
Tweet Collection Services
CS6604 Fall 2019 Final Report

Ola Karajeh

Department of Computer Science

Virginia Tech

Chidubem Arachie

Department of Computer Science

Virginia Tech

Edward Powell

Department of Computer Science

Virginia Tech

Eslam Hussein

Department of Computer Science

Virginia Tech

ABSTRACT
The proliferation of data on social media has driven the need for

researchers to develop algorithms to filter and process this data

into meaningful information. In this project, we consider the task

of classifying tweets relative to some topic or event and labeling

them as informational or non-informational, using the features in

the tweets. We focus on two collections from different domains: a

diabetes dataset in the health domain and a Heartbleed dataset in

the security domain. We show the performance of our new method

for classifying tweets in the different collections. We employ two

approaches to generate features for our models: (1) a graph based

feature representation and (2) a vector space model, e.g., with TF-

IDF weighting or a word embedding. The representations generated

are fed into different machine learning algorithms (Logistic Regres-

sion, Naïve Bayes and Decision Tree) to perform the classification

task. We evaluate these approaches using metrics (accuracy, pre-

cision, recall, and F1-score) on a held out test dataset. Our results

show that we can generalize our approach with tweets across dif-

ferent domains.

KEYWORDS
Twitter, Machine Learning, TDM, Vector Space Model, Graph Based

Model, Word Embedding

ACM Reference format:
Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein. 2019.

Tweet Collection Services CS6604 Fall 2019 Final Report. In Proceedings of
ACM Conference, Washington, DC, USA, July 2017 (Conference’17), 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Social media sites are considered an important source of data in

the modern era [3]. This data comes in different forms (structured

and unstructured) and often is about different: incidents, trends,

events, impending circumstances, or reactions to hot topics. Timely

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

collection and processing of social media information can help with:

providing relevant information to authorities, deciphering public

opinions about a topic, forecasting events, and gathering data for

academic researchers. Ourwork is targeted towards the latter in that

we build models that classify social media data for use by academic

or industry practitioners. We process social media data and develop

features for machine learning classifiers. From this, we can create

new datasets that have less noise and can allow experts to work

with the data more easily. We collect data from Twitter in the form

of tweets, process it to generate meaningful representations, and

then feed these representations into machine learning models that

learn to classify the tweets as informational or non-informational

relative to a specific topic. Our task is non-trivial as it addresses

many challenges that researchers face when dealing with text data.

These challenges are amplified when using short unstructured texts

like tweets, hence the need for thorough processing of such a corpus.

Moreover, Twitter datasets are usually enormous with at least 500

million tweets sent per day [16]. Thus, manual cleaning of a huge

corpus by a human is very time-consuming, hence impractical and

not scalable.

The first step in our pipeline is that we sample and annotate

some tweets from our collection to be used as training data. We

label these tweets as either informational or non-informational by

following some annotation guidelines we define. The annotations

provide labels used for training our machine learning models. Next,

we process the labeled tweets, generating features for them via

our graph based approach and also through TF-IDF scores and

word embeddings. Lastly, we feed the features into our models to

learn to predict informational and non-informational labels. In our

experiments, we use standard metrics such as accuracy, precision,

and recall to compare the performance of the different models. We

analyze the results to show which feature approach works better

for our classification task.

In the sections below, we present our literature review, method-

ology, and experiments. We highlight the work done so far, the

detailed steps of our approach, and provide insights on our plans

for future work.

2 LITERATURE REVIEW
Social media is not only used as a means of communicating social

information but also to seek help, share useful information that

would improve the well-being of others, and sometimes save lives

in the event of disasters. Researchers have utilized information

shared on social media for a variety of purposes. For example, in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein

[17] the authors used a Bayesian approach to classify tweets during

Hurricane Sandy into informational or conversational tweets. They

manually labeled 1, 086 tweets (139 informational and 943 conver-

sational), then developed a set of 9 features that would identify

such tweets based on a concept called the formality of the tweet.

For example, if a tweet contains emojis (emotions) then it would be

classified as conversational. On the other hand, the presence of a

phone number reflects credibility, so the tweet is more likely to be

informational. Although their approach sounds logical, it has many

flaws; for example, a phone number could be for an advertisement

of some product. Also, the presence of some emojis could indicate

that the person might be stressed or grieving, as in the case of a

disaster.

Another study [9] of tweets written during a disaster also used

classes of informational and non-informational. The authors use a

Convolutional Neural Network (CNN) with a fully connected layer

for feature extraction and classification of tweets during Hurri-

cane Harvey in 2017. Their proposed approach outperformed other

baselines using different combinations of unigrams, bigrams, and

trigrams in terms of accuracy, F1 score, precision, and recall. Other

works [2, 6, 8, 12, 18] have also used social media data for different

classification tasks in specific domains. Our work is similar to theirs

but we aim to use a different approach.

