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Abstract

In order to exploit the burgeoning amount of data for knowledge discovery, it is be-

coming increasingly important to build e�cient and intelligent information retrieval sys-

tems. The challenge in informational retrieval lies not only in fetching the documents

relevant to a query but also in ranking them in the order of relevance. The large size

of the corpora as well as the variety in the content and the format of information pose

additional challenges in the retrieval process. This calls for the use of text analytics and

machine learning techniques to analyze and extract insights from the data to build an ef-

�cient retrieval system that enhances the overall user experience. With this background,

the goal of the Text Analytics and Machine Learning team is to suitably augment the doc-

ument indexing and demonstrate a qualitative improvement in the document retrieval.

Further, we also plan to make use of document browsing and viewing logs to provide

meaningful user recommendations.

The goal of the class is to build an end-to-end information retrieval system for two

document corpora, viz., Electronic Theses & Dissertations (ETDs) and Tobacco Settle-

ment Records (TSRs). The ETDs are a collection of over 33,000 thesis and dissertation

documents in VTechWorks at Virginia Tech. The challenge in building a retrieval system

around this corpus lies in the distinct nature of ETDs as opposed to other well studied

document formats such as conference/journal publications and web-pages. The TSR cor-

pus consists of over 14M records covering formats ranging from letters and memos to

image based advertisements. We seek to understand the nature of both these corpora as

well as the information need patterns of the users in order to augment the index based

search with domain speci�c information using machine learning based methods.

We use K-Means, Agglomerative, DBSCAN and Birch clustering algorithms for clus-

tering the Doc2Vec vectors generated from the abstracts of the ETD corpus. We use the

cluster IDs to update the metadata and suggest similar documents to the user. We also

explored di�erent pre-trained models of detecting sentiments. We identi�ed a package,

empath, that shows better results in identifying emotions in the tobacco deposition doc-

uments. Besides, we implemented text summarization based on a new proposed model

which combines feature-based, graph-based, and topic-based models on 1 million tobacco

dataset. We also implemented text summarization on a sample ETD chapter dataset.

vi
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Chapter 1

Introduction

1.1 Overview

This report covers the possible avenues that we, the Text Analytics and Machine Learn-

ing team, intend to explore over the duration of the CS5604 course project. To begin with,

we brie�y discuss our role in the entire project. Further, we emphasize the requirements

of the IR system for each of the two text corpora, i.e., the Electronics Theses & Disser-

tations (ETDs) and the Tobacco Settlement Records. Finally, we enumerate the models,

design strategies, and approaches that we intend to exploit in developing an intelligent

IR system.

1.2 What Are We Aiming To Do?

The goal of the project is to build an end-to-end state of the art information retrieval

system for the following 2 text corpora.

1. 33K Electronic Theses and Dissertations - VTechWorks

2. 14M Tobacco Settlement Records - UCSF

The project work�ow involves building an interactive and user-friendly front-end, a

suitable indexing scheme along with the underlying database management (ELS, Kibana),

integration with containers that make for a suitable collaboration and deployment envi-

ronment, and �nally an intelligent text analytics component that augments the present
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metadata in the ElasticSearch (ELS) for enhanced search and retrieval. The goal of our

team (TML) is to understand domain speci�c and need-based insights from the perspec-

tive of the systems users and to materialize them in the form of features in the system us-

ing suitable methods drawing primarily from the domains of Natural Language Process-

ing, Machine Learning, and Text Analytics. In order to understand the user-requirements,

we treat each of the 2 collections independently to identify the key ideas for enhancing

the IR system. The Tobacco Settlements corpus consists of records of cases pertaining to

the tobacco companies. With regards to the Tobacco Settlements collection, Dr. David

Townsend will be the primary user of our IR system for use in his research. He is an

Assistant Professor at the Department of Management in Virginia Tech. His research

interest focuses on capital acquisition processes including crowdfunding, angel invest-

ments, and venture capital. We discuss (in further sections) his insights and expectations

from the IR system that shall best serve the use case. The ETDs are a collection of over

33K Virginia Tech (www.vt.edu) master’s and Ph.D. theses and dissertations, accessible

at https://vtechworks.lib.vt.edu/handle/10919/5534. The need to develop an IR system

for the ETD collection stems from two facts. First, much of the information in ETDs at

a plethora of educational institutions remains dormant and inaccessible to the research

community. Second, much of the public research in scienti�c document retrieval systems

has been done in the context of conference or journal proceedings (as in Google Scholar:

https://scholar.google.com/) that are patently distinct from ETDs in terms of format and

content. This motivates the need to approach the problem of designing an IR system

targeted towards ETDs that can draw from the basic ideas of retrieval in scienti�c pro-

ceedings and build on them the domain speci�c enhancements conducive to IR for ETDs.

1.3 Understanding the Data

This section discusses the two datasets that form the basis of our exploration of tech-

niques for e�cient retrieval. This section will be iteratively modi�ed throughout the

course of our work to include additional insights and nuances as and when they are dis-

covered. We mention here not only the statistics and meta-information pertaining to the

data but also the requirements that entail a robust retrieval. Further, we intend to include

information from the CME and CMT teams since they are directly dealing with the two

datasets. The reason for including a section on the datasets in our report is that under-

2
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standing the data and the needs of the user/system are pertinent to developing Machine

Learning methods for relevant document ranking.

1.3.1 Electronic Theses & Dissertations

The Electronic Theses and Dissertations Dataset is a corpus of thesis and dissertation

documents from di�erent departments at Virginia Tech. The entire corpus consists of

over 33k documents including both theses and dissertations. For each work, di�erent

chapters in text format are provided.

The initial subset studied, from 2017, includes 281 di�erent dissertations. For each

dissertation, di�erent chapters in text format are present.

1.3.2 Tobacco Settlement Documents

The following information is written with the help of the Collection Management To-

bacco Settlement Documents (CMT) team. There are over 14M (14931435) documents.

All underwent the procedure of Optical Character Recognition (OCR) and have the .ocr

format, which means that the documents are manageable by appropriate text editors.

The metadata representing the descriptive information about the documents, such

as number of pages, type, etc., is stored in the MySQL database (5.5.60 - MariaDB).

It includes �ve tables: idl_collection, idl_industry, idl_�eld, idl_doc_�eld and

idl_doc. The schema of the tables are in Figure 1.1 (courtesy of the CMT team).

1.4 Challenges Faced

1.4.1 Clustering

We faced quite a few challenges over the course of this work, both in terms of technical

di�culties in running our programs on the cloud as well as dealing with the processing

of the large scale tobacco corpus. To begin with, the cloud system crashed due to multi-

ple node failures while running the K-Means program with di�erent initializations and

computing the Calinski-Harasbasz Index for choosing the optimal cluster count. Further,

dealing with TFIDF vectors for the ETD and tobacco corpora proved to be a challenge

not only due to their large size but also their sparsity. We discuss about dealing with this

3



Figure 1.1: Data Structure from the CMT Team
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problem in Section 1.5.1. Secondly, choosing an optimal Hierarchical Clustering method

that best �ts our use case appeared to be a challenging endeavor due to the myriad of

such techniques in the literature. While some methods rely on the K-Means algorithm for

initial iterations of clustering, others suggest a bottom-up approach by beginning with

smaller clusters and combining them to get clusters of the required size.

1.5 Solutions Developed

1.5.1 Clustering

For pre-processing the Tobacco Settlement documents, we �rst converted all text to low-

ercase followed by tokenization using a sentence tokenizer which helps demarcate sen-

tences and the TreeBank word tokenizer. Finally, we removed from the text a list of

common English stopwords provided by scikit-learn. More details are given in Section

5.1.1. The reason for the node failures during the K-Means iterations was the unusually

large size of the TFIDF document vectors. Moreover, these vectors are extremely sparse

with only ~1% of values being non-zero. We strongly believe that this has caused the

imbalance in the cluster sizes. An obvious reason for the sparse nature of the vectors is

the inexact tokenization of the documents, which in turn is likely to be caused by the

presence of invalid characters in the documents. Finally, with regard to the large size

of the vectors, we compute Doc2Vec based document vectors based on the abstracts of

the ETD corpus. We choose 128 dimensional embeddings for the purpose of vectorizing

the corpora. These vectors help capture the context of the words in the document and

thus encode semantic relationships among documents. We also explored dimensionality

reduction of the TFIDF vectors, however, the results were inconclusive primarily due to

the extreme sparsity in the vectors. In addition, in order to come up with a robust set

of algorithms as well as their hyper-parameters we perform extensive cross-validation

experiments across di�erent types of clustering algorithms (both large scale and small

scale) as well as number of clusters for each of these algorithms. We present a more

detailed coverage of these topics in Chapters 4 and 5.
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Chapter 2

Literature Review

The �eld of information retrieval is large, making it di�cult to perform an exhaustive

literature review of the myriad approaches involving machine learning and text analyt-

ics. Thus, instead of attempting such an exhaustive review, we point to certain review

papers/resources that cover the breadth of the ideas we considered in our work. Further,

we elaborate on the approaches that are most relevant to our use cases given the size of

the dataset, the requirements for retrieval, and the a�ordable computational budget.

2.1 But What is Information Retrieval?

Textual Information Retrieval is the task of ranking a set of documents from a collection

in an order of relevance given the user requirements. From a birds-eye-view, this

process involves three primary tasks [39]: generate a representation of the query that

speci�es the information need, generate a representation of the document to capture the

underlying distribution in the corpus, and �nally, compute a measure of their mutual

relevance. In our case, the user requirement is speci�ed in the form of a textual query.

The ranking metric or the measure of relevance is of utmost importance to the IR

process. The very �rst step in generating such a ranking involves the development of

a representation for both the query and the document. To this end, there are a myriad

of approaches in the literature. Most ad-hoc retrieval systems use exact term counts as

simple proxies for semantic understanding. A classic example is the BM25 model [50]

that results from di�erent weighting and normalization of tf-idf counts. However, these

simple measures often overlook contextual information that arises due to the exact

6



ordering of the terms. Thus, as mentioned in [39], this motivates a way to perform

inexact matches that go beyond term frequency counts. Problems also occur when the

query contains terms that are either rare or absent from the document corpus. While

exact matching can cover the case of rare term occurrence, the appearance of a new

term entails the consideration of a non-�xed size vocabulary.

Another approach to building IR systems is that of Language Modelling [25] [47]. The

idea is to build a language model for each document from the corpus and compute a pos-

terior probability of the query given the document aka the query likelihood as a ranking

measure. E�orts have also been directed towards a reverse approach where a model for

queries is built and the document likelihood is computed. While both these approaches

are somewhat similar under Bayesian statistics, the task of building a language model for

the queries is somewhat impractical considering the amount of data available. A third

idea under Language Models is to build a language model for the query as well as the

document and then compute a similarity measure between them [28]. A natural way of

comparing probability distributions is to use an information theoretical measure such as

the commonly employed KL divergence [18].

A clear lacuna in the two aforementioned approaches is that both are based on a

term frequency measure of the corpus and thus fail to capture semantic relationships

and contextual nuances. Furthermore, they do not extend to include synonymous terms

in the retrieval. With a view to address this, we consider translational models, which

allow the inclusion of synonymous terms at the expense of increased computational cost

[15].

2.2 Learning Representations for Information Re-
trieval

Representing the information in a suitable way is a fundamental and important step in

building a retrieval system. Often, the smallest unit of representation is the term in a

document, which is modeled in a form commonly known as a vector representation.

Since the basic requirement is to fetch a relevant group of documents given a set of

terms that form the query, the motivation behind learning good vector representations

is to develop a notion of similarity among term vectors. The simplest approach to build

such a representation is to use a local scheme where each term vector covers all terms in
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the vocabulary with Boolean switches indicating their presence or absence. An obvious

drawback of this so-called local representation is the size of the vectors as the vocabulary

size increases. Moreover, these simplistic representations do not capture any notion of

closeness between terms.

A di�erent approach motivated by the distributional hypothesis [24], is to learn vec-

tors that capture the distributional semantics in the term vector space. The idea is to

learn vectors for terms based on their context with the underlying assumption that word

semantics are distributed in the context in which they appear [23]. While this idea tends

to work well compared to sparse local representations, it is plagued by the fact that the

notion of semantics between terms is in itself fuzzy and thus di�erent attempts to learn

such representations may not lead to the semantic relationships relevant to the task.

A promising idea is to learn a single representation for entities larger than terms such

as paragraphs or entire documents. One such noteworthy approach is elucidated by Le

et al. [29], where they learn a single embedding for a paragraph/document by train-

ing a neural network to predict random words sampled from the paragraph/document.

Further, they also augment the input with contextual term representations to make the

predictions, thereby simultaneously learning term representations.

Such embeddings can then directly be used for clustering the corpora. This can po-

tentially help increase user experience as elaborated in Section 2.3.1.

2.3 Clustering Basics

Note: This section draws from the coverage of this topic in [37].

Clustering is an unsupervised learning approach to derive meaning from data cor-

pora. As opposed to supervised approaches where data is accompanied with the

corresponding class label, the unsupervised way involves dealing with a corpus of points

without any pre-determined class associated with them. In the context of information

retrieval systems, the documents represent the unlabelled corpora in which we desire to

derive meaning for e�cient retrieval. The basis on which the clustering approach relies

to augment information retrieval systems is the cluster hypothesis which states that:

“Documents in the same cluster behave similarly with respect to relevance to

information needs.” [37]
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Thus, the idea is to exploit the underlying covert semantic association between doc-

uments to e�ciently retrieve documents relevant to the query. From a perspective of

implementation, this is achieved by augmenting the metadata in the ELS (Elastic Search)

system. More precisely, our target is to cluster the documents and label the resulting

clusters which can be used in the metadata for enhanced searching. Below we discuss

common ways of clustering, ranging from the rudimentary ones to the more arcane types.

Further, we discuss various ways that the system can be designed so as to take full ad-

vantage of the clustering techniques while also enhancing the document retrieval. We

also discuss how clustering would be useful on a case-wise basis for both the ETDs and

the Tobacco Settlement records.

1. Flat and Hierarchical clustering

Flat clustering treats the entire corpus of data as a single block or level and itera-

tively splits it into a set of clusters that are not immediately related to each other.

On the other hand, the hierarchical approach tends to group clusters together while

also maintaining some relationship among two di�erent clusters. Such relation-

ships can be as simple as a one-to-one mapping between similar clusters [37].

2. Soft and Hard clustering [37].

The idea of hard clustering is the most intuitive, in that it suggests to associate

each datapoint (here, document) with only a single cluster. On the other hand, soft

clustering takes an approach similar to fuzzy logic where each datapoint belongs

to every cluster with some �nite measure of association. These measures could be

modeled as probabilities which would result in a distribution for each datapoint

over all clusters. Likewise, these measures of association can be used as ranking

metrics for displaying results in an IR system.

2.3.1 Types of clustering

1. Search result clustering [37].

Often, the result of a single search query is a signi�cantly large number of doc-

uments, that the user would take a non-trivial amount of time sur�ng through,

to �nd the one (or multiple) they are looking for. If the results are displayed se-

quentially as they are retrieved, there is a subtle yet non-trivial problem that might

plague the system. Consider the results of a web search for the query mouse. It
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might happen that the �rst few results displayed to the user pertain to one of in-

terpretation (here, animal) of the query, while the expected results (here, computer

spare part) get placed further down in the list. Thus, the idea of search clustering

is to cluster the retrieved documents into multiple classes and display the resulting

documents on a per-class basis.

2. Scatter-Gather [37].

The idea of a scatter gather approach to clustering is to replace the conventional no-

tion of query based information retrieval with a multi-step selection based search-

ing interaction which is backed by clustering. Here the user is �rst presented with

a �xed set of categories to choose from. Once one or more of these categories are

chosen, the documents relevant to these categories are retrieved and clustered into

another set of categories for the user to select from. This process is repeated until

the user �nds the relevant document/s.

