
A Defense-In-Depth Security Architecture for
Software Defined Radio Systems

Seth D. Hitefield

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Thomas C. Clancy, Chair
Ali Butt, Co-chair
Jonathan T. Black

Allen B. MacKenzie
Yaling Yang

December 2, 2019
Blacksburg, Virginia

Keywords: Wireless Communications, Software Defined Radio, Security, Isolation
Copyright 2020, Seth D. Hitefield

A Defense-In-Depth Security Architecture for
Software Defined Radio Systems

Seth D. Hitefield

(ABSTRACT)

Modern wireless communications systems are constantly evolving and growing more complex.
Recently, there has been a shift towards software defined radios due to the flexibility soft-
ware implementations provide. This enables an easier development process, longer product
lifetimes, and better adaptability for congested environments than conventional hardware
systems. However, this shift introduces new attack surfaces where vulnerable implementa-
tions can be exploited to disrupt communications or gain unauthorized access to a system.
Previous research concerning wireless security mainly focuses on vulnerabilities within pro-
tocols rather than in the radios themselves. This dissertation specifically addresses this new
threat against software radios and introduces a new security model intended to mitigate
this threat. We also demonstrate example exploits of waveforms which can result in either a
denial-of-service or a compromise of the system from a wireless attack vector. These example
exploits target vulnerabilities such as overflows, unsanitized control inputs, and unexpected
state changes.

We present a defense-in-depth security architecture for software radios that protects the
system by isolating components within a waveform into different security zones. Exploits
against vulnerabilities within blocks are contained by isolation zones which protects the rest
of the system from compromise. This architecture is inspired by the concept of a microkernel
and provides a minimal trusted computing base for developing secure radio systems. Unlike
other previous security models, our model protects from exploits within the radio protocol
stack itself and not just the higher layer application. Different isolation mechanisms such
as containers or virtual machines can be used depending on the security risk imposed by
a component and any security requirements. However, adding these isolation environments
incurs a performance overhead for applications. We perform an analysis of multiple example
waveforms to characterize the impact of isolation environments on the overall performance
of an application and demonstrate the overhead generated from the added isolation can be
minimal. Because of this, our defense-in-depth architecture should be applied to real-world,
production systems. We finally present an example integration of the model within the GNU
Radio framework that can be used to develop any waveform using the defense-in-depth se-
curity architecture.

A Defense-In-Depth Security Architecture for
Software Defined Radio Systems

Seth D. Hitefield

(GENERAL AUDIENCE ABSTRACT)

In recent years, wireless devices and communication systems have become a common part of
everyday life. Mobile devices are constantly growing more complex and with the growth in
mobile networks and the Internet of Things, an estimated 20 billion devices will be connected
in the next few years. Because of this complexity, there has been a recent shift towards
using software rather than hardware for the primary functionality of the system. Software
enables an easier and faster development process, longer product lifetimes through over-
the-air updates, and better adaptability for extremely congested environments. However,
these complex software systems can be susceptible to attack through vulnerabilities in the
radio interfaces that allow attackers to completely control a targeted device. Much of the
existing wireless security research only focuses on vulnerabilities within different protocols
rather than considering the possibility of vulnerabilities in the radios themselves. This work
specifically focuses on this new threat and demonstrates example exploits of software radios.
We then introduce a new security model intended to protect against these attacks.

The main goal of this dissertation is to introduce a new defense-in-depth security architecture
for software radios that protects the system by isolating components within a waveform into
different security zones. Exploits against the system are contained within the zones and
unable to compromise the overall system. Unlike other security models, our model protects
from exploits within the radio protocol stack itself and not just the higher layer application.
Different isolation mechanisms such as containers or virtual machines can be used depending
on the security risk imposed by a component and any security requirements for the system.
However, adding these isolation environments incurs a performance overhead for applications.
We also perform a performance analysis with several example applications and show the
overhead generated from the added isolation can be minimal. Therefore, the defense-in-depth
model should be the standard method for architecting wireless communication systems. We
finally present a GNU Radio based framework for developing waveforms using the defense-
in-depth approach.

Dedication

To my family, friends, and colleagues who have always supported me.

iv

Acknowledgments

There are many people I would like to thank for helping me throughout my Ph.D.; it would
not have been possible for me to achieve this goal without their support in my life.

First, I would like to thank my advisors Dr. Charles Clancy and Dr. Ali Butt for their vision,
support, and encouragement during this process. Your guidance was integral in helping me
achieve this goal. I would also like to thank Dr. Allen MacKenzie, Dr. Yaling Yang, and Dr.
Jonathan Black for taking the time and effort to serve on my committee. While not on my
committee, I would also like to thank Dr. Joseph Ernst for guidance in helping me set up
my committee and direct me on a path to finishing and Dr. Dan Doyle for his willingness
to discuss my progress over the last semester.

Next, I have been very fortunate to work at the Hume Center and Space@VT during my
time in graduate school and have the opportunity to work on multiple research projects
with many amazing faculty, staff, and graduate students. I have greatly enjoyed my time
at Virginia Tech and look forward to continued collaboration in the future. I want to thank
Michael Fowler, Sonya Rowe, Zach Leffke, Bill Clark, Dr. Alan Michaels, Dr. Chris Headley,
and Dr. Joseph Gaeddert for all of your constant support and guidance. I also want to
thank Bryse Flowers for his help with the testing framework and willingness to give valuable
feedback on papers and thank Dr. Jason McGinthy for keeping me grounded when I needed
to decompress and get away from the lab.

Finally, I would like to thank my family, friends, and my Northstar Church community
for their constant love, support, and encouragement throughout my Ph.D. and my time in
Blacksburg. Without you all, this would not have been possible. Thank you all.

v

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Software Trend . 2

1.1.1 New Attack Surface . 2

1.1.2 CyberElectronic Warfare . 4

1.2 Motivation . 4

1.3 Contributions . 5

1.4 Publications . 7

1.5 Dissertation Outline . 8

2 Background 10

2.1 Software Defined Radio . 10

2.1.1 Frameworks . 12

2.2 Emerging Technologies . 14

2.2.1 Cognitive Radios . 14

2.2.2 Cloud Radio Access Networks . 14

2.2.3 Satellite Communications . 14

2.2.4 Sensor Networks . 15

2.3 Principles of Security . 15

2.3.1 Confidentiality, Integrity, Availability 15

2.3.2 Principle of Least Privilege . 16

2.3.3 Multi-Layer Security/Defense-in-Depth 16

2.4 Vulnerabilities . 17

vi

2.4.1 Buffer Overflows . 17

2.4.2 Shellcode Injection . 18

2.4.3 Defenses . 20

2.4.4 Integer Overflows . 21

2.4.5 Off-By-One . 21

2.4.6 Privilege Escalation . 21

2.5 Virtualization . 22

2.5.1 Hardware Virtualization . 22

2.5.2 Operating System Virtualization . 22

3 Related Work 24

3.1 Security Issues in Software Radio . 25

3.2 Wireless Firmware Exploits . 27

3.2.1 Cellular (GSM) Baseband Exploit . 28

3.2.2 Broadcom Wi-Fi Exploit . 28

3.2.3 BlueBourne Exploit . 29

3.3 SDR Security Models . 29

3.4 Limitations of Existing Approaches . 31

3.5 Summary . 31

4 Exploiting Software Defined Radios 33

4.1 Control Flow Manipulation . 34

4.2 Un-sanitized Control Parameters . 37

4.3 Buffer Overflows . 40

4.3.1 Heap Overflow Exploit . 41

4.4 Stack Overflow Exploit . 42

4.5 Summary . 49

5 Defense-in-Depth Architecture for Software Radios 51

5.1 Overview . 52

vii

5.2 Security Plane . 54

5.2.1 Isolation . 54

5.2.2 Device Drivers . 56

5.2.3 Inter-Process/Domain Communication 57

5.2.4 Monitoring . 58

5.2.5 Policy Enforcement . 58

5.3 Control Plane . 59

5.4 Data/Application Plane . 60

5.5 Policy Management . 61

5.6 Layered Defenses . 61

5.7 Challenges . 62

5.8 Summary . 63

6 Performance Analysis 65

6.1 Overhead Characterization . 66

6.2 Testing Framework . 68

6.2.1 Components . 70

6.2.2 Workflow . 71

6.2.3 Test Configurations . 71

6.3 Test Waveforms . 74

6.3.1 GNU Radio Flowgraphs . 74

6.3.2 LiquidDSP Waveforms . 76

6.3.3 Stress-ng Tests . 77

6.3.4 Split Flowgraphs . 78

6.4 Testing Challenges . 79

6.4.1 Frequency Scaling . 79

6.4.2 Hyperthreading . 80

6.4.3 Sample Count . 83

6.4.4 VOLK Profile . 87

viii

6.4.5 Randnf() Function . 88

6.4.6 Software Configurations . 90

6.4.7 Takeaways . 92

6.5 Results . 93

6.5.1 GNU Radio Results . 93

6.5.2 LiquidDSP Results . 102

6.5.3 Stressor Results . 109

6.5.4 Additional Takeaways . 121

6.5.5 Conclusions . 123

6.6 Summary . 124

7 Example Implementations 126

7.1 Applications . 126

7.1.1 Example Implementation . 127

7.2 Challenges . 128

7.2.1 Networking Based . 130

7.2.2 Custom Buffers Based . 132

7.2.3 Shared Memory Based . 134

7.3 GNU Radio Defense-in-Depth Framework 134

7.3.1 Components . 135

7.4 Summary . 137

8 Conclusions 138

8.1 Summary . 138

8.2 Future Work . 139

8.2.1 Performance Evaluation . 139

8.2.2 System Optimization . 140

8.2.3 System Implementations . 140

Bibliography 141

ix

List of Figures

1.1 Example attack surface of a software defined radio 3

2.1 Example of a software defined FM receiver 11

2.2 Example OSI network stack for software radios 11

2.3 Diagram of a stack frame and overflow exploit 19

2.4 Comparison of virtual machines and containers 23

3.1 Secure Radio Middleware security model for SDRs 30

4.1 FlexFrame state machine implementation . 34

4.2 FlexFrame state machine diagram . 36

4.3 Example timeline of a DoS attack against a control flow vulnerability 36

4.4 Example of normal frame structure versus an attack frame 40

4.5 GNU Radio receiver for a sensor node using a vulnerable router block 43

4.6 Vulnerable message handling function in the router block 44

4.7 Example of stack layout after a successful exploit 45

4.8 Console output showing normal receiver behavior 46

4.9 Console output showing a successful exploit 47

4.10 Example GNU Radio exploit flowgraph . 49

5.1 Basic defense-in-depth SDR architecture . 53

5.2 Split device driver model for the defense-in-depth architecture 57

5.3 Defense-in-depth SDR with nested isolation 62

6.1 Diagram of the performance testing framework 69

6.2 Example Jinja test configuration . 72

6.3 Example of an auto-generated YAML test configuration 73

x

6.4 Null_Test flowgraph . 75

6.5 GMSK_Loopback test flowgraph . 75

6.6 Flowgraph performance with CPU frequency scaling enabled and disabled . 81

6.7 Flowgraph performance of pinned versus unpinned processes 82

6.8 Sample count versus flowgraph performance 84

6.9 Time elapsed versus flowgraph performance 85

6.10 Sample count versus time elapsed . 87

6.11 Flowgraph performance based on the enabled VOLK profile 89

6.12 Flowgraph performance when calling randnf from LiquidDSP 90

6.13 Flowgraph performance when calling randnf from LiquidDSP (multi-core) . 91

6.14 Null_Test flowgraph performance . 94

6.15 Null_Test throughput with multiple copy blocks (blocks vs throughput) . . 96

6.16 Null_Test throughput with multiple copy blocks (cores vs throughput) . . . 97

6.17 Bytes_Loopback flowgraph throughput . 99

6.18 GFSK_loopack flowgraph throughput comparison 102

6.19 LiquidDSP multi-threaded filter throughput 103

6.20 LiquidDSP multi-threaded FlexFrame throughput (no synchronization) . . . 105

6.21 LiquidDSP multi-threaded FlexFrame throughput (with synchronziation) . . 106

6.22 LiquidDSP multi-threaded FlexFrame throughput (with linked list) 108

6.23 Matrix stressor results . 110

6.24 Stream stressor results . 111

6.25 Virtual memory stressor results (flip method) 113

6.26 Virtual memory stressor results (write64 method) 114

6.27 Context switching stressor results . 116

6.28 Split Null_Test flowgraph performance . 118

6.29 Split GFSK_Loopback flowgraph performance 120

7.1 Example CRAN (Cloud Radio Access Network) architecture 127

7.2 Example of a GNU Radio flowgraph without custom buffer support for GPUs 132

xi

7.3 Example of a GNU Radio flowgraph with custom buffer support for GPUs . 133

7.4 Defense-in-Depth GNU Radio Framework 135

xii

List of Tables

3.1 Threats to SDR systems . 26

3.2 Comparison of SDR security architectures 32

4.1 Control fields for a cognitive OFDM waveform using LiquidDSP 39

6.1 Flowgraph performance with CPU frequency scaling enabled and disabled . 80

6.2 Flowgraph performance comparison based on sample count 83

6.3 Flowgraph performance comparison based on time elapsed 86

6.4 Flowgraph performance comparison based on the enabled VOLK profile . . . 88

6.5 Waveform performance of a LiquidDSP waveform calling randnf 92

6.6 Null_Test flowgraph throughput . 95

6.7 Null_Test flowgraph throughput (with copy blocks) 98

6.8 Bytes_Loopback flowgraph throughput . 100

6.9 GFSK_Loopback flowgraph throughput . 101

6.10 LiquidDSP multi-threaded filter throughput 104

6.11 LiquidDSP multi-threaded FlexFrame throughput (no synchronziation) . . . 104

6.12 LiquidDSP multi-threaded FlexFrame throughput (with synchronization) . . 107

6.13 LiquidDSP multi-threaded FlexFrame throughput (with linked list) 107

6.14 CPU stressor performance results . 109

6.15 Stream (memory) stressor performance results 112

6.16 Virtual memory stressor performance results 115

6.17 Context switching stressor performance results 117

6.18 Split Null_Test flowgraph performance . 119

6.19 Split GFSK_Loopback flowgraph performance 121

xiii

List of Abbreviations

API Application Programming Interface

ASIC Application Specific Integrated Circuitry

ASLR Address Space Layout Randomization

bogo/s Bogus Operations per Second

C-RAN Cloud Radio Access Network

CIA Confidentiality, Integrity, Availability

CORBA Common Architecture Request Broker Architecture

CPU Central Processing Unit

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DDOS Distributed Denial of Service

DEP Data Execution Prevention

DOS Denial of Service

DSA Dynamic Spectrum Access

DSP Digital Signal Processing

FEC Forward-Error-Correction

FIR Finite Impulse Response

FM Frequency Modulation

GFSK Gaussian Frequency Shift Keying

GMSK Gaussian Minimum Shift Keying

GPS Global Positioning System

GPU Graphics Processing Unit

GSM Global System for Mobile Communications

xiv

HSPA High Speed Packet Access

IDS Intrusion Detection Systems

IoE Internet of Everything

IoT Internet of Things

IPC Inter-Process Communication

IT Information Technology

LTE Long-Term Evsolution

MBps Megabytes per Second

Mbps Megabits per Second

MILS Multiple Independent Levels of Security/Safety

MIMD Multiple-Instruction-Multiple-Data

MPU Memory Protection Unit

Msps Megasamples per Second

MTU Maximum Transmission Unit

NFV Network Function Virtualization

NOP No Operation

OFDM Orthogonal Frequency-Division Multiplexing

OSI Open Systems Interconnection

OTA Over the Air

PID Process ID

POSIX Portable Operating System Interface

RAN Radio Access Network

RCE Remote Code Execution

RF Radio Frequency

RPC Remote Procedure Call

xv

SCA Software Communications Architecture

SDN Software Defined Network

SDR Software Defined Radio

SIMD Single-Instruction-Multiple-Data

SNR Signal-to-Noise Ratio

SRM Secure Radio Middleware

SSH Secure Shell

SWaP Size, Weight and Power

TCB Trusted Computing Base

TCP Transmission Control Protocol

TMSI Temporary Mobile Subscriber Identity

USRP Universal Software Radio Peripheral

VM Virtual Machine

VOLK Vector Optimized Library of Kernels

xvi

Chapter 1

Introduction

Wireless communications systems have become ubiquitous in everyday life and many times
we are unaware of the considerable number of wireless devices we depend on and interact
with on a regular basis. Innovations in embedded hardware and wireless technology have
enabled the massive growth of cellular networks, mobile broadband, and the Internet-of-
Things (IoT). Devices are growing smaller, yet are more powerful, capable, and connected
than ever before. Predictions for the number of Internet connected devices widely vary [1],
with many estimates stating 20+ billion devices could be connected within the next few
years [2, 3]. A key enabling technology underlying all of these networks and smart devices
is wireless communications.

Because of the massive growth of these wireless networks, security should be a primary
concern for systems since the possible attack surface is practically unbounded. Unlike tra-
ditional Information Technology (IT) networks and systems, the wireless networks have no
well defined borders or endpoints that can be secured against attack; there are simply too
many devices and inter-connected networks to consider. With the rapid pace of technology,
security for these systems is often overlooked or is simply a low priority and is added as an
afterthought. Many systems either do not have the proper security capabilities, are poorly
designed or configured, or are plagued by poor programming practices. This results in a high
probability they are vulnerable to attack [2, 4, 5]. Security is lagging behind in industry as
a whole, and these vulnerable systems present a tempting target to attackers who can use
them as a vector for attacking other, more valuable systems.

The wireless interfaces themselves are one aspect that can be quickly overlooked from a se-
curity perspective. If security is a consideration during development, then the primary focus
is usually the protocols implemented by each interface rather than on the implementation
itself. However, these implementations themselves can be vulnerable to attack. Smart de-
vices can easily include multiple wireless interfaces and can connect to multiple networks,
so this overall problem is only exacerbated. For example, modern smart phones typically
support multiple generations of cellular networks (5G, 4G LTE, 3G), local networks (Wi-Fi,
Bluetooth), and other receivers (GPS). The research presented in this dissertation focuses
specifically on vulnerabilities that can exist within these wireless interfaces and implemen-
tations.

1

2 Chapter 1. Introduction

1.1 Software Trend

Wireless systems have greatly evolved over recent years; modern systems are exponentially
more complex, powerful, and smaller than ever before. There has been a growing push
towards implementing wireless systems using software rather than hardware due to this
complexity. Software based systems provide many different benefits over traditional hard-
ware systems because of the flexible nature of software [6]. They are easily modified to
address changing application requirements and are capable of supporting both current and
future wireless standards.

With conventional systems, all implemented functionality is fixed, so new Application Spe-
cific Integrated Circuitry (ASIC) must be developed to support new standards and protocols.
Developing and testing this new hardware can be a timely and expensive process. On the
other hand, software implementations are flexible by nature, allowing multiple different wire-
less standards to be implemented on the same platform; resources can be efficiently shared
and reused when needed. Software defined systems also result in easier and faster develop-
ment and longer overall product lifetimes, since supporting new standards requires only a
software update. Compared to conventional hardware systems, maintaining and upgrading
production systems with new functionality is far simpler and cheaper.

Software Defined Radios (SDRs) are a fundamental technology for developing the next-
generation of wireless systems. The key concept is the digital signal processing functionality
traditionally implemented in hardware is now implemented with software. While the concept
of SDRs was first introduced in the 1990s [7], the limited performance of older hardware sys-
tems limited SDR use mainly to research, development, and testing roles. Recent embedded
systems are now powerful enough to implement production SDRs for real-world systems. For
example, NVIDIA’s Tegra 4i embedded processor includes an Integrated i500 SDR modem
and is capable of supporting multiple cellular standards such as LTE, HSPA+, and GSM [6].

1.1.1 New Attack Surface

However, this shift towards software implementations creates new attack surfaces for wireless
systems and introduces new security threats that are not necessarily obvious (specifically
the implementation itself). Wireless systems always have certain security threats, but the
nature of SDRs creates a new set of threats specific to the software implementation itself.
Vulnerabilities can exist in an implementation due to programming errors or faulty designs,
and could easily be exploited by an attacker in order to completely compromise the targeted
system. The more complex a software implementation becomes, the greater the chance of
such a vulnerability existing [8]. An example block diagram of SDR components and this
new attack surface is shown in Figure 1.1.

This issue is compounded due to the complexity and rapidly evolving nature of wireless

1.1. Software Trend 3

Hardware Software

Antenna

Filters

Tuner

DAC ADC

Application

Session

Transport

Routing

Framer

Coder

Modem

Detect/Sync

Driver

Sy
st

em
 B

us

FPGA

DSP

Memory

GPU

CPU

N
ew

 A
tta

ck
 S

ur
fa

ce
C

yb
er

se
cu

rit
y

At
ta

ck
s

Ja
m

m
in

g
At

ta
ck

s

Figure 1.1: Example attack surface of a software defined radio. The highlighted components
(which were traditionally implemented in hardware and are now implemented using software)
could have vulnerabilities that allow attackers to compromise the system or embedded device.

standards. With faster development timelines, security can be neglected in order to meet
deadlines; programming mistakes or design flaws can create vulnerabilities such as buffer
overflows that can be easily overlooked during development. There can also be a tendency
to focus on end-user functionality during development and only address security as different
issues arise after deployment. These systems also do not endure the same level of rigorous
testing as a conventional hardware system which increases the chances that vulnerabilities
can exist. As standards become more complex and more systems are implemented in soft-

4 Chapter 1. Introduction

ware, the probability of serious vulnerabilities existing in implementations only increases.

However, most of the past research in wireless security has been focused toward vulnerabili-
ties in specific protocols and standards rather than the implementation itself [9, 10, 11, 12].
Attackers look for vulnerabilities to exploit in protocols, and defenders attempt to patch any
discovered vulnerability to secure the system. The evolution of Wi-Fi security is a prime
example of how vulnerabilities were discovered and new protocols were developed to address
these flaws [9, 10].

Historically, software and hardware required to test or exploit wireless systems were very
expensive, highly specialized, or did not exist. This sometimes leads to wireless security
being less of a priority and easily neglected. With software radio and other low-cost hardware
now readily available, the barriers to wide-spread penetration testing and exploitation of
wireless systems have been significantly lowered which makes security a primary concern
when developing systems.

1.1.2 CyberElectronic Warfare

Traditionally, attacks on wireless systems (jamming) attempt to disrupt signals at the lowest
layer of the system stack: the physical layer. However, with this new attack surface, systems
are now becoming susceptible to traditional cyber-security exploits that allow attackers to
compromise the system. Attacks have begun to move up the network stack into the higher
layers of the software such as the routing and data layers of the system.

This merging of the traditionally separate electronic-warfare and cyber-security domains
results in a new “cyber-electronic warfare” area where traditional cyber-security techniques
are used to disrupt wireless communications [13]. Even though standards are heavily vetted
prior to production, each specific vendor’s implementation of those standards will be unique
and may have weaknesses. Specifically, if the behavior of the system can be modified in a
way that causes a denial-of-service (DoS) by a software attack, then this can be considered
persistent jamming (knock a receiver offline without the need for constant jamming).

1.2 Motivation

Unfortunately, security still tends to be an afterthought during the development of wire-
less systems; there can be a tendency to develop and deploy products rapidly and only
tackle security issues whenever they arise. The growing shift towards software implementa-
tions compounds this since patching security issues can be as simple as publishing a minor
software update over-the-air (OTA). With the number of devices constantly increasing, stan-
dards becoming more complex, and more systems shifting over to software implementations,
threats are becoming more real against systems. There needs to be a fundamental shift in

1.3. Contributions 5

developer’s mindsets where security is a primary design requirement from the earliest stages
of development. Vulnerabilities can always exist in software even if security is a major focus,
but including security from the beginning ensures a stronger foundation for addressing future
vulnerabilities once they are discovered.

Additionally, the shift to software defined systems has created a new set of threats and a new
attack surface simply due to the nature of software. As systems become more complex, there
is a greater chance that programming mistakes or design flaws can lead to vulnerabilities.
Any vulnerabilities in the firmware of a radio could be used to exploit and compromise
the targeted system. However, much of the existing wireless security research focuses on
protocols or privacy issues and not on the security of the implementation itself. A wireless
protocol may be reasonably secure, but if the underlying implementation was not properly
designed, a system could still be susceptible to attack. There exists a critical need to develop
security techniques that specifically address this new class of threats and enable more rigid
and secure architectures for wireless systems .

The goal of this dissertation is to highlight the lack of focus in this area and help trigger a
change in the development mindset towards prioritizing security as a critical design require-
ment for SDRs. We specifically address this new class of threats to SDRs rather than focusing
on specific protocols or wireless standards. Therefore, the main focuses of this research are:
1) demonstrating example exploits of vulnerabilities within SDR waveforms, 2) presenting a
defense-in-depth security architecture that uses isolation environments to separate different
components of the system, and 3) understanding and characterizing the generic performance
overhead from adding isolation environments to waveforms. This defense-in-depth architec-
ture provides a methodology for protecting SDRs from these types of exploits. By using
isolation within the system to separate components, exploits of a specific component are
prevented from compromising the entire system. This approach can also be extended be-
yond SDRs as it provides the underlying methodologies needed for developing any secure,
software defined communications systems.

1.3 Contributions

As mentioned, the goal of this dissertation is highlighting a new class of security threats
to SDRs and developing methodologies for defending against these attacks. This research
provides several contributions toward this goal of secure SDR systems, which are listed below:

1. Wireless exploitation of SDRs
Much of the past work in wireless security research has focused on exploits against
protocols rather than exploits against the radio implementations themselves. There
is a lack of focus on these types of vulnerabilities, and as more systems shift to soft-
ware implementations, the risk of these vulnerabilities increases. This contribution

6 Chapter 1. Introduction

details several examples of vulnerabilities in software defined radio systems and also
demonstrates how an attacker can exploit them to compromise the system, modify the
behavior of the system, and/or cause a significant denial-of-service against the system.
Defending against these types of vulnerabilities is the primary motivating factor for
the defense-in-depth SDR architecture presented in this work.

2. A Defense-in-Depth Architecture for SDRs
The defense-in-depth architecture is both a model and guideline for developing wireless
systems with security as a critical focus of the entire development process. Security is
added to the system from the ground up, which builds a foundation for more secure
wireless systems. At its core, the architecture is based on the principles of isolation and
least privilege, where all of the components of the system are separated into isolated
zones, in order to prevent exploits against single components from affecting other com-
ponents in the system. Various environments with different levels of isolation (such
as containerization and virtualization) can be used, with the highest risk components
being placed in the most isolated environments. Adding these multiple layers of isola-
tion into an SDR implementation provides better overall security and resiliency than
a monolithic system.

