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A Measurement Approach to Understanding the Data Flow of
Phishing from Attacker and Defender Perspectives

Peng Peng

(ABSTRACT)

Phishing has been a big concern due to its active roles in recent data breaches and state-
sponsored attacks. While existing works have extensively analyzed phishing websites and
detection methods, there is still a limited understanding of the data flow of the phishing
process. In this thesis, we perform an empirical measurement to draw a clear picture of the
data flow of phishing from both attacker and defender perspectives. First, from attackers’
perspective, we want to know how attackers collect the sensitive information stolen from
victims throughout the end-to-end phishing attack process. So we collected more than
179,000 real-world phishing URLs. Then we build a measurement tool to feed fake credentials
to live phishing sites and monitor how the credential information is shared with the phishing
server and potentially third-party collectors on the client side. Besides, we also obtain
phishing kits to analyze how credentials are sent to attackers and third-parties on the server
side. Then, from defenders’ perspective, online scan engines such as VirusTotal are heavily
used by phishing defenders to label phishing URLSs, however, the data flow behind phishing
detection by those scan engines is still unclear. So we build our own phishing websites, submit
them to VirusTotal for scanning, to understand how VirusTotal works and the quality of
its labels. Our study reveals the key mechanisms for information sharing during phishing
attacks and the need for developing more rigorous methodologies to assess and make use of

the labels obtained from VirusTotal.
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(GENERAL AUDIENCE ABSTRACT)

Phishing attack is the fraudulent attempt to lure the target users to give away sensitive
information such as usernames, passwords and credit card details. Cybercriminals usually
build phishing websites (mimicking a trustworthy entity), and trick users to reveal important
credentials. However, the data flow of phishing process is still unclear. From attackers’ per-
spective, we want to know how attackers collect the sensitive information stolen by phishing
websites. On the other hand, from defenders’ perspective, we are trying to figure out how
online scan engines (e.g., VirusTotal) detect phishing URLs and how reliable their detec-
tion results are. In this thesis, we perform an empirical measurement to help answer the
two questions above. By monitoring and analyzing a large number of real-world phishing
websites, we draw a clear picture of the credential sharing process during phishing attacks.
Also, by building our own phishing websites and submitting to VirusTotal for scanning, we

find that more rigorous methodologies to use VirusTotal labels are desperately needed.
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Chapter 1

Introduction

Phishing attack is a persistent threat on the Internet. It exploits human factors to lure the
target users to give away critical information. In recent years, phishing becomes an even
bigger concern due to its prevalent usage in facilitating major data breaches [14], particularly
the recent breaches in hospitals and health care companies [15, 16]. Besides, phishing plays
an important role in many state-sponsored attacks. One of the recent examples is the spear
phishing attack against John Podesta, the campaign manager of Hillary Clinton, during the
US election in 2016 [12].

The research community has been studying phishing attacks from different aspects. While
some existing works analyzed phishing emails [34], the vast majority focus on the phishing
websites that are set up by attackers to trick users to reveal important information (e.g., login
credentials) [67, 71, 75, 79]. These phishing sites often impersonate other reputable entities
to gain the victim’s trust. More recently, researchers analyze phishing kits, the software
packages for running phishing websites, to understand how phishing sites are deployed and
operated [26, 33, 54]. However, these works only looked into the disconnected parts of
phishing. There is a limited end-to-end understanding of the information flow after user

credentials are leaked to the phishing sites.

On the other hand, online scan engines, designed to scan malware files and malicious websites,
are critical tools for detecting phishing websites on the Internet [3, 4, 7, 8]. VirusTotal is

one of the most popular scanning services that are widely used by researchers and industry
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practitioners [8]. It works with more than 60 security vendors to aggregate their scanning
results. Many recent works rely on VirusTotal’s URL scanning API [24, 35, 51, 59, 60, 62,
67, 70, 77, 80] for data labelling. Unfortunately, VirusTotal works like a blackbox, and it
is not well understood how VirusTotal and its vendors generate the labels for a given URL
or file. This leads to critical questions: are these labels even reliable? Are researchers using

VirusTotal in the right way?

In this thesis, we perform an empirical measurement to understand the attack and defense
process of phishing, more specifically, the credential sharing process during phishing attack

and the usage of online scan engine (VirusTotal) in phishing detection.

1.1 Credential Sharing during Phishing

To understand the data flow from attackers’ perspective, we performed the measurement
from August 2018 to January 2019 covering 179,865 phishing URLs. The client-side mea-
surement covers 41,986 live phishing sites, and the server-side measurement is based on the
analysis of 2,064 detected phishing kits. Our post-phishing exploitation analysis uses 100
honey accounts from Gmail and 50 accounts from ProtonMail for data collection. We ex-
plore how likely attackers would attempt to use the leaked password to further hijack the
associated email account (in addition to the original online account). Our study leads to a

number of key findings:
o First, we show that user credentials are shared in real time on both the client-side and
the server-side. This easily exposes the stolen credentials to more malicious parties.

o Second, while the client-side sharing is not very common (about 5%), the third-party

servers are often located in a different country (compared to the phishing server),
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which may create difficulties to take them down. In particular, many “good” websites
were used to receive stolen credentials (e.g., Google Ads are used to track the phishing

statistics for attackers).

o Third, server-side credential sharing is primarily done via emails. 20% of the phishing
kits send the credentials to two or more email addresses. About 5% of the phishing

kits contain backdoors that stealthily leak the credentials to third-parties.

1.2 Omnline URL Scan Engines towards Phishing

To figure out the data flow from defenders’ perspective, we take the initial steps to explore
the back-end process of how VirusTotal and its vendors generate the labels. We specifically
look into how the URL scan API detects phishing websites. Focusing on phishing scan allows
us to design more focused experiments. However, our methodology should be easily adapted
to other applications (e.g., file scan for malware analysis). We seek to explore (1) how
VirusTotal works with 68 vendors to perform URL scanning and result updating; (2) how
effective these scanners are in detecting simple and more advanced phishing sites; (3) how
the scanners react to the dynamic changes of phishing sites. The goal is to provide insights

to guide researchers and practitioners to better use VirusTotal.

To answer these questions, we set up a series of phishing websites of our own with freshly
registered domains. By submitting the phishing URLs to various scan APIs (VirusTotal’s
APIs and some vendors’ own APIs), we collect the incoming network traffic to our phishing
sites. At the same time, we continuously query the labels for these URLs from VirusTotal over
a month. We set up two types of phishing pages that impersonate PayPal and IRS (Internal
Revenue Service) respectively. Across all the experiments, we have used 62 phishing websites

in total. We have five key findings in this part:
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e First, most vendors have trouble detecting the simple phishing sites we set up. Over
multiple scans, only 15 vendors (out of 68) have detected at least one of the 36 simple

phishing sites. The best vendor only detected 26 (out of 36) simple phishing sites.

o Second, the detection performance is drastically different for different phishing sites.
The PayPal sites (as a popular target of phishing) can be detected quickly by more
than 10 vendors during the first scan. However, the less common IRS sites cannot be

detected by any of the 68 vendors using the VirusTotal scan API alone.

o Third, the scanning results of vendors are not updated to VirusTotal immediately after
the scanning is finished. The delay is caused by the fact that VirusTotal only pulls
the previous scanning results when a new scan request is submitted for the same URL.
A user who simply calls the query/report API would not get the updated scanning

results.

o Fourth, VirusTotal has inconsistent results with some of the vendors’ own scan APIs.
For example, the IRS sites can be detected by a few vendors’ APIs but not the Virus-
Total API. The result suggests that third-party vendors do not always give VirusTotal

the scan permission or the most updated blacklists.

