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SlimGuard: Design and Implementation of a Memory Efficient and
Secure Heap Allocator

Beichen Liu

(ABSTRACT)

Attacks on the heap are an increasingly severe threat. State-of-the-art secure dynamic mem-

ory allocators can offer protection, however their memory consumption is high, making them

suboptimal in many situations. We introduce SlimGuard, a secure allocator whose design is

driven by memory efficiency. Among other features, SlimGuard uses an efficient fine-grain

size classes indexing mechanism and implements a novel dynamic canary scheme. It offers a

low memory overhead due its size classes optimized for canary usage, its on-demand meta-

data allocation, and the combination of randomized allocations and over-provisioning into a

single memory efficient security feature. SlimGuard protects against widespread heap-related

attacks such as overflows, over-reads, double/invalid free, and use-after-free. Evaluation over

a wide range of applications shows that it offers a significant reduction in memory consump-

tion compared to the state-of-the-art secure allocator (up to 2x in macro-benchmarks), while

offering similar or better security guarantees and good performance.



SlimGuard: Design and Implementation of a Memory Efficient and
Secure Heap Allocator

Beichen Liu

(GENERAL AUDIENCE ABSTRACT)

Attacks targeting on the runtime memory (heap allocator) are severe threats to software

safety. Statistical results shown that the numbers of heap-related attacks has doubled since

2016. A large number of research works are desgined to solve the security problems by

offering different techniques to prevent some specific attacks. Not only are they very secure

but also fast. However, these secure heap allocators sacrefise the memory usage, all of them

at least double the memory consumption. Our work is trying to design and implement a

heap allocator, in which it can defend against different attacks, as well as fast and memory-

efficient. We carefully re-design some security features in our heap allocator while keep

memory-efficient in mind. In the end, we evaluated SlimGuard and found that it offers

significant reduction on different benchmarks suites. Evaluation also showed that SlimGuard

can detect a lot of vulnerabilites in the software, while offer the same good performance as

the state-of-the-art heap allocator.
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Chapter 1

Introduction

Attacks targeting on heap have become a popular and increasingly servere threat in recent

yesrs. Heap-related vulnerabilities like buffer overflows, invalid or double frees, are detected

in applications written by memory-unsafe languages, such as C/C++. Heap vulnerabilities

can lead to data leak [8] or corruption [19], control flow hijacking/arbitrary code execu-

tion [10, 28, 35, 36], as well as denial of service.

1.1 Motivation

Using a secure dynamic memory allocator become an obvious line of defense to protect

against heap exploitations. Secure allocators have been introduced in both industral and

academic domains. [1, 11, 27, 30, 33, 34]. Early work suffered from performance [27, 30]

and compatibility [11] issues, as well as low security guarantees [1, 27]. These drawbacks

are all addressed in state-of-the-art secure allocators [33, 34]. However, these allocators still

have limitations in terms of memory overhead: they assume that memory is available in large

quantities. We measured that in some situations, the memory usage of such state-of-the-art

allocators is quite high. For example, Guarder [34] has a 71.3% memory overhead compared

to the standard Glibc malloc implementation for the PARSEC [6] canneal benchmark. In

the age of cloud computing with tenants renting and paying computing resources (including

memory) on-demand, this is quite problematic. Moreover, nowadays security is crucial in

1



2 Chapter 1. Introduction

memory-constrained environments such as Edge and IoT. A heap allocator can lead to serious

problem. For exmaple, recently, researchers disclosure a heap bug in Apple’s bootrom, called

checkm8 [4]. This can be directly used to jailbreak an iPhone running on A5 to A11 chips.

Chips included Apple products released between 2011 and 2017, which are 8 generations of

iPhones.

State-of-the-art secure allocators’ memory footprint is due to several factors, including rea-

sons related to the various security guarantees offered by the allocator. It motivates me to

the challenge, The question comes out of my mind: Can we design a memory allocator that

is both secure and memory efficient, while still offering good performance and compatibility?

With this question in mind, we propose SlimGuard: a secure memory allocator focusign on

having a low memory overhead. To that aim, we evaluate the impact on memory consump-

tion for various security features of state-of-the-art secure allocators. We integrate these

features in SlimGuard, redesigning them to have a low memory overhead, and for some

of them to increase the security guarantees offered. SlimGuard uses fine-grain size classes

indexed by an efficient mechanism, significantly reducing memory waste compared to the

classic power-of-two size classes used in state-of-the-art secure allocators. We combine two

important security features, randomized mappings and over-provisioning, into an original

single mechanism, entropy-based over-provisioning. Heap objects metadata are segregated

from the corresponding data to protect against metadata corruption attacks. Metadata is in-

dexed by a combination of bitmaps and free-lists for fast malloc and free operations while

keeping memory overhead low. An original type of heap canary is provided in the form

of dynamic canaries, where canary values differ among objects, at no additional memory

overhead cost. Additionally, SlimGuard offers randomized memory allocations, double-free

checking mechanisms, and guard pages.

While keeping a controllable memory footprint and offering security guarantees, SlimGuard
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also offers performance similar to Glibc’s malloc, and presents a high degree of compatibility

as it does not require application recompilation.

We evaluate SlimGuard’s security mechanisms and show that it protects against a wide

range of existing exploits. We also evaluate its memory overhead and performance over

micro-/macro-benchmarks including the PARSEC [6] and MiBench [18] suites. SlimGuard

outperforms the state-of-the-art secure memory allocator by 2x in terms of memory consump-

tion for a number of macro-benchmarks, while offering similar or better levels of security

and performance.

1.2 Threat Model

We assume a threat model similar to the one of state-of-the-art secure allocators [33, 34].

It is well-known that security by obscurity is not a good practice, so we assume that it is

possible for the attacker to access the sources of SlimGuard.

We trust the host operating system (OS), in particular the fact that the mmap() system call

can provide sufficiently randomized virtual memory areas for SlimGuard to keep secret the

start addresses of data and metadata areas, as well as the loading location of SlimGuard’s

shared library code and static data. We also assume that the system is correctly configured

so that the location of such areas is not accessible through channels such as the /proc virtual

filesystem [13]. We assume a 64 bit machine as the host, and we trust the random number

generator to be efficient and not to be tampered with or subverted by the attacker.
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1.3 Thesis Contribution

The contribution of my thesis are as following:

• The design of SlimGuard, a secure memory allocator whose security freture is driven

by memory efficiency,

• The implementation of SlimGuard, as a shared library, which sources are available

online under an open source license.

• The evaluation of SlimGuard, which demostrates the security guarantees, low memory

footprint, good performance comparaing to other memory allocators, includuing state-

of-the-art memory allocators.

1.4 Thesis Organization

The rest of the Thesis is organized as follows: in chapter 2, We describe the motivation of

why securing the heap, and discuss existing secure allocator and related works; in chapter 3,

we bring the design and implementation of SlimGuard; weanalyzed SlimGuard’s security in

chapter 4, and I evaluate Slimguard in chapter 5. Lastly, we conclude the thesis and discuss

potential future works in chapter 6.



Chapter 2

Backkground and Related Works

In this chapter, we detail the most common heap-related vulnerabilities, and show that

nowadays they are an increasingly severe threat. Next, we present existing secure memory

allocators and point out their limitations motivating the design of SlimGuard. Finally, we

discuss related works.

