Attitude Toward Mathematics, 

examines the effects of computational labs on students’ attitude towards mathematics of college 

students in Business Calculus.  There were no identifiable differences on attitude improvement 

between the experimental and control groups as measured as a pre/post test using the 

Mathematics Attitudes and Perceptions Survey.  The attitude trend was similar to literature 

where new innovative teaching strategies can cause a slight dip in attitude in a semester, 

although a smaller drop for students completing labs than students in the group without labs, and 
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also aligns with the literature that attitudes are relatively stagnant over one semester and may 

take longer to change.  There were differences when individual categories of the instrument were 

analyzed, with the students participating in labs having more growth in certain categories 

including growth mindset and confidence.  Students that had previously taken calculus and 

participated in the labs were the most positively affected by the labs in terms of attitude with 

overall greater growth during the semester, much higher expertise scores, and very high expertise 

scores in certain categories.  Many students’ comments also revealed that the labs helped them 

realize and acknowledge the usefulness of mathematics beyond the walls of the classroom and 

the development of persistence characteristics in successfully completing the labs.  

 Together, these studies suggest that using computational labs positively impacts and has 

considerable benefits on attitude toward and conceptual understanding of calculus for some 

students.  While results of changes in attitude and conceptual calculus knowledge were not 

statistically significant, students’ comments reveal numerous positive effects the computational 

labs had on both for many, but certainly not all, students.  This research provides a foundation 

for the effectiveness of computational labs used in a Business Calculus course, which is not 

currently a common practice and needs to be studied further as mathematics educators seek to 

modernize calculus courses, make the content more relevant, and reach the vast amounts of 

students tasked with completing the course.   

Recommendations 

 The study on the use of computational labs in Business Calculus effects on students’ 

attitudes toward mathematics and conceptual calculus knowledge led to recommendations both 

for practice and for future research.  Recommendations for practice include what changes can be 

made to courses to broaden the use of the computational tools, developing the use of 
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computational tools to handle other topics from business and increase the use of data sets, asking 

questions of what is the appropriate content for different populations of students to best serve the 

client disciplines, and how to improve the classroom experience for students tasked with the 

challenge of learning new technologies and new calculus concepts simultaneously.  

Recommendations for research include the use of different instruments, longitudinal data 

collection, gathering of additional data points, gathering of more student comments, growth 

mindset research, and further breakdown of how students believed the computational labs 

benefited them.  Other recommendations for research include further researching how these tools 

can be used in other general education mathematics classes.  

Recommendations for Practice  

 This dissertation connects to the on-going body of research of innovative teaching 

methods to impact the student experience in introductory tertiary calculus classes.  It builds on 

the knowledge that more active learning strategies have benefits for students in such classes by 

suggesting using computational labs in Business Calculus.  This research connects to the 

growing body of research of computational tools in undergraduate mathematics classes and 

specifically studies a course not intended for mathematics majors.  There are several 

recommendations for improving upon this use of computational labs for implementation and 

further development.  

The computational labs used in this study were most beneficial to students that had taken 

calculus before.  These students articulated their appreciation of learning a different way of 

problem solving, seeing calculus concepts they had seen before being used in relation to and in 

applications of an area they truly had interest, being able to see that functions can be motivated 

by real data rather than simply being given functions, and being challenged rather than simply 
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relearning what they had already seen before.  These students were also most able to specifically 

state how calculus concepts can be applied to real world scenarios.  They also had the most 

growth in attitude, had attitudes more closely aligned with experts than any other group in this 

study, and were most willing to step up to the challenge of interacting with new technology.  

These are all important results because Bressoud (2017) reports that of the roughly 800,000 

students that take calculus in high school over 650,000 retake calculus or a lower math, and out 

of those over 150,00 students take business calculus each semester as their first university 

mathematics course.  This is a valuable result as in practice it is sometimes hard to challenge, 

motivate, and excite students that have already seen this material.  In future practice the labs and 

the structure of the course need to be retooled, which is discussed below, to better reach those 

who have not yet been exposed to calculus. 