1.3 Contributions

This thesis makes four key contributions:

o First, we perform a large-scale empirical measurement on the information flow of cre-
dential sharing during phishing attacks as well as the quality of labels from VirusTotal

for phishing detection.
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o Second, we build a new measurement tool to automatically seed fake credentials to

phishing sites to measure the information sharing in real time.

o Third, our measurements provide new insights into the credential sharing mechanisms

(to third-parties) during the phishing process.

o Fourth, our work reveals the reliability of labels obtained from online scan engines, and

measure the correlation between the labels from different vendors.

The content of this thesis has been published in Proceedings of the 2019 ACM Asia Con-
ference on Computer and Communications Security [56] and Proceedings of the Internet

Measurement Conference [57].



Chapter 2

Background

2.1 Background of Phishing

Figure 2.1 shows the typical steps of a phishing attack. Attackers first need to trick users into
visiting a phishing website. To gain the victim’s trust, a phishing website often impersonates
other reputable services. In stepl, the victim user submits the login credential via the
phishing page in the browser. After that, the information is then sent to the phishing server
(step2.1). The phishing server either directly sends the collected credentials via emails to
the attacker (step3.1), or the attacker will (manually) log into the phishing server to retrieve
the information (step3.2). Once the login credentials are obtained by the attacker, they can
proceed further with malicious activities against users or their organizations (e.g., stealing

data, compromising enterprise/government networks).

4. Malicious Activities

* 1. Enter 2.1 Send
O Credential Credential |_3.1Send Email
> lwww. |7 . e——
O 3.2 Fetch Data

User Client: Phishing Page Phishing Server First-party Collector

3.3 Server-side Shariry
2.2 Client-side Sharing o t t eoe —

Third-party Collector

Figure 2.1: Phishing attack process.
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2.1.1 Phishing Kits

Attackers often deploy phishing websites using a collection of software tools called phishing
kits [26]. Phishing kits allow people with little technical skills to run phishing attacks. A
typical kit contains a website component, and an information processing component. The
website component contains the code, images, and other content to create a fake website.
The information processing tool will automatically record and store the received information
(password, login time, IP), and send the information to the attacker. Some phishing kits also

contain a spamming tool, which can send spam emails to lead users to the phishing sites.

2.1.2 Third-party Information Sharing

During a phishing attack, it is possible that the user credentials are also shared to third-

parties, in both the client-side and the server-side.

o Client-side Third Parties. Step2.2 shows that client-side third-parties collect the
user credential. In this case, the phishing server that directly hosts the phishing page
is the first-party and any other servers that also collect the credential are third-parties.
The information sharing happens in real time when the user clicks on the “submit”

button.

o Server-side Third Parties. Step3.3 represents the server-side third-parties. Certain
phishing kits contain “back-doors” planted by other parties (e.g., the phishing kit
developer) [26]. After the login credentials are received by the phishing server, the
information will be sent to the first-party (who deployed the phishing website), and

also possibly to the third-party (who planted the back-door in the phishing kit).
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2.2 Background of VirusTotal

2.2.1 VirusTotal APIs

VirusTotal is a popular service that scans malicious files and web URLs [8]. The URL
scanning, in particular, aims to detect websites that deliver malware or perform phishing.
As shown in Figure 2.2, VirusTotal works with 68 third-party security vendors (see the full
list at [10]). After an URL is submitted to VirusTotal through the scanning API, VirusTotal
pass the URL to these vendors (i.e., anti-virus engines or online scanning services). The

scanning results will be stored in the VirusTotal database.

VirusTotal provides another querying API (or report API) which allows people to query the
VirusTotal database to check if an URL is malicious [11]. Given a URL, the API returns
the labels from all the vendors that have previously scanned the URL (and the timestamp
of the scanning). It is not uncommon for vendors to disagree with each other. For example,
a URL might be labeled as “benign” by Google Safe Browsing, but is labeled as “malicious”

by Kaspersky.

VirusTotal Service 3rd-Party Vendors

_____________________ I —
: / Vendor 1 Scan API

|

: Scan API ‘/I,v Vendor 2 Scan API

! VirusTotal :

| irusTotal DB <—»  \endor 3 Scan API

[
|
|
|

Querying API \
| : :
! Vendor 68

Figure 2.2: VirusTotal and third-party security vendors.

\/
SIOPUSA 81
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2.2.2 Third-party Vendors.

Among the 68 third-party vendors, we find that 18 of them also provide their own scanning
APIs to the public. Table 2.1 lists the names of the 18 vendors. As shown in Figure 2.2,
these 18 vendors can either be reached via the VirusTotal scanning APIs or via their own
APIs directly. For a given vendor, it is not quite clear if the two APIs return consistent
results.

Table 2.1: 18 VirusTotal vendors that provide their own scanning APIs.

CyberCrime, Dr.Web, Forcepoint, Fortinet,
Google Safe Browsing, Kaspersky, malwares.com, Netcraft,
NotMining, Phishtank, Quttera, scumware.org, securolytics,
Sucuri Site Check, URLQuery, ZeroCERT, ZeusTracker, zvelo




Chapter 3

Credential Sharing in Phishing Attack

In this chapter, we first describe our high-level methodology to track the information flow
in each step in Figure 2.1, and then introduce the measurement tool designed by us. Next,

we show the dataset collected over five months and the analysis results.

3.1 Methodology Overview

First, to track the information flow at stepl, step2.1, and particularly step2.2, we design
a measurement tool to automatically feed (fake) login credentials to real-world phishing
websites via the login forms. The tool will also keep track any redirections and real-time

credential.

Second, to infer the information flow of step3.1, step3.2, and step3.3, we try to obtain
the phishing kits from phishing servers and analyze how the phishing kits work. We extract
the email addresses that first-party attackers use to collect the user credentials. We also
perform a dynamic analysis in a sandbox to identify potential backdoors planted by third-

parties (§3.5).

10
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3.2 Measurement Tool

Our tool is a web crawler implemented using Selenium!. It controls a headless ChromeDriver
browser to complete a series of actions and records the network traffic in the ChromeDriver

log.

3.2.1 Login Form Detection

We focus on phishing sites that collect login credentials, excluding those that collect other
information such as credit card information or social security numbers. We detect the login
form by looking for three fields: username, password, and the “submit” button. We look for
related tags in HTML including FORM tags, INPUT tags and BUTTON tags. We also extract
the form attributes such as type, placeholder, name, and class). We don’t consider any

read-only or invisible tags.