3. Characterization and analysis of waveform performance in isolation envi-
ronments
Using these different isolation environments to separate components of a radio appli-
cation creates additional processing overhead that must be taken into account for the
overall system implementation. Depending on the defined system requirements and the
targeted hardware for the system (for example cloud computing infrastructures versus
embedded systems), some isolation mechanisms and their associated overhead may not
be acceptable for a given application. For example, cloud infrastructure servers are
typically very powerful and contain massive amounts of resources, as well as, hardware
support for technologies like virtualization. Embedded systems, on the other hand, are
resourced constrained and lack some of these hardware assisted features. This contri-
bution explores the performance impact of added isolation methods on the maximum
throughput of various waveforms tested in several different system configurations. We
developed a testing framework capable of executing various tests within multiple iso-
lation environments that can also dynamically modify the host system configuration
in order to test performance under different system conditions. Specifically, multi-
ple waveforms implemented in GNU Radio and LiquidDSP frameworks were tested on
two common environments: virtualization (with Oracle VirtualBox [14]) and container-
ization (with Docker [15]). Results showed that both environments can have minimal
impact on the overall performance of an application and therefore this defense-in-depth
approach should be used in production systems.

4. Example implementation and approaches for secure, SDR applications
For this contribution, we developed an example framework that integrates with a

1.4. Publications 7

commonly used open source SDR framework (GNU Radio) that allows waveforms to
be developed and deployed using our defense-in-depth architecture. This framework
is designed to require minimal changes to existing GNU Radio flowgraphs in order
to use the defense-in-depth approach. We also explore the advantages of the secure
infrastructure, as well as, address disadvantages and limitations of the approach.

1.4 Publications

Below is a list of my current publications:

Directly related conference papers:

• Seth D. Hitefield, Zach Leffke, Jon T. Black, “A Open-Source Satellite Communi-
cations Simulator Using GNU Radio”, IEEE Aerospace 2019.

• S. D. Hitefield, M. Fowler, T. Clancy, “Exploiting Buffer Overflow Vulnerabilities in
Software Defined Radios”, IEEE Conference on Computer and Information Technology
(CIT), July 2018 [Best Student Paper Award].

• Seth Hitefield, T. Charles Clancy, “Flowgraph Acceleration with GPUs: Analyz-
ing the Benefits of Custom Buffers in GNU Radio”, Proceedings of the GNU Radio
Conference, September 2016.

• S. D. Hitefield, M. Fowler, C. Jennette, T. Clancy, “Link Hijacking Through Wireless
Exploitation of a Vulnerable Software Defined Waveform”, Military Communications
Conference (MILCOM) 2014 [Restricted].

• S. D. Hitefield, V. Nguyen, C. Carlson, T. O’Shea and T. Clancy, “Demonstrated
Physical and LLC Layer Attack and Mitigation Strategies for Wireless Communica-
tion Systems”, IEEE CNS, Cognitive Radio and Electromagnetic Spectrum Security
(CRESS) 2014.

• C. Carlson, V. Nguyen, S. Hitefield, T. O’Shea, T. Clancy, “Measuring Smart Jammer
Strategy Efficacy Over the Air”, IEEE CNS, Cognitive Radio and Electromagnetic
Spectrum Security (CRESS) 2014.

Indirectly related conference papers:

• Gustavo Gargioni, Seth D. Hitefield, Minzhen Du, Nicholas Angle, Hovhannes
Avagyan, Gavin Brown, Zachary Leffke, Stephen Noel, Kevin Shinpaugh, Jonathan
Black., “VCC Ceres: Challenges and Lessons Learned in a Undergraduate Cubesat
Project”, IEEE Aerospace 2020.

8 Chapter 1. Introduction

• Zach Leffke, Seth D. Hitefield, Jonathan T. Black, “Introducing SatMF: The Satel-
lite Metadata Format”, IEEE Aerospace 2020.

• Timothy J. O’Shea, Seth Hitefield, Johnathan Corgan; “End-to-end radio traffic
sequence recognition with recurrent neural networks”, 2016 IEEE Global Conference
on Signal and Information Processing, GlobalSIP 2016.

• Alan J. Michaels, William C. Headley, Joseph M. Ernst, Seth D. Hitefield; “En-
hanced PHY-layer security via co-channel underlays”, IEEE 35th International Per-
formance Computing and Communications Conference, IPCCC 2016.

• Seth Hitefield, Zach Leffke, Michael Fowler, Robert W. McGwier, “System Overview
of the Virginia Tech Ground Station”, IEEE Aerospace 2016.

• Paul David, Seth Hitefield, Zach Leffke, William C. Headley, Robert W. McGwier,
“Implementation of an Actor Framework for a Ground Station”, IEEE Aerospace 2016.

Technical Reports:

• Seth Hitefield, Bill Clark, Zach Leffke, Robert W. McGwier, “Virginia Tech Fox-1
Camera”, AMSAT Symposium 2015.

• M.Adams, S. D. Hitefield, B. Hoy, M. Fowler, T. Clancy, “Application of Cybernetics
and Control Theory for a New Paradigm in Cybersecurity”, arXiv Cryptography and
Security, arXiv:1311.0257 [cs.CR], November 2013.

• Krishan, Neelima; Hitefield, Seth; Clancy, T. Charles; McGwier, Robert W.; Tront,
Joseph G.; “Multipersona Hypovisors: Securing Mobile Devices through High-Performance
Light-Weight Subsystem Isolation”, Computer Science Technical Report, Virginia Tech,
June 2013.

1.5 Dissertation Outline

This dissertation starts with a discussion in Chapter 2 of various background topics that are
relevant to the overall work presented in this work. We first describe the concept of software
defined radio and examine and compare different open-source frameworks for developing SDR
waveforms and applications. Also, we briefly introduce emerging technologies in wireless
systems based on SDRs that will become the backbone for future generations of wireless
networks and mobile devices. This chapter also focuses on different computer and network
security concepts and principles that are important for developing secure systems. Finally, we
conclude this chapter with an introduction and comparison of different types of virtualization
that can be used for isolating applications and managing resources.

1.5. Dissertation Outline 9

Chapter 3 presents existing research on software defined radio security and summarizes
the different threats that are inherent to wireless systems and specifically software defined
radios. We also cover examples of recent exploits of the firmware in different consumer
wireless devices where attackers used exploits to successfully compromise a mobile device.
Finally, we present previous models and approaches for developing secure software radios and
discuss how the approaches are limited and fail to protect against exploits of vulnerabilities
in the radio implementation itself.

Chapter 4 provides the main motivation for our research and demonstrates why the security
of SDRs is critical and needs to be addressed. We first, present several examples of vulnera-
bilities that can exist in a SDR and demonstrate exploits against them from a wireless attack
vector that result in either a denial-of-service or compromise of the system. This includes:
control flow manipulation, control parameter corruption, heap-based buffer overflows, and
stack-based buffer overflows.

Chapter 5 presents our defense-in-depth architecture for secure software radio systems. The
architecture provides security by creating multiple layers of isolation within the radio itself
that separate different components in the system. In this chapter, we define the different
planes of the model (security, control, and data) and describe the different components that
would exist within each plane. This chapter wraps up with some of the challenges and
tradeoffs associated with our security architecture.

In Chapter 6, we characterize the performance overhead for executing SDR applications
within different isolation environments. Specifically, we present and analyze the results of
example waveforms using GNU Radio and LiquidDSP that are tested in two common iso-
lation environments: containers (Docker) and virtual machines (VirtualBox). Tests also
included various utilities that stressed specific components of the system, and tests with
split flowgraphs to better understand the impact of inter-process communication and isola-
tion within waveforms. We also describe the setup of the test framework we developed to
automate all of the tests and briefly provide additional insights based on the testing results.

In Chapter 7, we present an example framework that integrates with the GNU Radio frame-
work and allows waveforms to be developed and deployed using the defense-in-depth archi-
tecture. This chapter also discusses some of the limitations of the framework and presents
some example use-cases of how the architecture can be applied to wireless systems.

Finally, in Chapter 8, we present a summary of our research and discuss future work based
on this research.

Chapter 2

Background

The research presented in this dissertation addresses the security of SDR implementations
and other software defined wireless communication systems. To that extent, this chapter ad-
dresses various background topics important for understanding the material presented later
in this work. First, we briefly discuss the basics software radios and highlight several open
source SDR frameworks and various use-cases for SDR. We also compare the differences of
some frameworks such as the overall system model and data-flow architecture. Second, we
introduce several different principles of cyber-security and various models for implementing
security within systems. For example, exploits against systems are typically characterized
by the overall effects that they have on the targeted, such as a loss of confidentiality, in-
tegrity, or availability (CIA) in the system. Other security concepts discussed include: the
principle of least privilege, trusted computing base, security-by-design, and multiple layers
of independent security (MILS). Next, we review various types of common vulnerabilities
that can exist in software especially as software systems become more complex. We also
briefly review existing defensive methods for these types of vulnerabilities, and how these
defenses can be bypassed to still compromise the system. The final section of this chapter
reviews virtualization and containerization techniques which are key components that are
used in the defense-in-depth model presented later in this dissertation.

2.1 Software Defined Radio

The concept of software defined radio was first introduced in the 1990s [7, 16]. From a
high-level perspective, it is a wireless system where the signal processing functionality of the
radio is implemented in software rather than hardware. An example of a software defined
receiver for broadcast FM (Frequency Modulation) radio signals is shown in Figure 2.1.
Conventional hardware systems typically have the lower layers of the network stack (OSI
model) implemented as hardware or Application Specific Integrated Circuitry (ASIC) which
limits the flexibility of the system. With SDRs, the software implementation extends to
the physical layer itself (shown in Figure 2.2), which is very flexible and allows a system’s
behavior to be modified with a simple software update rather than completely redesigning
and rebuilding hardware. This is extremely useful from research, prototyping, and security
perspectives. But, higher latencies and lower throughputs for SDR implementations have
somewhat limited their real-world use cases. As the computing hardware and specifically

10

2.1. Software Defined Radio 11

embedded systems are becoming more powerful, software radios are more feasible solutions
for real-world applications [17, 18, 19, 20, 21].

Figure 2.1: Example of a software defined FM receiver. This shows a GNU Radio flowgraph
implementing a receiver for broadcast FM (Frequency Modulation) radio.

Network

Transport

Session

Presentation

Application

Radio

Baseband

MAC

LLC

Software

Hardware

Combination
Data Link

Physical

Figure 2.2: Example OSI network stack for software radios. Conventional communications
systems implemented the lowest layers of this stack in hardware, whereas these lower layers
are implemented as software in SDRs.

12 Chapter 2. Background

SDRs still consist of some hardware components; specifically, the radio hardware itself. SDRs
can be divided into two main components: the hardware radio frequency (RF) frontend and
the software waveform. SDR RF frontends typically consist of several components such as
tuners and filters for initial signal conditioning, and the analog-to-digital and digital-to-
analog converters. Software waveforms can be implemented in a variety of manners; some
waveforms are completely implemented in reprogrammable logic devices, while others are
implemented as traditional software on general purpose platforms. As the size, weight, and
power (SWaP) of embedded and SDR hardware increases and the overall hardware cost
decreases, software radios are becoming a more feasible solution for real-world applications.
Until recently, SDRs have mostly existed in the research world due to high latency, low
throughputs, and high cost in comparison to traditional hardware systems. As computing
hardware has significantly increased in speed, efficiency, reduced power consumption, and
physical footprints, software radios are becoming a more feasible solution for real-world
applications that are traditionally filled by hardware radios.

Software defined radio allows for almost unlimited flexibility in developing wireless applica-
tions, which makes it useful for many different use cases. They are excellent prototyping
tools for research and development and allow engineers to easily prototype and test new
protocols, standards, and waveforms. Using SDRs in an industrial or commercial capacity
allows for highly flexible, future-proof systems that can easily be upgraded once deployed to
the field. One example of this is implementing low-cost cellular basestations using SDRs to
support multiple different standards. Two examples of an SDR implementation for cellular
standards are OpenBTS and srsLTE [22, 23, 24]. SDRs are also heavily used in the defense
sector because of the ability to create agile systems that can be better adapted to battlefield
conditions.

From a security perspective, it was difficult in the past to analyze, test, or attack wireless
systems because the hardware required was either too expensive, too highly specialized or
did not readily exist. SDRs and other low cost wireless hardware have significantly lowered
this barrier for testing wireless systems and have become invaluable tools for wireless security
professionals. This gives researchers an almost unlimited ability to develop waveforms for
either analyzing, reverse engineering, or penetration testing wireless systems. Applications
such as the Universal Radio Hacker [25] and scapy-radio [26] have made analyzing wireless
protocols even easier.

2.1.1 Frameworks

While software radios can be implemented in many different ways, there are many exist-
ing frameworks that can simplify the process of building complete waveforms. Some of the
more popular open source frameworks include GNU Radio, REDHAWK, and LiquidDSP
[27, 28, 29, 30]. The GNU Radio and REDHAWK frameworks are somewhat similar in
purpose; they both provide the underlying architecture for connecting multiple signal pro-

2.1. Software Defined Radio 13

cessing blocks together into a data pipeline as well as some basic signal functionality and
visualization tools. On the other hand, other frameworks, like LiquidDSP, provide a much
more comprehensive set of signal processing functions but do not provide the same data
flow or scheduling functionality for building waveforms. The specific architecture used for
an implementation is highly dependent on the processing requirements for the system. GNU
Radio is primarily useful for applications running on a single system, whereas REDHAWK
targets distributed environments. GQRX and ShinySDR are both examples of generic SDR
applications that were developed on top of these frameworks; both utilize GNU Radio under
the hood. [31, 32]

Both GNU Radio and REDHAWK share similarities in their purposes, but there are sev-
eral major differences in the implementation and overall functionality of each framework.
One of the major differences between the two frameworks is their fundamental computing
model. GNU Radio is based on a thread-per-block model where an entire waveform executes
as a single process on a single system. Waveforms can be interconnected using different
networking blocks, but the primary computing model is the multi-threaded single process.
At runtime, the scheduler creates shared memory buffers between blocks for streaming data
through the application; a message-passing infrastructure is also provided for supporting
packet and burst based applications.

Within the GNU Radio framework, there are two major ways of passing data or samples
between processing blocks in a waveform: streams and messages. Streams provide blocks
with a continuous stream of input samples or data, typically for the lifetime of the waveform.
They are intended to be coupled to an input (source) or output (sink) block that is running at
a fixed sample rate. Messages are part of GNU Radio’s built-in message-passing framework
and are objects (Polymorphic Types or PMTs) that can take any data type of any size and
send it to any other block’s message port. They are discrete packets of samples or data
and can be sent to a block at any time during a waveform’s lifetime. When working with a
bursty waveform (such as Wi-Fi), this messaging framework provides an easy mechanism for
handling received frames and passing packets throughout the waveform. A block in GNU
Radio can assign specific callbacks to specific functions that act as handlers for incoming
messages. When a message is sent to a block, the GNU Radio scheduler will call this handler
and pass the message as an argument to the function.

On the other hand, REDHAWK was developed to comply with the Software Communications
Architecture (SCA) specification and is an infrastructure designed for distributed real-time
applications. Each processing component within a REDHAWK application executes as its
own process on a system; communication between components is handled through the Com-
mon Architecture Request Broker Architecture (CORBA) middleware. Applications can be
deployed to multiple types of targets including single Linux hosts or an entire network of
servers. REDHAWK also provides the tools for developing and deploying applications onto
a distributed architecture.

14 Chapter 2. Background

2.2 Emerging Technologies

Software defined radios are the key enabling technology for many different emerging technolo-
gies. The increasing number of wireless networks and connected devices is causing significant
congestion and demand on available resources, so backend networks need to be adaptable,
intelligent, and resilient [33]. Below, we briefly discuss some of these emerging technologies.

2.2.1 Cognitive Radios

Two of the major uses cases of software defined radios are cognitive radios and dynamic
spectrum access [34, 35, 36]. A wireless system implemented mostly in software allows for
systems that can learn about their surrounding environment and adapt their configurations
to operate more efficiently. This concept is extremely broad and can be applied to many
different use cases such as: avoiding interference, adapting error correction schemes, or
changing the modulation scheme based on channel conditions. With a significant decrease
in the amount of radio frequency (RF) spectrum available for use, additional research has
focused on developing systems that can share already allocated frequency bands without
affecting the primary users utilizing those bands. Software radios are the perfect tools for
implementing these Dynamic Spectrum Access (DSA) systems due to their ability to easily
adapt to their operational environment.

2.2.2 Cloud Radio Access Networks

In recent years, the number of mobile and connected devices has grown significantly. This
has put huge demands on cellular networks. One of the recent concepts that has emerged in
order to help handle the demand on network capacity is the Cloud Radio Access Network
(C-RAN) [37]. Rather than using individual base-stations (BS) that can process data for
users only within their geographical area, the C-RAN model virtualizes the base station and
co-locates the systems in a centralized datacenter and uses an optical network to connect to
remote radio heads (RRH). Since the base-stations are now virtualized, the data center is
able to dynamically reconfigure and allocate resources based on the demand on the cellular
network. This type of architecture also allows network providers to better utilize computing
resources resulting in lower operating costs, which also sets the stage for a more cognitive
cellular infrastructure that can more efficiently utilize available spectrum.

2.2.3 Satellite Communications

Another emerging trend making heavy use of software defined radio is the satellite commu-
nication industry [38]. With embedded and space-rated hardware becoming more powerful

2.3. Principles of Security 15

and cost effective, more satellite radio systems are being implemented this way.

In addition, SDRs are being heavily utilized as the main processing components for ground
stations around the world. Rather than requiring a single ground station (or multiple) for
each new satellite, SDRs allow a single ground station to communicate with many different
satellites by simply changing the waveform in use. Software packages such as gr-satellites
[39] are helping to build a common set of software functionality that can be tailored to fit
the requirements for a specific mission. A prime example of this is the Virginia Tech Ground
Station, which is a fully-software defined ground station designed to operate in multiple
Amateur Radio bands [40].

2.2.4 Sensor Networks

Sensor networks are also a heavily growing area within wireless communications [41]. With
the explosive growth of the Internet-of-Things, more and more sensors are constantly being
connected to the Internet. SDRs may not directly be used to implement the radio in the
sensor itself simply due to power constraints, but they are extremely useful for developing the
centralized nodes receiving data. This allows master nodes to handle many different types of
sensors and protocols without changing their hardware. This will help reduce overall costs
for developing sensor nodes.

2.3 Principles of Security

In the security world, there are several different concepts and principles that are key to
information security. Here, we briefly discuss some of those principles and models that are
applicable to our research.

2.3.1 Confidentiality, Integrity, Availability

Within information security, the CIA triad (Confidentiality, Integrity, Availability) is the
common method of characterizing the different security aspects of a system. The Common
Vulnerability Scoring System (CVSS) [42] is an open standard that is used to score the
impact of specific vulnerabilities based on their impact of each of the three CIA categories.

• Confidentiality - Information in the system can only be accessed by authorized per-
sonnel and cannot be accessed with unauthorized personnel.

• Integrity - Any information stored or handled by the system cannot be changed by
unauthorized users.

16 Chapter 2. Background

• Availability - The system and any information stored should always be available for
use by legitimate users.

In some cases, a fourth concept, Non-Repudiation, is added which deals with the authenticity
of the data in the system. Essentially, this concept states that any actions taken by a user
within a system were in-fact undertaken by that user.

2.3.2 Principle of Least Privilege

The principle of least privilege is a security concept for system design where each component
within the system is given only the minimal privileges required in order to operate properly
[43]. The goal is reducing the privileges for components in case a vulnerability exists within
that component. If a vulnerability were exploited, then the attacker is limited in the amount
of access to the system.

For a system implementing the principle of least privileges, the lowest level of the operating
system (the kernel) is the only component to execute with full privileges in the system since it
manages the system hardware. Userspace libraries and applications all execute with minimal
privileges which can be enforced at the hardware layer.

Many modern operating systems implement the concept of privileges rings in hardware,
where the innermost ring (ring 0) has the highest privileges. Outer successive rings have fewer
privileges than the interior rings. The kernel is responsible for managing which processes
execute in which rings. Typically, user applications are executed in the outermost ring with
the least amount of privileges.

2.3.3 Multi-Layer Security/Defense-in-Depth

The concept of Multiple Independent Levels of Security/Safety (MILS) originates from a
military mindset where there are several layers of defenses applied to a system to make
compromising the system extremely difficult [44, 45]. The basic concept of this approach
is developing systems in a distributed manner rather than as a monolithic system. Rather
than executing each component on a physically separate system, a security kernel imple-
ments isolation between individual components so the entire system can execute on a single
processor. Information flow is enforced in the system where components within the same
security level or domain can communicate. One major goal of this isolation is to protect
trusted data and applications from compromise if an exploit occurs. If a single layer of the
system were compromised, the additional layers of defenses protect the core of the system
and help mitigate the effects of an attack.

2.4. Vulnerabilities 17

2.4 Vulnerabilities

There are many different types of vulnerabilities that can exist in software due to mistakes
in either the overall design of a system or in the specific implementation [46]. Vulnerabilities
typically arise because a developer improperly handled external user input to the system;
improperly sanitized input can cause unexpected behavior in an application’s execution. In
this section, we briefly mention some common types of vulnerabilities that are found in
software.

2.4.1 Buffer Overflows

Buffer overflows are historically one of the most common types of software vulnerabilities
that have major implications for the security of the overall system [46]. In many low-level
programming languages, correct memory management and access is a task left to the pro-
grammer, with very little or no protection against overflows being provided by the language.
If a program is using a fixed size memory buffer and the programmer fails to correctly handle
the memory operation, an overflow occurs when the program writes or reads memory outside
of its bounds. This can result in unexpected execution behavior for the application or in
information leakage. While there have been many defenses designed to protect against over-
flows, many embedded systems and software either do not have them properly configured
or fail to implement them altogether. any SDR implementations are targeted at mobile and
embedded devices, which could make them highly susceptible to this class of attack.

In low-level programming languages such as C and C++, memory management is the de-
veloper’s responsibility and very little or no memory protection is provided by the language.
Different types of vulnerabilities can occur if memory is improperly managed. Buffer over-
flows are historically one of the most common types of these software vulnerabilities and
can have a major impact on the overall security of a system [46]. Overflows occur when a
process attempts to access memory addresses that are outside the bounds of an allocated
buffer. Most of the time this involves a process writing past the end of a buffer and caus-
ing corruption to adjacent memory which will likely result in unexpected behavior for the
application. Overflows can also include reading memory past the end of a buffer; this can
leak sensitive application information to an attacker. The Heartbleed bug (CVE-2014-0160)
in the OpenSSL library is an example of a buffer over-read vulnerability that could be used
to leak sensitive information such as passwords or keys to attackers [47].

A buffer overflow exploit can result in different behavior depending on the buffer’s location
in memory; this could include a crash, unauthorized system access, or remote code execution.
A process’s memory space is divided into several different segments such as the data, code,
stack, and heap segments. The code segment contains an application’s executable code and
the data segment contains any statically or globally declared variables. Objects that have
long lifetimes and are shared in multiple areas of the application are typically placed in the

18 Chapter 2. Background

heap. The stack is mainly used to track the control flow of the application, while the heap
segment is used for dynamically allocated objects. Each time a function is called, a new
stack frame (Figure 2.3) is created that contains values such as a return memory address,
any arguments passed to the function, and any variables declared within the function’s
scope. If a buffer with an overflow vulnerability exists on the stack, this can be used to
modify the execution of the application by overwriting the return address with a malicious
address. An attacker can overwrite important addresses within the stack frame and hijack
the application’s execution flow.

When a buffer is allocated, the programmer must ensure that all memory operations are
within the bounds of the buffer. An overflow occurs when a process attempts to write to
memory addresses that are outside of the allocated buffer. This corrupts memory and can
cause unexpected behavior for the application, such as a crash (segmentation fault), control
flow corruption, unauthorized access, or even arbitrary remote-code-execution (RCE).

Clever exploits of an overflow vulnerability allow an attacker to overwrite variables stored in
memory adjacent to the original buffer and cause unexpected behavior of the application.

Stack

A process’s memory space is divided into multiple different sections: heap, stack, code, and
data sections. The code section contains all of the executable code for the application and
the data section typically stores global variables. Both the stack and heap are used to store
variables declared elsewhere within the application.

In addition, the stack handles all of the control flow information for the application and
stores variables declared locally to a function. An example layout for the stack is shown
in Figure 2.3. For each new call to a function, a new frame is created on the stack which
includes the return address to the previous code and any arguments that were passed to
the function. A stack overflow can occur when too many stack frames are created for the
currently executing application, exhausting all the memory that was allocated for the stack.
In this situation, the application will crash because there is no memory available to continue
execution. This can sometimes be seen with improperly configured recursive functions that
create an infinite calling loop. As each successive function is called, a new frame is created
until all the stack memory is exhausted and the application is aborted.

2.4.2 Shellcode Injection

Shellcode injection is a method for exploiting vulnerabilities in order to control the execution
flow of an application and possibly gain unauthorized access to a system. In this situation,
an attacker generates a payload of binary, executable code that can be injected into an
exploit. The attacker’s goal is to use an exploit to trigger the targeted application to then

2.4. Vulnerabilities 19

Original

… …

Stack
Growth

Function
Arguments

Previous
Frames

Pointers

Local
Variables

Argument 0

…

Argument N

Return Address

Previous Base Address

Variable 0

…

Buffer

…

Write
Direction

After Exploit

Argument 0

…

…

Injected Return Address

No-Operation Sled

Injected Shellcode

No-Operation Sled

…

Attack
Payload

Redirected
Pointer

New Base
Pointer

New Stack
Pointer

Figure 2.3: Diagram of a stack frame and overflow exploit. This shows an example of a stack
frame (left) and the result of a stack buffer overflow exploit (right). For each function call, a
new frame is created that contains a return address, any arguments passed to the function,
and any local variables. A buffer overflow vulnerability can be used to overwrite the original
return address in the stack frame to point to injected shellcode. If successful, the system
will jump to the injected code rather than the original caller.

execute the injected code rather than it’s original code. A shellcode injection vulnerability
is key to allowing an attacker to compromise remote systems. Through this, an attacker can
create a payload that opens backdoor access into the system and allows then to gain greater
control over the targeted system.

