
A Gillespie-Type Algorithm for Particle Based Stochastic Model on

Lattice

Weigang Liu

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science & Application

Yang Cao, Chair

Shengfeng Cheng

Alexey V. Onufriev

Dec. 4, 2019

Blacksburg, Virginia

Keywords: Gillespie algorithm, stochastic simulation, lattice model

Copyright 2020, Weigang Liu

A Gillespie-Type Algorithm for Particle Based Stochastic Model on

Lattice

Weigang Liu

(ABSTRACT)

In this thesis, I propose a general stochastic simulation algorithm for particle based lattice

model using the concepts of Gillespie’s stochastic simulation algorithm, which was originally

designed for well-stirred systems. I describe the details about this method and analyze its

complexity compared with the StochSim algorithm, another simulation algorithm originally

proposed to simulate stochastic lattice model. I compare the performance of both algorithms

with application to two different examples: the May-Leonard model and Ziff-Gulari-Barshad

model. Comparison between the simulation results from both algorithms has validate our

claim that our new proposed algorithm is comparable to the StochSim in simulation accuracy.

I also compare the efficiency of both algorithms using the CPU cost of each code and conclude

that the new algorithm is as efficient as the StochSim in most test cases, while performing

even better for certain specific cases.

A Gillespie-Type Algorithm for Particle Based Stochastic Model on

Lattice

Weigang Liu

(GENERAL AUDIENCE ABSTRACT)

Computer simulation has been developed for almost one century. Stochastic lattice model,

which follows the physics concept of lattice, is defined as a kind of system in which individual

entities live on grids and demonstrate certain random behaviors according to certain specific

rules. It is mainly studied using computer simulations. The most widely used simulation

method to for stochastic lattice systems is the StochSim algorithm, which just randomly pick

an entity and then determine its behavior based on a set of specific random rules. Our goal

is to develop new simulation methods so that it is more convenient to simulate and analyze

stochastic lattice system. In this thesis I propose another type of simulation methods for

the stochastic lattice model using totally different concepts and procedures. I developed a

simulation package and applied it to two different examples using both methods, and then

conducted a series of numerical experiment to compare their performance. I conclude that

they are roughly equivalent and our new method performs better than the old one in certain

special cases.

I dedicate this thesis to my beloved parents.

iv

Acknowledgments

I am deeply grateful to my advisor, Prof. Yang Cao.

v

Contents

1 Introduction 1

1.1 Computer Simulation . 1

1.2 Monte Carlo method . 3

1.3 Stochastic lattice model . 5

1.4 Structure of this thesis . 6

2 Background 7

2.1 Introduction . 7

2.2 SSA for well-mixed system . 8

2.3 Tau-leaping for well-mixed system . 11

2.4 StochSim algorithm for well-mixed system 13

2.5 SSA beyond well-mixed system . 15

3 Algorithms Description and Comparison 16

3.1 Introduction . 16

vi

3.2 General problem formulation . 17

3.3 Motivation . 19

3.3.1 Generalized StochSim algorithm for stochastic lattice model 20

3.3.2 Mesoscopic reaction-diffusion systems simulated using SSA 25

3.4 Generalized SSA algorithm for stochastic lattice model 27

3.4.1 Algorithm prototype . 27

3.4.2 Modification version . 32

3.5 Complexity analysis and comparison . 34

4 Numerical Results and Discussion 37

4.1 Introduction . 37

4.2 The May-Leonard model . 38

4.2.1 Model description . 38

4.2.2 Spatial pattern comparison . 40

4.2.3 Quantitative comparison . 45

4.2.4 Efficiency comparison . 48

4.3 Ziff-Gulari-Barshad Model . 50

4.3.1 Model Description . 50

4.3.2 Correctness checking . 52

4.3.3 Efficiency comparison . 55

vii

4.4 Conclusion . 58

5 Conclusion and Future Work 59

Bibliography 61

viii

Chapter 1

Introduction

1.1 Computer Simulation

Since 1936 when Alan Turing proposed the principle for modern computer in his paper [1],

it has been almost 100 years’ development for this kind of computing devices. Computer

simulation (or computer experiment), which is first time employed to a large-scale problem

in the Mahattan Project in World War II, has also been developed rapidly side-by-side with

the growth of modern computer. It approximately mimic the behavior of a system defined by

a mathematical model using simulation codes. These models usually can not be solved either

analytically or exactly. Therefore, computer simulation is widely accepted as another reason-

able approach to study these models. The common feature shared by all types of computer

simulation methods is that, they aim to generate a sample trajectory among all possible

evolution history space, where a complete enumeration is impossible. One can estimate the

reliability of the chosen mathematical model or study its properties using this method even

if the analytic solution is too complex to obtain, as it can simply simulate events with scales

that far exceed the calculation ability of traditional paper-and-pencil mathematical work. It

1

2 Chapter 1. Introduction

has been widely used in, for example, physics, astrophysics, climatology, chemistry, biology,

ecology, psychology, health care and engineering, especially after the releasing of the fourth

generation of computing hardware since 1971.

An important concept related to computer simulation is the computer model. It uses compu-

tational algorithms and mathematical equations to characterize behaviors of a corresponding

system. Meanwhile, computer simulation are based on these equations and algorithms de-

fined for a model. In another word, simulation is the process of running systems defined by

models. There are various independent pairs of attributes possessed by computer models,

such as steady or dynamic; stochastic or deterministic; continuous or discrete; local or dis-

tribute. According to these different attributes, computer simulation in science, for our own

interests in this project, can be roughly classified as three different categories:

• Deterministic simulation: Numerically solve differential equations that do not have

simple analytical solution. Models associated with this type of simulation are usually

continuous and deterministic. This type of simulation can be applied in, e. g. theoret-

ical physics, cosmology, fluid dynamics, continuum mechanics and chemical kinetics.

• Stochastic simulation, which is usually associate with discrete models that demonstrate

certain randomness. Examples of related subjects are biology, biochemistry, condensed

matter physics and ecology.

• Multiparticle simulation which, in contrast, deal with models of particles with continu-

ous movement and demonstrating randomness, where the most important application

is the molecular dynamics (MD) simulation.

There are also various other applications of computer simulation not listed above. Overall

computer simulation can be viewed as one of the most important tools of research, after

computer was invented, in a wide scale within the scientific community.

1.2. Monte Carlo method 3

1.2 Monte Carlo method

Monte Carlo method represents a large group of simulation methods that use computer

simulation with multiple stochastic simulations to study a system that demonstrates ran-

domness. The modern Monte Carlo method was known to be first invented by Stanislaw

Ulam in the late 1940s. John von Neumann then programmed the ENIAC computer to im-

plement this method. It was first utilized during the nuclear weapon project in Los Alamos

National Laboratory. Or to be more specific, it was used to investigate the radiation shield

and the average distance that neutrons can travel through various materials. It was also the

key point of simulations required for the Manhattan Project, relating to the earlier work of

the hydrogen bomb’s development. Later it became popular in many fields such as physics,

mathematics, chemistry and engineering. Various of computational algorithms are known

as the Monte Carlo method if they demonstrate the feature using a large set of random

sampling to obtain numerical results. The essential idea here is to use randomness to solve

problems that are hard or even impossible to approach in the deterministic case. However,

these problems usually have a probabilistic interpretation as well, which, on another hand,

is known to be a principle that Monte Carlo method is applicable. There are mainly three

different classes of these problems: optimization, numerical integration and probability dis-

tribution generation. Many mathematics theory can be related to the Monte Carlo method,

for example the law of large number, the ergodic theorem. The key point here is that, the

sampled empirical measures are used to approximate the complex unknown distribution of

the random variable. By the law of large numbers, these random empirical measures con-

verge to the deterministic distribution of the object variable when the number of sampling

approaches the infinity limit. In another word, with the Monte Carlo method, we can make

reasonable approximation to these principle deterministic problems.

The definition about Monte Carlo has not been fixed. Many previous studies had tried to

4 Chapter 1. Introduction

at least distinguish some basic concepts about this term [2–4]. As pointed out by Kalos

and Whitlock that even the computer code can be viewed as simultaneously as a ’natural

simulation’ or natural sampling, ambiguities may always exist. Anyhow, the development of

the Monte Carlo method has been fairly rapid since the wide application of this method in

many different fields.

Although there exists a broad class of variations, Monte Carlo methods usually follow a

specific pattern:

• Step 1. Define the input domain and randomly generate inputs according to a proba-

bility distribution over this domain;

• Step 2. Perform specific computation on the inputs according to the predefined model;

• Step 3. Aggregate the results.

According to the law of large number, the accuracy of Monte Carlo simulation results will

directly depend on the number of inputs we used here. In principle, more inputs are needed

to give us better approximation. However, the quality of these random inputs generated from

its distribution function is also an important point to judge our results. The list of “truly

random” random numbers was first used when this method was just proposed. However, due

to the fact that this strategy was extremely slow. von Neumann then developed pseudoran-

dom number generator to improve the speed. Though this procedure was criticized as crude

at the very beginning time. It is now widely accepted that the “truly random number” is

not always necessary for Monte Carlo simulations. In fact, a deterministic, pseudorandom

sequences is thought to be sufficient for most of the applications and simulations, as long as

this pseudo-random sequence is “random” enough.

1.3. Stochastic lattice model 5

1.3 Stochastic lattice model

Although there are different definitions for the term lattice model, we are most interested

in the one concerned in physics. In physics, a lattice model is a physics model defined on a

lattice. An straightforward example is the crystal structure, where the regular distribution

of atoms spontaneously suggest a lattice model. It is discrete and simple enough. It can also

be viewed as an approximation to a continuum case, which is ideal in computational physics

study. Some of the associated models are even theoretically solvable, a reason why it is also

popular in theoretical physics.

The stochastic lattice model, which usually includes transition rules, is often used to charac-

terize the nonequilibrium phenomena in physics, chemistry, biology or their cross subjects.

These transition rules capture the microscopic interaction properties between the individual

entities or agents. They can take different internal states and change their states according to

the transition rules as time goes on. To study this kind of models, a most important method

is the Monte Carlo simulation, as mentioned in preview section. To drive a system defined

by stochastic lattice model, there are exist many different policies. Due to the particle-based

or agent-based essence of lattice model, most of the existing simulation algorithms are also

particle-based, for example, the StochSim algorithm [5]. These particle-based or object-

oriented method are simple programming and thought to capture enough details about the

associated system. However, a naturally raised question here is that, if other alternatives

that can also simulate this kind of model exist? Furthermore, if such a method is found, will

it provide us identical or different results compared with that obtained by the traditional

particle-based method? What the advantages and disadvantages of this alternative? We

want to answer these question through this thesis.

6 Chapter 1. Introduction

1.4 Structure of this thesis

This thesis is structured as follows. In Chapter 1, we provide a general introduction about

the research topic in this thesis and propose the question we want to fix. A deeper review of

the studies associated with this topic is given in Chapter 2. We answer the first part of our

questions in Chapter 3 by generating an “reaction-based” Gillespie-type algorithm that can

be used to simulation stochastic lattice model. We clearly describe the general simulating

procedure of this method and theoretically discuss the efficiency of this method when com-

pared with the widely employed StochSim algorithm for stochastic lattice model. We then

select two example models and implement them using both the original StochSim algorithm

as well as our new proposed Gillespie-type algorithm in Chapter 4. We carefully compare

their simulating results and efficiency to answer the second part of the our question. Finally,

we make our overall conclusion and overlook about this research topic in Chapter 5.

Chapter 2

Background

2.1 Introduction

The history of describe biochemical systems using reaction rate equations can be traced back

to nearly two centuries ago. Math in this description is continuous and deterministic, which

is controversial and not universally accepted, since particles are discrete and randomness

should be important in describing their behavior. Nearly two decades ago, discreteness and

stochastic effect are shown to be important in microscopic systems consists of small numbers

of reacting molecules, such as living cell [6–9]. More and more attention are paid to mod-

eling the intrinsically discrete stochastic behavior, especially the simulation method using

computer.