 As mentioned in Chapters Three and Four, several changes are recommended for refining 

the class structure of the course employing computational tools.  One significant change would 

be to allow more time in class for pair and group work.  The pair and group work would allow 

for additional time for help with detecting syntax errors, working together on successfully 

writing the correct code, the opportunity to discuss the techniques of how one went about doing a 

problem, and discussion of the relevant calculus concepts used to work through a problem.  More 

time for work on the labs in the class could be an active learning strategy, which is one of the 

seven characteristics of a successful calculus program (Bressoud & Rasmussen, 2015).  Allowing 

for this time would also create more in-class opportunities for students to get help from the 

instructor, especially overcoming technology issues they were facing.  One major necessary shift 

would be to allow students to use these tools on tests.  Some students felt that the labs were 

additional work and not fully integrated into the class, part of which came from not allowing 
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them to be used on tests.  In the future the entire class could be revamped to use Jupyter 

notebooks not only as lab assignments but fully integrated into the class daily.  In this full 

integration, students should be allowed to use Jupyter notebooks on assessments, which may 

help students to not view them as extra work and may increase the overall impact of them.   

 When using computational tools, instructors must prepare themselves for dealing with 

technology issues and must be ready for the immense time involved in the development of the 

assignments, the out of class time required to meet the many demands and questions from 

students, and the time entailing technological troubleshooting.  This is similar to 

recommendations made from other studies employing similar tools (e.g. Baumgartner & 

Shemanske, 1990; Höft & James, 1990; Kilty & McAllister, 2019).  Students often sited issues 

with technology as the frustrating element of the class, so it is imperative to create time and 

opportunities for students to get help.  Time must be set aside for technological troubleshooting.  

This goes beyond helping students use correct syntax, but it also involves issues such as getting 

the required software, troubleshooting when something is not working, locating files students 

have misplaced, and navigating to and moving files to appropriate folders.  Instructors must also 

be willing to devote time in-class specifically for teaching about the technology and 

demonstrating how to successfully write and debug lines of code.  It is valuable for students to 

see an instructor write code live, make typos and syntax errors, and make errors and get error 

messages; this can help students realize that making such errors is inevitable and one must be 

willing to work through the errors.  Allowing more time in class would give students 

opportunities to ask questions, which is especially important since getting tutoring from other 

sources is challenging since so few students have experience with this.  This could help with 

syntax debugging and organizing thoughts of how to write lines of code to get through the 



 242 

problem.  Another change that could be implemented in future use of these tools is to provide 

students with a webpage that is like a quick reference toolkit.  This page could have quick 

glances back at techniques previously used, references for commonly used syntax, and some 

explanations of the syntax.    

 It should also be noted that while students seem to think of themselves as technologically 

advanced, I discovered that in many regards this was not be the case.  Issues were seen with 

students’ lack of file organization, challenges downloading and installing the required software, 

issues figuring out how to name files, and problems uploading and submitting the correct type of 

file.  These are valuable and important things to learn.  Some students seemed to get defeated by 

this, gave up easily, were not willing to troubleshoot, and made comments such as “mine just 

isn’t working”.  Too many students seemed unable to do little more than Internet browsing and 

word processing, when a computer can be used for so much more.  Many students expressed 

sentiments that reflected that the way they were being asked to interact with the computer was 

completely new to them demonstrated in statements such as:   

§ “Prior to this, I had no idea of coding or how to do any of it.  I did not know that it could 

relate to math either.”  

§ “I learned in this notebook that there is more to math than just learning how to do 

problems on paper.  I mean I knew about the calculator but not this stuff.”  

§ “I thought this activity was very interesting because anything other than shopping online, 

checking my email, typing a paper, and submitting homework was way past my 

knowledge and I really wasn’t interested.  I didn’t really realize how much more it could 

be used for.  Even in just a few labs I really have a better appreciation and I really 

appreciate people who code for a living.” 
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§ “I had heard people talk about Terminal and stuff but I didn’t know what that was until 

now.”  

§ “At first I couldn’t get my notebook to import the picture.  I later realized I didn’t have 

the picture in the right folder and I had named it something else.  I need to keep my 

folders more organized.” 

Instructors must be aware of this and be willing to intentionally teach students about the 

technology. 