20 Chapter 2. Background

2.4.3 Defenses

Since buffer overflows are a common type of vulnerability and shellcode injection attacks
often use buffer overflow vulnerabilities under the hood, there have already been several
major types of defenses developed to mitigate the risks of these vulnerabilities [48, 49, 50].
The main defenses include non-executable stacks [48], address space layout randomization
[51], and stack canaries [50]. Modern operating systems already employ these defenses to
prevent buffer overflow exploits which makes it very difficult to find vulnerabilities that
allow remote code execution on these systems. Even with these defenses, methods do exist
to bypass these defenses and still exploit a vulnerability. Also, many embedded systems do
not implement or properly configure these protections and are vulnerable to attack. The
GSM and Wi-Fi baseband exploits discussed in Section 3.2 are perfect examples of embedded
implementations without these defenses.

Data Execution Prevention

This defense is designed to prevent shellcode from being executed by the system. Essentially,
the stack memory segment is marked as non-executable by the system’s memory protection
unit which prevents an attacker from jumping to shellcode they injected on the stack. How-
ever, there have been several techniques that have been developed in order to bypass this
defense: specifically, return oriented and jump oriented programming. With both of these
methods, attackers construct payloads that use existing code chucks loaded into memory
(like standard library functions) rather than providing their own shellcode.

Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is a method of randomizing the location
of where different memory segments are loaded within a process’s virtual memory space.
By randomizing the location of segments each time an application is executed, it makes
it extremely difficult for an attacker to create exploits that rely on shellcode injection or
returning to specific locations in memory. However, ASLR can be bypassed by leaking
memory locations through other vulnerabilities.

Stack Canaries

Stack canaries are a defense against buffer overflows in variables located on the application’s
stack segment. Essentially, a compiler adds a known value to memory adjacent to a buffer
located on the stack which is checked once the current function has completed. If the value
has been modified from the known value the compiler saved, then the application assumes
the stack has been corrupted and aborts execution.

2.4. Vulnerabilities 21

2.4.4 Integer Overflows

Data types within an application, like unsigned integers, can hold a value within a specific
range depending on the total number of bits used to define that variable. An integer overflow
occurs when a program increments a variable past its maximum value. In this situation, the
hardware attempts to increment the value, the resulting value is outside of the range for that
data type and the most significant bits of the result are dropped.

If a variable (such as a counter) is constantly being incremented, the result of an overflow
depends specifically on the data type in use. For example: if the variable is an unsigned
integer, the overflow causes that variable to be reset to 0. If the variable is a signed integer,
exceeding the maximum positive value of the variable causes it to become negative and begin
incrementing in the negative direction. Many such variables are used for accessing offsets
within a buffer, which can lead to unexpected behavior if the integer overflows.

2.4.5 Off-By-One

An off-by-one vulnerability is typically a special case of the buffer overflow. In this situation,
the application is incorrectly handling the length of a buffer due to an incorrect evaluation
statement. Many programming languages use a 0-based indexing scheme which means that
the first element of an array is element 0 and not element 1. Given an array of length N ,
if a programmer attempts to access element N , they would actually be accessing the next
few bytes of memory (depending on an item’s size) after the buffer rather than the last
element of the buffer. This can allow attackers to modify data outside of the buffer if such
a vulnerability exists.

2.4.6 Privilege Escalation

A privilege escalation vulnerability is simply one that allows an attacker to use the vulnera-
bility to gain additional privileges for a specific application or process that it would normally
not have. Since many systems are built on the principle of least privilege, this type of vulner-
ability allows an attacker to have greater access into the system. Typically, attackers target
these types of vulnerabilities in the kernel of an operating system. The goal is exploiting the
vulnerability in order to gain administrators access to the rest of the system.

When exploiting remote systems, attackers many times will use different combinations of
these types of attacks. For example, once they have gained access to a system through a
shellcode injection attack, they can then use a privilege escalation attack against a kernel
vulnerability which would give them complete access to the targeted system.

22 Chapter 2. Background

2.5 Virtualization

Over the past two decades, virtualization has become an enabling technology for many of the
systems we use every day. Virtualization was first introduced mainly as a methodology for
improved resource management within server infrastructures. Rather than use a single server
to execute a single application and waste valuable computing resources, system administra-
tors could virtualize their available hardware and allocate only the required resources for an
application on a specific system. This in turn allowed for multiple applications to execute
independently on a virtualized host and gave administrators the ability to allocate extra
resources or start more instances of an application based on user traffic. Here, we briefly
describe two common virtualization techniques: hardware (or platform) virtualization and
operating system virtualization (or containers). Figure 2.4 shows a comparison between
these two types of virtualization technologies.

2.5.1 Hardware Virtualization

Hardware virtualization refers to the concept of creating guest virtual hardware in software
that can be used to emulate a hardware system [52]. This allows for an entirely separate
operating system and environment to be installed on the guest. Resources from the host
system can be allocated as needed to the guest system.

A hypervisor is software that provides the ability to create this guest machine and manages
how resources are allocated to the system. Two different types of hypervisors exist (Type
1 and Type 2) depending on how the system is virtualized.Type 1 hypervisors are mainly
targeted toward data-center infrastructures and implement a small system that provides
basic functionality such as guest management, resource management, and scheduling. This
type of hypervisor acts similar to a kernel for a normal operating system, and is intended to
run in a headless environment and be managed over the network.

On the other hand, Type 2 hypervisors execute as a child process within a host operating
system and provide the functionality for guest virtual machines to be created on the running
host. This type of hypervisor is typically useful for development scenarios. Developers can
create guest machines and install a guest operating system and software independently of
the host.

2.5.2 Operating System Virtualization

Another virtualization technique that has recently become more popular is operating system
virtualization [53]. Rather than completely create a new guest virtual machine to execute
a small application or micro-service, operating system virtualization relies on the ability to
create containers or jails within the kernel. These containers provide isolated environments

2.5. Virtualization 23

Hardware (Processors, Memory, etc.)

Hypervisor

Guest 1 Hardware

Operating System

Libraries / Drivers

Applications

Guest 2 Hardware

Operating System

Libraries / Drivers

Applications

Hardware (Processors, Memory, etc.)

Host Operating System

Applications

Libraries / Drivers Libraries / Drivers

Applications

Container Engine

Applications

Libraries / Drivers

Figure 2.4: Comparison of virtual machines and containers. An example software stack
for virtual machines is shown on the left and a container software stack is shown on the
right. Virtual machine monitors (hypervisors) create entire software interfaces that mimic
physical hardware and run an entire guest operating system. Containers share a common
host kernel, but use namespaces to create different execution environments for processes.
Overall, containers provide a more lightweight virtualization solution compared to virtual
machines, but virtual machines provide more isolation from the host system.

for applications very similar to guest virtual machines but with significantly less performance
overhead. Each container can have a completely separate set of resources which allows
administrators to specifically tailor that environment for the intended application without
affecting any other container. This technique makes it extremely easy to deploy applications
to cloud computing environments.

Chapter 3

Related Work

As previously mentioned, wireless systems are rapidly evolving and becoming more com-
plex and numerous. However, the security of these systems is still lagging behind due to
this rapid evolution and it can be completely overlooked or is simply not a very high prior-
ity. The open nature of wireless makes security especially challenging because there are no
physical connections with these systems that can be secured. Traditional security threats
inherent to wireless systems can be generally categorized based on an attacker’s capabilities.
This includes 1) passive attacks where adversaries are simply observing transmitted signals
(eavesdropping), 2) active attacks where adversaries attempt to disrupt communications
by transmitting energy (jamming), and 3) active attacks against higher layer protocols to
compromise the confidentiality and integrity of the signal [54].

Software defined implementations add a new fourth class of threat: active attacks against
the implementation where adversaries use traditional cyber-security techniques to exploit
vulnerabilities in a system and disrupt communications or gain unauthorized access to the
system. Interestingly, SDRs can be both susceptible to this threat, as well as, part of
the threat itself. They can be programmed to transmit almost any imaginable signal, and
this flexibility makes them perfect research and penetration testing tools for evaluating the
security of other systems. Since SDRs are software, they can also be exploited by the same
type of attack, which is the focus of the work presented in this dissertation.

The chapter presents related work concerning the security of wireless systems. Most of the
research in this area is focused specifically on the security of different wireless protocols
that are supported by systems rather than the security of the implementations themselves.
We briefly review existing work that provides a taxonomy of attacks against all wireless
systems and generally categorizes threats against SDRs in Section 3.1. Next, Section 3.2
presents recent examples of exploits against firmware in consumer wireless devices where
researchers targeted and exploited vulnerabilities in the software implementations of the
protocol stack of different standards. In Section 3.3, we also examine existing models and
methods for developing secure SDR applications; however, most of this work again only
considers securing the protocol or update processes of software radio systems. The Secure
Radio Middleware (SRM) model reviewed in this chapter is one of the few approaches that
considers security from the perspective of defending from attacks against the vulnerabilities
in implementation. Finally, Section 3.4 compares the different proposed models for SDR
security and discusses the limitations of these methods and what attacks they are unable to

24

3.1. Security Issues in Software Radio 25

prevent.

3.1 Security Issues in Software Radio

Software defined radio has also become an invaluable tool in the security world because its
flexibility gives researchers the ability to analyze, test, or reverse engineer almost any wireless
system or protocol. Applications such as the Universal Radio Hacker [25] and scapy-radio
[26] have made this even easier. However, research into the security of the software radio
implementations themselves has been less widespread. Past research has been primarily
focused on protocols and features such as authentication and encryption and not necessarily
the radio implementation itself. There are many different security threats and issues that
arise with software radios. Some are inherent to any wireless communication systems, and
others are only applicable to SDRs because of their software nature and design philosophy.
SDRs are designed to be very flexible, so ensuring that the software and configuration of
these radios are secure is of major importance.

In [55], Baldini et al. provide a comprehensive survey of the different security threats that
can exist against software radios and cognitive radio networks. They identify fifteen differ-
ent threats to software radios, including denial-of-service attacks, compromise of user and
configuration data, and vulnerabilities in the software framework of the radio. A summary
of these threats and their overall effect on the system when exploited is shown in Table 3.1.
These threats can be generically classified using the traditional CIA model of security objec-
tives: confidentiality, integrity, and availability. A report on telecommunications network
security published by the ITU [56] slightly expands on this model by making a distinction
between data integrity and system integrity:

• Confidentiality - Access to data transmitted or stored by the system must be controlled

• Data integrity - Data transmitted or stored by the system must be protected from
unauthorized modification

• System Integrity - The system’s underlying operating system, services, and libraries
must be protected

• Availability - Users and providers should not experience interruption of service

Baldini et al. further note there are specific functions and assets of software radios that
can be affected by security threats. Assets within a SDR consist of user data, configuration
data, and the software waveforms executing on the system. From a functionality perspec-
tive, SDRs provide the ability to execute different applications and waveforms on generic
computing hardware. This requires that a secure SDR architecture provide secure methods
for application and resource management; this involves ensuring the security and integrity

26 Chapter 3. Related Work

of downloaded waveforms as well as preventing computing resources from being maliciously
consumed or mis-managed. Another major concern is ensuring secure management of user
data as it is stored and/or transmitted by the SDR. Finally, SDRs are inherently data-flow
applications, so the transport mechanism between SDR components should be secure.

Based on these generic security objectives and SDR assets and functionality, the authors
have identified fifteen different threats to a software radio. For the scope of this report, we
are mainly focused on the threats against the software implementation of the radio itself.
Threats that are primarily against the integrity of the system include: inserting malicious
software or waveforms and altering the SDR’s configuration, waveform, operating system,
and/or software frameworks. Availability threats that could result in denial-of-service include
unauthorized consumption of resources and software/hardware failure. A complicating factor
is that some of these threats can impact more than one of the security objectives in the CIA
model.
Table 3.1: Threats to SDR systems. This table gives a brief list of threats inherent to
software defined radio systems [55]. The final column shows the primary effect (in terms of
confidentiality, integrity, or availability) an attack would have on a system.

SDR Threat Effect C/I/A
Malicious software/waveforms All

Altered configuration data or user data Integrity/Availability
Altered waveforms, frameworks, operating system Integrity/Availability

Software/Hardware failure Availability
Extraction of configuration/waveform/user data Confidentiality

Excessive resource consumption Availability
Masquerading as authorized software waveform All

Unauthorized use of SDR services Confidentiality

In [57], the authors conducted a threat analysis of the GNU Radio framework and presented
different threats against the platform and requirements for building secure radios. They listed
several threats to ensuring a secure download and execution environment for new waveforms.
Many of the threats they present have been addressed elsewhere, but one interesting threat
they address is the fact that an entire GNU Radio waveform executes in the same address
space. This would allow any compromised or malicious radio module to access memory from
another module.

They also present the possibility that buffer overflows could occur on the memory buffers
shared between blocks and be exploited to modify the behavior of a waveform. A buffer
overflow within a specific block in GNU Radio could allow an attacker to remotely modify
the behavior of a waveform through an exploit, which we presented an example of in the

3.2. Wireless Firmware Exploits 27

previous section. A couple of solutions were proposed to help defend against these attacks,
such as moving away from the thread-per-block model of GNU Radio and instead using
multiple processes like REDHAWK. The authors developed a new shared buffer using a
Linux privileged memory system call that provides better and more secure management of
connections within a flowgraph; specific blocks in the flowgraph could only read or write
from the buffer if they were properly authorized.

3.2 Wireless Firmware Exploits

In many different wireless systems on the market today, a significant portion of the overall
functionality is implemented in firmware running on separate co-processors rather than hard-
ware. This firmware typically executes on a separate co-processor in the system to reduce
the load on the main application processor and improve power consumption.This allows the
host’s main processor to offload most of the network functionality, usually consisting of the
higher-level network functionality, to the wireless component itself. Offloading work from the
main processor frees resources, as well as, providing a more power efficient implementation,
since these co-processors typically include a low-power micro-controller core that handles
the functionality. For example, in Linux terminology, Wi-Fi modules can be categorized as
either SoftMAC or HardMAC devices depending on whether the management and data layer
functionality is handled by the main host or offloaded to the wireless module. In either case,
the management and data layers of the network stack are all implemented in software (or
firmware on the module) rather than actual hardware.

In addition, the co-processor hardware and firmware do not necessarily implement the same
defense mechanisms against exploits that commonly exist in modern desktop, server, and
mobile operating systems. This could be a result of limitations with the co-processor’s
hardware or an improperly configured system that fails to take advantage of available security
features like memory protection units. Any vulnerabilities within the firmware could be
exploited by an attacker to compromise the firmware and possibly even compromise the host
device as well.

In this section, we discuss several examples of attacks against the wireless firmware of a
system. While these wireless chips are not full software radios, the same security principles
issues can apply because of their software implementation. Since much of the network
functionality is implemented as firmware that may have exploitable vulnerabilities creates
new attack vectors against the firmware. There are several examples of this type of attack
against the firmware of a co-processor that, once compromised, can be used to exploit the
host systems and completely take over control of the device.

28 Chapter 3. Related Work

3.2.1 Cellular (GSM) Baseband Exploit

One of the first examples of this type of attack was shown by Weinmann [58] and demon-
strated a wireless exploit of a GSM baseband implementation. The authors targeted the dif-
ferent management layers of GSM (Layer 3), which is divided into several different sublayers
including: Radio Resource Management, Mobility Management, and Connection Manage-
ment. After completing a vulnerability analysis of the firmware, they discovered several
different types of bugs in these layers, mainly including buffer overflows, integer overflows,
and memory leaks.

Most of these exploitable vulnerabilities existed due to insufficient length checks for fields
within different GSM management frames. For example, during registration a GSM base-
station should assign a 32 bit long Temporary Mobile Subscriber Identity (TMSI) to an
unknown device. However, this length was not checked in the baseband firmware, which
resulted in software failures if a malicious base station transmitted a longer TMSI. This
management frame used a variable length field that allowed an attacker to send a much
larger value to a device, which results in an overflow that crashes the firmware. The authors
constructed exploits using the discovered vulnerabilities and were able to remotely execute
arbitrary code on a device. They demonstrated exploits against several different targets
including an HTC Dream and an Apple iPhone 4.

3.2.2 Broadcom Wi-Fi Exploit

In 2017, researchers from both Google’s Project Zero [59] and Exodus Intelligence [60] re-
leased similar exploits of the firmware on Broadcom Wi-Fi modules. The ultimate goal of
their research was wirelessly exploiting the Wi-Fi firmware on one of these modules and using
the compromised module as an attack vector to exploit the kernel of a mobile device. One
issue they discovered was the co-processor’s Memory Protection Unit (MPU) was incorrectly
configured and allowed all memory to be executable. This greatly simplified the ability to
attack the firmware.

Both exploits used buffer overflows and different memory management techniques to target
important objects in the firmware’s memory. By transmitting specially crafted Wi-Fi frames,
the researchers were able to successfully use heap construction techniques and the stack
overflows to modify important sections of the firmware’s memory.

Since the Wi-Fi standard requires certain events to be periodically triggered, several timer
objects were stored in memory. If a timer could be overwritten and its function pointer given
a new memory address, an attacker could inject shellcode (binary, executable code) and
modify the timer to execute a malicious handler function rather than the original when the
timer elapsed. Once the timer event was triggered, the firmware would jump to the injected
shellcode which could be used to further compromise the Wi-Fi module and eventually the
host processor on the mobile device. By using heap construction techniques and overflows

3.3. SDR Security Models 29

the researchers demonstrated this ability to overwrite a timer object with an address to
injected shellcode. The researchers were able to demonstrate this exploit and eventually use
the compromised Wi-Fi firmware as a vector to exploit and compromise the mobile device.

3.2.3 BlueBourne Exploit

Bluebourne is another interesting example of a similar attack. In 2017, researchers from
Armis disclosed multiple overflow vulnerabilities in different implementations of the Blue-
tooth network stack in both the Linux (BlueZ) and Android (Bluedroid/Fluoride) operating
systems [61]. A major difference between BlueBourne and the GSM and Wi-Fi exploits is
that the Bluetooth network stack executed on the main system processor rather than a co-
processor. This meant that the exploitation of an overflow was not quite as straightforward
as the other examples. Defenses against overflows, such as Address Space Layout Random-
ization (ASLR), required the researchers to use additional techniques and vulnerabilities to
leak important values in memory before they could successfully exploit the firmware and
bypass ASLR.

3.3 SDR Security Models

There have been several past architectures proposed in existing research that address ap-
proaches for security SDRs against these threats. Software radios are designed to be up-
gradeable and execute different waveforms depending on the desired configuration, so the
majority of these architectures have focused on securing the download process, radio config-
uration, and enforcing proper operation based on a device’s specifications and its associated,
regulated security policies. SDRs can be reprogrammed to operate in almost any wireless
band (that is supported by the front-end), so they must be designed to block threats that
cause them to operate outside their regulatory specifications. Different frameworks for se-
curing the download process of new waveforms and configurations to a SDR platform are
described in [62, 63, 64]. Since SDRs can simply be reprogrammed to operate in different
configurations and radio bands (assuming the physical hardware itself is capable of operation
in the selected band), ensuring the radio is operating with an authorized configuration is
critical [65]. A denial-of-service for the system could occur if a radio’s physical layer pa-
rameters (modulation, power, bandwidth, and/or frequency) were corrupted or maliciously
modified [57]. A radio transmitting at an incorrect frequency, bandwidth, or power could
interfere and jam other users or complete communication systems if it is operating outside
of its authorized frequency band. Also, building intelligent, cognitive radios that can more
efficiently utilize available resources through dynamic spectrum access is a major applica-
tion for SDR, so there has been a significant amount of research into security threats against
cognitive radio networks [66, 67, 68, 69].

30 Chapter 3. Related Work

Guest VM
User

Application

Host OS Radio
Application

Service
Application

Guest OS

Secure
Radio
Middleware

Radio

Hardware

Figure 3.1: Secure Radio Middleware security model - Here, the user application layer is
contained within a virtual machine and the radio layer exists as part of the underlying
hypervisor.

The concept of using isolation mechanisms within software radios is not particularly new.
Some have briefly mentioned using this technique, but do not provide good models or ex-
amples of how such an architecture would be implemented [70].

In [71], the authors present a new architecture for SDRs designed to protect the radio from
exploitation and unauthorized reconfiguration. They show multiple examples of how an
attacker could compromise an un-secure application in a user environment and use this to
compromise the underlying operating system. To protect an SDR from modification, they
propose a new model for secure software radios that uses a virtualization based layer that
isolates the user environment from the radio application and the host system. This ‘Secure
Radio Middleware’ creates an isolated environment where the user applications execute; any
exploitation in this environment would be contained and unable to maliciously reconfigure
the underlying hardware. An example is shown in Figure 3.1. The middleware layer also
includes a security monitor that checks every outgoing message against an allowable policy
and blocks any attempts to incorrectly reconfigure the radio.

In [72], the authors present the High Assurance Wireless Computing System, which is a
specific implementation of a wireless system designed to protect against driver exploits in a
system. This implementation is based on a multi-layer system architecture [45] and uses a
similar approach to isolating the user application and the radio layer as Li et al. A separation
microkernel implements different memory domains that are used to isolate components the

3.4. Limitations of Existing Approaches 31

user application from the device drivers and radio layer and the SCA framework is used for
communication between the different domains. A firewall monitors traffic flow both to and
from the isolated user environment and can block malicious traffic flowing either direction.
Since the user environment sits in its own domain, an attack against that layer cannot escape
and infect the radio layer. However, an exploit against the radio module can still be used to
disable the firewall and infect another layer.

3.4 Limitations of Existing Approaches

The major limitation to the existing models described above is they do not take into account
the possibility of the radio layer itself being compromised. While some of these models
successfully protect radios from exploits from the user application layer, they do not protect
the radio runtime itself from being exploited. As we previously showed, vulnerabilities
can exist in the radio firmware; any exploits in the radio layer itself can be used to fully
compromise the rest of the system. Because of this, secure SDR architectures must take into
consideration the possibility that the radio layer itself could be compromised and provide
mitigations against this attack vector.

In Table 3.2, we present a brief overview of the different levels of protection provided by
each of the existing approaches. Our proposed Defense-in-Depth architecture presented
in Chapter 5 provides the additional benefit of securing the radio itself against exploits.
Other approaches either focus primarily on secure downloading of waveforms and policy
enforcement, rather than the radio implementation itself. Our model for a secure, defense-in-
depth architecture discussed in the next section takes this into account and builds upon these
previous architectures to provide an isolation layer for multiple components in the system.
Our approach can both secure the radio layer from exploit as well as provide monitoring and
policy enforcement provided by other approaches.

3.5 Summary

Wireless systems are constantly evolving and growing more complex, and the open nature of
wireless posses unique security threats to wireless systems that are not found in traditional
IT systems. Systems are increasingly being implemented in software rather than applica-
tion specific hardware in order to handle complex, modern wireless standards. But these
software based systems are introducing a new class of threats where attackers can exploit
vulnerabilities in the implementations.

In this chapter, we examined some of the existing work on SDR security which includes
surveys of the different threats against SDRs, examples of recent exploits of vulnerabilities
in commercial consumer device firmware, and related models for building secure software

32 Chapter 3. Related Work

Approach Download User App Radio Policy Auditing
Michael et al. P N N N N

Brawerman et al. P N N N N
Uchikawa et al. P N N N N
Sakaguchi et al. P N N P P

Secure Radio Middleware P P N P P
HAWCS N P N N N

Defense-in-Depth (Proposed) O P P P O

Table 3.2: Comparison of SDR security architectures. This compares the protection provided
by different secure radio approaches: P - Protected, N - Not Protected, O - Optional. Most
of these approaches focus on securing the software update process or protecting from exploits
in the application layer.

defined radios. However, much of this existing work is focused either on the security of
the SDR upgrade processes, the security of different SDR based protocols, or using SDRs
as a tool for testing the security of other protocols. Very few related works have focused
on protecting SDR implementations from exploits of vulnerabilities in the SDR themselves.
The closest examples are the Secure Radio Middleware and the HAWCS systems, which both
use isolation techniques to protect a software radio from exploit. The SRM system focuses
on isolating the Application layer of the radio from the underlying radio firmware, so an
exploited application cannot maliciously reconfigure the radio system. The HAWCS system
uses isolation in network device drivers on SDR systems to protect the SDR from network
side attacks. However, neither of these approaches consider attacks against vulnerabilities
in the SDR itself, which is the major limitation of related models. The main focus of the
work presented in this dissertation is this new class of attack where vulnerabilities can be
exploited within an SDR implementation itself. Chapter 4 presented examples of these types
of vulnerabilities, and Chapter 5 presents our Defense-in-Depth security model for mitigating
these types of exploits in SDRs.

Chapter 4

Exploiting Software Defined Radios

Much of the existing work in wireless security has been focused primarily on vulnerabilities
in wireless standards. Specifically with respect to SDRs, there is some additional work fo-
cused on models for securely updating systems and for ensuring proper reconfiguration of
the underlying radio hardware. Very limited work has considered how vulnerabilities exist-
ing within implementations could be exploited; some recent research (presented previously)
has demonstrated exploits in consumer wireless hardware. Like any complex software ap-
plication, SDRs are not immune to these types of vulnerabilities, and this threat must be
considered when developing future SDR applications and frameworks.

In this chapter, we examine and demonstrate this threat, which serves as the main moti-
vation for our Defense-in-Depth SDR architecture proposed in the following chapter. We
analyze several different examples of vulnerabilities in an implementation and demonstrate
over-the-air exploits that target those vulnerabilities from a wireless attack vector. The
example vulnerabilities presented here are common types of weaknesses that are found in
other complex software systems. Our example demonstrations show how an attacker can
exploit these weaknesses to cause significant performance degradation for the target, like a
persistent denial of service against the system. These examples demonstrate the need for
secure SDR architectures.

It is important to note that there are many existing defenses for the common vulnerabilities
we demonstrate in this chapter. However, many of these defenses are intended for desktop
and server operating systems. As we showed in the previous chapters, embedded SDR hard-
ware does not necessarily support these defenses or the defenses are not properly configured
or implemented in software. The examples we demonstrate in this chapter are implemented
on desktop systems for easy of demonstration but are intended to mimic how exploits against
embedded SDRs might occur. To that end, defenses like ASLR, NX bit, and stack canaries
have intentionally been disabled to mimic vulnerable embedded systems.

Section 4.1 demonstrates how an attacker can manipulate the control flow of an SDR by
transmitting malicious headers which trigger unexpected transitions within the system’s
state machine. In Section 4.2, we demonstrate how failure to properly sanitize control inputs
within a control message can lead to inadvertently misconfiguring the SDR itself. Sections
4.3 and 4.4 present exploits of example buffer overflow vulnerabilities in heap memory and
stack memory respectively [73, 74].

