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Abstract

The class “CS 5604: Information Storage and Retrieval” in the fall of 2019 is

divided into six teams to enhance the usability of the corpus of electronic theses

and dissertations maintained by Virginia Tech University Libraries. The ETD cor-

pus consists of 14,055 doctoral dissertations and 19,246 masters theses from Vir-

ginia Tech University Libraries’ VTechWorks system. Our study explored document

collection and processing, application of Elasticsearch to the collection to facilitate

searching, testing a custom front-end, Kibana, integration, implementation, text an-

alytics, and machine learning. The result of our work would help future researchers

study the natural language processed data using deep learning technologies, address

the challenges of extracting information from ETDs, etc.

The Collection Management of Electronic Theses and Dissertations (CME) team

was responsible for processing all PDF �les from the ETD corpus and extracting

the well-formatted text �les from them. We also used advanced deep learning and

other tools like GROBID to process metadata, obtain text documents, and generate

chapter-wise data. In this project, the CME team completed the following steps:

comparing di�erent parsers; doing document segmentation; preprocessing the data;

and specifying, extracting, and preparing metadata and auxiliary information for

indexing. We �nally developed a system that automates all the above-mentioned

tasks. The system also validates the output metadata, thereby ensuring the correct-

ness of the data that �ows through the entire system developed by the class. This

system, in turn, helps to ingest new documents into Elasticsearch.
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Chapter 1

Introduction

1.1 Overview

As a leading global research university, on January 1, 1997, Virginia Tech was the �rst

university which required graduate students to submit electronic theses and dissertations

(ETDs) [21]. As of 2019, the local ETD dataset covers over 33,000 doctoral dissertations

or masters theses.

ETDs are valuable information sources, but due to the lack of discoverability, they are

still underutilized. Hence, retrieving ETDs is important for researchers and universities.

Retrieving speci�c information from academic materials has many important applica-

tions, such as citation analysis [10]. It could aid those working to prepare award-winning

theses [9]. One of the most important problems in ETD information retrieval is how to

extract text and metadata properly from PDF �les. In this report, we will address that

problem, and also tackle problems related to the identi�cation and extraction of sections

and chapters. We hope our work would help future researchers to be able to discover and

reuse the potential useful resources from the ETDs.

The position of our team in the whole system is shown in Fig. 1.1. Many di�erent PDF

parsers [3, 5, 17] are implemented to convert PDF �les to a structured format, e.g., XML

or JSON. To extract metadata or elements – like a�liation, tables, and images – from

ETDs successfully, we also propose a new approach to avoid errors during conversion.

Moreover, the issue of automatic segmentation to identify sections and chapters is also

addressed in this project.

1



Figure 1.1: Position in entire system

1.2 VTechWorks ETD Dataset

The ETD corpus is downloaded from the Virginia Tech institutional repository, VTech-

Works, and consists of over 33,000 documents: 14,055 doctoral dissertations, 19,246 mas-

ters theses, and some award-wining and undergraduate theses. The repository is main-

tained by the university library, and includes ETDs about all disciplines from all depart-

ments of Virginia Tech. For each ETD, there is one PDF document which is generally the

main part, a metadata record, and some supporting documents. For older ETDs, the PDF

2



�les resulted from scanned paper documents. In such cases, full-text �les were extracted

using optical character recognition.

1.3 Problem De�nition

This project works on managing ETDs by answering the following research questions.

RQ1: Can we extract metadata from an ETD document, and transform it into a format
that can be ingested into Elasticsearch?
Elasticsearch is a search server based on the Lucene library. Lucene is a open-source

search engine software library. Elasticsearch provides a distributed, multi-tenant-

capable full-text search engine with a RESTful web interface and schema-free JSON

documents [7]. Enhancing our output to generate according to a suitable format that

can be ingested by Elasticsearch should extend the applicability of our work.

RQ2: Can we extract text �les from PDF �les and have content suitable for subsequent
indexing and searching?
A suitable structure, properly populated with text that is used in the subsequent indexing,

would help future researchers to discover and retrieve the speci�c information they need.

RQ3: Can we expand the extracted data by including a �le for each chapter?
Sometimes the researchers might be just interested in some speci�c sections. This action

might be helpful to increase search speci�city and save time for users.

RQ4: Can we develop an automated system that can extract the metadata from new
documents, process it, and ingest it to Elasticsearch?
New ETDs need to be added to our system as and when they are added to VTechWorks.

So, in order to make our system more robust and up to date, an automated system to

process and add the new ETDs to our system is necessary.
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Chapter 2

Literature Review

2.1 PDF Processing

2.1.1 Overview

All of our electronic theses and dissertations are available as PDF �les. It is di�cult to

extract the key data from such a �le. Additionally, the formatting of di�erent sections, as

well as of the bibliography, changes from document to document. Thus, parsing a PDF

�le becomes a big challenge.