3. Collection Clustering - A static hierarchical approach [37].

Instead of clustering search results, collection clustering builds a hierarchy of clus-

ters around the entire corpus. The user can then be presented with a �xed set of

categories to choose from. This would help avoid the need to cluster the docu-

ments in real-time as entailed by the scatter gather approach. Another o�-shoot of

clustering the entire corpus is that it can help improve recall. For example, when

a document is returned by ELS in response to a query, (most if not) all the docu-

ments belonging to the same cluster can be displayed to the user. This, again, is in

accordance with the cluster hypothesis stated above.

4. Hierarchical Clustering

Hierarchical clustering is an algorithm used to cluster unlabeled data. It is divided

into two types, i.e., Agglomerative and Divisive. For Agglomerative Clustering,

a bottom-up approach is used, i.e., each data point in the dataset is treated as an

individual cluster. Then similar clusters are merged iteratively to form a single

cluster. Divisive clustering uses a top-down approach. All of the data points are

treated as one big cluster which is based on the similarities inside and between the

clusters.
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2.4 Text Summarization

There are many relevant works on text summarization. Some involve di�erent extractive

summarization techniques. For example, a feature-based model [53] is very popular in

keyword extraction and text summarization. It can �lter out the non-relevant informa-

tion, and measure the similarity through Term Frequency–Inverse Document Frequency

(TF-IDF) to summarize di�erent events. For sentence extraction, a graph-based model

such as TextRank [38] builds graphs on texts, identifying connections between various

entities in a text, and implements the concept of recommendation. TextRank can extract

both keywords and sentences from long documents because it relies on both local context

of a text unit and information from the entire text. A topic-based model [45] uses Latent

Semantic Analysis based summarization algorithms to extract information such as which

words are used together and which common words are seen in di�erent sentences.

2.5 Recommender Systems

With the growing volume of online information, recommender systems have helped to

overcome information overload. The �eld of deep learning is gaining signi�cance in

information retrieval and recommender systems [54]. [52] describes di�erent ways of

combining predictions from User-based collaborative �ltering and Item-based collabo-

rative �ltering to minimize overall prediction error using multiple linear regression and

support vector regression techniques.
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Chapter 3

Requirements

There are two types of requirements for this projects. They are described below.

3.1 Our Requirements

This section describes the requirements that we have from di�erent teams of the class.

The requirements relative to the other teams are mentioned below.

CME Team

CME should provide:

1. A tokenized version of the corpus.

2. Results from preprocessing, including removing extraneous characters, tokeniza-

tion, and lemmatization.

3. Whole documents in text format.

4. Chapter text �les from the pre-processed data.

CMT Team

CMT should provide:

1. A tokenized version of the corpus.
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2. Results from preprocessing, including removing extraneous characters, tokeniza-

tion, and lemmatization.

3. Whole documents in text format.

FEK Team

FEK should provide:

1. UI requirements for recommendations.

2. UI requirements for document summaries.

3. UI requirements for clustering.

4. UI requirements for sentiment analysis.

5. User logs along with the required documentation for the various log �elds for rec-

ommendations.

ELS Team

ELS should provide:

1. User logs along with the required documentation for the various log �elds for rec-

ommendations.

2. Formats for adding new �elds for document summaries, clustering values, and

named entity recognition.

INT Team

INT should provide:

1. A stateful container deployment pipeline (e.g., docker commit).

2. A container with Python libraries (NLTK, Gensim, Sumy) installed.
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3.2 Class Requirements

The goal of the Text Analytics and Machine Learning (TML) is to improve the perfor-

mance and e�ectiveness of the search system. In order to achieve that we will be using

di�erent techniques of Machine Learning and state-of-the-art tools. Therefore, the class

requirements or expectations towards the TML team can be listed as:

1. Recommendation for similar ETD/tobacco documents.

2. Summarizing the very long documents in the tobacco dataset and summarizing

each chapter in the ETD dataset.

3. Clustering index and NER index values.
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Chapter 4

Design, Tools, and Conceptual
Background

This section describes various techniques used to enhance the information retrieval pro-

cess.

4.1 Machine Learning for Information Retrieval

Here we discuss Machine Learning based approaches to improve user experience while

using the information retrieval system. The system architecture diagram of the TML

team can be seen in Figure 4.1.

4.1.1 Clustering

Here we discuss the clustering algorithms that we have used for the ETDs and/or the

tobacco document corpora.

Clustering Algorithms

1 Random Splitting

To get the system working, data is split randomly into clusters, i.e., each example

(a document in this case) is assigned to a random cluster. This is not an actual

clustering method since the items in a cluster will not necessarily be similar; also,
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Figure 4.1: System Architecture Diagram of TML Team

two items in di�erent sets could be very much similar to each other. The main

purpose of this step is to get the system working by providing metadata for the

clustering attribute.

2 K-means clustering

The K-means clustering algorithm divides the data into k clusters. The mean of

all the points in a cluster is the centroid/representative point for that cluster. Each

example/document belongs to the cluster whose centroid is closest to that exam-

ple. Di�erent distance measures are used with k-means and the most optimal one

depends on the data that is to be processed. Hence, training and testing the data

with di�erent measures is a good way to �nalize the right measures.

3 DBSCAN

DBSCAN is a density based clustering algorithm proposed by Ester et al. [20] for

discovering clusters in large scale databases with noise. This algorithm addresses

the shortcomings that entail the clustering of large scale databases. In particular,

DBSCAN requires minimal domain knowledge of the corpus for �ne tuning the pa-
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rameters of the model. Moreover, it is capable of discovering clusters with arbitrary

shape, which is particularly important for large spatial vector spaces wherein the

cluster shapes might not be spherical as is assumed by such algorithms as K-Means.

Finally, DBSCAN has the added advantage that it scales elegantly to large corpora

with more than just a few thousand data points. Thus, DBSCAN suits our use case

since both the ETDs and tobacco corpora are large scale spatial databases with po-

tentially non-spherical clusters. Note that the documents occupy a Euclidean space

after conversion to an N-dimensional vector space using Doc2Vec [29].

4 Birch

Birch is an e�cient data clustering method for very large databases. It was de-

signed to optimize the memory and I/O cost bottlenecks while dealing with large

corpora. Further, Birch e�ciently deals with noise (documents that do not belong

to any cluster within a similarity threshold). Birch starts by clustering the entire

corpus in a single scan and then (optionally) improving the cluster quality in sub-

sequent iterations. In particular, Birch dynamically and incrementally clusters data

points within a speci�ed memory and computation constraint [55]. This algorithm

is especially crucial in our case while dealing with the ~91k articles from the To-

bacco Settlement Records. Using multiple parallel workers with such techniques

as K-Means leads to an monumental consumption of memory which calls for such

algorithms as Birch that are memory and I/O e�cient.

5 Agglomerative Clustering

Agglomerative clustering treats every data point as an individual cluster and sim-

ilar clusters are merged iteratively to form a single cluster containing all the data

points [48]. The steps followed in this method are given below.

(a) Let each data point be an individual cluster.

(b) Find the similarity between all the pairs of the clusters and merge two similar

clusters.

(c) Repeat until all the clusters are merged into one cluster.

In order to decide which clusters to combine, there are various methods used to

calculate the similarity between clusters.
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(a) MIN
This method is also known as the single linkage algorithm. The similarity of

two clusters is equal to the minimum value of all pairwise distances between

the elements in cluster 1 and the elements in cluster 2. This method does not

work well when much noise is present between clusters.

(b) MAX
Also known as the complete linkage algorithm, this can be de�ned because the

similarity between two clusters is the maximum value of all pairwise distances

between the elements in cluster 1 and the elements in cluster 2. This method

works well when noise is present between the clusters. However, it is biased

towards globular clusters.

(c) Group Average
The similarity between two clusters is de�ned as the average distance be-

tween elements in cluster 1 and elements in cluster 2.

(d) Ward’s Method
Ward’s method calculates the average of square distances between the ele-

ments in cluster 1 and the elements in cluster 2.

Dendrograms are used to visualize the hierarchical relation between clusters. It

uses a tree like diagram that records the sequences of merges and splits. Any num-

ber of clusters can be obtained by cutting the dendrogram at a desired level. An

illustration for this is shown in Figure 4.2.

We plan to use the Agglomerative class from sklearn.cluster to create the hierarchi-

cal clustering model as shown in Figure 4.3. The number of clusters are set using

the n_cluster parameter. The a�nity parameter has the default value of ‘euclidean’

which is the method we choose to calculate distance between data points. The

linkage parameter is set to ‘ward’ which minimizes the variance between clusters.

The �t_predict method returns names of the clusters that each data point belongs

to.

4.1.2 Text Summarization

Text summarization is a technique to shorten a long text document into a summary that

includes the main points of the original document. It is the process of extracting impor-
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Figure 4.2: Dendrogram
[34]

Figure 4.3: Sklearn AgglomerativeClustering class snippet
[34]
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tant information (e.g., keywords) from a source document to provide a summary. The

input is a document and the output is a summary. There are two di�erent datasets (Elec-

tronic Theses & Dissertations and Tobacco Settlement Documents) on which we are going

to implement automatic text summarization.

Motivations

1. Titles are sometimes quite confusing. When searching papers, the search engine

will return a list of papers after we input the keywords. However, the titles may

not be su�ciently informative. In other words, the titles sometimes are not very

related to the core content of the corresponding paper.

2. Theses and dissertations are too long to review, and their abstracts are too short to

include information about each chapter. To address this limitation, we are going to

generate the summary of each chapter in order to save readers’ time and energy.

3. It is a tedious task for human beings to generate a summary manually because it

requires a rigorous analysis of the document. In order to reduce time and help

humans better understand the topics, an automatic and accurate summary proves

to be very useful.

Approaches

Extractive methods select keywords and sentences from documents and then combine

these keywords and sentences into a summary. Extractive summarization is based on the

assumption that key information of a document can be found in one sentence or several

sentences from the document. It has the advantage that the summary usually follows

grammar rules, and uses the wording of the author. The task of keyword extraction is to

automatically identify a set of keywords that can best describe the document.

Abstractive summarization methods include keywords based on semantic under-

standing, where sometimes those keywords don’t appear in the source documents. We

form the sentences on our own and then combine these sentences to form an abstract

[40]. In this method, text is interpreted by natural language processing techniques in or-

der to generate a summary which conveys the most critical information from the original

document. However, due to the demand of high quality GPU and immature technologies

of abstractive methods, we will focus on several di�erent approaches to extractive sum-

marization.
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1. Feature Base – Term Frequency Inverse Document Frequency (TF-IDF)
The feature-based model will extract the features of the sentence, then a summary

will be provided based on the evaluated importance. Various features can be used

in evaluating the sentence importance such as term frequency, position of the sen-

tence in the document, length of the sentence, name entity recognition, and so on.

We will implement the following two feature-based models.

TF-IDF is a numerical statistic that mainly re�ects the importance of the feature

item in the document representation. The TF-IDF algorithm estimates the fre-

quency of a term in one document over the maximum in a collection of documents

and assesses the importance of a word in one set of documents.

2. Feature base - Luhn’s Algorithm
Luhn’s algorithm is a naive approach based on TF-IDF and on looking at the win-

dow size of non-important words between high importance words [33]. Besides, it

also assigns high weights to the sentences near the beginning of the document.

3. Graph Base - TextRank
The graph-based model makes the graph from the document, then summarizes it

by considering the relation between the nodes. Graph-based ranking algorithms

are essentially a way of deciding the importance of a vertex within a graph, based

on global information recursively drawn from the entire graph [38].

TextRank is an extractive and unsupervised text summarization technique based

on PageRank, which is often used in keyword extraction and text summarization.

It is a graph-based ranking model for text processing so that the most relevant

keywords and sentences in text documents can be found. A graph will be built

associated with the text, where the graph vertices are representative for the units

to be ranked [38]. There is no need for TextRank to rely on any training data.

Besides, TextRank can work with an arbitrary length of text.

Therefore, we use TextRank for sentence extraction. In this method, we rank the

entire sentence instead of each word, and a vertex is added to the graph of each

sentence in one document. Here is the process of TextRank:

(a) Input documents (chapters).

(b) Tokenize the text into sentences.
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(c) Remove stop words and generate clean sentences.

(d) Find vector representations (word embeddings) for each sentence.

(e) Build similarity matrix (cosine similarity).

(f) Convert the sentences into graphs.

(g) Weight the sentences via PageRank and generate a ranking based on the matrix.

(h) Select key sentences to provide a summary.

The �ow of the TextRank Algorithm is shown in �gure 4.4 [26].

Figure 4.4: Flow of TextRank Algorithm
[26]

4. Topic Base – Latent Semantic Analysis
The topic-based model calculates the topic of the document and evaluates each

sentence by the included topics. In other words, the sentence including main topics

may get a higher evaluation score.

Latent Semantic Analysis (LSA) based on Singular Value Decomposition is often

used to detect topics. LSA is an algebraic-statistical method that extracts hidden
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semantic structures of words and sentences. LSA uses the context of the input

document and extracts information such as which words are used together and

which common words are seen in di�erent sentences. A high number of common

words among sentences indicates that the sentences are semantically related. The

meaning of a sentence is decided using the words it contains, and meanings of

words are decided using the sentences that contain the words [45]. LSA is also

an unsupervised text summarization technique that does not rely on any training

data. Here is the process of LSA implementation:

(a) Create an input matrix based on an input document.

(b) Model relationships among words and sentences by Singular Value Decomposition.

A = U
∑

V T
(4.1)

where A is the input matrix (m × n); U is words × extracted concepts (m × n);

∑
represents scaling values, diagonal descending matrix (n × n); and V is sentences ×

extracted concepts (n × n).

(c) Select important sentences to provide a summary.

The �ow of the Latent Semantic Analysis is shown in Figure 4.5 [41].

Figure 4.5: Flow of Latent Semantic Analysis [41]

In our project, we implement LSA based on Gensim, a Python library for topic

modelling, document indexing, and similarity retrieval with large corpora.
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New Model

Top important sentences are extracted from �les to form a summary based on three di�er-

ent models (feature-based, graph-based, and topic-based model). However, the results are

quite di�erent. In addition, it is hard to evaluate the performance for text summarization.

One popular and common evaluation technique is to manually evaluate the summary by

human-beings. However, it seems to be impossible to manually evaluate the summaries

generated from one million tobacco documents. Besides, these three traditional models

mentioned above can all give good performance based on di�erent features proposed.

Therefore, we proposed a new model which can provide a summary considering the per-

formance of these three traditional models. An overview of the �rst version of new model

is shown in Figure 4.6.

Figure 4.6: First Version of New Model

The inputs are the �le documents. Each �le is processed using each of three di�erent

models, separately. Top important sentences are extracted from di�erent models. The

number of extracted sentences can be easily modi�ed by users. Then all of these top-

ranked sentences are put in a set in order to �nd the overlap of the sentences. We assume

that a sentence which appears in all three models is one of the most important sentences

which can be provided in the �nal summary.

Problems come when there is no overlap among the three models. This problem can

be solved by setting a larger threshold for each model in order to extract more sentences.

Nevertheless, the overlap sentences may not be important if the threshold is set to be very

large. Therefore, we proposed a second version of the new model as shown in Figure 4.7.
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Figure 4.7: Second Version of New Model

In this model, we replace the set union step with cosine similarity calculation and

sorting. Even if there’s no overlap of the result sentences extracted from the three tradi-

tional models, we can still get the most similar sentences which appear in the top ranked

sentences of each model. Then we rank these sentences and provide the �nal summary.