In addition to time demands dealing with technological issues, instructors also need to be 

prepared for time requirements in developing the notebooks and educating oneself of the other 

disciplines to authentically make use of the tools and the applications.  This is a similar note to 

those in Kostandinov, Thiel, and Singh (2019).  Grading the Jupyter notebook lab assignments 

also requires large amounts of time.  Instructors should be prepared for this and should also look 

for available resources such as the grading that can be done through nbgrader.  This grading 

resource was not used in this iteration of the project but should be considered in future studies. 

Another technological change that should be made going forward is the distribution of 

the notebooks.  The notebooks in this project were shared as Jupyter notebook files that students 

had to download, move to the appropriate folder, and then run locally on their machines.  This 

required students download several programs including the Anaconda suite.  Students had 

trouble with this and then had trouble remembering how to open the notebooks, despite the 

instructor demonstrating opening notebooks during the in-class lab time.  Some students also ran 

into issues where paths were not properly defined and thus could not successfully run certain 

code.  A recommendation for future iterations of the project is to distribute the notebook files 

through JupyterHub or the Google Colaboratory.  “JupyterHub allows users to interact with a 
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computing environment through a webpage.  As most devices have access to a web browser, 

JupyterHub makes it is easy to provide and standardize the computing environment of a group of 

people (e.g., for a class of students or an analytics team)” (JupyterHub, n.d.).  Google 

Colaboratory (Google Colab) is a free Jupyter notebook environment that requires no setup and 

runs entirely in the cloud.  “With Colaboratory you can write and execute code, save and share 

your analyses, and access powerful computing resources, all for free from your browser” 

(Google Colab, n.d.).  This would eliminate issues of downloading the software and running it on 

their personal machines.  Many of the libraries we used are pre-installed and ready to be 

imported.  Using Google Colab allows users to run Jupyter notebooks without having to 

download, install, or run anything except for an Internet browser.  Some students had issues 

running Jupyter notebooks locally, so we started using Google Colab for them and many 

commented that it did make things easier and they liked it better.  Making this change could help 

to alleviate some of the technological issues.   

Future use of this project would be to go beyond labs and instead re-vamp the course 

completely using computing as a problem solving tool constantly not simply as introductory labs.  

This would also require changing more of the content in the course and could allow for even 

more business applications to be brought in.  In research from the 1990s this was recognized as 

well in that using computing power in the classroom can change how material is taught but also 

what is taught (Tucker, 1990).  Such discussions, of truly evaluating the content needed in this 

course, are under way at the university where the study took place.  Changes have been made to 

the content in this course even since this study.  Much of the study of limits was removed, 

similar to Kilty and McAllister (2019) who suggest the same for a calculus course focused on 

modeling that used RStudio.  Instead of algebraic manipulation, the study of limits was presented 
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as an intuitive focus on limits at the heart of derivatives and integrals without as much algebraic 

detail, such as in discussing derivatives understanding the value approached when average rates 

of change are computed on smaller and smaller intervals and more and more rectangles for 

Riemann sum.  We have also now decreased the focus on computing the derivative through the 

use of rules, although this is still part of the course.  We have also added a linear algebra unit at 

the request of the School of Business.   The expansion of the course would involve more 

mathematical modeling as well, which is often done in the workplace.  Creating and interpreting 

models in the workplace involves turning a real situation into a mathematized problem to answer 

a practical question (Gravemeijer et al., 2017), which students enrolled in this course may be 

more adept to do.  Expanding the project and using larger data sets as motivation for some 

Calculus concepts could expand on this even more such as using customer churn data (Koehler, 

2018b).  Redesign could also include a blend of data science topics as well as including 

probability distributions and combinatorics which can relate to integration, optimization, least 

squares method, and bias variance trade-off (Koehler, 2018b).   

