CS5604: Information Storage and Retrieval

Collection Management of Electronic Theses and
Dissertations

Authors

Kulendra Kumar Kaushal
Rutwik Kulkarni
Aarohi Sumant
Chaoran Wang
Chenhan Yuan
Liling Yuan

Instructor

Dr. Edward A. Fox

7

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
December 24, 2019

CS5604: Information Storage and Retrieval
Team CME

This research was done under the supervision of Dr. Edward A. Fox as part of the course
CS5604.

4th edition, December 7, 2019
3rd edition, October 31, 2019
2nd edition, October 10, 2019
Ist edition, September 19, 2019

Contents

[List of Figures| vii
IList of Tablesl viii
[1_Introductionl 1
(L1 OVeIVIEW| o it e s e e e 1
(1.2 VTechWorks ETD Datasetl 2
(1.3__Problem Definitionl 0 0L 3
2 Literature Review
(2.1 PDFProcessing|
211 Overview] 4
[2.1.2 Evaluation of Open-Source Bibliographic Reference and Citation |
[Parsers|. 4
[2.1.3 Big Data Text Summarization| 5
214 GROBIDI. 5
215 ScienceParselo Lo oL 7
[2.1.6 Apache Tikal. L o 7
RI7 PDEMIDEr o oottt it 7
218 DYPDEZ . . o o oo 8
[3 Requirements|
[3.1 Extract Metadata and Text for ETD Corpus|
[3.2 Preprocess the ETD corpus| 10
(3.3 User Support| 10
[4 Approach, Design, Implementation| 11
[4.1 Experiment Design| o 0oL, 11

il

[4.2 Implementation|. L
[4.2.1 Chapter Level Text Extraction|
4.2.2 TE-IDF Calculationl

[4.2.3 Transforming Metadata for Ingestion in Elasticsearch]

[4.2.4 Development of an Automated System|

[4.2.5 List of Visualizations to be Provided in the Front End|.
[4.2.6 Text Preprocessing|

5 Evaluation

[5.1 Manual Testing|
[5.1.1 Testing of Chapter Level Text Extraction|
[5.1.2 Testing of Extracted Text Preprocessing|
[5.1.3 Metadata Extraction Testing|
[5.1.4 Automated Testing|.

[6_User Manuall

[6.1.2 GitLab Repository|
[6.1.3 Metadata Extraction and Ingestionin Ceph|

(7

Developer’s Manual

7.4 PDEFMiner| o
7.5 TE-IDE . . o . o

Challenges and Limitations|

Future Scope|

[9.1 Improving Chapter Level Text Extraction|
[9.2 Batch Processing of the Documents|.

(9.3 Improving Automation Suite| oL,

(10 Acknowledgements|

iv

24
24
24
26
28
28

30
30
30
31
32

36
36
37
38
38
39
40

41

42
42
42
42

43

Bibliography]|

44

Abstract

The class “CS 5604: Information Storage and Retrieval” in the fall of 2019 is
divided into six teams to enhance the usability of the corpus of electronic theses
and dissertations maintained by Virginia Tech University Libraries. The ETD cor-
pus consists of 14,055 doctoral dissertations and 19,246 masters theses from Vir-
ginia Tech University Libraries’ VTechWorks system. Our study explored document
collection and processing, application of Elasticsearch to the collection to facilitate
searching, testing a custom front-end, Kibana, integration, implementation, text an-
alytics, and machine learning. The result of our work would help future researchers
study the natural language processed data using deep learning technologies, address
the challenges of extracting information from ETDs, etc.

The Collection Management of Electronic Theses and Dissertations (CME) team
was responsible for processing all PDF files from the ETD corpus and extracting
the well-formatted text files from them. We also used advanced deep learning and
other tools like GROBID to process metadata, obtain text documents, and generate
chapter-wise data. In this project, the CME team completed the following steps:
comparing different parsers; doing document segmentation; preprocessing the data;
and specifying, extracting, and preparing metadata and auxiliary information for
indexing. We finally developed a system that automates all the above-mentioned
tasks. The system also validates the output metadata, thereby ensuring the correct-
ness of the data that flows through the entire system developed by the class. This
system, in turn, helps to ingest new documents into Elasticsearch.

vi

List of Figures

(1.1 Positionin entire system|. oo, 2
2.1 _The architecture of PDF Mined 8
[4.1 Folder structure of a ETD after chapter level text extraction| 13
[4.2 Sample ETD Introduction chapter| 15
[4.3 Parsed text of the same document (highlighted text indicates end of page |

shown in Figure|4.2) 16
44 Part of TF-IDFof one documentl 17
[4.5 Part of BOW of one documentl. 18
[4.6 Part of doc-index dictionary| L 18
[4.7 Flow diagram of the automated system|. 21
4.8 Folder structure of an ETD] 22
49 GROBIDunittest]| 22
[5.1 Chapter level text extraction by XPath vs. manual extraction by Dift Checker| 25
[5.2 Original text generated by PDFMiner.six| 26
5.3 Processedtextl. 28
l6.1 GitLab file structurel, 31
6.2 GROBID Containerl 32
[6.3 Python client to access GROBID| 32
Z1 Timellnelo 37
Z2 STackl 38
(z3_TFilesin the Gradlefolded 39
(7.4 Files in the GROBID folder|. 39

vii

List of Tables

[2.1 Human assessment of GROBID and Science Parse outputs| 6
[5.1 Chapter level text extraction by XPath and manual extraction| 25
[5.2 Differences between chapter level text extraction by XPath and manually |
[extraction] 27
.3 Different test case scenarios]. 29

viii

Chapter 1

Introduction

1.1 Overview

As a leading global research university, on January 1, 1997, Virginia Tech was the first
university which required graduate students to submit electronic theses and dissertations
(ETDs) [21]]. As of 2019, the local ETD dataset covers over 33,000 doctoral dissertations
or masters theses.

ETDs are valuable information sources, but due to the lack of discoverability, they are
still underutilized. Hence, retrieving ETDs is important for researchers and universities.
Retrieving specific information from academic materials has many important applica-
tions, such as citation analysis [10]. It could aid those working to prepare award-winning
theses [9]. One of the most important problems in ETD information retrieval is how to
extract text and metadata properly from PDF files. In this report, we will address that
problem, and also tackle problems related to the identification and extraction of sections
and chapters. We hope our work would help future researchers to be able to discover and
reuse the potential useful resources from the ETDs.

The position of our team in the whole system is shown in Fig.[1.1] Many different PDF
parsers [3,[5,[17] are implemented to convert PDF files to a structured format, e.g., XML
or JSON. To extract metadata or elements — like affiliation, tables, and images — from
ETDs successfully, we also propose a new approach to avoid errors during conversion.
Moreover, the issue of automatic segmentation to identify sections and chapters is also
addressed in this project.

Production Cluster

User

Logs — | Kibana /v Front End

< Reccommender % ELS
] cem
PreProcess ETD Data
E E Store

T Store Ingest T Data

e

Dedicated Apache Kafka for ETD Dedicated Apache Kafka for Tobacco dataset

i 1

Front End Admin Portal/API

University 1 ’J T—‘

University 2 VirginiaTech ~ » Research VM UCSF —> Research VM

Figure 1.1: Position in entire system

1.2 VTechWorks ETD Dataset

The ETD corpus is downloaded from the Virginia Tech institutional repository, VTech-
Works, and consists of over 33,000 documents: 14,055 doctoral dissertations, 19,246 mas-
ters theses, and some award-wining and undergraduate theses. The repository is main-
tained by the university library, and includes ETDs about all disciplines from all depart-
ments of Virginia Tech. For each ETD, there is one PDF document which is generally the
main part, a metadata record, and some supporting documents. For older ETDs, the PDF

files resulted from scanned paper documents. In such cases, full-text files were extracted
using optical character recognition.