2.1 Heap-Related Vulnerabilities

The occurrence of heap-related vulnerabilities discoveries and related attacks is dramatically

increasing in recent years [33, 34]. We used the National Vulnerability Database (NVD) [29]

to search for reported vulnerabilities on the heap since 2010, and counted the number of heap-

related Common Vulnerabilities and Exposures (CVE) entries per year. These numbers are

presented on Figure 2.1. As one can observe, the number of CVE entries mentioning the

heap has tripled after 2017, reaching more than 600 occurrences in both 2017 and 2018.

Although there is a plethora of work targeting the ’static’ part of the address space such as

the code segment or static data, a large part of this work is not applicable to the heap [38].

Vulnerabilities on the heap can fall into diverse categories, such as heap overflow, heap

overread, use-after-free, invalid free, double free, etc. The next couple of paragraphs will go

over each of these vulneriabilities.

5



6 Chapter 2. Backkground and Related Works

Figure 2.1: Number of heap-related CVE entries since 2010.

Heap OverFlow/underflow. A heap overflow happens when the program performs an

out-of-bound write operation past a heap object due to a bug or a lack of proper bound

checking. Less common, heap underflows concern situations where a buggy access to a heap

buffer leads to memory being written before the buffer.

Buffer overflow/underflow can lead to several problems i.e. execution of arbitrary code,

denial of service, or heap smashing [19].

Heap Over-read/Underread. Similarly, heap objects over-read and under-read concern

read rather than write accesses. All these operations allow an attacker to potentially write

and read part of the address space which can lead to information leaks (such as Heart-

Bleed [8]) or data/metadata corruption [19], leading memory access errors, crash or denial-

of-service.

Use-after-free. Other vulnerability classes include use-after-free (or dangling pointers),

in which memory is erroneously accessed after having been freed. Consequences depend on

the use of the accessed memory. They include information leak [39] but also control flow

hijacking [32]. For example, when the freed memory is later reallocated for an object of type
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B and then accessed as the initial object of type A [39].

Invalid/Double Free. An invalid free happens when the application tries to free a value

that is not pointing to an object created by the memory allocator. A double free happens

on a pointer that was already freed in the past. Invalid and double-frees can be exploited

for arbitrary code execution, data corruption, and denial-of-service [33].

Other Heap Errors. There are some other heap related vulnerabilities that does not

appeared as CVEs. For instance, initialization errors, misuse of allocation functions, mis-

match allocation fuctions, uninitialized reads, etc. Such vulnerabilities can also lead to serve

results, but SlimGuard is not designed specifically for these vulnerabilities, so it potentially

cannot protect against these vulnerabilities.

A past study [34] presents a breakdown by type of NVD’s heap-related CVEs and note that

the most common are, by far, overflows, followed by use-after-free, over-reads, Invalid and

double-frees. SlimGuard are designed to detect all of these at runtime.

2.2 Memory Allocators

Existing memory allocators are classified into two major types: bumper-pointer and BIBOP-

style allocators.

2.2.1 Bumper-pointer Allocators

Bumper-pointer allocators are also known as the freelist-based allocators. They are pretty

popular that Windows and Linux default memory allocators are bumper-pointer allocator.
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It employs freelist to improve the performance by maintaining free’d objects in different

freelists, organized by size classes. Such allocators are not designed for security, instead,

they are designed for performance . Such design can directly increase the risks of program

vulnerabities

2.2.2 BIBOP-style Allocators

BIBOP-style allocators is another type of allocators. Here, BIBOP stands for Big Bag of

Pages [12]. jemalloc [14], openbsd [27], cling [1], and DieHarder [30] are all in this class. In

each Bag of Pages, the heap objects have the same size.

2.3 Existing Secure Memory Allocator

An obvious level of protection against the exploitation of the aforementioned vulnerabilities

is the dynamic memory allocator, i.e. the implementation of malloc, managing heap objects.

Here, we present the existing memory allocators providing security features [27, 30, 33, 34].

2.3.1 OpenBSD

The allocator of OpenBSD 6.0 [27] (referred to as ”OpenBSD”) in the rest of this thesis

is an evolution of PHKmalloc [20] originally written for FreeBSD. OpenBSD adds security

features including (1) the segregation of data and metadata in order to protect against

metadata exploits based on data buffer overflowed onto inline metadata, and (2) randomized

allocations making it harder for an attacker to determine the layout of the heap. Due to its

reliance on a bitmap rather than a free-list to maintain the status (free/used) of heap objects,

OpenBSD has a low memory overhead. However it suffers from performance problems (up
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to a 4x slowdown [33]) due in particular to frequent invocations of the mmap system call.

Limitations in terms of security guarantees have also been identified, such as an unstable

level of entropy for the allocation of small objects (with size <2KB), or an outright low

entropy for large objects [34].

2.3.2 DieHarder

DieHarder [30] implements security features such as randomized allocations. It also offers

over-provisioning, a technique in which some object slots are never allocated, giving a prob-

abilistic chance that an overflow hitting an unallocated slot will have no impact (at the

cost of memory overhead). DieHarder has been identified to have a non-negligible mem-

ory overhead, an unstable randomization entropy, and a significant (up to 9x) performance

impact [34].

2.3.3 FreeGuard and Guarder

FreeGuard [33] improved over OpenBSD and DieHarder by combining all security features

from previous work with a negligible performance overhead. In SlimGuard we provide simi-

lar security features, although designed and implemented differently, so we will depict them

in details in the next section. Guarder [34] is an evolution of FreeGuard, and can be consid-

ered as the state-of-the-art secure memory allocator. Guarder improves upon FreeGuard by

providing a deterministic level of entropy for the randomized allocations that is tunable and

can be set higher than FreeGuard’s low entropy (2 bits). Guarder also presents a negligible

performance overhead. Both FreeGuard and Guarder do not focus on memory overhead and

as a result these systems have a very large memory footprint: more than 2x in multiple

scenarios [33, 34].
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Figure 2.2: SlimGuard in the secure allocators design space.

Given that existing secure memory allocators have issues either in terms of performance

(OpenBSD/DieHarder), security (OpenBSD/DieHarder/FreeGuard), or memory overhead

(DieHarder/FreeGuard/Guarder), we propose SlimGuard– a memory allocator that offers a

low memory footprint, good performance, and good security guarantees. SlimGuard is thus

a novel point in the design space, as illustrated by Figure 2.2.

2.4 Other Related Works

Other secure allocators have been proposed in the past. In general, each focuses on a

particular security feature, such as providing a non-deterministic layout/location of the

heap [5, 21, 31], or segregating data and metadata in the address space [21, 40, 41]. These

features are supported in SlimGuard. Cling [1] protects against use-after-free vulnerabilities

by forcing address space to be reused only by objects of the same type. SlimGuard also pro-

tects against such vulnerabilities by a combination of segregation of metadata, randomized

allocations, and guard pages.

Other protection techniques focus on a particular type of vulnerability on the heap. Multiple

work have targeted use-after-free and/or double-free vulnerabilities, either through the use

of a customized compiler for FreeSentry [39] and DangNULL [23], or at runtime for Undan-
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gle [7]. Other works target buffer overflows either through the introduction of additional

metadata checked at runtime [2, 3] or with the use of a customized compiler [11]. SlimGuard

provides protection against many vulnerabilities. Moreover, it does not require application

recompilation nor access to the sources, which is not acceptable in some cases such as its use

of proprietary code.