In fact since 1970s, Gillespie had devised an exact method to stochastically simulate chem-

ically reacting systems on computer. Molecule species inside those systems are thought to

be well-mixed, thus no spatial features emerge, and interact with each other follow a specific

set of reaction rules. Their time evolution can be solved within the frame predicted by the

stochastic chemical master equation and take the form of a Markovian random walk in the

7

8 Chapter 2. Background

N -dimensional space expanded by the population of each reacting species. Here, N is the

number of different kind of species. This simulation method is known as Gillespie’s stochas-

tic simulation algorithm (SSA). There are various progresses have been made among those

four decades after this algorithm was proposed to improve the accuracy or efficiency, for

example the approximation version:tau-leaping method[10]. Applications and extensions of

the SSA are also widely studied, such as to investigate not well-stirred system, there exists

an extension of the standard SSA to reaction-diffusion processes in spatially inhomogeneous

systems[11].

However, there is another simulation method: the stochastic simulator (StochSim), which is

proposed by Morton-Firth and Bray [5]. Different from SSA, it has object-oriented nature.

Therefore, it is thought to be more extendable for dealing with spatially inhomogeneous case.

We will then review the studies considering algorithms to simulate those discrete-stochastic

chemical systems, which are important for understanding the problem studied by us.

2.2 SSA for well-mixed system

Since 1967 when McQuarrie first gave an overview of what is now known as chemical master

equation(CME)[12], the mathematical basis for modeling the intrinsically discrete-stochastic

behavior of chemical systems was developing and widely known. In 1976, a stochastic simu-

lation approach to biochemical reactions was developed by Gillespie [13, 14]. It is known as

stochastic simulation algorithm (SSA) and oriented to well-stirred dilute chemical systems.

The microphysical promise here underlies the CME[15], which is thought to be a more re-

alistic description of chemical reaction systems than the original continuous-deterministic

first order ordinary differential equation description. Two types of reaction are primarily

2.2. SSA for well-mixed system 9

considered in this algorithm, either unimolecular or bimolecular, which contain one or two

reactants and generate something else. Trimolecular and other types of reaction can be ap-

proximate by a series of two or more uni- or bi- molecular reactions.

Details about SSA can be introduced as follow. Suppose the system has N reaction species

{S1, S2, ...SN} and their molecules are included in M reaction channels {R1, R2...RM}. We

can then use X(t) = (X1(t), X2(t)...XN(t)) denotes the state vector, where Xi(t) is the num-

ber of molecule Si at time t, and vj = (v1j, ..., vNj) denote the state change vector, where

vij is the change in of the number of species Si caused by one single Rj reaction event. vij

is supposed to be signed integer or zero. Propensity function aj is also needed to fully char-

acterize a reaction Rj. It is defined to be such that, aj(x)dt gives the probability that a Rj

reaction will happen during the next time interval [t, t+ dt) from time t, if given X(t) = x.

The detail formula of the propensity function for those two reaction types considered by

this algorithm is also shown in Gillespie’s studies [13, 14]. For a unimolecular reactions Rj

with single reactant S1, the probability that a randomly chosen reactant molecule will react

in next dt is always proportional to dt with a constant coefficient cj. If we sum cjdt over

all x1 S1 molecules, in according to the superposition property of the probability, we have

aj(x) = cjx1. The propensity funcion for a bimolecular reaction Rj is also given accord-

ing to a simple kinetic theory argument [13, 14]. If those two reactants of Rj, S1 and S2

, are of different species, the propensity function is aj(x1, x2) = cj � x1x2, with x1, x2 are

number of molecules of species S1, S2. Otherwise, in the two reactants of same species S1

case, aj(x1) = cjx1(x1 − 1)/2. The propensity function for a “spontaneous creation” or

“external source” reaction is also considered, which is merely a constant reaction parameter

aj(x) = cj.

With all those formulation above, we can then introduce the computational procedure of

SSA. The kernel of this simulation method is to give the joint probability density function

(PDF), p(τ, j|x, t) such that p(τ, j|x, t)dτ gives the probability, when X(t) = x, that the

10 Chapter 2. Background

next reaction event will happen during [t + τ, t + τ + dτ) and will be an Rj. The detail

formula of this PDF is shown in Gillespie’s study[13]:

p(τ, j|x, t) = ea0(x)τaj(x) (2.1)

where a0(x) =
∑M

k=1 ak(x). The simulation procedure can be listed as follow:

• Step 1, Calculate a1(x), ..., aM(x) and their sum a0(x)

• Step 2, Randomly determine τ and j according to the PDF (2.1)

• Step 3, Up date the state (x, t) by (x + vj , t+ τ)

• Step 4, Return to step 1, or end the simulation

There are various method to implement step 2 here. The earliest two are proposed by

Gillespie’s paper [13], which is known as direct method, which is according to a “conditioning”

decomposition of the PDF (2.1) and the first reaction method, which is shown to be equally

exact as the direct method. However, due to the fact that first reaction method will discard

M − 1 unused random number each individual step, its efficient is thought to be much less

than the direct method.

There also exist other implementation of step 2 with different method subsequently developed

by other workers. For example. Gibson and Bruck[16] successfully extend the first reaction

method into an equivalent but more efficient one which is called next reaction method. It

is believed to be more efficient than the direct method, especially for systems with many

reacting species and loosely coupled reaction channels. Cao et al. [17] had shown that for

a very specialized class of problems, the direct method will be most efficient one among all

those three. They even proposed the optimized direct method, which perform even better than

the original direct method. Other than those, there are the first family method generated

2.3. Tau-leaping for well-mixed system 11

by Lok[18]; the sorting direct method generated by McCollum et al. [19]; the modified next

reaction method generated by Anderson[20]; and the composition-rejection method proposed

by Slepy et al. [21]. Gillespie et al. [22] also pointed out that SSA can handle delayed event

much easier than that using CME.

Other than those efficiency improvement methods, there are also some previous studies tried

to deal with special cases. For example, the slow-scale stochastic simulation algorithm(ssSSA)

is proposed by Cao et al. [23, 24] to solve the inefficiency exists in the stochastic stiffness

problem. the weighted SSA, introduced by Kuwahara and Mura [25]; the unweighted SSA,

studied by Gillespie et al [26]; and the state-dependent doubly weighted SSA, invented by Roh

et al [27] are aiming to solve the difficulty that standard SSA is ill-suited to quantifying rare

event problems. Rao and Arkin also discussed to apply the quasi-steady-state assumption

to the SSA and gave a modified Gillespie algorithm [28].

2.3 Tau-leaping for well-mixed system

To improve the efficiency of SSA while sacrifice acceptable accuracy, in 2001 Gillespie intro-

duced a faster but approximate stochasitic simulation procedure called the explicit Poisson

tau-leaping method [10]. The basic idea of this method is to “leap” the system by a pre-

selected time τ (not the same as the τ in original SSA) which is large enough to encompass

more than one reaction events, as well as small enough that

aj(x) ≈ constant in [t, t+ τ), ∀j (2.2)

This is the 1st leap condition. As along as this restriction is satisfied, A Poisson random

variable with mean aj(x)τ for each reaction Rj is generated to give the number of reaction

12 Chapter 2. Background

Rj events that will occur during [t, t+ τ). Therefore, we update X(t) by:

X(t+ τ)
.
= x +

M∑
j=1

Pj(aj(x)τ)vj (2.3)

given X(t) = x and the Pj are M independent Poisson random variables. However, there

are still some problems one may encounter when apply this method. First of all, it is pos-

sible that one select a leap time that is too small that the M Poisson random variables in

(2.3) are all zero. System state will then stay unchange and this method will be infinitely

inefficient in this case. The police for selecting the leap time τ is discussed by Gillespie

and Petzold [29], as well as by Cao et al. [30]. Another problem of the explicit tau-leaping

procedure is that, since Poisson random variable can have arbitrary large sample value, there

is always possible that one or more reaction channel fires too many times that some reac-

tant species population will be driven negative. Modification of the original algorithm to

avoid this unrealistic situation is provided by Cao et al. [31]. There are other variations

of the tau-leaping method to deal with special problems or improve the efficiency. For in-

stance, the D-leaping method is proposed by Bayati et al. to simulate biochemical systems

with delays[32]; the R-leaping and ER-leaping method are designed by Auger et al. [33]

and Mjolsness et al. [34] to speedup over SSA through either pre-selecting total number of

reaction firing instead of the time, or introducing rejection sampling concept; the unbiased

post-leap rejection procedure, proposed by Anderson [35] to rule out the bias as well as the

negative population problem; and the implicit tau-leaping method of Rathinam et al. [36–39].

2.4. StochSim algorithm for well-mixed system 13

2.4 StochSim algorithm for well-mixed system

Another important stochastic simulation method is the object-oriented stochastic simu-

lator(StochSim). It is first developed by Morton-Firth and Bray to simulate individual

molecules in the cell signalling pathway[5, 40]. It also reduces all possible reaction types

to uni- and bi- molecular reactions[41, 42], just like SSA did. However, instead of reaction

rate, it directly employs reaction probability to determine whether a reaction can success-

fully occur or not. All the reaction probabilities are precomputed based on user defined rate

constants. For those situations considered by us in this project, only the ratios between

different rates are really important. Different rate set with same ratio can always match

with each other through rescaling the time variable through some constants. A look-up

table is used to store these reaction probabilities of all reaction channels. The rows and

columns represent the first and second reactants, respectively. Besides real molecules, there

are pseudo-molecules listed as the second reactant, which ensure a uniform simulation pro-

cedure for two types of reaction considered here. An entry storing a non-zero probability in

this table means a reaction channel between those two reactants. If there multiple reaction

channels between same reactants, the sum of the probabilities of all these channels are stored.

Additional step is needed to deal with this degeneracy condition, which will be discussed in

the simulation procedure.

StochSim proceeds discretely with equally divided time steps for each Monte-Carlo step

(MCS). The simulation procedure of a individual step is described as follow:

• Step 1, Uniformly and randomly select the first reactant from through all real molecules

• Step 2, Uniformly and randomly select the first reactant from through all real and

pseudo molecules except the one selected in Step 1

14 Chapter 2. Background

• Step 3, Search the look-up table to find the corresponding reaction probability. If a

non-zero probability is found, a uniform random number in (0.0, 1.0) is generated to

compared with the non-zero probability. If it is smaller than the associated probability,

there is a reaction between these two species. Otherwise, including the situation that

the founded probability is zero, no reaction occurs in this individual step. If in the

degenerate case, another random search according to the probability ratios between all

possible reaction is needed again to exactly determine which reaction will occur.

• Step 4, Update the system according to the reaction rule and decide if proceed to next

simulation step or end up simulation.

The number of individual steps in each MCS is equal the number of real modelcules at the

beginning of this MCS, limited by the example model considered by this thesis. However,

more philosophical and chemical-oriented discussion about the time step selection as well as

the reaction computing had been reviewed by Chaterjee and Valchos [43].

Various previous studies have discussed the difference and consistency between the simu-

lation algorithms StochSim and SSA. It was originally claimed by Shimizu and Bray [44]

that these two algorithms are based on equivalent physical assumptions. Later on, Petti-

grew and Resat [45], on another hand, had shown the efficiency difference between these two

simulation method. Liu and Cao [46] then presented a comparison of these two algorithm

from both accuracy and efficiency aspects and showed that the StochSim can be viewed as

a first-order approximation to the corresponding SSA if the time step used in the StochSim

is small enough. A hybrid simulation algorithm is also proposed by them to combine the

advantages of both algorithms.

2.5. SSA beyond well-mixed system 15

2.5 SSA beyond well-mixed system

The well-mixed assumption is not satisfied for many situations, particularly when inhomo-

geneity is introduced. Thus, spatial resolution as well as stochasticity are both required in

the simulation. The SSA need to be modified. Trace back to 1970s, an extension of CME

to the spatial inhomogeneous case is the reaction-diffusion master equation (RDME), which

was proposed by Gardiner et al. [47]. It subdivides a system volume into multiple subvol-

umes in such a way that the molecules within each subvolume can be viewed as well-mixed

and only react with other molecules inside the same subvolume. The diffusion between ad-

jacent subvolumes is modeled as a ”diffusive transfer reaction”, which simplifies the original

RDME problem to a well-mixed CME through reinterpreting the symbols used to describe

the system. It is called mesoscopic reaction-diffusion systems. Details about this method are

studied by Stundzia and Lumsden [11] and will be further discussed in the next chapter. One

important issue that should be clarified before starting simulation is about how to divide the

subvolumes here. Uniform Cartesian meshes are efficient and straightforward for systems

with simple geometries. However, it usually fails in cellular or subcelluar structure cases,

which have curved inner and outer boundaries. Various studies have considered different

discretization strategies [48–51] as well as how to lower the complexity in selecting the next

event [52] as the number of reactions increase vastly if there are many subvolumes.