1.3 Problem Definition

This project works on managing ETDs by answering the following research questions.
RQ1: Can we extract metadata from an ETD document, and transform it into a format
that can be ingested into Elasticsearch?
Elasticsearch is a search server based on the Lucene library. Lucene is a open-source
search engine software library. Elasticsearch provides a distributed, multi-tenant-
capable full-text search engine with a RESTful web interface and schema-free JSON
documents [7]. Enhancing our output to generate according to a suitable format that
can be ingested by Elasticsearch should extend the applicability of our work.

RQ2: Can we extract text files from PDF files and have content suitable for subsequent
indexing and searching?
A suitable structure, properly populated with text that is used in the subsequent indexing,
would help future researchers to discover and retrieve the specific information they need.

RQ3: Can we expand the extracted data by including a file for each chapter?
Sometimes the researchers might be just interested in some specific sections. This action
might be helpful to increase search specificity and save time for users.

RQ4: Can we develop an automated system that can extract the metadata from new
documents, process it, and ingest it to Elasticsearch?
New ETDs need to be added to our system as and when they are added to VTechWorks.
So, in order to make our system more robust and up to date, an automated system to
process and add the new ETDs to our system is necessary.

Chapter 2

Literature Review

2.1 PDF Processing

2.1.1 Overview

All of our electronic theses and dissertations are available as PDF files. It is difficult to
extract the key data from such a file. Additionally, the formatting of different sections, as
well as of the bibliography, changes from document to document. Thus, parsing a PDF
file becomes a big challenge.

Preprocessing and extraction of metadata from the ETDs are important steps in re-
lated works that have been carried out in this domain. The rest of this chapter includes
descriptions of some of the work done by researchers related to the extraction of meta-
data, text parsing, and providing support for big data text summarization. We include
descriptions of popular tools and parsers, and highlight the comparison between them
on different parameters, as discussed in various works.

2.1.2 Evaluation of Open-Source Bibliographic Reference and Ci-
tation Parsers

The growth in the volume of available scientific literature has resulted in a scientific
information overload problem, which refers to the end user being overwhelmed by the
abundance of information. To leverage the information available in that literature, there
is a need for intelligent information retrieval systems to provide desired information in
an organised manner.

One such type of information is machine-readable rich bibliographic metadata. As
a consequence, there is demand for tools which can parse scientific documents and ex-
tract the bibliographic content. Researchers have devised interesting solutions. Regular
expressions, template matching, knowledge bases, and supervised machine learning all
relate to solutions proposed. Software tools have been proposed, such as Biblio (regular
expression based), Bibpro (template matching based), Citation Parser (knowledge based
or rule based), and GROBID (ML or machine learning based) [20]. The quality, measured
using precision, of machine learning (ML) based tools, is similar to that of tools employ-
ing rules, regular expressions, or template matching (0.77 for ML-based tools vs. 0.76
for non-ML-based tools). However, ML based tools are popular and are often preferred
because of also achieving higher recall (0.66 vs. 0.22) [20]. Only a few tools like GROBID
(F1=0.89), Cermine (F1=0.83), and ParsCit (F1=0.75) have performed reasonably well. Re-
training with task-specific data definitely increases the performance of almost all of the
tools. Thus, the F1 measure of GROBID increased by 3% (0.89 to 0.92), Cermine achieved
F1 increases of 11% (0.83 to 0.92), and ParsCit had an increase of F1 by 16% (0.75 to 0.87)
[20].

2.1.3 Big Data Text Summarization

For summarizing Electronic Theses and Dissertations (ETDs), three Fall 2018 student
teams in Virginia Tech CS4984/5984 (Big Data Text Summarization) [14] |6} [8] used
Science Parse and GROBID to extract information from PDFs. Both GROBID and
Science Parse have their respective pros and cons. Table [2.1| summarises how GROBID
outperforms Science Parse in many situations [21]].

2.1.4 GROBID

GROBID (GeneRation Of BIbliographic Data) is a parser which is used to extract meta-
data from a PDF document into XML format. GROBID takes the PDF of each scholarly
document as input and makes use of machine learning models (cascading of linear-chain
CRF) for extracting the metadata from the document in XML format. It uses the lexical
(POS), layout (font, font size), and position information (start/end) of a line in a document
in order to train the models and obtain the metadata in the required format. It does not

Table 2.1: Human assessment of GROBID and Science Parse outputs

GROBID Science Parse
Output File XML JSON
Format
Adds table of contents and list Maintains order of table of
Table of)
of figures at the end. contents and list of figures.
Contents
Occasionally misses the Often detects the abstract
Abstract
abstract. correctly.
Occasionally skips chapters
especially in case of ETDs of
discipli h Often skips chapt d
Chapters ' isciplines such as en skips chapters an
Architecture where there are a merges some chapters together.
large number of images
present along with the text.
Adds a <ref type="figure"> Does not indicate the existence
Figures tag to indicate the existence of of a figure; often appends the
a figure. figure title as part of the text.
Adds a <ref type="table">
L yP) Does not indicate the existence
Tables tag to indicate the existence of
of a table.
a table.
.. Parses the reference string into
Parses the reference string into)
. title, author, venue,
author - first and last)
References year. Does not further split

name, publication,
volume, issue, published

these values. Skips some
references while extracting.

provide an explicit <chapter> tag. Therefore, chapter-level text and metadata extraction
from the ETD documents is a challenging task using GROBID [3] [13].

2.1.5 Science Parse

Science Parse parses the scientific documents from PDF into structured JSON format. It is
a combination of Java and Scala and can be used as a library in any JVM-based language.
Science Parse can be used in three different ways:

« Server: It functions as a wrapper and makes Science Parse available as a web ser-
vice. It uses heap memory (about 2GB).

« CLI: Science Parse has a command line interface known as RunSP. It uses heap
memory (about 6GB). RunSP can also be used to parse multiple files at a time.

« Core: It provides flexibility in Science Parse but is also quite complex to use as a
library. Four model files — general CRF model for extracting title and authors; and
a CRF model for each of bibliographies, gazetteer, and word vectors — are available
in this service.

Science Parse is difficult to set up and sometimes skips or merges some of the content

[19105].

2.1.6 Apache Tika

Apache Tika is a file extraction framework which is written in Java. The big advantage
of Tika is that “it can extract over thousands of different types of files to metadata and
text” [2]. In addition, another powerful capability that Tika has is that this library can
extract the image metadata from Portable Document Format (PDF) files. However, it is
hard to get the image itself compared to getting the metadata of this image. At the same
time, since Apache Tika is written in Java, it is complicated to set it up if users are using
other programming languages. Another disadvantage is that Tika can only extract PDF
to text, which means chapter-wise extraction is difficult.

2.1.7 PDFMiner

PDF Miner.six (or PDFMiner) is a Python-compatible parser that can convert PDF files
into text, HTML, or XML. The architecture of PDFMiner is shown as Figure As a

7

rule-based parser, PDFMiner runs efficiently. Tested with an ETD document, PDFMiner
converts PDF to text or other formats using around 18s. Moreover, it supports various
font types and CJK language extraction [17]]. Practically, it can extract specific pages and
tables (output without structure) from a PDF file. However, because PDFMiner is used
to extract text data, the ability to process images and tables in PDF files is still unstable
according to its document.

request objects

PDFParser PDFDocument

store objects 1
page contents

PDFinterpreter

T
| l/rendering instructions
PDFResource I'q-'lamz?er\A l

PDFDevice

Display
File
eic.