Another area that could be developed is to create a statistics course that students could 

take after the course that was presented in this study that also uses computational tools.  Taking 

two courses where such work is required would improve students’ proficiency with these tools, 

impact their desire to continue to develop these skills, and perhaps impact their attitudes since it 

is likely that attitude towards mathematics takes longer than one semester to change.  Work from 

courses such as these may also allow students to create portfolios that they could take to future 

employers (Koehler, 2018a).  This implication is similar to one outcome of a study where 

students learned to program in R, in which many students viewed learning to program in R to 

solve problems as a benefit and a resume-builder for when they look for internships and jobs 
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(Benakli, Kostadinov, Satyanarayana, & Singh, 2017).  After taking two such courses students 

would likely be more skilled at using these tools and appreciative of the work that can be done 

with them, which may help them as the enter the job market or graduate programs as there are 

numerous graduate programs in business analytics, among others, that have a coding element as 

part of them, however this needs to be explicitly demonstrated for students.  

In the evaluations of the course some students remarked about how they did not 

understand why a business major should be expected to learn to code or they were not sure how 

they could ever use it in the future; some students remarked that they did not think that coding 

had anything to do with business.  This is obviously not true, however, students may not have 

any way of previously knowing how computational tools are used in the business world.  

Students need to be explicitly shown how tools like these are currently in use in business, and 

they need to truly see how powerful these tools can be, especially by seeing how they could 

potentially handle very large data sets.  Knowing how to code in business could be a marketable 

skill, and this iteration of the project did show some students that this is something they may 

want to pursue; however, to reach more students the benefits of knowing how to interact with 

such tools must be clearly conveyed.  A recommendation would be to bring in an outside expert 

that can relay to students how such tools are present in the current business world and how these 

tools are growing.  Students may not know it, but many major banks, such as Goldman Sachs 

and JPMorgan Chase, are teaching their investment bankers to code since technology like 

artificial intelligence and online lending and trading platforms are reinventing the industry; these 

banks are requiring mandatory Python trainings for traders and analysts (Rayome, 2019).  These 

business professionals are being asked to learn concepts of coding, data science, machine 

learning, and cloud computing (Rayome, 2019).  Other companies outside of the banking 
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industry are doing so as well.  In modernizing a business calculus course to include such topics, 

we are giving students an introduction to a very valuable skillset and one they may be called 

upon to use later and expand, but the value must be explicitly conveyed to them.       

Another recommendation would be to bring in a representative from a masters degree 

program in business or business analytics (e.g., The University of Virginia’s Master of Science 

in Business Analytics) that includes learning programming languages.  For example, Business 

Analytics masters degrees currently exist and include learning different programming languages.  

Looking through these programs online, many of them list course descriptions that include 

learning Python and other languages.  It appears that having had exposure to these types of 

computational tools, at this point, is not a prerequisite of some of these programs but having even 

seen some in use and had some practice with such would have given students some beneficial 

exposure before entering.  As previously mentioned, the students that participated in 

computational labs are not proficient coders, but they may have acquired some skills that others 

lack simply because they have never seen these or used the computer in such a way.  Students 

may not use Python in their future careers and the language of choice may be up to the employer 

and the intended use.  While another language may be used, having had some exposure to Python 

may help them get started in learning another language.   

Another benefit that needs to be overtly conveyed to students is the growing trend of 

cross-silo leadership and cross-functional teams.  

The value of horizontal teamwork is widely recognized. Employees who can reach 

outside their silos to find colleagues with complementary expertise learn more, sell more, 

and gain skills faster.  Harvard’s Heidi Gardner has found that firms with more cross-

boundary collaboration achieve greater customer loyalty and higher margins.  As 
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innovation hinges more and more on interdisciplinary cooperation, digitalization 

transforms business at a breakneck pace, and globalization increasingly requires people to 

work across national borders, the demand for executives who can lead projects at 

interfaces keeps rising. (Casciaro, Edmonson, & Jang, 2019).   

With this collaboration, while a person might not be required to write much code, it may prove 

beneficial that they have some level of understanding of such so that when they are working in 

collaborative teams they can be a benefit for understanding some of the technical resources and 

language of the other members of the team.  The head of JPMorgan Chase Asset Management 

told the Financial Times: 

 Coding is not just for tech people, it is for anyone who wants to run a competitive 

company in the 21st century.  These are skillsets of the future… By better understanding 

coding, our business teams can speak the same language as our technology teams, which 

ultimately drives better tolls and solutions for our clients. (Mary Callahan Erdes as 

quoted in Rayome, 2019).   