Preprocessing and extraction of metadata from the ETDs are important steps in re-

lated works that have been carried out in this domain. The rest of this chapter includes

descriptions of some of the work done by researchers related to the extraction of meta-

data, text parsing, and providing support for big data text summarization. We include

descriptions of popular tools and parsers, and highlight the comparison between them

on di�erent parameters, as discussed in various works.

2.1.2 Evaluation of Open-Source Bibliographic Reference and Ci-
tation Parsers

The growth in the volume of available scienti�c literature has resulted in a scienti�c

information overload problem, which refers to the end user being overwhelmed by the

abundance of information. To leverage the information available in that literature, there

is a need for intelligent information retrieval systems to provide desired information in

an organised manner.
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One such type of information is machine-readable rich bibliographic metadata. As

a consequence, there is demand for tools which can parse scienti�c documents and ex-

tract the bibliographic content. Researchers have devised interesting solutions. Regular

expressions, template matching, knowledge bases, and supervised machine learning all

relate to solutions proposed. Software tools have been proposed, such as Biblio (regular

expression based), Bibpro (template matching based), Citation Parser (knowledge based

or rule based), and GROBID (ML or machine learning based) [20]. The quality, measured

using precision, of machine learning (ML) based tools, is similar to that of tools employ-

ing rules, regular expressions, or template matching (0.77 for ML-based tools vs. 0.76

for non-ML-based tools). However, ML based tools are popular and are often preferred

because of also achieving higher recall (0.66 vs. 0.22) [20]. Only a few tools like GROBID

(F1=0.89), Cermine (F1=0.83), and ParsCit (F1=0.75) have performed reasonably well. Re-

training with task-speci�c data de�nitely increases the performance of almost all of the

tools. Thus, the F1 measure of GROBID increased by 3% (0.89 to 0.92), Cermine achieved

F1 increases of 11% (0.83 to 0.92), and ParsCit had an increase of F1 by 16% (0.75 to 0.87)

[20].

2.1.3 Big Data Text Summarization

For summarizing Electronic Theses and Dissertations (ETDs), three Fall 2018 student

teams in Virginia Tech CS4984/5984 (Big Data Text Summarization) [14, 6, 8] used

Science Parse and GROBID to extract information from PDFs. Both GROBID and

Science Parse have their respective pros and cons. Table 2.1 summarises how GROBID

outperforms Science Parse in many situations [21].

2.1.4 GROBID

GROBID (GeneRation Of BIbliographic Data) is a parser which is used to extract meta-

data from a PDF document into XML format. GROBID takes the PDF of each scholarly

document as input and makes use of machine learning models (cascading of linear-chain

CRF) for extracting the metadata from the document in XML format. It uses the lexical

(POS), layout (font, font size), and position information (start/end) of a line in a document

in order to train the models and obtain the metadata in the required format. It does not

5



Table 2.1: Human assessment of GROBID and Science Parse outputs

GROBID Science Parse

Output File

Format

XML JSON

Table of

Contents

Adds table of contents and list

of �gures at the end.

Maintains order of table of

contents and list of �gures.

Abstract

Occasionally misses the

abstract.

Often detects the abstract

correctly.

Chapters

Occasionally skips chapters

especially in case of ETDs of

disciplines such as

Architecture where there are a

large number of images

present along with the text.

Often skips chapters and

merges some chapters together.

Figures

Adds a <ref type="figure">

tag to indicate the existence of

a �gure.

Does not indicate the existence

of a �gure; often appends the

�gure title as part of the text.

Tables

Adds a <ref type="table">

tag to indicate the existence of

a table.

Does not indicate the existence

of a table.

References

Parses the reference string into

author - first and last

name, publication,

volume, issue, published.

Parses the reference string into

title, author, venue,

year. Does not further split

these values. Skips some

references while extracting.
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provide an explicit <chapter> tag. Therefore, chapter-level text and metadata extraction

from the ETD documents is a challenging task using GROBID [3] [13].

2.1.5 Science Parse

Science Parse parses the scienti�c documents from PDF into structured JSON format. It is

a combination of Java and Scala and can be used as a library in any JVM-based language.

Science Parse can be used in three di�erent ways:

• Server: It functions as a wrapper and makes Science Parse available as a web ser-

vice. It uses heap memory (about 2GB).

• CLI: Science Parse has a command line interface known as RunSP. It uses heap

memory (about 6GB). RunSP can also be used to parse multiple �les at a time.

• Core: It provides �exibility in Science Parse but is also quite complex to use as a

library. Four model �les – general CRF model for extracting title and authors; and

a CRF model for each of bibliographies, gazetteer, and word vectors – are available

in this service.

Science Parse is di�cult to set up and sometimes skips or merges some of the content

[19][5].