Figure 2.1: The architecture of PDF Miner

2.1.8 PyPDF2

PyPDF2 is a Python based tool for extraction of metadata and text from a PDF file. It also
allows splitting, merging, and extraction of data from the file. Predominantly it is used
for the extraction of text from a PDF file. It works on StringlIO objects as opposed to file
streams and so allows for PDF manipulation in memory [4].

Chapter 3

Requirements

In this project, the CME team is responsible for extracting metadata and text from the
ETD documents. By the end of this project, we intend to finish the jobs listed below.

« Convert ETD documents from PDF to text format to enable full text search.

Extract metadata for each ETD document.

Extract chapter-level text from ETDs.

« Preprocess the ETD corpus, i.e., tokenize, lemmatize, and remove stopwords.

Develop a pipeline to enable ingestion of new ETDs into Elasticsearch.

3.1 Extract Metadata and Text for ETD Corpus

Metadata containing fields like names of author, date of publication, author email,
contributor department, etc. has been extracted and put into ceph (mnt/ceph/cme). It
contains both the data of a small ETD dataset subset (i.e., the 2017 ETDs) which includes
691 PDF documents, and the large dataset (all 30K ETDs). Each folder contains PDF as
well as text files of the theses/dissertations.

3.2 Preprocess the ETD corpus

We have performed tokenization and stopword removal on the ETD corpus. This should
help the Text Analysis and Machine Learning team to cluster the documents efficiently.

3.3 User Support

Currently, the IP address of the GROBID server is static. Other users are allowed to extract
metadata from PDF files in any environment by using the URL we provided. An auto-
mated system is also provided through which a user can run a driver script to implement
all the tasks, from extraction of metadata from PDF to its ingestion into Elasticsearch.
Details regarding the same are provided in Section

10

Chapter 4

Approach, Design, Implementation

4.1 Experiment Design

This project addresses problems related to management of ETDs by answering the re-
search questions that were listed in the problem definition of Section

ETDs in our database are mostly in the form of PDF documents. The main objective
is to parse and extract metadata from the ETDs. However, it is difficult to perform this
action on the PDF files since they do not contain tags to delimit their elements. The
structures of PDF files are often different, and vary according to the domain. To over-
come these limitations, suitable machine learning tools need to be used which can extract
metadata and represent all the ETDs in the same format.

After exploring and evaluating all the mentioned parsers, as discussed in Section
we decided to use GROBID for extracting metadata.

4.2 Implementation

4.2.1 Chapter Level Text Extraction
XPath-based Chapter Level Text Extraction

Projects like [14] 6, [8] have successfully used GROBID [3]] for capturing the structure of
ETD documents. Therefore, due to previous successful usage and ease of installation,
we decided to use GROBID for chapter level text extraction. GROBID extracts the in-

11

formation from the PDF document of an ETD and converts it into a TEI (Text Encoding
Initiative) [1]] document. The structure of the TEI document is as shown in Listing

<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>
<I-- ... ==
</teiHeader>
<text>
-<div xmlns="http://www.tei-c.org/ns/1.0">

<head><!--Chapter Name --> </head>
<p> <!-- Chapter Content--></p>
</div>
<front>
<!-- front matter of copy text, if any, goes here -->
</front>
<body>
<!-- body of copy text goes here -->
</body>
<back>
<!-- back matter of copy text, if any, goes here -->
</back>
</text>
</TEI>

Listing 1: Overall structure of a typical TEI document

TEI Guidelines for Electronic Text Encoding and Interchange [T} use XML as a
markup language for representing the structure and semantic features of texts. The com-
prehensive tags offered by XML provide a way for incorporating the entire semantic
structure of the ETD document. The TEI output format does not explicitly define a chap-
ter tag (<chapter>). Neither does it provide a @type=chapter attribute for the <div>
element. Therefore, due to the lack of explicit tags for the indication of the start or end
of a chapter, chapter level extraction from ETD documents is a difficult task.

12

We use XPath expressions for extracting the chapters from the ETD documents. We
can see in Listing |1| that “chapter name” is generally present in the <head> tag which is
wrapped inside the <div> tag. Therefore, in order to locate the start of a chapter and the
end of the preceding chapter, we need to capture such a pattern of tags from the TEI XML
metadata extracted by GROBID. The detailed evaluation of this method is explained in
the evaluation Section[5l

The steps involved in chapter level text extraction are:

+ Convert the ETD document in PDF into TEI XML format by using a web service
provided by GROBID: /api/processFulltextDocument.

+ Use the XPath expression /tei:TEI/tei:text/tei:body/tei:div[tei:head]
for the extraction of chapters, and store each chapter in text format [14].

The folder structure after chapter level text extraction is as shown in Figure

U U U SY
Name Date modified Type Size

=] 73987t Text Document

|] 73987.xml XML Document

Bailey_JM_D_2017.pdf Adobe Acrobat D... 8,915KB
|&] Bailey JM_D_2017.pdfjpg JPG File 4KB
=] Bailey_JM_D_2017.pdf txt Text Document 200 KB
[E] chapterd.bct Text Document 2KB
|Z] chaptert.tet Text Document 8 KB
[E] chapter.ct Text Document 16 KB
=] chapter3.ct Text Document 6 KB
|Z] chapterd.tet Text Document 15 KB
[E] chapters.ct Text Document 6 KB
=] chapterf.bxt Text Document 34 KB
|Z] chapter7.tet Text Document 2KB
[E] chapterg.ct Text Document 20KB
|Z] chapterg.tet Text Document 1KB
|Z] chapterioet Text Document 1KB
=] chapteritxt Text Document 4KE
|Z] chapteri2.et Text Document 1KB
[E] chapter13.axt Text Docurment 3KB
£l chapteridxt Text Document 1KB
[] contents File 1KB
|| dublin_corexml XML Document ZKE
| | handle File 1KE
|| metadata_thesis.xml XML Document 1KB

Figure 4.1: Folder structure of a ETD after chapter level text extraction

Chapter Level Text extraction based on Table of Contents

XPath based text extraction sometimes recognizes each subsection of the document as a
chapter. In order to overcome this drawback, we tried to explore other methods of chapter

13

level text extraction. The Table of Contents provides information about all the sections
and subsections that are present in an ETD document. Along with this information, it
also provides the page numbers on which a user can find these sections and subsections.
We decided to use the page numbers from the table of contents to track the start and
end of each chapter. This method has a limitation, as most of the ETD documents do not
contain the keyword ‘Chapter’ to distinguish between chapters and their subsections.
PDF parsers do not maintain the inherent formatting of a PDF document (for example,
they skip spacing between paragraphs), and convert it into a single text file. An example
of text output from the parser and the content in the original PDF document is shown in
Figures[4.2land[4.3] As we can see from Figure[4.3] there is no delimiter in the parsed text
file which can indicate the end of a page. Additionally, the parser does not capture text
from the header or the footer of a document, so the page numbers present in the header
or footer could not be used as an indicator for the start or end of the page in the parsed
text document.

Therefore, when the text is extracted from a PDF document, the mapping of page
numbers to the chapters is lost.

Manual Chapter Level Extraction

Apart from exploring various other techniques like OCR on the basis of font size, we did
a manual chapter level extraction from 21 ETD documents. This method gives us a gold
standard result. The detailed evaluation of the XPath based method (Section with
the Manual Level Text Extraction on various parameters is discussed in the evaluation
Section |5| These documents are submitted to the Text Analysis and Machine Learning
Team for solving the big data summarization problem.