4.1.3 Named-Entity Recognition (NER)

Understanding the context of a document is of very high value, especially for information

extraction. In any form of document, there are particular terms representing particular

entities which are more informative in a unique context. Real-word objects such as per-

sons, locations, organizations, date-times, and other types of named entities can indicate

the essence of the whole document. named entity recognition (NER) is a popular tech-

nique used in information extraction to identify and segment the named entities and

classify or categorize them under various prede�ned classes. As a more formal de�ni-

tion, Named-entity recognition (NER) (also known as entity identi�cation, entity chunk-

ing, and entity extraction) is a subtask of information extraction that seeks to locate and

classify named entity mentions in unstructured text into pre-de�ned categories such as

the person names, organizations, locations, medical codes, time expressions, quantities,

monetary values, percentages, etc. [5].

NER: Applications and Usecases

There are many practical applications and use cases of NER. In our case, we have two

di�erent types of datasets. Due to the nature of these two datasets, we have some variety
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Figure 4.8: System Architecture of NER

in the NER use cases. However, from a broad perspective, we would be using NER to

improve the search result in Elasticsearch. Some of the use cases for NER are as follows:

1. Improve Search Results
Our primary goal of using NER is to improve the search results from the Elastic-

search system. We have two di�erent corpora of data, one ETD dataset and another

of tobacco settlement documents. The ETD dataset has 33 thousand documents,

whereas the tobacco dataset has over 14 million documents. Therefore, if for every

search query the algorithm ends up searching all the words in millions of articles,

the process will take a long time . Instead, if Named Entity Recognition can be

run once on all the articles and the relevant entities (tags) associated with each of

those articles are stored separately, this could speed up the search process consid-

erably. With this approach, a search term will be matched with only the small list

of entities discussed in each of the articles, leading to faster search execution.

2. Contributing to Recommender Systems
One of the major uses cases of NER involves automating the recommendation pro-

cess. News media, such as BBC News, use NER to recommend news articles to
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their users. These recommendations are mostly content-based recommendations.

As mentioned in the article by BBC News Lab [11], they extract named entities by

using the Stanford Core NLP Framework [9], which they then match with their DB-

pedia Lookup Service [2]. Using these matches, the BBC News media recommend

similar news articles to their customers.

Figure 4.9: BBC News Lab using Name Entity Recognition

3. Classifying Content from Documents
The tobacco deposition corpus is associated with approximately 600 court cases.

Named Entity Recognition can automatically scan these documents and reveal

which are the major people, organizations, and places discussed in them. Know-

ing the relevant tags for each document can help in automatically categorizing the

documents in de�ned hierarchies, and enable relevant content discovery.

4. Classifying Contents in Research Papers
Similar to the points mentioned before, organizing the contents of the ETD research

papers in a well-structured manner can save a lot of computational overhead. Since

the ETD dataset covers a distinctive domain, we need to use scholarly, e.g., scienti�c
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models to identify scienti�c named entities. Segregating the papers on the basis of

the relevant entities can speed up the searching for relevant results.

Popular NER Tools

There are several NER systems that use linguistic grammar-based techniques as well as

statistical models such as machine learning. State-of-the-art NER systems for English

produce near-human performance. For our research, we selected three high performing,

open sourced NER tools. There are as follows:

1. Stanford NER
Stanford NER is a Java implementation of a Named Entity Recognizer (NER). It la-

bels sequences of words in a text which are the names of things, such as person

and company names, or gene and protein names. It comes with well-engineered

feature extractors for Named Entity Recognition, and many options for de�ning

feature extractors. Included with the download are good named entity recogniz-

ers for English, particularly for the 3 classes of PERSON, ORGANIZATION, and

LOCATION [10].

2. NLTK NE_Chunk
NLTK provides a classi�er that has already been trained to recognize named enti-

ties, accessed with the function nltk.ne_chunk(). The classi�er can also add cate-

gory labels such as PERSON, ORGANIZATION, DATE, TIME, MONEY, and GPE.

Chunkers can be constructed using rule-based systems, such as the “RegexpParser”

class provided by NLTK, or using machine learning techniques, such as the “Con-

secutiveNPChunker”. In either case, part-of-speech tags are often a very important

feature when searching for chunks. Although chunkers are specialized to create

relatively �at data structures, where no two chunks are allowed to overlap, they

can be cascaded together to build nested structures. Relation extraction can be per-

formed using either rule-based systems which typically look for speci�c patterns in

the text that connect entities and the intervening words, or using machine-learning

systems which typically attempt to learn such patterns automatically. Research re-

ports describe projects that investigate aspects of computing education using a

training corpus [6].

3. spaCy
spaCy is an open-source software library for advanced natural language process-
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ing. It is written in the programming languages Python and Cython. spaCy comes

with pre-trained statistical models and word vectors, and currently supports tok-

enization for 50+ languages. It features state-of-the-art speed; convolutional neural

network models for tagging, parsing, and named entity recognition; and easy deep

learning integration. It is designed with the applied data scientist in mind, mean-

ing it does not weigh the user down with decisions over what esoteric algorithms

to use for common tasks and it’s incredibly fast [8]. There are several other stud-

ies of tailored NER methods for very particular domains, such as ScispaCy for a

Biomedical NER model [42], ChemTok for a chemistry NER model [13], etc.

4.1.4 Sentiment Analysis

Since the tobacco documents include deposition documents, there is room for hu-

man emotions. Understanding the sentiments in the deposition documents would

help the expert distinguish good witnesses from bad. The whole process of iden-

tifying a good witness is very complex. The sign of a well versed witness can be

found in their use of certain words, size of vocabulary, and consistency in state-

ment. Another sign of a good witness can be in emotions they express in their

statements. For identifying witness emotions we have explored some of the state-

of-the-art packages detecting sentiments.

Flair

Flair uses state-of-the-art techniques for named entity recognition, text classi�ca-

tion, and language models [12]. The tool has standard model training and hyper-

parameter selection routines. It is capable of using pre-trained models for di�erent

applications. There is also room for training new models and using them to classify

test datasets.

Twitter Emotion Recognition

The Twitter Emotion Recognition package is a trained recurrent neural network

(RNN) that can predict emotions in English tweets [17]. As the name implies, the
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Figure 4.10: System Architecture of Sentiment Analysis

model was trained on English tweets from the popular website Twitter. The pack-

age predicts either Ekman’s six basic emotions, Plutchik’s eight basic emotions, or

the Pro�le of Mood States (POMS) six mood states. Although this package is speci-

�ed for tweets, we want to see if the performance holds for our tobacco deposition

documents.

Empath

Empath is a tool based on neural network word prediction that can generate and

validate new lexical categories on demand [21]. The Empath tool uses a small set

of seed terms to classify documents into di�erent categories. There are numerous

built-in categories (total 200 at the time of this report) pre-validated from common

topics in a web dataset. A user can easily create new categories by providing a

small set of seed terms. Empath uses a deeply learned neural embedding across

over 1.8 billion words. The work�ow of the Empath tool can be found in Figure

4.11.
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Figure 4.11: Empath Work�ow from the Empath Paper [21]

4.1.5 Recommender systems

The abundance of information that is available on the internet makes information seek-

ing a di�cult task. Using a search query method might not be very e�ective as it is

mainly dependent on the user’s ability to �ne-tune the search query. This is when the

recommender system comes into the picture. Almost all modern platforms – that we

use to obtain information from – use recommendation systems. Companies like Net�ix,

LinkedIn, Amazon, and Spotify leverage recommendation systems to give better expe-

rience to the users by recommending relevant content based on the user’s preferences.

The two major paradigms of the recommender system are content based �ltering and

collaborative �ltering methods.

Types of Recommendation Systems

1 Content-based Recommendation System

Content-based recommendation systems deal with a good amount of items’ own

attributes rather than users’ interaction and feedback. For example, in a music app,

Pandora, each music is assigned a certain number of attributes, and based on the

attributes of the music chosen by the user, the recommendations are made.

Content based methods are computationally faster and interpretable. They do not

face the cold-start problem, making them easily adaptable to new items. Clustering

and cosine similarity are some of the methods that are used to implement content-

based recommendation systems.

An overview of the content-based recommendation system is shown in Figure 4.12

[51].

2 Collaborative Filtering Recommendation System
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Figure 4.12: Content based recommendation [51]

Collaborative �ltering is a method that makes recommendations based on users’

historical preferences or by mimicking user-to-user recommendations. User-based

�ltering and item-based �ltering are the two categories of collaborative �ltering.

The user-based method measures the similarities between the target user and other

users while the item-based method measures the similarities between users’ inter-

actions with other items.

The applications of collaborative �ltering involve large datasets. Thus it is used for

many purposes, including with �nancial, sensing and monitoring, and environ-

mental sensing data. An overview of the collaborative �ltering recommendation

system for recommending articles to a user based on another user is shown in Fig-

ure 4.13 [51].

3 Hybrid Recommendation Systems

Both content based and collaborative systems have their own strengths and weak-

nesses. Hybrid recommendation systems provide recommendations based on the

weighted average of both the methods. Hybrid methods are more accurate than the

pure approaches and are used to avoid common problems such as cold start, which
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Figure 4.13: Collaborative �ltering recommendation [51]

is faced in the collaborative approach, where for a new user there is not enough

data to start with, and the sparsity problem, where there are insu�cient ratings for

certain topics.

We will be implementing some of the collaborative �ltering and hybrid recommen-

dation techniques based on user history during the course of our project. A detailed

overview of these techniques is given below.

Types of Collaborative Filtering

Collaborative �ltering systems make recommendations based on historic data of

users’ preference for items. The preference is represented as a user-item matrix. It

is also called as rating matrix or preference matrix. Figure 4.14 is an example of a

matrix describing the preference of 4 users on 5 items, where p12 indicates user 1’s

preference for item 2 [19].

The user-item matrix can have millions of entries since it includes all the users and

all the ETDs and tobacco data. This matrix is typically huge, very sparse, and the

majority of entries in the matrix will be missing because it is not possible for every
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Figure 4.14: Preference matrix example

user to have a historical preference for every item. A sample preference matrix

with missing values might be as shown in Figure 4.15.

Figure 4.15: Preference matrix with missing values as question marks

The goal of recommender systems is to �ll these missing entries in order to predict

the utility of items to each user.

The di�erent types of Collaborative Filtering recommendation systems are as fol-

lows.

1 User based k-Nearest Neighbors

The nearest neighbor based method is based on the similarity between pairs of

users. This technique works on the notion that there is a high tendency for a user

to like the items which have been liked by other users who are alike and have

similar preferences. The algorithm is as follows [19]:

(i) Compute similarity between users

The similarity between users is determined using Cosine Similarity:

(ii) Find k most similar users to user A

Among all the similar users, the k most similar users are selected.
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(iii) Recommend items which have been used or seen by the k similar users but have

not been used or seen by user A.

For example, in our project, we recommend to user A the ETDs and tobacco doc-

uments which have been searched by similar users but have not been searched by

A according to the user search history.

2 Matrix Factorization

Matrix Factorization is a Latent Factor Method which creates a new and usually

reduced feature space of the original user or item vectors, leading to reduced noise

and faster computations in real-time. Matrix factorization attempts to reduce the

dimensionality of the preference matrix and approximates it by two or more small

matrices with k latent components. One of the methods used to reduce dimen-

sionality is Singular Value Decomposition (SVD). SVD decomposes the preference

matrix as follows [19]:

where U and V are unitary matrices.

A sample equation for 4 users and 5 ETDs is as follows:

The preference of the �rst user for the �rst ETD can be written as follows:

The reduced matrix which has been obtained from the users’ search history is used

to provide recommendations to the user.

3 Neural networks
This is a Deep Learning based approach which models the sequential information

based on the users’ item purchase or search history using neural networks. Let us

consider a user A who has an item sequence as follows: item1 - item2 - item 3 -
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item4. The intuition is to use each item in the sequence to predict its neighboring

items, formulated as a classi�cation problem, where each item is one class. The

training data include the neighboring K items of each item (the left K and right K

items). Figure 4.16 illustrates the pairs of items with K = 1 [19].

Figure 4.16: Deep Learning Approach for Collaborative Filtering [19]

This sequence of items is used to train a neural network which is used to provide

recommendations to another similar user.

For example, consider a scenario where there is a user A with a search history

sequence as ETD1 - ETD2 - ETD3 and there is another user B who has searched

for ETD1, then ETD2 and ETD3 will be among B’s recommendations as it is likely

that user B will also search for similar content.

Sequential neural network architectures such as LSTM and GRU can be used to

model the search history.

Another deep learning approach for recommendation system is the use of autoen-

coders. In this technique the preference matrix is compressed using a neural net-

work such as an autoencoder. This approach is similar to matrix factorization

where we reduce the dimensionality of the rating matrix.

Implementation Methodology

The aim of recommender systems is to provide better recommendations tailored to

the needs of the users and optimize the search results.

We will be implementing content based recommendations using techniques such

as clustering which take into account the users’ personal search history and logs,

and the search results for both the ETD and tobacco datasets.
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We will be implementing collaborative �ltering based on the matrix factorization

technique which is based on the historical logs of other similar users for searching

of ETDs and tobacco data. The historical user logs will be used for training these

models. A part of the logs will be used as test data for validating the model perfor-

mance. Evaluation metrics such as Precision, Recall, and Root Mean Square Error

will be used for analyzing the model performance.

Finally, we will also be implementing a hybrid system by combining the content

based and collaborative �ltering techniques for searching of ETD and tobacco data,

thereby developing a powerful recommendation system which enhances the qual-

ity of search engine results.
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Chapter 5

Implementation and Preliminary
Results

5.1 Clustering

5.1.1 Pre-processing

We run preliminary pre-processing on the text documents in order to tokenize them and

generate vector representations for clustering. We make use of the Python programming

language in order to ingest the data, extract the TFIDF vectors, and �nally run multiple

iterations of the K-Means algorithm. Speci�cally, we use the following packages.

Package/Module Usage
numpy Storing TFIDF vectors

scikit-learn Pre-processing & K-Means

nltk Tokenization & stopword removal

gensim Generating Doc2Vec vectors

Table 5.1: Modules and packages used

The numpy [44] package in Python is useful for numerical computations involving

matrix/vector operations. We use wrapper classes around these numpy arrays to store

the TFIDF vectors for each document. The speci�cs of how the vectors are stored

and how they can be accessed can be found in the Developers Manual, Chapter 8.
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Scikit-Learn provides e�cient Python based implementations of commonly employed

pre-processing pipelines along with the implementations of well known machine learn-

ing algorithms. In particular, we make use of the TfIdfVectorizer pipeline of scikit-learn
in order to iteratively compute and store the TFIDF values for the Tobacco Settlements

corpus.

Initially, we worked with 2 sample subsets of the Tobacco Settlement Records (TSRs)

as provided by the CMT team. The �rst one is a set of 7995 text �les (.ocr format) that are

the output of running Optical Character Recognition (OCR) on the PDF versions. These

text �les have not undergone any pre-processing and contain multiple invalid bytes, that

is, bytes that do not have a valid UTF-8 decode value. The second data sample consists of

4553 text �les (also in the .ocr format) that have been cleaned to remove any invalid bytes

by the CMT team. We encourage the reader to peruse the CMT team’s report to under-

stand the speci�cs of this cleaning/pre-processing step. Below we mention the details of

the tokenization and TFIDF extraction methods that we used for these experiments. A

summary of the two sample datasets is included in Table 5.2.

Corpus Number of doc-
uments

Brief description

Uncleaned TSRs set 7995 Invalid bytes have not been re-

moved.

Cleaned TSRs sample set 4553 All �les have valid UTF-8 bytes.

Cleaned articles from TSRs 916977 Cleaned articles from the Tobacco

corpus.