Chapter 3

Design and Implementation

As mentioned in the motivation, the design objective of SlimGuard is to provide a memory-

efficient dynamic allocator offering good security guarantees, good performance, and good

compatibility. Concerning memory efficiency, we expect SlimGuard to offer a similar mem-

ory footprint compared to non-secure or low-security allocators, e.g. Glibc’s or OpenBSD.

SlimGuard’s footprint should be better than state-of-the-art allocators, i.e. Guarder. Re-

garding security, SlimGuard’s features should be similar or better than the state-of-the-art.

Concerning performance, we aim to have a negligible performance overhead compared to

Glibc’s allocator (the default allocator in most scenarios), i.e. similar to allocators such as

FreeGuard or Guarder. We define a good compatibility level as binary-compatibility: Slim-

Guard should not require the use of a custom compiler or recompilation, i.e. we assume no

access to the application sources.

The security principles implemented within SlimGuard are the following:

• Randomized memory allocations with a significant entropy remove the capacity by the

attacker to create a deterministic layout of objects on the heap [35].

• Over-provisioning protects in a probabilistic way against buffer overflows.

• Segregating metadata from data allows to protect against metadata corruption-based

attacks [19] that are straightforward in systems storing metadata inline as headers with

dynamically allocated objects. These metadata include in particular the state of each

12
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slot (free or used), checked upon free to protect against double-free-based attacks.

• Heap over- and under-flows are protected against with the use of heap canaries.

• Unmapped guard pages prevent heap buffer overflows and over-reads.

• Use-after-free attacks are made harder by using delayed randomized memory reuse and

optionally pretented bydestroying data on free.

In the rest of this chapter, we first give an overview of SlimGuard’s working principles. Next,

we describe each security feature we provide and put the emphasis on how we optimize its

integration for low memory consumption. Next, we discuss SlimGuard’ compatibility. It is

important to note that, although SlimGuard integrates similar features as existing secure

allocators, due to our focus on memory consumption the design and implementation of such

features differs significantly from existing allocators.

3.1 Overview

3.1.1 Small vs. Large Objects

A central feature of a dynamic memory allocator concerns how to manage objects of different

sizes. Generally, a distinction is made between small and large objects [17, 22, 33, 34]. Small

objects are managed internally by the allocator, while for large objects the allocator generally

relies on the mmap and munmap system calls. Large object management is thus relatively

straightforward. It is also secure because of the high level of entropy of Linux’s anonymous

mappings (at least 28 bits and up to 33 for hardened kernel with PaX/grSecurity [26])

and the fact that such mappings are generally surrounded by unmapped pages makes them



14 Chapter 3. Design and Implementation

robust against overflows. Moreover, because such objects are freed with munmap, a use-after-

free would invariably trigger a page fault and crash the program. The relatively high cost of

invoking the mmap system call has to be put into perspective with the relatively low frequency

of the allocation of such large objects. SlimGuard adopts a similar management for large

objects, the configurable threshold being set by default at 128 KB. In the rest of this section

we focus on depicting small objects management.

3.1.2 Size-Classes Management and Indexing

Existing state-of-the-art secure memory allocators [33, 34] use power-of-two size classes to

manage small objects. Indeed it is quite likely for the programmer to request memory with

a size equal to a power-of-two. Although this is intuitive in non-secure allocators, in state-

of-the-art secure allocators this ends up being the source of a very large memory overhead.

In effect such allocators place a heap canary right after allocated each object in the address

space. The canary is a small one-byte value used to check for buffer overflows. It is placed

with the object within the allocation slot. It makes that with any allocation of a power-

of-two size 2n, that object will need to be allocated in the next size class, i.e. 2n+1, to be

able to store a small single-byte canary alongside the data. This effectively wastes 2n − 1

bytes of memory. Because of the high likelihood of power-of-two allocations, this leads to

a potentially huge memory overhead for state-of-the-art secure allocators – for example in

PARSEC [6] canneal, 88.1% of the 20 million calls to malloc fall into this category. As a

result Guarder has a 70% memory overhead for this benchmark (see Section 5.1).

Supporting canaries in SlimGuard is crucial as buffer overflows are the most common vulner-

ability on the heap [34]. We decide not to rely on power-of-two size classes and rather define

finer-grain size classes. We have a total of 176 size classes, divided into 11 subdivisions of
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Figure 3.1: Overview of SlimGuard’s design, including size class indexing metadata (A⃝ and
B⃝, each slot containing the range of sizes it manages), free/used slots status metadata ( I⃝)
and one of the per-size-class data area (bottom).

16 size classes each. The 16 subdivisions is based-on Two-Levels Segregated Fit (TLSF) [25]

setups; the more subdivisions we have, i.e. 32 or 64, the more performance impact will be

impacted; the less subdivisions we have in SlimGuard, i.e. the higher memory footprint will

be. We derived the 11 based on our small object definition: the objects are 8 byte aligned,

and we have 16 divisions. We also derived a function to index these size classes.

The indexing processing is illustrated on Figure 3.1 A and B , where each slot of the array

corresponds to a size class. Slots representations on the Figure contain the lowest and highest

sizes managed by that particular class. The managed sizes of classes within a subdivision

increase linearly by a factor determined by the subdivision index.

To index size classes we use a one-dimension array B containing one element per size class,

each being a pointer to the beginning of an area containing the data C . We name it the

data area. We align all heap objects within that area to an 8-byte granularity for easy

management purposes. When it is needed to satisfy an allocation request of size size we use
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the following formula to find the corresponding slot:

index = 16 ∗ (IMSB − 6) + bits[IMSB − 1 : IMSB − log2(16)− 1]

In this equation, 16 is the number of size classes per subdivision, IMSB is the index of size’s

MSB, and 6 is a constant derived from the number of subdivisions and a minimum alignment

of 8 bytes for size classes boundaries.

Because of this fine-grain size classes division, memory waste is significantly reduced even

in the presence of canaries and power-of-two-sized allocations. Let us take the example of

a program calling malloc(32). After the extra byte for canary, the allocation needs to be

rounded up to 40 for SlimGuard instead of 64 for state-of-the-art secure allocators such

as FreeGuard or Guarder. In that case we are effectively saving 40% memory. Our fine-

grain size class management scheme takes inspiration from (and improves over) TLSF, in

essence merging its two levels of indexation into a unidimensional array, which results in

slight savings in both array storage memory and indexing computations.

3.1.3 Managing the Data Area

The data area ( C on Figure 3.1) is a large area (multiple GBs) of contiguous virtual memory

allocated through mmap the first time a size class is used. It is composed of a used (mapped)

section containing fixed-size free and used slots D , and an unused (unmapped) section E .

These sections are separated by the data area limit pointer F , which is dynamically in-

cremented when the number of free slots is low. The mapping of the data area to actual

physical memory happens implicitly as Linux performs on-demand mapping for anonymous

mappings requested without the MAP_POPULATE flag such as our data area.

Indexing free slots can be made using a bitmap [27, 30] which is memory-efficient but very
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slow to scan upon malloc calls to find a free slot to serve an upcoming allocation request.