2.1.6 Apache Tika

Apache Tika is a �le extraction framework which is written in Java. The big advantage

of Tika is that “it can extract over thousands of di�erent types of �les to metadata and

text” [2]. In addition, another powerful capability that Tika has is that this library can

extract the image metadata from Portable Document Format (PDF) �les. However, it is

hard to get the image itself compared to getting the metadata of this image. At the same

time, since Apache Tika is written in Java, it is complicated to set it up if users are using

other programming languages. Another disadvantage is that Tika can only extract PDF

to text, which means chapter-wise extraction is di�cult.

2.1.7 PDFMiner

PDF Miner.six (or PDFMiner) is a Python-compatible parser that can convert PDF �les

into text, HTML, or XML. The architecture of PDFMiner is shown as Figure 2.1. As a

7



rule-based parser, PDFMiner runs e�ciently. Tested with an ETD document, PDFMiner

converts PDF to text or other formats using around 18s. Moreover, it supports various

font types and CJK language extraction [17]. Practically, it can extract speci�c pages and

tables (output without structure) from a PDF �le. However, because PDFMiner is used

to extract text data, the ability to process images and tables in PDF �les is still unstable

according to its document.

Figure 2.1: The architecture of PDF Miner

2.1.8 PyPDF2

PyPDF2 is a Python based tool for extraction of metadata and text from a PDF �le. It also

allows splitting, merging, and extraction of data from the �le. Predominantly it is used

for the extraction of text from a PDF �le. It works on StringIO objects as opposed to �le

streams and so allows for PDF manipulation in memory [4].
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Chapter 3

Requirements

In this project, the CME team is responsible for extracting metadata and text from the

ETD documents. By the end of this project, we intend to �nish the jobs listed below.

• Convert ETD documents from PDF to text format to enable full text search.

• Extract metadata for each ETD document.

• Extract chapter-level text from ETDs.

• Preprocess the ETD corpus, i.e., tokenize, lemmatize, and remove stopwords.

• Develop a pipeline to enable ingestion of new ETDs into Elasticsearch.

3.1 Extract Metadata and Text for ETD Corpus

Metadata containing �elds like names of author, date of publication, author email,

contributor department, etc. has been extracted and put into ceph (mnt/ceph/cme). It

contains both the data of a small ETD dataset subset (i.e., the 2017 ETDs) which includes

691 PDF documents, and the large dataset (all 30K ETDs). Each folder contains PDF as

well as text �les of the theses/dissertations.

9



3.2 Preprocess the ETD corpus

We have performed tokenization and stopword removal on the ETD corpus. This should

help the Text Analysis and Machine Learning team to cluster the documents e�ciently.

3.3 User Support

Currently, the IP address of the GROBID server is static. Other users are allowed to extract

metadata from PDF �les in any environment by using the URL we provided. An auto-

mated system is also provided through which a user can run a driver script to implement

all the tasks, from extraction of metadata from PDF to its ingestion into Elasticsearch.

Details regarding the same are provided in Section 6.1.3.

10



Chapter 4

Approach, Design, Implementation

4.1 Experiment Design

This project addresses problems related to management of ETDs by answering the re-

search questions that were listed in the problem de�nition of Section 1.3.

ETDs in our database are mostly in the form of PDF documents. The main objective

is to parse and extract metadata from the ETDs. However, it is di�cult to perform this

action on the PDF �les since they do not contain tags to delimit their elements. The

structures of PDF �les are often di�erent, and vary according to the domain. To over-

come these limitations, suitable machine learning tools need to be used which can extract

metadata and represent all the ETDs in the same format.

After exploring and evaluating all the mentioned parsers, as discussed in Section 2.1,

we decided to use GROBID for extracting metadata.

4.2 Implementation

4.2.1 Chapter Level Text Extraction

XPath-based Chapter Level Text Extraction

Projects like [14, 6, 8] have successfully used GROBID [3] for capturing the structure of

ETD documents. Therefore, due to previous successful usage and ease of installation,

we decided to use GROBID for chapter level text extraction. GROBID extracts the in-

11



formation from the PDF document of an ETD and converts it into a TEI (Text Encoding

Initiative) [1] document. The structure of the TEI document is as shown in Listing 1.

<TEI xmlns="http://www.tei-c.org/ns/1.0">

<teiHeader>

<!-- ... -->

</teiHeader>

<text>

-<div xmlns="http://www.tei-c.org/ns/1.0">

<head><!--Chapter Name --> </head>

<p> <!-- Chapter Content--></p>

</div>

<front>

<!-- front matter of copy text, if any, goes here -->

</front>

<body>

<!-- body of copy text goes here -->

</body>

<back>

<!-- back matter of copy text, if any, goes here -->

</back>

</text>

</TEI>

Listing 1: Overall structure of a typical TEI document [1]

TEI Guidelines for Electronic Text Encoding and Interchange [1, 18] use XML as a

markup language for representing the structure and semantic features of texts. The com-

prehensive tags o�ered by XML provide a way for incorporating the entire semantic

structure of the ETD document. The TEI output format does not explicitly de�ne a chap-

ter tag (<chapter>). Neither does it provide a @type=chapter attribute for the <div>

element. Therefore, due to the lack of explicit tags for the indication of the start or end

of a chapter, chapter level extraction from ETD documents is a di�cult task.