ETDs all 30961 (13071D +

17890T)

Text and metadata for all ETDs

Table 5.2: Sample collections description

Further, we worked with ~91k articles from the Tobacco Settlements corpus. These

articles are records of cases against the tobacco companies. The documents have been

cleaned by the CMT team to remove any invalid characters. For the record, all the afore-

mentioned corpus subsets are available in ceph. Please see the Developers Manual Chap-

ter 8 for details. The ETD corpus consists of 30961 documents comprising of 13071 dis-

sertations and 17890 theses. Owing to the size of each thesis or dissertation, we only deal

with the abstract of each document.
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Tokenization

We tokenize the text documents using NLTK’s [6] word_tokenize utility. word_tokenize
is based on the TreebankWordTokenizer and the PunktSentenceTokenizer. The Punk-
tSentenceTokenizer uses an unsupervised algorithm to build a model to recognize

sentence boundaries and is shown to work well for many European languages [31]. The

TreebankWordTokenizer works on text that has been segmented into sentences and uses

regular expressions to tokenize [32]. We use UTF-8 encoding to decode the bytes of the

text �les. In the case that a byte without valid UTF-8 character is encountered, we simply

ignore and skip it during tokenization. In addition, we use NLTK’s implementation of

the Porter stemmer [49] for stemming the tokens. Finally, we remove common English

language stopwords from the tokens. The list of stopwords is not speci�c to the corpus

and is provided by scikit-learn. These stopwords are stored and updated, with web-link:

[7]. Sample tokens from one of the �les in the Tobacco Settlements corpus are shown in

Figure 5.1.1.

Figure 5.1: Sample Tokens from �le fmbl0056.ocr from the Tobacco corpus
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TFIDF Vectorization

We use scikit-learn’s TfIdfVectorizer to extract the TFIDF features from each document

after tokenization. This utility provides multiple options to tune the TFIDF vectors as

desired. We mention here some options that have been used in extracting the vectors.

In order to account for the fact that we did not employ any corpus speci�c stopword

removal, we use the max_df parameter to ignore those tokens that have a document

frequency that is strictly higher than a speci�ed threshold. This has the e�ect of removing

any corpus speci�c words from the vocabulary. The parameter is a �oating point number

between 0 and 1 denoting the proportion of documents that constitute the threshold. We

use a max_df value of 0.7, meaning that we discard those terms from the vocabulary that

occur in more than 70% of the documents in the corpus. The min_df parameter is the

counterpart of max_df which discards words that occur in less than a threshold number

of documents. We do not make use of this parameter and keep its value to be zero
1
. In

addition, we also apply a L2 normalization to each vector to ensure that the squared sum

of the vector elements is unity. This helps build a compact vector representation and

stabilizes clustering algorithms. Finally, we smooth the i_df weights by adding one to

each document frequency as if an extra document exists that contains every term once.

This primarily helps prevent a division by zero.

Doc2Vec

Doc2Vec [29] is a neural network based technique to obtain distributed vector represen-

tations of documents of arbitrary length. The algorithm has two variants. One is the

distributed bag-of-words (DBOW) representation and the other is the distributed mem-

ory (DM) approach to generate representations. In each case, the algorithm begins by

randomly initializing a �xed length vector for each document. This vector is then fed

into a vanilla feed-forward multi-layer perceptron to generate a distribution over the vo-

cabulary of the corpus. Depending on which of the two aforementioned variants of the

algorithm is used, the speci�cs of the training task di�er. Particularly, in the case of the

DM approach, the model is tasked with predicting the next word in a sequence within

the document given the document vector as well as the vectors of words lying in the

prediction window as input. DBOW is a relatively straightforward and tractable variant

1
It can be noted that setting this parameter to a small non-zero value can help reduce the number of

dimensions of the TFIDF vectors thereby helping simplify clustering. However, we do not explore this

direction and switch to Doc2Vec based document vectors instead.
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which involves the task of predicting a randomly chosen word from the document given

the document’s vector representation. Figure 5.1 is a diagrammatic representation of the

DM approach.

Figure 5.1: Distributed Memory (DM) approach for training document vectors
using Doc2Vec. [29]

In all our implementations, we used the DM approach to obtain document vectors.

Albeit, the DM approach requires considerably more memory and computation, it has

the bene�t of capturing semantic relationships within the documents. More precisely,

two documents having a di�erent permutation of the same set of words might have very

similar DBOW vectors; their DM based vector representation are guaranteed to be dis-

tinct given enough training time for convergence. Thus, in order to capture distributed

semantics, we chose the DM based training of document vectors.

5.1.2 K-Means Clustering

We implemented K-Means clustering on the initial sample set of Tobacco Settlement doc-

uments as well as the full ETD corpus (abstracts) using the full version of Loyd’s [30]

K-Means algorithm. The tobacco sample dataset consists of 7995 text �les (in .ocr for-

mat) provided by the CMT team. The documents have not been pre-processed and thus

contain bytes that cannot be decoded in UTF-8 format. To tackle this problem, we simply

ignore any bytes that do not have a valid UTF-8 conversion. In order to develop a feature

vector for each document in the tobacco corpus, we compute the Term Frequency Inverse

Document Frequency measure for all the tokens in the corpus.

With regard to the ETD corpus, we compute 128 dimensional Doc2Vec vector embed-

dings for each document. These vectors are computed by training the Doc2Vec model
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using the abstract of each document obtained from the metadata. These embeddings are

then pre-processed as explained in Section 5.1.1.

Implementation details

We use scikit-learn’s implementation of the full Expectation-Maximization version of the

Lloyd’s algorithm [30]. We present the results of clustering both the cleaned and un-

cleaned Tobacco corpora with 10 and 20 clusters, respectively. We also present the re-

sults of clustering the ETD corpus using K-Means clustering to generate 500 clusters. In

all these experiments, we initialize the cluster centroids using k-means++ [14], a method

to initialize the centroids to be generally distant from each other. This has shown to

give better results than random initialization and also helps with faster convergence of

the algorithm. We use inertia – sum of squared distance of each point to its associated

centroid – as the metric for measuring the quality of cluster assignments. We declare

convergence either when the inertia is within a speci�ed limit or if a stipulated number

of iterations have been completed, whichever happens �rst. Additionally, we run the

algorithm 5 times with di�erent random seeds for initializing the cluster centroid and

choose the one that results in the least inertia. Such multiple runs are computed using

4-5 parallel jobs on ECE Guacamole servers and the VT-CS compute cluster. The results

of the K-Means iterations have been enumerated in the Evaluation Chapter (9).

5.1.3 Hierarchical Clustering

Aggomerative Clustering

Here, we cover the implementation details of Agglomerative Clustering using scikit-
learn’s API. In an attempt to solve a smaller problem, we �rst perform the clustering

on a set of 200 documents in order to generate 10 clusters. We use the TFIDF values for

these documents computed as described in Section 5.1.1. Each TFIDF vector is of size

5417298, which essentially is the vocabulary size of the corpus (here, we refer to the 4553

set of documents cleaned and given to us by the CMT team)
2
. Further, we perform Ag-

glomerative Clustering on the entire ETD corpus with the Doc2Vec embeddings obtained

from training a model on document abstracts as described in Section 5.1.1. The algorithm

2
Here, the vector size does not represent the exact vocabulary size of the corpus. The colossal size of

the vectors is a result of erroneous tokenization resulting from the multitude of garbage characters in the

corpus.

43



is made to converge when 500 clusters have been built in a dendrogram fashion. We use

Euclidean distance as the a�nity measure between clusters along with Ward linkage for

all experiments. The results are discussed in Section 5.1.3

5.1.4 BIRCH

We used scikit-learn’s implementation of the BIRCH clustering algorithm to clusterize the

30961 abstracts of ETDs. As discussed in Section 4.1.1, Birch is designed to be memory and

compute e�cient. Thus, we apply Birch on the 30961 ETD document vectors obtained

from the Doc2Vec algorithm. This algorithm has 2 main hyper-parameters to be tuned.

First is the threshold which speci�es the maximum radius allowed for a cluster formed

by merging two sub-clusters. Intuitively, a low threshold promotes splitting of clusters

and vice-versa [46]. We set this value to be 0.5. The other parameter of importance is

the branching factor. This represents the number of sub-clusters a node can have. If

the number of clusters exceeds the branching factor, a new node is formed. This value

has been set to 50. The algorithm is run to generate 500 clusters from the data with an

expected 60 documents per cluster.

5.1.5 DBSCAN

DBSCAN is a density based clustering technique designed to deal with large scale

databases with noise. It can detect and discard noisy points, thereby keeping the clus-

ters pure. This has an advantage for the ETDs since many OCR’ed documents contain

garbage characters that could potentially harm the clustering. We report the results of

clustering the ETD corpus using DBSCAN. The hyper-parameters of DBSCAN are eps
and min_samples. eps is the maximum distance between two samples for one to be con-

sidered as in the neighborhood of the other [46]. min_samples is the number of samples

(or total weight) in a neighborhood for a point to be considered as a core point. We per-

form a hyper-parameter selection process as described in the DBSCAN paper [20]. We

create plots of k-dist (eps) for each document and select the point in the graph near the

curvature as shown in Figure 5.2.

We refrain from covering the hyper-parameter selection method because it entails

an in-depth coverage of the algorithmic nuances of DBSCAN as pre-requisites which is

beyond the scope of this work. The technique is thoroughly explained in Section 4.2 of

the DBSCAN paper [20].
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Figure 5.2: Hyper-paramter selection for DBSCAN

5.2 Text Summarization

5.2.1 Keyword Extraction

We implemented TF-IDF on the thesis and dissertation sample dataset. Data in Ceph is in

directory: /mnt/ceph/cme/dissertation_subset & /mnt/ceph/cme/thesis_subset. After TF-

IDF computation, we extracted the top ranked keywords from the vector so that we can

compare the keywords extracted through the TF-IDF method with the keywords listed

by the author.

Then we remove stopwords to eliminate some noise. Finally, we choose the top ten

keywords of the document to compare with the keywords provided by authors of theses

and dissertations. Two examples from the thesis and dissertation dataset are:

Example 1: Liu_L_T_2017.pdf.txt

Title: The e�ect of hypoxia and 3D culture conditions on heterogeneous ovarian cancer

spheroids

Keywords: Ovarian cancer, metabolism, hypoxia, spheroids, stromal vascular fractions,

invasiveness

Our �ndings:

There are 3223 di�erent words.

Top ten keywords (without stopwords): the, and, of, cells, in, to, cancer, mose, cell,

spheroids

Top ten keywords (with stopwords removed): cells, cancer, mose, spheroids, ovarian,
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hypoxia, tumor, lactate, ten

Same keywords: Cancer, spheroids, ovarian, hypoxia

Example 2: Nabiyouni_M_D_2017.pdf.txt

Title: How Does Interaction Fidelity In�uence User Experience in VR Locomotion?

Keywords: User Experience, 3D User Interfaces, Locomotion, Fidelity

Our �ndings:

There are 3795 di�erent words.

Top ten keywords (without stopwords): the, and, of, to, in, for, �delity, user, walking, al

Top ten keywords (with stopwords removed): �delity, user, walking, al, techniques,

locomotion, interaction, natural, technique, interfaces

Same keywords: �delity, user, locomotion, interfaces

Based on these two sample results, we �nd that TF-IDF, the most basic technique

for keyword extraction, is still quite useful for the electronic thesis & dissertation

dataset. Stopwords should be eliminated before TF-IDF, because some articles, prepo-

sitions, and conjunctions appear more frequently than useful words. But they are

meaningless for the document. Compared with keywords the author proposed, most of

the keywords can be discovered through TF-IDF methods with stopwords removed.

5.2.2 Summarization on ETD dataset

We implement text summarization on both the Theses and Dissertations sam-

ple datasets. Data in Ceph is in directory: /mnt/ceph/cme/dissertation_subset &

/mnt/ceph/cme/thesis_subset. The ETD dataset includes text documents of di�erent

chapters for each thesis or dissertation. We �rst get 20 sample documents which are

manually cut into di�erent chapters by the CME team.

We implement three kinds of models (feature-based, graph-based, and topic-based

model) to extract key sentences from chapters in theses and dissertations. An ex-

ample thesis is in Liu_L_T_2017.pdf.txt. Below is a comparison between the key

sentences extracted based on the three di�erent models, and the abstract, which

includes the key sentences the author chose. Because there are no same sentences from

the abstract and the content, we calculate the cosine similarity and �nd similar sentences.
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(1) Epithelial ovarian cancer (EOC) is the leading cause of death from gyne-
cological malignancy due to the insu�cient accurate screening programs for the
early detection of EOC. (2) To improve the accuracy of the early detection, there is a
need to deeply understand the mechanism of EOC progression and the interaction
between cancer cells with their unique microenvironment. (3) Therefore, this
work investigated the metabolic shi� in the mouse model for progressive ovarian
cancer, and evaluated the e�ects of hypoxic environment, spheroid formation
as well as stromal vascular fractions (SVF) on the metabolic shi�, proliferation
rate, drug resistance and protein markers in functional categories. (4) The results
demonstrated an increasingly glycolytic nature of MOSE cells as they progress
from a tumorigenic (MOSE-L) to a highly aggressive phenotype (MOSE-FFL), and
also showed changes in metabolism during ovarian cancer spheroid formation
with SVF under di�erent oxygen levels. (5) More speci�cally, the hypoxic en-
vironment enhanced glycolytic shi� by upregulating the glucose uptake and
lactate secretion, and the spheroid formation a�ected the cellular metabolism
by increasing the lactate secretion to acidify local environments, modulating
the expression of cell adhesion molecules to enhance cell motility and spheroids
disaggregation, and up-regulating invasiveness markers and stemness makers to
promote ovarian cancer aggressive potential. (6) Hypoxia and spheroid formation
decreased ovarian cancer cells growth but increased the chemoresistance, which
leads to the promotion of aggressiveness and metastasis potential of ovarian
cancer. (7) SVF co-cultured spheroids further increased the glycolytic shi� of the
heterogeneous of ovarian cancer spheroids, induced the aggressive phenotype by
elevating the corresponding protein markers. (8) Decreasing the glycolytic shi�
and suppression of the proteins/pathwaysmay be used to inhibit aggressiveness or
metastatic potential of ovarian cancer heterogeneous of ovarian cancer spheroids,
induced the aggressive phenotype by elevating the corresponding protein markers.

We set the threshold as 10. So, the 10 most important sentences can be extracted

based on each model. A comparison of the results based on di�erent models follows.

Feature-based model: Sentence (1), Sentence (5) and Sentence (8) are extracted based

on Luhn’s Algorithm.

Graph-based model: We �rst implement TextRank based on TF-IDF; sentence (7) and

sentence (3) are extracted from the chapter. Though key sentences are extracted, they are
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only ranked by their TF-IDF weight value. For text summarization, it is hard for human

beings to understand the summary in di�erent order than they appear in the original text.

Therefore, we implement TextRank combined with NLTK to correct the ranking order.

In this way, both the original text order and the weight value are considered to provide a

summary. Then we implement gensim, a free Python library designed to automatically

extract semantic topics from documents, to extract key sentences from text.

Topic-based model: Sentence (1) and sentence (5) are extracted from the chapter. From

the results above, we found that sentence (1) and sentence (4) have a much higher possi-

bility to be extracted.

It is hard to evaluate which models perform better than others since they all can extract

sentences which are similar with the sentences in the abstract. One method to evalu-

ate the performance of text summarization is for human-beings to manually score the

summaries generated by the �les. However, it is costly to manually evaluate the perfor-

mance of text summarization. We calculate the cosine similarity to �nd similar sentences

with the sentences in the abstract because we assume that the abstract is the summary of

each �le. The results above, based on three di�erent models, are quite di�erent. There-

fore, we propose a new model which combines the three di�erent models (feature-based,

graph-based, and topic-based model).

Newmodel: Sentence (1), sentence (4), sentence (5), and sentence (7) are extracted based

on the new model.