The other solution is to use a free-list G which is efficient in terms of performance, but

consumes more memory because (1) pointers need to be stored and (2) we may index in the

free-list slots that will never be used which is pure memory waste. In SlimGuard we use a

free-list to index free slots. Thus, allocation is made with an O(1) complexity. We minimize

the memory impact of this list by having it index only the free slots of the used (mapped)

section D . Thus, in program making only a few memory allocations the free-list memory

usage is relatively low, whereas in application making more allocations it is larger in absolute

but more acceptable in regard to the application consuming more memory itself.

For each size class, the corresponding data area as well as its management data structures

(such as the free-list) are created and allocated on-demand the first time an allocation is

made for this particular class size. It is crucial to do so because the amount of size classes

in SlimGuard is higher than in other allocators using power-of-two size classes: in order to

manage small objects up to 128 KB, we use 176 size classes whereas power-of-two allocators

would only have 15 size classes. Such on-demand allocation helps to limit the per-size-class

overhead, in particular in programs doing just a few memory allocations.

3.1.4 Processing malloc and free

In the general case, both malloc and free are executed in constant time in SlimGuard.

When malloc is called, the relevant data area is identified using the indexing array as

described above ( A , B and C on Figure 3.1), according to the requested size. Next, a free

slot is picked from the free-list G . These operations are thus efficiently realized in constant

time (the free-list is an array that can be directly adressed). When the size of the free-list

falls under a certain threshold, we increment the data area limit pointer by the size of a slot
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and add the new free slot to the free-list.

When free is called H , a bitmap maintaining the free/used status of slots ( I on Figure 3.1)

is first checked to protect against double frees. As a bitmap it takes very few space in memory.

The slot is then marked as free in these metadata I and added to the free-list G .

We have a per-size-class bitmap and when free is called, in order to access this bitmap

we need to know the size class of the freed buffer. For security reasons the data areas are

located at random location one from another, so it is not possible to infer the size class of a

pointer from its location in constant time: we have to iterate and check for each allocated

data area if the pointer falls within its boundaries. In order to speed-up that process, we

always start to iterate with the size class of the latest previously freed pointer. This is quite

efficient as we noticed that a lot of programs free buffers of the same size one after the other

(a common example is a multi-dimensional array allocated and freed within loops). In the

best case, which happens very often, free is achieved in constant time.

SlimGuard maintains per-memory-page used object counters updated with allocations and

deallocations. When a counter reaches 0, the corresponding memory page is released to the

OS through a madvise call with the parameter MADV_DONTNEED. The counters themselves are

allocated on-demand and do not generate memory consumption for data areas’ pages past

the limit pointer.

In the next subsections we describe SlimGuard’s security features. For each feature we

detail the protection offered, an analysis of its memory impact, and a description of its

implementation within SlimGuard.
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3.2 Randomized Allocations and Over-Provisioning

Protection Offered. Non-secure dynamic heap allocators do not randomize the addresses

returned by malloc, leading to situations in which the attacker can deterministically deter-

mine and control the heap layout. A concrete example of attack is Heap Feng Shui [35], in

which a carefully crafted sequence of memory allocation requests is used to generate a deter-

ministic heap layout and ensure the success of a subsequent heap spraying attack. The level

of security for randomized allocations is measured in number of bits of entropy, indicating

how many different locations can be returned by a call to malloc (n bits of entropy corre-

spond to 2n possibilities). That number should be high enough, for example FreeGuard [33]

only offers 2 bits of entropy which corresponds only to 4 possible locations. That number

should also be stable [34], i.e. the system should give a guaranteed minimal number of bits

of entropy for each allocation. In OpenBSD [27] and DieHarder [30], that entropy is unstable

and depends of the state of the allocator. Entropy can fall as low as 3 bits for OpenBSD

and 5 bits for DieHarder [34].

Over-provisioning [30, 33, 34] is a technique with which a certain number of heap slots are

never used by the allocator. These slots are located randomly in between used slots. The

rationale is that a buffer overflow ending in such an unused location will be tolerated and

will have no impact.

Memory Overhead Considerations. The memory overhead generated by randomized

allocations is fully dependent on the method for providing such allocations. However, to

provide a sufficient level of entropy, this overhead can be quite large. Indeed, to avoid

calling mmap to obtain memory pages too often (something that OpenBSD does at the cost

of a non-negligible performance overhead), secure allocators such as Guarder [34] maintain

multiple per-size class pools with multiple allocated pages from which requests for allocations
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are served. In such cases the more entropy bits are required the higher the memory overhead

is.

Over-provisioning is a direct loss of memory, although it can help to tolerate against overflows

in a probabilistic way. It is a good example of a direct trade-off between memory consumption

and probabilities of attack protection.

Integration in SlimGuard. In SlimGuard we combine randomized allocations and a

certain form of over-provisioning (OP) within a single feature called entropy-based OP. In

our design, it corresponds to ensuring that the free-list size will never fall under a certain

threshold. This is simply made by creating a new free slot through the increment of the

data area limit pointer ( F on Figure 3.1). In effect, we increment that pointer by the size

of a slot when the allocation of an object makes the free-list size fall below the threshold.

Remember that each free slot of the mapped section of a data area is indexed within a free-

list. Upon malloc, a free slot in that list is randomly chosen to serve that request. Thus, by

ensuring that the list size never falls under 2n, we can provide a stable n bits of entropy for

randomized allocations. By doing so, we also ensure in effect that 2n randomly distributed

free slots will never be allocated, providing a form of OP at no additional memory cost.

Because such OP is a side effect of randomized allocations, it is not as efficient as directly-

managed OP techniques [33, 34] that give the user a direct control about the percentage

of OP space. Moreover, with such techniques free slots are spread evenly across the data

area. In order to thwart overflows an efficient OP scheme maximizes the number of free

slots that are contiguous to a used slot. In SlimGuard, any type of control over the free-slots

providing entropy would go against the fact that their location should be random. Thus, we

also provide an option to place additional free slots evenly within the data area for situations

where memory consumption is less of a concern but the amount of OP must be controllable.
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3.3 Data and Metadata Segregation

Protection Offered. Multiple legacy heap allocators store metadata (data free/used sta-

tus, free-list pointers, etc.) inline with the data. Because of the close and deterministic

location of such metadata related to the corresponding data, it is relatively straightforward

for an attacker to overwrite the metadata, for example through a heap object over- or under-

flow. This is at the core of the unlink [19] attack where Glibc’s DLmalloc implementation

is tricked into overwriting a function pointer target with the address of shellcode when pro-

cessing carefully corrupted heap metadata.

In secure allocators, metadata maintains the status of each object (free or not). This status

is checked when the object is freed to protect against double or invalid free.

Memory Consumption Considerations. Moving the metadata out-of-band indirectly

increases memory consumption: indeed, inline metadata can be quickly looked up given

an allocated object address, for example in the case of a call to free. When metadata is

segregated from allocated objects, such a lookup requires an indexing mechanism that may

itself consume memory. These indexing data structures may also be used to find free memory

blocks for upcoming allocation requests. Allocators offering slots of fixed size [1, 27, 30] can

have their metadata indexed with simple bitmaps that are quite memory efficient, but slow

to scan when searching for free blocks [33, 34]. Similar to allocators with inline metadata,

secure allocators using slots of non-fixed sizes [33, 34] link these metadata with free-lists

which management and usage is less memory-efficient than bitmaps but offers increased

performance.

