CS6604 Digital Libraries

Toward an Intelligent Crawling Scheduler for Archiving News Websites Using Reinforcement Learning

Authors
Xinyue Wang
Naman Ahuja
Ritesh Bansal
Siddharth Dhar
Nathaniel Llorens

Instructor
Dr. Edward A. Fox

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
January 16, 2020
Team Web Archive: Xinyue Wang, Naman Ahuja, Ritesh Bansal, Siddharth Dhar, Nathaniel Llorens

https://github.com/xw0078/VT_fall19_cs6604_webarchive

This research was done under the supervision of Dr. Edward A. Fox as part of the course CS6604: Digital Libraries at Virginia Tech, Fall 2019.

2nd edition, December 30, 2019
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Research Questions</td>
<td>3</td>
</tr>
<tr>
<td>2 Literature Review</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Related Works</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Traditional Methods and Reinforcement Learning</td>
<td>6</td>
</tr>
<tr>
<td>3 Approach and Design</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Problem Formulation</td>
<td>9</td>
</tr>
<tr>
<td>3.1.1 Types of Web Page Content Change</td>
<td>9</td>
</tr>
<tr>
<td>3.1.2 Web Site Structure Change</td>
<td>9</td>
</tr>
<tr>
<td>3.1.3 Information Observability</td>
<td>10</td>
</tr>
<tr>
<td>3.2 History Records and Ground Truth</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Traditional Supervised Learning</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Reinforcement Learning</td>
<td>12</td>
</tr>
<tr>
<td>3.5 Experiment Design</td>
<td>12</td>
</tr>
<tr>
<td>4 Implementation</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Data Collection</td>
<td>14</td>
</tr>
<tr>
<td>4.1.1 Web Archive Storage Standards</td>
<td>14</td>
</tr>
<tr>
<td>4.1.2 Archive.org Collection</td>
<td>15</td>
</tr>
</tbody>
</table>
Abstract

Web crawling is one of the fundamental activities for many kinds of web technology organizations and companies such as Internet Archive and Google. While companies like Google often focus on content delivery for users, web archiving organizations such as the Internet Archive pay more attention to the accurate preservation of the web. Crawling accuracy and efficiency are major concerns in this task. An ideal crawling module should be able to keep up with the changes in the target web site with minimal crawling frequency to maximize the routine crawling efficiency. In this project, we investigate using information from web archives’ history to help the crawling process within the scope of news websites. We aim to build a smart crawling module that can predict web content change accurately both on the web page and web site structure level through modern machine learning algorithms and deep learning architectures.

At the end of the project: We have collected and processed raw web archive collections from Archive.org and through our frequent crawling jobs. We have developed methods to extract identical copies of web page content and web site structure from the web archive data. We have implemented baseline models for predicting web page content change and web site structure change with supervised machine learning algorithms. We have implemented two different reinforcement learning models for generating a web page crawling plan: a continuous prediction model and a sparse prediction model. Our results show that the reinforcement learning modal has the potential to work as an intelligent web crawling scheduler.
List of Figures

2.1 SVM’s soft margin formulation [3]. 7

3.1 Different settings of data sources and training/testing design 11

4.1 Web page viewed as a DOM tree [19]. 18
4.2 A sample DOM tree with post order numbering for DOM elements [19]. . 19
4.3 Various operations on DOM [19]. 19
4.4 Sample Sitemap in Graph Structure . 22
4.5 Sample Ancestor Matrix for a Given Tree Structure 25
4.6 A general view of our proposed reinforcement learning environment for
the web crawling task for one time step: At each time step, the agent will
learn from the historical observation and perform a predefined crawling
action. Then the sliding window will move forward and make a new
history observation that includes the previous action. 27
4.7 The general idea of the continuous prediction model: The agent learns
from the observation space and makes the binary prediction (crawl/not
crawl) for each time step. After each prediction, the agent moves forward
to the next time step until it reaches the max range, where we consider
a crawling plan has been generated. The target labels are showing the
positions of ground truth in the data sequence. The blue arrows under
the timeline are showing the time step that is marked as crawl and the
result of comparing with ground truth. 29
4.8 The general idea of the sparse prediction model: The agent learns from
the observation space and predicts with multiple positions for crawling.
The target labels are showing the positions of ground truth in the data
sequence. The blue arrows under the timeline are showing the time step
that is marked as crawl and the compared result with ground truth. . . . 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>High Level Overview of Supervised Learning architecture</td>
<td>33</td>
</tr>
<tr>
<td>5.2</td>
<td>The output of the Facebook Prophet model illustrating the number of hours elapsed since the last determined change on cnn.com based on the crawled data. It also shows predictions for the next 48 hours.</td>
<td>37</td>
</tr>
<tr>
<td>5.3</td>
<td>The output of the Facebook Prophet illustrating an instance in the future when the webpage should be crawled according to the model.</td>
<td>37</td>
</tr>
<tr>
<td>5.4</td>
<td>Daily trend of the changes recognised by Facebook Prophet</td>
<td>38</td>
</tr>
<tr>
<td>5.5</td>
<td>Sitemap: High Level Overview of Supervised Learning Architecture</td>
<td>39</td>
</tr>
<tr>
<td>5.6</td>
<td>The output of the Facebook Prophet model illustrating prediction percentage. It also shows predictions for the next 48 hours.</td>
<td>41</td>
</tr>
<tr>
<td>5.7</td>
<td>The output of the Facebook Prophet, illustrating general trend in the first case and an instance in the future when the website should be crawled according to the model, in the second case.</td>
<td>42</td>
</tr>
<tr>
<td>7.1</td>
<td>An example that shows two training processes. A higher positive reward score indicates that the model is working towards a potential solution.</td>
<td>49</td>
</tr>
</tbody>
</table>
List of Tables

4.1 A sample web archive record in Parquet. SURT means Sort-friendly URI Reordering Transform. 17

4.2 The general rewarding strategies for continuous prediction and sparse prediction models. The result type indicates the compared result between model prediction and ground truth. Negative/positive means we use a negative or positive float value as the reward. Since the sparse prediction model does not generate a “not crawl” decision, the reward is not applicable and marked as N/A. .. 28

4.3 The score implementations for the rewarding strategies. 31

5.1 Model Evaluation ... 36

5.2 Model Evaluation: Sitemap Classification 41

5.3 The results for RL modal preliminary evaluation. The max score is showing the maximum score the modal could achieve in each plan generation. The score for each model is the averaged score on the testing data set. . . 43
Chapter 1

Introduction

1.1 Overview

Web archives preserve the content of the current World Wide Web for future use. The Web is growing rapidly, but so too is information frequently disappearing from the WWW. In 1997, the founder of the Internet Archive stated that the average lifetime for a URL was 44 days [8]. In 2001, a study showed that 47% of the web pages became inaccessible within two years [1]. In 2012, another study stated that about 11 percent of resources shared online are lost, and that they continue to disappear at a rate of 0.02 percent per day [15]. We do not know how many parts of the WWW are vanishing right now, but expect the situation to be similar.

The act of preserving the WWW is crucial to record the history of human society. For this reason, a growing number of memory/heritage institutions actively engage in web archive activities, e.g., Internet Archive, Common Crawl, and Library of Congress. Though various institutions are dedicated to web archive activities, many of them are non-profit corporations. Due to limitations in resources available, it would be helpful to have ways to improve their crawling accuracy and efficiency.

The essential activity of preserving the WWW is crawling, e.g., of known web sites or web pages, as well as new ones as they appear. The existing crawling model in the web archive communities mainly adopts predefined crawling criteria for corresponding candidates, which are usually managed by human coordinators. As an example, at Virginia Tech, the University Library works with Archive-It, a web archive crawling system from the Internet Archive, for routine preservation of the Virginia Tech domain (vt.edu). The
following list gives some details about how the Virginia Tech library set up the crawling policies:

- Crawls are managed by the Digital Preservation Coordinator.
- Crawls are performed biannually and as needed.
- The scope of the crawl searches for hyperlinks four levels from the original seed.
- Requests for adding a seed to the Web Archive can be directed to the Digital Preservation Coordinator.

This typical example shows that the crawling policy is often designed with a fixed frequency and a certain level of hyperlinks to be discovered. For preservers that are familiar with their collection, these rules could potentially capture most of the changes as desired with proper resources dedicated to the purpose.

Besides user-defined special collections, the other major part of web archive activity is the general crawling over the internet, a principal activity of search engine companies like Google or Microsoft. In general, more frequent crawls will lead to better accuracy. At the same time, more frequent crawls also could waste computational resources if occurring beyond the web change frequency. Accordingly, general crawls usually adopt dynamic rules to adapt to web site behavior. Different kinds of web sites behave differently: social network web sites often change dynamically and could change every second; News websites could be updated every hour. Further, more news often leads to more web pages within the site. Information resources like wikis are continually changing based on the user behavior. These examples show that Web sites in different categories should be looked at differently when modeling their changing behavior. Through suitable modeling, the changing behavior of web sites can lead to a better crawling process that decides when the crawler should revisit the web site or page and so keeps up with all the changes.

In our project, we focus on the problem of modeling the changing behavior of news web sites such as CNN and ABC. We propose to build a model that can learn the historical information from web archives about the news web page/site change behavior, and use the model to predict future web changes as an indicator for a crawling scheduler to cover potential new information. We specifically explore reinforcement learning algorithms to solve our problem. We compare the result of our approach with existing methods.
1.2 Research Questions

This project addresses problems related to modeling news web page/site changes for crawling scheduling by answering the following research questions:

RQ1: Can we automatically and effectively identify the unique copies of a web page in a news website from its archive?