To make sure that the form is indeed a login form instead of other irrelevant forms (e.g.,
searching bar, survey forms), we compile a list of login related keywords and search them
within the form attributes. We select keywords manually analyzing the login forms of 500
randomly phishing websites. In total, we select 40 keywords including 14 keywords for
username (e.g., “user name”, “id”, “online id”, “email”, “email address”), 8 keywords for
password (e.g., “password”, "passwd“, “passcode”), and 18 keywords for the submit button
(e.g., “login”, “sign in”, “submit”). The main challenge is that phishing websites often have
unconventional designs, or even intentionally hide keywords to evade detection [67]. It is not

always possible to locate all three fields. Below, we list the key problems and how to address

them.

https://www.seleniumhq.org/


https://www.seleniumhq.org/

12 Chapter 3. Credential Sharing in Phishing Attack

« Keywords in images: The most common challenge is that attackers use an image to
contain the “Login” keyword for the submit button, instead of placing the keyword to
the placeholder. Our solution is to use the Tesseract Open Source OCR Engine? to

extract the texts from images, and then perform the keyword search.

« No FORM tags: Phishing pages may intentionally leave out the FORM tags (to evade
detection). Our solution is to search INPUT tags and keywords in the whole HTML

page, instead of just within the FORM tags.

o Two-step login: In some phishing pages, users need to enter the username on the
first page, and type in the password on the next page. Our tool can handle two-step

login by tracking the log-in progress.

o Previous unseen keywords: the keywords may occasionally fail to match the cor-
responding input fields. To increase our success rate, we perform a simple inference
based on the order of input fields. For example, if the username and button fields are

matched, then we guess the unmatched input field in the middle is for the password.

3.2.2 Filling in the Fake Credential

After detecting the login form, our tool will automatically fill in the username and password
fields and click the submit button. The username is an email address that belongs to us.
The password is a random string of 8 characters which is uniquely created by us. The unique
password is helpful later to detect the network requests that send out the password. This
email address is never used to register any online account. The password is also not the real
password for the email address. In this way, we make sure the leaked information would

not affect any real users. We test the tool on 300 phishing sites (different from those that

Zhttps://github.com/tesseract-ocr/tesseract
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contributed the keywords). We show that the tool has a success rate of 90% to complete the

login.

Here, we also want to make sure that using fake credentials does not affect our measurement
result. We did a small experiment to see if the phishing site would react to real and fake
password differently. We create 4 real accounts with PayPal, Microsoft, LinkedIn, and AT&T
respectively. Then we select 60 live phishing websites from eCrimeX that impersonate these
brands (15 websites per brand). We feed the real and fake passwords in separate runs, and
find that the collected network traffic has no difference.

Table 3.1: Dataset summary.

Blacklist Crawling Time Span Dete. Time | # All # Live | # w/ Form | # Success
OpenPhish | 09/24/2018 - 01/03/2019 | v/ 75,687 | 44,553 | 24,202 19,720
eCrimeX 08/20/2018 - 01/03/2019 | v 65,465 | 33,319 | 21,161 19,172
PhishTank | 09/24/2018 - 01/03/2019 | v/ 50,608 | 41,682 | 7,406 6,430
PhishBank | 09/24/2018 - 01/03/2019 | v 3,093 2,027 1,010 864

Total 08/20/2018 - 01/03/2019 | — 179,865 | 110,934 | 47,703 41,986

3.3 Data Collection

Using the measurement tool, we collect data from August 2018 to January 2019 by crawling
4 large phishing blacklists: PhishTank, PhishBank, eCrimeX, and OpenPhish. The detailed
data statistics are shown in Table 3.1. For each phishing URL, all four blacklists share the
timestamp when the phishing URL was reported/detected. Three of the blacklists also show
the target brand (or website) that the phishing page is trying to impersonate. OpenPhish
shares the target brand information only for the premium API (not the free-API we used).
We notice that many phishing URLs become inaccessible quickly after they are blacklisted.
To interact with the live phishing server, we build a crawler to fetch phishing URLs from the

four blacklists every 30 minutes. Then we immediately use our measurement tool to load
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the phishing page, feed the fake credential, and record the network traffic.

We also considered that situation where the phishing servers use cloaking techniques. More
specifically, the phishing server may check the IP and User-Agent of the incoming request
to see if the request is coming from a university, a security company, or a web crawler. In
those cases, the phishing server may drop the request or return a benign page to avoid being

detected. As such, we put our crawler behind web proxies and use a realistic User-Agent.

As shown in Table 3.1, we collected 190,087 unique phishing URLSs (after removing duplicated
URLSs between the four blacklists). Among them, 68,751 (38.26%) are “dead”, and the rest
110,934 (61.74%) are still alive. Figure 3.1 shows that the live pages are typically more
recently-reported compared to the dead ones. 80% of the live pages were reported just 1

hour ago (by the time we visited the pages), while the dead pages were reported much earlier.

100 —r— w ; ‘
%0 | Deng - - - :
20 // K
70 Z
60 /' ot
50 I e e
40 / i
30 ;
20 /:
/,I
10
0

CDF (%)

10 10 10%® 10*
Time Interval (Hour)

Figure 3.1: The gap between the time when a URL was blacklisted and the time when our
crawler visited the URL.

3.3.1 Login Results

Not all the live URLs are still phishing pages. In fact, many of the live URLs have been
reset to legitimate/blank pages. Among 110,934 (61.74%) live URLs, only 47,703 (26.55%)
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still contain a login form. We use our measurement tool to feed the fake credentials to and
record all the network traffic. Out of the 47,703 phishing sites, we successfully submitted
the login form for 41,986 sites (88.01%), We manually checked the pages with failed logins.
Some of the forms not only asked for username and password, but also required answering
security questions by clicking a drop-down list. Other failure cases are caused by the special
format constraints for the input data. We admit that there is still room for improving our

measurement tool.

3.3.2 Identifying Relevant Network Traffic

Among all the network requests, we look for those that contain the seeded password. We
consider both POST and GET HTTP/HTTPS requests. We expect that some phishing pages
may encode or hash the credentials before transmission. As such, in addition to matching the
plaintext, we also attempt to match the hashed/encoded versions of the password. We apply
31 hash/encoding function on the password and look for a match in the traffic (Table 3.2).
After the filtering, we identified 41,986 network requests that contain the leaked password

(either plaintext or hashed).

Table 3.2: Functions used to obfuscate login credentials.

Hash or encoding functions (31 in total)

MD2, MD4, MD5, RIPEMD, SHA1, SHA224, SHA256, SHA384,
SHAb512, SHA3_ 224, SHA3 256, SHA3 384, SHA3 512, blake2b,
blake2s, crc32, adler32, murmurhash 3 32 bit, murmurhash 3 64 bit,

murmurhash 3 128 bit, whirlpool, b16 encoding, b32 encoding,
b64 encoding, b85 encoding, url encoding, gzip, zlib, bz2, yenc, entity
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3.4 Client-Side Information Flow

In this section, we investigate the information flows of sending credentials from the client
side. To identify HTTP requests containing user credentials, we follow the methodology
discussed earlier in §3.3. Out of the 47,703 phishing sites with a login form, we are able to

track credential information flow for 41,986 phishing sites.

3.4.1 Credential Sending Format

Recall that credential information could be transmitted in plaintext or using some encod-
ing /hashing schemes (e.g., MD5, SHA256). Table 3.3 shows statistics of different types of
data formats used across phishing sites. Interestingly, most phishing sites (99%) use human
interpretable formats (i.e., either plaintext or URL encoding), and only a small fraction,
0.11% use other more advanced encoding schemes. This implies that most attackers did not

try to obfuscate the information flow.