Chapter 3

Algorithms Description and

Comparison

3.1 Introduction

As described in the previous chapter, we are interested in the simulation of stochastic non-

linear chemical reaction models on spatial lattices, where diffusion has to be included in

addition to the well-stirred assumption, on which the traditional Gillespie algorithm is

based on. As we have introduced, there exist two important methods of stochastic mod-

eling on the evolution process of biochemical homogeneous systems, namely Morton-Firth

and Bray’s stochastic simulator (StochSim) [5, 40] and Gillespie’s stochastic simulation algo-

rithm (SSA) [13], where Monte Carlo techniques are adopted to simulate the Markov process

described by the associated master equation. However, since spatial dimensions are included

in our model, we have crossed into the regime of stochastic reaction-diffusion systems and

there will be special features involved with diffusion. To appropriately simulate this kind of

systems, we need simulation methods different from their well-stirred peers. A straight for-

16

3.2. General problem formulation 17

ward thought here is that we can extend the original simulation methods, namely StochSim

and SSA, to include the spatial diffusion events in our model. Various studies have been done

based on this idea and have shown consistency with theoretical predictions. However, there

are still certain limits that exist on those generalized algorithms, which may put a restriction

on systems to be simulated. We will first generally describe the lattice model we consider

in this study and briefly further review some of them in the next section for both their ad-

vantages and disadvantages and based on those facts, propose our own method, which may

break some of the limits original algorithms bearing. We will describe both the prototype

and an improved version of our algorithm in detail, which is generated by following mainly

Gillespie’s simulation concepts. We will also present a comparison between this method and

the corresponding StochSim version algorithm, which is widely employed in relevant studies.

3.2 General problem formulation

First of all, we should make definitions mentioned above more clear. By the name ”lattice

model”, we refer to it in the context of condensed matter physics and/or computational

physics. It is a physics model defined on a lattice (for example, triangle, square or hexagonal).

It is a discrete model and can be thought of as a simplified network. Particles can occupy

different sites on it, diffuse along edges connecting its neighbor sites or react with other

particles (or just react itself) that are available.

We will describe more details about which reaction can be considered to be ”available” as

we mentioned above. There will be two factors determine whether it is available or not.

First, one can be associated with our formulation of the general problem we want to address

here. Let us suppose that we are working on a lattice with N sites which can contain active

particles of M species Sj(j = 1, ...M). We can also include inert species here, for example,

18 Chapter 3. Algorithms Description and Comparison

the empty site case may be considered as a passive particle in some models. Thus the state

of a lattice can be represented as {X1, X2...XN}, Xi = xi1, xi2...xiM , xij is then thought to

be the current number of particles of species Sj on-site i. Furthermore, we assume that those

M species can participate in K different reactions Ru(u = 1, ...K), store them in a look-up

table for all those possible reactions, each can be one of the following general cases:

∅ ce→ Sj

Sj
cs→ Sk(or ∅)

Sj + Sk
cd→ Sl(or ∅) + Sm(or ∅) (3.1)

Here ∅ means nothing or inert particle empty sites and the first reaction above can be

called ”external source” reaction and ce, cs, cd can be understood as either reaction rates or

simply the possibility whether one selected reaction can happen or not (will be explained

in later subsection). There can also be reactions with three or more reactants situations.

But for our own consideration in this study, we won’t worry about them as the original

StochSim algorithm for well-mixed homogeneous systems are free from these issues. There-

fore, our systems will be driven by those reaction rules (diffusion processes are also included

as Sj +∅ cd→ ∅+Sj, which means just switch the sites they were occupying). In other words,

a reaction is available or not should first be determined by whether the two corresponding

particles (or single-particle) are reactants (reactant) in those K reactions we assumed above.

Secondly, it will depend on our model formulation, specifically for two-reactant reactions.

There are also existing different assumptions about when two particles are available for re-

action. Two of them are most popular when studying those lattice models. One is the

on-site reaction assumption where one assumes that only when two particles are occupying

the same site, they can react. Another one is the nearest-neighbor reaction case that when

two particles are nearest neighbors they can react. The latter assumption is often made

3.3. Motivation 19

together with site occupation restriction, especially when one only allows at most one active

particle in one site. This single-occupation restriction will also rule out the only on-site

reaction possible case. Furthermore, they both assume that the reaction products will still

occupy the same sites as the reactants. Details about how to arrange them will be defined

by the specific reaction. For example, if occupation restriction is introduced, we really need

to consider the number of products about a specific reaction thus if there is enough space

for them or not. However, each of these two assumptions may be reasonable for specified

limited reaction-diffusion processes and may even be equivalent then. Here for our own re-

search interests and to make things easier to understand, we will restrict our scope in the

only nearest-neighbor reaction allowed the case with at most single-particle occupation as-

sumption. The product number problem is spontaneously ruled out under this assumption

if one further views the empty site as an inert particle and keep the total number of all kinds

of particles conserved, which again is our consideration here. We also assume that we are

working with a two-dimensional square lattice case, which can be easily extended to a higher

dimension and other kinds of the lattice. We will not talk about how to initialize the system

in detail, as one can either assume some specific initial configuration or even prepare it totally

randomly. We will only focus on the description of how do we simulate the time evolution

of the lattice state, knowing the initial configuration already. That’s our general formulation.

3.3 Motivation

A crucial difference between the well-stirred homogeneous systems and spatial lattice mod-

els is that each particle is then distinguishable with each other even if they are in the same

species in the lattice model case, in contrast to the well-stirred case. In other words, the

20 Chapter 3. Algorithms Description and Comparison

state vectors used in the SSA method will have a dimension equal to the number of different

spatial sites that assumed in our lattice model rather than the number of different species in

the original case. Therefore, the object-oriented algorithm is thought to be better performed

when one faced with this specific kind of system. Furthermore, the stochastic feature is

intrinsic here within or between species, which will need to be introduced additionally in

SSA among particles of the same species. There exists a generalized StochSim algorithm

considering this stochastic lattice model, which will be discussed in detail.

3.3.1 Generalized StochSim algorithm for stochastic lattice model

With all those assumptions we made above in Sec. 3.2, our detailed steps in simulating an

initialized stochastic lattice system can be outlined as follows:

• Step 0(initialization). Specify an initial configuration for a lattice system and the

reaction parameters c1, c2, ...cM series for reaction{Ru}, store them, determine the time

increment or follow the policy described in Step. 3 and then set the time variable t = 0.

• Step 1. Randomly select a lattice site, if it is occupied by an inert particle, re-select

again until one active particle is found and then uniformly and randomly select one

nearest neighbor of it (the second select reactant or the neighbor particle can be inert, in

another formulation one may select an inert particle which won’t make things different

indeed) or select none of them (which means single reactant reaction).

• Step 2. Search in the reaction look-up table for the possible reaction between those

two select particles. If none exists, one directly finishes this time step and increase

the time variable with a specific time increment. Otherwise, if a reaction Ru is found,

one needs another uniform random number among (0.0, 1.0) and compared it with

3.3. Motivation 21

the corresponding reaction probability (rate) parameter cu to determine whether this

reaction can happen. If so the next step is to change the lattice configuration according

to the rule, one assumes in the specific formulation and then increases the time varies

according to specific time increment. It is possible that multiple reaction channels exist

between the same reactants (or reactant), one may need one more random number to

determine which reaction is to be checked.

• Step 3. Check if one needs to recalculate the time increment or not. If so, regenerate it;

otherwise, return to Step. 1. A general procedure used in relevant studies is that one

Monte Carlo Step (MCS) is considered completed when on average all active particles

have been selected once. Thus, roughly, one can first calculate how many iterations

are needed for ∆t = 1.0 according to current lattice configuration, run all of them,

re-determine how many iterations for the next 1.0 time interval again and then iterate

until the preset time wall is reached.

To illustrate this algorithm more clearly, we employ a simple model with one active species

A and three relevant reactions. In our previous assumption, as single-particle occupation

restriction is also assumed here, the empty site can be also viewed as an inert particle in this

formulation. Those three reactions are listed as follows:

A
a1→ ∅

A+ ∅ a2→ A+ A

A+ ∅ a3→ ∅ + A (3.2)

The third reaction above here means A hopping to the empty site and left it originally

22 Chapter 3. Algorithms Description and Comparison

Figure 3.1: An example 5 × 5 square lattice with 4 sites are occupied by particle A (black
dots)

occupied site empty. An example 5× 5 lattice configuration is also given in Fig. 3.1, which

can be thought of as an initial configuration.

To investigate the evolution of this system, we first set t = 0.0 and follow the time incremental

procedure described in Step. 3 above, for a time interval between t = 0.0 and t = 1.0, we

have 4 active particles here, thus we will try to loop Step. 1 and Step. 2 four times. Suppose

that we first select the upper left corner of this lattice, which is not occupied (thus it is an

empty site or inert particle), we need to re-select until we find an active particle here (one of

the black dots). Let us assume we finally find the most central lattice site, which is occupied

by a particle A. We then randomly select one of its four neighbors or none of them (with

probability 20% for each case). If we choose upper, there is also an active particle A in that

site. However, if we go back to the reaction look-up table 3.2, there exists no reaction between

two A, thus this loop directly finished. Or if we select another three neighbors, they all give

us a A+∅ pair. Go back to the reaction table, there are two reactions with exactly the same

reactants as what we have here. Thus we should decide which one can happen (with equal

3.3. Motivation 23

Figure 3.2: An example 5 × 5 square lattice with 5 sites are occupied by particle A (black
dots)

probability) and then decide if it can happen. If the reproducing reaction is selected (the

second one), and our uniform random number is smaller than our preset reaction probability

a2, reaction then happen and we should fill the selected empty site by a new particle A.

Otherwise, we select none of its four neighbors, this selected particle A is the only reactant

and we check the look-up table find the first reaction include only one A as its reactant. We

then follow the same procedure as a two-reactant reaction case, if the reaction does not fire,

nothing happens and move to the next loop; or if it happens, we just remove the particle A

in the most central site and leave with an empty site. Let us then assume that after 4 loops

finished, we update our time variable by t = 0.0 + 1.0 = 1.0, our lattice configuration then

becomes like Fig. 3.2. We have 5 active particles then, thus we need to try 5 times in the

time interval between t = 1.0 and t = 2.0 is five.

To this end, we have introduced the generalized StochSim algorithm for simulating a stochas-

tic lattice model with a single-occupation restriction. It has both advantages and disadvan-

tages, which we will briefly talk about.

24 Chapter 3. Algorithms Description and Comparison

On one side, due to the fact that the original StochSim is invented to be an object-oriented

algorithm, the implementation is easy enough and is supposed to maintain high efficiency

compared with those generalized SSA methods which will be talking about in the next sub-

section, either studied by another group or proposed by us. Although in our formulation, we

assumed the only nearest-neighbor reaction case, either of those assumptions and even their

hybrid formulation can be implemented in through this algorithm, again in contrast to the

SSA cases which will be discussed later.

However, its disadvantage can be viewed mainly from two aspects. First of all, as in Step.

1 above, one needs to randomly find an active particle first, which may cost much when the

system is low occupied. This can be cured through establishing an additional data structure

that stores the coordinates of all the active particles current exist in the system. One can

then directly search in this mapping structure rather than randomly search in the lattice

with reject policy, as described in Step. 1 above. An additional cost is needed to maintain

this mapping structure to be consistent with our lattice configuration. Other than that,

it is shown by a previous study [46], the original StochSim for well-stirred systems can be

viewed as a first-order approximation to the SSA, which is thought to be an exact simulation

method that is consistent with chemical master equations in resulting distribution. There-

fore, in the well-mixed homogeneous case, StochSim may perform differently compared with

SSA, especially when the population between different species can vary over different order

or the reaction rates (probabilities) are of a different order (for instance in reaction lookup

table 3.2 above, if a1/a2 ≈ 10.0). Apparently, as for the generalized StochSim is thought to

bear the same problem as we just extend the original model to include the spatial feature,

which actually can be understood as we add our spatial lattice as an additional restriction

in original searching step to decide if there exists the corresponding reaction.