33

34 Chapter 4. Exploiting Software Defined Radios

4.1 Control Flow Manipulation

The first example we present is a control flow manipulation attack that allows an attacker
to modify the behavior of the system and degrade the overall system performance. In this
example, a state machine controlling the system’s behavior does not correctly account for
all possible situations that may occur. Specifically, it is missing state transitions that would
allow the system to recover from an unexpected situation. This allows an attacker to trigger
a series of events that will cause a receiver to unintentionally drop legitimately transmitted
frames.

The specific vulnerability shown in this example exists in the LiquidDSP framework and
one of the included framing modules: the FlexFrame module. This module includes a frame
synchronizer object which is responsible for detecting and decoding transmitted frames. The
synchronizer operation is defined by a state machine consisting of four main states: frame
detection, preamble synchronization, header demodulation, and payload demodulation. The
implementation of the state machine in the FlexFrame synchronizer is shown in Figure 4.1
and is a very commonly used method for implementing bursty communication systems.

01 ...
02 switch (_q->state) {
03 case FLEXFRAMESYNC_STATE_DETECTFRAME:
04 // detect frame (look for p/n sequence)
05 flexframesync_execute_seekpn(_q, _x[i]);
06 break;
07 case FLEXFRAMESYNC_STATE_RXPREAMBLE:
08 // receive p/n sequence symbols
09 flexframesync_execute_rxpreamble(_q, _x[i]);
10 break;
11 case FLEXFRAMESYNC_STATE_RXHEADER:
12 // receive header symbols
13 flexframesync_execute_rxheader(_q, _x[i]);
14 break;
15 case FLEXFRAMESYNC_STATE_RXPAYLOAD:
16 // receive payload symbols
17 flexframesync_execute_rxpayload(_q, _x[i]);
18 break;
19 default:
20 fprintf(stderr,"error: flexframesync_exeucte(), unknown/unsupported state\n");
21 exit(1);
22 }

Figure 4.1: FlexFrame state machine implementation. This shows an abridged version of
the implemented state machine in the flexframesync object in LiquidDSP [30].

The frame detection and preamble synchronization stages allow the receiver to synchronize to

4.1. Control Flow Manipulation 35

the transmitted frame and correct for any timing and frequency offsets. Once synchronized,
the receiver can demodulate the header and the included control information and configures
the next stage to demodulate the payload using the selected modulation and error-correction
schemes for that frame. The FlexFrame module allows for different modulation and error-
correction schemes for each frame. Finally, the payload is demodulated and verified using
the transmitted checksum. If the checksum is correct, the resulting payload can be delivered
to the higher layers of the waveform; otherwise the payload is dropped.

As each state is completed, an internal variable is updated which triggers the next state
once the loop restarts. If the receiver cannot synchronize with the preamble or the header is
invalid or incorrectly demodulated, then the header demodulation state can abort processing
the frame and reset the receiver to the detection state and wait for the next frame. Other
than this, each state simply transitions to the next state during normal operation; assuming
the header was correctly demodulated, then the receiver begins to demodulate the payload.
The state transition diagram for the synchronizer is shown in Figure 4.2.

However, this is not all of the possible state transitions that should exist for this implemen-
tation. The issue is that the payload demodulation state can only transition back to the
frame detection state once an entire frame has been received. It is unable to detect and
handle a situation where only the header was transmitted with no corresponding payload.
Once a header is correctly demodulated, the synchronizer will continue to demodulate the
frame until the entire payload is received, even if it does not actually exist. Only then will
the synchronizer continue to search for the next frame.

Since there is no check in place to confirm that a payload is actually being transmitted,
attackers can take advantage of this to significantly degrade the performance of the waveform.
Essentially, by transmitting a header with no payload, the attacker can trick the receiver
to switch to the payload demodulation stage and miss any legitimate frames that were
transmitted during that time.

This issue is compounded because the FlexFrame receiver can be configured differently for in-
dividual frames. Each frame can use different modulation schemes, inner and outer forward-
error-correction (FEC) methods, and different lengths for the payload. Attackers can config-
ure malicious headers to use the maximum length and the modulation and FEC settings that
result in the longest possible payload. Assuming that the malicious headers are correctly
formatted and demodulated by the receiver, this will block the receiver for the maximum
possible time.

Once an attacker transmits a malicious header, the receiver would process any legitimate
frame transmitted during the payload demodulation stage as part of the non-existent pay-
load of the malicious header. The receiver is basically demodulating noise at that point,
so the checksum it would compute for that payload would ultimately fail, causing the le-
gitimate frame to be lost when the “payload” is dropped. If an attacker can correctly time
the malicious header and periodically transmits them, they could easily cause significant
performance degradation for the system. This attack is shown in Figure 4.3.

36 Chapter 4. Exploiting Software Defined Radios

Preamble
Sync

Header
Demod

Payload
Demod

Synchronized Va
lid

 H
ea

de
rInvalid

Header

Payload Received

Valid/Failed CRC

Figure 4.2: FlexFrame state machine diagram. This shows the state space of a vulnerable
receiver implementation.

Time

Po
w

er

Normal Frames Injected Header

Lost
Frames

Expected Payload

Figure 4.3: Example timeline of a DoS attack against a control flow vulnerability. If an
attacker can successfully inject malicious headers specifying very large payloads at the proper
time, the receiver could inadvertently drop legitimate frames when processing a non-existent
payload.

Attack steps:

1. The attacker transmits a valid preamble and header but no payload. The malicious
header specifies longest possible payload length, as well as, using a configuration of

4.2. Un-sanitized Control Parameters 37

modulation and FEC that results in the longest possible payload.

2. The receiver demodulates the malicious header and attempts to receive the non-existent
payload. Legitimate frames transmitted at this point are treated as part of this pay-
load.

3. The receiver attempts to calculate the checksum and validate this against the trans-
mitted checksum, which is likely just noise.

4. The checksum ultimately fails and the receiver drops the failed payload along with any
legitimate frames, resulting in a denial-of-service.

5. Based on the receiver duty cycle, the attacker can periodically retransmit the malicious
headers.

The effectiveness of this attack depends on the specific configuration used for the waveform
and the duty cycle for the targeted communication system. If the maximum payload size
is much greater than the typical frames being transmitted, an attacker can easily force the
receiver to miss multiple legitimate frames with relatively little effort on the attacker’s part.
This allows for a low power, course synchronization denial-of-service scheme that can be
more efficient than other wireless jamming techniques.

Traditionally, an attacker would need to use a high power transmitter to reduce the apparent
signal-to-noise ratio (SNR) at the receiver. More sophisticated attacks attempt to target
specific characteristics of the message in order to reduce the required duty-cycle for the
jammer. However, this can be difficult to achieve because the attacker must first detect and
synchronize to transmitted frames and quickly overpower it before the receiver can detect
and demodulate the transmitted frame.

With this exploit, the attacker no longer needs to overpower or synchronize to any trans-
mission; they simply need the receiver to process the malicious header before a legitimate
header is transmitted. If the malicious header is timed correctly, the receiver will simply
drop the legitimate frames as part of the fake payload when the checksum validation fails.
If the attacker knows the exact time the receiver needs to process the non-existent payload,
they could simply transmit the malicious headers at that frequency and effectively disable
the communications system completely.

4.2 Un-sanitized Control Parameters

Many vulnerabilities arise in applications because the developers simply assumed that input
coming from an external source would always match a certain format, contain values within
some defined range, or contain specific content. In fact, the majority of vulnerabilities that

38 Chapter 4. Exploiting Software Defined Radios

exist today are probably due to this in some manner. Failing to properly check external
input and verify that it meets expected properties can lead to major vulnerabilities.

The second vulnerability we present is an example of how this can occur in a software
radio. In this case, the control parameters through a packet header were not properly
sanitized which led to unexpected behavior in the application. This could either result in
an improperly configured waveform or even a crash, both of which would cause a denial of
service.

Implementation

The vulnerable implementation is a dynamic spectrum access waveform that utilizes Liq-
uidDSP’s OFDM FlexFrame under the hood. This code was designed for a cognitive radio
competition and implemented a basic coordinated, frequency-hoping algorithm that used a
small number of channels within the frequency band allowed for the competition. The sys-
tem was made up of two nodes using Ettus Research Universal Software Radio Peripherals
(USRPs) [75] implementing a duplex communications link with one or more primary users
in the same frequency bands.

Upon initialization, the nodes would begin probing the available channels attempting to
synchronize with each other. If they were able to successfully detect each other, they would
attempt to find an unused channel. Each node was responsible for determining the quality
of the channel it was receiving and whether to hop to a new channel. If the current channel
was not desirable due to a low signal-to-noise ratio or the radio detected a primary user, the
nodes would coordinate with each other before hopping to a new channel.

The coordination was achieved using the 6 bytes available to the user in the OFDM FlexFrame
header. Rather than transmit the actual frequencies for the transmit and receive channels
for each radio, a single integer was used to describe the current channel in use. Due to
the hopping algorithm, each radio’s control information contained four bytes: the current
transmit and receive channels and the requested transmit and receive channels. The specific
channel configurations were stored using a fixed length float array, and the input parameter
was used as the array’s indexing when determining the correct channel frequency.

Vulnerability

The vulnerability in this system was the fact that the input fields for these control values
were not sanitized before being used to determine the correct destination channel. Because
each parameter was a single byte, this could allow an attacker to input any value up to
256 (shown in Figure 4.1). However, the number of actual channels configured for hopping
was far lower than the maximum value that could be specified for any of the control values.
This resulted in a buffer over-read where the software would read from a memory location

4.2. Un-sanitized Control Parameters 39

outside of the actual channel configuration array if the input control value was greater than
the number of configured channels. The management component would read from unknown
memory and would retrieve an invalid center frequency for the new channel.

Field Description Expected Range Actual Range
0 Transmit Channel 0-8 0-255
1 Transmit Bandwidth 0-6 0-255
2 Requested Channel 0-8 0-255
3 Requested Bandwidth 0-6 0-255
4 Receive Channel 0-8 0-255
5 Receive Bandwidth 0-6 0-255

Table 4.1: Control fields for a cognitive OFDM waveform using LiquidDSP. These control
parameters were not properly sanitized in received frames which could result in unexpected
behavior of the system if malicious control parameters were transmitted by an attacker.
Each parameter only expected a small range of values, but since full bytes were used for
each field, a much larger range could be transmitted.

Because of this, there is no guarantee of what value would be passed to the USRP hardware
driver when attempting to tune the USRP to a new channel. Most likely, whatever value
was read from the garbage memory location would not be a valid float value that was within
the correct tuning range of the hardware.

If this unknown value is passed to the driver to change the USRPs center frequency, a couple
of different scenarios could occur. The most probable outcome is that the invalid channel
would return a float that does not represent a supported frequency. When UHD detects such
a tuning request, it automatically tunes the USRP to a default frequency for that specific
model. At this point, the targeted node would be attempting to receive a signal outside of
the valid channel frequencies. The other possible scenario is that the invalid channel returns
a float representing a frequency that is within the USRP’s tuning range. In either, case the
USRP would no longer be receiving on one of the valid channels which would result in a
denial-of-service.

Depending on which value an attacker attempted to corrupt in the forged frame header,
this control parameter may also be propagated to the other node. In such a situation, both
nodes would be attempting to change their transmit/receive frequencies to the same invalid
channel. The best case scenario is that both radios attempt to tune with an invalid center
frequency and they both jump to the default frequency. At that point, the radios would be
able to re-synchronize, but would be outside of the allowed bands of operation; eventually,
they may hop on their own back to a valid channel. The worst case scenario is the nodes
tune to different frequencies and completely lose synchronization.

40 Chapter 4. Exploiting Software Defined Radios

This vulnerability could possibly induce a crash in the system in multiple different compo-
nents; for example, the driver hardware for a different type of software radio may be buggy
and unable to handle invalid frequency requests.

In a newer version of the radio software, additional parameters were added to control the
transmit and receive channel bandwidth as well as the forward error correction being used.
With more parameters, the number of bits used for each parameter was reduced, effectively
patching this vulnerability.

4.3 Buffer Overflows

Start Flag Length Checksum Data End Flag

Normal Frame Max Length for Payload

Start Flag (Max) Random Data

Exploit Frame Payload Length Exceeds Maximum Length

(Causes Overflow)

Figure 4.4: Example of normal frame structure versus an attack frame. The normal frame
structure is shown above and a continuous exploit frame is shown below. Here the attacker
transmitted a start flag but never transmits the end flag resulting in a heap overflow in the
waveform.

To demonstrate the feasibility of attacks against SDR vulnerabilities, we developed an ex-
ample SDR waveform that is vulnerable to a simple buffer overflow in one of the processing
blocks of the system, and demonstrate a remote, over-the-air exploit of the vulnerability. It
is caused by a message size mismatch between two different blocks in the waveform and can
allow an attacker to execute arbitrary code on the targeted system.

For the purposes of this paper, overflow mitigations previously mentioned (ASLR, DEP,
and stack canaries) have been configured on the test system in order to better mimic the
configuration of an embedded system.

In this section, we briefly discuss the basics of buffer overflow vulnerabilities and also present
two different examples of signal processing blocks in a GNU Radio waveform that are vul-
nerable to overflows. We then demonstrate exploiting these vulnerabilities with a remote,
over-the-air attack that allows an attacker to modify the behavior of a software radio through
an external attack vector.

4.3. Buffer Overflows 41

4.3.1 Heap Overflow Exploit

The first example of a vulnerability we explore is a heap overflow that results in a denial-
of-service attack against the target radio when exploited. We designed a simple Orthogonal
Frequency-Division Multiplexing (OFDM) modem using both GNU Radio and LiquidDSP
that creates a bursty, duplex wireless link between two different nodes. The waveform
includes a virtual network interface that enables the nodes to communicate with each other
using normal network traffic.

The waveform uses a framing protocol above the OFDM physical layer that is similar to many
existing data link layer frames and is shown at the top of Figure 4.4. The frame structure
itself consists of three sections: the length, a checksum, and the payload. Pre-defined, 16-bit
flags mark the start and end of a transmitted frame. Both the length and checksum are
16-bits (unsigned shorts) and immediately follow the frame header. The payload is variable
length but is limited to a maximum length or maximum transmission unit (MTU), defined
at design time.

The waveform includes a frame synchronizer block that is vulnerable to a buffer overflow
attack. This block is responsible for searching the incoming bitstream for new frames,
validating the payload, and finally passing the validated payload to the higher layers in the
network stack. The waveform contains an overflow vulnerability due to a poorly designed
implementation and an assumption that a transmitted frame will never exceed the maximum
length defined by the protocol itself. Because of this assumption, the internal buffer used
for saving incoming frames is a fixed length, pre-allocated buffer whose size is equal to the
maximum payload length. This fails to account for a situation where an attacker purposefully
transmits malicious frames that exceed this length.

The synchronizer uses a sliding window to search for the start flag (indicating a new frame
is being received). Once this flag is detected, the length and checksums for the frame are
saved and the block continues to push received bits into its memory buffer until the end
flag is detected. After a full frame is received, the synchronizer validates the payload and
delivers it to the network stack. If the checksum validation fails, the frame is dropped.

An overflow vulnerability exists because the synchronizer fails to immediately recognize a
frame has exceeded the maximum length. Rather than immediately dropping the offending
frame, the synchronizer continues to search for the ending flag and continues to save incoming
bits into its internal buffer. This buffer used for storing the incoming payload is declared
as a C++ class member and is allocated in the class data structure in the heap segment.
Overflowing this buffer can corrupt the C++ class object itself and any other data structures
stored nearby in the heap.

The simplest exploit of this vulnerability is transmitting a start flag and never transmitting
an end flag (shown in Figure 4.4). The payload itself, along with the other fields in the
frame, can be random data. Since the synchronizer is searching for the end flag, it would not
exit this mode and would continue to save incoming data to its buffer. If enough memory

42 Chapter 4. Exploiting Software Defined Radios

is corrupted by the overflow or the synchronizer attempts a write operation to an invalid
memory address, the waveform will eventually crash. This causes a persistent denial-of-
service attack until the waveform is restarted on the targeted system. We can demonstrate
this result by transmitting a continuous frame until the receiver waveform crashes. In our
specific example, the receiver quickly crashes because an index is corrupted the synchronizer
tries to write to an invalid or unauthorized memory address in the system and is killed by
the operating system.

In addition, an attacker could exploit the overflow using specially constructed frames that
overwrite internal class variables with malicious values. This more sophisticated attack would
require some knowledge of the specific implementation being targeted. Attackers could use
this technique to modify variables and maliciously modify the behavior of the waveform
itself.

4.4 Stack Overflow Exploit

Waveform

The waveform demonstrating a stack overflow vulnerability was designed to simulate an IoT
sensor node that is part of a larger mesh network. Nodes within the network communicate
with each other using an OFDM physical layer link, with an optional backhaul network
connection for internet connectivity. The main component implementing this connectivity
within the flow-graph is the router block, which has several message passing inputs and
outputs for linking the different blocks in the waveform. The router implements some basic
link layer functionality, where each message has a source and destination address, a 2 byte
header, the payload, and a frame checksum. A diagram of the waveform is shown in Figure
4.5; a fully implemented node would include a duplex physical layer plus the additional
socket for the backhaul connection.

The second example of an overflow vulnerability in a software radio we present is a stack
based buffer overflow. This vulnerability is susceptible to a more sophisticated attack and
results in arbitrary code execution on the targeted system. To demonstrate the feasibility of
this type of vulnerability, we designed an example GNU Radio waveform with a vulnerability
in a message passing block that can be exploited with this more advanced attack. As we
mentioned previously, defenses against stack buffer overflows do already exist in traditional
desktop or server based operating systems, but embedded and real-time systems may not
have these same defenses and can still be susceptible to these attacks. So, for our demon-
strations, these defenses were disabled on a Linux desktop system to mimic an embedded,
real-time system.

Our example waveform simulates a small sensor node that is part of a larger mesh network.
Nodes within the network communicate using an OFDM link, with an optional backhaul

4.4. Stack Overflow Exploit 43

network connection for internet connectivity. A router block implements some basic link
layer functionality, where each message has a 6 byte source and destination address, a 2
byte header, the payload (with a maximum size of 256 bytes), and 4 bytes for the frame
checksum. Frames not addressed to the receiving node are dropped; correctly addressed
frames are forwarded to the correct block in the waveform based on the received packet’s
type. A flowgraph of the basic node is shown in Figure 4.5.

Figure 4.5: GNU Radio receiver for a sensor node using a vulnerable router block. The
router block improperly handles incoming messages that are too long, which results in a
stack buffer overflow.

The vulnerability in our example waveform mainly exists due to how the router block pro-
cesses incoming messages. Like our previous example, this example uses the same assumption
that the length of a message will not exceed the maximum length of a transmitted frame for
the application (in this case it is 256 bytes). In the router’s handler function (handle_link),
the block copies an incoming message’s payload into a buffer before processing it and without
performing a length check on the payload of the received frame. A simplified version of the
vulnerable function is shown in Figure 4.6. If an incoming message is too long, an overflow
will occur during the memory operation (Line 9) that copies the received payload to a fixed
length buffer declared in the function. The assumption is that the length of a frame received
by the router would not exceed the maximum length of the payload defined in the link layer
protocol.

However, there is no guarantee that a received message will not exceed this maximum length
and the length is never checked prior to moving it to the new buffer. So, whenever a frame

44 Chapter 4. Exploiting Software Defined Radios

is transmitted that exceeds the maximum payload length, an overflow will occur on the
stack that corrupts local memory. This situation can occur because other blocks within our
waveform can handle much larger frame sizes than the router block. Our OFDM physical
layer is implemented using LiquidDSP’s FlexFrame module that can have a much longer
maximum payload than the rest of the system (up to 65535 bytes). The OFDM block simply
receives an incoming frame and creates a new message in GNU Radio that is passed to the
router block; there is no size limitation on the length of this message other than the length
of the received OFDM frame. Whenever a frame is transmitted that exceeds the maximum
message length for the router, the OFDM block will generate a message that causes a stack
overflow when it is processed by the router block. This is a feasible vulnerability because
waveforms can consist of various blocks from existing modules and developers may use these
implementations and fail to account for possible size mismatches like the one demonstrated
in our example.

0 void handle_link(pmt::pmt_t msg) {
1 if (pmt::is_pair(msg)) {
2 unsigned char payload[256];
3 ...
4 pmt::pmt_t packet = pmt::cdr(msg);
5 uint8_t * data;
6 data = (uint8_t*)pmt::blob_data(packet);
7 ...
8 uint16_t len = pmt::blob_length(packet)
9 memcpy(payload, data+14, len-18);
10 ...
11 }
12 }

Figure 4.6: Vulnerable message handling function in the router block. The router block’s
message handler that is vulnerable to a stack based buffer overflow. The overflow will occur
if the incoming message length is greater than 256 bytes. An attacker can exploit this
vulnerability to possibly inject code and change the behavior of the application.

This vulnerability was exploited in two major ways: a stack smashing attack and shellcode
injection attack. A stack smashing attack is the more simple of the two and is essentially
the same as the generic overflow exploit described previously.

Stack Smashing

Stack smashing occurs when an overflow is used to corrupt important memory locations
within the current stack frame. The goal is simple: use an overflow to corrupt as much of
the stack as possible until the application crashes. When the currently executing function
completed, the application would attempt to use this corrupted control flow information and

4.4. Stack Overflow Exploit 45

Original

… …

Stack
Growth

Function
Arguments

Previous
Frames

Pointers

Local
Variables

Argument 0

…

Argument N

Return Address

Previous Base Address

Variable 0

…

Buffer

…

Write
Direction

After Exploit

Argument 0

…

…

Injected Return Address

No-Operation Sled

Injected Shellcode

No-Operation Sled

…

Attack
Payload

Redirected
Pointer

New Base
Pointer

New Stack
Pointer

Figure 4.7: Example of a stack layout after a successful exploit. The shellcode has been
written to the original buffer, and the overflow vulnerability has allowed the attacker to
overwrite the original return address to now point to the injected shellcode.

would result in a memory fault and crash. We were able to demonstrate a stack smashing
attack by transmitting a very large frame with randomly generated data. The message
exceeded the length of the router’s allocated buffer and corrupted the stack, causing the
waveform to crash once it was received. This resulted in a denial-of-service attack until the
waveform was restarted.

Shellcode Injection

The shellcode injection attack is a much more sophisticated attack that requires an in-depth
understanding of the stack structure of the application in order to successfully exploit it.

46 Chapter 4. Exploiting Software Defined Radios

An attacker could determine the stack structure through multiple methods; two examples
include reverse engineering the binary or executing the application with a debugging utility.
The objective is not to simply corrupt the current stack but instead modify the stack frame to
control the execution flow of the application. The goal is exploiting the overflow vulnerability
to overwrite the return address in the current stack frame with a malicious address that
points to shellcode previously injected by the attacker. The injected shellcode could also be
contained in the malicious frame’s payload, but could also be injected through other means.
If the exploit is successfully constructed and injected into the system, the system will jump to
the injected shellcode rather than the original return address when the currently executing
function has finished executing. An example of a stack frame after a shellcode injection
exploit has occurred is shown in Figure 4.7.

Figure 4.8: Console output showing normal receiver behavior. In this instance, a 128 byte
message has been correctly received and the contents of its payload displayed on the console.

Using a debugger application (the GNU Project Debugger), we were able to breakpoint
and analyze the running waveform and examine the memory layout of the stack during the
execution of the handle_link function. The important values that needed to be determined
from this type of in-depth analysis include the location of the return address relative to the
start of the buffer and the start address of the buffer itself. Once the location of the return

4.4. Stack Overflow Exploit 47

Figure 4.9: Console output showing a successful exploit. The output shown includes the in-
jected shellcode, corrupted return address, and a new shell prompt triggered by the shellcode
execution.

address relative to the buffer and the start address of the buffer was known, it was possible
to build an exploit payload to accomplish the injection. The exploit payload itself consists
of several components: the NOP sled, the shellcode, and the new return address [46]. An
example of this payload is shown in Figure 4.7. This payload contained the shellcode and a
malicious return address pointing to the injected shellcode in the buffer. This shellcode is
binary, executable code that is written for the target’s specific hardware architecture, which
in our demonstration is the common x86 architecture. The shellcode is the actual payload
that will be executed on the target system once the application jumps to the malicious return
address. For this exploit, the shellcode simply calls the exec() system call that launches the sh

48 Chapter 4. Exploiting Software Defined Radios

shell process which takes over the execution context of the original waveform. The attack has
two results: a persistent denial-of-service since the original waveform is replaced by sh and
arbitrary code execution on the host. The rest of the payload was filled with the no operation
opcode (NOP) for the targeted processor architecture. For our specific demonstration, the
NOP sled was not really needed, but its main purpose is to allow the malicious return address
to point anywhere within the stack buffer in situations where the exact location of the buffer
starting address is not known.

To demonstrate this exploit over the air, we also implemented an attack waveform that pe-
riodically transmitted a random 128 byte message simulating normal sensor network traffic.
The attack waveform would also periodically transmit the injection attack and attempt to
exploit the receiver. We were able to successfully cause the receiver to jump to the injected
shellcode, allowing us to execute arbitrary code on the targeted system.

The exploit payload itself consists of several components: the NOP sled, the shellcode, and
the new return address [46]. An example of this payload is shown in Figure 4.7. The shellcode
is the actual payload that will be executed on the target system once the application jumps
to the malicious return address. This shellcode is binary, executable code that is written for
the target’s specific hardware architecture, which in our demonstration is the common x86
architecture.

For our example exploit, the shellcode simply calls the exec() system call to launch a shell
process that takes over the execution context of the original waveform. We were able to
successfully cause the receiver to jump to the injected shellcode triggering the waveform to
execute the sh process which takes over the receiver waveform’s execution. Figures 4.8 and 4.9
show screenshots of the normal behavior of the receiver and a successful shellcode injection
respectively. Figure 4.9 shows the output of the receiver when the sh was triggered and shows
the received malicious payload, the injected shellcode, the malicious return address, and the
resulting shell prompt. In the second figure, the exploit payload is shown from the debug
output and the NOP sled, shellcode, and malicious return address is clearly visible. Also,
the shell prompt at the end of the output indicates the waveform executed the shellcode and
launched the shell process.