Table 3.3: Data format of credentials sent from the client-side.

Format Plaintext URL Encoding | Other Encoding
# Phishing sites | 6,324 (15.06%) | 35,616 (84.83%) | 46 (0.11%)

3.4.2 Identifying Third-party Collectors

Any domain that collects credential information, and is not a direct phishing server domain,
is considered to be a third-party collector. In total, we identify 694 third-party collector
domains that include 1,021 URLs. These are entities that collect stolen credentials, and

would be a vital component to target while building phishing defenses.

But do all phishing sites share credentials with third-party collectors? Table 3.4 shows



3.4. Client-Side Information Flow 17

the distribution of phishing sites that share credentials with different number of third-party
collectors. There are about 5% of phishing sites sharing credentials with third-party collectors
from the client side. The percentage is not high, but there is a sizeable number. There are
2,019 phishing sites that interact with one or more third-party collectors. In fact, 56 phishing
sites share with more than 2 third-party collectors.

Table 3.4: Distribution of third-party collectors. About 95% phishing sites don’t have third-
party collectors and they only send credentials to the original hosting domain.

# 3rd-parties | 0 1 2 >3
# Phish sites | 39,967 (95.19%) | 1,963 (4.68%) | 48 (0.11%) | 8 (0.02%)

3.4.3 Third-party Collectors vs. Phishing Sites

Next, we look at two aspects of third-party collectors that have implications for disrupting
their network. First, do third-party collectors link with multiple phishing sites? If each third-
party collector served a single phishing site, we would have to take down as many collector
domains as the number of phishing sites. But we observe a different trend. Figure 3.2 shows
the distribution of fraction of phishing sites covered by different external collectors. We find
that the top 100 external collectors (out of 694) link with a majority, 68.76% of the phishing
sites. Thus, even targeting a small fraction of external collectors can disrupt many phishing

efforts.

Second, we further examine the geographical locations of third-party collectors. Third-party
collectors are spread over 37 countries, but 42% of them are located in the U.S. When third-
party collectors are based in a country different from the phishing site they link with, it
would require different law enforcement efforts to take down their domains. We analyze the

relative locations of phishing sites and their associated third-party collectors. Among 1,408
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Figure 3.2: Distribution of fraction of phishing sites that connect to different third-party
collectors. On the x-axis, third-party collectors are ranked based on # of phishing sites
connected.

IP address pairs made of phishing sites, and their connected collector domains®, 44% are co-
located in the same country. A significant fraction of this number can be attributed to the
U.S.—96% of co-located pairs are located within the U.S. The remaining 56% non-co-located
pairs include phishing sites that are spread over 52 countries, and collectors over 37 countries.
We also note that a significant fraction, 88% of non-co-located pairs involve phishing sites
or collectors based in the U.S. The detailed breakdown for is shown in Figure 3.3. We only
show the top 5 countries of phishing servers and third-party collectors and group the rest
into “other”. Overall, this means that a majority of pairs are not based in the same country;,

and this could raise challenges to disrupt their network.

3.4.4 How Reputed are Third-Party Collectors?

We investigate whether the third-party collectors are already known malicious entities or

those with poor reputation.

3In total, there were 2,170 pairs, but we were unable to determine the geolocation for all of them.
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Figure 3.3: Countries of phishing sites and third-party collectors.

We start by analyzing the reputation of third-party collector domains using The Talos IP
and Domain Reputation Center (by Cisco)*. The Talos IP and Domain Reputation Center is
a real-time threat detection network. They provide a reputation score of “Good”, “Neutral”
and “Poor”. Here “Good” means little or no threat activity has been observed. On the
contrary, “Poor” indicates a problematic level of threat activity has been observed, while
“Neutral” means the domain is within acceptable parameters. Note that “Neutral” is a
common case for most domains, even well-known ones such as facebook.com. Among all
694 third-party collector domains, we obtain reports for 508 (73.20%) domains. We find that

14 of them are labeled “Good”, 146 are “Poor” and the rest 348 are “Neutral”.

We take a closer look at these scores—First, it is interesting to see that a significant fraction,
29% of domains already have poor reputation, but still managed to stay alive and form

a collector network. Second, it is surprising to see 14 domains marked as “Good”. We

4urlhttps: / /www.talosintelligence.com/



20 Chapter 3. Credential Sharing in Phishing Attack

find these are indeed legitimate domains, e.g., delta.com, google.com, doubleclick.net,
dropbox.com. On examining the HTTP logs for these “Good” collectors, we find there are
different reasons for them acting as third-party collectors. For example, certain phishing sites
were sending the credentials to the legitimate sites that they were trying to impersonate (e.g.,
delta.com). We suspect that they were trying to check the validity of credentials. Some
good sites were collecting credentials because they were used by attackers as a web hosting
service (e.g., dropbox.com). Finally, popular ads platforms or tracking services such as
Google Ads and doubleclick.net also received the stolen credentials. A close inspection
shows that the phishing sites were connecting to these tracking services to keep track of the
number of victims. While doing so, the stolen credential was “accidentally” placed within

the referer URL of the request.

Only analyzing domain reputation does not provide the full picture. There can be legitimate
domains that host malicious URLs. We leverage VirusTotal® to scan external collector URLSs.
VirusTotal has been widely used by the security community in prior work [50, 67]. For each
submitted URL, VirusTotal provides a report from 66 diverse scanners that may classify it
into one or more categories that indicate whether a URL is problematic, clean or unrated.
Problematic categories include “Malware site”, “Phishing site”, “Malicious site”, “Suspicious

site”, and “Spam site”.

Figure 3.4 shows the distribution of collector URLs detected by VirusTotal scanners that
fall into any one of the problematic categories. A small fraction, 16% of URLs are not
flagged by any scanner, and will likely remain under the radar for a long time. On the
other hand, a large majority, 84% of collector URLs are classified as problematic by at least
one scanner. Table 3.5 shows a further breakdown of collector URLs that are flagged by at

least one scanner. Interestingly, 81% of them are flagged as 'Phishing sites’. This suggests

Shttps://www.virustotal.com
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the possibility of a network of phishing sites that exchange credential information with each

other.
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Figure 3.4: CCDF of Number of VirusTotal scanners that flagged the given URL as malicious.
The majority of the third-party collectors are already flagged by VirusTotal scanners.

Table 3.5: Number of URLs detected by VirusTotal.

# Phishing Sites w/
Third-party Collectors

# Third-party
Collector URLs

Total

“Phishing Site”
“Malicious Site”
“Malware Site”

2,019
1970 (97.57%)
1,840 (91.13%)
239 (13.13%)

1,021
823 (80.63%)
777 (76.10%)
176 (17.24%)

To summarize, while a majority of third-party collector domains do not have a poor reputa-

tion, a large majority of their URLSs are already known to be problematic, e.g., for phishing.

In spite of the poor URL reputation, it is surprising that these collector URLs are still alive.

To understand the age of the collector domains, we examine WHOIS records to determine

their domain registration dates. Figure 3.5 shows that the distribution of domain registra-

tion time of third-party collectors is quite close to that of the phishing servers. Many of

the collector domains are actually aged domains. 20% of them were registered 10 years ago.