From these considerations, a generalized SSA algorithm that can be employed in the stochas-

tic lattice model is necessary, especially when one needs to handle reaction rates or popu-

3.3. Motivation 25

lations of multiple orders. We will briefly introduce previous consideration in the next

subsection, as well as point out their limitation.

3.3.2 Mesoscopic reaction-diffusion systems simulated using SSA

The previous treatment of the simulation of non-linear reaction-diffusion processes is to

introduce the mesoscopic diffusion rates that can be formally analogous to reaction rates.

Through appropriate mapping from the diffusion coefficient to the transition rate probability

for the diffusion of the individual particle between finite subvolume, one can then subdivide

the original into some subvolumes or ’voxels’ and then consider a model of diffusion whereby

each subvolume exchanges particle with its nearest neighbors only through reaction-like

processes. In other words, the diffusion process is thought to be an additional reaction that

happens between different subvolumes. For example, if we go back to the simplest model

we proposed in the previous subsection, where we have a species A, we first subdivide our

whole system into N different subvolumes in one dimension (thus those N subvolumes are

connected with each other like a chain). We can then rewrite species A as {A1, A2, ...AN},

Ai means species A in subvolume i. Then including the diffusion feature just means that we

need to add a set of reactions into our reaction table:

Ai
ki,i+1→ Ai+1, Ai

ki,i−1→ Ai−1 (3.3)

Furthermore, one will also assume that our original reaction set 3.2 can only happen within

one subvolume, which can be thought of as the lattice model in the last subsection with

only on-site reaction assumption. The subvolume here can be understood as a lattice site

without an occupation limit. To be more specific, here we divide our original species A into

26 Chapter 3. Algorithms Description and Comparison

N different species {Ai} and thus we have 3 × N different reactions that come from our

original model, as well as 2 × N(if the periodic boundary condition is assumed) reactions

that resulted from the diffusion processes analogy. After finish those work, this mesoscopic

reaction-diffusion systems simulating method using the Gillispie algorithm can be exactly

the same as the original SSA but with a much larger number of reactions than the original

well-stirred systems. It is said that the number of reactions can easily be several million

even a modest mesh to subdivide the systems with a small set of reactions. We will not go

through much more details about this method since it is established based on a totally dif-

ferent assumption from our interests. The advantage of this method is that it can be easily

developed for chemical kinetics simulation studies that incorporating diffusion feature for

even complex geometries or considering inhomogeneous reaction-diffusion processes. How-

ever, its disadvantage or limitation of this method is clear. First of all, as claimed above,

the number of reactions can vastly increase as one want to increase the mesh size. Secondly,

it is pointed out by Stundzia et al, this algorithm is applicable for systems with collisions

between inert and reacting species occur more frequently than collisions between reacting

species, which may be not our case, as we can clearly see in Section 5, where we present

some examples about the systems that we are interested.

To this end, as we have introduced those two previously studies generalized algorithms, we

can then conclude our motivations here. Both of those simulating methods are reasonable

generalizations of the original StochSim and SSA. Each of them has its own applicable regime

and is proven to perform well there. However, from the disadvantages of each method we

had listed above, we can easily find that there is a vacuum regime which is not covered by

either of those two existing generalization algorithms, namely a system of approximately

similar chance of collision between all the particles while the reaction rates (either of real

reactions or diffusion analogy reactions) or particle populations are of different orders. We

then aim to develop an algorithm that can deal with this case. We will discuss our own

3.4. Generalized SSA algorithm for stochastic lattice model 27

method in the next subsection for both the prototype and our optimization versions, which

can be understood as another generalization of SSA.

3.4 Generalized SSA algorithm for stochastic lattice

model

Let us first review our simplified question here, we want to simulate a stochastic reaction-

diffusion system on the 2D square lattice, we have at most single-occupation restriction for

lattice sites and thus only nearest-neighbor reaction assumption. By viewing the empty site

as an inert particle, we also suppose total particle number conservation here. Furthermore, to

anchor our problem, we assume that the reaction rates (probabilities) or particle populations

vary between different orders where the generalized StochSim for lattice model may perform

different from the master equations suggestion. The later one suggests us to use SSA as a

start point. We will then describe our algorithm that can tentatively solve our question then.

3.4.1 Algorithm prototype

As the question we are faced here can be solved by the generalized StochSim algorithm which

we have talked about in the previous section as long as the multiple order reaction rates or

particle populations restriction is removed. Thus a straight forward thought here is that, if we

can directly substitute those operations that follow the well-mixed StochSim concepts with

SSA, then we are done. To fulfill this assignment, we need to carefully compare the original

StochSim and SSA. As we have pointed out in the previous section, an important difference

between SSA and StochSim is that: StochSim is an object-oriented algorithm. Thus, it can

28 Chapter 3. Algorithms Description and Comparison

be generalized to solve the stochastic lattice model problem easily as this model is thought

to be particle-based, or in other words, object-oriented as well. On the other hand, SSA

can be thought of as a ”reaction-based” algorithm. To apply it in a particle-based model,

we first need to think about how to transform between these two pictures, specifically for

our lattice model here, as the most important issue for SSA is how to correctly generate the

propensity function.

Let us first consider the original SSA, in the well-stirred case, we generate the propensity

functions are generated through those formulas:

ae = ce,

as = cs ∗ xj,

ad = cd ∗ xj ∗ xk (3.4)

From top-down, they are propensity functions for ”external source”, single-reactant and

two-reactants reactions. We have stopped here since in the lattice model we consider here

higher-order reaction can be ignored. The first two formulas can be directly applied in our

lattice model as there is no spatial information embedded. However, we need to consider the

third one, namely the two reactant reactions, carefully in our case as in a lattice model with

only nearest-neighbor reaction assumption, we really put restrictions on it. There are three

multipliers on its right-hand-side: the first one is the preset reaction rates, which would not

change much in our case; the second and third together give us the probability that one pair

of those two reactant meet each other in this well-mixed homogeneous system if we further

divide it by a factor of V 2, where V is the volume of our systems. It is not the case for

our lattice model with only nearest-neighbor reaction-restriction, where we assume that only

when two reactants are the nearest pair, they can react with each other. In other words,

only two particles share one lattice edge are thought to be possible to meet each other.

3.4. Generalized SSA algorithm for stochastic lattice model 29

Therefore, we can substitute xj ∗ xk part in 3.4 with the number of corresponding edges

currently exist in the lattice, namely each exiting edge for a specific reaction will contribute

1.0 for this part. Hereby the term ”corresponding edges”, we mean lattice edges that connect

exactly two reactants of a specific reaction. To real with the case that two different reactions

have identical reactants, the relevant edge will contribute evenly for each reaction with a

sum of 1.0, for example, if two reactions share the same reactants, then the corresponding

edge will contribute 0.5 for each reaction’s propensity function in this part. To this end,

we complete the problems about how to calculate the propensity functions related to those

three kinds of reactions that can happen in the lattice model. Thus, with those functions,

we can already determine which reaction will happen and how long the waiting time is to

follow the traditional SSA. We can directly update our time varies according to the resulting

waiting time. We will then take care of how to use those results to update the associated

lattice configuration. As we are studying in the stochastic model here, which means we

only need to randomly find a corresponding structure in our system with correct reactants

(or reactant). By corresponding structures, we mean that single-reactant reactions can be

thought of as sites and two-reactants reactions are edges. The ”external source” reaction

actually disappears for any lattice model with occupation restriction as one can always view

each unfilled space in one site as an inert particle and then change all the ”external source”

reactions into a reaction with non-zero reactant according to its products. No occupation

restriction case is even easier as one can just randomly pick a site or sites according to

specific chemical model, which is not within the scope of this paper. As long as we find

the corresponding structure, we can then update the lattice configuration according to our

definition of the associated reaction. After we complete the configuration update, we need

to update the propensity function again. The most straightforward method is to re-scan

the whole system and account for different kinds of sites and edges again. However, as only

those sites change their states and the edges connected to those sites become different from

30 Chapter 3. Algorithms Description and Comparison

old configuration, instead of re-scanning the whole system again, we can simply modify the

propensity functions according to the information we obtain through clearly recording the

states of those affected sites and edges before and after the configuration updating. After

we fulfill this work, we complete the loop and can then iterate this process.

To this end, we have finished our algorithm iteration construction. In summary, under all our

assumptions in the previous section about our general formulation of the chemical systems we

want to simulate and assumed that we already have the initial configuration of our system,

the Generalized SSA algorithm for stochastic lattice model proposed by us can be described

as follows:

• Step. 0(initialization) Initialize the time variable t = 0.0.

• Step. 1 Calculate or modify the propensity functions for all the possible preset reactions

according to current lattice configuration and our construction above.

• Step. 2 Simulate as the traditional SSA, namely obtain the reaction index and the

time increment, update the time variable t immediately.

• Step. 3 Randomly searching in the lattice, find the correct structures and then update

the lattice configuration according to associated reaction rule. Then jump to Step. 1

until reach the time wall.

Again, if we utilize exactly the same simplest example, we propose in section 3.3 about the

single species A, as well as the same initial configuration as Fig. 3.1. Our simulation will

process as follows.

After our system has been initialized, we will calculate the propensity functions for each

reaction first. Here for our preset reactions, we know that an edge of A−∅ will contribute

to both the second and third reactions there, and each site occupied by a particle A will

3.4. Generalized SSA algorithm for stochastic lattice model 31

benefit the first one. We can simply account for each type of these structures then. We

have 12 edge A − ∅ and 4 sites occupied by a particle A, thus we can then calculate our

propensity functions for each reaction as follows:

Reaction Propensity

A
a1→ ∅ a1 ∗ 4.0

A+ ∅ a2→ A+ A a2 ∗ 12.0

A+ ∅ a3→ ∅ + A a3 ∗ 12.0

With those propensity functions, we can then begin our simulation as original SSA first,

employing the simplest Direct method. We use two random numbers to calculate the waiting

time as well as determine which reaction happens. We can then update our time variable

t according to the waiting time. Suppose the reproduction reaction (the second one in the

set. 3.2) is selected, we randomly search all the edges (if the first reaction is selected, we

need to search all the sites) in our lattice until we find a A−∅. According to our reaction

formulation, we then switch this A − ∅ edge to a A − A edge, namely let an additional

particle A occupy the empty site here. Thus we have completed the configuration update

step. To modify the propensity function correctly, we need to monitor the configuration

change carefully for both sites and edges. For example, if the A−∅ randomly selected by us

is shown as Fig. 3.3 as the red one. A particle A will then occupy the empty site at its right

end. Thus, for the reaction set we considered above, we will have an additional particle A

appear, we need to modify the propensity function of the first (spontaneous death) reaction

by increasing the xj factor in the second equation in Eq. 3.4 by 1.0. Furthermore, we will

have two A−∅ edges disappear, while two new A−∅ edges appear, thus we don’t need to

modify the other two propensity functions. Otherwise, we will also need to modify the other

two according to the net change in the number of A − ∅ edges. After we finish updating

32 Chapter 3. Algorithms Description and Comparison

Figure 3.3: An example 5 × 5 square lattice with 4 sites are occupied by particle A (black
dots), the red edge is selected to have a reproduction reaction happen

those propensity functions, we make a loop and can just go back to the standard SSA steps

and iterate everything successively, until we reach the preset time wall. That is an explicit

example of our own proposed generalized SSA for the stochastic lattice model.

3.4.2 Modification version

A crucial problem of the algorithm we proposed above is that, which looks similar to the

StochSim case for those stochastic lattice model or even worse, after we determine which

reaction is supposed to be on fire through the standard SSA, we then need to randomly

search our lattice until we found a corresponding site or edge that occupied by or connecting

the correct reactant(s). This step can be vastly cost when the corresponding sites or edges

are rare in a current lattice configuration, just like in the StochSim case when active particles

are much less than empty sites. Similarly, we can solve this problem by constructing some

data structures that allow us to do random searching among the correct reactions directly.