12



We use XPath expressions for extracting the chapters from the ETD documents. We

can see in Listing 1 that “chapter name” is generally present in the <head> tag which is

wrapped inside the <div> tag. Therefore, in order to locate the start of a chapter and the

end of the preceding chapter, we need to capture such a pattern of tags from the TEI XML

metadata extracted by GROBID. The detailed evaluation of this method is explained in

the evaluation Section 5.

The steps involved in chapter level text extraction are:

• Convert the ETD document in PDF into TEI XML format by using a web service

provided by GROBID: /api/processFulltextDocument.

• Use the XPath expression /tei:TEI/tei:text/tei:body/tei:div[tei:head]

for the extraction of chapters, and store each chapter in text format [14].

The folder structure after chapter level text extraction is as shown in Figure 4.1.

Figure 4.1: Folder structure of a ETD after chapter level text extraction

Chapter Level Text extraction based on Table of Contents

XPath based text extraction sometimes recognizes each subsection of the document as a

chapter. In order to overcome this drawback, we tried to explore other methods of chapter

13



level text extraction. The Table of Contents provides information about all the sections

and subsections that are present in an ETD document. Along with this information, it

also provides the page numbers on which a user can �nd these sections and subsections.

We decided to use the page numbers from the table of contents to track the start and

end of each chapter. This method has a limitation, as most of the ETD documents do not

contain the keyword ‘Chapter’ to distinguish between chapters and their subsections.

PDF parsers do not maintain the inherent formatting of a PDF document (for example,

they skip spacing between paragraphs), and convert it into a single text �le. An example

of text output from the parser and the content in the original PDF document is shown in

Figures 4.2 and 4.3. As we can see from Figure 4.3, there is no delimiter in the parsed text

�le which can indicate the end of a page. Additionally, the parser does not capture text

from the header or the footer of a document, so the page numbers present in the header

or footer could not be used as an indicator for the start or end of the page in the parsed

text document.

Therefore, when the text is extracted from a PDF document, the mapping of page

numbers to the chapters is lost.

Manual Chapter Level Extraction

Apart from exploring various other techniques like OCR on the basis of font size, we did

a manual chapter level extraction from 21 ETD documents. This method gives us a gold

standard result. The detailed evaluation of the XPath based method (Section 4.2.1) with

the Manual Level Text Extraction on various parameters is discussed in the evaluation

Section 5. These documents are submitted to the Text Analysis and Machine Learning

Team for solving the big data summarization problem.

4.2.2 TF-IDF Calculation

Term frequency–inverse document frequency (TF-IDF) is calculated to help the Text

Analysis and Machine Learning team to perform related analysis and calculation. As

a weighting technique commonly used in text mining [16], TF-IDF characterizes the im-

portance of a term in a document by calculating the term frequency and the number

of documents in which the term appears. The TF-IDF value can be calculated by using
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Figure 4.2: Sample ETD Introduction chapter
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Figure 4.3: Parsed text of the same document (highlighted text indicates end of
page shown in Figure 4.2)
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Equation 4.1.

T f Id fi,j = T fi,j × Id fi

=
ni,j∑
k nk,j

× loд
|D |��{j : ti ∈ dj}�� (4.1)

Here ni,j is the number of occurrences of termi in the document dj , and D is the total

number of documents in the corpus.

Initially, we convert all ETD PDF documents to text format. Then a Python script

reads these documents to calculate TF-IDF according to Equation 4.1. The TF-IDF rep-

resentation is implemented using gensim [15], a Python library, which indexes the doc-

uments and saves the indexes and TF-IDF vectors as key-value pairs. So users need to

provide the index of one document to obtain the corresponding TF-IDF vector. To avoid

this complicated process, we provide an optional toolkit in which the user needs to enter

the path to the saved TF-IDF �le and the name of the document in order to obtain its

corresponding TF-IDF vector.

As shown in Figure 4.4, the TF-IDF output of each document saved in gensim format

is a list of tuples. The �rst element of each tuple is the index of one term, while the second

element is its corresponding TF-IDF value. The gensim TF-IDF method takes the bag-of-

words (BOW) of each document as input. As shown in Figure 4.5, the format for BOW is

similar to that of the TF-IDF module. However, the second element of each tuple is the

frequency of the term in the document. In addition, the BOW of whole ETD documents

is indexed. A dictionary, which gives the corresponding index of the documents, is also

provided. Part of this dictionary is shown in Figure 4.6.