Simply launching a shell process as part of the shellcode exploit is not a very effective attack
for this example, but it does prove that the exploit is possible. An attacker could use
more complicated shellcode to better exploit the system like exploit the kernel. Much more
sophisticated shellcode could be used to open up backdoor access for the attackers allowing
them to remotely control the targeted system. By changing the shellcode injected in the
payload, an attacker is able to execute almost anything on the host. One example is opening
a reverse network connection back to the attacker, giving them a backdoor into the sensor
itself and also the sensor network.

4.5. Summary 49

Figure 4.10: Example GNU Radio exploit flowgraph. This flowgraph transmits randomly
generated 128 byte payloads that are normally expected by the sensor node flowgraph. It also
allows larger payloads to be injected, which can be used to exploit the receiver flowgraph.

4.5 Summary

Software defined communication systems have introduced a new class of threats and a new
attack surface where adversaries target vulnerabilities in the implementations themselves.
Because modern wireless standards are complex and are rapidly evolving and systems are
implemented quickly, common software vulnerabilities can easily occur within SDR imple-
mentations. However, there is not a significant amount of previous work that has focused
on these types of attacks. In this chapter, we specifically focus on these weaknesses within
SDRs and present several example vulnerabilities and demonstrate exploiting them.

While there are defenses that exist for these types of common vulnerabilities, they are typ-
ically implemented in desktop and server operating systems and not embedded systems.
Many SDRs are implemented on embedded systems and can be vulnerable to these types
of attacks. The best defense is following secure coding practices, but it can be difficult to
catch every single possible vulnerability within complicated software systems.

In this chapter, we presented several examples of vulnerabilities in SDR implementations
and demonstrated exploits of these weaknesses from a wireless attack vector. With the con-
trol flow attack, we showed that injected malicious headers could prematurely trigger state
changes in the waveform that could cause legitimate messages to be dropped unintention-
ally. If properly timed, the receiver can be effectively jammed resulting in a denial-of-service
against the system. Our next example demonstrated a vulnerability where the receiver did
not properly sanitize input control parameters. In this case, the attacker could inject invalid
control information which triggered buffer over-reads and could result in the radio being

50 Chapter 4. Exploiting Software Defined Radios

misconfigured resulting in unexpected behavior and a persistent denial-of-service.

Next, we demonstrated the ability to exploit both heap and stack buffer overflow vulnerabil-
ities in the SDR. These exploits resulted in persistent denial-of-services against the system,
as well as, the ability to exert control of the waveform remotely by injecting and triggering
arbitrary shellcode on the target. An example heap-based buffer overflow in a frame synchro-
nizer block could be exploited by transmitting a frame that exceeds the protocol’s maximum
length and results in corrupted memory and class variables triggering an eventual crash of
the system. The stack-based overflow allowed both arbitrary, remote code execution on the
targeted system and a denial-of-service attack through a simple stack smashing similar to
the heap overflow attack.

We have shown that wireless systems implemented in pure software can be susceptible to
traditional cyber-security attacks. Since SDRs are increasingly used as production systems,
this threat will continue to increase. Protecting the system against these types of exploits
and preventing further exploits by an attacker is the main motivation for our isolation based,
defense-in-depth architecture presented in the next chapter.

Chapter 5

Defense-in-Depth Architecture for
Software Radios

With this shift towards software in communications systems, any framework for developing
secure wireless communications systems must account for vulnerabilities that exist within
the radio implementation itself rather than just isolating the application layer or securing
protocols. The related security models we discussed in previous chapters proposed using
isolation to protect the radio from misconfiguration due to exploits in an application using
a SDR waveform rather than the waveform itself. Isolating the application layer to protect
from exploits there is important, however vulnerabilities within the lower layers of the sig-
nal processing stack can lead to the entire system (both waveform and application) being
compromised. The application layer would never need to be compromised if the lower layers
can be exploited, so only isolating the application layer is insufficient.

In the previous chapter, we demonstrated how these vulnerabilities in a SDR could be ex-
ploited to cause unexpected behavior and even allow arbitrary code execution. As applica-
tions grow more complex, there is a greater chance of this type of vulnerability existing that
can be easily overlooked. While secure coding practices are the best defense, many times
unknown vulnerabilities still exist within applications (known as zero-day vulnerabilities)
and can be extremely difficult and time intensive to identify.

This chapter presents a generic defense-in-depth architecture for securing SDRs across all
software layers by isolating components of the system (especially high-risk ones) into dif-
ferent domains. Adding multiple layers of isolation into the radio using techniques such as
virtualization helps construct a system that provides better security than the monolithic
SDR architecture. Attacks against vulnerabilities in the waveform itself can be contained
within the specific domain and prevented from affecting the rest of the radio. This allows
for isolated domains that can be both secured against outside attackers, but also secured
against inside attackers attempting to gain unauthorized access to data.

In this chapter, Section 5.1 presents a general overview of the entire proposed defense-
in-depth SDR architecture. Section 5.2 then details the Security Plane which is the key
component of the architecture that provides the isolation mechanisms, devices drivers, and
inter-process communication mechanisms need to implement an entire waveform. Sections
5.3 and 5.4 then describe the Control and Data/Application Planes of the architecture.
Section 5.5 briefly details how policy management would be handled within our architecture.

51

52 Chapter 5. Defense-in-Depth Architecture for Software Radios

In Section 5.7 we describe some challenges that are associated with our security architecture.

This chapter also gives a brief description of how policy management would work in the
proposed security architecture, but an in-depth discussion of how policies are defined and
example policies and their enforcement is outside the scope of this dissertation. However,
it is important to understand how hardware policies would be enforced in the architecture
which is briefly discussed.

5.1 Overview

The primary goals of the defense-in-depth architecture are providing mechanisms for 1) lim-
iting the effectiveness of exploits against vulnerabilities by stopping further compromise of
the SDR and 2) detecting the malicious behavior and mitigating the threat. This architec-
ture employs a similar design philosophy to the micro-kernel architecture used in various
operating systems, where the intent is reducing the core of the system to the smallest possi-
ble Trusted Computing Base (TCB) and isolating every other component within the system.
This is accomplished by moving the components of the waveform, especially high risk compo-
nents, into separate isolated domains which limits the effectiveness of an exploit against any
individual components by preventing the entire waveform from being compromised. While
making any complex system completely secure is practically impossible, this architecture is
designed to start with a high-assurance core and layer defenses around the SDR components
to make it difficult for attackers to completely compromise the system through exploiting a
single component. This approach is also comparable to traditional operating system security
models such as the hierarchical privilege model where components are placed at different
privilege levels in the system. The strength of this model is isolating each component or
group of components of the system into their own domains and keeping the core of the system
as minimal as possible.

By isolating each component in the system, the CIA security model can be better enforced.
If one isolated component is compromised, the confidentiality of the system is protected
through isolation; the attack would be contained within the isolated environment. Integrity
is protected through monitoring each of the virtual environments. If an attack is detected, the
environment can be reset back to a nominal state without affecting the rest of the waveform.
Availability is also protected through monitoring and isolation. Resource limits are enforced
by the isolation environment, and if a component crashes, the monitoring system can detect
the crash and immediately restart the component.

The overall architecture (shown in Figure 5.1) can be divided into three functional planes:

• The Security Plane is the core of the system and is the most critical layer for ensuring
overall system security. It constitutes the TCB and provides the isolation and separa-
tion mechanisms used to isolate all of the components in the system, device drivers for

5.1. Overview 53

Hardware: Processors/Co-Processors, Memory, Devices, Network, Storage, etc.

Isolation Mechanism

Host Operating System
Control/Monitor Devices/Drivers Policies

Zone 1

Block Block Block

Control Drivers

Zone N

Block Block

Control Drivers

Zone …

Block

Control Drivers

Buffer/IPCBuffer/IPC

Data/
Application
Plane

Control Plane

Hardware

Security Plane

Figure 5.1: Basic defense-in-depth SDR architecture - This security architecture consists
of three major layers: 1) the Security Plane which comprises the trusted computing base
and includes the isolation techniques, and hardware device drivers, monitoring utilities,
and policy enforcement utilities; 2) the Control Plane which includes command and control
functionality for the waveform; and 3) the Data/Application Plane which includes the various
applications, services, and waveforms that comprise the communications system. The dashed
line between the Security and Control Plane indicates some of the control capabilities must
also reside in the host layer and not simply the isolated environments.

hardware, and inter-process/inter-domain communication for connecting components.
Monitoring for the isolated environments and policy enforcement also exist within this
plane and are useful for detecting malicious behavior in the system and protecting
against mis-configuration.

• The Control Plane contains all components necessary for controlling, updating, and
managing the system. It handles properly configuring the Security Plane based on the
system’s security requirements and manages the overall execution of the waveform and
other applications.

• The Data/Application Plane consists of generic services, applications, waveforms, or
third-party applications required to implement the communications system. These
components implement the actual communication system, so they are exposed to attack
from the radio’s interfaces. Since they can contain exploitable vulnerabilities, each of
these components or groups of components must be isolated to protect against exploits
affecting other parts of the system.

54 Chapter 5. Defense-in-Depth Architecture for Software Radios

5.2 Security Plane

The Security Plane is the core of the system; it is a minimal, hardened system that provides
the functionality necessary for the fundamental operation of the system such as the isolation
environments. Since this is the lowest and most trusted layer of the architecture and enforces
the security for the application, it must be kept as minimal and secure as possible because
any vulnerabilities in this layer could be exploited to compromise the entire system. It also
handles the device drivers required to utilize different RF front-ends, co-processors, and other
hardware, and also the inter-process-communication (IPC) mechanisms for components in
the different layers to communicate with each other. These mechanisms themselves are
implemented in the Security Plane, but are managed through the Control Plane discussed
later. The Security Plane uses the Principle of Least Privilege where all isolated environments
execute with as few permissions as possible. In the traditional hierarchical privilege model,
the Security Plane is the most privileged ring of the system; all other layers must execute
with fewer privileges.

5.2.1 Isolation

The core of the architecture is the isolation environments responsible for ensuring that com-
ponents only have access to authorized resources such as available processors, devices, or
memory. Memory isolation and protection is vital so that the individual environments are
unable to access data within other isolation environments. Two examples of common isola-
tion mechanisms are virtualization (hardware virtualization) and containerization (operating
system virtualization). We briefly discuss a few isolation techniques below:

• Virtualization provides the highest level of isolation for components in the system, but
also has the highest overhead, especially in systems lacking hardware virtualization
support. A hypervisor creates a software interface that abstracts the physical system
hardware away and provides a virtual machine (VM) that appears like a dedicated
physical system to the software. A guest operating system can be installed on the
VM and executed like a physical system; however, the guest environment is isolated
from the host environment through the hypervisor interface and hardware support.
One downside of this method is systems without virtualization support in hardware
would incur a high performance overhead due to additional software emulation. So,
constrained resource systems like embedded systems may not be able to use virtual
machines as an effective solution. Examples of different virtualization solutions include
KVM and VirtualBox [14, 76].

• Containerization provides a lightweight isolation mechanism for components in the
system. Rather than abstracting hardware, containers abstract interfaces within the
operating system where the kernel provides methods for isolating groups of processing

5.2. Security Plane 55

into logical containers. This is implemented through CGroups (Control Groups) and
namespaces in Linux; the Linux kernel creates different internal control structures for
processes in each namespace. Since containers are not abstracting and virtualizing
physical hardware but only virtualizing kernel structures, they provide lower overhead
but also lower isolation since there is a shared kernel. Exploits against the shared
kernel could lead to compromising the entire system. Example implementations of
containers are Docker and Kubernetes [15, 77].

• MicroVMs provide a hybrid approach between virtualization and containerization; they
provide a higher level of isolation than containers but much faster startup times, speed,
and resource efficiency than virtual machines. ClearContainers are a solution that
was introduced by Intel in 2015 (now Kata Containers) as a middle ground between
containers and virtual machines. The goal was providing a system that is very similar
to the workflow of containers but still provided the isolation of a full virtual machine.
This is accomplished by using a virtual machine that runs a minimal kernel and a
minimal amount of required software to implement the container interface. These
have a much lower overhead than full virtual machines due to the reduced amount
of software running in the VM. Examples of microVMs include kata-containers and
Firecracker [78, 79].

• Sandboxing is the lowest level of isolation but provides the least amount of overhead.
With this solution, the host operating system limits the functionality of the application
so it cannot maliciously access critical system data. However, this solution can be the
easiest to break. AppArmor and SELinux are examples of this approach. [80, 81]

• Microkernels or separation kernels reduce the amount of code running in kernel mode
to the minimal amount required to build a functional system. This would include
the scheduler, memory management, and inter-process communication for connecting
components in the system. Device drivers and services in a microkernel run in user
space, and applications access the devices through the message passing interface. Since
this represents the minimal amount of code required to build a larger system, it can
be far easier to harden. However, a downside to a microkernel is the increased de-
velopment required to develop a system. One examples of a microkernel is DARPA’s
mathematically secured kernel that is formally proved to be secure [82, 83].

This architecture can employ various types of isolation for each component or group of com-
ponents depending on the risk involved and any defined security requirements. Hardware
support, component risk, security requirements, and performance requirements play key
roles in determining what isolation mechanisms should be utilized for various application
components. In some cases (like embedded systems), processors do not support full virtu-
alization, so containerization is the only feasible option. Also, multiple isolation techniques
could be utilized as a hybrid approach for an application to allow for greater control over
the performance/security trade-offs. Higher risk components should have the highest degree

56 Chapter 5. Defense-in-Depth Architecture for Software Radios

of isolation from the rest of the system (least privilege), but these environments equate to
higher overhead and lower overall performance.

In SDRs, the physical layer components are typically the lowest risk since they process digital
samples rather than bytes of data but require high performance. Any vulnerability in these
components would likely result in the system becoming corrupted or non-responsive rather
than fully compromised as shown in the previous section. Once samples are demodulated
to actual bytes and are passed to higher layers of the stack, the risk factor of these higher
layer components increases since an attacker can directly control the data they process. For
low level components, mechanisms like containers provide some isolation with less overall
overhead, while more high-risk components are placed into more isolated environments like
virtual machines. The trade-off of isolation versus performance is further discussed in the
following chapter.

Extremely high-risk components can also be placed in nested isolation environments to en-
force even more separation from the rest of the system. For example, an application may
consist of components all isolated within different containers that are isolated within a single
large virtual machine. This simply adds even more overhead to the system, but increases
the isolation and adding more layers of defense around the components.

5.2.2 Device Drivers

The Security Plane is also primarily responsible for handling device drivers for physical
hardware on the system. Since this layer implements the isolation environment for the
different components in the system, it must also provide the appropriate interfaces to allow
components to communicate with the underlying hardware from within the environment. A
split device driver model is used where the main system driver exists in the Security Plane,
and a minimal driver is exposed within the isolated environment itself (shown in Figure
5.2. In some cases, this interface can be a direct pass through from the virtual machine or
container directly to the hardware. For example, RF data can be directly passed to the signal
processing waveform in the isolated environment from the hardware. However, in order to
enforce security and regulatory constraints, the driver would intercept control messages and
block certain actions based on system policies.

Developing secure drivers and hardware interfaces for the isolation environments is vital since
these are implemented in the core of the architecture, run with high privileges, and interface
directly with the high risk components of the application. These drivers must have a minimal
attack surface since vulnerabilities in the drivers could allow a compromised environment to
escape, compromise the Security Plane and therefore compromise the entire system.

5.2. Security Plane 57

RF Frontend

Antenna RF Frontend Driver

Network/Bus Interface

Security
Zone

Proxy
Driver

Guest OS

Waveform

Source

Data/IO Control

Data/
Application
Plane

Control Plane

Hardware

Security Plane

Figure 5.2: Split device driver model for the defense-in-depth architecture.

5.2.3 Inter-Process/Domain Communication

The final part of the Security Plane is inter-process/inter-domain communication between
isolated environments which handles data flowing between isolated components in those envi-
ronments. The IPC mechanisms can be implemented in several different ways depending on
the isolated environments utilized. The most straightforward method is a network based IPC
which uses the network stack built into each isolation environment. However, this method
introduces significant overhead and traffic on the host’s internal network interfaces which
can result in longer latencies and reduced throughput. Other solutions include allocating
shared memory buffers on the host and sharing these with the appropriate environments,
which would provide a lower overhead implementation since it does not rely on the environ-
ment’s network stack. For example, this could include the use of Linux Pipes to connect
blocks executing within different container environments on the host.

58 Chapter 5. Defense-in-Depth Architecture for Software Radios

5.2.4 Monitoring

Monitoring plays a critical role by detecting malicious behavior occurring within isolation
environments and applying the appropriate techniques to mitigate the malicious activity.
This involves inspecting the execution environment within the isolation environment from
the outside and attempting to detect malicious execution. Monitored components are oblivi-
ous to this monitoring process and cannot easily influence it. If malicious activity is detected
within a component or environment, an alarm could be triggered and actions taken to miti-
gate the behavior such as resetting the environment to a known safe state. There are several
existing techniques for monitoring execution within isolation environments such as contain-
ers and virtual machines that can be implemented [84, 85, 86, 87]. Additional monitoring
and intrusion detection systems (IDS) can be applied to the IPC mechanisms in the archi-
tecture. In this case, an IDS could monitor incoming data to different components in the
waveforms or applications scanning for known malicious signatures or shell-code and could
immediately block the attack before it could be processed by the targeted component.

5.2.5 Policy Enforcement

Another role of the Security Plane is policy enforcement which is an integral part of any secure
SDR architecture. SDRs are inherently configurable, but production systems must operate
under strict regulatory policies. While the specifics of how these policies are enforced is
outside the scope of this dissertation, it is important to understand where policy enforcement
exists within the defense-in-depth architecture.

Like the Secure Radio Middleware model discussed in Section 3.3, the policy enforcement
components in our architecture exist outside of the isolated zones where the waveform and ap-
plication components execute. This ensures that the components themselves cannot bypass
the policy enforcement in the system. However, a major difference between this architec-
ture and the SRM is the policy enforcement is not a singular component like in the SRM
architecture. In that architecture, every message sent from the user application to the radio
middleware was checked by the policy manager and enforced there before messages were
passed to the radio middleware. The distributed nature of this architecture, where multi-
ple components exist in separate environments, policy enforcement must also be distributed
throughout the system. The policies themselves can still be stored by a singular component
in the Control Plane which will configure the Security Plane with the acceptable policies,
but the enforcement is handled on a per-component basis in the Security Plane.

Policies can be very broadly defined in SDRs applications that can span multiple aspects of
the systems such as hardware configurations, resource management, Application Program-
ming Interface (API) permissions, and application settings. The Security Plane is responsible
for enforcing some of these types of policies, such as the legal hardware configurations for
operation (this includes hardware front-end settings such as power, bandwidth, frequencies,

5.3. Control Plane 59

etc), resource management, and authorized application interfaces. Policies for allowable
application configurations and user actions should be enforced at the Data Plane.

First, the architecture should always enforce regulatory policies from attempts to mis-
configure the system due to an exploit or user error. These policies define what configuration
limits should be applied to the front-end hardware and therefore must be enforced at the
driver levels. Each device driver exposed to the isolated environment must enforce poli-
cies through intercepting and blocking components from configuring the hardware outside
of allowable configurations. This could include enforcing policies that are only valid during
certain times or at specific locations; this type of approach to detecting and blocking invalid
changes to the radio configuration was presented in [65].

Second, the Security Plane can also enforce policies regarding resource usage and authorized
application interface usage based on the application security requirements. One threat spe-
cific to software radios is a denial-of-service due to exhausting system resources. Since this
plane enforces separation between components in isolation environments, it can also enforce
limits on resources consumed by each environment. In addition, this plane can enforce which
components within the higher level planes are allowed access to different APIs or software
interfaces implemented in the system.

5.3 Control Plane

The Control Plane of the architecture includes all components responsible for the overall
control and operation of the system. This includes the functionality for launching different
waveforms and configuring the Security Plane to implement the appropriate isolation en-
vironments required for the system. It also manages the interaction between components
within the Data/Application Plane by establishing the proper IPC channels and configuring
each isolation environment to have proper access to connected hardware. The Control Plane
also includes any interfaces for management (both local and remote), intrusion detection
systems, firewalls, and monitoring and auditing utilities. The Control Plane would also be
responsible for secure software updates and installing and validating any new components
on the system. Once new waveforms and applications are properly installed, the Control
Plane would handle validating the waveform’s integrity and securely booting and initializing
the waveform. In a static system, the Control Plane may be very minimal and include only
monitoring and auditing tools.

Since the Control Plane essentially manages the Security Plane, it is important that this
layer also remains secure and implements only the minimum requirements so the available
attack surface that could be exploited is small. Some of the components within the Control
Plane (like remote management interfaces) should also execute within their own isolated
environment to mitigate against possible exploits and use a minimal interface to communicate
with the rest of the Control Plane. These components have exposed interfaces and handle

60 Chapter 5. Defense-in-Depth Architecture for Software Radios

data from untrusted sources, which could be used as an attack vector to compromise the
system. Isolating these components limits the effectiveness of using these components as
attack vectors into the rest of the system.

One of the main security objectives listed in the ITU-T report on Telecommunications Net-
work Security [56] was ensuring a system provided proper accountability through require-
ments such as authentication, authorization, logging, alarm reporting, and auditing. In
the defense-in-depth architecture, the Control Plane is responsible for handling all of these
security requirements. Some requirements like identity verification, activity logging, and au-
diting can handled through the different exposed management interfaces (like Secure Shell
or SSH) which provides user authentication, management, and logging. However, this only
applies to the management interfaces and Control Plane of the system; the implemented
application itself would also need to provide these controls. In addition, the Control Plane
handles monitoring and policy enforcement for the system.

5.4 Data/Application Plane

The final plane of the architecture, the Data/Application Plane, includes all the SDR wave-
forms, system services, and end-user or third-party applications that are required to actu-
ally implement a communications system. Components at this layer are exposed through
the wireless interfaces and may be vulnerable to attack and therefore should be treated as
untrusted (with varying levels of risk). Each component executes within an isolated envi-
ronment which is critical for limiting the effectiveness of an exploit against a vulnerability
and preventing exploits from affecting the rest of the communications system.

The specific implementation of a waveform and how its components are grouped and iso-
lated is highly dependent on each individual system and the requirements for security and
performance are ultimately determined by the engineers developing the system. They can
be organized in a variety of ways: For example, waveforms could be monolithic applications
within a single isolated environment where the user applications execute in separate envi-
ronments. Or a waveform’s high-risk components and layers of the stack could be split into
separate environments, implementing a micro-services type of architecture. The monolithic
approach is similar to the current GNU Radio model and can be more vulnerable to an
attack, but can also have slightly higher overall performance since there is no need for IPC.
The distributed approach is more robust against attack because each component or layer
is individually isolated, but this results in higher overheads and lower overall performance
due to increased IPC between environments. Finally, waveforms could implement a nested
approach where lightweight isolation techniques are embedded within heavier isolation en-
vironments to provide additional layers of security around the high-risk components. For
example, each layer in the waveform could execute in an individual container with the en-
tire waveform executing in a single virtual machine. However, this would add additional
performance overhead due to the nested environments.

5.5. Policy Management 61

In addition to the waveforms, the Data Plane also consists of services and applications
required for a fully functioning communications system. Again, the exact implementation
and required applications are highly depending on the specific communications system. The
important key is that each of these services or applications also executes within an isolated
environment and require connections to other system components that are established by the
Control Plane. Systems could allow for the installation of third-party applications that would
be untrusted and are another reason for using high-isolation environments. Overall, this uses
a design philosophy similar to that of micro-services that are commonly implemented for
cloud computing systems. Examples of services and applications existing at this layer could
include networking services like Virtual Private Networks, messaging clients, user interfaces,
or even full platforms or operating systems.

5.5 Policy Management

Many communications systems have policies that define what system configurations are
authorized for use by different users. These policies vary based on the system itself but can
include settings such as the modulation scheme, error correction, encryption keys, framing
protocol, and the channel. However, unlike the policies described earlier, these policies are
specifically related to the application components themselves and not hardware supported
in the Security Plane. Therefore, any security policies directly related to the application
itself should be enforced at the appropriate component in the application. For example, the
Security Plane enforces allowable frequencies for radio hardware, but the application itself
should enforce what channels are available to specific users. Since the waveform components
are isolated in separate environments from any end-user applications in our architecture, a
compromised or malicious user application cannot bypass the policy enforcement of another
component in the system. However, if a waveform component were compromised, an attacker
could use it to bypass policies specific to that component, but not policies enforced elsewhere
in the system.

5.6 Layered Defenses

While we did not mention it in the Security Plane section, one of the keys to this architecture
is the defense-in-depth or layered approach. The goal of the architecture is to split a waveform
into distinct components or groups of components so that exploits cannot affect the entire
system. Some components within a system can be higher risk than others; for example, the
higher layer protocol processing components are much higher risk than the physical layer
since they process bytes rather than samples. In this case, it might be beneficial to use
the layered approach to isolating these components and nesting one isolation mechanism
within another. This essentially serves as another isolation that an attacker must escape an

62 Chapter 5. Defense-in-Depth Architecture for Software Radios

overcome to compromise more of the system. Figure 5.3 shows an example of this layered
isolation.

Hardware (Processors, Memory, Devices, Network)

Isolation Mechanism

Host Operating System
Control/Monitor Devices/Drivers Policies

Application

Isolation

Host/Libraries
DriversControl

Waveform/Application

Isolation

Host/Libraries
DriversControl

Figure 5.3: Defense-in-depth SDR with nested isolation. This is an example of the multi-
layered defense-in-depth SDR architecture. Here, there are nested layers of isolation added
into the main isolation environments of the system. For example, containers could be nested
within virtual machine environments to implement the defense-in-depth approach.

5.7 Challenges

Distributed

Some of the main challenges that exist with implementing radios based on the defense-
in-depth methodology is dealing with the now distributed nature of the waveform. This
complicates how the system is interconnected and controlled versus a more monolithic ap-
proach to system design. Resource management is also a major component since the isolation
mechanisms will add additional overhead and reduce the performance of the overall system.

5.8. Summary 63

Security Holes

Another main challenge to consider with our mechanism is the security of the isolation
mechanisms themselves. We are relying on these mechanisms to isolate the zones from the
secure platform. So if there is a vulnerability in the mechanism itself, this can be used to
compromise the platform and gain access to the rest of the system.

For example, there have been many example exploits that show the ability of malicious
code in a guest virtual machine to exploit its host hypervisor and install a root-kit in the
host. Unfortunately, it can be very difficult to completely secure complex systems like a
hypervisor, so there is a possibility of an unknown vulnerability existing. The goal of our
approach is to reduce the size of the platform as much as possible in order to reduce the
likelihood of an existing vulnerability.