3.4. Generalized SSA algorithm for stochastic lattice model 33

Specifically speaking, we need data structures for each reaction individually, which allows us

to do a random selection for a specific reaction and then find the corresponding structures

(edge, or site) in our lattice directly. We can define those data structures as a representation

of our system in the ”reaction-based” space. Therefore, in other words, we need a complete

mapping from the ”reaction-based” space to the ”particle-based” space, namely the lattice

configuration. However, to keep those two structures consistent with each other, we also need

an inversely mapping to modify those data structures in ”reaction-based” space correctly,

which makes the algorithm here more complicate.

Let us consider the simple example we have used many times here. To construct the com-

pletely double directions mapping between the ”reaction-based” space and ”particle-based”

space there, in additional to the lattice configuration information, the propensity functions,

we also need two arrays that recording the position of all the sites occupied by a particle A

and all the edges that are of A − ∅ type. Furthermore, two inversely mapping structures

are also needed to find out whether the associated site or edge is corresponding to a reac-

tion and if so where it is in its ”reaction-based” data structures. The reason why we need

the backward mapping is that after a reaction happens, the system configuration will also

change, as well as its ”reaction-based” space representation. To keep both representation

correct, we should either re-scan the whole system to rewrite its corresponding data struc-

tures in ”reaction-based” space or correctly modify them. We choose the latter to avoid

unnecessary costs. However, this choice will obviously increase the time cost anyway as we

need additional operations to modify those data structures in ”reaction-based” space. The

programming complexity will increase as well.

34 Chapter 3. Algorithms Description and Comparison

3.5 Complexity analysis and comparison

In the last section of this chapter, we present a detailed analysis of the computational

costs of our own proposed generalized SSA for stochastic lattice model, as well as for the

corresponding generalized StochSim algorithm we have discussed in the motivation section.

We will compare those two algorithms which can be used for the same systems. We will

present a further implementation for the more specific model in the next chapter.

Let us first assume that we are working with the optimized version for either the generalized

SSA or StochSim then, namely to avoid the multiple randomly searching steps we construct

the mapping structures for each one. However, the mapping structures are relatively simple

for the generalized StochSim compared with our generalized SSA case. We jump into the

system initialization steps time cost and just assume they are the same for both algorithms,

although they are actually different from those algorithms as for our generalized SSA case

we need to initialize more complicated data structures. We will mainly focus on the time

consuming of each loop then.

We can then write the time consuming of one generalized SSA algorithm as:

CSSA = 3 ∗ Cran + Cfet + Ccal + Ca0 + Cr + Cope (3.5)

Here Cran means the cost of generating one random number; Cfet denote the cost of address

fetching process in the mapping from one space to another for our generalized SSA algorithm;

Ccal is the additional math cost for SSA, where we need to calculate the sum of propensity

functions as well as a logarithm operation to generate the waiting time; cost Ca0 stands

for the operation to find the next on fire reaction; Cr is the cost of modifying the system

configuration when a reaction happen; Cope then represent the cost for correctly modify the

mapping data structures here.

3.5. Complexity analysis and comparison 35

Similarly, we can also know the cost for each successfully reacting loop for the generalized

StochSim algorithm:

CStochSim = 3 ∗ Cran + C ′fet + Cr + C ′ope (3.6)

Here we also need to generate three random numbers to complete successfully reacted loop.

We may reduce one random by also constructing a completely mapping on from the ”reaction-

based” space to ”particle-based” space and inversely, which is obviously unnecessary for the

generalized StochSim case as it is intrinsically ”object-oriented” or ”particle-based”. We will

not consider this case more in our study then.

Therefore, by comparing Eq. 3.5 and Eq. 3.6 we can clearly obtain that:

CSSA − CStochSim = (Cfet − C ′fet) + Ccal + Ca0 + (Cope − C ′ope) (3.7)

In the following, we will then consider each term above individually.

As we can see that the first term above which has been grouped in a bracket is the address

fetching cost difference between those two algorithms. In the generalized StochSim algo-

rithm discussed above, we usually need to do address fetching two or three times in each

successfully reacting loop, one happens when we randomly find our first reactant; one or

two may happen after we have changed the system’s configuration according to the reaction

rules and then modified the active particle list to keep consistent with our system. In the

generalized SSA, we may need at most ten times: one time when we randomly find the spe-

cific reaction structure in our system to happen after we use traditional SSA determines the

reaction type and the rest happen after we vary the system state according to the reaction

rules (at the extreme case both reactants are changed, thus we have two sites and seven

edges may change, together give us nine). In other words, Cfet ≈ 3 ∗ C ′fet. The situation

will be similar for Cope and C ′ope. We can then discuss Ccal and Ca0 next. Clearly, Ccal will

36 Chapter 3. Algorithms Description and Comparison

include at least M times ADD operations to calculate the sum of all propensity functions

and one logarithm operation. However, in the worst case, Ca0 will contain M −1 ADD oper-

ations and the same amount of COM operations. Thus, for chemical reaction and diffusion

systems with too many reactions or even too many active particle species, those two terms

can be the dominate cost here. However, even for those systems that are not bearing those

O(M) complexity very much, our generalized SSA will still be more costing than generalized

StochSim, as either Cfet or Cope is about two times more costing than C ′fet or C ′ope. However,

one advantage of generalized SSA is that, for each loop, we will always have a successful

reaction, which is not the case in the generalized StochSim algorithm. Thus we may need

also to consider the cost generated by those unsuccessful reactions, which will eventually

increase the first two terms in Eq. 3.6. The specific amount of additional cost will depend

on the specific system set up, which is out of the scope we can generally talk about here.

In conclusion, our generalized SSA for stochastic lattice model is supposed to be more cost

than the original generalized StochSim algorithm, especially for chemical systems with too

many reaction types and/or too many active species. However, as the advantages of the

original and thus our generalized SSA is significant for some systems, it is still valuable to

explore our algorithm more.

Chapter 4

Numerical Results and Discussion

4.1 Introduction

In this section, we will apply both the widely studied generalized StochSim algorithm and

our own proposed generalized SSA for some specific models to prove the correctness of our

algorithm and compare the efficient as well as the advantages or disadvantages of them.

We use a three species cyclic predator-prey model, namely the May-Leonard model and an

Irreversible Surface-Reaction model as two examples to test our generalized SSA. The cyclic

predator-prey model can be used to describe biodiversity in ecology and biology. It helps us

realize the co-evolutionary dynamics of three coexisting species in cyclic competition, such

as the coexistence of three strains of E. Coli in bacteria experiment. The interesting spatial

pattern will also emerge in this kind of system. On another hand, the kinetic surface-reaction

model is about the reaction of carbon monoxide and oxygen on a catalyst surface. This model

was first investigated by R. M. Ziff, E. Gulari and Y. Barshad. Thus it is also called the

ZGB model. It is thought to exhibit interesting steady-state non-equilibrium behavior and

two types of phase transition that can be viewed experimentally. Both of those two stochas-

37

38 Chapter 4. Numerical Results and Discussion

tic lattice models have been simulated using the generalized StochSim and widely studied.

However, we will prove that our new proposed generalized SSA can provide us with similar

results that demonstrate the correctness of our algorithm. Details about each model will be

discussed in the following section. We will investigate the May-Leonard model in section 4.2

and then the ZGB model in the next section; finally, we will make our conclusions.

4.2 The May-Leonard model

We will focus ourselves on an interesting simulation model that is called a two-dimensional

May-Leonard model in this section. We will implement this kind of system through both the

generalized StochSim algorithm as well as our generalized SSA. We compare those results

generated by both of those two methods to prove the correctness of our new algorithm and to

explore their common points and differences in their dynamic features. We will first describe

the general information about this model first.

4.2.1 Model description

The rock-paper-scissors system is a non-trivial simulation model to study the biodiversity in

ecology and biology. It includes three-species who are cyclically preying each other like the

well-known rock-paper-scissors game: ’rock’ smash ’scissors’, ’scissors’ cut ’paper’, ’paper’

wrap ’rock’. This model and its variants can be used to mathematically describe the co-

evolutionary dynamics of three competing species. Here we are interested in a particular

one that is introduced by May and Leonard [53]. There will be novel results with interesting

spatial patterns emerging in this model when considered in a two-dimensional case which

4.2. The May-Leonard model 39

makes important implications. Therefore it is widely studied during the last two decades.

We first simply describe this model as follows: we let all particles live on a 2D square lattice,

with each lattice site occupied with at most one individual. In other words, this is the only

single-particle occupation restriction mentioned in the previous chapter. We can then treat

the empty sites as passive particles. Therefore, we can apply our generalized SSA, as well as

the StochSim algorithm for stochastic lattice model here. We label those three active species

A, B and C, and the passive empty site ∅. According to the definition of May-Leonard

model, the interaction between those three active species and the passive empty sites can be

written as:

A+B → A+ ∅, with rate λ;

B + C → B + ∅, with rate λ;

C + A → C + ∅, with rate λ;

X + ∅ → X +X, with rate µ; (4.1)

where X refers to any one of the three interacting species. We assume that all three active

species have identical predation rates as well as the same offspring production rates so that

there are no explicit advantages among them. This model violates the number of conservation

of the traditional rock-paper-scissors model. Here as we assume the at most single-particle

occupation restriction, on-site reaction assumption can never be applied. Thus, we also

assume that all those reactions can happen only when two particles are nearest-neighbor of

each other. Furthermore, in our 2D square lattice model, we also consider the exchange of

the nearest-neighbor particle as well as the hopping process in this specific model:

X + Y → Y +X, with rate ε;

X + ∅ → ∅ +X, with rate D; (4.2)

40 Chapter 4. Numerical Results and Discussion

Here again, X, Y can be either A, B, C. However, we will not consider much about the

exchange between the same species here. However, for simplification and following the pre-

vious references [54, 54, 55] assumption, where they actually do not separate the hopping

and exchanging processes, we can just set ε = D. Detail effect about this simplification is

out of the scope of this study.

With those reactions defined in (4.1, 4.2), as well as all those assumptions we make above,

we can implement this four-state stochastic RPS model on two-dimensional lattice. We

use 256 × 256 or 512 × 512 grid size for each system if not claim this parameter explicitly.

We also simply choose periodic boundary condition and randomly initial configuration with

equal initial density for each site state, namely a(0) = b(0) = c(0) = e(0) = 1/4. Here,

a(t), b(t), c(t) are density function for sites occupied by three active particles and e(t) is for

empty sites. With all those numerical setups we can then simulate systems. We mainly

choose out reaction rates in simulations like: λ = 1.0;µ = 1.0;D = ε = 5.0. However,

in the StochSim algorithm, things that really matter are the ratios between each reaction

probability. We will then generate simulation results using both the generalized StochSim

algorithm and SSA. We will then compare those results to demonstrate the correctness of

our new proposed generalized SSA as well as test the performance of different stochastic

lattice model simulation algorithm.

4.2.2 Spatial pattern comparison

This stochastic spatially extended three species model had first been studied by May and

Leonard on rate equations level [53] for well-mixed systems with a large number of individu-

als. In the deterministic description, three absorbing fixed points as well as a coexisting fixed

point where all three species survive. The reactive fixed point is thought to be unstable and

4.2. The May-Leonard model 41

under the finite individual number situation, the existing fluctuations will make the system

finally reach one of the absorbing states with only one species fills the whole system. Due

to the symmetry reactions between all three species as we assumed earlier, each subpopula-

tion have an equal chance to survive and final results will be strongly affected by the initial

configuration.

However, we are more interested in the spatial extended stochastic lattice model case as we

have discussed its description in the previous subsection with cyclical interaction as well as

the hopping and exchanging process. We will employ this approach to construct our sim-

ulation code. As demonstrated and investigated by various studies [53–58], there will be a

kind of noisy, regular, geometric spiral wave patterns emerging in system configuration on

the scale of a large enough system size and with appropriate exchanging and hopping rate

selection. The emergence of this wave pattern is a feature shared by many complex systems

that are supposed to be out-of-equilibrium across multiple disciplines, such as the Belousov-

Zhabotinsky reaction [59]. It can be also studied by mapping and recasting the stochastic

and deterministic part of dynamics here in the form of a complex Ginzburg-Landau equa-

tion(CGLE) with noise term [55, 60], which provides us with a theoretical explanation about

the emergence of spiral wave structures as this is also an important feature of 2D CGL sys-

tem, if one numerically solves it on 2D lattice [61].