Our graph based approach is inspired by the work in [4] where

the authors construct a graph using words in the tweets, and then

generate features using the PageRank and Hypertext Induced Topic

Search (HITS) algorithms. They used graph features to train their

models. Our approach differs from theirs in that we use different

graph metrics (features, e.g., graph centrality) that better capture in-

formation about the tweets. Since we are not restricting ourselves to

one approach we also use word embeddings as features to train our

machine learning models. Word embedding models like Word2Vec

[11], FastText [7], and context aware models like BERT [5] have

been developed to map text into word vectors; they provide richer

features for machine learning models. In our experiment, we use

GloVe global vectors [15] to generate an embedding for the words

in the tweets, and then we add the individual word vectors to ob-

tain a sentence embedding for the full tweet. We give details in the

following sub-sections.

2.1 Comparative Models
2.1.1 Graph Based Model-PHD. Blanco and Lioma [1] used

graph based models for information retrieval. They note that “re-

lated words tend to form a network of connections that approxi-

mates the model humans build about a given context” [1]. Their

work demonstrated usage of both directed and undirected graphs.

Our proposed method utilizes a directed graph for its topical analy-

sis with co-occurrence and the order of a pair of words (grammatical

dependence) being taken into account.

Cordobes et al. [4] proposed a graph-based text representation

which is used for topic classification. One basic idea is that tweets

belonging to the same topic will have similar graph structures. This

paper used mainly three graph measures: PageRank, Hyperlink-

Induced Topic Search HITS (Hub and Authority), and Graph Density

(GD). This approach is referred to as (GB-PHD). Although this

solution solved the scalability issues in the previous solutions, it

still has room for improvement in terms of accuracy. Our approach

use various centrality metrics, and other different metrics such as

the weights between edges.

Tweet 1 type 2 diabetes sucks

Tweet 2 diagnosed type 2 diabetes

Tweet 3 health benefit cinnamon

Table 1: Example Tweets

Table 2: TDM Example

2.1.2 Term Document Matrix (TDM). TDM cells give the fre-

quency of terms that occur in a collection of documents, in our case,

tweets. The rows of the term document matrix represent the tweets

while the columns represent the words in the corpus. Consider the

example tweets from the diabetes dataset shown in Table 1. The

resulting TDM is given in Table 2. Each row represents a tweet,

while the columns are for the unique set of terms found in the set

of tweets. The value of cell (ni ,mj) describes the frequency of term

mj in tweet ni .
A disadvantage of TDM is that if a term is added to the corpus,

the entire matrix must be regenerated. This is costly and inefficient.

Furthermore, documents with similar content but different ways to

express similar ideas are not associated with similar representations,

which is another major disadvantage of this method.

2.1.3 Word Embeddings. A word embedding is a form of word

representation in which words with similar meaning tend to have

similar representations. Word embeddings also can reduce the di-

mensionality for word representation in the corpus. Thus, we could

say it generates a more efficient and expressive word representation

by generating small vectors. Generally, a word embedding does a

better job of taking into account the context and semantic similarity,

improving upon the traditional Term Document Matrix. GloVe [15]

is an embedding model available to use in our experiments. This

model is an unsupervised learning approach for obtaining vector

representations for words. GloVe Vectors are part of an open source

project at Stanford that have a handful of pre-trained word vectors,

one of which is for Twitter datasets. We will average the individual

word vectors to obtain a sentence (tweet) embedding.

The next two sections highlight the work done so far; the appen-

dix gives our plan for future work.

3 METHODOLOGY
Figure 1 shows the major workflow for the first stage of our project,

which is classifying the tweets using graph features.

Tweet Collection Services
CS6604 Fall 2019 Final Report Conference’17, July 2017, Washington, DC, USA

Figure 1: Basic Workflow

3.1 Pre-processing
The pre-processing steps consist of data collection, data annotation,

data cleaning, and lastly word embedding. We explain the details

for each of these steps below.

3.1.1 Data Collection. An earlier but ongoing study by Ola Kara-
jeh concerns over twenty million tweets about “heart attack”; it

was used to pilot the approach reported herein. We utilize two new

datasets for our tasks. As with the “heart attack” study, one new

collection is in the health domain, i.e., about diabetes. The other

new dataset is in the security domain and is a collection of tweets

about “Heartbleed,” an infamous Internet security bug. As afore-

mentioned, we utilize this dataset to see how our method works in

a separate domain.

The tweets were collected using the Social Feed Manager plat-

form, connected with Virginia Tech’s Digital Library Research Lab-

oratory. The diabetes dataset has about 12 million tweets while the

Heartbleed collection had just over 197K tweets.

3.1.2 Data Annotation. For our supervised training of the ma-

chine learning models, we require labeled data. As such we ran-

domly sample 6000 tweets from each dataset for labeling. Each of

the four co-authors was responsible for labeling 1500 tweets for

each of the two new datasets. Thus, each team member labeled

3000 tweets for a binary classification of either informational or

non-informational. The labeled tweets will be split into different

segments, being used for training, validation, and testing. To ensure

consensus on what constitutes an informational tweet, a random

sample of 50 tweets was generated for each of the two datasets,

with each team member labeling both of the samples. After all 100

of these tweets were labeled, we discussed the conflicts in the labels

and derived a strategy to ensure consistent labeling for the tweets.

Heuristic 1

“#heartbleed affected YouTube, but not

@MediaGoblin. 8 days remain to help

yourself free your own media!”