4.2.2 TF-IDF Calculation

Term frequency-inverse document frequency (TF-IDF) is calculated to help the Text
Analysis and Machine Learning team to perform related analysis and calculation. As
a weighting technique commonly used in text mining [16], TF-IDF characterizes the im-
portance of a term in a document by calculating the term frequency and the number
of documents in which the term appears. The TF-IDF value can be calculated by using

14

Chapter 1 Introduction

In order to meet stringent requirements for next generation commercial aviation
aircraft will need to employ more aerodynamic designs to 1) reduce noise, 2} improve
landing, takeoff, and crmse emissions, and 3) improve fuel consumption [1.2]. These
designs are expected to take the aviafion industry away from traditional “tube-and-wing’
architectures into a more hybrd or blended wing body (HWB, BWB) design that will
satisfy aircraft operation improvement goals. A companson between modem and proposed
airframe architectures is shown in Figure 1.1.

Figure 1.1. Modem aircraft “tube-and-wing” design (Left) and future blended wing desizn
(Right).

A commeon feature of these HWB airframes is the integration of the engines with the
aircraft fuselage. This relocation changes the inlet flow environment as the engines are no
longer mounted below the wings where uniform inlet flow 1s ingested for the majonity of
the flight envelope. Mounting the engines in close proximity to the airframe. or embedding
them within the airframe, results in non-uniform (distorted) inlet flow caused by the
airframe body or inlet ducts. In the interest of performance and efficiency, modem
commercial fransport engines are designed to telerate only small levels of distortion, such
as during takeoff or strong crosswind conditions. Integrated propulsion systems will
experience distorted mflow over the enfire flight envelope and their interaction with such
conditions will need to be studied to determine how engine performance is affected. and to
support the design of distorfion-telerant engines.

To determine how well engines can withstand such an environment, three critena will
need to be evaluated in great detail; aeromechanics, stability, and performance. Although
studies have shown that engine operation penalties are found in each one of these, the
overall benefit of highly integrated airframe and propulsion systems can justify the
operational challenges introduced to the engines [4].

Figure 4.2: Sample ETD Introduction chapter

15

Chapter 1 - Introduction 1 Chapter 1 Introduction Inm order to meet
stringent requirements for next generation commercial aviation, aircraft
will need to employ more aerodynamic designs to 1) reduce noisa, 2]
improve landing, takenff, and cruise emissions, and 3) improve fuel
consumption [1,2]. These designs are expected to take the alcid:85)jiakian
industricid:-52) alcid:50)alcid:532) from traditional (cid:1B1l)tube-and-
{oid:50) ingleid:1282) architectures into a more hybrid or blended wing
body (HWB, BWE) design that will satisfy aircraft operation improvement
goals. R compariszon between modern and proposed airframe architectures jso
shown in Figure 1.1. Figure 1.1. Modern aircraft (cidjlfl)tube—and-
(cid:50)ingicid:182) design (Left) and future blended wing design

(Right) . A common feature of these HWE airframes is the integration of
the engines with the aircraft fuselage. This relocation changes the inlet
flow enyirpmment a3 the engines are no longer mounted below the wings
where uniform inlet flow is ingested for the majority of the flight
envelope. Mounting the engines in close proximity to the airframe, or
embedding them within the airframe, results in non—uniform (distorted]
inlet flow caused by the airframe body or inlet ducts. In the interest of
performance and efficiency, modern commercial transport engines gre
designed to tolerate only small levels of distortion, such as during
takeoff or strong crosswind conditions. Integrated propulsion systems
will experience distorted inflow ower the entire flight envelope and
their interaction with such conditicons will need to hg studied to
determine how engine performance is affected, and to support the design
of distortion-tolerant engines. To determine how well engines can
withstand such an enviromment, three criteria will need to be evaluated
in grsakb detail; seromechanics, stability, and performance. Rlthough
studies have shown that engine operation penalties gre found in each one
of these, the owverall benefit of highly integrated airframe and
propulsion systems can justify the operational challenges introduced to
the engines [4]. Courtesy Bosing®Courtasw MNRSE Chapter 1 — Introduction
2 1.1 Literature Beview Studies have been performed on the evaluation of
engines subject to non-uniform inlet flows produced by highly integrated
engine—airframe systems. The three metrics that must be most considered
gre; aeromechanics, stability, and performance. Besearchers can find
background into aeromechanical fatigue ceused by distorted inflow through
garlier publications [5, &]. A= this work focuses on the impact of
stability and performance, the literature review will investigate
previocus work on these subjects in detail. Bn important component of the
integrated engine-airframe problem is the issue of fan-distortion
interaction, in which a coupling effect between the distortion or
distortion producing device and the fan exists. As will be shown later,
these components act together as a single system that gusi.be.chnsidersd
when designing distortion-producing devices within the context of
distortion tolerant fan research. 1.1.1 Stabilicy Sggbility is a

vl A e wam s s e s s N e st e e mmemell e s EF el e e

Figure 4.3: Parsed text of the same document (highlighted text indicates end of
page shown in Figure

16

Equation

Tfldfi;=Tf;xIdf;
ij D 4.1
LTV) (41)
Zemey it e dl]

Here n;; is the number of occurrences of term; in the document d;, and D is the total

number of documents in the corpus.

Initially, we convert all ETD PDF documents to text format. Then a Python script
reads these documents to calculate TF-IDF according to Equation The TF-IDF rep-
resentation is implemented using gensim [15], a Python library, which indexes the doc-
uments and saves the indexes and TF-IDF vectors as key-value pairs. So users need to
provide the index of one document to obtain the corresponding TF-IDF vector. To avoid
this complicated process, we provide an optional toolkit in which the user needs to enter
the path to the saved TF-IDF file and the name of the document in order to obtain its
corresponding TF-IDF vector.

As shown in Figure the TF-IDF output of each document saved in gensim format
is a list of tuples. The first element of each tuple is the index of one term, while the second
element is its corresponding TF-IDF value. The gensim TF-IDF method takes the bag-of-
words (BOW) of each document as input. As shown in Figure [4.5] the format for BOW is
similar to that of the TF-IDF module. However, the second element of each tuple is the
frequency of the term in the document. In addition, the BOW of whole ETD documents
is indexed. A dictionary, which gives the corresponding index of the documents, is also
provided. Part of this dictionary is shown in Figure

Figure 4.4: Part of TF-IDF of one document

17

—F._FIIF.

Figure 4.6: Part of doc-index dictionary

4.2.3 Transforming Metadata for Ingestion in Elasticsearch

Elasticsearch ingests data in bulk as well as one by one. The bulk API is far more complex
in terms of the required data format. Hence, we decided to ingest each document one
by one. Elasticsearch ingests data only if it is in a particular format. Elasticsearch can
consume a JSON array only if all the entries of the array are of the same data type, i.e.,
either string or object. By default, GROBID output contains arrays having entries of
mixed data types. For example, in Listing description provenance has one entry of
string type and two entries of object type. We have written a Python script that iterates
through the metadata file and converts each entry to the same data type. If there is a
mismatch, all entries are converted to object data type having the key as the immediate

18

—

10

11

parent-key.

Listing 4.1: Raw Metadata extracted from ETD using GROBID

"description-provenance": [

"Made available in DSpace on 2017-01-06T13:34:0
6Z (GMT). No. of bitstreams1 Bailey_JM_D_201
7.pdf9128042 bytes, checksum7438e886322739%e
7247ed2c907658b0 (MD5) Previous issue date

2017-01-05",

{

"Author Email": [

"jmb@vt.edu"

i
s
{

"Advisor Email": []
3

4.2.4 Development of an Automated System

The Automated System is a system that performs all of the tasks, from the extraction of
metadata from an ETD document, to its ingestion into Elasticsearch, automatically, for
any new document that has been fed to the system developed by the CS5604 fall 2019
class.