However, in all those lattice model simulation studies mentioned above, the algorithm they

employed is the generalized StochSim algorithm for the stochastic lattice model. Thus we

will then ask that what if one simulates the same stochastic spatially extended three species

model using the generalized SSA we proposed in the previous section. To answer this ques-

tion, we generate both simulation codes using both of these two algorithms and then compare

them carefully from various aspects. We will first compare them from the phenomenological

aspect.

42 Chapter 4. Numerical Results and Discussion

0 100 200 300 400 500

0

100

200

300

400

500

0 100 200 300 400 500

0

100

200

300

400

500

Figure 4.1: Snapshots of the spatial particle distribution of systems simulated using the
generalized StochSim(upper) and SSA(lower). Different colors stand for sites occupied by
three active species (yellow, red and light blue) or left empty (dark blue). Each system has
a size of 512× 512 and a total random initial configuration with equal initial density for all
four site states. The rate values are implemented λ = 1.0;µ = 1.0;D = ε = 5.0. The time
when taking these snapshots is t = 3000MCS for the StochSim case and t = 1000.0 for SSA.

4.2. The May-Leonard model 43

In Fig. 4.1, we plot a typical snapshot for May-Leonard model systems that are simulated

using different algorithms. Here we can see all three active species coexist and clear spiral

structures can be seen in each system. One can also compare those two system configurations

generated using a stochastic simulation method and random initial and make the conclusion

that there is no significant different feature between those two systems. However, to enhance

this conclusion. We need to compare those systems generated through different algorithm

quantitatively.

Before we move to the detail quantitative comparison section, it may be also valuable to

mention another interesting difference between those two algorithms. As we had discussed

in the previous section, we claimed that the original SSA and hence our generalized algo-

rithm will provide us results that are more exact if one wants to describe those systems

using the chemical master equations. On the other hand, if one chooses a very small time

step for the StochSim algorithm, it can be viewed as a first-order approximation to the

corresponding SSA. The difference between those two algorithms will be more significant if

one considers reactions with rates of different magnitudes. This will be true for our May-

Leonard model with hopping and exchanging processes as the reaction rates of those two

processes are usually considered to very large than those of interaction or reproduction re-

actions. Furthermore, according to previous study[54–57], when the mobility of particles,

which is defined as proportional to the exchanging and hopping rates, is increased, the spiral

structures will also grow in size and disappear for large enough mobility for finite system size

as they are even larger than the entire lattice. In the spirals absent case, the coexisting state

will also break down and the system will perform a uniform state where only one species is

surviving, namely an absorbing state. It is easy to understand this transition as when one

keeps increasing the mobility of active species, a spatially extended system will behave like

a well-mixed case gradually. However, those conclusions are obtained when one employs the

generalized StochSim algorithm, what if one change their method to our generalized SSA?

44 Chapter 4. Numerical Results and Discussion

0 50 100 150 200 250

0

50

100

150

200

250

Figure 4.2: Snapshots of the spatial particle distribution of systems simulated using the
generalized SSA(right). Different colors stand for sites occupied by three active species
(yellow, red and light blue) or left empty (dark blue). Each system has a size of 256 × 256
and a total random initial configuration with equal initial density for all four site states. The
rate values are implemented λ = 0.5;µ = 1.0;D = ε = 75.0. The time when taking these
snapshots IS t = 1000.0.

Another example snapshot of system simulated using our new algorithm is presented in Fig.

4.2. Here a different set of reaction rates are using and diffusion is assumed to be much

larger than other reactions(150 times than species interaction and 75 times than reproduc-

tion). Here, instead of directly transit from spiral structures existing state to a uniform

state, an intermediate state is observed. Their planar wave-like structures emerge in system

configuration when all spirals with different winding directions annihilate with each other.

This phenomenon is also seen previously by Mobilia et. al. [62]. They combined the May-

Leonard model as we used in our implementation as well as other additional reactions, for

example, species mutations which mimic the fact that side-blotched lizards Uta stansburiana

undergo throatcolor transformations [63] or phenotypic switching of uropathic E. coli [64].

4.2. The May-Leonard model 45

They also used a so-called ’meta-population model’ which is exactly the Gillespie algorithm

for mesoscopic reaction-diffusion systems. They concluded that this phenomenon happens

when the system size is of the order of the wavelength of the spiral waves. Those planar

waves like structures then look like the arms of the original spiral waves. Or more generally

speaking, this is a finite-size limit that can only be obtained by SSA like algorithms. In other

words, this limit case will be absent if one does simulations using algorithms with StochSim

concepts since they are only a first-order approximation of the corresponding SSAs. This is

a significant advantage of our new proposed algorithm. More tests are definitely needed to

check if there are other useful findings associated with this difference between the original

generalized StochSim and our new proposed SSA.

4.2.3 Quantitative comparison

To quantitatively compare those May-Leonard systems generated using the same reaction pa-

rameters but different simulation algorithms, we need quantities to characterize the emerging

spatial structures in our system as well as depict some associated temporal features. Fol-

low methods that were used in previous work [57], we will employ the equal-time two-point

correlation functions of the same or different species to describe the spatial features of our

systems in the quasi-steady case. The formula to compute those functions are shown as

follows:

CAA(x, t) = 〈nA(j + x)nA(x)〉 − a(t)2

CAB(x, t) = 〈nA(j + x)nB(x)〉 − a(t)b(t) (4.3)

46 Chapter 4. Numerical Results and Discussion

Here nA(j, t) is the local population number of species A at lattice site j, a(t) is its spa-

tially averaged population density a(t) = 1
N

∑
j nA(j, t). Things is similar for species B. We

also calculate the Fourier transformation of a(t) to characterize the temporal feature of our

system.

a(f) =

∫
a(t)e2πiftdt (4.4)

The reason why we can only consider species A (although when we calculate CAB(t) we need

information of species B) is because of the underlying symmetry among the species A, B and

C. We will also do averaging between independent systems to rule out fluctuations generated

from the random initial configuration and the stochastic processes.

However, before actually compare results extracted from systems simulated using different

algorithms, there is another difficulty existing. As it is clearly seen from the algorithm details

which have been introduced in the previous section, the time scale of those two algorithms are

not consistent with each other. Specifically, we use the so-called Monte Carlo step (MCS) to

scale the time axis in the generalized StochSim algorithm. On the other hand, a continuous-

time variable is employed in the SSA case. We should first rescale those two-time variables

to synchronize them. However, since we are doing stochastic simulation, this objective is

hard to obtain. A reasonable choice is to rescale the time variable of one kind of system (thus

the frequency f after doing the Fourier transformation) to overlap the most significant peak

value in its frequency spectrum. But this method will render the comparison using |a(f)|

meaningless. Therefore, we need other quantities to extract this re-scale factor. We decide to

use the cumulative number of Ni(t) to fulfill this job. We define Ni(t0) to be the number of

how many times has reaction i happened from t = 0 to t = t0. We account for this number for

different reactions for each case and plot them respect to t. We will rescale the time variable

t of one algorithm (we choose StochSim here) to collapse those curves generated from the

different algorithms. For the specific reaction rates set λ = 1.0;µ = 1.0;D = ε = 5.0, a

4.2. The May-Leonard model 47

−200 0 200 400 600 800 1000 1200 1400 1600
t

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

lo
g 1

0
[N

i(
t)
]

A + ∅ → A +A(SSA)
A + ∅ → A +A(StochSim)
A + ∅ → ∅ +A(SSA)
A + ∅ → ∅ +A(StochSim)
A +B → A + ∅(SSA)
A + B → A + ∅(StochSim)
A + B → B +A(SSA)
A + B → B +A(StochSim)

Figure 4.3: Cumulative reaction count curves for different reactions that are listed in their
labels. The time variables of those generated from StochSim algorithm are rescaled ac-
cording to a uniform factor rs = 13.3 to make them overlap with those simulated using
our generalized SSA. Those curves are averaged over 100 simulation runs. Lattice size is
256× 256

rescaling factor rs = 13.2 will perfectly make those curves overlap with each other. Fig. 4.3

shows the relevant curves.

With this factor, we can then successively compare |a(f)| computed from systems that using

different algorithms, as well as the equal-time correlation functions CAA(x, t) and CAB(x, t).

As one can directly see in Fig. 4.4 that, after we rescale the time axis for those systems

simulated using the generalized StochSim algorithm, both CAA(x) and CAB(x) are consistent

with each other. However, three reasons may be associated with a slight difference between

black and red curves. First of all, we have stochastic noise inside each system, which we

can not totally rule out through statistic average. Secondly, as eventually systems actually

stay in a quasi-steady state and the time when we measure CAA(x) and CAB(x) are not the

same for two different algorithms even after the rescaling, there are supposed to be a slight

deviation. A third reason is that, as claimed by a previous study, the StochSim algorithm is

48 Chapter 4. Numerical Results and Discussion

0 200 400 600 800 1000 1200 1400 1600
t

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

a
(t
)

SSA
StochSim(Rescaled)

0.0 0.1 0.2 0.3 0.4 0.5
f

0

1

2

3

4

5

6

7

|a
(f
)|

SSA
StochSim(Rescaled)

0 20 40 60 80 100 120 140
x

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
a
a
(x
)

SSA
StochSim

0 20 40 60 80 100 120 140
x

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

C
a
b(
x
)

SSA
StochSim

Figure 4.4: Quantitative observables for stochastic May-Leonard system on 2D lattice with
256× 256. |a(f)|(upper right), CAA(x)(lower left) and CAB(x) are averaged over 100 simu-
lation runs. a(t) is only an example generated from one single run. The reaction rates are
λ = 1.0;µ = 1.0;D = ε = 5.0. CAA(x) and CAB(x) are obtained at t = 1000.0 for those SSA
systems and t = 20000MCS for the StochSim case.

just a first-order approximation to the corresponding SSA. Aside from those spatial feature

comparisons, they also share similar temporal features as shown in the |a(f)| curves. They

roughly have the same shape as well as the same peak frequency, which demonstrate the

consistency of those two algorithms, at least for this specific May-Leonard model.

4.2.4 Efficiency comparison

We will try to compare the efficiency of those two algorithms when applying them to our

May-Leonard model. We will measure the CPU cost for each algorithm. We will use dif-

ferent reaction rate sets, as we notice that different from the StochSim algorithm, SSA is

actually very sensitive to the reaction rates, especially the largest one. Thus, our scenario is

as follows: we will mainly vary the largest parameter, namely the exchanging and hopping

4.2. The May-Leonard model 49

Rate values Rescaling factor SSA CPU cost(s) StochSim CPU cost(s)
λ = 1.0;µ = 1.0;D = ε = 5.0 13.3 148.30± 0.52 129.30± 0.93
λ = 1.0;µ = 1.0;D = ε = 10.0 26.3 278.16± 2.27 250.35± 1.76
λ = 1.0;µ = 1.0;D = ε = 20.0 N/A 419.91± 2.31 N/A
λ = 1.0;µ = 0.5;D = ε = 5.0 15.3 164.74± 0.67 127.81± 1.30
λ = 1.0;µ = 0.5;D = ε = 10.0 30.3 311.15± 2.78 248.04± 2.30
λ = 1.0;µ = 0.5;D = ε = 20.0 61.3 555.03± 12.51 503.36± 5.05

Table 4.1: The overall CPU costs of 100 simulations for SSA and StochSim simulated May-
Leonard model system on 2D lattice

rate. We will also slightly vary other parameters a little bit to obtain a better understanding

of this question. Our simulated system is still 256 × 256, and other numerical setups are

identical as introduced in the previous subsection. We do statistics over 100 independent

different realizations. We will also use the extract uniform scale factor to determine the

pseudo time of the SSA simulation and the MCSs used in the StochSim algorithm. For

example, if we have a factor 13.2, as shown in Figure 4.3 and those SSA simulated systems

use pseudo time t = 1000.0 as time wall, then we will simulate those StochSim systems for

13.2× 1000.0 = 13200 MCSs, to match their evolutionary history.