Figure 4.4: Part of TF-IDF of one document
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Figure 4.5: Part of BOW of one document

Figure 4.6: Part of doc-index dictionary

4.2.3 Transforming Metadata for Ingestion in Elasticsearch

Elasticsearch ingests data in bulk as well as one by one. The bulk API is far more complex

in terms of the required data format. Hence, we decided to ingest each document one

by one. Elasticsearch ingests data only if it is in a particular format. Elasticsearch can

consume a JSON array only if all the entries of the array are of the same data type, i.e.,

either string or object. By default, GROBID output contains arrays having entries of

mixed data types. For example, in Listing 4.1, description provenance has one entry of

string type and two entries of object type. We have written a Python script that iterates

through the metadata �le and converts each entry to the same data type. If there is a

mismatch, all entries are converted to object data type having the key as the immediate

18



parent-key.

Listing 4.1: Raw Metadata extracted from ETD using GROBID

1 "description -provenance": [

2 "Made available in DSpace on 2017-01-06T13:34:0

6Z (GMT). No. of bitstreams1 Bailey_JM_D_201

7.pdf9128042 bytes, checksum7438e886322739e1

7247ed2c907658b0 (MD5) Previous issue date

2017-01-05",

3 {

4 "Author Email": [

5 "jmb@vt.edu"

6 ]

7 },

8 {

9 "Advisor Email": []

10 }

11 ]

4.2.4 Development of an Automated System

The Automated System is a system that performs all of the tasks, from the extraction of

metadata from an ETD document, to its ingestion into Elasticsearch, automatically, for

any new document that has been fed to the system developed by the CS5604 fall 2019

class.

The features of this system are:

• Automated unit testing to ensure that all the development scripts are error-free

• Tests to check whether all the dependent services are running (Thus, Figure 4.9

shows the output of a unit test that checks whether GROBID is running.)

• Validation of generated metadata to ensure that it is in the format that can be in-

gested into Elasticsearch
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• Automatic extraction and preprocessing of the text from the document

• Automatic merging of metadata of new documents with the existing metadata

The limitations of this system are:

• The system cannot scrape the new data from VTechWorks. (The new data should

be added in a folder called “temp” on ceph)

• The folder structure of an ETD document should be in the format shown in Figure

4.9.

Such automation ensures the proper functionality of the system developed by the

class and also the correctness of data that has been passed to Elasticsearch (ELS), Front

End and Kibana (FEK), and Text Analysis and Machine Learning (TML) teams for further

processing and analysis. The detailed description of unit tests is mentioned in Section 5.

Figure 4.7 shows the work�ow of the automated system.
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Figure 4.7: Flow diagram of the automated system
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Figure 4.8: Folder structure of an ETD

Figure 4.9: GROBID unit test

4.2.5 List of Visualizations to be Provided in the Front End

Visualization Type:

• Type-none: "Dissertation" (Pie Chart)

• Degree-level: "doctoral" (Bar Chart)

• Contributor-department: "Mechanical Engineering" (Pie Chart)

• Year: "2017" (get it from "date-issue") (Bar Chart)

4.2.6 Text Preprocessing

ASCII does not correctly encode all the characters in the PDF �les; the text �les converted

from these PDF �les contain many meaningless and wrong characters. These characters

may have a negative impact on the query process. To address this problem, the stop

words are removed using the "corpus" package in NLTK [12].

The other issue is about numbers and garbage data characters that appear in the text

�les. In general, the numbers shown in ETD �les are related to reference numbers and

other numeric values. The reference numbers are not useful for query search; therefore,

we use regular expressions to remove these numbers. The following regular expressions

were used to clean the data:

• "[\d{1,20}]" to remove words with length greater than 20
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• replace("...","") to remove "..."

• re.sub("[\(\[].*?[\)\]]","") to remove braces

• replace(’b \’ ’,”) to remove byte literal

• encode(’ascii’,’ignore’) to remove non-ASCII characters

Note that this is an optional process. We provide two di�erent versions, one that contains

raw data and another one that contains the processed data, which are required by the

Elasticsearch and Test Analysis and Machine Learning teams, respectively.
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Chapter 5

Evaluation

5.1 Manual Testing

5.1.1 Testing of Chapter Level Text Extraction

In Section 4.2.1, we explained how we use XPath to extract text based on the chapter

level. We noticed some problems after comparing the results to the chapter-wise results

extracted from ETDs manually. We use Justin Mark Bailey’s dissertation “Full Scale Ex-

perimental Transonic Fan Interaction with a Boundary Layer Ingesting Total Pressure

Distortion” as an example to show the di�erences; see Table 5.1 and Figure 5.1. For