The features of this system are:
« Automated unit testing to ensure that all the development scripts are error-free

« Tests to check whether all the dependent services are running (Thus, Figure
shows the output of a unit test that checks whether GROBID is running.)

« Validation of generated metadata to ensure that it is in the format that can be in-
gested into Elasticsearch

19

« Automatic extraction and preprocessing of the text from the document
« Automatic merging of metadata of new documents with the existing metadata
The limitations of this system are:

« The system cannot scrape the new data from VTechWorks. (The new data should
be added in a folder called “temp” on ceph)

« The folder structure of an ETD document should be in the format shown in Figure
4.9

Such automation ensures the proper functionality of the system developed by the
class and also the correctness of data that has been passed to Elasticsearch (ELS), Front
End and Kibana (FEK), and Text Analysis and Machine Learning (TML) teams for further
processing and analysis. The detailed description of unit tests is mentioned in Section [5]
Figure [4.7| shows the workflow of the automated system.

20

i

Pass ETD in ceph in
Unit tests temp folder

Scripts (Gitlab) ¥
Extraction of Extraction of
metadata text

I —

XML to JSON

—

w
Merge
extracted r

metadata Text
preprocessing
v

ey
Validate
metadata

I

Yes

Preprocess the
metadata

¢ w v

Adding full text

to metadata

Store data in

ceph

Figure 4.7: Flow diagram of the automated system

21

[rootécentos-5596447975-72x4d thesis_subset|# cd 73988/
[rootécentos-5596447975-72x4d 73988]# 1s

73988.txt Muthirevula N T 2017.pdf Muthirevula N_T 2017.pdf.jpg Muthirevula N T 2017.pdf.txt contents dublin core.xml handle metadata thesis.xml

Figure 4.8: Folder structure of an ETD

Figure 4.9: GROBID unit test

4.2.5 List of Visualizations to be Provided in the Front End

Visualization Type:

« Type-none: "Dissertation" (Pie Chart)

Degree-level: "doctoral" (Bar Chart)

Contributor-department: "Mechanical Engineering" (Pie Chart)

Year: "2017" (get it from "date-issue") (Bar Chart)

4.2.6 Text Preprocessing

ASCII does not correctly encode all the characters in the PDF files; the text files converted
from these PDF files contain many meaningless and wrong characters. These characters
may have a negative impact on the query process. To address this problem, the stop
words are removed using the "corpus" package in NLTK [12].

The other issue is about numbers and garbage data characters that appear in the text
files. In general, the numbers shown in ETD files are related to reference numbers and
other numeric values. The reference numbers are not useful for query search; therefore,
we use regular expressions to remove these numbers. The following regular expressions
were used to clean the data:

« "[\d{1,20}]" to remove words with length greater than 20

22

"non

replace("...","") to remove "...

o re.sub("[\(\[]?[V\]]")"") to remove braces

replace(’b \’) to remove byte literal
« encode(Cascii’/ignore’) to remove non-ASCII characters

Note that this is an optional process. We provide two different versions, one that contains
raw data and another one that contains the processed data, which are required by the
Elasticsearch and Test Analysis and Machine Learning teams, respectively.

23

Chapter 5

Evaluation

5.1 Manual Testing

5.1.1 Testing of Chapter Level Text Extraction

In Section we explained how we use XPath to extract text based on the chapter
level. We noticed some problems after comparing the results to the chapter-wise results
extracted from ETDs manually. We use Justin Mark Bailey’s dissertation “Full Scale Ex-
perimental Transonic Fan Interaction with a Boundary Layer Ingesting Total Pressure
Distortion” as an example to show the differences; see Table and Figure For
XPath based extraction, we counted the first file for each chapter, as some chapters were
divided into numbers of files. This is why the completeness of XPath based chapter level
extraction technique is low.

24

Chapter 1 Introduction==In

order to meet stringent requirements for next generation commercial aviation, aircr
aft will need to employ more aerodynamic designs to 1) reduce noise, 2) improve land
ing, takeoff, and cruise emissions, and 3) improve fuel consumption

-These designs are expected to take the aviation industry away from traditional
‘tube-and-wing*

architectures into a more hybrid or blended wing body (HWB, BWB) design that will s
atisfy aircraft operation improvement
goals.A comparison between modern and proposed airframe architectures is sh

A common feature of these HWB airframes is the integration of the engines With the
aircraft

fuselage.This

relocation changes the inlet flow environment as the engines are no longer mounted
below the wings where uniform inlet flow is ingested for the majority of the flight
envelope.Mounting

the engines in close proximity to the airframe, or embedding them within the airfra
me, results in non-uniform (distorted) inlet flow caused by the airframe body or inl
et

ducts.In

the interest of performance and efficiency, modern commercial transport engines are
designed to tolerate only small levels of distortion, such as during takeoff or stro
ng crosswind

conditions.Integrated

propulsion systems will experience distorted inflow over the entire flight envelope
and their interaction with such conditions will need to be studied to determine how
engine performance is affected, and to support the design of distortion—tolerant
engines.To

determine how well engines can withstand such an environment, three criteria will n
eed to be evaluated in great detail; aeromechanics, stability, and
performance.Although

studies have shown that engine operation penalties are found in each one of these,
the overall benefit of highly integrated airframe and propulsion systems can justify
the operational challenges introduced to the engines

Chapter 1 — Introduction 1 Chapter 1 Introduction In

order to meet stringent requirements for next generation commercial aviation, aircr

aft will need to employ more aerodynamic designs to 1) reduce noise, 2) improve land

ing, takeoff, and cruise emissions, and 3) improve fuel consumption

[1,2]. These designs are expected to take the

a(cid:89)iation industr(cid:92) a(cid:9@)a(cid:92) from traditional

(cid:181)tube-and—(cid:9@)ing(cid:182)

architectures into a more hybrid or blended wing body (HWB,

atisfy aircraft operation improvement

goals. A comparison between modern and proposed airframe arch)tectures is shown in
e 1.1. Modern aircraft (cid:181)tube-and—(c 0) ing (cid:182)

sign (Left) and future blended wing design (Right

A common feature of these HWB airframes is the integration of the engines with the

aircraft

fuselage. This

relocation changes the inlet flow environment as the engines are no longer mounted

below the wings where uniform inlet flow is ingested for the majority of the flight

envelope. Mounting

the engines in close proximity to the airframe, or embedding them within the airfra

me, results in non-uniform (distorted) inlet flow caused by the airframe body or inl

t

BWB) design that will s

de

e
ducts. In

the interest of performance and efficiency, modern commercial transport engines are
designed to tolerate only small levels of distortion, such as during takeoff or stro
ng crosswind

conditions. Integrated

propulsion systems will experience distorted inflow over the entire flight envelope
and their interaction with such conditions will need to be studied to determine how
engine performance is affected, and to support the design of distortion—tolerant
engines.

determine how well engines can withstand such an environment, three criteria will n
eed to be evaluated in great detail; aeromechanics, stability, and

performance. Although

studies have shown that engine operation penalties are found in each one of these,
the overall benefit of highly integrated airframe and propulsion systems can justify
the operational challenges introduced to the engines

Figure 5.1: Chapter level text extraction by XPath vs. manual extraction by Diff

Checker

Table 5.1: Chapter level text extraction by XPath and manual extraction

XPath

Manual

Appendix

Just one section

Yes

Captions

No

Yes

Chapter completeness on
average (calculated by
counting the number of
words)

43.90%

90.88%

Formulas

Yes but lots of illegal
characters

Headers

Repeated each page

Illegal characters

Some letters are
converted to {cid:}

References in-text

Yes

References

Yes

Space between sentence

Yes

Texts in figures

Yes but many illegal
characters

25

From Table 5.1 we can see the performance of chapter level text extraction by XPath
is not as good as manual chapter level extraction.