Here, we fix the time wall of those SSA systems to be t = 1000.0 and only vary the MCSs

simulated in the StochSim case. The N/A means those systems simulated using StochSim

are quickly falling into the absorbing state where the whole system is occupied by a single

species, while in SSA case we can still obtain active systems. Besides this special case, from

the third and fourth columns in Table 4.1, we can clearly see that the CPU cost of SSA is

always higher than the StochSim algorithm, but they are still comparable. Furthermore, we

can also find that those differences are becoming smaller as the scaling factor get larger, or

in other words when the diffusion related reaction rate get larger. This fact is consistent

with our conclusion that SSA will perform better than those models with reaction rates of

a different order. However, limited by the extinction properties of the May-Leonard model

studied here, we can not further increase ε here as those StochSim simulated systems and

50 Chapter 4. Numerical Results and Discussion

even SSA systems may transit to absorbing state. We will try to eliminate this restriction

and check our prediction that our SSA method may perform even better than StochSim

algorithm when the order difference becomes even larger, which will be tentatively done in

the next section by implementing another model.

4.3 Ziff-Gulari-Barshad Model

4.3.1 Model Description

In addition to the May-Leonard model which is discussed in the previous section, we also test

our algorithm using another many-body system that can be simulated using Monte Carlo

simulations on a simple square two-dimensional lattice of active sites and single-occupation

restriction, the Ziff-Gulari-Barshad(ZGB) model or A−B2 model. It is an irreversible kinetic

surface-reaction model considering the reaction of carbon monoxide and oxygen atom on a

catalyst surface. It is first proposed by Ziff et al. in 1986, thus it is known as the ZGB

model. Here the catalytic surface is represented by a two-dimensional square lattice. Three

basic steps are usually assumed in heterogeneous catalytic chemical reactions. First of all,

those reaction particles are adsorbed on the surface; secondly, they react with each other;

the final step is the desorption of their products. The final step here is also known as the

Langmuir-Hinschelwood process[65]. It ensures the regeneration of the catalyst.

In the simulation model considered by us here, the ZGB model, detail reactions are estab-

4.3. Ziff-Gulari-Barshad Model 51

lished by the following steps:

CO(gas) + V → CO(ads), with rate yCO

O2(gas) + V → 2O(ads), with rate yO

CO(ads) +O(ads) → CO2(gas) + V, with rate yCO2 (4.5)

Here, (gas) means a gas-phase molecule of CO or O2; (ads) indicates that the molecule is

adsorbed on the catalysis surface; and V means an empty active site. To be more specific,

those irreversible surface reacting processes can be sum as follows. First of all, the catalyst

surface, which is simplified into a square two-dimensional lattice with active sites. Each ac-

tive site can be occupied by only one adsorbed particle. This catalyst surface is exposed to

an environment filled with gas-phase molecules of CO or O2. Both kinds of these molecules

can collide with blank sites directly can then absorb immediately. O2 will dissociate into two

O atoms and occupy two separate empty sites, which are the nearest neighbors of each other.

On another hand, CO molecule needs only a single site to be adsorbed. They can be viewed

as the first step mentioned in the general heterogeneous catalytic reaction process. Besides

those two absorbing reaction, an adsorbed state CO can react with an adsorbed O atom

on one of its adjacent sites (in the two-dimensional cases, it has four nearest neighbor) and

generate a CO2 molecule, which will desorb instantly and restore two empty active sites on

the catalyst surface, complete the second and third standard step mentioned above. Those

desorbed CO2 will never interact further with our catalyst surface again. In other words,

we assume that our environment has a very large volume and its filling gas is continually re-

plenished by a fresh feed[66], so that the composition in the gas phase will never be changed

by either the desorption of CO2 or absorption of CO and O2.

Many other mechanisms are not considered in this simplified model, such as the diffusion

processes, desorption of CO or reassociation and desorption of two adjacent O atoms, which

52 Chapter 4. Numerical Results and Discussion

may be important for further studies. However, in the earliest version first proposed by Ziff

et al. [66], they even not consider the reaction rates of those three standard reactions in

(4.5) to avoid using any energy parameter here and leave with only one control parameter.

They assumed that the three reactions in (4.5), which produce desorbed CO2, happens im-

mediately when two reactants occupy adjacent sites. This simplification implies an infinite

reaction rate which very idealized and can not be implemented through SSA, where reaction

rates are explicitly used. We need to improve this most simplified model a little bit by

explicitly define reaction rates for all those reactions in (4.5).

Similarly as the May-Leonard case, almost all those previous studies investigating this ZGB

model or its modified version employing the StochSim algorithm for stochastic lattice model

as discussed in the previous chapter. We then implement our simple improved ZGB model

with both the SSA and StochSim algorithm as what we did in the previous section for the

May-Leonard model. We will first demonstrate that our SSA method can provide us similar

results as the widely used StochSim algorithm. After that, the related efficient of each algo-

rithm will be compared.

4.3.2 Correctness checking

To check the consistency between those systems simulated using two different algorithms,

we need to first introduce its general behaviors that have been studied by previous work

[66]. There exists a typical steady-state of this catalyst reaction system, where the system is

reactive. Both CO molecules and O atoms coexist on the catalyst surface and some of those

lattice sites also stay empty. There, there will be continuously absorption reactions of O2

and CO happen, which will generate new adjacent CO and O pairs. Those pairs will then

react soon, as the third reaction in (4.5) is usually assumed to have a much larger reaction

4.3. Ziff-Gulari-Barshad Model 53

rate than the other two (that is why in the most original models, they even assumed infinite

reaction rate for this reaction). After this reaction happen and produced CO2 then desorbs,

two active sites are vacated, which completes the loop and systems can keep repeating those

steps as we have the replenishment assumption.

Figure 4.5 illustrates two examples of system configuration simulated using different algo-

rithms. We can clearly see that, in both plots, the active sites are mainly occupied by O

atoms and CO clusters are rare. Actually in our case. those CO molecules tend to be iso-

lated among vacated active site clusters, the latter commonly occur among O atoms. Those

descriptions are consistent with each of those two plots, which means those two different

algorithms are almost doing the same thing. The occupation percentage of adsorbed species

are also similar to each other for those two examples. About 70% of the active sites are

occupied by O atoms, only 1.6% are CO molecules and rest left blank.

If one fixes two of these reaction rates mentioned in Figure 4.5 and varies the last one,

this reactive steady state can exist for some intervals. The two-phase transition will hap-

pen when one goes out of the interval on both sides. The only steady states outside of

the interval are ”poisoned” catalyst surface covered by either pure CO molecules or pure

O atoms. For example, if we fix yCO = 1.0 and yCO2 = 20.0 and keep changing yO, then

only for y1 < yO < y2 we have the reactive steady state for our ZGB systems. We mea-

sure y1, y2 using our SSA algorithm, which gives us y1 = 0.478 ± 0.001, y2 = 0.804 ± 0.001.

However, the StochSim version only gives us probability ratio of those three reaction rates,

if we fixed yCO : yCO2 = 1 : 20, and set yCO2 = 1.0, the resulted y1 = 0.0239 ± 0.0001 and

y2 = 0.0404 ± 0.0002, which agrees with those obtained from our SSA algorithm through a

factor transformation by multiple the latter ratio result by 20.0.

Furthermore, those two transitions from the reactive steady-state to either CO or O “poi-

54 Chapter 4. Numerical Results and Discussion

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

Figure 4.5: Snapshots of the spatial particle distribution of systems simulated using the
generalized StochSim(left) and SSA(right). Different colors stand for sites occupied by CO
molecule (light green), O (dark red) or left empty (dark blue). Each system has a size of
256× 256 and a blank initial configuration with all active sites left empty. The rate values
used in the SSA example are yCO = 1.0; yO = 0.6; yCO2 = 20.0. Identical ratios between the
reaction probabilities are employed in the corresponding StochSim simulated systems. The
time when taking these snapshots is t = 3000MCS for the StochSim case and t = 1000.0 for
SSA.

4.3. Ziff-Gulari-Barshad Model 55

soned” state are different from each other. The first one is a discontinuous or first-order

transition, which can tell from the occupation percentage of either reactant species, for ex-

ample exactly before the transition, the O atoms occupation percentage is about 44%, which

is given by either algorithm. It will suddenly drop down to 0% after transit to the CO

“poisoned” state. On another hand, before the O “poisoned” transition limit, the catalyst

surface is almost fully covered by O atoms, again can be checked by both simulation versions.

To this end, we believe we have enough pieces of evidence that our new proposed algorithm

can simulate the stochastic lattice model similar to the traditional StochSim algorithm does.

We will then compare their efficiency using this implementation as well.

4.3.3 Efficiency comparison

We will try to compare the efficiency of our SSA and the widely used StochSim algorithm

with this ZGB model. A difference compared from the May-Leonard model we tested in the

previous section here is that system will not fall into its absorbing state for some interval

even if we increase the reaction rate of the most rapid reaction, namely the third one in

(4.5) which is catalysis and generates CO2, infinitely. As we have discussed and predicted,

our new proposed SSA may even perform better than the original StochSim algorithm for

models with a large gap between the most rapid and slowest reaction, which is limited by

the transformation from a reactive state into absorbing state in the previous model, but not

the case here. Therefore, we can further check this assumption.

We will compare the efficiency using the overall CPU cost, similar to what we did in the pre-

vious section. We will first measure the transforming factor between systems implemented

using different algorithms by matching the numbers of successfully reacted reactions as a

function of the pseudo time t or MCS in each algorithm, exactly the same as we did for

56 Chapter 4. Numerical Results and Discussion

Rate values Rescaling factor SSA CPU cost(s) StochSim CPU cost(s)
yCO = 1.0; yO = 0.6; yCO2 = 20.0 30.0 248.24± 6.25 3282.83± 75.76
yCO = 1.0; yO = 0.6; yCO2 = 40.0 60.0 324.98± 1.36 5553.55± 148.70
yCO = 1.0; yO = 0.6; yCO2 = 50.0 75.0 255.32± 2.09 7180.21± 202.58

Table 4.2: The overall CPU costs of 100 simulations for SSA and StochSim simulated ZGB
model system on 2D lattice

May-Leonard model again. The associated reaction rates of the first two reactions in (4.5)

are fixed by yCO = 1.0; yO = 0.6 to ensure a reactive state for even infinite catalysis reaction

rate, same as we used to show the example system configuration. The most rapid reaction

rate is varied. On the other hand, in those StochSim codes, we fixed the CO2 reaction

probability by 100% and vary the other two, keep the same ratio as the reaction rates used

in the corresponding SSA codes. 256 × 256 lattice size is employed again. We will also fix

the time wall of the SSA codes by t = 10000.0 and then vary the limit of StochSim codes

according to the transforming factor. Table 4.2 shows our measured CPU costs for codes

implemented using different algorithms. Here, those systems simulated using the StochSim

algorithm turns out to be much more costing than those using our SSA, as we tentatively

predict in the previous section. The time needed here for StochSim codes is about at least

one order larger than SSA codes. Furthermore, the rescaling factor that transforms pseudo

time used in SSA to MCSs in the StochSim algorithm also shows a nice linear relation with

the reaction rate of the most rapid or the catalysis reaction, namely the one we vary here.

Two reasons give rise to this phenomenon. First of all, we only generate the scaling factor

through rough observation, slightly change them will not make much difference. For exam-

ple, if we change 30.0 to 31.0, those reaction account curves of codes implemented using two

different algorithms will still roughly overlap with each other. Secondly, if looking at our

reaction number curves carefully, we will find that the curve of the first reaction in (4.5) is

approximately equal to that of the third one in (4.5) or the catalysis reaction. This behavior

can be explained as follows: for this parameter choice, there are only quite a few CO exist

4.3. Ziff-Gulari-Barshad Model 57

on the lattice while quite large O clusters exist, which can also be seen in Figure 4.5. As long

as a CO absorbing happen, it will react with an adjacent oxygen atom soon. In other words,

a CO2 catalysis reaction will always follow an absorbing of CO. Therefore, the reactions

that actually dominate the evolution of history should be those two absorbing reactions in

(4.5). However, when we increase the reaction rate of the most rapid reaction in our SSA

codes, respectively, we need to decrease the successfully reacting probability of those two

in the StochSim algorithm case. This operation will proportionally reduce the successful

reaction account at the average level at any specific MCS. On another hand, the SSA codes

will never bear this issue. Thus, the time rescaling factor between those systems simulated

using different algorithms will be asked for a roughly linear increase as one of them decreases

inversely. The second reason here can also be used to explain why SSA here performs much

better than the StochSim algorithm. As the most rapid catalysis reaction is restricted by

the CO absorbing processes, the really dominate reactions happen in the evolutionary his-

tory are the first two in (4.5). However, limited by the fact that we can only set the most

rapid reaction with a 100% successfully reacting probability and to keep the ratio of other

probability as the corresponding SSA codes with reaction rates of different order, we have to

give a very low successfully reacting probabilities for both absorbing reactions at each single

trail. They can hardly happen then, which gives rise to the low efficiency of the StochSim

algorithm when simulate the ZGB model here. However, in the May-Leonard model case,

StochSim will not be bothered by this problem even when we increase D and ε to 20.0,

because of the decoupling of the rapid diffusion processes (exchanging or hopping) and other

two low reacting rates reactions.