Integration in SlimGuard. In SlimGuard, data and metadata are segregated: the free/used

status of each slot is in a bitmap which is located at a random place in the virtual address
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space ( I on Figure 3.1), i.e. at a random offset from the corresponding data slot. In Slim-

Guard, it is possible for us to use a bitmap for such metadata because we have fixed-size

slots: upon free, we can then quickly lookup the right bit in the bitmap in constant time

based on the slot position within the data area. However, as mentioned above, bitmaps are

slow on the malloc path as they need to be scanned. Thus, we also use a free-list for which

we try to keep the size as small as possible, as explained above in the description of the

malloc operation: they only index free slots from the mapped section of the data area.

3.4 Dynamic Canary

Protection Offered. Canaries are guard values with a size of generally 1 byte, placed

before or after allocated objects on the heap to protect against overflows. An overflow

on a given object would overwrite and modify the value of the corresponding canary, and a

security flag is raised when detecting a change in the canary value. Canaries are important as

they protect against overflow, by far the most widespread vulnerability on the heap [33, 34].

However, their efficiency is limited by the fact that canaries values can only be checked

punctually. Existing allocators [33, 34] generally check a small set of canaries during each

malloc and free operation. Moreover, it is possible to leak the value of a canary through

a buffer over-read, which is in the top-3 most common vulnerabilities on the heap [34].

Unfortunately state-of-the-art secure allocators use the same value for the canary among all

allocated objects. Thus, a leak breaks the entire canary system, i.e. it becomes possible to

successfully overflow buffers by setting the canary to the particular leaked value.

Memory Consumption Considerations. The overhead due to canaries is twofold. It

is first comprised of the space needed to store the canary itself, which is equal to the size of
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the canary multiplied by the number of allocated objects. Secondly, because of the size class

system used in state-of-the-art secure allocators, the additional space required for the canary

may lead to the selection of an allocation slot of next size class (by definition the canary

needs to be stored inline with the data). As previously described, because existing secure

allocators implementing canaries use power-of-two size classes, this can have a significant

impact on the memory overhead [33, 34]. As a matter of fact, canaries are generally disabled

in the evaluation of such systems because of this large memory overhead [33, 34].

Integration in SlimGuard. Because of the fine-grain size classes we use in SlimGuard,

as previously mentioned the memory impact of canaries triggering a jump to a superior size

class is significantly reduced.

In SlimGuard we also acknowledge the possibility of a canary value leak. Such an event

would break any secure allocator having a static canary (a single canary value), which is the

case for all state-of-the-art allocators [33, 34]. We propose a new method in which canaries

values are different among separate objects on the heap without impacting memory overhead:

dynamic canaries. When an object is allocated, we hash its address and use the hash value

as a 1-byte canary, placed at the end of the allocated slot as depicted on Figure 3.1. The

dynamic canary technique is more secure than the state-of-the-art allocators, while staying

memory efficient. Indeed, because we use a hash value of the returned address, SlimGuard

does not have to store this value for comparison later when the time has come to check its

consistency.

The dynamic canary technique is efficient: it is very hard for an attacker to find the hash

function even in the presence of multiple canary leaks. The function is created at load

time, and will be different over multiple runs of a program. It is composed of a random

combination of fast operations including multiple basic bits manipulations such as shifts of
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different values, XORs, etc., and arithmetic computations with random numbers such as

additions and multiplications. It is also fast and of course realized in constant time.

At free time, SlimGuard rehashes the deallocated pointer and compares this value with

the canary at the end of the corresponding slot. If the values are different, the behavior of

SlimGuard is configurable: a security flag can be raised, or the program can be killed. In

both cases information about the location of the potential buffer overflow can be printed.

When free is called, in order to locate the canary we need to know the size class the object

belongs to. We also need to perform that same operation to access the bitmap containing

the free/used status for checking against double-free. Thus, we only have to go through that

process once for both canary and double-free checking.

The canary is placed at the end of each slot rather than right after the buffer. In that way,

we can avoid storing the size of the buffer in order to retrieve the canary value when it needs

to be checked. Note that any overflow ending up between the buffer and its canary will have

no effect. Currently the canary is only checked at free time but it is also possible to check

sets of canaries during malloc and free as made by other secure allocators [33, 34].

3.5 Guard Pages

Protection Offered. Guard pages are unmapped virtual memory pages placed close to

allocated heap objects. In terms of overflow detection, a guard page acts as a perfect canary

because any overflow hitting a guard page will instantly trigger a page fault. Moreover,

guard pages provide a more comprehensive protection: on the contrary to canaries they also

protect against buffer over-reads. Such pages also do not consume memory because they are

not mapped. However their granularity of placement is obviously limited at the page level

so it is not possible to place a guard page after each allocated object on the heap.
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One issue with guard pages is the performance cost of placing them. OpenBSD [27] implicitly

places a guard page between each data page by requesting each of these data pages on-

demand through mmap. Because it involves a system call it is costly in terms of performance.

In FreeGuard [33], at load time a large virtual memory area is allocated for data and guard

pages are placed randomly within. By default, 10% of this area becomes guard pages. It is

done with mprotect, considerably faster than mmap. However this involves a lot of operations

during the initialization process which may slow down fast-executing programs making just

a few memory allocations. Guarder [34] has a similar initialization phase and introduces

additional guard pages at runtime.

Integration in SlimGuard. In SlimGuard, we propose fully-on-demand guard pages.

Each time the data area limit pointer ( F ) in Figure 3.1) is incremented by one element to

obtain a new free slot, we check if we are at the frontier of a memory page, i.e. if the newly

created slot would span over the next memory page. If it the case, we have the opportunity

to place a guard page there and create the new free slot on the subsequent page. This

opportunity occurs every other page for class sizes of less than 4096 bytes (the size of one

page). Although it happens less frequently considering larger class sizes, because of their

size it actually leads to one opportunity to place a guard page between every object.

In SlimGuard, we place on-demand guard pages by calling mprotect. Although it is about

20x faster than mmap, it is still a system call and therefore has a non-negligible performance

overhead. SlimGuard can be configured to place a guard page once every n opportunities

(per size class).

In the case of fast-executing programs making just a few memory allocations, the fact that

SlimGuard places guard pages in an on-demand fashion makes that its performance overhead

is negligible compared to the tens or hundreds of thousands of mprotect calls made by state-
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of-the-art allocators such as Guarder or FreeGuard during initialization.

3.6 Other Security Features

Delayed Memory Reuse. Delayed memory reuse [27, 33] consists in delaying the reuse

of freed memory objects in order to make use-after-free attacks more difficult: if the buffer

is not reused, such attacks have good chances to fail. This is generally implemented through

the use of a delay buffer that holds freed memory slots for a given number of allocations

after which they can be reused.

In SlimGuard, the free-list for each data area acts as a random delay buffer. The next

allocated element from a particular size class will be picked randomly within the free-list

which is guaranteed to be at least of size 2n, n being the level of entropy selected. If this

entropy is large enough, when an element is sent back to the free-list it has very low chances

to be picked up as one of the next allocations.

Destroy-on-Free. Destroy-on-free [30] is a technique which consists in zeroing out every

freed object or filling it with random data. This helps in preventing uninitialized reads and

use-after-free, however the performance impact can be significant due to the memory write

overhead. In SlimGuard it is left to the user discretion to activate destroy-on-free, which is

implemented as a simple call to memset. Similarly to other allocators [34], destroy-on-free is

disabled by default in due to its impact on performance.
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3.7 Multithreading Support

Highly scalable allocators use distributed, per-thread data structures [14] to concurrently

serve allocation requests and offer high performance with large number of threads. This has

the drawback of presenting a memory overhead that increases with the number of threads.