Heuristic 2

“#Heartbleed isn’t the only #vulnerabil-

ity of #OpenSSL.. What all are its #weak-

nesses?”

Heuristic 3

“RT @jolizevette: This #heartbleed bug

has made me realize I have WAY too

many accounts. I feel like I’ve spent all

day changing passwords.”

Table 3: Heartbleed Labeling

Heartbleed: This dataset aimed for tweets about the Heartbleed

Internet virus. The Heartbleed bug was created accidentally by

Robin Seggelmann in 2012 and revealed to the public in 2014, caus-

ing a brief panic wave across the Internet and the world. For this

dataset, Table 3 outlines the three major heuristics with examples.

These heuristics are utilized to classify tweets as informational:

(H1) tweets related to the companies or entities that were affected,

(H2) a description or details about the bug, and (H3) the responses

of people or entities towards the bug.

Diabetes: This dataset contained tweets that revolved around

diabetes, a disease related to blood glucose and sugar levels. For

Conference’17, July 2017, Washington, DC, USA Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein

Heuristic 1

“RT @11streethealth:RT @DrexelMed-

News: Symptoms include blurry vision,

excess thirst, fatigue, urinating often

and weight loss. #Diabetes"

Heuristic 2

“Moral of the story: Don’t eat too much

sugar if u don’t want to get diabetes

injection like Hansel got”

Heuristic 3

“#SM Spicy Solution? Cinnamon May

Help Diabetes Patients: Cinnamon may

improve blood sugar levels for people”

Heuristic 4

“Gestational Diabetes Tied to 7-fold In-

crease in Sleep Apnea Risk”

Heuristic 5

“Foiegras triggers diseases that people

are predisposed to like Alzheimers,CJD

and diabetes”

Table 4: Diabetes Labeling

this dataset, there were five main heuristics utilized to classify a

tweet as informational. The tweets in Table 4 correspond to the

following heuristics: (H1) tweet content about symptoms; (H2)

tweet content related to causes; (H3) a tweet referencingmedication,

vaccines, or remedies; (H4) tweet content about the effects, risks, or

consequences of diabetes; and (H5) general scientific information

related to diabetes. Self-mention and mention of others having the

disease were also labeled as informational if they were combined

with one of the five heuristics.

Reflection on labeling: Some tweets were full of sarcasm or

malevolent content; however, some of these were still classified as

informational because they met a heuristic. In general, sarcastic

tweets are difficult to deal with because the fact that a tweet is

sarcastic may not necessarily indicate that it is non-informational.

At times, sarcasm requires inference to understand the author’s

intent. Accordingly, we did not consider sarcasm, and stuck close

to the heuristics developed for each dataset. Inferring tweets is

not scalable and is too subjective to do during manual labeling. If

we were to do this during the manual labeling, without a reliable

method to detect sarcastic tweets in a dataset, this would most

likely lead to a decrease in accuracy.

Originality was not required because many users can receive

the same idea or data from multiple Twitter users just like people

receive their news from multiple news channels, papers, and blogs.

Retweets were also considered and many tweets in the content

had overlapping content. If a tweet and its retweets are properly

labeled by the learning model, this is great for accuracy as all the

retweets were in theory labeled correctly. On the other hand, a

mislabeled tweet can really hurt results, especially if a specific

retweet is prevalent throughout a dataset. One way to fix this

potential issue and improve the results would be to get a unique

set of all the retweets and manually label those in addition to the

random sample. One major limitation during this phase is that

misinformation or false statements are one important aspect that

was not taken into account with this project. Furthermore, those

who do the manual labelling may not have enough knowledge to

decipher misinformation, so it is possible for such content to leak

into the final dataset, which is intended for the experts in a domain.

Therefore, it is important to point out that for this experiment, any

tweet that gave the appearance of being informational based on

the developed heuristics was categorized as such.

3.1.3 Data Cleaning. For the cleaning process, we used Stan-

ford’s Natural Language Toolkit (NLTK), following standard prac-

tice. The tool is built in Python and is open source. The general

idea of our processing script is for the tweets to undergo a process

that extracts the valuable content. Below are the descriptions of

the cleaning process and more details on its usefulness.

Removal of Punctuation and Hashtags: Certain characters

in Twitter have unique meaning and weight in the social media

realm. The hashtag sign, ‘#’, is used before a relevant keyword in a

tweet and can help categorize a tweet. Sometimes, it is also used

to summarize or conclude a tweet. The at character, ‘@’ is used to

reference a handle name on Twitter. Removal of these characters

is standard during pre-processing because these symbols do not

typically add meaningful data nor provide greater context. Other

punctuation symbols such as the following ‘.,"!*;’ were also removed.

It is important to note that the removal of certain punctuation such

as periods in an acronym or name can alter the original meaning.

One examplewould be the open source software “f.lux” that changes

a computer’s display based on the time of day. If the period were

removed from this word (flux), then the meaning changes and can

reference the more common definition of the flowing of something

in and out.

Removal of RT: In the Twitter space, ‘RT’ is an acronym that

stands for “retweet.” This is when one Twitter user is tweeting the

contents of another user’s tweet verbatim, proliferating it to their

own followers. For our purposes, we gain no information knowing

if the tweet was “original" or not, so we remove the ‘RT’ which

indicates this.