58 Chapter 4. Numerical Results and Discussion

4.4 Conclusion

To this point, we summarize our results and conclusions for this model test chapter. With

the SSA for the stochastic lattice model as introduced by us in the previous chapter, we tried

to implement two different stochastic lattice models using both this one and the originally

existing StochSim algorithm. First of all, we demonstrated that our new proposed algorithm

can be used to simulate those models and provide us results similar to those obtained for

systems implemented using the StochSim algorithm, which means that our new proposed

algorithm is correct. We also characterized and compared the efficiency of the SSA and

StochSim algorithm using their CPU cost measured for simulating either the May-Leonard

model or the ZGB model. We found that, in the May-Leonard case, our simulation results did

not show the advantage of SSA. However, their time cost is still comparable. When further

increased the reaction rates of the most rapid reactions, the SSA and StochSim cost time

are approaching each other. We predict that if we can further increase this rate value, our

SSA will perform better than the StochSim. The existing transition from a reactive state

to an absorbing state when increase species’ mobility prevents us from further check this

prediction. A different wave pattern also emerged when we use the SSA, which can not be

seen in the corresponding StochSim due to this transition happen much earlier in that case.

The reason is that in a well-mixed case, the StochSim can be a first-order approximation

of the relevant SSA, which is inherited by their spatial extended case. On the other hand,

in the ZGB model case, the SSA turned out to perform much better than StochSim, as the

high efficient most rapid reaction here is restricted by the lower efficient reaction with tiny

successful reaction probability. More application and analysis of this new proposed algorithm

will be needed in the future.

Chapter 5

Conclusion and Future Work

We presented one project in this thesis studying the simulation algorithm for the stochastic

lattice model. Traditionally, the StochSim algorithm is used to simulate this particle-based

spatially inhomogeneous model, as it has an object-oriented feature. However, to investigate

these nonequilibrium systems more carefully, we want to drive our system from another ap-

proach. We tried to follow the concepts of another important stochastic simulation method,

the famous Gillespie’s stochastic simulation algorithm (SSA). We proposed a Gillespie-type

algorithm to simulate this kind of model. The resulting algorithm is supposed to provide

us with equivalent results and have at least similar or even better performance, especially

for systems with reaction rates span in different magnitudes. We generated simulation code

for two different models: the May-Leonard model, which considers a four-state cyclically

competitive game, and the Ziff-Gulari-Barshad (ZGB) model, which is used to study the

catalytic surface-reaction process of CO and O2. We compared the results obtained from

simulation programmed using different algorithms, both phenomenologically and quantita-

tively, and concluded that these two different algorithms are roughly equivalent and provide

us similar results. We also compared their performance using the CPU cost of codes im-

59

60 Chapter 5. Conclusion and Future Work

plemented using different methods. Our new proposed was less efficient than the original

algorithm for the May-Leonard model case. But they are still comparable. However, it per-

formed much better than the StochSim method when applied for the ZGB model, as long as

the infinite reaction rate assumption is abandoned. We also analyze the reason behind this

dramatically different performance fact.

The outlook of this topic lies mainly in two directions. Further modification can be made to

improve the efficiency of this algorithm. For example, maintain the two-direction mapping

structures between the particle-based space and reaction-based space is the main reason that

our new proposed algorithm is inefficient, if one or both of these mapping can be simplified,

its performance will be highly improved. The second direction is to consider the further

application of this method and/or to check current existing results or conclusions in these

stochastic lattice model studies that originally obtained using the StochSim algorithm. We

believe our new method will open another possible way for research in this regime and con-

tribute to future studies.

Bibliography

[1] A. M. Turing, Proceedings of the London mathematical society 2, 230 (1937).

[2] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Volume I (John Wiley & Sons,

1986).

[3] B. D. Ripley, Stochastic simulation, Vol. 316 (John Wiley & Sons, 1987).

[4] S. S. Sawilowsky and G. Fahoome, Statistics through Monte Carlo simulation with for-

tran (2003).

[5] C. J. Morton-Firth and D. Bray, Journal of Theoretical Biology 192, 117 (1998).

[6] H. H. McAdams and A. Arkin, Proceedings of the National Academy of Sciences 94,

814 (1997).

[7] A. Arkin, J. Ross, and H. H. McAdams, Genetics 149, 1633 (1998).

[8] N. Fedoroff and W. Fontana, Science 297, 1129 (2002).

[9] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, Science 297, 1183 (2002).

[10] D. T. Gillespie, The Journal of Chemical Physics 115, 1716 (2001).

[11] A. B. Stundzia and C. J. Lumsden, Journal of computational physics 127, 196 (1996).

61

62 BIBLIOGRAPHY

[12] D. A. McQuarrie, Journal of applied probability 4, 413 (1967).

[13] D. T. Gillespie, Journal of computational physics 22, 403 (1976).

[14] D. T. Gillespie, The journal of physical chemistry 81, 2340 (1977).

[15] D. T. Gillespie, Markov processes: an introduction for physical scientists (Elsevier,

1991).

[16] M. A. Gibson and J. Bruck, The journal of physical chemistry A 104, 1876 (2000).

[17] Y. Cao, H. Li, and L. Petzold, The journal of chemical physics 121, 4059 (2004).

[18] D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).

[19] J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F. Samatova,

Computational biology and chemistry 30, 39 (2006).

[20] D. F. Anderson, The Journal of chemical physics 127, 214107 (2007).

[21] A. Slepoy, A. P. Thompson, and S. J. Plimpton, The journal of chemical physics 128,

05B618 (2008).

[22] D. T. Gillespie, A. Hellander, and L. R. Petzold, The Journal of chemical physics 138,

05B201 1 (2013).

[23] Y. Cao, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 122, 014116

(2005).

[24] Y. Cao, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 123, 144917

(2005).

[25] H. Kuwahara and I. Mura, The Journal of chemical physics 129, 10B619 (2008).

BIBLIOGRAPHY 63

[26] D. T. Gillespie, M. Roh, and L. R. Petzold, The Journal of chemical physics 130,

174103 (2009).

[27] M. K. Roh, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 133,

174106 (2010).

[28] C. V. Rao and A. P. Arkin, The Journal of chemical physics 118, 4999 (2003).

[29] D. T. Gillespie and L. R. Petzold, The Journal of Chemical Physics 119, 8229 (2003).

[30] Y. Cao, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 124, 044109

(2006).

[31] Y. Cao, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 123, 054104

(2005).

[32] B. Bayati, P. Chatelain, and P. Koumoutsakos, Journal of Computational Physics 228,

5908 (2009).

[33] A. Auger, P. Chatelain, and P. Koumoutsakos, The Journal of chemical physics 125,

084103 (2006).

[34] E. Mjolsness, D. Orendorff, P. Chatelain, and P. Koumoutsakos, The Journal of chem-

ical physics 130, 144110 (2009).

[35] D. F. Anderson, The Journal of chemical physics 128, 054103 (2008).

[36] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, The Journal of Chemical

Physics 119, 12784 (2003).

[37] Y. Cao, L. R. Petzold, M. Rathinam, and D. T. Gillespie, The Journal of chemical

physics 121, 12169 (2004).

64 BIBLIOGRAPHY

[38] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, Multiscale Modeling &

Simulation 4, 867 (2005).

[39] Y. Cao, D. T. Gillespie, and L. R. Petzold, The Journal of chemical physics 126, 224101

(2007).

[40] C. J. Morton-Firth, T. S. Shimizu, and D. Bray, Journal of molecular biology 286,

1059 (1999).

[41] N. Le Novere and T. S. Shimizu, Bioinformatics 17, 575 (2001).

[42] D. P. Tolle and N. Le Novère, Current Bioinformatics 1, 315 (2006).

[43] A. Chatterjee and D. G. Vlachos, Journal of computer-aided materials design 14, 253

(2007).

[44] T. S. Shimizu and D. Bray, Foundations of Systems Biology , 213 (2001).

[45] M. F. Pettigrew and H. Resat, The Journal of chemical physics 123, 114707 (2005).

[46] Z. Liu and Y. Cao, IET systems biology 2, 334 (2008).

[47] C. Gardiner, K. McNeil, D. Walls, and I. Matheson, Journal of Statistical Physics 14,

307 (1976).

[48] S. A. Isaacson and C. S. Peskin, SIAM Journal on Scientific Computing 28, 47 (2006).

[49] S. Isaacson, D. McQueen, and C. S. Peskin, Proceedings of the National Academy of

Sciences (2011).

[50] S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, SIAM Journal on Scientific Com-

puting 31, 1774 (2009).

[51] D. Bernstein, Physical Review E 71, 041103 (2005).

BIBLIOGRAPHY 65

[52] J. Elf, A. Doncic, and M. Ehrenberg, in Fluctuations and noise in biological, biophysical,

and biomedical systems, Vol. 5110 (International Society for Optics and Photonics, 2003)

pp. 114–125.

[53] R. M. May and W. J. Leonard, SIAM journal on applied mathematics 29, 243 (1975).

[54] T. Reichenbach, M. Mobilia, and E. Frey, Nature 448, 1046 (2007).

[55] T. Reichenbach, M. Mobilia, and E. Frey, Journal of Theoretical Biology 254, 368

(2008).

[56] T. Reichenbach, M. Mobilia, and E. Frey, Physical review letters 99, 238105 (2007).

[57] Q. He, M. Mobilia, and U. C. Täuber, The European Physical Journal B 82, 97 (2011).

[58] S. Esmaeili, B. L. Brown, and M. Pleimling, Physical Review E 98, 062105 (2018).

[59] A. Zaikin and A. Zhabotinsky, Nature 225, 535 (1970).

[60] S. R. Serrao and U. C. Täuber, Journal of Physics A: Mathematical and Theoretical

50, 404005 (2017).

[61] H. Chaté and P. Manneville, Physica A: Statistical Mechanics and its Applications 224,

348 (1996).

[62] M. Mobilia, A. M. Rucklidge, and B. Szczesny, Games 7, 24 (2016).

[63] B. Sinervo, D. B. Miles, W. A. Frankino, M. Klukowski, and D. F. DeNardo, Hormones

and Behavior 38, 222 (2000).

[64] D. M. Wolf, V. V. Vazirani, and A. P. Arkin, Journal of theoretical biology 234, 227

(2005).

[65] C. N. Satterfield, Heterogeneous catalysis in practice (McGraw-Hill Companies, 1980).

66 BIBLIOGRAPHY

[66] R. M. Ziff, E. Gulari, and Y. Barshad, Physical Review Letters 56, 2553 (1986).

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	Introduction
	Computer Simulation
	Monte Carlo method
	Stochastic lattice model
	Structure of this thesis

	Background
	Introduction
	SSA for well-mixed system
	Tau-leaping for well-mixed system
	StochSim algorithm for well-mixed system
	SSA beyond well-mixed system

	Algorithms Description and Comparison
	Introduction
	General problem formulation
	Motivation
	Generalized StochSim algorithm for stochastic lattice model
	Mesoscopic reaction-diffusion systems simulated using SSA

	Generalized SSA algorithm for stochastic lattice model
	Algorithm prototype
	Modification version

	Complexity analysis and comparison

	Numerical Results and Discussion
	Introduction
	The May-Leonard model
	Model description
	Spatial pattern comparison
	Quantitative comparison
	Efficiency comparison

	Ziff-Gulari-Barshad Model
	Model Description
	Correctness checking
	Efficiency comparison

	Conclusion

	Conclusion and Future Work
	Bibliography