5.2.3 Summarization on Tobacco Dataset

There are nearly 1 million text documents from the tobacco dataset on ceph. These doc-

uments include interviews (Questions and Answers), articles, emails and so on, and are

provided and pre-processed by the CMT team.

Text summarization on interviews doesn’t perform well. Due to the special format

in interviews, questions and answers are too short to generate summaries. Further,

sometimes there are few relationships between di�erent questions or answers. It is

di�cult to rank the importance for each sentence since di�erent questions are from

di�erent perspectives. Therefore, our extractive methods on the interview dataset do

not generate good summaries. The sentences below show an unsuccessful summary

as an example from the interview dataset. This summary is generated on document
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ttdy0019.ocr.

A. I do not remember to have ever been directly involved in the treatment of
Nathan Horton. 08 – from examining those records, tell us, if you know, what was
the primary cause of Mr. Horton’s death.

From the summary above, it is extremely hard for people to get a general idea of

the whole interview. Another example shows that meaningless sentences in interviews

may be extracted. The following summary of document nplp0018.ocr is generated by a

topic-based model (Latent Semantic Analysis).

Q. khat is meant, if you recall, or what did the commi�ee mean by extrapo-
lation of evidence from animals to man can be de�ned as a subproblem? This is
a le�er, apparently, that I abstracted from Dr. Hocke�, who had visited Dr. Fieser
at my request, and then he wrote me about the meeting.

From the summary above, the second sentence includes no useful information

about the interview. It seems likely that extractive methods of text summarization, with-

out modi�cation, can’t successfully be implemented on interview format documents.

Therefore, we try to do sentiment analysis on these interview documents to provide

a positive or negative attitude of these questions and answers instead of providing a

summary for the interview.

To provide a summary to the CMT team and make the whole system work in a

short time, we �rst provide a fake summary (�rst ten lines of each document) for the

tobacco (interview) dataset. Then we get the article documents of the tobacco dataset

from the CMT team. We implement both the feature-based model (Luhn algorithm)

and the topic-based model (Latent Semantic Analysis) on 38,038 article documents and

provide the �rst version of summaries for the tobacco dataset. When the CMT team is

generating and pre-processing the 1 million tobacco dataset on ceph, we develop a new

model which combines the three traditional models and calculates the cosine similarity

and then provides the �nal summary. The summaries for the tobacco dataset are at

mntcephtmltext_summary directory on Ceph. The ELS team can successfully ingest and

index these summaries. So summaries can be seen through demos provided by the FEK

team.
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5.3 Named-Entity Recognition

In order to compare di�erent NER tools, we took a popularly used sample text and

applied all of the three NER tools to it. The sample that we used is as follows:

The university was founded in 1885 by Leland and Jane Stanford in mem-
ory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15
the previous year. Stanford was a former Governor of California and U.S. Senator;
he made his fortune as a railroad tycoon. The school admi�ed its �rst students on
October 1, 1891,[2][3] as a coeducational and non-denominational institution.

As can be seen, the statement has several proper nouns, such as Leland, Stanford,

California, etc. Some of these nouns have the same spelling; however, they appear in

di�erent contexts. Therefore, it is very important for an NER tool to identify the correct

context of the words. Hence, we applied di�erent NER tools on the sample statement to

see their e�ectiveness. The results are discussed more thoroughly below.

5.3.1 Stanford NER

The Stanford NER tool was applied to the sample set. It identi�ed entities as follows:

Type: PERSON, Value: Leland
Type: PERSON, Value: Jane
Type: PERSON, Value: Stanford
Type: PERSON, Value: Leland
Type: PERSON, Value: Stanford
Type: PERSON, Value: Jr.,
Type: ORGANIZATION, Value: Stanford
Type: LOCATION, Value: California
Type: LOCATION, Value: U.S.

As we can see from the result, the NER successfully identi�ed Person entities and

Organization entities even though some of them had the same spelling, such as Stanford.

As for cons, the NER tool failed or ignored to identify the date entities.
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5.3.2 NLTK NE_Chunk

We applied the NE_Chunk tool and found the following results:

(GPE Leland/NNP)
(PERSON Jane/NNP Stanford/NNP)
(GPE Leland/NNP)
Stanford/NNP
Jr./NNP
(PERSON Stanford/NNP)
Governor/NNP
(GPE California/NNP)
(GPE U.S/NNP)
Senator/NNP
October/NNP
]/NNP

The results show that the proper nouns have been parsed in chunks. However, in

some cases, it failed to identify the correct context. For example, in our original sample

text, the �rst “Leland” is the name of a person. However, the NER identi�ed it as a GPE

(geopolitical entity), which means a geographical area. This is incorrect in the context.

spaCy

Another state-of-the-art, open sourced, and industrially compatible NER tool is spaCy.

We applied the spaCy tool on our sample text. The result is as follows:

Type: DATE, Value: 1885
Type: GPE, Value: Leland
Type: PERSON, Value: Jane Stanford
Type: PERSON, Value: Leland Stanford Jr.
Type: DATE, Value: age 15 the previous year
Type: ORG, Value: Stanford
Type: GPE, Value: California
Type: GPE, Value: U.S.
Type: ORDINAL, Value: �rst
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Type: DATE, Value: October 1, 1891,[2][3

The result from the spaCy tool identi�es more entities than its counterparts. It

successfully identi�es person name and organization name. It also groups the names

together such as “Jane Stanford” and “Leland Stanford Jr.”. It identi�es dates as well.

However, in one case spaCy identi�es reference number as a part of date format, such

as “October 1, 1891,[2][3”.

Considering all the results, we �nd spaCy tool to be the most thorough, informative,

and e�ective in identifying multiple entities properly.

From the non-processed data from both the ETD and the tobacco datasets, we

manually pro-processed some sample data to run the spaCy tool. For example, we

considered the following paragraph:

The witness, senior vice-president and controller at R. J. Reynolds Tobacco
Holding Inc., was deposed by the plainti�s. He described the �nancial status
of the holding company and its economic activities. He indicated that industry
changes, corporate changes, market changes, structural changes, and some legal
developments have all had an adverse e�ect on the pro�tability of the company.
The witness also noted that advertising and promotion restrictions placed on
them in 1998 by the Master Settlement Agreement had caused a drop in sales
volume. He said that punitive damage awards would have a devastating e�ect
on the company, although he declined to say whether bankruptcy was being
considered.

The spaCy tool correctly extracts the following named entities from the example

article above.

Type: ORG, Value: R. J. Reynolds Tobacco Holding Inc. X
Type: DATE, Value: 1998 X
Type: LAW, Value: the Master Settlement Agreement X

Upon closer inspection, we �nd that the article is indeed about a deposition docu-

ment where the witness is from the organization R. J. Reynolds Tobacco Holding Inc.

The article further discusses about the drop in sales volume caused by the Master
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Settlement Agreement law in 1998. Therefore, we can conclude that these named

entities can be used to successfully explain the article.

For another example, we considered the following example paragraph.

The witness, Director of Marketing Research at Philip Morris, was deposed by
the plainti�s. He reviewed his previous depositions and trail testimony, as well
as the contract work that he has done for Philip Morris. He explained that the
contract work consisted of showing advertising or packaging and obtaining
information on consumer reactions. He reviewed the organizational structure
of the Marketing and Research department of Philip Morris. The witness
listed the various companies from which Philip Morris obtained consumer
information. He maintained that Philip Morris only conducted studies on
people over the age of 18. He explained the importance of having highly reli-
able information about legal age smokers in order to accurately project future
industry sales and brand sales. He described Philip Morris’ use of publicly
available information and studies on smoking behavior. He commented on
surveys in which adults were asked about their age of smoking initiation.; Roper

The paragraph above is from yet another deposition document. This time, the

spaCy tool �nds more named entities from the example text. The extracted named

entities are as follows:

Type: ORG, Value: Marketing Research X
Type: ORG, Value: Philip Morris X
Type: ORG, Value: Philip Morris X
Type: ORG, Value: the Marketing and Research X
Type: ORG, Value: Philip Morris X
Type: ORG, Value: Philip Morris X
Type: ORG, Value: Philip Morris X
Type: DATE, Value: the age of 18 X
Type: ORG, Value: Philip Morris’ X
Type: PERSON, Value: Roper X

From the result above, we can see some interesting �ndings. The spaCy tool identi�es
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Philip Morris multiple times. Since these names all refer to the same organization,

having it only once would su�ce. Additionally, it also extracts the phrase the age of 18
as a value named entity. This might be very helpful in putting documents in context.

It is observed that the spaCy tool provides better results for named entity recognition

on the sample data. Therefore, we will be using spaCy on the entire ETD and tobacco

datasets. Currently, we have written automation scripts for NER on a sample dataset

consisting of multiple documents on our local machine. Further we will be executing

this script on the entire pre-processed ETD and tobacco data on ceph.

5.4 Sentiment Analysis

5.4.1 Flair

We used pre-trained models and the Flair framework on our tobacco sample dataset.

The Flair framework classi�ed the documents into two categories, such as “positive” and

“negative”. The Flair framework also returned a con�dence ratio with the category.

5.4.2 Twitter Emotion Recognition

The Twitter Emotion Recognition package is better for identifying single line statements.

We used single statements and found good enough results. We categorized the statements

into Ekman’s six basic emotions. When a bigger paragraph is used the result is more

generic.

5.4.3 Empath

The Empath framework has 200 built-in pre-validated categories. We used 6 categories

among them that indicate Ekman’s six basic emotions, i.e., anger, disgust, fear, happi-

ness, sadness, and surprise. The framework returns classi�cation probability along with

con�dence ratio. We also automated the package to return only non-zero con�dence val-

ued categories. Then we sorted the results, so the highest con�dence valued category is

listed �rst. Finally, we automated the script to systematically go through a number of

documents. The result for each document is returned with the name of the document.

More about our script can be found in the Developer Manual, Section 8.4.
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5.5 Recommender System

We collected a sample dataset cosisting of real user logs from a Kaggle challenge [51] and

implemented various recommendation techniques which will be described in detail in the

following sections. Since the training of machine learning models requires large amounts

of user data and we currently have only a few sample log �les shared by the ELS and FEK

teams, we decided to train and test the recommender models on a sample dataset. Later

we will be training these models on the user logs obtained by searching ETD and tobacco

documents in our search engine. We implemented content based recommendation and

collaborative �lter techniques; the results obtained are given below.

5.5.1 Dataset

We collected the user log dataset of Deskdrop, an internal communications platform

developed by CI&T, which allows company employees to share relevant articles with

their peers, and collaborate around them [51]. This dataset was obtained from a Kaggle

competition; it contains a real sample of logs collected over 12 months during March

2016 to February 2017. It contains around 73k logged users’ interactions on more than

3k public articles shared in the platform.

The dataset features the following �elds:

1. Person ID - Unique user ID of the logged in users.

2. Session ID - Identi�er of the user session.

3. Content ID - Unique identi�er for articles.

4. Timestamp - Timestamp of the session when the article was accessed by the user.

5. User Agent - Web agent through which the article was accessed.

6. User Region - The state where the article was accessed.

7. User Country - The country where the article was accessed.

It contains 1140 di�erent users and 2926 documents in total. We used 80% of the

data for training and 20% for testing the accuracy of the model.

Since our user log data will also contain �elds such as user ID, session ID, and

document ID similar to this, we have selected this dataset as our sample for preliminary

analysis.
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We used recall as the performance metric for model evaluation. Recall indicates

the ratio of actual positives that were identi�ed correctly by the model.

5.5.2 Content based recommendation

We implemented content based recommendations on the above mentioned dataset. This

method uses only information about the description and attributes of the items users have

previously consumed, to model user’s preferences. Various candidate items are compared

with items previously rated by the user and the best-matching items are recommended.

The item pro�les of all the candidate items are built by computing the TF-IDF values.

Then the user pro�le is built by building the item pro�les of all the items the user has

interacted with in the past. Cosine similarity is applied between the user pro�le and

TF-IDF matrix to obtain similar items which are recommended to the user. The content

based recommendation model is trained on the sample dataset and we obtained a recall

of 41.4% for top 5 recommendations and 52.4% for the top 10 recommendations on the

test data. The screenshots of the results are shown in Figures 5.3 and 5.4.

Figure 5.3: Content based method results

5.5.3 Collaborative �ltering based recommendation

The next method that we implemented was collaborative �ltering. It uses its memory

of users’ interactions with documents to compute the similarities. We used the matrix

factorization algorithm, which decomposes the user-item interaction matrix into lower
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Figure 5.4: Content based method recall result table for 10 selected users

dimensional matrices. This method handles the sparsity of the original matrix better than

memory based ones.

We used Singular Value Decomposition (SVD), which is a popular latent factor model

to implement collaborative �ltering. This model compresses the user-item matrix into

three di�erent low dimensional matrices; the original matrix is reconstructed to get the

missing scores. Evaluation of the model gave us recall of 33.4% for top 5 recommendations

and 46.8% for top 10 recommendations. The screenshots of the results are shown in

Figures 5.5 and 5.6.

Figure 5.5: Matrix factorization results
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Figure 5.6: Matrix factorization recall result table for 10 selected users

5.5.4 Performance Comparison

We compared the output of both the models and observed that the content-based ap-

proach gave better performance. This happens because the content based model bene-

�ted by rich item attributes for better modeling of users’ preferences. We plotted a bar

chart for comparing the performance of content-based and collaborative models for re-

call@5 and recall@10, which can be seen in Figure 5.7.

The content-based recommendation method has already been through clustering. So

we will be implementing collaborative �ltering on the user logs in our project to produce

user speci�c recommendations.

5.5.5 User Log Format

In order to provide recommendations based on the users’ behavior, it is necessary to keep

a record of the history of the users’ interactions with the items. The web server stores

information of all the logged in users such as username, session ID, timestamp, and the
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Figure 5.7: Performance comparison of content-based and collaborative �ltering

list of documents that were viewed by the user, along with other �elds. The combined

logs obtained from Kibana and Elasticsearch will contain the data �elds required by the

recommendation models. Figure 5.8 illustrates the user log formats expected from the

front-end and Elasticsearch teams. One way to provide input data to the recommender

system is to keep track of the top �ve search results and check whether or not these doc-

uments were viewed by the user. This information will be obtained from front-end logs.

Another way would be to keep track of all the search queries that the user has searched

for. This can be obtained from the Elasticsearch logs. Once we have the prototype of

the complete end-to-end search engine working, we will be able to obtain the required

user logs which will enable us to train our collaborative �ltering models to provide better

recommendations.
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Figure 5.8: Input Data Format
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Chapter 6

Project Roadmap

6.1 Team Milestones

Table 6.1 summarizes the TML teams milestones with the date of completion for each

task. A more detailed sub-group wise treatment of the tasks is covered in Section 6.2.
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No. Milestone Completion Date

1. Understand the requirements 09/03

of the TML team.

2. Perform an initial literature review 09/08

with a focus on breadth of techniques to explore.

3. Discuss potential use of techniques explored 09/12

with other teams. Narrow down on methods to work on.