XPath based extraction, we counted the �rst �le for each chapter, as some chapters were

divided into numbers of �les. This is why the completeness of XPath based chapter level

extraction technique is low.
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Figure 5.1: Chapter level text extraction by XPath vs. manual extraction by Di�
Checker

Table 5.1: Chapter level text extraction by XPath and manual extraction

XPath Manual

Appendix Just one section Yes

Captions No Yes

Chapter completeness on

average (calculated by

counting the number of

words)

43.90% 90.88%

Formulas No

Yes but lots of illegal

characters

Headers No Repeated each page

Illegal characters No

Some letters are

converted to {cid:}

References in-text No Yes

References No Yes

Space between sentence No Yes

Texts in �gures No

Yes but many illegal

characters
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From Table 5.1 we can see the performance of chapter level text extraction by XPath

is not as good as manual chapter level extraction.

The XPath based technique ignored captions, texts in �gures, and formulas which

might include useful information. The percentage of the chapter completeness on av-

erage is a good indicator to show the performance of extractions. Manual extraction

has 90.88% completeness instead of 100% since there are many special characters, �gure

captions, and formulas that could not be parsed correctly by the PDF to text parser [4].

However, it still performs much better than the chapter level text extraction by XPath

which has 43.90% for completeness on average. The di�erences in number of chapters

generated for 21 ETD documents by two types of extraction methods mentioned in Sec-

tion 4.2.1 are shown in Table 5.3. We can see XPath does not perform well as only one of

the 21 documents has the correct number of chapters.

5.1.2 Testing of Extracted Text Preprocessing

The ETD text �les extracted by PDFMiner.six [17] include many incorrect characters.

As shown in Figure 5.2, these illegal characters are usually from non-English words. To

remove these garbage characters, we use NLTK to detect and remove them.

Figure 5.2: Original text generated by PDFMiner.six
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Table 5.2: Di�erences between chapter level text extraction by XPath and man-
ually extraction

Document XPath Manual Match

73987 15 5 No

73988 9 7 Close

74003 52 5 No

74047 3 1

74048 36 5 No

74049 46 5 No

74050 75 5 No

74233 5 5 Yes

74234 40 7 No

74235 12 5 No

74236 31 6 No

74237 23 5 No

74238 2 5 No

74239 154 7 No

74275 13

ETD in slides

format

74302 50 7 No

74383 85 5 No

74395 21 5 No

74396 3 1

74398 0 1

74423 31 6 No
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Figure 5.3: Processed text

In general, the reference numbers of equations and citations are not useful during

processing of search queries. We use regular expressions to remove these characters.

The processed text is shown in Figure 5.3. Long string of characters in the last line of

Figure 5.2 have been removed in Figure 5.3, and the numbers in parentheses have also

been removed.

5.1.3 Metadata Extraction Testing

We prepare a JSON �le manually for any given ETD using the list of keys and then run

the tool to extract metadata from the same ETD. We inspect and compare both JSON

�les; if all the key-value pairs match, it means that our script to extract metadata using

GROBID is working properly.

5.1.4 Automated Testing

Unit Test

Unit Testing is the �rst level of software testing where the smallest testable parts of a

software are tested. This is used to validate that each unit of the software performs as

designed.

A test case is a set of conditions which is used to determine whether a system under

test works correctly.

A test suite is a collection of test cases that are used to test a software program to show

that it has some speci�ed set of behaviours by executing the aggregated tests together.
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Stub

A stub is an object that holds prede�ned data and uses it to answer calls during tests. It

is used when you can’t or don’t want to involve objects that would answer with real data

or have undesirable side e�ects.

An example can be an object that needs to grab some data from the database to re-

spond to a method call. Instead of the real object, we introduced a stub and de�ned what

data should be returned [11].

Unit test cases and their details

Table 5.3: Di�erent test case scenarios.

Unit Test Name Description Expected Behaviour

testGrobid

It hits the GROBID service

status API.

If service is up, test case

passes else fails.

testInputPDFPath

Checks whether �les are

present or not at the ex-

pected �le path.

If �les are present, test case

passes else fails.

testGrobidAndInputPath

Tests both the scenarios

where GROBID is up and

PDF �les are present or not

at expected location.

If �les are present and

GROBID is running, test

case passes.

testMetaDataFormat

Test whether the extracted

metadata is in elastic

search acceptable format

or not.

If metadata is present in

suitable format, test case

passes else it fails.
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Chapter 6

User Manual

6.1 Where to Get Data

6.1.1 VTechWorks ETD collection

The Electronic Theses and Dissertations used for the project are available in VTech-

Works, the Virginia Tech institutional repository maintained by University Libraries.

These ETDs are open access and can be viewed and downloaded free of charge.