Removal of Stop-Words: In natural language processing, stop

words are considered words that do not have much meaning. The

following are examples of common stop words: “the,” “a,” “an,” and

“in.” Removing words such as these save space and time for the

feature representation model as they do not provide additional

context to the models. Generally, this is standard during a pre-

processing phase.

Removal of URLs: Some of the hyperlinks point to meaningful

or informational pages. However, these were filtered out because we

are looking at the tweet content itself as being informational or non-

informational. As a result, many tweets with useful hyperlinks were

classified as non-informational. Furthermore, the main purpose

of the project was to focus on tweets as a standalone source of

information rather than a source which points to another source.

Future work may be able to account for this, but that was beyond

the scope of this project.

Stemming: The stemming algorithm used is the Porter Algo-

rithmwhich is a standard algorithm used for English stemming. The

primary purpose of the stemming is to remove affixes and revert

inflectional forms into a basic form. The algorithm has five phases

of word reduction that are applied consecutively. Each phase has

special rules and some of the phases use a metric that essentially

counts the syllables to see if the rule can apply to a particular affix

[10]. The result of this process is a stem, i.e., the essence of a word

to which affixes can be attached.

Tweet Collection Services
CS6604 Fall 2019 Final Report Conference’17, July 2017, Washington, DC, USA

Convert all letters to lowercase: The primary reason for con-

verting all letters in a word to lowercase is to prevent imprecise

counting. Without the conversion, the words “Free” and “free”

would be counted separately. The placement of a word in a sentence

or a user using all caps to provide an emphasis should not lead to

a new word being counted. Lower-casing all letters alleviates this

issue, allowing for a more genuine frequency count. It is important

to note that lower-casing all letters might lead to some data being

lost such as a company or entity name with familiar terms but using

an uppercase letter or even all uppercase letters to depict it. One

common example is if the relevant term is “Windows” referring

to the operating system. If this is lower-cased, then it can lose its

meaning and falsely appear to take on the meaning of “windows.”

3.2 Feature Extraction
Now that we have pre-processed the datasets, the next step in our

workflow is to feed the clean datasets into the graph models to

generate features that we will use to train our machine learning

models.

Figure 2: Graph Based Example

3.2.1 Graph-Based Text Representation - CW. Figure 2 shows
the graph based example using the tweets from Table 1. The nine

features that were used for our graph based model were: Number

of nodes per tweet, Eccentricity (ECC), Betweenness Centrality,

Harmonic Closeness Centrality, Closeness Centrality, Edge Weight,

Node Degree, In Degree, and Out Degree. GB-CW utilizes the simi-

larity of the graphs and these attributes to help classify the tweets

by topic.

The number of nodes per tweet is the number of words contained

in the tweet. For ‘Tweet 3’ from Table 1, the number of nodes

depicted is 3. With Twitter data, it is important to acknowledge

and take into account the sparsity problem of working with small

documents [13].

The Edge Weight between two nodes, node v and node w, repre-

sents the co-occurence of the pair (v,w) in that order. In the context

of our graphs, it indicates that a word, v , appeared x times before

another word,w in a tweet. From Table 1, the edge weight between

the term ‘type’ and ‘2’ is two.

The In and Out Degrees consider the order of co-occurrences

of words. The In Degree of a particular node specifies how many

times a particular word has appeared after other words. Similarly,

the Out Degree of a particular node depicts how many times a word

appears before other words. From the example in Table 1, the out

degree of the node ‘type’ is 2 and the in degree is 1.

The Node Degree is simply adding the In and Out degree values

together. This helps to give an overall picture of the total flow from a

particular word or node to other words in the network. Continuing

this example, the node degree for the node ‘type’ from Table 1 is

three.

ecc(v) =
1

maxi d(v,xi)
∀i ∈ {1, . . . ,n} (1)

Eccentricity is a metric that depicts the importance of a node by

capturing the reciprocal of the maximum distance a node v has

to other nodes in the network, where xi is any other node in the

network. The formula is shown in Equation 1 and the smaller that

distance, the more central the node. In Table 1, the eccentricity for

the node ‘diagnosed’ has a .25 value.

closeness(v) =
n∑

i d(v,xi)
∀i ∈ {1, . . . ,n} (2)

The Closeness Centrality is depicted in Equation 2. We take the

reciprocal of the sum of the distances from a single node, v , to all

other nodes that are in the network. We use the normalized form

which multiplies the reciprocal by the number of nodes n. Similar to

eccentricity, a larger closeness value indicates that a node is more

centralized.

harmonic(v) =
∑
v,x

1

d(v,x)
(3)

The Harmonic Closeness Centrality is mostly intended for directed

graphs and is similar to Equation 2. The main difference is that we

sum up the reciprocal of the distances between the nodes in the

graph.

betweeness(v) =
∑

s,v,t ∈V

σst (v)

σst
(4)

Betweenness Centrality is the sum of the ratio of the shortest paths

that pass through the node v to all the shortest paths in the graph,

where σst is total number of shortest paths from node s to node t
and σst (v) is the number of those paths that pass through v .