The XPath based technique ignored captions, texts in figures, and formulas which
might include useful information. The percentage of the chapter completeness on av-
erage is a good indicator to show the performance of extractions. Manual extraction
has 90.88% completeness instead of 100% since there are many special characters, figure
captions, and formulas that could not be parsed correctly by the PDF to text parser [4].
However, it still performs much better than the chapter level text extraction by XPath
which has 43.90% for completeness on average. The differences in number of chapters
generated for 21 ETD documents by two types of extraction methods mentioned in Sec-
tion [4.2.1)are shown in Table We can see XPath does not perform well as only one of
the 21 documents has the correct number of chapters.

5.1.2 Testing of Extracted Text Preprocessing

The ETD text files extracted by PDFMiner.six [17] include many incorrect characters.
As shown in Figure these illegal characters are usually from non-English words. To
remove these garbage characters, we use NLTK to detect and remove them.

incrementally increase gripping ftorces ewvery time slip sensed |[48]. Havi e
n adjust force limits based deformablility 15 degree calculated object. Gra
ian relation, transformed tip forces. Solution detecting deformation based

For sake simplicity, cylindrical grasps considered common grasp type dail
nation motion sensor optimization method provided following chapters. 19 C
eriments previous glowve mechanism part previous work, results show previou
hs, 1, 2 3 joint angles 1, 2, 3, 4 angles constraint joints respect global
22112121221222211112111111112sincos2coscos 2cossin2sinsin(2sincos 2cossin)

Figure 5.2: Original text generated by PDFMiner.six

26

Table 5.2: Differences between chapter level text extraction by XPath and man-
ually extraction

Document XPath Manual Match
73987 15 5 No
73988 9 7 Close
74003 52 5 No
74047 3 1
74048 36 5 No
74049 46 5 No
74050 75 5 No
74233 5 5 Yes
74234 40 7 No
74235 12 5 No
74236 31 6 No
74237 23 5 No
74238 2 5 No
74239 154 7 No
74275 13 ETD in slides

format
74302 50 7 No
74383 85 5 No
74395 21 5 No
74396 1
74398 0 1
74423 31 6 No

27

zensor (—axis)} adjust forces based crientatic

ides reaction force based upcn force applied fo
igned manufactured assembled exoskeleton glowve

t faster linear Elastic Actuatcrs () This prot
verview chapters presented thesis presented sec
main contributions thesis Chapter : Provides c
developed followed literature review research g
tatement motivating application discussed chapt
rasp stability Chapter : Describes mechanical d
inkage mechanism This section alsc discusses se

Figure 5.3: Processed text

In general, the reference numbers of equations and citations are not useful during
processing of search queries. We use regular expressions to remove these characters.
The processed text is shown in Figure Long string of characters in the last line of
Figure 5.2/ have been removed in Figure and the numbers in parentheses have also
been removed.

5.1.3 Metadata Extraction Testing

We prepare a JSON file manually for any given ETD using the list of keys and then run
the tool to extract metadata from the same ETD. We inspect and compare both JSON
files; if all the key-value pairs match, it means that our script to extract metadata using
GROBID is working properly.

5.1.4 Automated Testing
Unit Test

Unit Testing is the first level of software testing where the smallest testable parts of a
software are tested. This is used to validate that each unit of the software performs as
designed.

A test case is a set of conditions which is used to determine whether a system under
test works correctly.

A test suite is a collection of test cases that are used to test a software program to show
that it has some specified set of behaviours by executing the aggregated tests together.

28

Stub

A stub is an object that holds predefined data and uses it to answer calls during tests. It

is used when you can’t or don’t want to involve objects that would answer with real data

or have undesirable side effects.

An example can be an object that needs to grab some data from the database to re-
spond to a method call. Instead of the real object, we introduced a stub and defined what

data should be returned [11]].

Unit test cases and their details

Table 5.3: Different test case scenarios.

pected file path.

Unit Test Name Description Expected Behaviour
. It hits the GROBID service | If service is up, test case
testGrobid .
status APL passes else fails.
Checks whether files are
If files are present, test case
testInputPDFPath present or not at the ex-

passes else fails.

testGrobidAndInputPath

Tests both the scenarios
where GROBID is up and
PDF files are present or not
at expected location.

If files are present and
GROBID is running, test
case passes.

testMetaDataFormat

Test whether the extracted
metadata is in elastic
search acceptable format

or not.

If metadata is present in
suitable format, test case
passes else it fails.

29

Chapter 6

User Manual

6.1 Where to Get Data

6.1.1 VTechWorks ETD collection

The Electronic Theses and Dissertations used for the project are available in VTech-
Works, the Virginia Tech institutional repository maintained by University Libraries.
These ETDs are open access and can be viewed and downloaded free of charge.

The following are the links through which the documents can be accessed:

« ETDs: Virginia Tech Electronic Theses and Dissertations:
http://hdl.handle.net/10919/5534

« Masters Theses:
http://hdl.handle.net/10919/9291

« Doctoral Dissertations:
http://hdLhandle.net/10919/11041

For the initial phase, a subset of these documents, documents from the year 2017,
was considered. Metadata extraction, chapter-wise segregation, and full-text extraction
were performed on this subset using GROBID. Metadata — which includes fields such as
author name, title, date of publication, and department — has been extracted and stored
in MongoDB.

30

http://hdl.handle.net/10919/5534
http://hdl.handle.net/10919/9291
http://hdl.handle.net/10919/11041

6.1.2 GitLab Repository

All files required to run the system are present in the Gitlab repository. Figure 6.1/ shows
all the files that are available in the repository.
https://code.vt.edu/cs5604/cme

Name Last commit
» PyPDF2 Cutom PyPDF2
[2) AddTextToMetadata.py Initial commit
[3) DataPreProcessing.py Initial commit
[DriverScript.py Initial commit
[5] MergeMetaData.py Initial commit
[2 MetadataExtracter.py Initial commit
[2) TextExtractor.py Initial commit
2] XML2JSONCoverter.py Initial commit
B _init_.PY Initial commit
[Z config.py Initial commit
B util.py Initial commit

Figure 6.1: GitLab file structure

31

https://code.vt.edu/cs5604/cme

6.1.3 Metadata Extraction and Ingestion in Ceph

The general steps to extract metadata from the ETDs and ingest it onto ceph are given
below.

1. GROBID is used to process the ETD PDF and extract the metadata in XML format.
The container for running GROBID is available at the following IP address:
http://2001.0468.0c80.6102.0001.7015.d574.516b.ip6.name:8070/

Full text as well as header processing of ETDs can be performed using the TEI
option.

o Not secure | 2001.0468.0c80.6102.0001.7015.¢2f5.550f ip6.name N \:}-

Grobid

About TEI PDF Patent Doc

About Grobid Bibliographical Extraction
ou
This is an open source software available on GitHub under Apache 2 License

Contact: Patrice Lopez.

Figure 6.2: GROBID Container

The GROBID server can also be accessed using a Python client. Figure [6.3| shows
a sample code snippet used to access GROBID through a Python client.

Hdef get xml(pdf,dir):

= GROBID URL = "http://: .0468. . . . N
1 FulltextDocument' % GROBID URL

url = '%
23 xml = requests.post(url, files = {'input' : open(pdf, 'rb")}).text
24 f = open(base path+dir+"/"+dir+".;ml", "w", encoding='utf-8')
75 f.write(xml)
26 f.close()

Figure 6.3: Python client to access GROBID

32

http://2001.0468.0c80.6102.0001.7015.d574.516b.ip6.name:8070/

2.