4. Study and understand both the ETD and tobacco datasets. 09/15

5. Experiment with NER and Text Summarization with sample data. 09/18

6. Work on report IR-1. 09/19

7. Experiment with K-Means clustering, NER, Text Summarization. 10/04

8. IR-1 review work 10/06

9. Discuss user log format, obtain sample logs 10/06

10. Collect sample dataset, do content based and collaborative �ltering. 10/07

11. Submit IR-2 report. 10/10

12. Work on IR-2 review. 10/20

13. Submit IR-3 report. 10/30

14. Work on IR-3 review. 11/20

15. Implement Large scale clustering algorithms 11/25

16. Submit Final report. 12/11

Table 6.1: Team Milestones

6.2 Task Timeline

Tables 6.2, 6.3, 6.4, 6.5 and 6.6 describe the timeline of the tasks and goals of the Cluster-

ing, Text Summarization, Named Entity Recognition, Sentiment Analysis and the Rec-

ommender Systems sub-groups within the TML team along with the team members in-

volved.
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Task Team Members Date Complete
Review literature on clustering. Adheesh, Prathamesh 09/14

Preprocess Tobacco data subset. Adheesh 10/02

Write scripts to extract TFIDF vectors. Adheesh, Prathamesh 10/06

Run K-Means on unclean/clean

subset of tobacco records. Prathamesh 10/08

Identify and code up the Calinski-Harasbasz

Index evaluation. Prathamesh 10/18

Identify the cause of cloud container problem. Prathamesh 10/25

Explore Hierarchical Clustering. Sharvari 10/30

Preliminary experiments with

Agglomerative clustering Sharvari 10/30

Scale hierarchical clustering to entire

ETD and Tobacco corpora Sharvari, Prathamesh 11/15

Compute Doc2Vec vectors for the ETD corpus Prathamesh 11/20

Implement and evaluate Birch, DBSCAN

and K-Means clustering on the ETD corpus Prathamesh 12/03

Compile and visualize clustering result. Sharvari, Prathamesh 12/08

Collate results on Ceph Sharvari, Prathamesh 12/10

Table 6.2: Task Timeline for the Clustering Group
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Task Team Members Date Complete
Review literature on text summarization. Jiaying Gong 09/14

Keyword Extraction based on TFIDF Jiaying Gong 09/16

TextRank combined with TF-IDF for key

sentence extraction Jiaying Gong 09/30

TextRank combined with NLTK including

cleaning the sentences Jiaying Gong 10/04

TextRank based on Gensim Jiaying Gong 10/06

Latent Semantic Analysis Jiaying Gong 10/07

Luhn’s Algorithm base summarization Jiaying Gong 10/07

Fake summary (�rst ten lines) for

tobacco (interview) dataset Jiaying Gong 10/19

Provide summaries based on LSA for

tobacco (article) dataset. Jiaying Gong 10/23

Provide summaries based on Luhn for

tobacco (article) dataset. Jiaying Gong 10/25

Provide summaries for sample ETD dataset. Jiaying Gong 11/07

Provide summaries based on new model

(�rst version) for sample tobacco dataset. Jiaying Gong 11/19

Provide summaries based on new model

(Second version) for sample tobacco dataset. Jiaying Gong 11/29

Provide summaries based on new model

(Second version) for 1 million tobacco dataset. Jiaying Gong 12/04

Provide all summaries on Ceph to ELS team. Jiaying Gong 12/09

Table 6.3: Task Timeline for the Text Summarization Group
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Task Team Members Date Complete
Review literature on NER. Rifat Sabbir Mansur 09/14

Meeting with Dr. Townsend and Bipasha Rifat Sabbir Mansur 09/16

Understanding the data structure for

ETD and tobacco datasets Rifat Sabbir Mansur 09/24

Comparing between state-of-the-art

NER methods Rifat Sabbir Mansur 09/30

Identify the best NER method - spaCy. Rifat Sabbir Mansur 10/01

Running sample dataset in spaCy Rifat Sabbir Mansur 10/04

Identifying the problems in spaCy models Rifat Sabbir Mansur 10/04

Identifying better spaCy models Rifat Sabbir Mansur 10/07

Using domain speci�c spaCy models Rifat Sabbir Mansur 10/22

NER scripts on sample dataset on local machine Sandhya Bharadwaj 10/29/2019

Explore Blackstone and Graphbrain packages Sandhya, Rifat Sabbir 11/14/2019

Automating NER to store results in text �les Sandhya 12/05

Executing NER scripts on the entire tobacco data Rifat 12/10

Table 6.4: Task Timeline for the NER Group

Task Team Members Date Complete
Review literature on Sentiment Analysis. Rifat Sabbir, Adheesh 10/29

Explore state-of-the-art frameworks. Rifat Sabbir, Adheesh 10/29

Improve script to automate framework. Rifat Sabbir, Adheesh 10/31

Meeting with Dr. Townsend Rifat Sabbir, Adheesh 11/04

Table 6.5: Task Timeline for the Sentiment Analysis Group
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Task Team Members Date Complete
Review literature on recommendation

systems. Sandhya, Sharvari 09/14

Finalize log �elds, obtain sample logs from

FEK and ELS. Sharvari, Sandhya 09/24

Analysis of ample logs, discussions about

the log format Sharvari, Sandhya 10/01

Collect sample dataset. Finalize techniques

to implement. Sandhya, Sharvari 10/04

Pre-process sample data, implement

content-based method. Sandhya 10/07

Implement collaborative �ltering,

result comparison. Sharvari 10/07

Collect and analyze sample logs

from the working system Sandhya, Sharvari 11/24

Illustrate extension of recommendation system

for future scope Sandhya, Sharvari 12/05

Table 6.6: Task Timeline for the Recommender Systems Group
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Chapter 7

User Manual

7.1 Overview

The main purpose of the TML team is to improve the searching and browsing experience

of the user. In order to prioritize better and relevant search results at the top, we will

be using Recommender Systems. This will provide additional ranking on the result

provided by Elasticsearch.

The following are the di�erent �elds that are displayed along with the document

title in the search engine results. Several keywords from the document, such as relevant

person, organization, date, location, etc. are displayed under the document title for the

tobacco documents. This will help the user get an idea about the context of the document.

The user can view other documents that are are similar to the document displayed

when he/she clicks on a “more like this” link which is present next to the document

title for both the tobacco and ETD documents. Once clicked, the user is forwarded

to another search result with all the documents that share similar topics and/or attributes.

The sentiment of the document is displayed along with the title for the tobacco

documents. This �eld helps the user understand the context of the document.

Finally, for every search result there is a 2 line summary of the document that is

appended along with its title for the ETD documents. This summary provides the user a
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basic understanding of the content of the document giving him/her an idea of whether

that particular document is relevant.

A sample search result list with the various �elds can be seen in Figure 7.1.

Figure 7.1: Searching and Browsing Experience Improvement done by the TML
team

7.2 Text Summarization

The �le version of �nalmodel.py expects the users to input the path of all the �les that

they are using to generate summaries. The code automatically generates summaries for

each �le based on three di�erent models. The output is a folder which contains all the

summaries. Each �le generates one summary with the same name (identi�er) of the

original �le, which makes it easier for the ELS team to ingest summaries.

Usage:
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(1) Change the path in the code to the directory of original �les which are needed to

generate summaries.

(2) Change the parameters (numbers of sentences to extract from each model) as the

user needs.

(3) Set the threshold of summary length.

(4) Input python �nalmodel.py in the command line.

7.3 Named entity recognition

The code for named recognition on the tobacco documents can be found in the GitHub

repository https://github.com/rifatsm/CS5604_NER_on_tobacco_data.

The code for NER determination on the entire tobacco dataset has been automated, and

is present in the Python notebook named NER_Automation_JSON.ipynb.

The user has to �rst install spaCy version 2.2.2 and the NER package en_core_web_sm.

The user has to place all the tobacco documents which NER needs to process in ceph at

location tobacco/mnt/ceph/shared/tobacco/data/1million_raw.

The user can then run the Python code. The NER results generated will be stored in text

�les in a new folder named NER present in the same location as the Python script.

The names of the resulting text �les containing the NER results are the same as

the document name.

7.4 Sentiment Analysis

Github: https://github.com/rifatsm/empath_on_tobacco_documents/ [27]

This repository is used for doing sentiment analysis on deposition data in the tobacco

dataset.
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The �le test_empath.py expects either a sentence or a directory (which contains all

the text �les) path for running. The code then executes empath on 8 of the attributes –

hate, envy, love, joy, fear, surprise, positive emotion and negative emotion – to check

which of the aforementioned sentiments are expressed in the text. It returns a list of

scores for each of the sentiments.

Usage:

python test_empath.py [options]

The available options are as follows:

-s: Process on given string.

e.g., python test_empath.py -s "example sentence"

-d: Specify data directory path.

e.g., python test_empath.py -d "directory_path"

-t: Number of documents to be processed in the directory (use with option -d)

e.g., python test_empath.py -d "directory_path" -t n, where n is some integer

-h: To see help page.

e.g., python test_empath -h
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Chapter 8

Developer’s Manual

8.1 Clustering

The clustering codebase is located at the https URL in [35]. The source code �les ex-

ist in ./src/ and the object �les are stored in ./obj/etd/ for the ETDs and ./obj/tobacco/
for the Tobacco Settlement Records. Some of the .sav object �les have not been bun-

dled with the repository due to their large size. These can be found under the path

/mnt/ceph/tml/clustering/cs5604-tml-clustering/. The data corpora are stored in Ceph

which is mounted at the path /mnt/ceph/. The ETD corpus along with its metadata is

located at /mnt/ceph/cme/ while the Tobacco Settlement documents can be found under

/mnt/ceph/shared/tobacco/. We now describe important �les in the codebase along with

instructions to replicate our experiments.

The source directory within the repository (./src/ ) consists of Python scripts along

with IPython notebooks. The Python scripts consist of class de�nitions for various clus-

tering algorithms with each algorithm bundled in a separate script for ease of usage.

The IPython notebooks contain code for visualizing crucial results as well as for hyper-

parameter search experiments. The scripts main.py and test.py serve to run iterations of

various experiments and perform unit tests on each algorithm before a full run, respec-

tively. Below, some of the important �les from the code base have been discussed along

with their API. All of these �les can be found under ./src/ in the repository [35]. Note that

most of the scripts for the various clustering algorithms are self-explanatory and easy to

use. As previously mentioned, each algorithm has been bundled into a separate script

which makes it easy to run and distribute. Thus, we refrain from providing a verbose
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description of each parameter of every script and class in the source directory (./src/ ).
Details can be found in the README.md �le in the root of the repository.

8.1.1 Python Scripts

kmeans.py

1. class TFIDF:

A wrapper around sklearn.feature_extraction.text.T�dfVectorizer computes TFIDF

vectors and stores them as numpy arrays in a serialized format (.sav) using joblib.

2. class Kmeans:

A wrapper around sklearn.cluster.KMeans runs K-Means clustering as per the pa-

rameter instantiation and stores the cluster centroids and the document-to-cluster

mappings in a serialized format (.sav) as numpy arrays.

birch.py

Class BIRCH is a wrapper around sklearn.cluster.Birch. It has two methods, �t and save,
which provide the functionality to train the model initialized in the constructor and save

it as a serialized object using joblib.

agglo_clus.py

Class Agglo_clus is a wrapper around sklearn.cluster.AgglomerativeClustering. Similar to

Birch, this class has methods to train the model as well as save it in a serialized format.

dbscan.py

The DBSCAN class in this �le is a wrapper around sklearn.cluster.DBSCAN with methods

to �t the data and save the trained model.

pre_process.py

This script contains a wrapper around gensim.models.doc2vec.Doc2Vec for tokenizing and

vectorizing the ETD and the tobacco corpora. The class Doc2vec_wrapper provides vari-

ous methods in the form of Python generators for fetching the data. It also contains code
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to tokenize the documents as speci�ed in Section 5.1.1. This script also provides a helper

function to extract document to vector mapping from a trained Doc2vec_wrapper object.

utils.py

This script contains common utility functions used at various stages of the training

pipeline.

main.py

This script initializes the aforementioned classes from their respective scripts and runs

them with pre-de�ned hyper-parameters as speci�ed in the �le. It is essentially the script

used to trigger the training of the algorithms.

test.py

Before running main.py, this script performs quick tests by running the clustering algo-

rithm for a few epochs with a small percentage of the entire data. It essentially serves as

a unit test to the main algorithm.

8.1.2 IPython Notebooks

playground.ipynb

This �le contains code for miscellaneous operations such as hyper-parameter tuning and

cross-validation. Particulary, this �le contains logs and metadata about computing op-

timal cluster count based on Silhouette Coe�cient for Agglomerative Clustering, DB-

SCAN, and Birch, along with cross-validating to choose optimal eps parameter for DB-

SCAN.

etd_results.ipynb

This notebook visualizes cluster histograms for Agglomerative Clustering, DBSCAN, and

Birch, along with computing the Calinski-Harabasz Index, the Silhouette Coe�cient, and

the Davies-Bouldin score for each of these algorithms.

These are the core scripts that form a part of the main results. We refrain from

presenting the details of deprecated scripts and experiments. For these, the remaining
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scripts in the ./src/ directory contain su�cient self-explanatory descriptions. The object

�les representing the trained models for each of the clustering algorithms along with the

Doc2Vec vectors for the data corpora are stored in the ./obj/etd/ directory for the ETDs

and the ./obj/tobacco/ directory for the tobacco data. Each algorithm has its own directory

for each of the 2 corpora along with a sub-directory identifying details of the iteration

number bundled with the hyper-parameters for that experiment. Much of the structure

of the repository has been designed to be self-explanatory and easy to follow.

8.2 Text Summarization

For text summarization, we need clean chapters from the thesis and dissertation dataset

and clean passages or articles from the tobacco dataset. The code for text summarization

will be uploaded to ceph after there are useful datasets on it.

Here we describe the usage of di�erent techniques in text summarization. Below is

an overview of our �le structure with a brief description.

1. t�dftest.py

The script calculates the TF-IDF value of each word in separate chapters. It can

calculate both the keywords with stopwords and keywords without stopwords. The

top ten keywords will be recorded into a document.

2. luhn.py

It is a feature-based model using the Luhn text summarizer algorithm, which is an

automated tool to summarize a long text. The Sumy library, a Python library that

can summarize text in several methods, is used in this model. It scores sentences

based on frequency of the most important words.

3. textrank1.py

This script aims to extract key sentence from a document based on the T�dfTrans-

former package. The similarity graph is calculated by normalized matrix multiply

of the transpose normalized matrix. The scores are provided by PageRank from

the networkx package. The results are the top key sentences extracted from the

document without considering the original text order.

4. textrank2.py
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This script is an improvement of textrank1.py. It uses the NLTK library in Python.

The similarity graph is built by cosine distance of two sentences. The results are

the key sentences in the same order as the order in the original text.

5. gensimtest.py

It is a graph-based model using the gensim.summarization.summarizer library from

Python. This module summarizes documents based on ranks of text sentences us-

ing a variant of the TextRank algorithm.

6. lsa.py

It is a topic-based model using the sumy.summarizers.lsa library from Python. In

this script, we choose to use a plaintext parser. Besides, the Tokenizer package is

also imported in this model.

7. �nalmodel.py

It is our new proposed model, which combines the feature-based, graph-based, and

topic-based models. After top sentences are extracted from di�erent models, cosine

similarity will be calculated to provide the �nal ranking result. It is a �nal version

of our new model including pre-processing, combination of di�erent models, and

implementation of cosine similarity calculation.

8.3 Named Entity Recognition

The spaCy package is used for named entity recognition. The code for NER determina-

tion on the entire tobacco dataset has been automated and can be found in the Python

notebook named NER_Automation_JSON.ipynb.

This Python notebook is present in the GitHub repository at

https://github.com/rifatsm/CS5604_NER_on_tobacco_data.

This code requires spaCy version 2.2.2 and the NER package en_core_web_sm to

be installed. The path where the tobacco documents are present needs to be mentioned

in the mypath variable. The same script can be used when a new document is added into

the system by changing the mypath variable to the location where this new document is

located.
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The key-value pairs of NER results obtained after executing this script are saved

in text �les inside a directory named NER. This directory is present in the same location

where the NER_Automation_JSON.ipynb notebook is present.