It is the case for state-of-the-art secure allocators. Because we focus on memory efficiency,

in SlimGuard we choose to have a memory overhead independent of the number of threads,

without compromising too much on performance scalability. SlimGuard supports multi-

threading through the use of fine-grained locking. In effect we serialize each access to a

size class data structures with pthread mutexes, as represented by the locks illustrated on

Figure 15. Thus, two threads can concurrently allocate or free memory of different size

classes.

This allows SlimGuard’s performance to scale to a medium number of threads, however it

is unlikely to scale to large number of threads (e.g. hundreds). We believe it is acceptable

for two reasons. First, applications with very high number of threads are not the norm: a

recent study over the entire Microsoft Azure’s VM workload [9] shows that more than 95%

of the VMs have less than 10 VCPUs. Second, in applications with high numbers of threads

it is unlikely that memory footprint represents a critical concern. Thus one would choose

over SlimGuard a secure allocator such as Guarder, focusing on performance rather than

memory usage. Evaluation in sections 5.3 showed that SlimGuard has negligible performance

overhead on selected PARSEC benchmarks for up to 64 threads.
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3.8 Compatibility

SlimGuard is implemented in C for efficiency. As most other custom dynamic allocators,

SlimGuard is a binary-compatible shared library and the user can use LD_PRELOAD to sub-

stitute SlimGuard to the default allocator without recompilation for dynamically compiled

binaries. While this makes that SlimGuard would require recompilation for static binaries,

we note that static binaries are a minority: according to a study of modern Linux distri-

butions [37], they represent only 0.38% of the ELF binaries present in a standard Linux

distribution (Ubuntu).
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Security Analysis and Evaluation

In this chapter, we compare SlimGuard’s security features with existing secure allocators and

describe how it protects against common heap vulnerabilities. Next, we present SlimGuard’s

efficiency on some real-world bugs. Results showed that SlimGuard can detect the bugs in

the applications.

4.1 Security Features Comparison

We compare in Table 4.1 the security features implemented in SlimGuard and the existing

secure allocators OpenBSD [27], DieHarder [30], FreeGuard [33] and the state-of-the-art

Guarder [34]. We also include Glibc’s allocator [17, 22] for reference. Even if it includes a

few features such as optional canaries and double/invalid free detection, it is not designed

to be secure so most of the features are absent.

Only SlimGuard proposes dynamic canaries, an additional defense in the case of a canary

leak. Similarly to Guarder, SlimGuard guarantees a fixed level of entropy which can be

set very high, on the contrary to allocators offering unstable (OpenBSD, DieHarder) or low

(FreeGuard) entropy settings. SlimGuard supports over-provisioning and separates data

and metadata. It provides on-demand guard pages efficiently, i.e. through calls to mprotect

rather than obtaining implicit guard pages through frequent slow calls to mmap as done by

OpenBSD. Its design can detect double and invalid frees, and it also provides randomized

29
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Table 4.1: Comparason of Security features

Feature GLibC Open-
BSD DieHarder Free-

Guard Guarder SlimGuard

Canary 3

Static
- Static
(weak) 7

-
Static

-
Static

3

Dynamic
Rand.
Alloc.

Entropy
7

-
Unstable

-
Unstable

- Low
(2 bits)

3Stable
high

3Stable
high

Over-
Provisioining 7 7 3 7 3 3

Guard
Pages 7

- OD
(Slow)

-
Weak

-
Static

3

Static+OD
3

OD(fast)
Separated
Metadata 7 3 3 3 3 3

Double &
Invalid Free
Detection

3 -(Weak) 7 3 3 3

Delayed
Memory

Reuse
7 3 3 3 3 3

delayed memory reuse. In conclusion, SlimGuard provides security guarantees that are as

good and sometimes better than state-of-the-art secure allocators.

4.2 Security Analysis

Multiple features allow SlimGuard to protect against buffer overflows/over-reads. Overflows

targeting inline metadata will fail because of the segregation of data and metadata. Ran-

domized memory allocations remove from the attacker the knowledge of the heap layout and

make it very difficult for him to set a particular target for an overflows/over-read. Even if

the attacker has access to the application/SlimGuard source code, or even if he can launch

dry runs and explore the heap layout with GDB, it is still very hard to determine that layout

because it is different for each run. Canaries will detect overflows overwriting them, and an
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overflow within over-provisioned space will have no impact. Finally, guard pages will protect

against both overflows and over-reads.

Concerning use-after-free, SlimGuard offers significant protections in cases where an object

A is freed, the memory containing it is reallocated to an object B, and then the program

accesses such memory as object A [39]. Because in SlimGuard the memory will be (1) reused

with a probabilistic delay and (2) reallocated in a random fashion, it is very hard for the

attacker to obtain a meaningful sequence of steps. Moreover, the presence of guard pages

can protect against brute-force attempts, but it depends on the sizes of objects A and B.

Finally, when activated the destroy-on-write feature can prevent any use-after-free.

SlimGuard protects against any double free as it uses a separate metadata area containing the

used/free status of each slot. SlimGuard can also thwart invalid frees, because it checks that

a freed pointer falls within a data area (needed for accessing the used/free status metadata).

4.3 Security Evaluation

In this subsections we present SlimGuard’s efficiency at protecting against real-world bugs.

Note that we mostly use the same examples as Guarder [34] and FreeGuard [33].

4.3.1 Buffer Overflows: gzip-1.2.4 and ncompress-4.2.4.

Gzip and ncompress are compression programs which, in these particular versions (obtained

through BugBench [24]), contain buffer overflows due to a call to strcpy without proper

bounds checking. Same as Guarder [34], we moved the target buffers from the stack to the

heap for testing purposes. Both bugs are detected by SlimGuard at free time through the

check of the overwritten canary, which allows to notify the user that an overflow happened,
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print the related location, and halt execution. Finally, in the case that buffer is protected

by a guard page, the programs would be halted immediately.

4.3.2 Buffer Over-reads: HeartBleed.

The well-known HeartBleed [8] bug within the cryptographic library OpenSSL 1.0.1 allows

an attacker to supply a malicious payload smaller than its advertised size, which results in

a buffer over-read through a memcpy operation. With guard pages SlimGuard can protect

against HeartBleed in a probabilistic way, depending on the amount of guard pages the

system is configured to place which is a parameter defined by the user.

4.3.3 Invalid/Double free: ed-1.14.1 and ImageMagick 7.0.4-1.

ed is a text editor from GNU. This version contains a programming mistake leading to free

being called on a pointer that was never allocated with malloc. We rewind the program and

add the extra free. SlimGuard detects that the pointer does not fall within one of the data

areas and is not a large object either, and halts execution after having printed information

about the bug. ImageMagick is a command line image manipulation tool and the concerned

version contains a double free vulnerability. Because SlimGuard maintains the used/free

status of slots, it is able to detect the bug at free time, SlimGuard halt the program and

print relevant information.
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Evaluation

5.1 Overview

After showing in the previous section that SlimGuard provides good or sometimes better

security guarantees compared to other secure allocators, with this performance evaluation

we show that compared to a state-of-the-art secure allocator (Guarder [34]) SlimGuard of-

fers a significantly lower memory overhead. We also show that SlimGuard performs simi-

larly or better. We define Guarder as the state-of-the-art because (1) FreeGuard [33] and

Guarder [34] represent the most recent literature for secure heap allocators and (2) Guarder

is an evolution of FreeGuard.