The following are the links through which the documents can be accessed:

• ETDs: Virginia Tech Electronic Theses and Dissertations:

http://hdl.handle.net/10919/5534

• Masters Theses:

http://hdl.handle.net/10919/9291

• Doctoral Dissertations:

http://hdl.handle.net/10919/11041

For the initial phase, a subset of these documents, documents from the year 2017,

was considered. Metadata extraction, chapter-wise segregation, and full-text extraction

were performed on this subset using GROBID. Metadata – which includes �elds such as

author name, title, date of publication, and department – has been extracted and stored

in MongoDB.
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6.1.2 GitLab Repository

All �les required to run the system are present in the Gitlab repository. Figure 6.1 shows

all the �les that are available in the repository.

https://code.vt.edu/cs5604/cme

Figure 6.1: GitLab �le structure
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6.1.3 Metadata Extraction and Ingestion in Ceph

The general steps to extract metadata from the ETDs and ingest it onto ceph are given

below.

1. GROBID is used to process the ETD PDF and extract the metadata in XML format.

The container for running GROBID is available at the following IP address:

http://2001.0468.0c80.6102.0001.7015.d574.516b.ip6.name:8070/

Full text as well as header processing of ETDs can be performed using the TEI

option.

Figure 6.2: GROBID Container

The GROBID server can also be accessed using a Python client. Figure 6.3 shows

a sample code snippet used to access GROBID through a Python client.

Figure 6.3: Python client to access GROBID
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2. Elasticsearch requires the data to be in JSON format, but the default output

generated using GROBID is in XML format. Moreover, the JSON �le needs to have

a key value for each object and in NDJSON (newline delimited JSON) format, as

mentioned in Section 4.2.3. A Python script (XML2JSONConverter.py) will convert

the XML �le generated using GROBID to JSON format compatible for Elasticsearch.

The Sample Metadata Format is as shown in Listing 6.1:

Listing 6.1: Raw Metadata extracted from ETD using GROBID

1 {

2 "format -medium": "ETD",

3 "description -abstract": "Future commercial

transport aircraft will feature more

aerodynamic architectures to accommodate

stringent design goals for higher fuel

efficiency, reduced cruise and taxi NOx

emissions, and reduced noise.",

4 "date -issued": "2017-01-05",

5 "publisher -none": "Virginia Tech",

6 "title -none": "Full Scale Experimental

Transonic Fan Interaction with a Boundary

Layer Ingesting Total Pressure Distortion",

7 "contributor -author": "Bailey, Justin Mark",

8 "contributor -committeemember": [

9 "Dancey, Clinton L",

10 "Lowe, Kevin T",

11 "Wicks, Alfred L",

12 "Ng, Wing Fai"

13 ],

14 "type -none": "Dissertation",

15 "description -degree": "PHD",

16 "degree -discipline": "Mechanical Engineering",

17 "subject -none": [

18 "Experimental Engine Testing",

19 "Distortion",
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20 "Interaction",

21 "Total Pressure",

22 "Boundary Layer Ingesting"

23 ],

24 "contributor -department": "Mechanical

Engineering",

25 "degree -level": "doctoral",

26 "identifier -uri": "http://hdl.handle.net/10919/

73987",

27 "date -available": "2017-01-06T13:34:06Z",

28 "handle": "73987",

29 "description -provenance": [

30 {

31 "description -provenance -summary": "Made

available in DSpace on 2017-01-06T1

3:34:06Z (GMT). No. of bitstreams1

Bailey_JM_D_2017.pdf9128042 bytes,

checksum7438e886322739e17247ed2c9076

58b0 (MD5) Previous issue date2017

-01-05"

32 },

33 {

34 "Author Email": [

35 "jmb@vt.edu"

36 ]

37 },

38 {

39 "Advisor Email": []

40 }

41 ],

42 "identifier -other": "vt_gsexam:9274",

43 "rights -none": "This item is protected by

copyright and/or related rights. Some uses

of this item may be deemed fair and

permitted by law even without permission
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from the rights holder(s), or the rights

holder(s) may have licensed the work for use

under certain conditions. For other uses

you need to obtain permission from the

rights holder(s).",

44 "degree -grantor": "Virginia Polytechnic

Institute and State University",

45 "date -accessioned": "2017-01-06T13:34:06Z",

46 "contributor -committeechair": "O'Brien, Walter

F",

47 "degree -name": "PHD"

48 }

A similar output is generated for all the ETDs and a JSON �le containing the meta-

data for all the ETDs is created.

3. Another script, AddTextToMetadata.py, will convert the ETD to text and add it as

a �eld to the extracted JSON metadata. This will allow for full text search on all

ETD documents.

4. A Python script to ingest the data into ceph has been written by the ELS team. The

data is available at mnt/ceph/cme/metadata_subset.json.

5. DriverScript is also present, to run all the above scripts, to enable all tasks from

metadata extraction to the ingestion in Elasticsearch.
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Chapter 7

Developer’s Manual

In this chapter, we provide details about our timeline of this project, applications we have

used to communicate in the team, and what we have done. Therefore, we will focus more

on how the project can be used to get the metadata and text extracted.