A recommendation that was reinforced by this project is the need for collaboration 

between departments.  Bressoud (2017) states that the other disciplines often lament that students 

cannot use the calculus they have been taught back in their home discipline.  This, along with 

student complaints that mathematics is dull and unimaginative, lead to the President’s Council of 

Advisors on Science and Technology (2012) recommending tailoring calculus courses to specific 

disciplines, suggesting teaching the courses and developing curriculum with discipline experts 

themselves rather than mathematicians, which is concerning to many mathematics educators.  

Mathematics educators must consider changes to calculus courses that will better serve the 

voluminous amounts of students for a variety of disciplines.  Perhaps more fragmentation of 
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calculus courses could allow the course to be tailored to specific examples from their discipline, 

such as in this project.  This could also help to both ask and answer the question more deeply as 

to what students really need to know after leaving their calculus course since if the courses were 

more segmented by discipline they could be better designed to meet the mathematical needs of 

these disciplines.  The computational labs and structure used in this course would not meet the 

needs of all students required to take calculus, but as seen in this project for a population of 

business students they did have important effects on students’ attitudes, abilities to make 

connections to their disciplines, and introduced students to a new way of problem solving.   

Using this method, especially in fragmented courses, could affect more than math ability but also 

peak interest and improve attitude since it would be in direct connection to their content areas.  

This project could be expanded outside of business calculus and used in other versions of a 

calculus course designed for specific disciplines, especially a calculus course for biology and 

chemistry or one for engineering.  Because of the need to create calculus courses that can truly 

impact students from disciplines other than mathematics, it is imperative to collaborate with 

these partner disciplines.  Collaboration with the client discipline will help mathematics 

educators become more knowledgeable of authentic applications and authentic practices in that 

discipline.  These partner disciplines can shed light on the content, applications, and technology 

that they desire their students know upon existing an introductory calculus course.  In creating an 

introductory calculus course including modeling and using technology Kilty and McAllister 

(2019) report positive comments from the client discipline that their course served.  More 

collaboration between disciplines is recommended for any calculus courses, but specifically 

more collaboration is recommended for future iterations of the use of computational labs.  Every 
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one involved, students, mathematics educators, and educators from other disciplines, will benefit 

from collaboration and integration.  

The model in this project provides a starting point on which to build how to best use 

computational tools in a general education mathematics classroom.  In future practice, it will be 

imperative to collaborate with other departments to determine how the course and use of the 

tools can be further developed to best cover realistic content in connection to calculus, and other 

subjects, and use authentic ways of problem-solving.  Further development of these can create 

authentic opportunities for knowing and doing.   

  Some student comments made reference to their thoughts that technology helped them 

learn.  Many students did not expand on what they meant by this and thus it still needs to be 

studied as to how they felt it helped them learn.  Mathematics educators are constantly asking 

about the appropriate use of technology, dating from before the Math Wars and still to this day.  

“We are living in an ever-evolving computerized age, and we are seeing trends in mathematical 

research and mathematics education research that reflect our society” (Lockwood, DeJarnette, & 

Thomas, 2019, p. 1).  This study provides an example of the use of a technology not typically 

employed in an introductory college mathematics course, especially a course not designed for 

mathematics majors.  While findings from this study and others using similar tools to 

undergraduate mathematics classrooms reveal mixed results, these undoubtedly need to continue 

to be developed and researched.  

The following suggestions for instructors and teacher educators are also recommended:  

§ Professional development for educators in how to use these technologies in the classroom  

§ Develop and disseminate how educators conceive computational tools being used in the 

classroom  
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§ Education for future STEM educators must include computation so that they can continue 

to develop how such tools can be used to intentionally teach at other levels of education 

as well 

Recommendations for Research 

 This research on computational labs used in Business Calculus classes revealed mixed 

results.  The analysis of students’ comments showed beneficial aspects of the computational labs 

on many students’ attitudes and on conceptual understanding.  The qualitative data also helps to 

demonstrate that there was a mix of both positive and negative comments, which shows that 

some students greatly benefited while others struggled, and highlight why there was minimal 

change scores on both of the instruments used to gather quantitative data.  The mixed results that 

the computational labs had on both attitude and conceptual knowledge of calculus must be 

researched further.   