RQ2: Can we automatically and effectively identify the unique site structure of a news website from its archive?

RQ3: Can we use the archived information for future web page/site change prediction?

RQ4: Can a deep learning model through reinforcement learning techniques surpass the existing methods on predicting the future changes of a web page/site?
Chapter 2

Literature Review

2.1 Related Works

Radinsky [13] introduces a traditional machine-learning-based approach to predicting web page content change. Two types of information observability scenarios are defined in this paper for the general web page content prediction problem: fully-observed and partially-observed. This paper focuses on the fully-observed scenario, which means the past histories that will be used for future predictions are all observed, but in our project, we cover both scenarios. The author designed the approach of predicting web page content change as a classification problem where each candidate page is assessed daily to determine if it should be crawled. The primary goal of the paper is to determine the effectiveness of a list of predefined features, so the same SVM algorithm is applied for all of the experiments. Three types of features are introduced as an information source: page changing frequency (1D), various page content (2D), and related pages content (3D). The result shows that 3D features lead to the best performance on the task, and 2D is better than 1D. This paper shows that the machine-learning-based approach is promising for this problem. In our project, we propose to expand this idea to deep learning and combine it with web archive data.

In Using Visual Pages Analysis for Optimizing Web Archiving [14], Saad et al. provide a procedure for determining the interval to crawl a certain pre-specified set of web pages. Specifically, they intend to provide information to two types of crawlers: a crawler that crawls on a specified interval, and a crawler that crawls the least fresh page as determined by a scheduler. The approach uses visual analysis and machine learning to break a web
page into its component blocks, and then compares between archived versions of the web page to determine if blocks deemed important by the algorithm often change in the page. If they do, the page is prioritized for crawling, but if not the priority might be lowered on the stack. The specifics of how this is done includes processing a web page into a format similar to XML and then using XML differentiating software to find the changes and put them into a new XML file containing the deltas. The purpose of this research is to avoid crawling web pages that do not change or have unimportant changes like advertisements that refresh constantly. This paper stood out to us because it suggests a method that we could consider in our goal of finding the differences between web pages in order to predict the optimal crawler scheduling.

Gowda and Mattmann [4] consider clustering web pages based on various techniques to group the pages. They focus on clustering based on the web page structure and style for applications like categorization, cleaning, schema detection, and automatic extraction. This can be really useful for our task of differentiating web pages on the basis of HTML similarity. The structural similarity of HTML pages is measured by using the Tree Edit Distance measure on DOM trees. The stylistic similarity is measured by using Jaccard similarity on CSS class names. An aggregated similarity measure is computed by combining structural and stylistic measures. We incorporate the syntactic dissimilarity by computing the tree difference, CSS classes difference, and the aggregate difference to differentiate the web pages.

Meegahapola et al. [10] propose a methodology to detect the frequency of change in web pages to optimize server-side scheduling of change detection and notification systems. The proposed method is based on a dynamic detection process, where the crawling schedule will be adjusted accordingly in order to result in a more efficient server-based scheduler to detect changes in web pages.

Law [9] tries to build an efficient page comparison system by comparing the structural and visual features of the web pages. The structural comparison is used to find dissimilarities in case different scripts are rendering the same content or if there is a change in hyperlinks. Visual comparison can find dissimilarities if the code of the web page was unchanged but an image being loaded was updated. They propose a hybrid web page comparison framework that combines the structural and visual comparison methods. They additionally propose machine learning that sets all the similarity parameters and combination weights.

Pehlivan and Saad [12] address the problem of understanding what happened between two versions of a web page. Most of the web pages on the internet are HTML, but HTML is
considered to be semantically poor. Comparing two versions of HTML web pages based on the DOM tree does not provide relevant information that will help us to understand the changes. They propose a change detection approach that computes the semantic differences between two versions of a web page by detecting changes in the visual representation of the two versions. The visual aspect provides an insight into the semantic structure of the document. The proposed approach, Vi-DIFF, compares the two versions of a web page in three steps.

1. Segmentation: Partition the web page into visual semantic blocks.
2. Change Detection: Compare the two restructured versions of the web pages.
3. Delta File Generation: Produce a file describing the visual changes.

They also introduce a new change detection algorithm, that is used in step 2, that takes into account the structure of the web page while comparing.

Yang and Song [18] propose a new method to extract the text content from web pages to overcome the limitations of the traditional techniques. Those are successfully able to remove invisible noise like styles, comments, and scripts but they still leave behind a large portion of the visible noise that includes navigation links, sidebars, copyright statements, etc. that lead to lower accuracy of the text extraction algorithm. In their proposed approach, they remove not just the invisible noise but also the visible noise, to a large extent. This results in more pure web pages for content extraction. Then they utilize the relationships between text length, punctuation, and links to extract the web page text.

Taylor and Letham [17] address the challenges associated with producing reliable and high quality forecasts from a variety of time series data. They describe a practical approach to forecasting “at scale” that combines configurable models with analyst-in-the-loop performance analysis. They propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series.

2.2 Traditional Methods and Reinforcement Learning

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. It is a non-probabilistic binary linear classifier that analyzes data used for classification and regression analysis. SVMs can be used to solve various real-world problems. They are helpful in text and hypertext categorization, as their application can
significantly reduce the need for labelled training instances in both the standard inductive and transductive settings. Classification of images can also be performed using SVMs. Experimental results show that SVMs achieve significantly higher search accuracy than traditional query refinement schemes after just three to four rounds of relevance feedback.

![Figure 2.1: SVM's soft margin formulation](image)

The underlying motivation for using SVMs is the ability of their methodology to accurately forecast time series data when the underlying system processes are nonlinear, non-stationary, and not defined a-priori. SVMs have also been proven to outperform other non-linear techniques including neural-network based non-linear prediction techniques such as multi-layer perceptrons.

Random forests or random decision forests are an ensemble learning method for classification, regression, and other tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees’ habit of overfitting to their training set. Random forest classifiers create a set of decision trees from a randomly selected subset of the training set. It then aggregates the votes from different decision trees to decide the final class of the test object.
Facebook Prophet uses a decomposable time series model \cite{5} with three main model components: trend, seasonality, and holidays. They are combined in the following equation:

\[
y(t) = g(t) + s(t) + h(t) + \epsilon_t
\]

(2.1)

Here \(g(t)\) is the trend function which models non-periodic changes in the value of the time series, \(s(t)\) represents periodic changes (e.g., weekly and yearly seasonality), and \(h(t)\) represents the effects of holidays which occur on potentially irregular schedules over one or more days. The error term \(\epsilon_t\) represents any idiosyncratic changes which are not accommodated by the model. This specification is similar to a generalized additive model (GAM) \cite{6}, a class of regression models with potentially non-linear smoothers applied to the regressors. Here only time as a regressor is used. Modelling seasonality as an additive component is the same approach taken by exponential smoothing.

So far, we have covered several methods on how to model web site content change in a traditional supervised machine learning setting: the problem is essentially modeled as a time series prediction problem. These methods focus on the prediction of when or whether the web would change at a specific time in the future. After that, the prediction results can be used as an indicator to help the crawling scheduler to make plans and actions.

In this project, instead of traditional supervised learning, we propose to use reinforcement learning to solve the crawling prediction problem. Reinforcement learning is widely used in robotics or game AI where the model can learn to make optimal decisions to reach the goal based on given environment. Traditionally, RL model is not a good approach for time-series forecasting problems since RL model focuses on optimizing future outcomes instead of future events. Here, we want to convert the traditional time series prediction scenario to an environment that can fit RL model: Instead of predicting the future changes of web page changes as an intermediate step, we directly look at the crawling decisions as the output of the model. In this case, the RL model will learn to make crawling decisions based on the time-series web history data (environment). With this approach, we expect the RL model to handle two important parts of the problem at the same time: predicting the future behavior of web page change (the same problem as in supervised learning model) and making crawling decisions.
Chapter 3

Approach and Design

3.1 Problem Formulation

Focusing on news web sites, we investigate the possibility of estimating web page content change and web site structure change through reinforcement deep learning under a partially observed information history. We take web archive history as the source of historical data and use the information to predict future changes, which can be used by a web crawling scheduler to make better crawl plans. Under the traditional supervised learning setting, the model will try to predict the state of web content based on the archived historical information: whether a significant change will happen at a particular time. Under the reinforcement learning setting, the model itself will simulate a web crawler and try to make optimal crawling plans given the history of the web content.

3.1.1 Types of Web Page Content Change

There are different types of web page content change: the publisher changes the web page content; the web page can be changed through user interaction; and the web page changes based on the browsing user profile. In our project, we mainly focus on the type where the publisher changes the page.

3.1.2 Web Site Structure Change

We consider the web site structure in a tree representation. Each page represents one node on the tree; the home page is the root node. We consider two types of web page...
structure change: disappearing node, which means a particular page is removed from the web site; and new node, which means a new page is added to the web site.

3.1.3 Information Observability

Radinsky’s work [13] introduces two different observability scenarios for the web page histories: (1) in a fully-observed scenario, all the history of a web page that will be used as information source is available; and (2) in a partially-observed scenario, only a partial history of the web pages is available. In reality, the partially-observed scenario is a typical case. For the type of web page change that is driven by a publisher, we can determine the observability for a page or website through its crawling policy, which means if the policy maker can guarantee the accuracy of the policy based on domain knowledge.