In addition, access control implementations like SELinux or other techniques like Linux’s
seccomp feature which limits a process’s ability to execute system calls. Techniques such as
this could be used in the platform layer in order to better secure the zones and prevent an
attacker from using an exploit to escape from the isolation.

5.8 Summary

In this chapter, we presented a new generic defense-in-depth architecture that provides a
foundation for developing secure software radio systems. Because wireless systems are shift-
ing towards using SDRs which could contain exploitable vulnerabilities, frameworks must
be designed with this threat in mind and account for vulnerabilities that can exist in the
implementation itself. As applications grow more complex, there is a greater chance of this
type of vulnerability existing. Unlike previous security models for SDRs, our architecture
specifically focuses on protecting the implementation itself from compromise.

Our architecture employs isolation mechanisms to separate components in the waveform into
different domains. This ensures that exploits against a specific component in a waveform
can be contained without the entire system being compromised. The key component of
the architecture is the security plane, which provides the minimal set of software required
to build the application including the isolation mechanism, device drivers, and the inter-
process communication mechanism for connecting blocks within different isolated zones of
the waveform.

We also briefly detail how policy management and enforcement would be handled within
our architecture. Unlike previous models, like the SRM, where the user application has a
single interface to the virtual radio, the radio is now divided into a distributed architecture.
This requires that policy enforcement is also implemented in a distributed manner, where
the isolation mechanisms properly enforce resource limitations and the device drivers imple-

64 Chapter 5. Defense-in-Depth Architecture for Software Radios

ment policy enforcement for each specific device. Using the split driver model, any control
commands sent to the proxy driver within the isolated environment would first be checked
against the available policies in the security plane driver before the command would actually
be sent to the device itself.

Chapter 6

Performance Analysis

One of the challenges in developing any type of software architecture is understanding what
trade-offs need to be considered in the system design and determining the best route forward
based on defined application requirements. Our proposed security architecture relies heavily
on isolation environments (such as virtualization) to provide additional security, but this
increases the overhead of the entire software stack and can affect overall system performance.
Performance is critical to software radio applications, so this security versus performance
trade-off must be taken into consideration when developing a full system architecture. Some
performance loss may be acceptable for high-risk components in order to gain the additional
security provided by the isolation, but not all software radio applications can tolerate the
loss in overall performance. The overhead from these isolation environments needs to be well
understood when developing a SDR application using the defense-in-depth architecture.

This chapter focuses on characterizing the expected performance overhead added to wave-
forms using our defense-in-depth approach presented in the previous chapter. We introduce
a testing framework that is designed to simplify the process of measuring overhead from
isolation for different waveforms over a range of system configurations and isolation environ-
ments. Executing multiple example SDR applications waveforms using different frameworks
can help determine what an expected overhead might be for other SDR waveforms. However,
it is important to note that each waveform and implementation will have unique overheads
due to unique implementations and configurations.

In this chapter, we first present our motivation for using a waveform’s maximum throughput
as the primary metric for characterizing isolation overhead (Section 6.1). Next, Section 6.2
introduces a testing framework that was specifically developed to automate testing wave-
forms in different environments and system configurations. Section 6.3 gives an overview
of the different tests and waveforms that were executed to compare the overhead between
environments. In Section 6.4, we present examples of several challenges that arose that can
affect the overall throughput of a flowgraph and must be accounted for in our testing frame-
work. Section 6.5 presents the testing results and shows the overheads that occur in different
isolation environments. Finally, Sections 6.5.4 and 6.5.5 provide some overall analysis and
conclusions drawn from the performance testing results.

65

66 Chapter 6. Performance Analysis

6.1 Overhead Characterization

Characterizing the overall impact of isolation environments on software radio performance
can be a complicated task. Different systems have unique processing and performance re-
quirements due to different overall implementations, utilized software frameworks, supported
wireless protocols, and physical waveform specifications (like bandwidth). The additional
overhead from isolating radio components into different environments will affect each system
uniquely, so it is impossible to define a single test to measure the exact the overhead for all
SDR waveforms.

Maximum Throughput

An application’s maximum performance is typically bound by the speed or capacity of some
hardware component within the system. It can either become limited by the overall speed of
the processors (CPU bound), the amount of available memory (memory bound), or limited by
the speed of the system bus or peripherals (I/O bound). Understanding how an application
is bound is important for optimizing it and achieving the maximum possible performance
for the application.

In a production setting, software radios are I/O bound applications which operate at specific
sampling frequencies that are driven by the settings of the RF frontend hardware. The hard-
ware enforces a set sampling rate and either provides samples (during receive) or consumes
samples (during transmit) at that fixed rate (which is defined by whatever wireless stan-
dard is implemented). The system must have sufficient computational resources available
for the software to meet this sampling rate and operate properly. Resource requirements
vary significantly between different systems and standards; features like the bandwidth of
the signal, error correction settings, and the implemented modulations are all determining
factors. More complicated and higher sample rate waveforms will require more system re-
sources. If there are insufficient resources, the SDR waveform will not operate properly and
the received or transmitted signal can become corrupted.

Software defined radios implement processing pipelines, so the overall throughput of the
waveform can be heavily impacted by a single component or set of components becoming
performance bound. In this situation, this block or set of blocks becomes rate limiting and
the bottleneck within the pipeline; ultimately, this is the determining factor for the maximum
throughput the radio can achieve. Sometimes, a single block can result in significant per-
formance degradation for the system. There can be many reasons why an SDR application
becomes CPU or I/O bound, some of which include:

1. Limited computing resources exist on a system so all components in the waveform
are forced to operate at lower a throughput and cause the application to not meet the
required performance. This may occur when using a non-deterministic scheduler which

6.1. Overhead Characterization 67

implements a fair scheduling algorithm and attempts to split the limited processing
time equally to all components. With a limited amount of resources, the scheduler
may not properly prioritize blocks that require more resources or there are simply not
enough resources to distribute.

2. One or more components consume a significant majority of the available resources
on the system which reduces the resources available for remaining blocks that can no
longer execute at the required rate. Unlike the first example, this occurs when there
normally are sufficient resources available on the system, but one or more blocks have
entered an unexpected runaway condition and are over-consuming resources.

3. One or more components are not properly designed to maximize the utilization of
available system resources. For example, this can occur where a component is not
multi-threaded and therefore only uses a single core on a multi-core system and leaves
the overall system under-utilized. If such a block becomes constrained on the single
core, it can become the bottleneck limiting all other components. A key to note is the
components in this situation could be optimized to better utilize resources.

4. One or more components cannot be optimized to utilize available resources. This
is somewhat similar to the previous example above with the one exception that a
block may not be able to be optimized. For example, this can occur if the algorithm
implemented in a waveform or block cannot be parallelized and it becomes constrained
by a single core.

Normally, this software bottleneck does not occur in a production SDR because the RF front-
end is the rate limiting component and the system hardware has been chosen so sufficient
resources exist for the software to operate properly. Some components may not be fully
optimized and still become a bottleneck in an application, but if the software can still
process the required sampling rate then this is not an issue in production systems. When a
waveform is resource constrained and software becomes the bottleneck for whatever reason,
this marks the upper performance limit of the application and defines the maximum rate
that the software is capable of processing on the given hardware. For waveforms on non-
deterministic operating systems, this maximum rate could fluctuate due to other executing
applications on the system. This bound can be characterized as the application’s maximum
throughput and defines an upper limit for sampling rates set in hardware; attempting to
process faster sampling rates will result in corrupted signals as the software cannot achieve
the desired rate.

While hardware selection, waveform properties, and optimization are important factors to
consider when developing a SDR system, the key for understanding the performance overhead
of the isolation mechanisms in our architecture is this maximum throughput for a waveform.
In our tests we execute waveforms without a hardware RF front-end in order to force this
performance bounding to occur. By forcing the waveform to be CPU or I/O bound, we can

68 Chapter 6. Performance Analysis

compare the maximum throughput of the same waveform within different environments in
order to characterize the overhead that is imposed by that environment.

Trade-Offs

Understanding the maximum throughput of a waveform is key to determining what trade-
offs are required when implementing a system with the defense-in-depth architecture. Each
system will have a set of defined security and performance requirements which designers must
consider when choosing the proper system configurations and isolation environments to use.
For example, if the overall bandwidth and throughput is a primary design requirement for a
system, using a highly isolated environment may not be a feasible solution if the maximum
throughput of the isolated waveform drops below the required throughput due to overhead.
This forces the designers to make trade-offs in terms of either security or performance when
implementing a system.

For many systems, performance is the primary design requirement, so any implemented
security features must allow the application to still meet defined performance requirements.
If a SDR stack with isolation is still capable of meeting these minimum requirements, then
implementing this isolation for the additional security benefits is an easy design decision.
Measuring the maximum throughput of the application within an isolation environment
without a hardware front-end determines the upper limit of software performance for that
specific waveform. For production systems, any RF front-end would simply need to operate
at a lower sampling rate than this determined maximum rate for the software application
to operate properly. If security is the primary design requirement of the system (like high-
assurance systems), the performance overhead (no matter how high) is likely acceptable in
order to implement the highest isolation environments possible within the waveform.

However, if both security and performance are primary design goals and the added isolation
causes the maximum throughput to drop below the required rate, then other design choices
need to be considered. Options include: 1) selecting different waveform configurations to
reduce the overall resource consumption, 2) choosing a lighter-weight isolation mechanism
that has lower overhead, 3) increasing available resources by changing hardware platforms,
or 4) attempting to optimize the radio implementation or isolation environment to best use
available resources.

6.2 Testing Framework

As we mentioned before, each implemented SDR system is unique, so determining a single
value that represents the overhead of isolation for all SDR applications is impossible. Unique
implementation can have different overheads for each isolation environment which makes
characterizing the overhead of those isolation environments difficult. However, measuring

6.2. Testing Framework 69

Stressor

Flowgraph

Workers

Create() Start()
SSH Server

Worker Proxy

YAML Jinja

Main Experiment

System
Config

Process ID

Apply(Limits)

Configurations Test Environment

Run Tests

Figure 6.1: Diagram of the performance testing framework. Our testing framework was
developed to execute different tests in isolated environments and measure the performance
overhead of those waveforms executing in the isolation environments. The main controller
is responsible for reading the input configuration and launching the appropriate testing en-
vironment for each experiment. Once the environment is loaded, the controller then applies
resource limitations defined in the loaded configuration (such as processor pinning) by mod-
ifying the active host configuration. The controller then executes the worker proxy over an
SSH connection and uses the running proxy to launch the individual tests that were defined
in the loaded configuration.

the maximum throughput of different example waveforms and comparing the performance
in different isolation environments does allow us to make some generalized predictions on
the overhead expected for a particular environment.

Toward this goal, we developed a flexible testing framework designed to measure the perfor-
mance of various software radio applications and other utilities over a wide range of possible
system configurations. One of our main goals was creating a framework that could be eas-
ily extended to support new environments, tests, and configurations and could dynamically
configure the system in order to test thousands of different configurations. For example,
the framework automatically detects implemented components, so future extension of the
framework is rather simple. A diagram of the testing framework is shown in Figure 6.1.

70 Chapter 6. Performance Analysis

6.2.1 Components

The framework utilizes a modular architecture that consists of four major types of compo-
nents: images, experiments, workers, and configurations:

Images are the pre-configured isolation environment used for testing different waveforms
and utilities (for example virtual machines or containers). These are created independently
of the framework and must include an SSH server, the client/worker components of the
test framework, test waveforms or utilities, and any required software dependencies. For
each test, the framework will launch and dynamically configure the image settings (available
memory, processors, etc) based on that test’s configuration.

Experiments consist of all the required code to start and configure the images for running
tests. Each experiment class manages a single type of isolation environment and uses the ap-
propriate Application Programming Interfaces (API) to start an environment and configure
it with the proper network or device access for testing. The experiment classes inherit from
a base class that implements all of the functionality for iterating over the set of configuration
operations, connecting to the executing environment over SSH, and executing any tests or
commands.

Worker classes contain the actual functions, tests, and utilities that can be executed within
the running environments. The workers themselves can either directly implement the tests
in Python or use the subprocess module to launch utilities in another process and parse the
resulting output. Once an experiment class launches an environment, a worker proxy is
started and is responsible for executing each worker test defined in the configuration and
returning the results back to the caller.

Configurations define the how the overall tests are executed and include: 1) the different
experiments and images that need to be started, 2) the system configurations and limits that
should be applied for each environment, and 3) the set of worker functions to execute for
each variation of the environment and system configurations. Any environment or worker
that properly inherits from the framework’s base classes can be specified in a configuration
and launched by the framework. Multiple options can be specified for each test and environ-
ment such as the available resources (enabled processors, memory, etc), connection settings
(usernames, passwords, etc), and environment settings (virtual machine name, container
name, etc). Changing the overall behavior of the testing framework is as simple as providing
a new configuration file that implements a different set of experiments, images, and workers
to execute.

The test framework is intended to be simple to extend and add new environments, experi-
ments, and workers. Both the experiment and worker classes are dynamically detected by
the main framework controller and integrating new components into the framework is as
simple as creating a new class that inherits from the appropriate parent class. Components
like the experiment and worker classes are implemented in Python but are not limited to
using Python for executing tests. For example, workers can execute native test binaries

6.2. Testing Framework 71

through the subprocess module.

Configuration files for the framework are written in the YAML markup language [88], but can
optionally be written in the Jinja template language (with some slight modifications) [89].
Any Jinja templates are dynamically rendered at runtime to YAML and imported, which
allows for more concise configuration files than pure YAML. Additional Python functionality
was enabled in the Jinja parsing engine that allows these functions to be directly used within
the configuration itself. One example is the itertools.product function, which creates a list of
all possible permutations from a given set of input lists. This dynamic configuration feature
is extremely useful because it simplifies the process of creating and editing configurations
that can be relatively small but can generate several thousand unique configurations to
test. The Jinja based configurations can also be exported as YAML configurations from the
framework for easily saving and repeating the same tests and configurations in the future.
An example of a Jinja configuration is shown in Figure 6.2 with a portion of the YAML
config generated from this Jinja configuration shown in Figure 6.3.

6.2.2 Workflow

One critical aspect of performance testing is ensuring that all tests execute in a similar man-
ner between different environments so any overhead due to the framework or test methods
themselves are removed from the results. So, the framework executes all tests using the same
method for every environment. First, the framework loads the proper experiment class and
passes the list of tests to execute. For each of the tests in this loaded set, the experiment
class will: 1) load and start the proper environment, 2) determine the process id (PID) of
the executing environment, and 3) use this PID to apply any resource limits defined in the
configuration to the executing environment. Next, the controller connects over SSH to the
running environment and executes the worker proxy process for managing the actual tests.

This worker proxy is a Python script implementing remote procedure calls (RPC) using the
Python remote objects (Pyro4) library to expose the workers themselves [90]. This proxy is
used instead of SSH to simply the process of launching tests in the isolation environment.
The RPC mechanism also simplifies handling results because each test returns a dictionary
object containing the test results. Test results are all collated by the controller and saved to
a single YAML output file. This workflow is used for every environment, so the process is
consistent in order to remove any variability due to the framework itself.

6.2.3 Test Configurations

There are three experiments currently implemented in the framework; these include two iso-
lation environments with virtual machines and containers, and the native host environment
which acts as the baseline control for test performance. Several workers are also currently

72 Chapter 6. Performance Analysis

00 <# Experiment Configs #>
01 <% set experiments = ['native', 'docker', 'virtualbox'] %>
02 <% set flowgraph = 'gfsk_loopback' %>
03 <% set samples = int(10|mega) %>
04 <% set repeat = 10 %>
05 <# CPU Configs #>
06 <% set cpus = list(Range.count(1, 4)) %>
07 <% set cpu_frequency = int(2400|kilo) %>
08 <% set modes = ['pinned', 'disabled'] %>
09
10 <% for experiment in experiments %>
11 ---
12 experiment: <<experiment>>
13 source:
14 - '/home/shared/env/setup_env.sh'
15 <# Worker settings #>
16 worker.dir: '/home/shared/ferret'
17 worker.endpoint: 'tcp://0.0.0.0:8080'
18 <# Forwarding rules #>
19 forward.ssh: 18022
20 <# Native settings #>
21 native.ssh.port: 22
22 <# Images #>
23 docker.container: ubuntu-test
24 docker.image: ubuntu
25 virtualbox.vm: ubuntu
26 <# Tests #>
27 tests:
28 <% for ii, (cc, md) in enumerate(itertools.product(cpus, modes)) %>
29 test<<ii>>:
30 config: {cpu: {count: <<cc>>, limit: 100, frequency: <<cpu_frequency>>},
31 hyperthreading: False, mode: <<md>>}
32 workers:
33 throughput:
34 - run: {flowgraph: <<flowgraph>>, samples: <<samples>>}
35 <% endfor %>
36 repeat: <<repeat>>
37 results: results/flowgraphs/gfsk-default/<<experiment>>
38 ...
39 <% endfor %>

Figure 6.2: Example Jinja test configuration. This configuration would be dynamically
rendered at runtime to produce the YAML configuration specifying all tests to execute.

implemented, including: two SDR frameworks and a stress testing utility, as well as other
workers for testing framework functionality. This includes a GNU Radio worker capable of
dynamically detecting, loading, and executing different flowgraphs, and a LiquidDSP worker

6.2. Testing Framework 73

00 experiment: native
01 source: [/home/shared/env/setup_env.sh]
02 worker.dir: /home/shared/ferret
03 worker.endpoint: tcp://0.0.0.0:8080
04 forward.ssh: 18022
05 native.ssh.port: 22
06 docker.container: ubuntu-test
07 docker.image: ubuntu
08 virtualbox.vm: ubuntu
09 tests:
10 test0:
11 config:
12 cpu: {count: 1, limit: 100, frequency: 2400000, profile: performance}
13 hyperthreading: true, mode: pinned
14 workers:
15 throughput:
16 - run: {flowgraph: gfsk_loopback, samples: 10000000}
17 test1:
18 config:
19 cpu: {count: 1, limit: 100, frequency: 2400000, profile: powersave}
20 hyperthreading: true, mode: pinned
21 workers:
22 throughput:
23 - run: {flowgraph: gfsk_loopback, samples: 10000000}
24 ...
25 test31:
26 config:
27 cpu: {count: 4, limit: 100, frequency: 2400000, profile: powersave}
28 hyperthreading: false, mode: disabled
29 workers:
30 throughput:
31 - run: {flowgraph: gfsk_loopback, samples: 10000000}
32 repeat: 10
33 results: results/flowgraphs/gfsk-default/virtualbox

Figure 6.3: Example of an auto-generated YAML test configuration. This shows a portion
of the YAML configuration that was auto-generated from the Jinja configuration shown in
Figure 6.2

for launching a few example applications. The stress-ng worker can launch multiple stress
tests targeting different components of the system such as the processor and memory.

For our testing, we mainly focused on two common types of isolation techniques: virtual
machines (Oracle VirtualBox [14]) and containers (Docker [15]). One major goal of testing
was keeping the environment configuration consistent between different environments, so the
same software stacks and versions (Ubuntu 16.04, GNU Radio 3.7.13.4, stress-ng 0.05.23,
etc.) as the host were used through each environment. When the framework launches

74 Chapter 6. Performance Analysis

individual tests, it modifies the environment’s path variables to ensure the correct software
stack within the environment is executed for each test.

Our framework can also dynamically configure the host configuration and enable/disable
processor cores, set the processor frequency, and set an environment’s core affinity before
executing any performance tests. The rationales for these features are discussed in Section
6.4.

Each environment was tested over a range of 1 to 4 enabled processor cores, where the enabled
cores were either hyperthreaded or non-hyperthreaded cores. For the results presented in
this work, only independent physical cores (no sibling or hyper-threaded cores) were enabled
for these tests. Also, a fixed host processor frequency of 2.40 GHz was used (based on an
Intel Core i7-4770K CPU with a base frequency of 3.50GHz and max frequency of 3.90GHz)
so results were not skewed by frequency scaling due to load or temperature. Other than
modifying the active cores and configuration of the host, each environment itself was tested
with the default settings.

6.3 Test Waveforms

For our tests, we implemented several example flowgraphs and applications that are designed
to stress different parts of the system to understand the overhead of added isolation. Our
main goal was stressing the system and force bottlenecks to occur to measure the maxi-
mum throughput of the application. Specifically, we focused on testing two main aspects
of the system: the memory and CPU performance. While these flowgraphs are only exam-
ples and are not particularly useful for any production system, they were designed to have
similar functionality to real-world systems. In this section, we briefly describe the different
waveforms and tests implemented for characterizing the overhead of isolation.

6.3.1 GNU Radio Flowgraphs

The tests flowgraphs implemented in the GNU Radio framework were specifically designed to
either stress the memory performance of the framework (Null_Test and Bytes_Loopback) or
stressing the CPU performance through modulating and demodulating a signal (GFSK_Loopback
and GMSK_Loopback) .

The Null_Test flowgraph (shown in Figure 6.4) does not include any signal processing func-
tionality and simply connects the null source and sink blocks together to test the memory
bandwidths of buffers within the flowgraph. A head block exists between the source and sink
which will stop the flowgraph’s execution once a set number of samples is processed. Since
there is no signal processing in this flowgraph, the only operations performed are memory
copies between two buffers and updates to the buffer’s pointers (null source to head and

6.3. Test Waveforms 75

Figure 6.4: Null_Test flowgraph - This flowgraph was used for characterizing the memory
performance of the GNU Radio framework in different isolation environments. A variable
number of copy blocks could be added in the flowgraph prior to the head block to simulate
longer flowgraphs.

Figure 6.5: GMSK_Loopback test flowgraph - This flowgraph was used for characterizing
the generic signal processing performance of a GNU Radio framework in different isolation
environments. This flowgraph is structurally similar to both the GFSK_Loopback and
Bytes_Loopback flowgraphs that were used for many tests.

head to null sink). By default, there are three blocks in this flowgraph, but it can be config-
ured to have any number of additional copy blocks that exist between the null source and
head blocks to simulate longer flowgraphs. This flowgraph quickly becomes I/O bound and
demonstrates the upper bound of buffer performance within a GNU Radio flowgraph.

The Bytes_Loopback, GMSK_Loopback, and GFSK_Loopback flowgraphs are very similar in
structure and implement the same basic data flow. Random or known bytes are generated,
passed through a modulation and demodulation stage, and then processed into GNU Radio
messages. An example of the GMSK_Loopback flowgraph is shown in Figure 6.5. The only
difference between these flowgraphs is the modulation blocks. The Bytes_Loopback does
not implement a modulation/demodulation stage and instead implements a memory copy

76 Chapter 6. Performance Analysis

operations in place of these blocks; all of the other byte handling operations remain the
same. The GFSK_Loopback uses a slightly different modulation scheme but overall remains
the same.

These flowgraphs are intended to mimic a very simple and generic waveform that includes
both transmit (modulation) and receive (demodulation) components within the waveform.
The modulation and demodulation blocks in the GFSK_Loopback and GMSK_Loopback
flowgraphs cause this flowgraph to be predominately CPU bound. Since the Bytes_Loopback
flowgraph lacks this functionality it is predominately I/O bound and demonstrates the upper
performance bound for similar flowgraphs. Because the other loopback flowgraphs are mainly
CPU bound, they typically have significantly lower throughput than the Bytes_Loopback
flowgraph.

Like the Null_Test flowgraph, each of the loopback flowgraphs contains a head block which
stops flowgraph execution once a certain number of samples has been processed. This
block is required for the framework to properly measure the flowgraph’s overall through-
put. When executing a test, the framework loads the proper flowgraph, sets the sample
length for the head block, and measures the overall execution time of the flowgraph. Once
the flowgraph completes, the elapsed time is used to determine the average throughput of
the flowgraph (measured in bytes/second for the loopback flowgraphs and samples/second
for the Null_Test flowgraph).

6.3.2 LiquidDSP Waveforms

In addition to the GNU Radio flowgraphs, we also developed several other example appli-
cations that utilized the LiquidDSP framework. These flowgraphs were based on example
benchmark applications already included in the framework, and specifically tested two com-
mon types of components in SDR implementations: a filter component and the FlexFrame
components.

The filter benchmark tested the Finite Impulse Response (FIR) filter component in Liq-
uidDSP which is commonly implemented in waveforms to remove unwanted components in
received signals. During the initialization, a buffer is populated with random samples which
are then processed by the filter and saved to a secondary buffer. These processed samples
then become the input for the next filtering operation. This loop continues until a timeout
occurs, after which the total number of processed samples is calculated to determine the
final throughput of the test.

The FlexFrame component provides a basic framing structure useful for implementing the
data link layer of a wireless protocol. It provides a flexible protocol and allows users to change
many settings such as the payload modulation schemes and the forward error-correction
(FEC) schemes. This includes both the generator objects responsible for creating the frames
and the synchronizer object that is implemented at the receiver. For these benchmarks,

6.3. Test Waveforms 77

the generator object first creates the frame and the resulting samples are saved to a buffer
which is then passed to the synchronizer object to processes the frame. After a set time has
elapsed, the total number of bytes processed is calculated to generate the overall throughput
(or bitrate) of the test application. This benchmark can optionally be set to only process
the synchronization stage of the application. In this case, a single frame is generated during
startup and it is repeatedly processed by the synchronizer.

All of the benchmark applications were multi-threaded, but not all of the tests included
synchronization between the different threads. This is different than the GNU Radio flow-
graphs which do include a significant amount of synchronization between the different threads
executing in the flowgraph. For the tests without synchronization, each thread operated in-
dependently and attempted to process as many samples or frames as possible.

Two of the FlexFrame tests did include synchronization. A single thread would be responsible
for generating frames and producing samples to a buffer. A pointer to this memory buffer
would be passed to one of multiple threads handling the receive processing. By adding
synchronization between threads, these tests could better simulate how an actual waveform
implementation would process incoming samples. In one case, each receiver thread owned
a lock that needed to be acquired by the transmitter thread before a buffer pointer could
be passed to the receiver thread. The transmitter thread would first generate samples and
then loop through the receiver threads looking for a waiting receiver. For the other test, a
linked list tracking the generated frames was shared between all threads. The transmitter
thread generated samples and added the corresponding buffer pointers to the list (unless
it was already full); receiver threads would then pull the buffer pointers from the list and
process the samples in the buffer.