10

11

12

13

14

15

16

17

18

19

Elasticsearch requires the data to be in JSON format, but the default output
generated using GROBID is in XML format. Moreover, the JSON file needs to have
a key value for each object and in NDJSON (newline delimited JSON) format, as
mentioned in Section[4.2.3] A Python script (XML2JSONConverter.py) will convert
the XML file generated using GROBID to JSON format compatible for Elasticsearch.

The Sample Metadata Format is as shown in Listing

Listing 6.1: Raw Metadata extracted from ETD using GROBID

"format-medium": "ETD",
"description-abstract": "Future commercial
transport aircraft will feature more
aerodynamic architectures to accommodate

stringent design goals for higher fuel
efficiency, reduced cruise and taxi NOx
emissions, and reduced noise.",

"date-issued": "2017-01-05",
"publisher-none": "Virginia Tech",
"title-none": "Full Scale Experimental

Transonic Fan Interaction with a Boundary
Layer Ingesting Total Pressure Distortion",
"contributor-author": "Bailey, Justin Mark",
"contributor-committeemember": [
"Dancey, Clinton L",
"Lowe, Kevin T",
"Wicks, Alfred L",
"Ng, Wing Fai"

1,
"type-none": "Dissertation",
"description-degree": "PHD",
"degree-discipline": "Mechanical Engineering",
"subject-none": [
"Experimental Engine Testing",
"Distortion",

33

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

"Interaction",
"Total Pressure",
"Boundary Layer Ingesting"
1,
"contributor-department": "Mechanical
Engineering",
"degree-level": "doctoral",
"identifier-uri": "http://hdl.handle.net/10919/
73987",
"date-available": "2017-01-06T13:34:06Z2",
"handle": "73987",
"description-provenance": [
{
"description-provenance-summary": "Made
available in DSpace on 2017-01-06T1
3:34:06Z (GMT). No. of bitstreams]1
Bailey JM_D_2017.pdf9128042 bytes,
checksum7438e886322739e17247ed2c9076
58b@ (MD5) Previous issue date2017
-01-05"

"Author Email": [
"jmb@vt.edu"

"Advisor Email": []

1,

"identifier-other": "vt_gsexam:9274",

"rights-none": "This item is protected by
copyright and/or related rights. Some uses
of this item may be deemed fair and
permitted by law even without permission

34

44

45

46

47

48

from the rights holder(s), or the rights
holder (s) may have licensed the work for use

under certain conditions. For other uses
you need to obtain permission from the
rights holder(s).",

"degree-grantor": "Virginia Polytechnic
Institute and State University",

"date-accessioned": "2017-01-06T13:34:06Z2",

"contributor-committeechair": "O'Brien, Walter
F

"degree-name": "PHD"

A similar output is generated for all the ETDs and a JSON file containing the meta-
data for all the ETDs is created.

. Another script, AddTextToMetadata.py, will convert the ETD to text and add it as

a field to the extracted JSON metadata. This will allow for full text search on all
ETD documents.

A Python script to ingest the data into ceph has been written by the ELS team. The
data is available at mnt/ceph/cme/metadata_subset.json.

. DriverScript is also present, to run all the above scripts, to enable all tasks from

metadata extraction to the ingestion in Elasticsearch.

35

Chapter 7

Developer’s Manual

In this chapter, we provide details about our timeline of this project, applications we have
used to communicate in the team, and what we have done. Therefore, we will focus more
on how the project can be used to get the metadata and text extracted.

7.1 Timeline

Figure[7.1] shows the task completion timeline.

36

R b diff Organize metadata
esearch dilferent

’ . Clean text ,
parsers and pick the Presentation

) " Submit visualization requirements
best ones for this

Setup GROBID

o N

project Final Report

09.19.2019 10.10.2019 0.31.2019 11.21.2019 2.05.2019

1. Parse and organized ETD 1. Create an

data and put in ceph Automated Suite
2. Chapterwise Extraction 2. Upload all scripts
3. Extract TF-IDF tags on Gitlab

Figure 7.1: Timeline

7.2 Slack

Our group used slack to communicate with all members in the "cme" channel in Slack.
At the same time, we use the channel called "general" to communicate with other dif-
ferent groups in this project. Figure shows the different slack channels we used to
communicate with the other teams.

37

CS5604 -

Za Jump to...
Channels
cme

general

int-service-requests

random

Add a channel

Figure 7.2: Slack

7.3 GROBID

To install GROBID in a local computer, use the following instructions.

7.3.1 Install in Ubuntu

Step 1: Update System
apt—get update

Step 2: Install JDK
Before installing GROBID on a local computer or empty container, Java JDK Version 1.8
has to be set up already.

apt—get —y install openjdk-8-jdk wget unzip
Step 3: Download and install GROBID in /opt

wget https:// github.com/kermitt2/grobid/archive/0.5.5. zip
unzip 0.5.5.zip

38

Step 4: Download Gradle Gradle is a dependency required for running GROBID.
wget https://services.gradle.org/distributions/gradle —3.4.1-bin. zip
Step 5: Install Gradle

mkdir /opt/gradle
unzip —d /opt/gradle gradle —3.4.1-Dbin. zip
export PATH=$PATH:/ opt/gradle/gradle —3.4.1/bin

After installing everything, Figures[7.3]and [7.4 show what is available in the directories.

LICENSE NOTICE getting-started.html

Figure 7.3: Files in the Gradle folder

Dockerfile
gradlew.bat mkdocs .yml

Readme.md build.gradle gradle.properties settings.gradle

Figure 7.4: Files in the GROBID folder

Step 6: Run GROBID
First, get into directory /opt/grobid-0.5.5, and then run the command below:

./ gradlew run

Step 7: Run GrobidcURL.py
Once GROBID is running, call the command below to run the Python file to get the
metadata.

python Grobid_cURLpy

7.4 PDFMiner

Step 1: Install and Test PDFMiner.six
PDFMiner.six is a fork of PDFMiner for Python3.X.

39

pip install pdfminer.six
pdf2txt.py samples/simplel.pdf

Step 2: Run PDFMiner.six
Run PDFMiner.six to extract text:

pdf2txt.py —t type —o outputfile pdffile
Run PDFMiner.six to extract tables:
dumppdf.py -T —o outputfile pdffile

Usage: [-t] defines the output type, such as txt, html and xml. [-o0] defines the output path.

7.5 TF-IDF

Step 1: Install Gensim

pip install gensim
Step 2: Run tf-idf-tool.py

The tf-idf-tool.py is a Python script to read text ETDs and calculate tf-idf values. The
saved tf-idf model is in /mnt/ceph/cme/tf-idf.

python tf—-idf_tool.py

Step 3 (optional): Run use-tfidf.py
Run use-tfidf.py to check the result.

python use—tfidf.py

what is document name: Childress_TL_T_2013.pdf. txt

where is the saved tf—-idf model: /mnt/ceph/cme/tf—idf/model. tfidf
where is the doc to index dictionary: /mnt/ceph/cme/tf—-idf/d2i
where is the BOW corpus model: /mnt/ceph/cme/tf—idf/corpus

40

Chapter 8

Challenges and Limitations

One of our challenges is to extract images, tables, and formulae from PDF. This includes
extraction of both metadata and text. However, we haven’t found a reliable library to
help us reach this point.