About half of them were registered before 2016. This suggests that the collector network
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has largely remained undisrupted.®
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Figure 3.5: Registration time of phishing domains and third-party collector domains. Third-
party collector domains have a similar distribution with phishing domains.

The top information collectors ranked by the number of phishing sites they serve is pre-
sented in Table 3.6. The largest information collectors here is “w32.info”. This site was
once hosting many phishing kits for downloading (not anymore). We confirm this by check-
ing the achieved versions of this website”. It is possible that the kit developers were us-
ing this site to collect a copy of the stolen credentials from people who use their kits to
perform phishing. We also notice that web hosting services or dynamic DNS services are
often used to collect credentials for multiple collector URLs (possibly for different attack-
ers). Omne interesting case is ip-api.org, a website that provides a lookup service for
IP geolocations. 89 phishing websites were sending stolen credentials to this server via
“http://cdn.images.ip-api.org/s.png”. We suspect that this service might have been

compromised.

6We removed known web hosting domains (as reported by Alexa top 1 Million) from this plot to avoid
a possible wrong interpretation. Malicious collector URLs hosted on a legitimate webhosting service would
show up as being long-lived, while the exact age of the URL would be hard to determine.

"https://web.archive.org/web/20151128133828/http://w32.info:80/
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Table 3.6: Top 10 third-party collectors.

Rk. | Third-party Phish | Domain Collector
Collector URLs | Category URLs

1 w32.info 731 Infection source | 1

2 jquerymobile.ga 168 Uncategorized 2

3 ip-api.org 89 Geolocation API | 1

4 serveirc.com 57 Dynamic DNS 57

D imgur-photobox.com | 50 Uncategorized 1

6 000webhostapp.com | 28 Web hosting 26

7 ptpjm.co.id 17 known infection | 3

8 servehttp.com 16 Dynamic DNS 8

9 redirectme.net 16 Dynamic DNS 16

10 | fitandfirmonline.com | 14 Uncategorized 14

3.5 Server-Side Information Flow
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In this section, we move to the server side to analyze the information flow of credential

transmission.

The challenge here is that we don’t have internal access to the phishing

servers. Our solution is based on the fact that some (careless) attackers may have left the

phishing kit in publicly accessible locations on the phishing server [26]. As such, we attempt

to retrieve these phishing kits and infer the server-side information flow by combining static

and dynamic analysis.

3.5.1 Collecting Phishing Kits

We search for phishing kits on servers that host the phishing websites. Unlike §3.4, we inspect

all 179,865 phishing URLs (i.e., not just sites that were still alive) for possible phishing kits.

The main reason is that even if a phishing site has been disabled®, it is possible that phishing

kits are still left accessible on the server [54].

8By disabled we mean the phishing site has been reset to a legitimate website by phisher or the web

administrator.
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Since we have no knowledge of possible file names to query for (on the phishing server),
we start with phishing servers that enable directory listing to obtain a list of files available
on the server. Prior work suggests that phishing kits are usually compressed/archive files
(e.g., zip, tar, rar) [26]. For each phishing site URL, we do the following steps: (1) Check
if directory listing is available for each path segment in the URL (i.e., separated by ’/’).
(2) If we find a directory listing, we download all compressed/archive files. (3) For each
downloaded file, we decompress it and check the PHP /Python/Ruby/HTML files to make
sure it is indeed a phishing kit. To further increase our chance to retrieve more phishing
kits, we identify the most frequent 50 kit names (based on the first 1000 kits downloaded
earlier). Then given a phishing URL, we exhaustively query each path segment for these 50
file names, in addition to checking the directory listing. This helps us to obtain kits from

servers that disabled the directory listing.

We applied the above method to querying 179,865 phishing sites, and obtained 2,064 phishing
kits in total. Compared to earlier work [13, 33], our hit rate for finding a phishing kit on
phishing servers is lower—we observe a hit rate of 1.15%, compared to 11.8% in prior work.
We suspect that phishers are being more careful, and avoid leaving publicly visible traces of

their malicious activity.

3.5.2 Identifying Third-party Collectors

On the server side, the stolen credentials can be sent to third-parties in addition to the
attacker who deployed the phishing kit. More specifically, prior work shows that phishing
kits may contain backdoors [26] that allow third-parties to collect the stolen credentials.
Often cases, the backdoors are stealthily inserted into the phishing kit code by the kit

developers. When the kit is used by attackers to perform phishing, the kit developer also
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receives a copy of the credentials.

To differentiate backdoor collectors, we conduct both dynamic and static analysis. The
methodology is inspired by that in [26]. The assumption is that backdoors are usually
planted stealthily, which are not directly visible in plaintext in the kit code. As such, we
first apply static analysis by performing a text search within files in a kit to identify email
addresses, and URL endpoints (for HTTP requests) that collect credentials. Then we put
the phishing kit in a sandbox for a dynamic analysis to capture all the outbound HTTP
and email traffic that transmit the stolen credentials. Any collector identified from dynamic
analysis, but not identifiable via plain text search through static analysis, can be considered
to be a backdoor collector (i.e., the third-party). Note that throughout our dynamic analysis,
we did not observe any outbound HTTP/HTTPS traffic from any phishing kits. For brevity,

we only introduce the details of the email channel analysis below.

3.5.3 Static and Dynamic Analysis

Our static analysis is based on a simple method to extract the collectors in plaintext. The
idea is to locate the mail(to,subject,...,header) function and identify their “to” and
“header” variables. The “to” address is considered to be a collector on the server side. Out
of 2,064 phishing kits in total, we successfully detected email addresses in 1,974 phishing

kits. In total, we extracted 1,222 valid email addresses (as receivers).

For the dynamic analysis, we build up an Apache web server and upload all phishing kits
to it. We record all the outbound traffic but block the corresponding ports (e.g., port 25
for email) to avoid actually sending data to the attackers. For each phishing kit, since
we do not know which files build the phishing pages, we run our tool described in §3.2 to

detect login forms to locate the phishing page. Then like before, we use our measurement
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tool to automatically fill in the username and password, and submit the information to the
experimental server. To capture the server-side actions, we dump all the emails in the mail

queue and all the HT'TP logs.

We run the dynamic analysis on all of the 2,064 phishing kits. Using tools described in
§3.2, we successfully logged into 1,181 (57%) phishing kits. Note that for 88 (9%) of these
phishing kits, we did not find any outbound emails. It is possible that these attackers would
rather log into the phishing server to retrieve the stolen credentials (step3.2 in Figure 2.1).
For the rest of the phishing kits, we search the leaked password in their outbound emails
to make sure they are sending the stolen credentials. We only find 6 emails that did not
contain the password (the emails were for status reports). For these 1,093 phishing kits, we
compare the result of dynamic analysis and that of static analysis, and find 46 phishing kits

with backdoor emails (4.2%).

3.5.4 Server-side Collectors
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Figure 3.6: Number of server-side collectors per phishing kit.

Figure 3.6 shows the number of server-side collectors per phishing kit. FEach collector is

identified as a receiver email address. Most phishing kits (96%) do not have a backdoor
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(third-party) collector. Among the 46 kits that have a backdoor, there is usually only one
backdoor collector per kit. In total, there are 24 unique backdoor email addresses. Table 3.8
further displayed the top 5 third-party email addresses, ranked by the number of associated
phishing kits. Some collectors (e.g., equallib12@gmail.com) were embedded into multiple
phishing kits.