In our project, we investigate both observability scenarios. As a fully-observed scenario has been confirmed to be valid on this task, we explore the possibility of using partially-observed histories to achieve the same goal.

3.2 History Records and Ground Truth

The main goal of the project is to discover the possibility of using historical web archive information to predict the future behavior of the web page content, including web pages and web site structures. We plan to gather the web archive collection from Archive.org as part of our historical records. We then set up a frequently enough crawling for the same set of archival records, which can be seen as the ground truth for the web content behavior over time. The historical records will be used as our training dataset for the model and the ground truth will be used to test the performance of our model.

3.3 Traditional Supervised Learning

Our goal is to predict web content change using the crawled time series data. Using this data, we will predict the future changes to web content by re-framing the problem as a classification and a regression task.

We will form a series of inputs and corresponding labels for the classification problem using SVM and Random Forest. We will also use Facebook Prophet to forecast the future value using the input time series data. Prophet is a procedure for forecasting time series
Figure 3.1: Different settings of data sources and training/testing design
data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality. It is robust to missing data and shifts in the trends, and typically handles outliers well. We will cover a detailed description of data processing needed for the tasks and their implementations in later sections.

3.4 Reinforcement Learning

The nature of our goal, predicting web content change, can be generally considered as a time series prediction problem, which is a good fit with a supervised machine learning problem. However, usually, reinforcement learning is not a good option to perform prediction tasks with time series data. So, why would we want to apply reinforcement learning to such a problem? To answer this question, we need to go back to our original motivation: create a better crawling scheduler. The prediction part is derived out of the original goal and it can be generally considered as the fundamental part, that can help to make the crawler smarter. Instead of focusing on the prediction task, reinforcement learning can directly model the crawling scheduler to achieve the original goal: we are going to train the agent to be capable of making optimal crawling plans in our defined environment. In this case, the prediction problem can be considered as a hidden task for the reinforcement learning model to be considered, and the model would use this information to make optimal decisions. We will discuss two different crawling strategies for the reinforcement learning in section 4.4.

3.5 Experiment Design

We follow the steps shown below:

1. Set up a crawler for the news website with a frequent policy which can guarantee the collection of a fully-observed history.

2. Collect the same news website data from the Internet Archive with a longer history.

3. Validate the observability of archived data.

4. Identify the unique copies of web pages for each URL in the web archive through predefined criteria.
5. Generate the unique site structure for each web site as a time series.

6. Implement baseline methods for web page content change prediction and web site structure change prediction.

7. Design a reinforcement-learning model for web page content change prediction and web site structure change prediction.

8. Compare the reinforcement-learning and baseline models.
Chapter 4

Implementation

4.1 Data Collection

For this research, our data source comes from Archive.org and our own crawling jobs. We aim to include the following major news websites in our experiment: CNN, Dailymail, NYT, FOX, and ABC. In the following parts, we will talk about the web archive data standards, tools that we used for crawling, description of our desired data, and data pre-processing.

4.1.1 Web Archive Storage Standards

WARC is the standard file format used by web archives for long-term preservation. WARC is a container format to serialize HTTP transactional metadata and payloads. The full WARC standard information can be found at: https://iipc.github.io/warc-snapshots/snapshots/warc-format/warc-1.0/. We get WARC data from multiple sources, including Archive.org and the Web2Warc crawler. As WARC is primarily designed for long-term preservation purposes rather than efficiency in computational processing, we will explain in a later section how we convert WARC to the Parquet format for our research and analysis purposes.

CDX is the common file format that is used by the web archive community as a separate index information source for WARC. A CDX file consists of individual lines of text, each of which summarizes a single web record in WARC. There are many parts of the CDX standard that include different types of information. A full CDX data specification can be found at: https://archive.org/web/researcher/cdx_legend.php. In this project, we
do not use CDX files as our information source. Instead, we integrate the same index information in the Parquet format to have an aggregated information source to perform analysis tasks.

4.1.2 Archive.org Collection

Archive.org is the website where Internet Archive hosts most of its web archive collections. In this project, we include the following collections:

2. https://archive.org/details/dailymail.co.uk

In Archive.org, each collection contains multiple items that represent multiple types of crawled data. In each item, the data is preserved in multiple WARC/CDX files and related information. Each WARC file is typically around 1 GB in size. We implement ArchiveOrgCollectionScraper, a web scraping tool to fetch all the downloadable links for WARC and CDX files in the collection. We then use the Wget tool in Linux to download all of the files. As a result, we have a collection of Archive.org CNN focus crawls from May 2019 to Oct 2019. We haven’t collected from all of the other news web archive collections due to storage space limitations. This is planned to be resolved in future research.

Note: Be aware that all the above collections are not public, but we are granted permission to access the data by the Internet Archive, our partner in the NSF-funded collaborative research project GETAR.

4.1.3 Alternative Way to Get Data from Internet Archive

Many collections on Archive.org are not public. Even without explicit permission from the Internet Archive, researchers can use ArchiveSpark to crawl the Wayback Machine to get desired data since most of the records accessible through the Wayback Machine are public. ArchiveSpark allows use of a specified URL or domain list for fetching the
records from the Wayback Machine within a defined period. An example usage can be found through ArchiveSpark’s documentation at:

https://github.com/helgeho/ArchiveSpark/blob/master/notebooks/Downloading_WARC_from_Wayback.ipynb

4.1.4 Frequent Recent Crawls

As an addition to the collection from Archive.org, we build our own frequent crawled collection as the ground truth for our study. Web2Warc is a simple crawler written in Scala which can generate WARC and CDX output. We use a modified Web2Warc version for our frequent crawl tasks in this project. For each news web site, we set up a repeating task to crawl two levels of the domain starting from the landing page. The periodicity of our crawl is 1 hour. As a result, we have collected data for all 5 news web site from November 6th to December 1st.

At the beginning, we intended to keep our crawling results consistent with the collections we get from the Internet Archive. In this case, Heritrix is the best choice. Heritrix is the Internet Archive’s open-source web crawler that is used for IA’s regular crawling task. However, we did not get Heritrix working correctly for our purposes. We think this should be further studied in the future since Heritrix has capability, with flexibility and multiple functions, to perform crawls with complex rules.

4.1.5 Convert WARC to Parquet

The existing tools for WARC manipulation are limited and not flexible. Thus, we convert WARC files to Parquet files for further experiments. Apache Parquet is a columnar storage format that is designed for efficient processing and storage. We choose Parquet for its:

1. columnar representation with intuitive index schema;
2. efficient searching and filtering process over index columns;
3. ease of manipulation with most programming languages; and
4. strong support in the Apache Spark framework for big data processing.
Table 4.1: A sample web archive record in Parquet. SURT means Sort-friendly URI Reordering Transform.

We use a modified version of the Archive Unleashed Tool Kit to convert all WARC data under an Apache Spark environment. Table 4.1 shows the schema of converted Parquet data.

4.2 Find Unique Web Page Copies in the Archive

We aim to track the changes individual web pages undergo over time. To accomplish this we will establish differences in the HTML body plaintext (i.e., the actual file that is sent to the browser), changes in CSS classes used in the plaintext, and changes in HTML tree structure. For syntactic similarity, we use the methodology proposed by [4]. Using these three metrics together, we can train a machine learning algorithm to tell us which web pages are more likely to change so that we can focus on crawling them rather than those that generally remain static. Additionally, seeing where changes most often occur can give us a visualization of which pages, and where in those pages, edits most often occur.

A change in only plaintext might tell us that the title of a segment has changed, or the content of the segment has changed, or new content has been added, for example.
change in CSS shows style changes, such as different fonts, colors, or formatting used, but may not necessarily signal a content change. Lastly, a change in HTML tree structure could be an indicator of either of the above changes. If new content is added or old content is deleted, the tree would change. Similarly, if a CSS class that is used changes, at least the tree node names would change correspondingly. The reason we choose these three metrics, rather than just one, is that a web page can change in a variety of ways. There are some web pages where the HTML body never changes, but the JavaScript or Flash script that governs the dynamic parts of it does. Or, take for example a page whose HTML body and scripts only change based on input from the backend of a website, like a realtime stock observer. Finding changes in all three of the aforementioned areas helps eliminate the possibility of us missing or overstating web page changes.

![Figure 4.1: Web page viewed as a DOM tree](image)

4.2.1 HTML Tree Similarity

The Document Object Model (DOM), illustrated in Figure 4.1 specifies a web document as a labeled ordered tree of DOM elements, and as such we can apply existing tree based algorithms. One of the interesting algorithms for this context is Tree Edit Distance which can be used to compute the structural similarity between DOM trees. Zhang and Shasha’s algorithm for labeled rooted trees is used as it is simple, yet complete. In the algorithm proposed by Zhang and Shasha:

- The elements in the DOM tree are indexed in post order as shown in Figure 4.2.

![Figure 4.2: Elements indexed in post order](image)
Dynamic programming is used to efficiently compute the edit distance starting with the root nodes of two DOM trees.

DOM trees can be manipulated by three operations: update, remove, and insert – as described respectively in Figure 4.3.