A major aspect for developing the graph from the words in

the tweets is reducing the number of dimensions representing the

data in the tweet corpus. We achieve this by training a Word2Vec

embedding model on our corpus, then replacing very similar word

vectors with a base word. For example, the words dad, father, and

daddy are related. Hence the cosine similarity of their word vectors

reflects their closeness. This is similar to using a thesaurus and

replacing every instance of dad and daddy in the corpus with father

in order to reduce the space of words in our data corpus.

4 EXPERIMENTS
Weused Scikit-learn [14] to implement themachine learningmodels

we use in our experiments. The framework is open-sourced, coded

in Python, and provides off the shelf models for use.

Conference’17, July 2017, Washington, DC, USA Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.802 0.831 0.825 0.794

Gaussian Naive Bayes 0.772 0.683 0.718 0.776

Decision Trees 0.709 0.822 0.777 0.693

Table 5: Accuracy of the different feature models trained on
the Diabetes dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.558 0.648 0.620 0.429

Gaussian Naive Bayes 0.412 0.373 0.410 0.365

Decision Trees 0.412 0.571 0.460 0.282

Table 6: Precision of the different feature models trained on
the diabetes dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.161 0.378 0.380 0.017

Gaussian Naive Bayes 0.261 0.806 0.920 0.127

Decision Trees 0.356 0.517 0.520 0.322

Table 7: Recall of the different featuremodels trained on the
diabetes dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.250 0.477 0.470 0.030

Gaussian Naive Bayes 0.319 0.510 0.570 0.189

Decision Trees 0.333 0.540 0.490 0.301

Table 8: F1-score of the different feature models trained on
the diabetes dataset

4.1 Models
We next provide a short description of the models we used for our

experiments.

4.1.1 Logistic regression. Logistic regression is a discriminative

model that estimates the probability of a class given a data point. It

uses a logistic function to estimate probabilities for the classes.

4.1.2 Naive Bayes. The Naive Bayes classifier arises from an

evidence based theorem that essentially provides insights into how

much the evidence for a given dataset can be trusted to give pre-

dictions. The model is based on Bayes theorem. Naive Bayes is

a generative model but makes the assumption that features of a

dataset are conditionally independent given the class. This simpli-

fying assumption makes it easier to implement, and reduces the

model complexity.

4.1.3 Decision Tree. Decision tree is a non-parametric discrimi-

native model that iteratively uses rules called decision stumps to

build a classifier. Decision trees can be used for both classification

and regression.

4.2 Evaluation and Results
We train the three machine learning algorithms described above

on each of the feature extraction models. We compare results from

our graph features (GB-CW) against the comparative models: term

document matrix (TDM), word embedding (GloVe vectors), and

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.738 0.769 0.755 0.735

Gaussian Naive Bayes 0.677 0.632 0.694 0.702

Decision Trees 0.657 0.730 0.651 0.626

Table 9: Accuracy of the different feature models trained on
the Heartbleed dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.741 0.755 0.720 0.696

Gaussian Naive Bayes 0.623 0.535 0.590 0.651

Decision Trees 0.589 0.688 0.580 0.550

Table 10: Precision of the different feature models trained
on the Heartbleed dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.573 0.662 0.670 0.649

Gaussian Naive Bayes 0.575 0.905 0.880 0.616

Decision Trees 0.589 0.643 0.590 0.567

Table 11: Recall of the different feature models trained on
the Heartbleed dataset

GB-CW TDM Word
Embedding GB-PHD

Logistic Regression 0.646 0.705 0.700 0.671

Gaussian Naive Bayes 0.598 0.672 0.710 0.633

Decision Trees 0.589 0.665 0.580 0.560

Table 12: F1-score of the different feature models trained on
the Heartbleed dataset

graph based model (GB-PHD). We present results in Tables 5-12

showing the accuracy, precision, recall, and F1-score of the different

models on the diabetes and Heartbleed datasets. For each dataset,

we train on 80% of the data and test on the remaining 20% of the

data. The features for the graph models were scaled to have zero

mean and unit variance.

For the diabetes dataset, as can be seen from Table 5, all the

feature models achieve good accuracies on all the machine learning

models with the TDM baseline having the highest accuracy on

Logistic Regression overall. While the results are close, it is worth

noting that accuracy is not a good measure of performance for this

dataset as nearly 80% of the test data is not relevant and only 20% is

relevant. Hence a naive classifier that predicts all zeros on the test

data will have an accuracy of 80%. For this reason, we consider the

precision, recall, and F1-scores as the more important metrics for

evaluating the dataset. Looking at Table 8, we observe that word

embedding feature model has a higher F1-score for Gaussian Naive

Bayes algorithm meaning that its weighted precision and recall

value is higher than competing models. Our graph based features

outperform the baseline GB-PHD for all models but will need more

tuning to match the results of word embedding and TDM.