Table 3.7: Top 5 first-party collectors on the server side.

Rk. | 1st-parties # Phishing Kits | # Domains
1 nosaplanter@gmail.com 76 10

2 chrismason601@gmail.com | 27 6

3 mrgodwin2233@Qgmail.com | 21 3

4 work-hard@dreambig.com | 15 13

5 samzysoprano2@gmail.com | 13 6

Table 3.8: Top 5 third-party collectors on the server side.

Rk. | 3rd-parties # Phishing Kits | # Domains
1 equallib12@gmail.com | 10 6
2 hhforexxx@gmail.com | 5 4
3 ebay1235x@Qgmail.com | 4 2
4 sesurityas@yandex.com | 3 2
5 boxnr1234@Qgmail.com | 2 2

Regarding the first-party collectors, Figure 3.6 shows that most phishing kits have one first-
party collector, but about 20% kits have more than one collectors. As shown in Table 3.7,
some of the first-party collectors are associated with multiple kits, which indicates coordi-

nated phishing campaigns, i.e., one attacker deployed the kits onto multiple phishing servers.
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Online Scan Engine in Phishing

Defense

In this chapter, we want to understand how VirusTotal and its vendors scan phishing URLs.
We ask key questions regarding how the labels should be interpreted and used: (1) how effec-
tive are VirusTotal’s vendors (scanners) in detecting basic phishing pages? (2) how quickly
will the scanning results become available? (3) how consistent are the scanning results
across vendors, and between vendor-APIs and VirusTotal API? (4) how quickly can Virus-
Total react to phishing site changes such as take-down? (5) how much do basic obfuscation

techniques help with evading the detection?

To answer the questions, we set up fresh phishing websites on newly registered web domains.
Then by submitting the phishing URLs to VirusTotal, we collect incoming network traffic to
the phishing servers and the VirusTotal’s labeling results for these URLs. We have carefully

designed the experiments to ensure research ethics.

28
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4.1 Phishing Site Setups

4.1.1 Phishing Page Content

We create two phishing pages that mimic the login pages of PayPal [6] and IRS (Internal
Revenue Service) [1]. PayPal is chosen for its popularity — more than 30% of phishing
URLs at major blacklists are targeting PayPal [56]. IRS, as a comparison baseline, is not
commonly targeted. We replicate the original sites of PayPal and IRS, and modify the login
form so that login information will be sent to our servers. By default, we disable any form
of cloaking for the phishing sites. Cloaking means a phishing site hides itself by showing a
benign page when it recognizes the incoming request is from a known security firm [38, 53].

The robots.txt is also set to allow web crawlers to access the phishing page.

4.1.2 Domain Names

We register fresh domain names for our phishing sites. This is to make sure the domain
names do not have any past history that may interfere with the measurement. To prevent
innocent users from mistyping the domain names (i.e., accidentally visiting our websites),
we register long random strings as domain names (50 characters each) from NameSilo [5].
For example, one of the domain names is “yzdfbltrok9m58cd101vjznzwjjcd2ihp5pgb

295hf jbu42f£0.xyz".

4.1.3 Web Hosting

We host the phishing websites at a web hosting service called Digital Ocean [2] on static IPs.

Before the experiment, we made sure all the IPs and domain names are publicly accessible,
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and are not blacklisted by any major blacklist. We have informed Digital Ocean of our

research, and have received their consent.

4.2 Experiment Design

The experiments were conducted from March to April in 2019, including a main experiment

and a baseline experiment.

4.2.1 Main Experiment

The main experiment is designed to measure (a) the phishing detection accuracy of Virus-
Total and vendors; (b) the potential inconsistency between VirusTotal API and the vendors’
APIs; (c) the reaction of VirusTotal to changes of phishing sites. Recall that there are
18 vendors that have their own scan APIs. To accurately capture their impact, we set up

separate phishing sites (1 PayPal and 1 IRS) for each vendor (36 sites in total).

fffffffffffffffffffff

Phishing Page || Submit URLto || Change Phishing |[ Submit URLto | External Event '
Gets Online  ||3rd-party Vendor || Page to Benign || 3rd-party Vendor || |

[ 4 VirusTotal Scan !
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Figure 4.1: Illustration of the main experiment on a given phishing site. The third-party
vendor is one of the 18 vendors that provide their own scan APIs.

For each phishing site, we conduct a 4-week experiment as illustrated in Figure 4.1. We pe-
riodically submit the phishing URL to VirusTotal’s scan API. The VirusTotal scan API will

trigger the scanning of (some of) the third-party vendors. VirusTotal scanning is conducted
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twice a week on Mondays and Thursdays. At the same time, we schedule 4 external events

(on the Mondays of each week):

1. Weekl: We put the phishing site online.

2. Week2: We submit the phishing URL to one of the 18 vendors who have their own

scan APIs.

3. Week3: We take down the phishing page, and replace it with a benign page (i.e., a

blank page).

4. Week4: We submit the phishing URL to the same third-party vendor as week?2.

Note that (2) and (4) are designed to measure the consistency between VirusTotal scanning
and the vendors’ own scanning. Each phishing site is only submitted to one vendor API so

that we can measure the differences between vendors.

During the experiment, we collect two types of data. First, we collect the labels for all
the phishing URLs using VirusTotal’s querying API. Note that after a URL is submitted
for scanning, the scanning results (i.e., labels) might not be immediately available in the
VirusTotal database. So we crawl the labels every 60 minutes to track the fine-grained

dynamic changes. Second, we log the incoming network traffic to all of the phishing servers.

4.2.2 Baseline Experiment

The baseline experiment is to measure the long-term reaction of VirusTotal after a single
VirusTotal scan. We set 2 additional phishing sites (PayPal and IRS) and only submit the
URLs to VirusTotal scan API for once at the beginning of the first week. Then we monitor

incoming traffic to the phishing servers, and query the VirusTotal labels in the next 4 weeks.
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4.2.3 Summary

In total, 38 websites are set up for our experiments (36 for main, 2 for baseline). There are 19
PayPal sites and 19 IRS sites. All the PayPal sites have identical web page content (hosted
under different domain names). All the IRS sites share the same content (with different

domain names).

4.3 Measurement Results

4.3.1 Delay of Label Updating

A closer examination of Figure 4.2 shows that VirusTotal has a delay of updating the labels
to its database. More specifically, the x-axis in Figure 4.2 is the label querying time (label
crawling is done every hour). We observe that only after the second VirusTotal scan will the

first scan result get updated to VirusTotal database.
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Figure 4.2: The average, maximum, and minimum number of malicious labels per site (main
experiment).
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For example, in the first week, we submit the PayPal URLs to VirusTotal on day-1. The
querying API returns “benign” labels since these URLs were never scanned before by any
vendor. Then after we submit the URLs again on day-4, the querying API starts to return
“malicious” labels from some vendors. Based on the “scanning time” on the returned labels,
we see that theses “malicious” labels are actually originated from the scan of day-1. This
means, although some vendors have already detected the phishing page on day-1, the results

would not be updated to VirusTotal database until the next scan request on day-4.