Let γ_{update}, γ_{remove}, and γ_{update} denote the costs associated with the update, remove, and update operations, respectively, and let γ_{max} be the maximum of all these three. Zhang and Shasha [19] propose that the structural similarity of two DOM trees, T_1 and T_2, is determined by:

$$similarity = 1 - \frac{\text{treedistance}(T_1, T_2)}{\gamma_{max}(|T_1| + |T_2|)} \quad (4.1)$$

4.2.2 Webpage Style Similarity

The style of the webpages present in Cascading Style Sheets is also critical information to determine the similarity of web pages. There are two ways to represent style for HTML
documents: CSS classes and inline styles. We limit the scope of determining changes on the basis of CSS classes only. Let A and B be two web pages, and S_A and S_B represent the set of CSS classes in A and B, respectively. Jaccard similarity can be used to compute stylistic differences between the two.

$$S_A = \text{classes}(A)$$
$$S_B = \text{classes}(B)$$

$$\text{style-similarity} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|} \quad (4.2)$$

4.2.3 Webpage Body Content Similarity

To determine text similarity we first extract the plaintext from a web page using Beautiful Soup. We extract the text from all tags in the HTML code except for the script, head, title, style, and meta tags. Beautiful Soup then strips the HTML tags from the content within the remaining tags and gives us all the text that is visible on the webpage.

Once we have the plaintext from the two web pages to be compared, we first filter out the stopwords from the extracted texts and then perform lexical similarity checks to calculate the similarity between the text content of the web pages. We remove the stopwords to get a better representation of the similarity, since having the stopwords in the text will lead to an unnecessarily large number of words in the intersection set of the two texts and result in a higher similarity value. We perform lexical similarity checks instead of semantic similarity because we need to check if there is any difference in the actual text content of the web pages rather than the meanings of the content, and lexical similarity analysis provides a better measure for this.

Jaccard similarity is one method to perform lexical text similarity analysis. In simple terms, Jaccard similarity is the ratio of the Intersection and the Union of the two texts.

$$\text{Jaccard Similarity} = \frac{|\text{Text}_A \cap \text{Text}_B|}{|\text{Text}_A \cup \text{Text}_B|} \quad (4.3)$$

Another similarity measure is the Cosine Similarity. It essentially measures the cosine of the angle between the vectors generated by the two texts. The vectors are generated based on the counts of the word tokens in each of the texts. Two similarly oriented vectors
will yield a cosine similarity of 1, while two vectors that are oriented at 90 degrees will yield a cosine similarity of 0.

\[
\text{Cosine Similarity} = \frac{\text{Text}_A \cdot \text{Text}_B}{||\text{Text}_A|| \cdot ||\text{Text}_B||} \tag{4.4}
\]

Edit Distance is used to get a numerical measure of the differences between two texts by counting the minimum number of operations (additions, substitutions, and deletions) that have to be performed to transform one string to another.

Sorensen-Dice similarity is another similarity measure that can be used to measure text similarity.

\[
\text{Sorensen – Dice Similarity} = \frac{2 \cdot |\text{Text}_A \cap \text{Text}_B|}{|\text{Text}_A| + |\text{Text}_B|} \tag{4.5}
\]

4.2.4 Model Web Content Change Baselines

We had to pre-process the data from the Parquet files into a suitable format that could be provided as an input to the machine learning models. The dataset we created contained the crawled payloads for a particular web page along with the timestamps of when the crawls occurred. We will discuss this process in detail in section 5.1.

For our tests, we focused specifically on modelling and predicting the change trends on the *cnn.com* homepage. This was because our model needed to predict the change trends on a specific web page at a particular time. Further, it was reasonable to assume that the homepage of the new website *cnn.com* would be the most frequently changing page. We believed that this would be the best web page to try out our approach on, and thus decided to work on just the *cnn.com* homepage.

4.3 Model Site Map Change in the Archive

Along with detecting page-level changes, we want our model to learn to identify regions within the structure of the site, which are prone to changes, and to target them first. We also want to make predictions if the crawler should crawl the whole website, signifying that there is a significant change in the site. To do that, we want to use a sitemap. A website is a combination of several web pages under a single domain, and the sitemap characterizes the site.
4.3.1 Site Map: Tree Structure

We aim to construct this framework in terms of a tree structure that will represent the site. The root will represent the homepage, and the nodes will represent the pages of that site. In essence, from the URLs we have in the archive, we will reconstruct, to the best of our ability, the tree structure of the actual web site. Unfortunately, it is possible that we will leave many pages out, since the web crawler only crawls into the web site to a certain depth, but we expect to at least map most of the higher level pages.

In order to aid the page level comparison, we are also planning to create a timeline type structure in each node. Each node will contain the page data of that node in a chronological order, i.e., the first timestamp will represent the first time that page was crawled, and the last timestamp will show the latest. This will help us to compare and visualize the sitemap in different time ranges as well as what parts of a website change the most or least frequently. Figure 4.4 shows a sample graph structure of such a sitemap.

Figure 4.4: Sample Sitemap in Graph Structure
Changes in site structure could tell us where pages are being added or deleted, for example, giving valuable information on which areas of a web site are receiving the most modification. In a news website, for instance, we would expect to find that the folders or nodes designated for editorials and articles change the most frequently, as new content is added every day, and old content is moved to an archive. It would tell us nothing about how individual pages are changing; rather, it would afford us a ‘big picture’ view of the changes the site undergoes.

4.3.2 Generating Sitemap

Assembling the sitemap will require processing archive data and parsing every URL crawled, creating a new tree for each new domain. We find and assign children to nodes based on their placement in the URL structure. For example, in a URL such as www.google.com/drive we will first create a tree for the google.com domain, assign the root node as google.com, and then create a child node of the root named drive. If next we come across www.google.com/mail, we will add another child node to the root google.com node named mail. To perform this step, working with the archive data requires some more filtering. We only need the media type data among the data crawled; we also check for status-code, it should be ‘200.’ After filtering data, we will work towards building the sitemap. A ‘URL’ consists of hostname, path, and query. To construct the sitemap, we require the use of hostname and path; the former will act as the root node, and the path will be used to build up nodes of the hostname. We will also be requiring timestamp and payload, as the node is expected to be updated with the latest payload and timestamp. Payloads, saved chronologically, will be used by page-level prediction. The timestamp and payload received from the archive data are not in the format to be handled and used by the model. It requires some filtering, to be rendered usable by the model. Payload data saved in archive data consists of the HTTP response and page HTML data. We need to extract that HTML data from the payload and save/use it at the respective node in a tree structure. This process needs to be repeated for each URL, and once done, the site map will be created. There will arise a situation where multiple crawls will bring different payloads for the same URL but at different times. In our current implementation, we are saving these payloads mapped with the timestamp. This implementation will help perform page-level change detection.

There are additional functionalities that need to be implemented to supplement the sitemap representation. The first one is a sitemap extractor, which is used to extract a sub-
sitemap, which takes time range as input and provides a sitemap for that specific time. It will be used to build a matrix of a sitemap, which will act as input to a machine learning model. Next is a compactor, which is used to compare two sitemaps and help evaluate if sitemaps were identical. The last one is a matrix generator. These features were created with the idea in mind that when a machine learning model is created, these supplemental functionalities will be used to build additional features. Some of these features we thought of were: (1) sitemap (in matrix form) and (2) site map change binary indicator from last crawled event (either one or zero). Next, the matrix conversion is described in detail.

4.3.3 Matrix Conversion

To use this feature of detecting change at the site map level in a machine learning model, we aim to convert a tree structure into a matrix form. This matrix form will preserve the parent-child relationship of the sitemap and help the model to learn the same. For this, we are currently exploring the use of the ancestor matrix. An ancestor matrix is a Boolean matrix, whose cell (i, j) is true if i is an ancestor of j in the tree. The idea is to traverse the tree in preorder fashion and keep track of ancestors in a container such as a set, a vector, or an array. Figure 4.5 represents the sample of an ancestor matrix and its corresponding tree.

Since we are dealing with time-series data, our approach is to build the sitemap for intervals and feed it to the machine learning model. The idea behind this is, as time progresses, changes in site structure will happen, and we will capture these changes in the matrix, and the machine learning model will be able to learn those changes and so learn the change pattern.

4.3.4 Predict Site Crawl - Baseline Models

As stated in previous sections, when data from the WARC file is processed to convert into the format shown in Table 4.1, we require further pre-processing to build a sitemap tree structure. It involves using Timestamp, OriginalUrl, MIME, and payload from the schema. It also should be noted that the Parquet file contains data of multiple media types and status codes. Not all of the data is required to build tree structure; we need only data which has mime type “text/html” having status code of “200.”

1Sample taken from geeksforgeeks.org
Once we have pre-processed data, we will focus on transforming this data into training data, which can be used to build a machine learning model to predict future crawls. We are focusing on two types of machine learning modes, classification and regression. Two baseline models, “SVM and Random forest,” that were discussed before, are used for classification, while Facebook Prophet is used for the regression model. Classification will be to decide on the crawl. If we have one, then crawl; zero indicates otherwise. In the case of the regression model, we are looking to predict the percentage change in

Figure 4.5: Sample Ancestor Matrix for a Given Tree Structure

```
Input: Root of below Binary Tree.

0
/   \
1    2

Output: 0 1 1
         0 0 0
         0 0 0

Input: Root of below Binary Tree.

5
/   \
/   / \   /
1   2   0 4 3

Output: 0 0 0 0 0 0
        1 0 0 0 1 0
        0 0 0 1 0 0
        0 0 0 0 0 0
        0 0 0 0 0 0
        1 1 1 1 1 0
```
nodes of a sitemap. If the expected change is above the threshold, we crawl, otherwise not.

4.3.5 Visualization

For the benefit of users and researchers alike, the changing sitemaps of websites will be visualized in a number of different ways.