We investigate the following questionso:

1. What are the memory overhead and performance of SlimGuard, and how are they

influenced by its security features?

2. How does the memory and performance overhead of SlimGuard compare to the state-

of-the-art secure allocator Guarder?

We compare SlimGuard to Guarder in micro-/macro-benchmarks, and to OpenBSD (macro-

benchmarks) that has security/performance issues, but is also memory-efficient. We also

include Glibc’s allocator in macro-benchmarks. We use a 4 cores (8 hyper-threads) Xeon

33
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Figure 5.1: Memory footprint of SlimGuard and Guarder according to the number of entropy
bits for randomized allocations and the allocation size.

E5-2637 clocked at 3GHz, with 64GB of RAM. It runs an Ubuntu 16.04 distribution with

Linux v4.4. We use the latest version of Guarder [16] and A port of OpenBSD’s allocator to

Linux [15]. For Glibc we use the distribution’s version, 2.24-11. Glibc’s code being compiled

with -O2 level of optimizations, we use that same level to compile the other allocators

and the benchmarks. These allocators are compiled as shared libraries and hooked using

LD_PRELOAD. We use GCC v5.4.0.

We use a set of micro- and macro-benchmarks. The micro-benchmarks include an analysis of

the impact on performance and memory overhead for allocation size, entropy for randomized

mappings, and amount of guard pages, as well as a study of the initialization time and over-

provisioning efficiency. Concerning the macro-benchmarks, we use the PARSEC [6] suite,

representative of data-intensive applications (a large fraction of the software running in

today’s datacenter) and making an intensive use of the heap. We use the native dataset size

and run both serial and multithreaded versions. As the focus of SlimGuard is security with

a low memory overhead, we also run benchmarks from the embedded suite MiBench [18].

Embedded systems are memory-constrained, and integrated in security-critical domains such

as edge/IoT.

If not otherwise stated, the entropy level is 8 bits, canaries are enabled, and guard pages are
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Figure 5.2: Performance of malloc and free with different allocation sizes and entropy.

set to a value of 10% (1 guard page every 10 data pages).

5.2 Micro-benchmarks

5.2.1 Memory Usage, Randomization Entropy Level.

To evaluate the memory savings brought by SlimGuard over Guarder and measure the im-

pact of the entropy level (customizable in both allocators), we ran a micro-benchmark we

developed. In this benchmark n buffers of size s are allocated with malloc in a loop (n

iterations). Next the buffers are filled with memset in another loop, then freed in a third

loop. We measured the peak memory consumption (resident set size) as well as the execution

time of the malloc and free loops. To investigate allocations of different sizes, we varied

s to be 128 B, 1 KB, and 64 KB. We fixed n for each value of s so that n ∗ s is always

equal to 100 MB, which gives us a sufficient number of iteration for all cases, and allows us

to understand if the performance/memory consumption depends on the allocation size. We

also varied the entropy (2 to 10 bits).

The results are presented on Figure 5.1. With allocation of 128 B and 1 KB, SlimGuard

consumes about 2x less memory compared to Guarder. These memory allocations having a

size equals to a power-of-two leads to a jump to the next size class in both systems. Because

Guarder uses power-of-two size classes this effectively doubles the memory consumption.
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Concerning SlimGuard, because of the fine-grained size classes, the memory waste is far

inferior. Indeed, the total memory consumption is very close to 100MB so in that case

SlimGuard’s memory overhead is small compared to the user memory (100MB). Concerning

the 64 KB size, one can see that it is close to 100 MB for both SlimGuard and Guarder. The

explanation is as follows: 64 KB is a power-of-two so Guarder will also allocate a larger slot

for each object (128 KB). However, only the object itself is accessed by our benchmark, which

corresponds to the first 64 KB. The last 64 KB starting on a page frontier are not accessed

and will not cause any on-demand paging by Linux: this will not generate memory waste.

The number of entropy bits does not seem to generally impact the memory consumption,

although one can observe a 10-15% increase with Guarder when going from 2 to 4 bits (only

in the 128 B and 1 KB cases).

The execution time of the malloc and free loops for these benchmarks are presented on

Figure 5.2. SlimGuard is generally better than Guarder, due to its optimized allocation

and deallocation paths. malloc latency is about 10% faster in SlimGuard for a size of 128

B, and close to 2x faster for 8 KB. free latency is also faster for SlimGuard in the 8 KB

case. However, it is important to note that because in these tests we always free elements

of the same size, free in SlimGuard can happen in constant time while it would not be the

case with variable sizes (see Section 3.1.4). Remember that we perform less iterations when

the allocation size increases so it is normal that the execution time of both loops decreases

with larger allocation sizes. We also observe that the latency of malloc is generally longer

than the latency of free, as malloc includes more operations such as index computation and

random number generation.
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Figure 5.3: Performance impact of the amount of guard pages.

5.2.2 Amount of Guard Pages

Guard pages are provided by both SlimGuard and Guarder, and are an efficient way to

protect against multiple types of attacks. However, their introduction has a cost because it

involves a system call: mprotect. We used the same benchmark from the previous experi-

ment and fixed the allocation size to 4095 and the number of iterations to 10 000. We varied

the amount of guard pages from 0 (disabled) to 50% (one guard page between every data

page) and measured the execution time of our micro-benchmark.

Results are presented on Figure 5.3. The performance decrease with the amount of guard

pages, which is to be expected as both SlimGuard and Guarder offer on-demand guard pages.

However SlimGuard manages these pages in a better way as the performance impact is lower,

for example it is about 15% faster than Guarder for a ratio of 50%.

5.2.3 Initialization Time.

The initialization time is a very important metric in fast-running and latency sensitive pro-

grams. In some scenarios (e.g. FaaS), user computations are fast and systems software

initialization becomes a bottleneck. Because Guarder allocates a large amount of guard

pages at initialization time, we varied the guard page ratio in the same way as the previous
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Figure 5.4: Initialization time for SlimGuard and Guarder.
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Figure 5.5: Memory footprint (top) and execution time (bottom) of SlimGuard, OpenBSD
and Guarder for PARSEC (p-*) and MiBench (m-*) macro-benchmarks. All values are
normalized to Glibc’s memory footprint and execution time.

experiment to observe its impact. We evaluated the initialization time of SlimGuard and

Guarder by running a simple program which main function just allocates one byte through

malloc, frees it and exits. We measured the total execution time through a wrapper using

gettimeofday. While this time encompasses more than the allocator initialization time, it

allows us to capture any overhead happening on-demand. For each run we fix all parameters

apart from the allocators so results are comparable.

Results are presented on Figure 5.4. We noticed a high variation in the results for each run

because the programs execute very quickly. Thus each bar is the average value of 50 runs

with the standard deviation as error bar. One can observe that SlimGuard’s initialization
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Entropy Bits 8 9 10
Allocations 1K 10K 100K 1K 10K 100K 1K 10K 100K
OP % 12.2 1.34 0.13 25.3 2.67 0.25 51.8 4.95 0.51

Table 5.1: OP percentage according to the number of allocation and entropy.

time is about 2x faster than Guarder’s. This is due to the fact that most of SlimGuard’s

data structures are allocated on-demand. Moreover, contrary to Guarder in SlimGuard this

latency does not increase with the amount of guard page because they are set on-demand.