Another issue that limits the ETD output data quality is addressed here. For now, the
quality of extracted ETD data relies on the performance of GROBID. However, GROBID
does not always process PDF files well. Hence, the outputs, such as metadata and content,
may be slightly different from the original PDF files.

41

Chapter 9

Future Scope

9.1 Improving Chapter Level Text Extraction

Chapter level text extraction can be improved by using various techniques based on OCR.
Such an extraction can used for solving the Big Data Summarization problem for obtain-
ing the summary of each chapter.

9.2 Batch Processing of the Documents

In the future, one can perform batch processing of the ETD Data. Batch processing will
considerably reduce the time required for converting the ETD documents which are in
PDF to a TEI XML format.

9.3 Improving Automation Suite

Loggers can be implemented to log the different steps of the automation suite so that it is
easier to understand what is going on in the background. Code coverage can be improved
significantly. More trigger points can be added to initiate the automation suite to give
additional options to the user. This allows users to choose whether they want to execute
batch processing or use single-threaded processing.

42

Chapter 10

Acknowledgements

The project has been implemented during the course of CS5604, Information Storage
and Retrieval, at Virginia Tech. The data used was the ETDs available on VTechWorks.

We would like to thank Dr. Edward Fox for giving us the opportunity to work on
this interesting and challenging project. We are grateful for his advice and guidance. We
would also like to thank the GTA, Ziqian Song, for her guidance and support throughout
the course project. We thank Bipasha Banerjee for her expertise about the ETD data
and also for guiding us in the proper direction. We thank other teams for their help in
integration, and for sharing their knowledge and insights with us. We also acknowledge
the creators of all the open source tools and software packages and libraries we used
to implement this project. We also thank IMLS for its support of ETD-related research
through grant LG-37-19-0078-19.

43

Bibliography

[1]

[2]
[3]

[4]

[10]

The TEI Guidelines. https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.
html, accessed on Oct. 20, 2019.

Apache Tika, 2007 — 2019. https://tika.apache.org/, accessed on October 12, 2019.

Grobid, 2008 — 2019. https://github.com/kermitt2/grobid, accessed on October 30,
2019.

PyPDF2, May 2014 — 2016. https://pythonhosted.org/PyPDF2/, accessed on October
15, 2019.

Science Parse, 2015 — 2019. https://github.com/allenai/science-parse, accessed on
October 30, 2019.

AsHIsH, B., GUANGCHEN, L., BEICHEN, L., AND STEPHEN, L. CS4984/CS5984: Big data
text summarization team 10 etds, 2018. http://hdl.handle.net/10919/86418, accessed
on October 25, 2019.

Erastic. Elasticsearch. https://xebialabs.com/technology/elasticsearch/, accessed
on October 20, 2019.

FAarRNAzZ, K., AsHIN, M. T., CHINMAYA, P., DHRUV, S., AND JOHN, A. C54984/CS5984:
Big data text summarization team 17 etds, 2018. http://hdl.handle.net/10919/86420,
accessed on October 25, 2019.

GLATTHORN, A. A, AND JOYNER, R. L. Writing the winning thesis or dissertation: A
step-by-step guide. Corwin Press, 2005.

Havcock, L. A. Citation analysis of education dissertations for collection develop-
ment. Library Resources & Technical Services 48, 2 (2013), 102—106.

44

https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://tika.apache.org/
https://github.com/kermitt2/grobid
https://pythonhosted.org/PyPDF2/
https://github.com/allenai/science-parse
http://hdl.handle.net/10919/86418
https://xebialabs.com/technology/elasticsearch/
http://hdl.handle.net/10919/86420

[11]

[12]

[13]

[14]

Lipski, M. Stub. https://www.softwaretestingmagazine.com/knowledge/unit-
testing-fakes-mocks-and-stubs/, accessed on October 25, 2019.

LOPER, E., AND BIRD, S. NLTK: the natural language toolkit. arXiv preprint cs/0205028
(2002).

Lopez, P. Grobid: Combining automatic bibliographic data recognition and term
extraction for scholarship publications. In Research and Advanced Technology for
Digital Libraries (Berlin, Heidelberg, 2009), M. Agosti, J. Borbinha, S. Kapidakis,
C. Papatheodorou, and G. Tsakonas, Eds., Springer Berlin Heidelberg, pp. 473-474.

NAMAN, A., RITESH, B., WiLLiam, I, PALAKH, J., SAMPANNA, K., AND XINYUE, W. Big
data text summarization: Using deep learning to summarize theses and disserta-
tions, 2018. http://hdl.handle.net/10919/86406, accessed on October 25, 2019.

REHUREK, R., AND Sojka, P. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks (Valletta, Malta, May 2010), ELRA, pp. 45-50. http://is.muni.cz/
publication/884893/en.

SarLToN, G., AND McGiLL, M. J. Introduction to modern information retrieval.
McGraw-Hill, 1983.

SHINYAMA, Y. PDFMiner, Oct. 2007. https://github.com/euske/pdfminer.

SPERBERG-MCQUEEN, C. M., AND BERNARD, L., Eds. Guidelines for the encoding and
interchange of machine-readable texts, 1.0 ed. Text Encoding Initiative, Chicago,
1990.

Traczyk, D., CoLLINS, A., SHERIDAN, P., AND BEEL, J. Evaluation and compari-
son of open source bibliographic reference parsers: A business use case. CoRR
abs/1802.01168 (2018). http://arxiv.org/abs/1802.01168.

TkAczYK, D., COLLINS, A., SHERIDAN, P., AND BEEL,]. Machine learning vs. rules and
out-of-the-box vs. retrained: An evaluation of open-source bibliographic reference
and citation parsers. arXiv.org (2018).

45

https://www.softwaretestingmagazine.com/knowledge/unit-testing-fakes-mocks-and-stubs/
https://www.softwaretestingmagazine.com/knowledge/unit-testing-fakes-mocks-and-stubs/
http://hdl.handle.net/10919/86406
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://github.com/euske/pdfminer
http://arxiv.org/abs/1802.01168

[21] VIRGINIATECHUNIVERSITYLIBRARIES. ETDs: Virginia Tech Electronic Theses and
Dissertations. https://vtechworks.lib.vt.edu/handle/10919/5534, accessed on Oct. 20,
2019.

46

https://vtechworks.lib.vt.edu/handle/10919/5534

	List of Figures
	List of Tables
	Introduction
	Overview
	VTechWorks ETD Dataset
	Problem Definition

	Literature Review
	PDF Processing
	Overview
	Evaluation of Open-Source Bibliographic Reference and Citation Parsers
	Big Data Text Summarization
	GROBID
	Science Parse
	Apache Tika
	PDFMiner
	PyPDF2

	Requirements
	Extract Metadata and Text for ETD Corpus
	Preprocess the ETD corpus
	User Support

	Approach, Design, Implementation
	Experiment Design
	Implementation
	Chapter Level Text Extraction
	TF-IDF Calculation
	Transforming Metadata for Ingestion in Elasticsearch
	Development of an Automated System
	List of Visualizations to be Provided in the Front End
	Text Preprocessing

	Evaluation
	Manual Testing
	Testing of Chapter Level Text Extraction
	Testing of Extracted Text Preprocessing
	Metadata Extraction Testing
	Automated Testing

	User Manual
	Where to Get Data
	VTechWorks ETD collection
	GitLab Repository
	Metadata Extraction and Ingestion in Ceph

	Developer's Manual
	Timeline
	Slack
	GROBID
	Install in Ubuntu

	PDFMiner
	TF-IDF

	Challenges and Limitations
	Future Scope
	Improving Chapter Level Text Extraction
	Batch Processing of the Documents
	Improving Automation Suite

	Acknowledgements
	Bibliography