One such visualization will be a graphic, showing the tree structure with a slider on the bottom that will allow users to view the tree at different points in time based on the timestamps assigned to nodes in the constructed tree, as described above. This visualization will enable users to see how a site has changed over time. New branches and nodes could even be highlighted when selecting two different time stamps to see what has changed between them.

Another visualization which is a bit more complicated than the first, but that also provides information in a more interesting way, is known as a treemap. A treemap is a collection of nested rectangles, with each rectangle representing a branch of the tree. Using this data structure, we could adjust the colors of branches to indicate how much the structure of a branch has changed, enabling users to see what areas of the sitemap change the most over time. This visualization would require a user to select an interval of time for the algorithm to compare the tree structures.

4.4 Model Web Page Content Change with Reinforcement Deep Learning

In this section, we first illustrate the RL model environment. Then, we talk about two RL agent action strategies for our crawling scheduling problem. Next, we discuss the learning policy algorithms. Our model is implemented through OpenAI’s Gym [2] and Stable Baselines [7] libraries.

4.4.1 Environment and Observation Space

Similarly to the supervised learning settings as in the baselines, in the RL environment, we take the web page archival data as a sequence of time-series data. For web page content change, each data point in the sequence can represent either a unique copy at
Figure 4.6: A general view of our proposed reinforcement learning environment for the web crawling task for one time step: At each time step, the agent will learn from the historical observation and perform a predefined crawling action. Then the sliding window will move forward and make a new history observation that includes the previous action.

a certain time or a duplicate copy of a previous unique copy. For web site structure change, each data point in the sequence represents a unique copy of the current treemap of the site or a duplicate copy of a previous unique copy. For this project, we primarily investigate the potential of the RL model to capture the changing behavior of web content over time. In this case, in the time series data sequence, we mark each earliest data point with unique information as 1, the other data points with duplicate information as 0.

From the environment, we expect the model to capture the recent changing frequency of the web page, and then generate a plan to capture the potential future changes adequately. Here, we give a length of L_h hours that the agent can observe in the history information before each action. By combining the observed history information and immediate action, we can form a sliding window that covers a continuous space within the data sequence. After each time step, the sliding window will move forward, creating a new observation space that includes the results from the previous action. Figure 4.6 shows a general view of the process.

4.4.2 Agent, Action, and Reward

Based on the given environment we defined earlier, we can further design the behavior of the RL agent within the environment and corresponding rewards. We propose two agent strategies for the crawler: continuous prediction and sparse prediction. In Figure 4.7, the
Result Type	Continuous Prediction	Sparse Prediction
Duplicate (Crawl) | Negative | Negative
Valid | Positive | Positive
Miss | Negative | Negative
Duplicate (Not Crawl) | Positive | N/A

Table 4.2: The general rewarding strategies for continuous prediction and sparse prediction models. The result type indicates the compared result between model prediction and ground truth. Negative/positive means we use a negative or positive float value as the reward. Since the sparse prediction model does not generate a “not crawl” decision, the reward is not applicable and marked as N/A.

result type indicates the compared result between model prediction and ground truth. Negative/positive means we use a negative or positive float value as the reward.

Continuous Prediction

Figure 4.7 shows the general concept of a continuous prediction agent. In this scenario, the agent will give a binary crawling prediction – crawl or not crawl – for each time step. Afterward, we give the agent feedback (reward) after MAX_STEP time steps, which is called one episode. In other words, the agent will make a plan for each time step in MAX_STEP hours. For our experiment, we set the time step interval by hour, which means the agent will make a prediction each hour. For the MAX_STEP, we use 24 hours (a day) as the rewarding cycle.

Reward: We reward the agent after each time step; then we compare the results of the model with ground truth. Table 4.2 shows the result type and the corresponding reward type.

Sparse Prediction

Figure 4.7 shows the general concept of the sparse prediction agent. In this scenario, the agent will: (1) Generate some crawling candidates N_c, and (2) for each candidate, generate a time step position as crawling candidate C_t where the C_t cannot go over the MAX_STEP. Here, each episode finishes after all C_t has been generated in N_c. In other
Figure 4.7: The general idea of the continuous prediction model: The agent learns from the observation space and makes the binary prediction (crawl/not crawl) for each time step. After each prediction, the agent moves forward to the next time step until it reaches the max range, where we consider a crawling plan has been generated. The target labels are showing the positions of ground truth in the data sequence. The blue arrows under the timeline are showing the time step that is marked as crawl and the result of comparing with ground truth.

words, each episode, the agent will make a plan by choosing a set of locations in the prediction time steps within MAX_STEP.

Reward: We reward the agent after each episode, then we compare the results of the model will with ground truth as in Table 4.2

Rewarding Strategy

Table 4.2 shows the general idea of how we give reward to the agent based on the resulting feedback. The rewarding system is an essential component in the RL model design and can affect the performance significantly. In this case, we investigate two different rewarding strategies: (1) fixed score rewarding, and (2) scaled score rewarding. Table 4.3 shows the reward settings we used for the experiments.
Figure 4.8: The general idea of the sparse prediction model: The agent learns from the observation space and predicts with multiple positions for crawling. The target labels are showing the positions of ground truth in the data sequence. The blue arrows under the timeline are showing the time step that is marked as crawl and the compared result with ground truth.

In fixed score rewarding, we give simple scores like -2 to a duplicate crawl or 15 for a valid crawl. In scaled score rewarding, we give a scaled reward for a valid crawl based on the time step distance to actual target: We use the equation $20 \times (1 - \frac{D_t}{D_{max}})$ to get the final score where D_t is the distance from crawl candidate to actual target and D_{max} is the max distance to the target.

4.4.3 Learning Policy

Learning policy is the algorithm that is used to train the reinforcement model. In our experiment, we try two different learning policies to train our model: Deep Q Network(DQN) and Proximal Policy Optimization(PPO). DQN [11] is a Q-learning based method with a deep neural network to estimate parameters in the model. This method
<table>
<thead>
<tr>
<th>Result Type</th>
<th>Fixed Score</th>
<th>Scaled Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate (Crawl)</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>Valid</td>
<td>15</td>
<td>$20 \times (1 - \frac{D_t}{D_{\text{max}}})$</td>
</tr>
<tr>
<td>Valid (Exact Match)</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td>Miss</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>Duplicate (Not Crawl)</td>
<td>2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 4.3: The score implementations for the rewarding strategies.

is widely used as one of the fundamental deep reinforcement learning algorithms. PPO2 \cite{16} is a recently developed online policy gradient based RL algorithm. We choose these two algorithms to investigate the influence of RL algorithms by comparing the traditional algorithm (DQN) and popular recent algorithm (PPO). In our implementation, we use the Stable Baselines library to apply the algorithms in our Gym environment.
Chapter 5

Evaluation

5.1 Supervised Learning Baselines

Each Machine Learning algorithm has its nuances that capture a particular perspective of the dataset and the problem statement. The quantitative validation of the results of an algorithm need to be done to know how well it performs. For the baseline models discussed earlier, we calculate the Precision, Recall, F1 score, and Accuracy to evaluate them. In the information retrieval domain, Precision defines how many of the extracted data points are correct, whereas the Recall defines what proportion of correct data points have been extracted from the corpus of all correct. The F1 score is the harmonic mean of precision and recall.

\[
\text{Precision} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Positives}} \quad (5.1)
\]

\[
\text{Recall} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \quad (5.2)
\]

\[
F1 - \text{Score} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \quad (5.3)
\]

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \quad (5.4)
\]

where, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.
The project is a step towards an intelligent crawling scheduler for archiving news websites. Both True Positives and False Positives are important to evaluate as on the one hand, we do not want to miss important updates to the web content but also do not want to unnecessarily crawl the page. Thus, both Accuracy and F1 Score as evaluation metrics make sense in our case.

5.1.1 Web Content Change

Data Pre-processing

For extracting the data from the Parquet files, we initially tried loading the Parquet files into a Pandas dataframe. But, the Pandas dataframe loaded the entire Parquet file in the memory and provided the results. This took a heavy toll on the system memory, so the process was killed after processing just 5-7 Parquet files, even on a system with 32GB RAM.

As we were focusing only on the cnn.com homepage, we tried an alternative approach using PySpark and loaded the data into a PySpark SQL dataframe. Then we queried for just the first row from all of the Parquet files, one by one. Since the crawls were scheduled for the cnn.com website for up to 2 levels, we were sure that the homepage would always be the first row in the Parquet files.

Once we had the first row from a Parquet file, we got the Payload and filename fields to create our dataset. We had to use the filename field to get the timestamp, as the timestamp
field itself was in YYYYMMDD format. We needed a granularity of up to hours, minutes, and seconds to get a better idea of the crawl schedules. The filename field contained the actual time of the crawl up to the second, and so we decided to get the actual timestamp from the filename instead. Then we sort the entries based on the timestamp so that we have the data in chronological order.

After getting the payload and timestamp information for the cnn.com homepage from all the Parquet files, we saved the data into a .pkl file that could be used as needed for training the different baseline models. In total we had 198 data points ranging from November 6 to 19, 2019. We used a split of 8:2 for training and testing for the classification task.

SVM and Random Forests

While using the baseline SVM and Random Forest models, our aim was to be able to classify whether the web page should be crawled in the next hour or not. From the stored .pkl file, we first set the first entry as the base web page. We then calculate several metrics for comparing the HTML structure and text content of the subsequent snapshots to the base web page.