6.3.3 Stress-ng Tests

In addition to the GNU Radio and LiquidDSP waveform tests, we included multiple tests
using the stress-ng utility that stressed specific system components [91, 92]. By stressing
individual components such as the processor, kernel, or memory, these tests can help iden-
tify what components may become a bottleneck in the application while running in different
isolation environments. Also, they help define a baseline for the minimum overhead that
could be achieved for an application. The stress-ng utility launches multiple workers per test
that all execute in independent threads without coordination, so this provides a benchmark
of the best case scenario in terms of environment overhead. This differs from the GNU
Radio flowgraphs where all threads are dependent on the execution of other threads in the
system. The stressors demonstrate the minimum overhead that could be expected when
using containers or virtual machines for isolating a software radio waveform. All SDR wave-
forms would require some type of coordinate between threads, so the percent overhead for
a waveform is typically greater than the overhead for these stressors due to synchronization
between the threads.

78 Chapter 6. Performance Analysis

Out of the numerous stressors that exist in stress-ng, we specifically focused on stressing the
processor, memory, and kernel:

• matrix - Performs a mix of floating point, cache, and memory operations which mainly
stress the system CPU.

• bsearch - Performs a binary search of an array of integers to stress both the processor,
cache, and memory access.

• hsearch - Similar to bsearch but performs a search on a hash table rather than a
binary search.

• stream - Stresses memory by allocating memory buffers 4+ times larger than the
CPU cache and performing multiple floating point operations (copy, scale, add, triad)
between the buffers.

• vm - Stresses the memory bandwidth of the system by continuously allocating and
deallocating memory buffers and performing read/write memory operations on the
buffers.

• switch - Uses pipes to send messages between processes and forces context switches
to occur to stress kernel operation.

• context - Forces rapid context switching to occur between different threads to stress
kernel operation.

6.3.4 Split Flowgraphs

For all of the tests described above, the test waveform or application was implemented as a
single monolithic process. While these tests are useful for characterizing the general overhead
for entire applications in isolated environments, they are not characteristic of waveforms us-
ing a defense-in-depth architecture. The main goal of our defense-in-depth architecture is
segmenting an application into multiple isolated zones rather than a monolithic implemen-
tation.

The Null_Test and GFSK_Loopback flowgraphs were split into two separate flowgraphs (a
transmitter and receiver flowgraph) for measuring the overall throughput and overhead for
the split configuration. The two sub-flowgraphs were connected using various Inter-Process
Communication (IPC) mechanisms including: networking (using TCP), Unix domain sock-
ets, and named pipes. Three different configurations were tested: 1) each flowgraph was
created and started as a completely different process, 2) a single Python process launched
the flowgraphs through the multiprocessing library module, and 3) each flowgraph was sep-
arately started in independent containers. TCP sockets provide a familiar network-stack

6.4. Testing Challenges 79

based approach to connecting components on a local host. Domain sockets use a similar
API as standard network sockets in POSIX kernels, however, all operations are directly han-
dled in the kernel rather than the network stack which provides a lower overhead alternative
to full TCP sockets [93] Domain sockets provide a better overall solution for passing data
between processes in the same host in a network like fashion. Named pipes are another IPC
method that uses a filesystem interface rather than the network stack; special files are cre-
ated in the filesystem which multiple processes can open for reading or writing. When data
is written to the named pipe, the kernel directly passes this data between the communicating
processes without writing to the actual filesystem [94].

6.4 Testing Challenges

Throughout the development and testing process, we identified several system features and
configurations which can cause variances in the performance results of the SDR applications.
The system’s hardware configuration, software components, and flowgraph configurations
can all be contributing factors. This emphasized the importance of accounting for these
factors and using a consistent workflow for executing tests within our framework. Address-
ing these issues when testing different environments and configurations and maintaining a
consistent workflow throughout testing helps significantly reduce the overall variance due
to these factors. A few examples of how different configurations can affect test results are
presented below:

6.4.1 Frequency Scaling

Modern processor architectures implement features such as turbo boost and frequency scaling
[95, 96] which allow the processor’s operating frequency to be dynamically changed based
on the current system workload and temperature. During periods where the processor is
idle or there are minimal operations, the overall frequency is reduced to conserve power
(and improve battery life for mobile systems). As the workload on the system increases, the
processor frequency can be dynamically increased in order to handle the additional work.
However, the processor frequency can also be reduced if the overall system temperature
becomes too great in order to prevent damage to the processor.

While these are useful features for many cases, this scaling can significantly affect the test
results when performance profiling applications. Over multiple consecutive tests, the CPU’s
frequency can be significantly reduced as the temperature of the system increases, result-
ing in significant performance loss for test iterations occurring later during overall testing.
This can be especially true for tests that are specifically designed to stress the CPU perfor-
mance. Figure 6.6 shows the effect of CPU scaling on the throughput performance of multiple
consecutive iterations of the GFSK_Loopback flowgraph. Table 6.1 compares the average

80 Chapter 6. Performance Analysis

Table 6.1: Flowgraph performance with CPU frequency scaling enabled and disabled. This
table shows the performance comparison of the GFSK_Loopback flowgraph when the CPU’s
frequency scaling features are both enabled and disabled. With frequency scaling enabled,
later iterations show a 20+% loss in performance, while the tests with the CPU frequency
fixed showed no loss in performance relative to earlier tests. A plot of these results is shown
in Figure 6.6.

Mode Index Average (MBps) Deviation Variance Difference

Scaled 0-4 2.90 0.10 0.01 -
55-59 2.29 0.13 0.02 21.03%
All 2.37 0.34 0.11 18.28%

Fixed 0-4 1.83 0.01 0.00 -
55-59 1.83 0.01 0.00 0.00%
All 1.83 0.01 0.00 0.00%

throughput of the GFSK_Loopback flowgraph at different points of the overall experiment.

These results show the fixed frequency tests have consistent throughput for the entire exper-
iment, while the scaled results show a 21% change in performance for later iterations of the
test. This is a significant performance loss and shows how SDR performance results can be
heavily distorted over time by frequency scaling due to heavier workloads and system tem-
peratures. Because of this possible variance in the testing results because frequency scaling,
our framework accounts for this by using fixed CPU frequencies for all tests.

6.4.2 Hyperthreading

Another feature implemented in modern desktop and server processors is Hyperthreading
which helps improve the performance of the overall system [97, 98]. Effectively, a single
physical core in the processor is treated as two logical cores with independent hardware
threads. Each hardware thread has an independent execution pipeline, but they share some
of the main execution resources of the core. If one of the hardware threads becomes stalled
waiting for an operation or some external processing to complete, the processor can switch
to the second hardware thread and remain active as long as the resources needed for the
second core are still available to use. Without hyperthreading, the entire processor core
would remain stalled waiting for the operation to complete. Hyperthreading helps boost
the overall system performance by keeping the processor active even when one hardware
thread is stalled waiting for an operation. Operating systems supporting hyperthreading
will create two logical cores for each of the available physical cores and can dynamically

6.4. Testing Challenges 81

Figure 6.6: Flowgraph performance with CPU frequency scaling enabled and disabled. This
plot shows the difference of executing the GFSK_Loopback flowgraph with the CPU fre-
quency scaling enabled and disabled. It shows the drop in overall throughput due to fre-
quency scaling as tests are repeated for the entire experiment. However, with scaling disabled
and the CPU frequency fixed, the tests executed consistently over the entire experiment.
The plotted lines show the moving average for throughput (for a window of 10 tests). Some
average throughputs for these tests are shown in Table 6.1.

schedule processes to run on any of the logical cores.

However, while this does improve overall system performance, the independent hardware
threads do not provide the same boost as a true, independent, physical core since they still
share some resources. If software threads are scheduled to logical cores that are shared on
a single physical core and require the same execution resources, then the performance gain
of hyperthreading will be minimal since the threads would still compete for resources. An
operating system kernel will typically attempt to evenly distribute processes and software
threads to all of the logical cores available. If the kernel schedules threads to the shared logical

82 Chapter 6. Performance Analysis

Figure 6.7: Flowgraph performance of pinned versus unpinned processes. This plot compares
the throughput of the GFSK_Loopback flowgraph executing in a virtual machine environ-
ment with different settings for pinned cores and the number of active cores. Without
pinning cores, the operating system is free to schedule the flowgraph process on any avail-
able core. The variance in the results can heavily depend on the mix of non-hyperthreaded
and hyperthreaded cores selected by the kernel.

cores, the performance gain may be minimal compared to executing threads on different
physical cores.

For our testing, this can add variance to the test results if the non-deterministic scheduler
happens to utilize the shared logical cores where resource contention becomes an issue. Figure
6.7 shows the performance comparison of the GFSK_Loopback flowgraph when 1) the process
is pinned to non-shared, physical cores, 2) the process is pinned to logical cores shared on
physical cores, and 3) the process is unpinned. In this case, the tests were executed within
a virtual machine environment which enforced the CPU core limits and process pinning to
the proper hyperthreaded and non-hyperthreaded logical cores.

This test shows that the flowgraph did perform well when the process was not pinned to any
cores, but explicitly pinning the flowgraph process to the non-shared logical cores results in

6.4. Testing Challenges 83

the best overall performance. As expected, there is a slight performance increase when the
flowgraph is pinned to hyperthreaded logical cores, but it is very minimal since the logical
cores still share execution resources. The large jump in performance from 2 to 3 cores for the
hyperthreaded test is due to adding another physical core to the configuration. Effectively,
this shows the performance comparison of a flowgraph executing on a quad-core system
without hyperthreading versus a dual-core system with hyperthreading.

Overall, the best flowgraph performance is seen when the flowgraph process is pinned to
logical cores not shared on a physical core. Without specifically pinning processes to certain
cores, there could some additional variance in the performance results when the underlying
operating system uses a non-deterministic scheduler. If the scheduler happens to use non-
shared logical cores for most of the execution, then the resulting performance would be similar
to the non-hyperthreaded pinned results. If the shared logical cores are utilized instead, then
the overall performance would mirror that of the hyperthreaded pinned results. To account
for this, all tests executed within our test framework are pinned to either the hyperthreaded
or non-hyperthreaded logical cores (which is selectable at runtime).

6.4.3 Sample Count

Table 6.2: Flowgraph performance comparison based on sample count. This table shows the
performance comparison of the Null_Test flowgraph when using different sample counts for
each test. The results show that tests processing less than 109 samples have a high standard
deviation from the mean and test processing a larger number of samples have a relatively
small standard deviation. A plot of these results is shown in Figure 6.8.

Environment Samples Mean (Msps) Deviation Variance

Native < 109 737.42 393.10 154526.54
>= 109 1254.48 14.33 205.30

All 872.89 407.20 165810.64
Docker < 109 686.72 352.15 124007.90

>= 109 1134.54 7.91 62.53
All 804.05 361.00 130323.44

VirtualBox < 109 211.08 79.33 6293.07
>= 109 292.86 6.25 39.05

All 235.29 76.38 5834.51

Because all of our tests were executed on a non-deterministic operating system, the length
of the overall test could also create variation in the throughput results. For some of the

84 Chapter 6. Performance Analysis

High Throughput
Variance

Low Throughput
Variance

Figure 6.8: Sample count versus flowgraph performance. Our testing framework calculates
the overall throughput by measuring the execution time for a flowgraph that is processing
a fixed number of samples or bytes. This plot shows the resulting performance of a flow-
graph using different sample counts for the Null_Test flowgraph. Shorter lengths result in
higher variance in the measured throughputs, and longer lengths converge to the flowgraph’s
maximum throughput. Table 6.2 compares the results of using different sample counts.

tests, part of the application startup and shutdown processing is also included as part of
the overall measured elapsed time. This presents an issue for shorter length tests, because
the majority of the elapsed time may have been spent in the startup or shutdown routines
rather than actually processing data and samples. The resulting throughput measurements
may not be a representative value of the actual performance of the flowgraph. Additionally,
the non-deterministic nature of the kernel scheduler can also add variance to the results. For
shorter length tests, the measured throughput may be highly dependent on how and when
the underlying operating system actually schedules and executes the flowgraph threads.
The solution to remove this variance is to simply execute the flowgraph for a longer duration
so that any overhead due to starting, stopping, or scheduling the flowgraph is minimal in
comparison to the overall elapsed time.

6.4. Testing Challenges 85

High Throughput
Variance

Low Throughput
Variance

Figure 6.9: Time elapsed versus flowgraph performance. This plot is similar to Figure 6.8,
but instead compares the elapsed execution time versus the overall throughput. This also
shows that the very short duration tests show a significant variance in overall throughput.
Executing tests longer than one second have a lower variance for the overall results. Table
6.3 shows the flowgraph performance compared to the overall elapsed execution time.

Figures 6.8, 6.9, and 6.10 all show the effect the length of a test has on the overall throughput
of a flowgraph. Tables 6.2 and 6.3 also show the comparison of sample count and elapsed time
on the overall performance of a flowgraph. Figure 6.8 shows the comparison of the number of
processed samples versus the overall measured throughput for the Null_Test flowgraph. Due
to the high throughput of this flowgraph, the flowgraph requires a very large (109) number
of samples before the measured throughput begins to converge and show a small deviation
in the measured values. Figure 6.9 shows a similar behavior when comparing the overall
length of the test to the measured throughputs. In this case, the measured values begin to
settle once the flowgraph has executed for longer than 0.5 seconds and are consistent after
executing for at least 1.0 seconds. Finally, Figure 6.10, plots the relationship between the
number of samples and the overall elapsed time of the flowgraph. Here, we show a reasonable
range for sample counts (109 to 1010) that result in stable results and are relatively quick

86 Chapter 6. Performance Analysis

Table 6.3: Flowgraph performance comparison based on time elapsed. This table is similar
to Table 6.2, but instead compares the flowgraph performance based on the overall elapsed
time of a test. This shows that short duration tests (less than 1.0 second) show high variance,
where the longer tests show consistent throughputs. A plot of these results is shown in Figure
6.9.

Environment Elapsed Time (s) Mean (Msps) Deviation Variance

Native < 1.0 742.91 394.53 155655.86
>= 1.0 1254.64 14.31 204.83

All 872.89 407.20 165810.64
Docker < 1.0 686.72 352.15 124007.90

>= 1.0 1134.54 7.91 62.53
All 804.05 361.00 130323.44

VirtualBox < 1.0 198.37 77.75 6045.58
>= 1.0 293.04 6.23 38.77

All 235.29 76.38 5834.51

tests. When executing thousands of iterations, even a couple of additional seconds per test
will add significant time to the overall experiment.

It is important to note that selecting the number of samples to execute for each test is
highly dependent on the overall throughput for the flowgraph. For example, the tests using
the GNU Radio flowgraphs rely on the Head block to determine overall test duration; once
a set number of samples have been processed by the flowgraph, the Head block will stop
the flowgraph. Different flowgraphs may have vastly different throughputs, so a reasonable
sample length that executes in seconds for one flowgraph (like the Null_Test flowgraph) could
result in ridiculous test lengths of minutes or even hours for lower throughput flowgraphs
(like the GFSK_Loopback flowgraph). For tests with many iterations, this quickly becomes
unreasonable. Additionally, if the same sample count is used for different test configurations,
then the chosen length for all tests should be determined by the fastest overall configuration
of the flowgraph. For example, the number of samples that results in a runtime of a second
or two on a single core test configuration may only execute for a fraction of a second with
four cores enabled. If the fastest configuration (or a relatively fast configuration) executes
for a reasonable length of time to producing low variance results, than any lower throughput
configuration should also execute for a reasonable amount of time.

6.4. Testing Challenges 87

Figure 6.10: Sample count versus time elapsed. This graph is similar to Figure 6.8, but
instead compares the number of processed samples with the elapsed time of the tests. Based
on the results of Figures 6.9 and 6.8, the selected sample range is ideal for testing flowgraph
throughput (for the Null_Test flowgraph).

6.4.4 VOLK Profile

The specific software configurations and implementations can also contribute to differences
in the performance results of multiple tests. Within the GNU Radio framework, many of the
builtin processing blocks utilize the VOLK library (Vector Optimized Library of Kernels)
to accelerate signal processing [99, 100]. The VOLK library uses the vector processing
capabilities of modern processors to process multiple samples in a single operation. These
vector kernels use a Single-Instruction-Multiple-Data (SIMD) architecture versus the normal
Multiple-Instruction-Multiple-Data architecture of the processor [101]. With the MIMD
architecture, each core in the processor independently fetches instructions from memory and
executes independently from the other cores. The SIMD components of the processor instead
execute a single instruction or single set of instructions on multiple pieces of data at the same

88 Chapter 6. Performance Analysis

time. For signal processing applications, this can significantly boost the overall performance
of the application.

Since modern processors can implement multiple versions of these SIMD components and
instruction sets, the VOLK project provides a profiler for testing the different instruction sets
and choosing the highest performing ones. Typically this generates a profile which lists the
best performing components for each implemented kernel and is usually saved in the user’s
home directory. If the profile is not properly moved between different environments and
systems, this can result in VOLK not using the same profile between tests and generating
significantly different results. Figure 6.11 shows a comparison between tests using different
VOLK configurations: 1) no set profile, 2) a generated profile, and 3) each kernel set to
use the generic (non-SIMD) implementation. Interestingly, the highest performance was
achieved without the use of a VOLK profile (Table 6.4), though the reasons why this may
be the case are beyond the scope of this dissertation.

Table 6.4: Flowgraph performance comparison based on the enabled VOLK profile. This
table compares the throughput performance of the GFSK_Loopback based on which VOLK
profiles were enabled in the system. Interestingly, the highest performing tests did not use
any VOLK profile. Figure 6.11 shows a plot of this data.

Profile Average (MBps) Deviation Difference

None 1.83 0.01 -
Profiled 1.75 0.01 4.37%
Generic 1.43 0.01 21.86%

6.4.5 Randnf() Function

The specific functions that are called within a waveform can also cause unexpected results
concerning the overall throughput of an application when executing in different environ-
ments. For example, some of the initial versions of our LiquidDSP throughput tests used
the randnf function for adding noise to the signal during processing. This function was
called within the main processing loop of the waveform, so it was constantly executing for
each iteration of the signal processing. Figures 6.12 and 6.13 show the results of executing a
waveform using this function and Table 6.5 shows the average performances when using the
randnf function.

There are two surprising results from these tests. First, the single core application signifi-
cantly outperformed the multi-core versions of the application. Each test was executed with
the number of threads equal to the number of active cores on the system. The randnf func-
tion calls rand() under the hood which is not a thread-safe operation which may account

6.4. Testing Challenges 89

Figure 6.11: Flowgraph performance based on the enabled VOLK profile. This plot compares
the throughput results of the GFSK_Loopback flowgraph using different VOLK configura-
tions. The profiled configuration was generated through the volk_profile utility and the
generic configuration forced the use of generic kernels. Interestingly, VOLK executed most
efficiently when not using any configuration.

for this result. Interestingly, both multi-threaded tests on a single core and single threaded
tests on a multi-core configuration reproduce the same results as the single core, single thread
tests. Secondly, both the virtual machine and container environment outperform the na-
tive environment in multi-core configurations and the virtual machine environment has the
highest performance overall.

This seems to indicate that, under the hood, the virtualized environments may use a different
implementation for the rand() function that is used in the native environment (which could
also be a security issue). Like the VOLK profile results, the specific reasons this occurs is
out of scope of this work, but it is important to note how the software functions called within
a waveform can have this type of significant effect on the overall performance results. For

90 Chapter 6. Performance Analysis

Figure 6.12: Flowgraph performance when calling randnf from LiquidDSP. This shows the
throughput results of a LiquidDSP based waveform that is calling the randnf function during
each iteration. Interestingly, the multi-core results show significant throughput overhead
compared to the single core test, and the virtual machine environment performs the best in
the multi-core environments. Figure 6.13 shows only the multi-core results of the same tests.
Table 6.5 shows the average values of these results.

all of the LiquidDSP tests presented later in this chapter, the randnf function was either
completely removed from the waveform or implemented in the initialization steps of the
waveform which are not being timed.

6.4.6 Software Configurations

One final point to note is that the other configurations such as system dependencies or the
software versions could also affect the throughput results of a flowgraph. The active VOLK
configuration and randnf function are only two examples of this. If the versions of the

6.4. Testing Challenges 91

Figure 6.13: Flowgraph performance when calling randnf from LiquidDSP (multi-core).
This is the same test as is shown in Figure 6.12, but only shows results from the multi-core
configurations. This shows that both the virtual machine and container environments out-
perform the native environment when calling the randnf each iteration. Table 6.5 shows the
average values of these results.

underlying operating system kernel or dependencies (like VOLK) differ between individual
environments, the resulting performances can also be different. This becomes an issue since
the focus of our performance testing presented in the next section is determining the overhead
of the actual isolation environment itself rather than the overhead due to different versions
or configurations of installed software. In this work, we did not focus on characterizing the
overhead due to different software versions or operating systems, and instead attempted to
keep the software versions and configurations as consistent as possible between the different
environments.

92 Chapter 6. Performance Analysis

Table 6.5: Waveform performance of a LiquidDSP waveform calling randnf. This table shows
the throughput performance of a LiquidDSP waveform which is calling the randnf function
each iteration while processing samples. Note that the multi-core performance takes a sig-
nificant performance hit over the single core configurations, and the virtual machine and
container environments both out-perform the native environment in multi-core configura-
tions. Figures 6.12 and 6.13 show plots of these results.

Cores Environment Average (Msps) Deviation Difference

1 native 6.80 0.01 -
2 0.57 0.12 -
3 1.45 0.07 -
4 1.39 0.03 -

1 docker 6.79 0.01 0.16
2 0.65 0.16 -14.99%
3 1.48 0.08 -3.36%
4 1.42 0.06 -5.16%

1 virtualbox 6.74 0.01 0.83
2 0.92 0.17 -41.12%
3 1.63 0.12 -17.42%
4 1.56 0.01 -7.92%

6.4.7 Takeaways

While the specifics of why some of these behaviors occur are outside the scope of this disserta-
tion, it is important to realize how the hardware and software configurations can significantly
affect the measured throughput of a software waveform. Moving forward, our test framework
was designed to address as many of these factors as possible in order to remove any variance
in the results due to each. This allowed the overhead of the different isolation environments
to be properly characterized without the results being obscured by other factors. First, all
tests were forced to a fixed CPU frequency and all test processes were pinned to either the
hyperthreaded or non-hyperthreaded cores. The chosen CPU frequency was slightly higher
than 50% of the maximum CPU frequency to ensure the system did not overheat and damage
the processor, and most tests were pinned to non-hyperthreaded cores in order to achieve the
maximum possible performance from the flowgraphs. Second, all environments used similar
software configurations as much as possible and all tests used the same testing workflow
no matter which environment was being tested. All of the different isolation environments
used the same base operating system as the native environment, and the versions of the

6.5. Results 93

SDR frameworks (GNU Radio, VOLK, LiquidDSP) were kept consistent throughout as well.
Any software updates to the native operating system were also applied to each isolation
environment’s operating system.

6.5 Results

In this section, we analyze the performance overhead of different isolation environments in
terms of the impact to the maximum throughput of some example SDR waveforms. We ex-
ecuted the test waveforms in each isolation environment (containers and virtual machines)
and compare the performance to the native environment to determine the overhead of the
isolation. While the ultimate goal of our architecture is isolating individual blocks of a wave-
forms into different security environments, characterizing the overhead for a full waveform
in an isolation environment gives us an initial understanding of the expected performance
impact the isolation architecture has on an application.

We tested waveforms based on two different frameworks (GNU Radio and LiquidDSP) and
multiple stress tests in the different environments (discussed in the previous section). No
hardware front-ends were used with the SDR waveforms since the main goal was forcing a
software bottleneck to determine the maximum throughput performance of the software stack
itself. Unlike the waveforms, the stress tests execute with completely independent workers
and indicate the minimal overhead that could be achieved in the isolation environments.
For the tests, only non-shared, physical cores were used and the number of active cores was
varied from 1 to 4 cores; all other unused cores were disabled.

While each SDR application will have unique overheads, the results from these tests provide
a decent approximation of the overhead that could be expected for other applications and
even identify where bottlenecks may exist within an SDR application executing in an isolated
environment.

6.5.1 GNU Radio Results

Memory Performance

As mentioned before, some of the GNU Radio based tests were specifically designed to stress
the framework and measure the overall memory bandwidth performance of a waveform. The
Null_Test flowgraph attempts to force the system to be I/O bound in order to determine
the upper limit of flowgraph throughput due to memory performance in the GNU Radio
framework. As described earlier, there are no signal processing operations in the Null_Test
flowgraph, and it only moves samples (32 bit real floats) through the application and frame-
work. This effectively stresses the underlying GNU Radio buffers and scheduler; most op-
erations are handling buffer pointers as data is “produced” and “consumed” by the blocks.

94 Chapter 6. Performance Analysis

Figure 6.14: Null_Test flowgraph performance - This plot shows the throughput comparison
of the Null_Test flowgraph implemented in GNU Radio and executing in different isolation
mechanisms. The number of active cores varies from 1 to 4 using independent physical
cores (no hyperthreaded cores). Colors denote the type of environment: Blue is native
performance, orange is Docker performance, and green is a Virtual machine. Here, we can
see that there is a large performance overhead for the Null_Test flowgraph in multi-core
virtual machine environments. These results are also shown in Table 6.6.

By default, there are three blocks (null_source, null_sink, and head)in this flowgraph, but
it can be configured to have any number of copy blocks that are also added after the source
block. Increasing the number of blocks in the system can simulate larger flowgraphs in order
to determine how well the scheduler can handle data passing through the flowgraph. Figure
6.14 and Table 6.6 show the throughput results of the Null_Test flowgraph in the native,
container, and virtual machine environments. The throughput of each test was measured in
megasamples per second (Msps).

The only operations executing in the Null_Test flowgraph are memory copy operations
between a block’s input and output buffers and updates to each block’s buffer pointers as

6.5. Results 95

Table 6.6: Null_Test flowgraph throughput - This table shows the throughput of the
Null_Test flowgraph in different isolation environments. This flowgraph is designed to
predominately stress the GNU Radio scheduler and buffers to determine the upper bound
of memory performance of GNU Radio flowgraphs. This shows the percent overhead of the
isolation environments as compared to native performance and the final column shows the
difference between the container and virtual machine environments. Emphasized differences
show where the virtual machine environment out-performed the container environments.
Here, we can see that there is a large performance overhead for the Null_Test flowgraph in
multi-core virtual machine environments.

Test Throughput (Msps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 301.83 263.30 300.26 12.77% 0.52% -12.25%
2 1263.72 1106.02 389.61 12.48% 69.17% 56.69%
3 1270.91 1123.35 290.98 11.61% 77.10% 65.49%
4 1233.82 1147.17 302.94 7.02% 75.45% 68.43%

data is read from and written to these buffers. In the default configuration, this flowgraph
only has three blocks, so there are only two shared buffers (between the null_source and head
blocks and the head and null_sink blocks). So, the only operations are a memory copy in the
head block and the corresponding update to its input and output buffer. With this limited
amount of processing, this flowgraph quickly becomes I/O bound and demonstrates the upper
throughput that would be possible even for the most simple of GNU Radio flowgraphs.