7.1 Timeline

Figure 7.1 shows the task completion timeline.
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Figure 7.1: Timeline

7.2 Slack

Our group used slack to communicate with all members in the "cme" channel in Slack.

At the same time, we use the channel called "general" to communicate with other dif-

ferent groups in this project. Figure 7.2 shows the di�erent slack channels we used to

communicate with the other teams.
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Figure 7.2: Slack

7.3 GROBID

To install GROBID in a local computer, use the following instructions.

7.3.1 Install in Ubuntu

Step 1: Update System

apt−g e t update

Step 2: Install JDK
Before installing GROBID on a local computer or empty container, Java JDK Version 1.8

has to be set up already.

apt−g e t −y i n s t a l l openjdk −8− j d k wget unz ip

Step 3: Download and install GROBID in /opt

wget h t t p s : / / g i t h u b . com / k e r m i t t 2 / g r o b i d / a r c h i v e / 0 . 5 . 5 . z i p

unz ip 0 . 5 . 5 . z i p
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Step 4: Download Gradle Gradle is a dependency required for running GROBID.

wget h t t p s : / / s e r v i c e s . g r a d l e . org / d i s t r i b u t i o n s / g r a d l e −3 . 4 . 1 − b in . z i p

Step 5: Install Gradle

mkdir / opt / g r a d l e

unz ip −d / opt / g r a d l e g r a d l e −3 . 4 . 1 − b in . z i p

e x p o r t PATH=$PATH : / opt / g r a d l e / g r a d l e − 3 . 4 . 1 / b in

After installing everything, Figures 7.3 and 7.4 show what is available in the directories.

Figure 7.3: Files in the Gradle folder

Figure 7.4: Files in the GROBID folder

Step 6: Run GROBID
First, get into directory /opt/grobid-0.5.5, and then run the command below:

. / grad lew run

Step 7: Run GrobidcURL.py
Once GROBID is running, call the command below to run the Python �le to get the

metadata.

python Grobid_cURLpy

7.4 PDFMiner

Step 1: Install and Test PDFMiner.six
PDFMiner.six is a fork of PDFMiner for Python3.×.
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p ip i n s t a l l pd fminer . s i x

p d f 2 t x t . py samples / s i m p l e 1 . pdf

Step 2: Run PDFMiner.six
Run PDFMiner.six to extract text:

p d f 2 t x t . py − t type −o o u t p u t f i l e p d f f i l e

Run PDFMiner.six to extract tables:

dumppdf . py −T −o o u t p u t f i l e p d f f i l e

Usage: [-t] de�nes the output type, such as txt, html and xml. [-o] de�nes the output path.

7.5 TF-IDF

Step 1: Install Gensim

p ip i n s t a l l gensim

Step 2: Run tf-idf-tool.py
The tf-idf-tool.py is a Python script to read text ETDs and calculate tf-idf values. The

saved tf-idf model is in /mnt/ceph/cme/tf-idf.

python t f − i d f _ t o o l . py

Step 3 (optional): Run use-t�df.py
Run use-t�df.py to check the result.

python use− t f i d f . py

what i s document name : C h i l d r e s s _ T L _ T _ 2 0 1 3 . pd f . t x t

where i s the saved t f − i d f model : / mnt / ceph / cme / t f − i d f / model . t f i d f

where i s the doc t o index d i c t i o n a r y : / mnt / ceph / cme / t f − i d f / d 2 i

where i s the BOW corpus model : / mnt / ceph / cme / t f − i d f / co rpus
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Chapter 8

Challenges and Limitations

One of our challenges is to extract images, tables, and formulae from PDF. This includes

extraction of both metadata and text. However, we haven’t found a reliable library to

help us reach this point.

Another issue that limits the ETD output data quality is addressed here. For now, the

quality of extracted ETD data relies on the performance of GROBID. However, GROBID

does not always process PDF �les well. Hence, the outputs, such as metadata and content,

may be slightly di�erent from the original PDF �les.
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Chapter 9

Future Scope

9.1 Improving Chapter Level Text Extraction

Chapter level text extraction can be improved by using various techniques based on OCR.

Such an extraction can used for solving the Big Data Summarization problem for obtain-

ing the summary of each chapter.

9.2 Batch Processing of the Documents

In the future, one can perform batch processing of the ETD Data. Batch processing will

considerably reduce the time required for converting the ETD documents which are in

PDF to a TEI XML format.

9.3 Improving Automation Suite

Loggers can be implemented to log the di�erent steps of the automation suite so that it is

easier to understand what is going on in the background. Code coverage can be improved

signi�cantly. More trigger points can be added to initiate the automation suite to give

additional options to the user. This allows users to choose whether they want to execute

batch processing or use single-threaded processing.
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