For the Heartbleed datasets, looking at Table 12, we see that

word embedding still trains the best model on Gaussian Naive

Bayes. However, other models perform almost as well and do better

on this dataset than with the diabetes dataset. One reason for this

Tweet Collection Services
CS6604 Fall 2019 Final Report Conference’17, July 2017, Washington, DC, USA

(a) Accuracy (Diabetes) (b) Accuracy (Heartbleed)

(c) Precision (Diabetes) (d) Precision (Heartbleed)

(e) Recall (Diabetes) (f) Recall (Heartbleed)

(g) F1-Score (Diabetes) (h) F1-Score (Heartbleed)

Figure 3: Evaluation metrics (Accuracy, Precision, Recall, and F1-Score) of three classifiers (Logistic Regression, Gaussian
Naive Bayes and Decision Trees) trained and tested for both the diabetes and Heartbleed datasets using the four features sets

(GB-CW, GB-PHD, TDM, and Word Embedding).

Conference’17, July 2017, Washington, DC, USA Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein

is that the Heartbleed dataset is less skewed in class distribution

than the diabetes dataset.

While our graph based feature model didn’t outperform some

of the baseline models, we can see that it shows promising results,

and with some modifications will match and possibly outperform

the baseline models.

5 CONCLUSION
We have developed a model for classifying tweets. While we have

shown results of testing our model on a small corpus of labeled

data, the purpose of our model is to predict relevance to a topic

for a larger unlabeled corpus. A user of our system will train our

model on a small annotated corpus, validate its accuracy on a test

data, tune the model to perform better, and then use it to make

predictions on a larger corpus. The test results can be interpreted as

confidence bounds on themachine learning algorithm. Furthermore,

it is worth noting that when training machine learning algorithms

with skewed classes, special provisions should be made for the

model to accurately learn the skewness of the classes. This can

be done by weighting the classes by their ratio in the dataset or

by using a loss function that penalizes the dominant class more.

While we haven’t done any of the above, since we wanted to show a

general approach for our methodology, users of our system should

be mindful of this and incorporate it for their work.

In the future, we plan to go beyond tweet classification and

extend our methodology to classify documents as to relevance to a

corpus topic. This is particularly useful for digital libraries as we can

classify documents in stored archives as to relevance to a category.

Additionally, we plan to extend our methodology to go beyond

binary classification of tweets, as relevant or not relevant, and

instead enable multi-classification. A successful implementation

of this will be vital to researchers who use digital libraries and are

working in more complex settings, or in particular specializations.

REFERENCES
[1] Blanco, R., and Lioma, C. Graph-based term weighting for information retrieval.

Information retrieval 15, 1 (2012), 54–92.
[2] Caragea, C., Silvescu, A., and Tapia, A. Identifying informative messages in

disaster events using Convolutional Neural Networks. In ISCRAM 2016 Conference
Proceedings - 13th International Conference on Information Systems for Crisis
Response and Management (1 2016), P. Antunes, V. Banuls Silvera, J. Porto de

Albuquerque, K. Moore, and A. Tapia, Eds., Proceedings of the International

ISCRAM Conference, Information Systems for Crisis Response and Management,

ISCRAM.

[3] Castillo, C. Big crisis data: social media in disasters and time-critical situations.
Cambridge University Press, 2016.

[4] Cordobés, H., Anta, A. F., Chiroqe, L. F., García, F. P., Redondo, T., and

Santos, A. Graph-based techniques for topic classification of tweets in Spanish.

IJIMAI 2, 5 (2014), 32–38.
[5] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[6] Giannakopoulos, K. Informative vs. non-informative short message detection

in social networks. In 2017 3rd International Conference on Big Data Computing
and Communications (BIGCOM) (Chengdu, China, Aug 2017), pp. 165–171.

[7] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov,

T. FastText. zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651 (2016).

[8] Longhini, J., Rossi, C., Casetti, C., and Angaramo, F. A language-agnostic

approach to exact informative tweets during emergency situations. In 2017 IEEE
International Conference on Big Data (Big Data) (Boston, MA, USA, Dec 2017),

pp. 3739–3475.

[9] Madichetty, S., and Sridevi, M. Detecting informative tweets during disaster

using deep neural networks. In 2019 11th International Conference on Com-
munication Systems Networks (COMSNETS) (Bengaluru, India, India, Jan 2019),

pp. 709–713.

[10] Manning, C., Raghavan, P., and Schütze, H. Introduction to information

retrieval. Natural Language Engineering 16, 1 (2010), 100–103.
[11] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates, Inc., Stateline,

Nevada, 2013, pp. 3111–3119.

[12] Nguyen, T. D., Al-Mannai, K., Joty, S. R., Sajjad, H., Imran, M., and Mitra, P.

Rapid classification of crisis-related data on social networks using convolutional

neural networks. ArXiv abs/1608.03902 (2016).
[13] Nugroho, R., Yang, J., Zhong, Y., Paris, C., and Nepal, S. Deriving topics in

Twitter by exploiting tweet interactions. In 2015 IEEE International Congress on
Big Data (New York, NY, USA, 2015), IEEE, pp. 87–94.

[14] Pedregosa, F., Varoqaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn:

Machine learning in Python. Journal of machine learning research 12, Oct (2011),
2825–2830.

[15] Pennington, J., Socher, R., and Manning, C. GloVe: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP) (Doha, Qatar, 2014), pp. 1532–1543.

[16] Project, R. T. S. Twitter usage statistics. https://www.internetlivestats.com/

twitter-statistics/, 2019. Accessed: 2019-10-29.