Some of the limitations of the instruments used in this study were discussed in both 

Chapters Three and Four.  For future research it is recommended that other instruments should 

be used.  The many limitations of the Calculus Concept Inventory have been previously 

discussed.  In future research designs, perhaps a locally created end of semester assessment could 

be used.  This assessment could be made in such a way that the issues of calculus terminology 

and notation would not be a problem as they were on the CCI.  The wording of questions on the 

CCI were noted as confusing, using a different instrument could alleviate some of this and the 

questions could be written in such a way that they were more similar to the style of questions 

students have seen before.  If such an instrument were a multiple-choice assessment, it would 

also not be analyzed using normalized gains.  The losses seen in the current study were likely not 

because of actual decreases in knowledge, but rather because of correct guesses on the pre-test 
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that were then incorrect guesses on the post-test.  Normalized gains do not account for losses 

such as these and make the assumption that there will be improvement from pre-test to post-test.  

This study assumed that students would honestly and intentionally answer the questions on the 

Calculus Concept Inventory, however, since no credit in the class was given for completing it 

there was certainly apathy; a violation of this assumption could have impacted the results.  

Violations to this assumption would call into question the use of normalized gains.  Hake’s 

(1998) g has the implicit assumption that gains will be positive (Miller et al., 2010).  Miller et al. 

(2010) assert that when losses are normalized with respect to possible gain, the normalized gain 

does not have a “sensible interpretation”.  Going forward in future research, normalized gains 

could not be used, instead Dewello’s G and L could be computed, which according to Miller et 

al. (2010) normalizes gains with respect to potential gains and losses with respect to potential 

losses rather than g normalizing all to gains only.  Another recommendation would be to use an 

instrument that is not multiple-choice but is open-ended and can be interpreted as level of 

understanding rather than simply right or wrong.  

 A recommendation for data collection on students’ attitude would be a more calculus 

specific instrument or to allow students to self-report how they feel about their abilities such as 

in Kilty and McAllister (2019).  Another recommendation is to consider the XPIPSM, a newly 

developed instrument, to see what the students thought of the course and their experience 

(Apkarian, et al., 2019).  Another consideration would be to use a survey rating of the impact of 

the technology such as in Höft and James (1990) that asks questions such as “using a computer 

in the classroom contributed to my understanding of the course material” and “using a computer 

in the classroom enhanced my interest in the course material” (p. 147).  
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 It is recommended that in replication of this project, students’ comments from the control 

group would be gathered and analyzed as well.  In future research to help triangulate the results, 

it is recommended that interviews with students be conducted as well.  The students reflected on 

how they felt about the labs without solicitation specifically and thus there may be more to be 

gleaned from what students thought if they were specifically asked about their thoughts.  This 

would also help to differentiate what students felt were the most beneficial aspects of the labs 

and further how the labs impact both understanding and attitude.  The comments from the end of 

the labs should still be gathered, as students appeared to be rather open and honest in them 

perhaps because they did not feel any pressures of an interview, but interviews could help to 

explain how the computational labs affected students.  Students may put up barriers during 

interviews and not give honest answers, especially if they were being interviewed by the 

instructor-researcher after the semester or there may be issues getting students to participate after 

the semester has been completed.  

 Some previous research has shown that one semester is not typically long enough to see a 

change in students’ attitude and that attitude takes a long time to be changed.  Because of such, it 

would be of interest to gather longitudinal data on students that have had Business Calculus 

taught with the computational labs.  Many of these students go on to take a business statistics 

course after completing business calculus.  If a second course could be developed, such as the 

course discussed in the recommendations for practices, students’ attitudes toward mathematics 

could be tracked over multiple semesters to see if more exposure to such work could have more 

of an impact on their attitudes than simply over one semester.  This longitudinal data could 

reveal that using these tools over multiple semesters with mathematics may have an impact on 

attitude. 