5.2.4 Entropy-Based Over-Provisioning

As mentioned earlier, such OP is an interesting side effect of our entropy management

strategy but it is not as efficient as directly-controlled OP schemes. In order to assess the

percentage of entropy-based OP in various situations, we fixed the allocation size to 1KB

and measured the percentage of OP obtained while varying the parameters impacting this

percentage in SlimGuard: the number of allocations is varied from 1000 to 100000 and the

entropy from 8 to 10 bits. To measure this percentage, we observe the data area after the

allocations and count the percentage of free slots that are contiguous to a used slot, i.e. the

ones that would protect against over/underflows.

Results are presented in Table 5.1. As one can observe, when the number of allocations is

small (1K) , the OP obtained is relatively high: from 12% with 8 bits of entropy to 51.8%

with 10 bits. However when the number of allocations is low the OP percentage falls (less

than 1% for 100K allocations). In these situations it is possible either to increase the level of

entropy (up to 15 bits, giving about 30% of OP for this experiment) or to request additional

free slots to complement the ones obtained through entropy-based OP.
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5.3 Macro-benchmarks

We measured memory overhead and execution times for the serial versions PARSEC and

MiBench suites. For MiBench we only include numbers for the programs that use the heap,

namely jpeg-6a/6b, mad, typeset, dijkstra and patricia. MiBench runs quickly and its

execution times are slightly unstable, so we present the average values of 50 runs.

Memory consumption numbers are presented on the top of Figure 5.5. SlimGuard’s memory

footprint is always better than Guarder, whose high memory consumption is partially due

to the large number of power-of-two-sized allocations made by some benchmarks such as

canneal (1.7x memory overhead) and several of the MiBench programs. With its fine-

grained size classes, SlimGuard has less or no overhead in these cases. The overhead due

to power-of-two size classes in allocators such as Guarder can only lead to a maximum

of 2x memory consumption (see Section 3.1.2), but in some benchmarks that overhead is

superior: 3x for dijkstra and 12x for swaptions. These programs have a very dynamic

memory usage, i.e. calls to malloc and free are interlaced as opposed to other benchmarks

using only malloc at the beginning and free at the end of the program. We found out

that contrary to SlimGuard, Guarder does not reuse memory thus in such cases (dynamic

memory usage), its memory consumption is very high.

SlimGuard’s overhead is slightly higher than Glibc’s for some of the MiBench benchmarks

as they have a very small memory footprint (e.g. 1.5 MB for jpeg-6b) and the weight

of SlimGuard’s base memory consumption is higher than for PARSEC’s benchmarks using

hundreds of MBs. However it is still low compared to Guarder’s. OpenBSD has low memory

overhead, similar to Glibc’s numbers in most cases. Although SlimGuard’s memory overhead

is similar to Glibc’s in most cases, it is not as memory efficient as OpenBSD. However,

OpenBSD’s memory efficiency comes at the price of less security guarantees, as well as some
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Figure 5.6: Multithreading memory overhead (top) and performance (bottom) results.

performance overhead (for example in canneal). Performance numbers are presented on

Figure 5.5. SlimGuard’s performance is mostly similar to Glibc, while we can observe some

punctual performance drops for Guarder (jpeg-6b) and OpenBSD (canneal).

We relaunched these macro-benchmarks disabling the memory release feature of SlimGuard

and witnessed in most cases a slight performance and memory consumption improvement

(less than 5%) due to less madvise calls and to the lack of per-page object counters.

Multithreading. We present on Figure 5.6 results for PARSEC running with multiple

threads (1 to 64). Here we used a different machine. The new machine has an AMD

Opteron Processor 6376 CPU, with 64 cores on it, with 128 GB of memory installed. For

space reasons we only present a subset of the benchmarks representative of the general trends.
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We also do not include results for OpenBSD whose implementation1 proved to be unstable

on these multithreaded programs. Concerning memory consumption, the trends observed on

te single threaded version of PARSEC are confirmed. Moreover, for some benchmarks such

as vips we note that the number of allocations increases with the number of threads. In that

case a large amount of these allocations’ sizes are power-of-two so the overhead of Guarder

jumps from 2x to more than 3x when going from 1 to 8 threads. SlimGuard’s fine-grained

size classes management reduces the memory wastage and its overhead compared to Glibc’s

is constant and negligible. Similar to Guarder SlimGuard performs as well as Glibc. The

programs scale and the execution time reduces as more threads are used.

1https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/omalloc



Chapter 6

Conclusion, Limitations, and Future

Work

6.1 Conclusion

Existing secure dynamic memory allocators suffer from either a significant memory overhead,

or performance/security concerns. State-of-the-art secure memroy allocators have too much

memeory overhead, which is not acceptable in a lot of scenario.

We present SlimGuard, a secure allocator focusing on a low memory footprint while pro-

viding a high degree of security and performance. We carefully re-designed the security

features in the existing secure memory allocator to make it memory efficient. We developed

SlimGuard from the begining, instead of using an existing solution. Existing allocators are

either hard to separate the meta-data, i.e. free-list based allocators, or they are slow in terms

of performance due to the bitmap, i.e. Dieharder. A complete re-design of the features in

SlimGuard made it not only memory efficient but secure and fast.

Evaluation shows that its memory overhead is more than 2x smaller than that of the state-

ofthe-art allocator in a number of macro-benchmarks. Security evaluation proves that Slim-

Guard defends against real-world vulnerabilites efficiently.

43
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6.2 Limitations

6.2.1 Size Class Maximum Size

Since each size class contains a big bag of pages, In the current implementation, we gave it

a fairly large size space (4GB) for each size class. This can guarantee that the total size in

the same size class is 4GB. However, one may wonder what will happen if a program tries to

allocate more than that. The allocator will exit, because we do not have that enough space

for the next object. One potential solution is as follows, when we detect that the last object

is at the upper boundary of a size class, we can call mremap() to give us a larger space. The

results is that we will have a worse searching cost when free.

6.2.2 Locking

With the increased number of threads, performance of SlimGuard will be impacted, this

is because SlimGuard use a fine-grained global lock. The fine-grained lock can reduce the

memory consumption comparing to per-thread heap. This is a bottleneck for SlimGuard. In

such cases, GLibC’s allocator and our competetitor Guarder will perform better than us, In

order to solve this problem, a per-thread heap is required. Implementing a per-thread heap

is a trade-off. Because we are losing more memory to manage the per-threading heap, due

to the increased meta-data and data area to get performance benefits.

6.3 Future Work

As discussed in the previous section, the slots in each size class will be filled out eventually.

This will halt the program, cause incorrect activities of a program.
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In the future, we could have setup a counter for each size class, whenever the size has reached

to the maximum, we allocate more memory for the specific data area. In order to keep track

of the new area, we add a new size class in addition to the original one. When we search

through the data area, we have to search both area. This increased the searching cost at free

time, but it is better to use mremap() to get a larger area, because using mremap() requires

to keep track of all pointers due to the change of start address.

In addition, we can also implement a per-thread heap as an alternative solution. The user

can choose between performance (per-thread heap) or memory efficiency (fine-grained lock).
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