We used BeautifulSoup to extract the visible text content for the web pages. But, the extracted text mainly contained the header and footer text that did not change much during the time period of the dataset. We then realized that this was because the main body of the web page was being generated by JavaScript and was not captured as part of the <body> tag in the payload. Upon examining the payload more closely, we found a JSON object with the key ArticleList that contained a list of headlines and then observed that the actual headlines displayed on the homepage were actually a subset of the headlines present in this list. So, we decided to get the ArticleList object from within the <script> tag from the payload and run our text similarity measures on this list as well.

The calculated metrics are:

- **Overall Similarity**: Overall structural and style similarity between the current version and the last archived snapshot of the web page.
- **Style Similarity**: The CSS style similarity between the current version and the last archived snapshot of the web page.
- **Structural Similarity**: The HTML tree similarity between the current version and the last archived snapshot of the web page.
• Cosine Similarity: The cosine similarity measure between the text extracted by BeautifulSoup for the current version and the last archived snapshot of the web page.

• Jaccard Similarity: The jaccard similarity measure between the text extracted by BeautifulSoup for the current version and the last archived snapshot of the web page.

• Sorensen Dice Similarity: The sorensen dice similarity measure between the text extracted by BeautifulSoup for the current version and the last archived snapshot of the web page.

• Cosine Similarity Article List: The cosine similarity measure between the ArticleList for the current version and the last archived snapshot of the web page.

• Jaccard Similarity Article List: The jaccard similarity measure between the ArticleList for the current version and the last archived snapshot of the web page.

• Sorensen Dice Similarity Article List: The sorensen dice similarity measure between the ArticleList for the current version and the last archived snapshot of the web page.

After calculating and studying these similarity values, we decided to set the thresholds for considering the web page as changed as 0.98 for the overall structural and style similarity, 1 for the cosine similarity for the text extracted by BeautifulSoup, and 0.97 for the cosine similarity of the ArticleList. If any of these values was below the respective thresholds, we set the label for that particular record as 1, signifying a significant change in the web page and set the current snapshot as the new base snapshot.

We used scikit-learn’s SVM and Random Forest classifiers to train and test our models. To train our SVM and Random Forest classifier with the time series data, we used windows of multiple hours. Within the specified window, we used the time difference from the last archived web page as the training data along with the label of the immediate next snapshot as the label for the time window. The classifiers were restricted to have just 2-dimensional data as training input, so we could not use all of the measures for each record in the windows as that made the training data 3-dimensional. So, we just kept windows of time differences from the last archived snapshot as the training data as we felt that it would best capture the time between the changes on the web page. Upon performing several experiments, we settled on a window size of 5 hours.
Table 5.1: Model Evaluation

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Machine</td>
<td>0.769</td>
<td>0.74</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.615</td>
<td>0.60</td>
<td>0.62</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Facebook Prophet

Prophet restricts the input for the model to be just timestamps and the corresponding labels. Hence we decided that having the time difference from the last archived snapshot would be a viable continuous label for the dataset, which would become 0 if the current page was considered to be changed.

The steps to create the training data for Prophet were similar to what was described in the previous section. The process to determine whether the current snapshot is different from the last archived snapshot is exactly the same. Once the similarity is determined, the timestamp and the time difference in hours is added to the training data. The time difference is set to 0 in case the web page is considered to be changed, as this value will be considered the label by Prophet, and setting all changed web pages to have label 0 distinguishes them from the unchanged web pages.

Once we have the timestamps and the time differences for all snapshots, we train the Facebook Prophet model.

Evaluations

As illustrated in Table 5.1 with an accuracy of 76.9%, the SVM model outperforms the Random Forest model with better accuracy, precision, and recall. This can be explained by the fact that the Random Forests generally don’t fit very well for increasing or decreasing trends, which are usually encountered when dealing with time-series analysis, such as seasonality. A Random Forest is made of Decision Trees (weak classifier) which are a combination of Binary Splits (decision) on training data. For any data that a Random Forest has not seen before, at best, it can predict an average of training values that it has seen before. If the test set consists of data points that are greater or less than the training data points, a Random Forest will provide us with average results as it is not able to extrapolate and understand the growing/decreasing trend in our data.

On the other hand, the ability of SVM to solve nonlinear regression estimation problems makes it successful in time series forecasting. SVM models have been known to
Figure 5.2: The output of the Facebook Prophet model illustrating the number of hours elapsed since the last determined change on cnn.com based on the crawled data. It also shows predictions for the next 48 hours.

Figure 5.3: The output of the Facebook Prophet illustrating an instance in the future when the webpage should be crawled according to the model.
handle higher dimensional data better, even with a relatively low amount of training samples. They exhibit a very good generalization ability for complex models.

Facebook Prophet has an inbuilt feature that enabled us to plot the forecasts it generated. In Figures 5.2 and 5.3, the blue line in the graph represents the predicted values while the black dots represent the data in our dataset. We also show the future predictions for the next 48 hours in the graphs. Prophet successfully captures the trend from the limited dataset and identified a pattern to generate predictions. Figure 5.4 illustrates the daily pattern of changes recognised by Facebook Prophet, with time on the X-axis and the corresponding contribution to predicted value on the Y-axis. The sum of all the values in the graph is 1. A negative contribution results in a reduction of time between the last snapshot, thus depicting a change in content. We notice that, every day between 10 AM to 4 PM, there are relatively more changes to the web content. These insights are helpful to schedule the crawling efficiently.

![Figure 5.4: Daily trend of the changes recognised by Facebook Prophet](image)

5.1.2 Sitemap Change

In this section we will evaluate the performance of the baseline models on the sitemap change prediction. We use the same concepts described above. Baseline models (SVM and Random Forest) are used for classification, and Facebook Prophet is used for regression.

Training Data

After extracting the data from the Parquet files, we tried a standard approach of using Pandas to load the data set and pre-process it by filtering it based on ‘text/Html’ media type and 200 status code. This approach works fine when you have limited data and
limited memory. In our case, the archive dataset is huge, and memory was low. We loaded the Parquet file in memory and processing took a heavy toll on the system. The process was killed after processing just 5-7 Parquet files, even on a system with 32GB RAM.

As our focus was only on the sitemap, we improvised and tried an alternative approach using PySpark. We loaded data into a PySpark SQL data frame and then collected the original URL and timestamp in one go. We repeated this step for all the Parquet files and generated the dataset in the form of a .pkl file.

We had to use the `filename` of Parquet files under process to get the timestamp, as the `timestamp` field itself was in `YYYYMMDD` format. The reason was that data crawling was hourly, and the timestamp was showing the date for the day. There was no way to distinguish the hourly dataset otherwise. Then we chronologically sorted the entries based on the timestamp.

The .pkl file that is generated is used to produce training data for baseline models. Figure 5.5 shows the pipeline used. In total we had 197 data points, each data point depicting an hourly crawl having features like number of new nodes added and percentage change in nodes. We used a split of 8:2 for training and testing.

SVM and Random Forests

Using SVM and Random Forests, we are trying to do the classification. We are predicting whether to crawl the whole website in the next hour or not. From the stored .pkl file,
we will build the site map. As we will make the sitemap, we will also save the new nodes added in each crawl as a feature. Another feature that we added is the percentage change from the last checkpoint. A checkpoint is defined as the time when the new nodes added causes the change to pass a set threshold set, e.g., 0.75. It signifies the percentage change. If 0.75 percent of nodes were added, then the whole website should be crawled. I arrived at 0.75 after looking at the general pattern of the nodes added and predicting the best percentage change that will work. To build the dataset for classification, we use a time window of 5 hours. Each hour will represent the new nodes added at the hour for the corresponding crawl. We will use the past five values to predict the current. The corresponding label will be defined as zero or one based on the percentage change since the last checkpoint. The checkpoint is represented as the point when the number of nodes added passes the threshold. We follow a cumulative type of strategy. For the current node, if new nodes added since the last checkpoint is higher than the threshold, it will become new checkpoint and labeled as one, i.e., to crawl otherwise it will be marked as zero, i.e., not to crawl and its nodes will be added to next and checked again for that node. It will help the model to learn when to crawl the website i.e., when there is a significant change in the site structure. Please see Figure 5.5. The generating training data for classification step is showing the same thing, and the picture shows the final matrix created.

Facebook Prophet

As discussed in previous sections, the Prophet restricts the input for the model to just timestamps and the corresponding label. In our case, we tried to predict the percentage change. An hourly crawl timestamp will represent the Prophet’s timestamp requirement. The corresponding label is the percentage change in nodes since the last checkpoint. Once we have the dataset created, we train the Facebook Prophet model.

Evaluations

Table 5.2 shows the evaluation results for the predictions by SVM and Random Forest. Among baseline models, SVM showed an accuracy of 71%. It does perform better as compared to the Random Forest model, with better accuracy and recall, but lower precision. A possible reason is that Random Forests generally don’t fit very well for increasing or decreasing trends, especially when dealing with time-series analysis. In contrast, the
<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Machine</td>
<td>0.71</td>
<td>0.53</td>
<td>0.71</td>
<td>0.61</td>
</tr>
<tr>
<td>Random Forest</td>
<td>0.615</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table 5.2: Model Evaluation: Sitemap Classification

ability of SVM to solve nonlinear regression estimation problems makes it successful in time series forecasting.