[17] Truong, B., Caragea, C., Sqicciarini, A., and Tapia, A. H. Identifying valuable

information from Twitter during natural disasters. Proceedings of the American
Society for Information Science and Technology 51, 1 (2014), 1–4.

[18] Zhang, S., Zhang, X., and Chan, J. Language-independent Twitter classification

using character-based convolutional networks. In Advanced Data Mining and
Applications (Cham, 2017), G. Cong, W.-C. Peng, W. E. Zhang, C. Li, and A. Sun,

Eds., Springer International Publishing, pp. 413–425.

https://www.internetlivestats.com/twitter-statistics/
https://www.internetlivestats.com/twitter-statistics/

Tweet Collection Services
CS6604 Fall 2019 Final Report Conference’17, July 2017, Washington, DC, USA

Appendices

A DEVELOPER NOTES
We have stored our relevant files on Code Ocean in 4 capsules that

follow the project’s workflow.
1
Our method is a supervised learning

approach and takes manual labeling. With a new dataset, heuristics

need to be developed to accurately train the classifier as best as

possible. After the heuristics are developed a random sample should

be taken and tweets can be manually classified as informational or

non-informational to the particular dataset. It is best that experts do

the labeling themselves, especially if they will be working with the

informational dataset afterwards. The specifics for the sample size

and number to label can vary by datasets, and should be analyzed

on a case by case basis. Our pre-processing and cleaning code are

available on capsule 1. The process is as follows.

(1) Select or use a Twitter dataset that is focused on a specific

domain.

(2) Develop heuristics so experts or curators can accurately

manually label a tweet for a dataset as informational or non-

informational.

(3) Label a random sample of the tweets.

(4) Clean the dataset using our Python script and remove any

possible redundancies.
2

(5) A word embedding is determined, and graph-based features

are computed.

(6) Tune the model for best results.

(7) After the feature extraction, vectors of feature values for the

tweets are sent to various classifiers. These can be context-

dependent and the user’s choice. Our work utilizes Naive

Bayes, Logistic Regression, and a Decision Tree for demon-

strative purposes.

It is important to note that the four computing capsules all include

further instructions and details that describe a particular module.

B ANNOTATION EXAMPLES
This section shows two tables of annotation examples from our

dataset, where Table 21 shows 10 (5 informative/relevant and 5 non-

informative/non-relevant) examples from the diabetes dataset and

Table 22 shows 10 (5 informative/relevant and 5 non-informative/non-

relevant) examples from the Heartbleed dataset.

C EXTENDED RESULTS
In this section we show some variation of our results using different

k-cross values.

1
1. Cleaning and Stemming Capsule: https://codeocean.com/capsule/7766507/tree

2. Graph Representation Capsule: https://codeocean.com/capsule/2325826/tree

3. Extracting Graph Features Capsule: https://codeocean.com/capsule/7522921/tree

4. TDM Capsule: https://codeocean.com/capsule/5162588/tree

2
Retweets are one common way redundancies arise for datasets. The cleaning script

removes the ‘RT’ keyword so it looks like the original tweet, containing just the cleaned

text.

GB-CW TDM GB-PHD
Logistic Regression 0.807 0.841 0.794

Gaussian Naive Bayes 0.749 0.683 0.775

Decision Trees 0.725 0.819 0.736

Table 13: Accuracy of the different feature models trained
on the Diabetes dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.586 0.685 0.429

Gaussian Naive Bayes 0.409 0.364 0.359

Decision Trees 0.333 0.57 0.353

Table 14: Precision of the different feature models trained
on the Diabetes dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.189 0.411 0.017

Gaussian Naive Bayes 0.511 0.733 0.128

Decision Trees 0.344 0.478 0.35

Table 15: Recall of the different feature models trained on
the Diabetes dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.286 0.514 0.032

Gaussian Naive Bayes 0.454 0.486 0.189

Decision Trees 0.339 0.52 0.352

Table 16: F1-score of the different feature models trained on
the Diabetes dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.802 0.845 0.794

Gaussian Naive Bayes 0.768 0.685 0.778

Decision Trees 0.722 0.815 0.707

Table 17: Accuracy of the different feature models trained
on the Diabetes dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.568 0.7 0.429

Gaussian Naive Bayes 0.427 0.368 0.373

Decision Trees 0.326 0.559 0.309

Table 18: Precision of the different feature models trained
on the Diabetes dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.139 0.428 0.017

Gaussian Naive Bayes 0.389 0.75 0.122

Decision Trees 0.339 0.444 0.35

Table 19: Recall of the different feature models trained on
the Diabetes dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.223 0.531 0.032

Gaussian Naive Bayes 0.407 0.494 0.184

Decision Trees 0.332 0.495 0.328

Table 20: F1-score of the different feature models trained on
the Diabetes dataset using 5-folds

https://codeocean.com/capsule/7766507/tree
https://codeocean.com/capsule/2325826/tree
https://codeocean.com/capsule/7522921/tree
https://codeocean.com/capsule/5162588/tree

Conference’17, July 2017, Washington, DC, USA Ola Karajeh, Chidubem Arachie, Edward Powell, and Eslam Hussein

Tweet Class
After diabetes during pregnancy, healthy diet linked to reduced

type 2 ... http://t.co/TOrAU2Db

Informative

Crusty foods may worsen heart problems associated with diabetes

http://t.co/0FOUdpRw

Informative

RT @UberFacts: One alcoholic drink a day can reduce your risk

of type 2 diabetes by up to 30 percent.