8.4 Sentiment Analysis

Empath [22] is used for the sentiment analysis. Currently, we are still working with

empath and the only �le we have now is test_empath.py. The code now has di�erent

options to run such as: process a single sentence, process �les in a directory, or process

top n �les in a directory. Setup and other requirements are mentioned in the Github

repository [27]

In the code, we are using Python’s empath library, which has the function analyze(). The

analyze() function takes parameters such as input text, categories, etc. It returns the list

of categories (e.g., joy, fear) with their sentiment score after analyzing the passed input

text.
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Chapter 9

Evaluation

9.1 Clustering

9.1.1 Metrics

It is not trivial to evaluate clustering algorithms when there is no knowledge of the under-

lying true labels for the data. Most measures such as mutual information among others

rely on the ground truth labels for quantitatively evaluating cluster assignment. A chal-

lenge in evaluating cluster assignments is that there are no known cluster assignments to

compute extrinsic measures for evaluation. Thus, we rely on intrinsic measures that give

an idea of the compactness of a cluster assignment. Note that such evaluations merely

give an idea of the structural quality of the clusters by considering such aspects as their

overlap, density, and inter-cluster and intra-cluster distance. These aspects, however,

cannot be used as proxies to evaluate whether or not the resulting cluster assignment

is optimal or even relevant to the task at hand. Nevertheless, we consider the following

metrics to evaluate the clustering algorithms. We use scikit-learn’s [46] implementation

of these metrics in our work. Note that we compute these metrics only for clustering en-

tire corpora and do not consider them while applying the algorithms on subsets of data

for both the ETD and tobacco corpora.

1. Calinski-Harabasz Index (CHI) [16]

The Calinski-Harabasz Index, a.k.a the Variance Ratio Criterion, is the ratio of the

sum of intra-clusters dispersion and of inter-cluster dispersion for all clusters [46].

Thus, a higher value of the index corresponds to better quality of clustering. The
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CHI index is generally more relevant in case of convex cluster types as opposed to

clusters resulting from such methods as DBSCAN.

2. Silhouette Coe�cient

The Silhouette Coe�cient is a mean value based on two quantities for every point

in the dataset. It is the ratio of the mean distance between a point and all other

points in that cluster, and the mean distance between the point and all other points

in the next nearest cluster. The value ranges between -1 and 1. A value of -1 rep-

resents bad clustering while 1 represents dense clustering. A value close to zero

corresponds to overlapping clusters [46]. Among the other metrics discussed here,

only the Silhouette Coe�cient can help qualitatively evaluate a single clustering

iteration. The remaining metrics can only be relatively evaluated since their abso-

lute values do not carry any meaning.

3. Davies-Bouldin Index

The Davies-Bouldin Index signi�es the average similarity between clusters, where

the similarity is a measure that compares the distance between clusters with the

size of the clusters themselves [46]. Smaller values represent better separation

between clusters. This metric is easier to compute than the Silhouette Coe�cient.

9.1.2 K-Means Clustering

Uncleaned TSR Corpus

The uncleaned TSR corpus as provided by the CMT team consists of 7995 text �les in

the .ocr format. We perform K-Means clustering with 10 centroids. The hyper-parameter

settings are given in Table 9.1. The results are tabulated in Table 9.2.

From the results, it can be observed that more than half of the number of documents

in the cluster have been allocated to the same cluster (number 3). Also, the number of

common tokens in the smallest cluster with 94 documents is a maximum (22386). We are

trying to understand and interpret these results in the context of the clustering algorithm.

As of now, we do not have a concrete understanding of exactly what is causing this

imbalanced cluster assignment despite running the K-Means algorithm with multiple

cluster initializations with di�erent random seeds. We conjecture that the nature of the

documents being primarily in a question-answer or dialogue based format might require

some custom pre-processing before running the K-Means algorithm.
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Parameter Value
Number of centroids 10

Initialization method k-means++ [14]

Parallel Jobs 5

Number of random initializations 5

Loss/Metric Inertia

Maximum Iterations 300

Table 9.1: Hyper-parameters for TSR K-Means

Cluster
Number

Number of Docu-
ments

Number of tokens occur-
ring in all documents in
the cluster

1 94 223866

2 107 7915

3 4806 1754

4 283 4806

5 283 653

6 320 1193

7 340 4768

8 123 2327

9 529 1202

10 259 7238

Table 9.2: K-Means Results for Uncleaned TSRs

Cleaned TSR Corpus

The cleaned corpus provided by Team CMT consists of 4553 text �les that contain only

valid UTF-8 bytes. In order to cluster this corpus, we use the same set of parameters as

given in Table 9.1. The results of the clustering are tabulated in Table 9.3.

As is evident from Table 9.3, the results for the cleaned corpus are not markedly dif-

ferent from the uncleaned ones. Here too, more than half of all documents are assigned to

a single cluster (number 4). We are now working towards employing methods to choose

the optimal number of clusters for the corpus.
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Cluster
Number

Number of Docu-
ments

Number of tokens occur-
ring in all documents in
the cluster

1 130 1651

2 149 317

3 502 2488

4 2809 2265

5 153 2289

6 91 99

7 182 970

8 199 6672

9 170 3984

10 168 10995

Table 9.3: K-Means Results for Cleaned TSRs

The ETD corpus

Here, we evaluate the K-Means clustering algorithm for the ETD corpus. We cluster the

128-d Doc2Vec vectors computed from the abstracts of 30961 ETDs into 500 clusters. The

number of clusters was cross-validated over the Silhouette Index. Insigni�cant variations

in the Silhouette score for clusters ranging from 350 through 800 were observed. Thus,

500 was chosen as the �nal cluster size since this results in a total of approximately 60

documents (in the expected value) in every cluster, which was found reasonable. The

hyper-parameters for training the algorithm are the same as in Table 9.1. However, we

compute 500 clusters with more parallel workers to speed up the training. We present a

pointwise cluster histogram in Figure 9.1.

The average documents per cluster is 46.28, which is close to the uniform document

to cluster allocation case with ~60 documents for each cluster. The standard deviation

of the cluster sizes is 68.70. Further, the CHI, Silhouette Coe�cient, and Davies-Boulden

Score are compared and discussed with other clustering metrics in Section 9.1.1.
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Figure 9.1: K-Means cluster size histogram

9.1.3 Hierarchical Agglomerative Clustering

Sample Tobacco Documents

To begin with, we performed Agglomerative Clustering as described in Section 5.1.3 on

a set of 200 documents from the tobacco corpus. The results are enumerated in Table 9.4.

Cluster
Number

Number of Docu-
ments

1 13

2 5

3 107

4 7

5 3

6 7

7 45

8 3

9 7

10 3

Table 9.4: Agglomerative Clustering on 200 documents

It can be observed that the nature of the clusters is very similar to the case of the

K-Means algorithm with the TSRs. Of the 200 documents, 107 of them have been as-
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signed to the 3rd cluster while 45 belong to the 7th cluster. In an attempt to probe the

reason behind the unbalanced nature of the clusters, we explored the TFIDF vectors for

these documents. We found that the vectors for all documents are extremely sparse in

nature with ~1% values being non-zero. From this, we conjecture the following. Firstly,

we strongly believe that sparsity is the prime reason behind the unbalanced cluster allo-

cations. Thus, we switch over to custom sized (and essentially smaller) embeddings for

each document based on Doc2Vec (Section 5.1.1). Another solution that we considered

but did not �nd worth implementing was to reduce the dimensionality of the vectors by

retaining only the principle components using the PCA technique. Future work based

on ours can attempt this endeavor to see if better results can be obtained. Secondly, we

consider the possibility that the sparsity could be caused by the inexact and raw pre-

processing that we have employed. For this, we work with pre-processed and tokenized

versions of the documents for subsequent iterations.

The ETD corpus

Similar to Section 9.1.2, we apply Agglomerative Clustering to the Doc2Vec embeddings

obtained from the abstracts from all of the 30961 documents from the ETD corpus. We

employ a Ward based linkage along with the Euclidean distance measure for generating

500 clusters. The point-wise cluster histogram is shown in Figure 9.2.

Figure 9.2: Agglomerative Clustering - cluster size histogram

The average number of documents per cluster is 46.28 and the standard deviation is

64.87.
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9.1.4 BIRCH

As discussed in Section 4.1.1, Birch is a clustering algorithm designed to be memory

and compute e�cient when dealing with large scale databases. It works by iterating

through the given corpus once and developing an initial cluster assignment and then

(optionally) performing further iterations to improve the initial assignment. We apply

Birch only to large scale corpora and not to the initial sample data subsets. There are

two crucial hyper-parameters involved in Birch, the threshold and the branching factor.

The branching factor limits the number of sub-clusters in a node, while the threshold

limits the distance between the entering sample and the existing sub-clusters [46]. We

set the branching factor and threshold to 50 and 0.5, respectively. We do not perform

hyper-parameter selection for Birch as we �nd that the defaults work reasonably well.

The point-wise cluster histogram for Birch with the ETD corpus is shown in Figure 9.3.

Figure 9.3: Birch Clustering - cluster size histogram

The average cluster size for Birch with the ETD corpus is 46.28 and the standard

deviation is 74.61.

9.1.5 DBSCAN

We apply DBSCAN to the ETD corpus on the Doc2Vec embeddings obtained from the

abstracts of the 30961 ETDs. DBSCAN is a density based clustering algorithm designed

for large scale spatial databases with noise. Particularly, it has very few corpus speci�c

hyper-parameters to be tuned, which makes it easy to adopt for a myriad of massive data

corpora without extensive mining. Section 4.2 of the DBSCAN paper [20] describes a
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graphical technique to choose the hyper-parameters eps andminPts. We perform a hyper-

parameter search for eps for values of minPts ranging from 3 through 10. In each case,

only minor di�erences are observed with respect to the curvature point in the graph. As

a sample, Figure 5.2 from Chapter 5 shows the plot of eps for each document. However,

we do not obtain satisfactory results with DBSCAN for clustering the ETDs based on

abstracts. The clustering is trivially wrong as all documents are allocated to the noisy

clustering. It should be noted that DBSCAN can detect noisy documents. This means

that it will only allocate documents to a cluster if the resulting cluster dimensions and

distances are within a threshold (eps). In our case, DBSCAN assigns all clusters to the

noise class and fails to perform the clustering successfully.

9.1.6 Results Summary and Discussion

The ETD corpus

Table 9.5 notes the key metrics for the clustering algorithms used to cluster the ETD

corpus.

K-Means Agglomerative Clustering Birch
Calinski-Harabasz Index 26.637 25.153 25.069

Silhouette Coe�cient -0.070 -0.082 -0.074

Davies-Bouldin Score 2.985 3.422 3.447

Standard Deviation of
Cluster Size 68.700 64.874 74.611

Table 9.5: ETD Clustering Metrics

Here, we provide a comparative overview between di�erent algorithms based on the

metrics in Table 9.5. Before proceeding with the same, we brie�y mention our e�orts

towards hyper-parameter selection by cross-validation. We cross-validated the number

of clusters for each of the 3 algorithms mentioned in Table 9.5 against the Silhouette Co-

e�cient. However, on varying the cluster counts from 300 through 800 with an interval

of 50 points, we did not observe any signi�cant variation in the Silhouette Coe�cient for

any of the 3 algorithms. The range of values of the Silhouette Coe�cient we obtained

for each of these algorithms was between -0.06 to -0.09. As mentioned in Section 9.1.1,

a Silhouette Coe�cient value near zero indicates dense and overlapping clusters while a
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value closer to 1 indicates highly disparate and non-overlapping clusters. Thus, within

a signi�cant range of clusters, we do not observe any appreciable variation in either the

density or the distribution of the clusters. Thus, we refrain from mentioning the details

of these cross-validation experiments here. The interested reader can �nd these exper-

iments at the HTTPS URL in [36] under the heading ‘Compute Optimal cluster count

based on Silhouette Coe�cient.’

Considering the CH index and the Davies-Boulden (DB) score, insigni�cant di�er-

ences are observed across the 3 clustering algorithms in consideration. Thus, we con-

clude that all 3 algorithms, viz., Birch, K-Means clustering, as well as Agglommerative

clustering, albeit following vastly di�erent ways to cluster the data perform similarly on

the ETD corpus. The �nal parameter we consider for evaluation is the standard deviation

in the cluster sizes. Here, we observe that Agglomerative clustering has the least stan-

dard deviation among the 3 algorithms with a value of 64.874 documents. Further, Birch

tends to have a standard deviation value on the higher side. K-Means, on the other hand,

has a reasonable cluster size standard deviation value of 68.7 that lies between the other

2 algorithms. Intuitively, a lower standard deviation would mean a uniform distribution

of documents across the clusters. Thus, we seek to employ a clustering algorithm that

has a reasonable number of documents per cluster (as dictated by the application) while

having a mid-range value of standard deviation in cluster sizes. With this consideration,

the K-Means algorithm tends to perform reasonably well (in the expected value sense)

across the range of algorithms we explored.

9.2 NER

9.2.1 Pre-Trained Models

The Name Entity Recognition tool, spaCy, has a number of pre-trained models in several

di�erent languages, such as English, German, French, Multi-language, etc. [4]. Since

both of our datasets are in the English language, we used models pre-trained with Con-

volutional Neural Network (CNN) on OntoNotes [3] as mentioned in Table 9.6.

We found the models in Table 9.6 perform e�ectively with the tobacco dataset. How-

ever, it performed not very poorly with the ETD sample dateset. We evaluated the perfor-

mance by precision and recall. The models had very low precision and recall. In Figure

9.4, we can see the named entities that are extracted by the models en, en_core_web_sm,

and en_core_web_md. As we can see, these named-entities have precision of under 35%.
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Number Model Name Model Description
1 en_core_web_sm English multi-task CNN

trained on OntoNotes

2 en_core_web_md English multi-task CNN trained on OntoNotes

with GloVe vectors trained on Common Crawl

3 en_core_web_lg English multi-task CNN trained on OntoNotes

with GloVe vectors trained on Common Crawl

4 en_vectors_web_lg English multi-task CNN trained

on blogs, news, comments

5 en_trf_bertbaseuncased_lg pretrained transformer model

published by Google Research
using HuggingFace’s transformers

6 en_trf_robertabase_lg pretrained transformer model

published by Facebook
using HuggingFace’s transformers

7 en_trf_distilbertbaseuncased_lg pretrained transformer model

published by HuggingFace
8 en_trf_xlnetbasecased_lg pretrained transformer model

published by CMU and Google Brain
using HuggingFace’s transformer

Table 9.6: spaCy Pre-Trained English Models

A possible reason behind this might be in the pre-trained models. Since the models that

we used were pre-trained on OntoNotes, blogs, news, and/or comments, they are biased

away from scienti�c articles. These models are especially good to extract named enti-

ties that are geolocation, organization, date, person, etc. At the same time, they are not

very appropriate for extracting entities that are technical terms in the scienti�c domain.

This may explain why they perform somewhat well with the tobacco dataset, as they are

mostly identifying organization, person, date, etc. However, it would be more accurate

to use a model that is more aware of legal terminology. Therefore, we plan to use pre-

trained models with more speci�c domain knowledge.

The best approach would be to create a custom model from scratch by training on a sam-
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Figure 9.4: Name Entities Extracted by spaCy Models on ETD Sample Dataset

ple dataset. However, we don’t have the whole dataset available to us and by the time we

will, we might not have enough time to train and test the model. Therefore, we consider

this approach to be outside the scope of our project. Another feasible solution would be

to use domain-speci�c pre-trained models that exist. Since we have two di�erent types

of dataset, we have considered to use two di�erent spaCy models as found in Table 9.7.

Package Name Description
ScispaCy [43] Python package containing spaCy models for processing

biomedical, scienti�c or clinical text

Blackstone [1] spaCy model and library for NLP on

long-form, unstructured legal text

Table 9.7: New spaCy Packages and Models to consider

For the ETD dataset, we will be using the ScispaCy package [43]. ScispaCy is a Python

based package that has pre-trained models trained on scienti�c documents, especially on

biomedical and clinical texts. This is the closest open sourced spaCy pre-trained model

we have at the time of this project. Another feasible open source solution for the tobacco
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dataset is the Blackstone model [1]. Blackstone is a spaCy model that was pre-trained

on UK legal-informatics documents in an experimental research project.