 254 

The students’ comments revealed several traits and habits that they developed by taking 

the Business Calculus course with computational labs.  One of the overwhelming themes was 

persistence and fighting through challenges.  While the measure of growth mindset was not 

found to be significant as measured by the Mathematics Attitude and Perceptions Survey for the 

entire group with labs, yet was for students that had previously taken calculus, students’ 

comments often mentioned pushing through errors, being extremely frustrated, and struggles but 

continuously working through these problems and persisting even when faced with these 

challenges.  Future research on the use of computational labs could be studied as a growth 

mindset intervention and to see how these can be used to specifically target growth mindset 

development.   

 This study took place in a general education mathematics class and demonstrated several 

important impacts as previously discussed.  Much of the research pertaining to computational 

tools in undergraduate mathematics classes emphasize how these tools can be used in classes for 

mathematics majors or how it can be incorporated throughout the curriculum for an 

undergraduate mathematics program (e.g. Cline et al., 2019; Jones & Hopkins, 2019, 

Kostadinov, Thiel, & Singh, 2019), but there is a lack of research in classes not intended for 

mathematics majors.  The current study provides one such example and Kilty and McAllister 

(2019) provide another of a general education mathematics course with computational tools 

designed for non-mathematics majors that reveal positive impacts.  Kilty and McAllister (2019) 

found that their course helped lower-performing students by removing some of the algebraic 

manipulation and met students where they are.  Because of positive findings from that study and 

this study, it is important to continue to develop and research courses intended for general 

education mathematics classes that can integrate computational tools. 
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 Based on the results of this study, the growth of the use of computational tools in 

practice, and the increase in research in computational tools in STEM education, the calls of 

diSessa (2018) and Lockwood et al. (2019) for mathematics educators to further investigate and 

empirically research how computational tools can be used in mathematics classrooms are 

echoed.  

The following suggestions for research are also recommended:  

§ The collection of more data points on understanding of content to compare the groups, 

such as grades from each test and the final exam 

§ Larger sample sizes including comparison from sections taught by different instructors 

§ Study of computational tools across introductory general education classes of other 

STEM disciplines and use in other mathematics classes 
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Appendices 
 

Appendix A  
Course Timelines 

 
 
 
 
 
 

Week  Control Course Timeline Experimental Course Timeline 
Week 1 1: Introduction, Pre-CCI and Pre-MAPS 

2: Review of pre-Calculus topics 
1: Introduction; Pre-CCI and Pre-MAPS 
2:  Lab 1: Introduction to Jupyter notebooks  

Week 2 1: Cartesian coordinates and linear models 
2: Functions and graphing  

1:  Pre-calculus review; Lab 2: Sequences and 
functions 
2: Review of functions; Algebra of functions  

Week 3 1: Algebra of functions and mathematical 
models  
2: Exponential and Logarithmic functions 

1:  Cartesian coordinates and graphing functions 
2:  Exponential and Logarithmic functions 

Week 4 1:  Limits: graphically and algebraically  
2: One sided limits and continuity; review 

1: Limits graphically/ intuitively 
2: One sided limits and continuity; review 

Week 5 1:  Test 1 
2: Intro to the derivative; Limit definition of 
derivative 

1: Test 1 
2: Lab 3: Introduction to derivative 

Week 6 1: Derivative rules: power, product 
2:  Quotient rule and chain rule; Higher order 
derivatives 

1: The derivative; Derivative rules: power and 
product 
2: Derivative rules quotient and  
chain; Higher order derivatives 

Week 7 1:  Derivatives of exponentials and logarithms  
2: Practice computing derivative  
 

1:  Derivatives of exponentials and logarithms 
2: Practice of computing derivatives 
 

Week 8 1: Applications of the first and second 
derivative 
2: Optimization 1 

1: Lab 4: Applications of Derivatives 
 
2:  Applications of first and second derivative   

Week 9 1: Optimization 2 
2: Marginal Analysis 

1: Optimization 1 
2:  Optimization 2 

Week 10 1: Finish up derivatives/applications; review 
2: Review 

1:  Marginal Analysis 
2:  Review  

Week 11 1: Test 2  
2:  Antiderivatives and indefinite integration 

1: Test 2 
2:  Lab 5: Integration 

Week 12 1:   Integration by substitution 
2:  Area under the curve and the definite 
integral 

1:   Antiderivatives; indefinite integrals 
2:   Integration by substitution 

Week 13 1:  Fundamental Theorem of Calculus 
2:  Area Between curves 

1:   Area under the curve and the definite integral 
2:  Lab 6: Area between curves 