Informative

Study: Obesity doubles risk of gestational diabetes - OCRegister:

Study: Obesity doubles risk of gestational dia... http://t.co/Aoo2NGpA

Informative

Type 2 diabetes hits hardest in communities of color. Learn more.

http://t.co/VVt78C3a

Informative

Diabetes Fatigue: 6 Steps to Take http://t.co/KyFU2cE1 Non-Informative

Obesity #america #diabetes #scooters http://t.co/35U5SUFP Non-Informative

@missebby16 go get tested for diabetes. Non-Informative

Le diagnosticaron diabetes... y vendi?Ÿ?? su flauta dulce. Jaj?Ÿ?ja Non-Informative

@daCPlanet I read that fast and thought you said "I’m sick of these diabetes" Non-Informative

Table 21: 10 annotation examples from the diabetes dataset

Tweet Class
@EFF so #Heartbleed exploits #OpenSSL 1.0.1 & 1.0.2-beta

releases if I have the mod version.9.8 but not really using it am I clear?

Informative

Cisco products affected by #heartbleed > http://t.co/YcNuk8nSi1 Informative

Heartbleed Hit List - areas that may be affected and passwords you

want to change: https://t.co/FKkpAT0qnk #heartbleed #HeartbleedVirus

Informative

We are #Heartbleed patched, our engineers rock. Proud of @shapeways

for being so transparent: http://t.co/vz7Hzxvidn http://t.co/vPBiQguzaa

Informative

A useful list of the sites that have patched the Heartbleed bug..

http://t.co/bL300410Hq #security #heartbleed

Informative

Now is not the time to change passwords, in case you’re planning to.

#Heartbleed

Non-Informative

come vendors n pitchmen, please heed the call donÃ¢â‚¬â„¢t sell in the

doorway donÃ¢â‚¬â„¢t flog up the hall #Heartbleed

Non-Informative

#Heartbleed = pretty much how I felt throughout middle school. Why

do computer bugs get such poignant names?

Non-Informative

RT @SecurityHumor: This #heartbleed #OpenSSL bug walks into a

bar. Repeatedly. And walks out with everything.

Non-Informative

RT @SZ: #Heartbleed-SicherheitslÃƒÂ¼cke: Bei welchen Diensten

Sie jetzt Ihr Passwort ÃƒÂ¤ndern sollten. http://t.co/nxbX588I5V

Non-Informative

Table 22: 10 annotation examples from the Heartbleed dataset

GB-CW TDM GB-PHD
Logistic Regression 0.732 0.745 0.741

Gaussian Naive Bayes 0.678 0.647 0.703

Decision Trees 0.665 0.725 0.64

Table 23: Accuracy of the different feature models trained
on the Heartbleed dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.731 0.73 0.707

Gaussian Naive Bayes 0.621 0.549 0.653

Decision Trees 0.596 0.673 0.563

Table 24: Precision of the different feature models trained
on the Heartbleed dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.567 0.619 0.646

Gaussian Naive Bayes 0.589 0.872 0.616

Decision Trees 0.62 0.662 0.608

Table 25: Recall of the different feature models trained on
the Heartbleed dataset using 3-folds

GB-CW TDM GB-PHD
Logistic Regression 0.639 0.67 0.675

Gaussian Naive Bayes 0.605 0.674 0.634

Decision Trees 0.604 0.668 0.585

Table 26: F1-score of the different feature models trained on
the Heartbleed dataset using 3-folds

Tweet Collection Services
CS6604 Fall 2019 Final Report Conference’17, July 2017, Washington, DC, USA

GB-CW TDM GB-PHD
Logistic Regression 0.738 0.768 0.735

Gaussian Naive Bayes 0.678 0.636 0.692

Decision Trees 0.658 0.74 0.652

Table 27: Accuracy of the different feature models trained
on the Heartbleed dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.739 0.752 0.696

Gaussian Naive Bayes 0.627 0.539 0.644

Decision Trees 0.592 0.713 0.58

Table 28: Precision of the different feature models trained
on the Heartbleed dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.575 0.662 0.649

Gaussian Naive Bayes 0.567 0.882 0.586

Decision Trees 0.581 0.629 0.605

Table 29: Recall of the different feature models trained on
the Heartbleed dataset using 5-folds

GB-CW TDM GB-PHD
Logistic Regression 0.647 0.704 0.671

Gaussian Naive Bayes 0.596 0.669 0.613

Decision Trees 0.586 0.669 0.592

Table 30: F1-score of the different feature models trained on
the Heartbleed dataset using 5-folds

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Comparative Models

	3 Methodology
	3.1 Pre-processing
	3.2 Feature Extraction

	4 Experiments
	4.1 Models
	4.2 Evaluation and Results

	5 Conclusion
	References
	Appendices
	A Developer Notes
	B Annotation examples
	C extended results