9.2.2 Automation of NER

As described in the previous section, the spaCy package provides the best results for

named entity recognition. Therefore, we will be using spaCy for NER determination on

the entire tobacco dataset.

We have written a Python script for automating this process of recognizing named

entities among the 1 million tobacco articles. The NER results of of each tobacco

document which are in the form of key-value pairs are stored in a text �le. The name of

the text �le is the same as the document on which NER is determined. The generated

text �les are stored in the directory located at /mnt/ceph/tml/ner on ceph which will be

used by the the ELS team.

Initially a sample subset of the cleaned tobacco documents present in ceph are down-

loaded on a local machine and the automation has been performed. Later the same

procedure is performed by executing the same script on a container on ceph for named

entity recognition on all the tobacco documents.

An example to illustrate this process is shown below. Consider a sample tobacco

document obtained named jtvf0005 which is obtained from ceph. The content of this

document is as follows:

Attendance at PR meeting September 10, 1958; James P. Richards Robert K.
He jnann 0. D. Campbell 6ene L. Cooper W. S. Cutchins Margaret Carson H.
C. Robinson Jr. Dan Provost James C. Bowling Jokm Scott Fones Rex Lardner
John Jones Richard W. Darrow Carl C. Thompson Leonard S. Zatm Kenneth L.
Austin D7alco’-m Jo’nnsonW. T. Hoyt The Tobacco Institute, Inc, The Amer:can
Tobacco Company Braun and Company, Inc. Braun and Company, Inc. Brown
and Williamson Tobacco Corp. M. Carson, Inc. Liggett Myers Tobacco Com-
pany D:cCann-Erickson, Inc. Philip Morris, Inc. Benjamin Sonnenberg Sidney
J. Wain, Inc. Sidney J. Wain, Inc. Hill end Hnowlton, Inc. F.111 and Knowlton,
Inc. Hill and Knowlton, Inc. Hil’_ and Knowlton, Inc. Hi1= and Kaowlton, Inc.
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Tobacco Industry Research Conmittee

The results obtained after running the NER script on this document is saved in a text

�le which has the same name as the document, that is, jtvf0005.txt. The jtvf0005.txt �le

contains key-value pairs of NER as follows:

[(’DATE’, September 10, 1958), (’PERSON’, James P. Richards), (’PERSON’,
Robert K.), (’NORP’, D.), (’ORG’, Campbell), (’PERSON’, James C. Bowling),
(’PERSON’, John Jones Richard W. Darrow), (’PERSON’, Carl C. Thompson),
(’ORG’, The Tobacco Institute), (’PERSON’, Inc), (’ORG’, The Amer:can Tobacco
Company Braun and Company), (’PERSON’, M. Carson), (’ORG’, Liggett My-
ers Tobacco Company D), (’ORG’, cCann-Erickson), (’ORG’, Philip Morris),
(’PERSON’, Benjamin Sonnenberg Sidney J. Wain), (’PERSON’, Sidney J. Wain),
(’ORG’, Inc. Hill end), (’GPE’, Hnowlton), (’ORG’, Inc. F.111), (’GPE’, Knowlton),
(’ORG’, Inc. Hill), (’GPE’, Knowlton), (’ORG’, Inc. Hil’), (’WORK_OF_ART’, _ and
Knowlton, Inc. Hi1=), (’GPE’, Kaowlton)]

This text �le,jtvf0005.txt, is saved in the /mnt/ceph/tml/ner directory on ceph and

provided to the ELS team.

The same script can be used for determining NER when a new �le is added to the

system. The path of the �le needs to be changed according to the location where the new

�le is saved on ceph and the same script can be executed.

9.3 Recommender System - Future Scope

The implementation of content-based and collaborative �ltering recommendation

techniques have been implemented a sample dataset as described in Section 5.5.

Clustering, a form of content-based recommendation system, has been implemented

on both ETD and tobacco dataset as discussed in Section 9.1.

Collaborative �ltering based recommendation requires a large number of user search

logs in order to produce accurate recommendations to the user. Our complete search
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engine with completely integrated front end, Kibana, and Elasticsearch was not available

until the last few weeks of the deadline of this course project. We were provided only

1-2 sample user logs by the FEK and ELS team.

Due to time constraints on this course project, we were not able to collect a large

number of user logs, which are required in the collaborative �ltering technique. Hence,

the implementation of collaborative �ltering based techniques which provides recom-

mendations based on the users’ previous search history has been performed on a sample

dataset obtained by Deskdrop [51]. This dataset comes from real users with 73k user

interactions and 2926 documents, and has �elds similar to our search logs.

This approach can be extended to provide user-speci�c recommendations to the

search engine users during future system enhancements.

The steps required to extend this technique to our system have been described

below.

The required �elds for recommender systems present in the sample dataset, and

the the �elds currently present in the logs from the FEK and ELS teams, can be seen in

Figure 9.5.

The logs obtained from the FEK and ELS teams are missing some �elds that are

important in knowing whether or not the document was viewed by the user. Adding

a new �eld called ‘Document Viewed’ would be helpful in further processing the data

and to run the collaborative �ltering model and improve the recommendations based on

user preferences.
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Figure 9.5: Comparison between sample dataset log �elds and FEK, ELS log �elds
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[17] Colneriĉ, N., and Demsar, J. Emotion recognition on Twitter: Comparative study

and training a unison model. IEEE Transactions on A�ective Computing (2018).

[18] Cover, T. M., and Thomas, J. A. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA,

2006.

[19] Deng, H. Recommender Systems in Practice. https://towardsdatascience.com/

recommender-systems-in-practice-cef9033bb23a, September 2019. (Accessed on

09/19/2019).

[20] Ester, M., peter Kriegel, H., Sander, J., and Xu, X. A density-based algorithm for

discovering clusters in large spatial databases with noise. AAAI Press, pp. 226–231.

94

https://www.bbc.co.uk/blogs/internet/entries/63841314-c3c6-33d2-a7b8-f58ca040a65b
https://www.bbc.co.uk/blogs/internet/entries/63841314-c3c6-33d2-a7b8-f58ca040a65b
https://towardsdatascience.com/recommender-systems-in-practice-cef9033bb23a
https://towardsdatascience.com/recommender-systems-in-practice-cef9033bb23a


[21] Fast, E., Chen, B., and Bernstein, M. S. Empath: Understanding topic signals

in large-scale text. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (2016), ACM, pp. 4647–4657.

[22] Fast, E., Chen, B., and Bernstein, M. S. Empath: Understanding Topic Signals

in Large-Scale Text. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (New York, NY, USA, 2016), CHI ’16, ACM, pp. 4647–4657.

[23] Firth, J. R. A synopsis of linguistic theory 1930-55. 1–32.

[24] Harris, Z. S. Distributional structure. Word 10, 2-3 (1954), 146–162.

[25] Hiemstra, D. Using Language Models for Information Retrieval. PhD thesis, Univer-

sity of Twente, 1 2001. Imported from HMI.

[26] Joshi, P. An Introduction to Text Summarization using the TextRank

Algorithm. https://www.analyticsvidhya.com/blog/2018/11/introduction-text-

summarization-textrank-python/, November 2018. (Accessed on 10/19/2019).

[27] Juvekar, A., and Mansur, R. CS5604 empath on tobacco document - Github. https:

//github.com/rifatsm/empath_on_tobacco_documents., December 2019. (Accessed

on December 29, 2019).

[28] Lafferty, J., and Zhai, C. Document Language Models, Query Models, and Risk

Minimization for Information Retrieval. In Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2001), SIGIR ’01, ACM, pp. 111–119.

[29] Le, Q., and Mikolov, T. Distributed Representations of Sentences and Documents.

In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32 (2014), ICML’14, JMLR.org, pp. II–1188–II–1196.

[30] Lloyd, S. P. Least squares quantization in PCM. IEEE Transactions on Information
Theory 28 (1982), 129–137.

[31] Loper, E., and Bird, S. The PunktSentenseTokenizer. https://www.nltk.org/

api/nltk.tokenize.html#nltk.tokenize.punkt.PunktSentenceTokenizer. (Accessed on

10/09/2019).

95

https://www.analyticsvidhya.com/blog/2018/11/introduction-text-summarization-textrank-python/
https://www.analyticsvidhya.com/blog/2018/11/introduction-text-summarization-textrank-python/
https://github.com/rifatsm/empath_on_tobacco_documents.
https://github.com/rifatsm/empath_on_tobacco_documents.
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.punkt.PunktSentenceTokenizer
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.punkt.PunktSentenceTokenizer


[32] Loper, E., and Bird, S. The TreebankWordTokenizer. https://www.nltk.org/api/

nltk.tokenize.html#nltk.tokenize.treebank.TreebankWordTokenizer. (Accessed on

10/09/2019).

[33] Luhn, H. P. A business intelligence system. IBM Journal of Research and Develop-
ment 2, 4 (Oct 1958), 314–319.

[34] Malik, U. Hierarchical Clustering with Python and Scikit-Learn. https://stackabuse.

com/hierarchical-clustering-with-python-and-scikit-learn/, July 2018. (Accessed

on 10/30/2019).

[35] Mandke, P. CS5604 TML Clustering Codebase - Github. https://github.com/

pkmandke/cs5604-tml-clustering, December 2019. (Accessed on December 29,

2019).

[36] Mandke, P. CS5604 TML Clustering Cross-Validation - Github. https://github.

com/pkmandke/cs5604-tml-clustering/blob/master/src/playground.ipynb, Decem-

ber 2019. (Accessed on December 29, 2019).

[37] Manning, C. D., Raghavan, P., and Schutze, H. Introduction to Information Re-
trieval. Cambridge University Press, Cambridge, UK, 2008.

[38] Mihalcea, R., and Tarau, P. TextRank: Bringing Order into Text. In Proceedings of
the 2004 Conference on Empirical Methods in Natural Language Processing (Barcelona,

Spain, July 2004), Association for Computational Linguistics, pp. 404–411.

[39] Mitra, B., and Craswell, N. Neural Models for Information Retrieval. CoRR
abs/1705.01509 (2017).

[40] N. R. Kasture, Neha Yargal, N. N. S. N. K., and Mathur, V. A Survey on Methods

of Abstractive Text Summarization. In International Journal for Research in Emerging
Science and Technology, Volume-1, Issue-6, November-2014 (2014).

[41] Navlani, A. Latent Semantic Analysis using Python. https://www.datacamp.com/

community/tutorials/discovering-hidden-topics-python, October 2018. (Accessed

on 10/21/2019).

96

https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.treebank.TreebankWordTokenizer
https://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.treebank.TreebankWordTokenizer
https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/
https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/
https://github.com/pkmandke/cs5604-tml-clustering
https://github.com/pkmandke/cs5604-tml-clustering
https://github.com/pkmandke/cs5604-tml-clustering/blob/master/src/playground.ipynb
https://github.com/pkmandke/cs5604-tml-clustering/blob/master/src/playground.ipynb
https://www.datacamp.com/community/tutorials/discovering-hidden-topics-python
https://www.datacamp.com/community/tutorials/discovering-hidden-topics-python


[42] Neumann, M., King, D., Beltagy, I., and Ammar, W. ScispaCy: Fast and

Robust Models for Biomedical Natural Language Processing. arXiv preprint
arXiv:1902.07669 (2019).

[43] Neumann, M., King, D., Beltagy, I., and Ammar, W. ScispaCy: Fast and Robust

Models for Biomedical Natural Language Processing.

[44] Oliphant, T. E. A guide to NumPy, Chapter 16, vol. 1. Trelgol Publishing USA, 2006.

[45] Ozsoy, M., Alpaslan, F., and Cicekli, I. Text summarization using Latent Semantic

Analysis. J. Information Science 37 (08 2011), 405–417.

[46] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,

A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn:

Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–

2830.

[47] Ponte, J. M., and Croft, W. B. A Language Modeling Approach to Information

Retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (New York, NY, USA, 1998), SIGIR

’98, ACM, pp. 275–281.

[48] Popat, S. K., and Emmanuel, M. Review and comparative study of clustering tech-

niques. International journal of computer science and information technologies 5, 1

(2014), 805–812.

[49] Porter, M. F. Readings in Information Retrieval. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1997, ch. An Algorithm for Su�x Stripping, pp. 313–316.

[50] Robertson, S., and Zaragoza, H. The Probabilistic Relevance Framework: BM25

and Beyond. Found. Trends Inf. Retr. 3, 4 (Apr. 2009), 333–389.

[51] Techlabs, M. What are Product Recommendation Engines? And the var-

ious versions of them? https://towardsdatascience.com/what-are-product-

recommendation-engines-and-the-various-versions-of-them-9dcab4ee26d5,

September 2017. (Accessed on 09/19/2019).

97

https://towardsdatascience.com/what-are-product-recommendation-engines-and-the-various-versions-of-them-9dcab4ee26d5
https://towardsdatascience.com/what-are-product-recommendation-engines-and-the-various-versions-of-them-9dcab4ee26d5


[52] Thakkar, P., Varma, K., Ukani, V., Mankad, S., and Tanwar, S. Combining User-

Based and Item-Based Collaborative Filtering Using Machine Learning. S. C. Sata-

pathy and A. Joshi, Eds., Springer Singapore.

[53] Wang, Z., and Zhang, Y. A Neural Model for Joint Event Detection and Summa-

rization. In Proceedings of the Twenty-Sixth International Joint Conference on Articial
Intelligence (IJCAI-17) (2017).

[54] Zhang, S., Yao, L., Sun, A., and Tay, Y. Deep Learning Based Recommender System:

A Survey and New Perspectives. ACM Comput. Surv. 52, 1 (Feb. 2019).

[55] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: An E�cient Data Clustering

Method for Very Large Databases. SIGMOD Rec. 25, 2 (June 1996), 103–114.

98


	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview
	What Are We Aiming To Do?
	Understanding the Data
	Electronic Theses & Dissertations
	Tobacco Settlement Documents

	Challenges Faced
	Clustering

	Solutions Developed
	Clustering


	Literature Review
	But What is Information Retrieval?
	Learning Representations for Information Retrieval
	Clustering Basics
	Types of clustering

	Text Summarization
	Recommender Systems

	Requirements
	Our Requirements
	Class Requirements

	Design, Tools, and Conceptual Background
	Machine Learning for Information Retrieval
	Clustering
	Text Summarization
	Named-Entity Recognition (NER)
	Sentiment Analysis
	Recommender systems


	Implementation and Preliminary Results
	Clustering
	Pre-processing
	K-Means Clustering
	Hierarchical Clustering
	BIRCH
	DBSCAN

	Text Summarization
	Keyword Extraction
	Summarization on ETD dataset
	Summarization on Tobacco Dataset

	Named-Entity Recognition
	Stanford NER
	NLTK NE_Chunk

	Sentiment Analysis
	Flair
	Twitter Emotion Recognition
	Empath

	  Recommender System
	Dataset
	Content based recommendation
	Collaborative filtering based recommendation
	Performance Comparison
	User Log Format


	Project Roadmap
	Team Milestones
	Task Timeline

	User Manual
	Overview
	Text Summarization
	Named entity recognition
	Sentiment Analysis

	Developer's Manual
	Clustering
	Python Scripts
	IPython Notebooks

	Text Summarization
	Named Entity Recognition
	Sentiment Analysis

	Evaluation
	 Clustering
	Metrics
	K-Means Clustering
	Hierarchical Agglomerative Clustering
	BIRCH
	DBSCAN
	Results Summary and Discussion

	NER
	Pre-Trained Models
	Automation of NER

	Recommender System - Future Scope

	Acknowledgements
	Bibliography