The result shows VirusTotal uses “pull” (instead of “push”) to get scanning results from
vendors. The pull action is only triggered by VirusTotal’s scan API but not the querying
API. Our baseline experiment further confirms that vendors do not proactively push new
results to VirusTotal database. In the baseline setting, we only submit the URL to VirusTotal
on day-1 without any further actions. By querying the labels for the next 4 weeks, we confirm
that the scanning results are never updated back to VirusTotal. If a researcher only scans a
URL once and queries the database afterward, she cannot get the updated labels. Instead,
the researcher needs to perform two scans: one for URL scanning, and the other for triggering

the database update.

4.3.2 PayPal vs. IRS

The VirusTotal scan during week-1 failed to detect any IRS website (Figure 4.2). After we
directly submitted the IRS URLs to individual vendors, some of the IRS pages started to be
flagged. On the contrary, all PayPal sites were flagged by at least 10 vendors during week-
1. One hypotehsis is that PayPal phishing pages are more common, and thus the vendors’
models (e.g., classifiers) are better trained to detect them. To validate this hypothesis, more

rigorous tests are needed by testing a wide range of phishing pages (content), which is part
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of our future work.
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4.3.3 VirusTotal vs. Vendors

The vendors’ own scan APIs and VirusTotal’s scan APIs do not always return consistent

results. Note that when we use the vendor’s API, the API returns the scanning result too.

Unlike VirusTotal API, vendors’ own APIs ask the user to wait until the scanning is finished

so that the user gets the real scanning result. In Table 4.1, we show the vendor API results

(on Monday of week 2), and the VirusTotal labels right before and after that (results for the

Thursday of week 1 and the Thursday of week 2 respectively). We have considered the delay

of label updating of VirusTotal and manually aligned the scan time accordingly.

Table 4.1: Inconsistent labels between VirusTotal scan and Vendor scan. “1” means malicious

and “0” means benign.

Vendor Name Brand | VTotal | Vendor | VTotal
Before | (week-2) | After
Forcepoint PayPal 0 1 0
Sucuri Site Check | PayPal 0 1 0
Quttera PayPal 0 1 0
URLQuery PayPal 0 1 0
ZeroCERT PayPal 0 1 0
Fortinet IRS 0 1 0
PayPal 0 1 0
Google Safe Brows. RS 0 1 0
Netcraft IRS 0 1 1

As shown in Table 4.1, there are in total 8 vendors that show inconsistent results. Most

vendors have a “0-1-0” pattern for PayPal sites including Forcepoint, Sucuri, Quttera,

URLQuery, ZeroCERT, and Google Safe Browsing. This means through VirusTotal scan,

these vendors return the label “benign”; even though their own scan APIs can detect that

the page as “malicious”. A possible explanation is that these vendors did not give VirusTotal
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the permission to trigger their scanners. Instead, VirusTotal runs stripped-down versions of

the scanners [9, 44], which cannot detect the phishing page.

For IRS pages, we show that Fortinet, Google Safe Browsing, and Netcraft have detected
these IRS pages via their own scan APIs. However, only Netcraft has shared this result to
VirusTotal after the scan. It should be noted that we have tried to analyze which scanners
indeed visited the phishing sites. This attempt failed because scanners were actively hiding
their identity by using proxies and cloud services. Overall, the result shows the VirusTotal
does not always reflect the best detection capability of a vendor. If possible, researchers

should cross-check the results with individual vendors’ APIs.

4.3.4 Detection Accuracy of Vendors

In Table 4.2, we list all 15 vendors that detected at least one phishing site during the first two
weeks (we took down the phishing pages after week-2). We show that even the best vendors
cannot detect all phishing sites. The most effective vendors such as Netcraft flagged 14
(out of 18) PayPal pages and 12 (out of 18) IRS pages. It is not clear why some sites
are not detected given that all 18 PayPal (IRS) sites have the identical content (except
for using a different random string as the domain name). In addition, we observe that
some of the vendors always flag the same subset of phishing sites. For example, Netcraft,
Emsisoft, and Fortinet flagged the same 26 sites. Similarly, Malwarebytes, BitDefender
and ESET flagged the same 15 sites. This indicates the possibility that certain vendors would
copy (synchronize with) each other’s blacklist. To validate this hypothesis, more rigorous

experiment is needed in future work.
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Table 4.2: A list of all the vendors that successfully detected the phishing pages (during the
first 2 weeks).

Rank | Vendor Total | PayPal | IRS
1 Netcraft 26 14 12
2 Emsisoft 26 14 12
3 Fortinet 26 14 12
4 Sophos 23 14 9
5 CRDF 17 14 3
6 Malwarebytes hpHosts | 15 14 1
7 BitDefender 15 14 1
8 ESET 15 14 1
9 G-Data 14 14 0
10 Kaspersky 13 1 12
11 Phishtank 10 10 0
12 CyRadar 8 ) 3
13 Avira 6 0 6
14 CLEAN MX 6 4 2
15 Trustwave 3 3 0

4.3.5 Reaction to Phishing Take-down

We observe that vendors do not quickly take a URL off the blacklist after the phishing site
is taken down. On the Monday of week-3, we took down all the phishing pages and replaced
them with benign pages. However, Figure 4.2 shows the number of malicious labels does not

drop even after multiple re-scans.

After examining the results for each vendor, we find 4 vendors that flip some “malicious”
labels to “benign” after the third week (for PayPal sites only). Figure 4.3 shows these 4
vendors and the number of phishing sites they flagged over time. CyRadar and CLEAN MX
already started to flip their malicious labels in week-2 (before phishing take-down), which
is not necessarily a reaction to the take-down. Fortinet flipped the label on one site in
week-4. Avira is likely to be reacting to the take-down since it changed all “malicious”

labels to “benign” right after the event. Interestingly, the labels were quickly reversed to
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“malicious” in the next scan.
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Figure 4.3: Four vendors show a sign of reaction to the phishing take-down (PayPal sites).
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Discussion

5.1 Implications of Results

Our measurement results have several key implications. First, credentials sharing happens
throughout the phishing process at both client and server side, which exposes the stolen
credentials to more malicious parties. The good news is that third-party sharing is not yet
prevalent. Second, from the phisher’s perspective, credential sharing can be both intended
(e.g., for validating the stolen credentials and tracking attack statistics) or unintended (e.g.,
due to backdoors planted by phishing kit developers). Third, from the defender’s perspective,
client-side phishing efforts are easier to detect. We find that over 80% of client-side 3rd-party
collectors are already flagged by VirusTotal. However, the problem is that they were not
effectively taken down (they are usually in a different country compared to the phishing site).
Nevertheless, defense schemes can still add these domains into local network blacklists to
block credential sharing. Fourth, server-side efforts are harder to measure and disrupt. Web-
hosting platforms can significantly contribute to phishing defenses by searching for phishing
kits, and take action to block such sites, or issue a warning to the site moderator (in case
they were compromised). Fifth, our experiments towards VirusTotal collectively involve 62
(384-24) phishing sites. We show that vendors have an uneven detection performance. In the
main experiment, only 15 vendors have detected at least one site. Even the best vendor only

detected 26 out of 36 sites, despite that these 36 sites have near-identical settings. Given

38
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that vendors have an uneven capability, and their labels should not be treated equally when
aggregating their results. Besides, we show the delays of label updating due to the non-
proactive “pull” method of VirusTotal. We also illustrate the label inconsistency between

VirusTotal scan and the vendors’ own scans.