Week 14 1: Consumer and producer surplus 
2: Consumer and producer surplus continued; 
review 

1: Area between curves; Consumer and producer 
surplus 
2: Wrap up integration; review 

Week 15 1: Test 3 
2: Final Exam Review 

1: Test 3 
2: Review for final exam 

Exam 
Week  

Final Exam; Post-CCI; Post-MAPS Final Exam; Post-CCI; Post-MAPS 
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Appendix B 
Excerpts from Labs 

Excerpts from Functions Lab 

Stock Example: 
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Supply and Demand Example: 
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Excerpts from Derivative Lab 

Example of CDC Data File: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 297 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
 



 298 

Appendix C 
Online Consent Statement 

 
Students coming into Business Calculus at High Point University have a diverse set of previous 
calculus experiences, varying skill levels, and leave the course with varying degrees of 
understanding and attitude.  In the interest of helping to make this course more effective, the 
math department is studying how different interventions and teaching methods affect student 
attitude and calculus understanding.  In particular, we are interested in getting information about 
how using labs to introduce students to calculus topics affects their feelings toward mathematics 
and their performance in calculus.  We will be doing the study regardless, but in order to share 
our findings with others, we need to have consent from students to use their data.  
  
There are no repercussions (either negative or positive) for either giving or not giving 
consent.  We will not look at any of the data until after final grades have been turned in, and the 
data is encoded so that the investigators will not be able to link individual students to what they 
put in the surveys.   
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Appendix D 
Consent Form 

 
You have been asked to participate in a research study.  Please read this form carefully and ask any 
questions you have before agreeing to take part in the study. 
 
What the study is about: The purpose of this study is to investigate the effects computational labs in a one 
semester Business Calculus course on students’ attitudes toward mathematics and on students’ calculus content 
knowledge.  
What you will be asked to do: You will be asked to participate in administration of pre-test and post-test 
Calculus Concept Inventory and Mathematics Attitudes and Perceptions Survey along with participating in the 
activities that are part of your business calculus course.  You will also be asked to provide your final grade in the 
course and demographic information such as gender, previously taken calculus, and college major.   
What good will come from the study: This study may provide evidence to support a new pedagogical tool to 
employ in Business Calculus that could make the material and techniques more relevant to outside of the classroom, 
perhaps improving attitudes about the course and potentially increasing understanding by making connections to 
business applications and doing so using computing.  Students in this study may also learn a new skill and way to 
problem solve by being introduced to simple programming and data analysis.  

Important Things to Know about Being Part of the Study 
1. You don’t have to do this.  Participation is completely voluntary and you can withdraw at any 

time without penalty, even after you start.  

2. Pay.  There is none for doing this.  You are doing it for free.  

3. Risks to you.  I believe that there are no risks to you.  If you are hurt, you may seek treatment 
through Student Health Services in Wilson Hall (for full-time day students).  Otherwise, you or 
your health care insurer will have to pay.  If you have any questions about what your insurer will 
pay for, you should contact them.  

4. Your responses will be kept confidential.  Your name will not be stored with your responses 
and only those involved in the research project will have access to the responses of individuals.   

5. If you have questions about the study.  Contact Brielle Spencer-Tyree, (336)841-9589, email: 
btyree@highpoint.edu  

6. If you have questions regarding your rights as a subject in this study.  You may contact Dr. 
Kimberly Wear, IRB Chair, (336) 841-9246, kwear@highpoint.edu. 

Statement of Consent: I have read the above information, and have received answers to any questions I 
asked. I agree to participate in this research study and am at least 18 years of age.   
 
Signature:            Date: __________________ 
Printed Name: ____________________________________ 
 
Person Obtaining Consent: I have explained to the above named individual the nature and purpose, the 
potential benefits and possible risks associated with participation in this research.  I have answered any 
questions that have been raised and I will provide the participant with a copy of this consent form. 
  
Signature:            Date: __________________ 
Printed Name: ____________________________________ 
This consent form will be kept by the researcher for at least three years beyond the end of the study and 
was approved by the IRB on (date). 