Facebook Prophet has an inbuilt feature that enabled us to plot the forecasts it generated. Figures 5.6 and 5.7 are the plots generated. In Figure 5.6, the blue line in the graph outlines the predicted values, while the black dots are the data in our dataset. It also shows the future predictions for the next 48 hours in the graphs. In Figure 5.7, Prophet shows the captured trend and identified the patterns from the dataset.

![Figure 5.6: The output of the Facebook Prophet model illustrating prediction percentage. It also shows predictions for the next 48 hours.](image)

We notice that every day between 4 AM to 12 noon and 4 PM to 8 PM, there are relatively more changes to the site content. Crawling should be scheduled during these times.
Figure 5.7: The output of the Facebook Prophet, illustrating general trend in the first case and an instance in the future when the website should be crawled according to the model, in the second case.

5.2 Reinforcement Learning

In this section, we evaluate the performance of our proposed RL model on web page content prediction. In this preliminary evaluation, we aim to find evidence that our proposed RL model can work as a potential solution to our crawling scheduler problem. In this evaluation, we use the model to generate crawling plans for CNN’s main page. We compared the performance of our proposed continuous prediction approach and sparse prediction approach, the performance influence of fixed reward and scaled reward, and the training policy performance between DQN and PPO. We look at the quality of our proposed methods in different settings through our predefined rewarding system.

Evaluation Data: We use the same CNN main page data as in the web page content prediction baseline models.

Model Details: We use a seven day period as the history observation. For the RL model parameters, we use a multi-layer perceptron network for both the DQN and PPO2 algorithms. We set the training step as 100000 steps. The data is divided into a training set and a test set in an 8:2 ratio.
Table 5.3 shows the result of our evaluation. Considering the training policies, we can see that DQN is not generating good results for our problem, as all the scores are negative. PPO2, on the other hand, is producing acceptable results with positive values, which means the future web page changes are successfully captured with a crawling plan. The max score indicates a perfect one-shot prediction. The positive averaged score of the model indicates that the model still loses many points from wrong decisions in the generated plan.

At the current stage, it is hard to distinguish the performance between continuous prediction and sparse prediction as both of them are getting an averaged score that is approximately half of the max score. We think we could design a unified rewarding system for both cases to compare the performance in the future. As to the reward strategies, we can see that the scaled score is producing slightly higher scores than the fixed score. Still, we can not yet conclude that the scaled score is a better choice than the fixed one. The results of the scaled score might indicate that the model might tend to get higher scores compared with our given fixed score value. The quality of the model will need to be evaluated by comparing the generated crawling plan results, where we need to define a metric to evaluate both the accuracy and redundancy. Overall, the results are showing that our proposed model can generate a feasible plan on average for our crawling scheduling problem.

<table>
<thead>
<tr>
<th></th>
<th>Max Fixed Score</th>
<th>DQN</th>
<th>PPO2</th>
<th>Max Scaled Score</th>
<th>DQN</th>
<th>PPO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>continuous prediction</td>
<td>50</td>
<td>-28.5</td>
<td>27.6</td>
<td>50</td>
<td>-26.8</td>
<td>30.8</td>
</tr>
<tr>
<td>sparse prediction</td>
<td>20</td>
<td>N/A</td>
<td>9.7</td>
<td>20</td>
<td>N/A</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Table 5.3: The results for RL modal preliminary evaluation. The max score is showing the maximum score the modal could achieve in each plan generation. The score for each model is the averaged score on the testing data set.

5.2.1 Future Work

The current evaluation of our work only shows the preliminary results that our proposed RL models have the potential to solve our crawling scheduler problem. There remain questions to be answered: (1) How good are the results from the RL model compared with predefined crawling policies, e.g., a simple frequency-based policy; and (2) how good are the results from RL model compared with the crawling strategies built upon the
supervised machine learning models as in baselines. For future work, we need to build a unified standard to compare the performance of these different methods so that the performance of different models can be evaluated quantitatively. We also need a unified rewarding architecture where we can measure the different RL action models. On top of the prediction models we have covered in baselines, we need to build a corresponding crawling plan generation system that can produce the scheduler results.

5.3 Conclusion

In this chapter, we have implemented several traditional supervised machine learning models on the problem of predicting web content changes. We have also explored reinforcement learning models that can generate web crawling plans. The preliminary result shows that the RL model has the potential to work as an intelligent web crawling scheduler. We will cover the future works in Chapter 7 regarding further plans for this research.
Chapter 6

Future Work

6.1 Evaluation

We have mentioned the inadequacies of our model evaluation. In future work, we will need to implement an evaluation method that can evaluate different methods for the crawling scheduler problem fairly. Currently, we propose to use the generated crawling plans as the final results for comparison. We will need to define a set of metrics for evaluating the crawling plan results: the freshness of the capture, accuracy of the model, and resource consumption.

6.2 Further Baseline Model Design

The current baselines we have included in the project can only make predictions for web content changes. In the future, we need to design the model to generate the actual crawling plans. What is more, we have only covered the simple models in our literature review. We should implement or reproduce some more recent works such as [10, 13].

6.3 Further RL Model Design

For further RL model design, we will work on the following improvements:

- Tune the model for optimal performance regarding the web page crawling scheduling problem in this project
• Apply the model for web site structure change to see if transfer learning is possible

• Design an RL model that can combine the web page crawling plan and web site crawling plan

• Explore more features that might benefit the model on top of the web content changing frequencies
Chapter 7

Lessons Learned

7.1 Data Pre-processing

While developing the project we faced some challenges due to the size of the data and complexity of the tasks involved.

For the supervised learning task to predict web page changes, we used 14 days of data corresponding to cnn.com. Although we would get some trends from this limited data, a larger time series dataset spanning multiple web pages is needed to properly evaluate the model and recognize the trends. But in the case of sitemap change, we require all the original webpages crawled during these 14 days since the idea is to catch the trend of the sitemap change during these hourly crawls.

We initially tried loading the Parquet files into a Pandas dataframe before extracting the information from them. Each Parquet file had roughly 4000 payloads. When trying to load each one sequentially using Pandas, the system continuously ran out of memory. We fixed this by using the PySpark SQL dataframe instead, that just loaded the dataframe schema in memory and collected the results in memory based on the queries made. This was much more memory efficient as it did not load each Parquet file in memory completely. In case of sitemap predictions, saving the payload while building the sitemap was appearing to be an onerous task considering the payloads required a lot of space in memory. We decided to build a sitemap without saving the payload since it is not a feature in sitemap prediction, thereby decreasing the complexity of building sitemap and its features for prediction.
The timestamps in the Parquet files were in the YYYYMMDD format, but to properly capture the trends in the data we required timestamps up to the second. We extracted the timestamp values for each snapshot based on values from multiple columns in the Parquet files. Ideally, there should be a standardized format for storing the timestamp values in the Parquet files such that all the necessary information pertaining to the timestamp is available in a single column.

7.2 Constructing Baselines

To generate the dataset for the supervised learning task for predicting web page changes, we used thresholds based on cosine and overall HTML structure similarities. The values of these thresholds were decided by us based on web page differences exhibited on the cnn.com dataset. Ideally, we should conduct human evaluations to prepare ground truth data and evaluate the threshold values from this data.

The web page payload comprises of only the static skeleton of the homepage. The articles on the page are loaded dynamically using JavaScript. To properly label the dataset, we extracted this list of articles from the <script> tag and used it in our feature modelling. Although this is useful to model the data on cnn.com, this is not a generalised technique to extract web page content on the internet.

7.3 RL model design

When designing the RL model, all the essential elements – environment, agent, action, and reward – could make vast differences with small changes. We should organize the code to be prepared for various changes and version tracks. The code should also be written in a good object-oriented manner. In this way, the model logic will be clearer to understand and easier to modify. In our current stage, there remain many parts in the model that need to be tested and validated carefully.

Training a deep RL model can take a very long time, depending on the training steps. It is useful to use tools such as the Tensor Board to track the training execution. In many cases, we would get an intuition about the training result from the early stages of training. Figure 7.1 shows an example of two training processes when we design our model. The red line is not working well with the training steps, and we should not waste more time...
on this training. By tracking the training process, we can reduce the time for testing the model.

Figure 7.1: An example that shows two training processes. A higher positive reward score indicates that the model is working towards a potential solution.

Considering the evaluation of our RL model, at the current stage, we only look at the rewarding score designed by our logic. This evaluation is not sufficient to evaluate the actual performance of the model for our task. In a typical RL application, an agent usually reaches a deterministic state for each training loop: wins, or loses a game, for example. Thus the final results of the RL model can be evaluated easily. In our task, the state of “winning” is more complicated, compared with the simple gaming environment. In this case, more consideration should be taken into account for evaluating the RL model.
Chapter 8

Acknowledgements

This project was completed during the course of CS6604 Digital Libraries, at Virginia Tech. Part of the web archive data was provided by the Internet Archive. Support for web archiving work at Virginia Tech and Internet Archives was provided by NSF grants IIS-1619028 and 1619371.

The authors would like to thank Dr. Edward A. Fox and our classmates for providing insight and expertise that greatly helped us accomplish this research project.

We thank Internet Archive and Mark Graham for providing the web archive data, insights, and help for the project.

Last but not least, we are immensely grateful to the creators of all the open source software we used to create this project. Thank you very much!
Chapter 9

User Manual

9.1 ArchiveOrgCollectionScraper

Gitlab repo: https://git.cs.vt.edu/xw0078/archiveorgcollectionscraper

ArchiveOrgCollectionScraper is a web scraper that can fetch all the downloadable links of collection data from the collection page. An example of usage can be found in the “GetArchiveOrgDownloadLinks.ipynb” Jupyter Notebook. The code takes the URL of the target collection. Then it will generate a text file that contains all the downloadable links to WARC and CDX files in the collection. The collection can be downloaded through Wget:

```
wget -i urls.txt
```

Note: You need to have proper user authentication to get access to non-public collections.