5.2 Using third-party Sharing Channel for Defense

We believe that third-party sharing (and backdoors) can also be used by defenders for good
purposes. For example, for known third-party collectors (backdoor email addresses or client-
side collectors), instead of directly shutting them down, the defenders (e.g., law enforcement,
service providers) may keep them alive but take away the ownership from the malicious
parties. For example, Google can block the attacker from accessing the Gmail account that
acts as the backdoor collector. Then Gmail’s security team can keep this account alive as a
vantage point to monitor the phishing activities from the same class of phishing kits. The
benefit is that whenever the corresponding phishing kits are used to perform phishing in the
wild, the defenders can directly pinpoint the location of the attackers (since the phishing
kits will contact the backdoor collector). In addition, the defender will also receive a copy

of the victim list, which allows defenders to take early actions to alert the victims.

5.3 Future Work about VirusTotal

During our experiments, we observe interesting phenomena that lead to new open questions.
First, the vendors’ models perform much better on PayPal pages than on IRS pages. Future
work can further investigate the “fairness” of vendors’ classifiers regarding their performance

on more popular and less popular phishing brands. Second, we observe that some vendors
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always detect the same subset of phishing sites (Table 4.2). If these vendors indeed fully
synchronize their labels, then their labels are essentially redundant information. As such,
these vendors should not be treated as independent vendors when aggregating their votes.
Future work can further investigate the correlation of results between different vendors.
Third, many vendors (e.g., Kaspersky, Bitdefender, Fortinet) also provide API for file
scanning to detect malware. File scan can be studied in a similar way, e.g., submitting
“ground-truth” malware and benign files to evaluate the quality of labels and the consistency

between vendors and VirusTotal.

5.4 Limitations

Our study has a few limitations. First, while we obtain a complete view of client-side sharing,
we still do not have the complete picture on the server-side. We only observe instantaneous
sharing of credentials on the server-side, i.e., as soon as the credentials are received by the
server. This is a limitation because it is still possible that the server-side scripts may send
credentials at a later point of time, e.g., based on pre-set timers. Unfortunately, given the
large number of phishing kits we need to test, we cannot monitor them for a long time.
Second, our server-side analysis is based on the phishing kits—we have no information about
phishing sites that do not leave kits publicly accessible. Third, we acknowledge that our
dataset is biased due to the use of the four phishing blacklists which are skewed towards
English speaking countries. However, our dataset still covers phishing sites that target
major sectors and a broad set of brands. Fourth, when testing VirusTotal, the long domain
names may affect the detection accuracy. However, we argue that the long domain names
actually make the websites look suspicious, and thus make the detection easier. The fact

that certain scanners still fail to detect the phishing sites further confirms the deficiency of
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scanners. Fifth, the use of “fresh” domain names may also affect the detection performance
of vendors, since certain vendors might use “infection vendors” as features (e.g., reports from
the victims of a phishing site). In practice, the vendors might perform better on phishing

sites that already had victims.
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Related Work

6.1 Password Leakage

While existing works have studied password leakage [23] and password re-use [27, 64, 68],
credentials sharing during the phishing process wasn’t well understood. A related study [66]
examined the potential victims of off-the-shelf keyloggers, phishing kits and previous data

breaches. They explored how stolen passwords enabled attackers to hijack Gmail accounts.

6.2 Phishing Kit.

Zawoad et al. found 10% of phishing sites had evidence of using phishing kits [78]|. Phishers’
motivation and thought processes are inferred by analyzing phishing kits [13, 26, 45, 54].
Previous work has also sandboxed phishing kits to monitor their mechanisms and behavior
of criminals [33]. Phishers usually use phishing kits to create a series of similar phishing

pages [22].

42
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6.3 Phishing Detection & Warning.

Content-based detection methods have been studied extensively. Cantina and Cantina+ [75,
79] base their detection on DOM and search engines information. Researchers also looked
into other detection methods based on visual similarities [71], URL properties [21, 49, 67],
OCR features [17, 31], and user behavior patterns [29, 63]. Going deeper, phishing hosts
have also been extensively studied including compromised sites [28] and malicious web in-
frastructure [48]. Phishing emails are used to distribute phishing URLs. Phishers can use
email spoofing techniques [36, 37] or email header injection [58] to deceive users. Other
researchers looked into the effectiveness of phishing websites warning and prevention in web
browsers [18, 32, 74]. A key novelty of our work is to track the information flow for credential

sharing across different phases of phishing.

6.4 Using VirusTotal for Labeling

VirusTotal has been heavily used by the research community to label both malicious files [25,
40, 41, 43, 46, 47, 61, 65, 69, 73, 76] and suspicious IPs and URLs [24, 35, 51, 55, 59, 60,
62, 67, 70, 77, 80]. A closer examination shows that VirusTotal is used in different ways by

researchers.

First, given that vendors often don’t agree with each other (or some vendors have never
scanned the URL), researchers need to aggregate the labels to determine if the URL is
“malicious”. Recall that given a URL, more than 60 labels are returned from the vendors
via VirusTotal. We find that most papers define a threshold — if at least ¢ vendors return a
“malicious” label, then the URL is regarded as malicious. Most papers set t = 1 [24, 35, 51,

59, 60, 67, 80], while a few papers are more conservative by setting ¢t = 2 or 3 [55, 62, 70].



44 Chapter 6. Related Work

Second, given a vendor, its internal model (e.g., a machine learning classifier) may be updated
over time, and thus the labels on URLs may also change over time. Kantchelian et. al
investigate this issue for the file scan API [39], and show that one needs to wait for a while

before the label gets stabilized. It is unknown if the same issue applies to URL scan.

6.5 Phishing Blacklist

Our work is also related to those that study phishing blacklists [18, 53, 72]|. Phishing black-
lists often have major delays in blocking new phishing sites [20, 30, 52|, and suffer from
incomplete coverage [19]. Different blacklists may return inconsistent results [42]. Our work
aims to look deeper into the process of how URLs get blacklisted (i.e., URL scanning) by
VirusTotal and its vendors. The most relevant work to ours is [53]. The differences are two
folds: First, [53] looks into the phishing blacklists used by different browsers (e.g., Chrome,
Safari), while we focus on how phishing blacklists are constructed by VirusTotal. Second, [53]
focuses on the cloaking techniques used by phishing sites, while we focus on the performances

of different vendors (scanners), and their consistency.
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Conclusions

In this thesis, we perform an empirical measurement on the information flows of credential
sharing during phishing attacks and the label quality of online scan engines during phishing
defenses. In Chapter 3, our analysis covers more than 179,000 phishing URLs (47,000 live
phishing sites). We show that user credentials are shared in real-time to multiple parties at
both the client side and the server side. Although third-party sharing exposes user credentials
to even more malicious parties, we argue that defenders may make use of these channels to
back-track phishing servers and alert phishing victims. In Chapter 4, we take the initial
steps to explore how VirusTotal and its vendors assign labels. We also develop new methods
to reliably aggregate different scanning results. As future work, we will continue working on

the correlation between the labels from different vendors.
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