9.2 Zeppelin

Official website: https://zeppelin.apache.org/

Zeppelin is a notebook environment (similar to Jupyter Notebook) that supports multiple languages and frameworks. In this project, we primarily take advantage of the Spark integration and Scala programming language. We use Zeppelin to work with the Web2Warc library and Archive Unleashed Toolkit.
9.3 Web2Warc

Github repo: https://github.com/helgeho/Web2Warc

Web2Warc is a simple and easy crawler that can produce WARC/CDX output. We modified Web2Warc to collect data that are compatible with AUT. We run Web2Warc under the Zeppelin environment. Please check the example code under ExampleNotebooks in our project repo: https://git.cs.vt.edu/xw0078/cs-6604-webarchive

9.4 Archive Unleashed Toolkit (AUT)

Github repo: https://github.com/archivesunleashed/aut/

AUT is a web archive big data processing tool under the Spark environment. We modified AUT to support extracting more index information as we need it. We run AUT data conversion under the Zeppelin environment. Please check the example code under ExampleNotebooks in our project repo: https://git.cs.vt.edu/xw0078/cs-6604-webarchive

9.5 Heritrix

Github repo: https://github.com/internetarchive/heritrix3

Heritrix is an open source web crawler that is designed by the Internet Archive. A core concept about Heritrix is that it is designed to work with the "robots.txt" exclusion directives and META robots tags. In other words, the crawling jobs fully respect the rules that are defined by the web sites creator.

9.6 HTML-Similarity

Github repo: https://github.com/matiskay/html-similarity

This package provides a set of functions to measure the similarity between web pages. All the similarity metrics take values between 0 and 1.
We use the package to compute the style-similarity, structural-similarity, and the joint similarity, to compare the webpages.

9.7 TextDistance

Github repo: https://github.com/life4/textdistance

TextDistance is a Python library that compares two or more text sequences based on more than 30 comparison techniques. We use this library to compare the plaintext extracted from the two web pages to be compared and then perform comparisons based on Jaccard Similarity, Cosine Similarity, Edit Distance, and Sorensen-Dice Similarity.

9.8 BeautifulSoup

Github repo: https://github.com/waylan/beautifulsoup

BeautifulSoup is a Python library that extracts data out of HTML and XML files and provides methods to navigate, search, and modify the parse tree.

9.9 PySpark

Package Docs: https://spark.apache.org/docs/2.2.0/api/python/pyspark.html

PySpark is the Python API for Spark that lets us harness the simplicity of Python and the power of Apache Spark in order to tame Big Data. To work with the massive data, we configured the session with following settings:

```python
SparkSession.builder
    .master("local[*]")
    .config("spark.executor.memory", "70g")
    .config("spark.driver.memory", "50g")
    .config("spark.memory.offHeap.enabled", "true")
    .config("spark.memory.offHeap.size", "14g")
    .appName("sampleCodeForReference")
```
9.10 Prophet

Official Documentation: https://facebook.github.io/prophet/

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. It is open source software released by Facebook’s Core Data Science team. It is available for download on CRAN and PyPI.

9.11 scikit-learn

scikit-learn provides simple and efficient tools for predictive data analysis. The open source library is built on NumPy, SciPy, and matplotlib.

9.12 OpenAI Gym

Official Documentation: https://gym.openai.com/docs/

Gym is a toolkit for developing reinforcement learning problems. Gym is compatible with TensorFlow or Theano for deep reinforcement learning architecture. Gym also provides the environment super class where you can design your problem and your own model, which can be later trained with different reinforcement learning algorithms.

9.13 Stable Baselines

Stable Baselines is a set of reinforcement learning algorithms based on OpenAI’s Baselines. Through Stable Baselines, you can easily apply the stable training policy algorithms to the OpenAI’s Gym environment.
Chapter 10

Developer’s Manual

10.1 Project Architecture and Inventory

Our source code is hosted in a GitHub repository at https://git.cs.vt.edu/xw0078/cs-6604-webarchive.

10.2 File Inventory

1. dataExtract.ipynb is the container notebook for the script to extract the payload and timestamp data for the cnn.com homepage from the Parquet files. The root directory and the URL for which the data is to be extracted are given as input. The script outputs the timestamp and payload information for the corresponding URL from all Parquet files found in the root directory by recursively traversing all folders. The result is then stored into a .pkl file archiveData.pkl.

2. classifyArchives.ipynb is the container notebook for training the supervised learning models and making predictions. The archiveData.pkl file generated by the previous script is provided as input and the results are the predictions made by the different supervised learning models along with the evaluations of the predictions.

3. ParquetFileProcessor.ipynb is a container notebook for the script to extract the timestamp and URL data for hourly crawls from the Parquet files.

4. Trie.py is a site map creating package.
5. ResponseParser.py is a utility file created to parse the payload saved in Parquet files. It extracts HTML data from the HTTP response saved in the payload.

6. NewCNN_1hour2levelUpdated.py is a main package created which calls Trie.py and ResponseParser.py to build the sitemap, and contains functionalities implemented as explained in the previous section related to the sitemap.

7. CNN_1hour2levelMainNew.py is the main file explaining the use of packages, and generates the evaluation result.

10.3 Method Descriptions

1. tag_visible method returns all the HTML tags that contribute towards visible text content on the web page. The method takes a BeautifulSoup object element for a web page as input and returns True or False based on whether that particular DOM element contributes to the visible content on the web page or not.

2. extract_script method returns whether the BeautifulSoup object element for a web page is the script element or not. The method takes a BeautifulSoup object element for a web page as input and returns True or False based on whether that particular DOM element is the script element or not.

3. script_from_html method extracts the entire content within the <script> tag for an HTML page. The method takes an HTML page as input and returns the entire content inside the <script> tag as a single string.

4. text_from_html method extracts the visible text content on a web page. The method takes an HTML page as input and returns the complete visible text on the web page as a single string.

5. filter_text method filters the input text by removing all the stopwords, punctuation, and white spaces more than one space from it. The method takes a string as input and returns the filtered text as its output.

6. extract_articles method extracts the articleList object from within the <script> tag of an HTML page. The method takes the content within the <script> tag as a string as input and returns the contents of the articleList object as a string.
7. classifyProphet method uses the Facebook Prophet tool to model the time-series data from the dataset and make predictions for the crawling schedule for a specified number of hours in the future. The method takes the data from the archiveData.pkl file as input, transforms the data into a suitable training data vs. label format for Prophet, and then returns the predictions as output.

8. classifyWindowSVM_RF method uses scikit-learn’s SVM and Random Forest algorithms to model the time-series data from the dataset using a sliding window of a specified size and make predictions for the crawling schedule for a specified number of hours in the future. The method takes the data from the archiveData.pkl file as input, transforms the data into suitable training data vs. label format for the algorithms, splits the data into training and testing data, and then returns the predictions and their evaluations as output.

9. buildDataDayWise method takes foldername as input and builds the dataset from the Parquet files. This method was designed to experiment with Parquet files and build some test data. To build a dataset from a whole dataset of Parquet file, use ParquetfileProcessor.ipynb. It generates ‘cnnNodeData.pkl’ which will be processed to generate a sitemap.

10. cleanDataSet method is used to clean and convert cnnNodeData.pkl and make it usable to build a sitemap.

11. makingSitemapTree method is used to build the sitemap from the dataset obtained from ‘cnnNodeData.pkl’. It is also used to build the training dataset used for the classification and regression models. It returns ‘changeNodesMatrix’ containing training data.

12. results method returns the evaluation done by training and predicting using SVM and Random Forest models.
Bibliography

Appendix A

Project Plan and Calendar

<table>
<thead>
<tr>
<th>Calendar and Events</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>Tue</td>
</tr>
<tr>
<td>1</td>
<td>27-Aug</td>
</tr>
<tr>
<td></td>
<td>29-Aug</td>
</tr>
<tr>
<td>2</td>
<td>3-Sep</td>
</tr>
<tr>
<td></td>
<td>5-Sep</td>
</tr>
<tr>
<td>3</td>
<td>10-Sep</td>
</tr>
<tr>
<td></td>
<td>12-Sep</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17-Sep</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-Sep</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24-Sep</td>
</tr>
<tr>
<td></td>
<td>26-Sep</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>1-Oct</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Oct</td>
</tr>
<tr>
<td>7</td>
<td>8-Oct</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-Oct</td>
</tr>
<tr>
<td>8</td>
<td>15-Oct</td>
</tr>
<tr>
<td></td>
<td>17-Oct</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>22-Oct</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>29-Oct</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5-Nov</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-Nov</td>
</tr>
<tr>
<td>12</td>
<td>12-Nov</td>
</tr>
<tr>
<td>13</td>
<td>19-Nov</td>
</tr>
<tr>
<td></td>
<td>21-Nov</td>
</tr>
<tr>
<td>14</td>
<td>3-Dec</td>
</tr>
<tr>
<td></td>
<td>5-Dec</td>
</tr>
<tr>
<td>15</td>
<td>10-Dec</td>
</tr>
<tr>
<td></td>
<td>12-Dec</td>
</tr>
</tbody>
</table>