Since each block in a GNU Radio flowgraph executes within a separate thread, there is
a processing increase by using multi-core configurations even with this extremely simple
flowgraph. This flowgraph only consists of three threads in its default configuration, so
there is a limited amount of parallelism possible. Even then, the dual-core tests show a
massive increase in throughput over the single core configurations of the flowgraph for both
the native and container environments. However, since there is limited parallelism within
this flowgraph (only three blocks and threads exist), there is no additional benefit gained by
increasing the number of cores.

Overall, the flowgraph in the native environment showed the best performance and the
container environment showing 12% or less overhead between the different configurations.
For both the native and container environments, the multi-core configurations showed a
4x performance increase over the single-core configuration. However, the virtual environ-
ment showed a massive performance loss for multi-core configurations. Interestingly, the
virtual environment out-performed the container environment for a single core configuration

96 Chapter 6. Performance Analysis

Figure 6.15: Null_Test throughput with multiple copy blocks (blocks vs throughput) - This
plot shows the performance of the Null_Test flowgraph with additional copy blocks included
in the flowgraph. Both plots show the throughput performance of the flowgraph from 0 to 40
copy blocks added to simulate longer flowgraphs. The plot on the left shows the single core
configuration with the plot on the right showing a quad-core configuration. These results
are also shown in Table 6.7.

and showed practically no overhead compared to native performance, but for all multi-core
configurations, the virtual environment showed 70% lower performance than the native envi-
ronment. Also, the multi-core configurations for the virtual environment showed effectively
the same performance as the single core configuration.

Figures 6.15 and 6.16 and Table 6.7 show variations of the Null_Test flowgraph where ad-
ditional copy blocks were included in the flowgraph. The number of copy blocks included in
the flowgraph was varied from 0 to 40. Since this added significantly more parallelism to the
flowgraph, increasing the number of cores does increase overall performance when there are
a larger number of blocks in the flowgraph. In Figure 6.15, almost all of the tested config-
urations and environments show a performance increase when moving from a single-core to

6.5. Results 97

Figure 6.16: Null_Test throughput with multiple copy blocks (cores vs throughput) - This
plot is similar to Figure 6.15, but plots the number of active cores against the flowgraph
throughput. The plot on the left shows the results of a flowgraph with only a single copy
block. The plot on the right shows the same comparisons for a flowgraph with 20 copy
blocks. These results are also shown in Table 6.7.

a quad-core system. The native and container environments show the greatest performance
increase when moving to the multi-core system. Interestingly, the virtual environment also
sees a performance increase for the quad-core configuration as more additional blocks are
included in the flowgraph, but compared to the other environments this increase is rather
minimal.

Figure 6.16 shows similar results but compares the number of active cores rather than the
number of copy blocks to the flowgraph throughput. Here, the performance increase is
almost linear as the number of cores increases for the flowgraph with 20 copy blocks. With
more copy blocks in the flowgraph, the virtual environment also performs better in multi-
core configurations (which is to be expected with the increase in parallelism), but again
the overall it still shows significant overhead when compared with the native and docker

98 Chapter 6. Performance Analysis

Table 6.7: Null_Test flowgraph throughput (with copy blocks) - This table shows the
throughput of the Null_Test flowgraph with additional copy blocks added into the flow-
graph. Here, we show the results of the single-core and quad-core tests with 0 to 40 additional
copy blocks in the flowgraph. This shows the percent overhead of the isolation environments
as compared to native performance and the final column shows the difference between the
container and virtual machine environments. Emphasized differences show where the virtual
machine environment out-performed the container environment. Similar to Table 6.6, we
can see that the virtual machine environment out-performed the container environment for
all single-core configurations but incurs a large overhead for the quad-core tests.

Test Throughput (Msps) Overhead

Cores Blocks Native Docker Virtual Docker Virtual Difference

1 0 303.30 262.60 299.97 13.42% 1.10% -12.32%
1 1 268.02 231.93 262.80 13.46% 1.94% -11.52%
1 2 165.05 143.00 162.71 13.36% 1.42% -11.94%
1 3 150.80 134.06 141.38 11.10% 6.24% -4.86%
1 4 123.53 110.22 129.64 10.77% -4.95% -15.72%
1 5 109.89 98.34 112.62 10.51% -2.49% -13.00%
1 10 69.90 63.77 71.82 8.77% -2.75% -11.52%
1 20 40.69 37.27 40.95 8.41% -0.64% -9.05%
1 40 22.00 19.86 21.41 9.75% 2.69% -7.06%

4 0 1245.75 1116.67 306.08 10.36% 75.43% 65.07%
4 1 1260.12 1170.22 279.28 7.13% 77.84% 70.71%
4 2 682.46 613.66 265.27 10.08% 61.13% 51.05%
4 3 534.97 489.22 231.42 8.55% 56.74% 48.19%
4 4 425.26 398.27 216.33 6.35% 49.13% 42.78%
4 5 390.44 361.48 198.23 7.42% 49.23% 41.81%
4 10 269.11 247.66 133.76 7.97% 50.29% 42.32%
4 20 166.54 153.80 84.74 7.65% 49.12% 41.47%
4 40 87.81 80.95 50.21 7.82% 42.82% 35.00%

environments in multi-core systems.

The most surprising results from the Null_Test flowgraph tests are the multi-core, multi-
copy throughputs in the virtual environment. In the native and containerized environments,
moving to the multi-core configuration resulted in a significant performance gain over the

6.5. Results 99

single-core tests. However, in the case of the virtual machine environment, the performance
of the quad-core configuration never exceeds the fastest single-core configuration (which
was the 0 copy block test) and there are minimal performance increases as more blocks are
added. Based on the large jump in performance of the container and native environments,
the expectation was a similar performance increase should have been observed when moving
to quad-core virtual machine configurations. Another surprising result is the virtual machine
tests always out-performed the container environments when in the single core configuration.

Figure 6.17: Bytes_Loopback flowgraph throughput - This plot shows the throughput of
the Bytes_Loopback flowgraph executing in different isolation environments. The number of
active cores varies from 1 to 4 using independent physical cores (no hyperthreaded cores).
Colors denote the type of environment: Blue is native performance, orange is container
performance, and green is a virtual machine. Similar to the Null_Test results, this flowgraph
also has a large overhead when executing in the virtual machine environment. These results
are also shown in Table 6.6

While the Bytes_Loopback flowgraph is similar to the GFSK_Loopback, it is also designed
to stress the GNU Radio scheduler like the Null_Test flowgraph. The modulation and

100 Chapter 6. Performance Analysis

Table 6.8: Bytes_Loopback flowgraph throughput - This shows the throughputs of the
Bytes_Loopback flowgraph in different isolation environments. Like the Null_Test flow-
graph, this flowgraph also predominately stresses the GNU Radio scheduler and includes
some additional data processing blocks. Similar to previous results, the virtual machine
environment shows the highest overhead for multi-core configurations and out-performs the
container environment for single-core tests.

Test Throughput (MBps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 24.24 23.70 23.98 2.20% 1.08% -1.12%
2 40.32 38.40 30.98 4.76% 23.10% 18.34%
3 53.12 52.13 38.34 1.85% 27.80% 25.95%
4 53.14 52.59 39.29 1.02% 26.00% 24.98%

demodulation blocks in the loopback flowgraphs are the most processing intensive and likely
become bottlenecks in the system. Since the Bytes_Loopback flowgraph does not include
these modulation and demodulation stages and has copy blocks in place of these blocks, it
forces more stress on the data handling blocks and the scheduler.

Figure 6.17 and Table 6.8 show the throughput results of the Bytes_Loopback flowgraph
in the native, container, and virtual machine environments. The Bytes_Looback flowgraph
shows similar behavior to the Null_Test flowgraph when moving from the single-core to
multi-core configurations. This flowgraph has several more blocks than the default Null_Test
flowgraph, so there are more buffers and overall functionality that can better utilize multi-
core configurations. Since there is actual data processing (though still minimal) in this
flowgraph, the overall throughputs are not as high as the Null_Test flowgraph. But, there is
still a large performance increase from single-core to dual-core configurations and a smaller
increase to triple-core and quad-core configurations. The virtual environment again out-
performed the container environment for single-core configurations, but it showed the lowest
performance for multi-core configurations. These tests showed much lower overheads than
the Null_Test. The container environment showed less than 5% overhead for all configura-
tions, and the virtual environment showed 1% for single-core and around 25% for multi-core
configurations.

Overall, these results show that the memory overhead for GNU Radio flowgraphs executing
within containerized environments is relatively low. In virtualized environments the flow-
graphs take massive performance hits and operate with 50-70% lower performance in many
cases. Memory performance seems to be a major bottleneck for GNU Radio flowgraphs
in virtualized environments. This trend is not too surprising since virtual machines also

6.5. Results 101

virtualize the memory system which would produce more overhead in the overall system.

Signal Processing Performance

While the Bytes_Loopback, GFSK_Loopback, and GMSK_Loopback flowgraphs are very
similar, the goal of the latter flowgraphs is to force the system to be CPU bound rather
than I/O bound. These flowgraphs do include the modulation and demodulation stages to
better represent an actual SDR waveform that includes both transmit (modulation) and
receive (demodulation) components within the application. The implemented modulation
and demodulation blocks cause the flowgraph to be predominately CPU bound. Overall
the GFSK_Loopback and GMSK_Loopback flowgraphs are nearly identical with slightly
different modulation schemes. The results of executing the GFSK_Loopback flowgraph in
the container and virtual environments are shown in Table 6.9 and are plotted in Figure
6.18. The throughput for these tests was measured in megabytes per second (MBps).

Table 6.9: GFSK_Loopback flowgraph throughput - This shows the throughput comparison
of various GNU Radio flowgraphs executing in different isolation environments and shows
the percent overhead of the isolation environment as compared to the flowgraph performance
in the native environment. Overall, the results of the GFSK_Loopback are extremely similar
in terms of percent overhead to the Bytes_Loopback results presented earlier.

Test Throughput (MBps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 0.57 0.55 0.55 3.94% 2.45% -1.49%
2 1.02 1.00 0.85 2.09% 16.69% 14.60%
3 1.53 1.52 1.11 0.62% 27.40% 26.78%
4 1.84 1.82 1.32 1.40% 28.14% 26.74%

These results show that even with the added signal processing blocks, this flowgraph has
basically the same performance in terms of additional overhead as the Bytes_Loopback flow-
graph. The overall throughput is significantly lower because this flowgraph is now CPU
bound, but the percentage overhead between the different environments and the multi-
core configurations is essentially the same. The container environment has a relatively low
throughput overhead (maximum of about 4%), while the virtual machine can have a much
higher overhead (maximum of about 28%). Again, for single-core configurations the virtual
environment out-performs the containerized environment and has a very low performance
overhead.

Both the scheduler/buffer stressing tests and the signal processing tests indicate that the

102 Chapter 6. Performance Analysis

Figure 6.18: GFSK_loopack flowgraph throughput comparison - Throughput comparison of
the GFSK_Loopback flowgraph implemented in GNU Radio executing in different isolation
environments. The number of active cores varies from 1 to 4 using independent physical
cores (no hyperthreaded cores). Colors denote the number of active processor cores: 1 -
Blue, 2 - Orange, 3 - Green, and 4 - Red. These results are also shown in Table 6.9

overhead added to a GNU Radio flowgraph when executing in container or virtual machine
environments is significantly driven by the memory performance within the GNU Radio
framework.

6.5.2 LiquidDSP Results

In addition to the GNU Radio flowgraphs, we also tested several SDR applications that uti-
lized the LiquidDSP framework. Specifically, we tested multi-threaded versions of a filtering
component and the FlexFrame framing module. The results for the different tests described
in Section 6.3 are shown below.

6.5. Results 103

Filtering Performance

Figure 6.19: LiquidDSP multi-threaded filter throughput - This shows the results of the
multi-threaded filter benchmark based on the LiquidDSP framework. Here, we plot the
throughput of the test versus the isolation environment, where the colors represent the
number of active cores. These tests show very little overhead for the isolation environments
with containers having less than 2% overhead and virtual machines having less than 4%
overhead. Table 6.10 shows the results of these tests.

The filtering benchmark tests the LiquidDSP FIR filter components to predominately stress
the CPU with signal processing operations. Unlike the previous GNU Radio flowgraphs,
there is no synchronization required between the individual threads executing in the test.
For these tests, a single thread was allocated for each active core and the throughput was
measured in megasamples per second (Msps).

The results for the filtering test are shown in Figure 6.19 and Table 6.10. These results
are vastly different than the GNU Radio results and show practically no overhead for the
filtering operation in any isolation environment. The container environment incurred less

104 Chapter 6. Performance Analysis

Table 6.10: LiquidDSP multi-threaded filter throughput - This table shows the throughput
results of the multi-threaded filter benchmark using the LiquidDSP FIR filter in different
isolation environments. Here, the results show very little overhead when executing the
LiquidDSP filter operations in the different environments.

Test Throughput (Msps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 22.73 22.62 22.58 0.50% 0.64% 0.14%
2 51.83 50.92 49.80 1.75% 3.92% 2.17%
3 77.20 76.72 74.58 0.62% 3.39% 2.77%
4 106.78 105.28 105.40 1.40% 1.30% -0.10%

than 2% overhead and the virtual machine environments had less than 4% overhead.

FlexFrame Performance

Table 6.11: LiquidDSP multi-threaded FlexFrame throughput (no synchronziation) - This
table shows the throughput results of the multi-threaded LiquidDSP FlexFrame benchmark
(without synchronization) in different isolation environments. Here, the results show very
little overhead when using the LiquidDSP FlexFrame module in the different environments.

Test Throughput (Mbps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 1.34 1.32 1.33 0.84% 0.44% -0.40%
2 2.72 2.69 2.70 1.29% 1.01% -0.28%
3 4.11 4.07 4.07 1.07% 1.05% -0.02%
4 5.51 5.45 5.45 0.93% 0.96% 0.03%

Like the filtering benchmarks, the LiquidDSP FlexFrame benchmarks tested also predomi-
nately stressed the CPU. All digital communication waveforms have some form of structuring
(or framing) transmitted data. The FlexFrame module implements a basic framing structure
that can be easily integrated into systems to transmit a wireless signal. The performance of
this module in different isolation environments is a good indicator of what overhead can be
expected when adding similar isolation to production systems. We tested three variations

6.5. Results 105

Figure 6.20: LiquidDSP multi-threaded FlexFrame throughput (no synchronization) - This
shows the results of the multi-threaded FlexFrame benchmark with no synchronization be-
tween threads. Here, we plot the throughput of the test versus the isolation environment,
where the colors represent the number of active cores. These tests show very little overhead
for the isolation environments with both containers and virtual machines showing around
1% overhead compared to native performance. Table 6.11 shows the results of these tests.

of the FlexFrame benchmark that included: 1) no synchronization between threads, 2) syn-
chronization with locks shared between all threads, and 3) synchronization using a linked list
to track generated frames. The throughput for all of these tests was measured in megabits
per second (Mbps).

Results for the tests without thread synchronization are shown in Figure 6.20 and Table 6.11.
In this case, a worker thread consisting of a single frame generator and frame synchronizer
pair was started for each active CPU in the system. Overall, there was very little overhead
observed when executing these tests in the different isolation environments, with both the
container and virtual machine environments having around 1% overhead across every con-

106 Chapter 6. Performance Analysis

Figure 6.21: LiquidDSP multi-threaded FlexFrame throughput (with synchronziation) - This
shows the results of the multi-threaded FlexFrame benchmark with synchronization between
a single transmitter thread and multiple receiving threads. Here, we plot the throughput of
the test versus the isolation environment, where the colors represent the number of active
cores. These tests show very little overhead for the container environment with less than 3%
overhead for all configurations. The virtual machine environment has a high overhead for
the single-core configuration (36%), but relatively low overhead for multi-core environments
(less than 4%). Table 6.12 shows the results of these tests.

figuration. There was roughly an equal increase in performance for every additional core
added to the system. This trend was expected since there was no synchronization between
executing threads and only non-hyperthreaded cores were enabled.

The results for the benchmark tests with thread synchronization are shown in Figures 6.21
and 6.22 and Tables 6.12 and 6.13. In these tests, a single transmitter thread generated
frames and passed a pointer for a memory buffer containing generated samples to a receiver
thread which processed the generated frame. For the first synchronization method, a lock
was allocated for each receiver thread which the transmitter needed to obtain before checking

6.5. Results 107

Table 6.12: LiquidDSP multi-threaded FlexFrame throughput (with synchronization) - This
table shows the throughput results of the multi-threaded LiquidDSP FlexFrame benchmark
(with thread-to-thread synchronization) in different isolation environments. These results
show very little overhead for the FlexFrame module in containerized environments, with
slightly higher overheads for multi-core virtual machine environments. The most overhead
is observed in the single-core virtual machine environment.

Test Throughput (Mbps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 0.28 0.28 0.18 2.79% 36.16% 33.37%
2 1.25 1.24 1.21 1.09% 3.58% 2.49%
3 2.41 2.41 2.35 -0.25% 2.56% 2.81%
4 3.48 3.42 3.40 1.74% 2.33% 0.59%

Table 6.13: LiquidDSP multi-threaded FlexFrame throughput (with linked list) - This table
shows the throughput results of the multi-threaded LiquidDSP FlexFrame benchmark (with
linked-list synchronization) in different isolation environments. These results are similar to
the results shown in Table 6.12 where very little overhead for the FlexFrame module is seen
in containerized environments and with multi-core virtual machine environments. Again,
the most overhead is observed in the single-core virtual machine environment.

Test Throughput (Mbps) Overhead

Cores Native Docker Virtual Docker Virtual Difference

1 0.52 0.50 0.46 2.77% 11.36% 8.59%
2 1.74 1.75 1.73 -0.67% 0.62% 1.29%
3 3.19 3.18 3.16 0.55% 1.02% 0.47%
4 4.76 4.73 4.72 0.73% 0.87% 0.14%

the status of the receiver and passing pointers. The second method used a shared linked-list
for synchronization; the transmitter thread generated frames and added pointers to the list
and the receiver threads pulled these pointers and processed frames when ready. The number
of receiver threads started was equal to the number of active cores in the system.

Overall, the second synchronization method performed better and showed a lower overhead
across most of the tested configurations. Both variations performed well in the containerized
environment with less than 3% overhead for all tests. The multi-core virtual machine tests

108 Chapter 6. Performance Analysis

Figure 6.22: LiquidDSP multi-threaded FlexFrame throughput (with linked list) - This
shows the results of the multi-threaded FlexFrame benchmark with synchronization between
a single transmitter thread and multiple receiving threads using a linked list storing pending
frames. Here, we plot the throughput of the test versus the isolation environment, where
the colors represent the number of active cores. These tests show very little overhead for
the container environment with less than 3% overhead for all configurations. The virtual
machine environment has a high overhead for the single-core configuration (11%), but almost
no overhead for multi-core environments (about 1%). Table 6.13 shows the results of these
tests.

also showed very little overhead with the first synchronization method having 2-4% overhead
and the second method having around 1% overhead.

The single core configurations actually showed the highest overhead for both the container-
ized and virtual machine environments. In the containerized environment, the single-core
shows less than 2% additional loss compared to the multi-core configurations, which is still
small. However, the single-core performance in the virtual environments shows a large per-
formance overhead; the first synchronization method incurred a 36% loss in performance and

6.5. Results 109

the second method showed an 11% performance loss. This overhead could be caused by the
transmitter and receiver threads both executing on the same core and therefore competing
for available resources on the system.

6.5.3 Stressor Results

As mentioned before, we also executed several stress tests using the stress-ng utility which
helps characterize the overhead expected for different components in the system when exe-
cuting in isolated environments. The stress tests mainly focused on three components: the
CPU, memory, and the kernel. For each test, a worker thread was launched for each core
currently enabled for that test. Tests executed for a fixed length of time and returned statis-
tics including the number of bogus operations per second (bogo/s) achieved. These results
are not comparable between different stressors since each set of operations for a stressor is
unique. The results for the stress tests described in Section 6.3 are shown below.

Table 6.14: CPU stressor performance results - This table shows the results of multiple
CPU stressors (matrix, bsearch, and hsearch) executing in different isolation environments.
Overall, there was very little performance loss for CPU intensive tasks executing in the
container and virtual machine environments. The average performance loss for the container
tests was less than 0.5% and less than 1.5% for the virtual machine tests.

Test Operations/second Overhead

Stressor Cores Native Docker Virtual Docker Virtual Difference

matrix 1 354.20 353.74 350.98 0.13% 0.91% 0.78%
2 709.57 709.07 694.85 0.07% 2.07% 2.00%
3 1064.51 1064.51 1050.00 0.00% 1.36% 1.36%
4 1420.03 1417.66 1403.44 0.17% 1.17% 1.00%

search (binary) 1 301.34 300.88 298.85 0.15% 0.83% 0.68%
2 603.35 602.66 594.00 0.11% 1.55% 1.44%
3 905.43 904.95 893.11 0.05% 1.36% 1.31%
4 1207.34 1204.19 1188.54 0.26% 1.56% 1.30%

search (hash) 1 2991.87 2955.52 2956.19 1.21% 1.19% -0.02%
2 6003.41 5937.25 5910.33 1.10% 1.55% 0.45%
3 8999.18 8931.08 8898.54 0.76% 1.12% 0.36%
4 11996.67 11893.71 11860.63 0.86% 1.13% 0.27%

110 Chapter 6. Performance Analysis

Figure 6.23: Matrix stressor results - This shows the results of the matrix stressor executed
in different isolation environments. The matrix performs a mix of floating point, cache, and
memory operations which mainly stress the CPU performance in the system. Results show
a small overhead for both the container and virtual environments with a 2% or less loss in
performance from the native environment. The results of the matrix stressor tests are shown
in Table 6.14.

Figure 6.28 and Table 6.14 show the results for the matrix, bsearch, and hsearch stressors
that mainly stressed the CPU performance in the system. These tests show very little
overhead (or none) when running in the different isolation environments. The virtual machine
results showed a maximum of 2% loss for the matrix stressor when compared to the native
performance. On average, the performance loss for the container tests was less than 0.5%
and less than 1.5% for the virtual machine tests. Overall, these results show that the CPU
performance itself does not suffer much overhead when executing in an isolated environment.

The stream and vm stressors were used to stress memory performance in the system and
determine the memory overhead of the isolated environments. The results for the stream
stressor are shown in Figure 6.24 and Table 6.15. This test stresses memory streaming

6.5. Results 111

Figure 6.24: Stream stressor results - This shows the results of the stream stressor executed
in different isolation environments. This test stresses memory streaming performance by
allocating multiple buffers that are 4+ times larger than the CPU cache and performing
multiple floating point operations (copy, scale, add, triad) between the buffers. Results
show a minor performance loss (3.5%) for the virtual machine environment and no overhead
for the container environment compared to the native performance. The results of the stream
stressor tests are shown in Table 6.15.

performance by allocating multiple buffers that are 4+ times larger than the CPU cache
and performing multiple floating point operations (copy, scale, add, combined) between the
buffers in a manner similar to how a DSP algorithm would process samples. Results show
a minor performance loss (3.5%) for the virtual machine environment and no overhead for
the container environment when compared to the native performance. Also, the single-core
virtual machine tests showed the highest amount of overhead for all of the tested configura-
tions.

The vm stressor continuously allocates and deallocates memory and stresses memory per-
formance through one of several methods for manipulating the buffers. In our testing, we

112 Chapter 6. Performance Analysis

Table 6.15: Stream (memory) stressor performance results - This table shows the results of
the stream memory stressor executing in different isolation environments. These results show
no performance loss for the container environment and a small performance loss (3.5%) for
the virtual machine environment compared to the native performance. Also, the multi-core
virtual machine tests showed lower overhead than the single core configuration.

Test Operations/second Overhead

Stressor Cores Native Docker Virtual Docker Virtual Difference

stream 1 40.88 40.86 39.45 0.05% 3.50% 3.45%
2 97.27 97.29 95.16 -0.02% 2.17% 2.19%
3 147.54 147.49 145.76 0.03% 1.21% 1.18%
4 197.49 197.61 195.30 -0.06% 1.11% 1.17%

focused on five specific stress methods described below:

• flip - Inverts a single bit of each byte in the buffer per loop until the entire byte is
inverted in 8 iterations

• incdec - Loop through the buffer twice incrementing each byte by a set value on the
first pass and decrementing to the original value on the second pass

• read64 - Read 32 x 64 bit chunks of memory from a buffer in a single operation

• write64 - Write 32 x 64 bit chunks of memory to a buffer in a single operation

• all - Iterate over all possible stress methods

Figures 6.25 and 6.26 plot the performance using the flip and write64 memory operations, and
Table 6.16 shows the results of all tested stress methods. For many of the tests, the container
and virtual machine stress tests were on par with the performance of their native counter-
parts. The results showed no performance overhead for the flip and incdec stress methods
and for most configurations testing all of the stress methods. Only the quad-core virtual
machine tests showed a small overhead (2.7%) when testing all stressor methods. However,
the read64 and write64 methods did incur a 2-7% loss compared to the native performance.
Memory reading performance in the container and virtual machine tests were comparable,
but the virtual machine tests out-performed the containerized tests when stressing memory
writes.

The largest overhead for any of the stress tests was seen in the switch and context stressors.
Both of these stressors rapidly force context switching to occur at either the thread or process

6.5. Results 113

Figure 6.25: Virtual memory stressor results (flip method) - This shows results of the vm
stressor in different environments using the flip operation. The vm stressor continuously
allocates and deallocates memory and writes to the mapped buffers using various methods.
For the flip operation, a single bit is inverted each loop until the entire byte is inverted in
8 iterations. The flip method did not incur a performance loss in the container and virtual
machine environments. These results are shown in Table 6.16.

level which stresses kernel performance. The context stressor forces context switching among
multiple threads, and the switch stressor forced context switches between processes passing
messages through pipes.

Many SDRs are implemented as multi-threaded applications, and as the data and samples
are passed to different blocks in the application, significant amounts of context switching
can occur. This is essentially true for waveforms using the GNU Radio framework as each
block in the waveform executes in a separate thread. Significant overhead due to context
switching can easily affect the overall throughput of an SDR waveform. So, understanding
the impact of context switching in isolated environments is important.

For the context stress tests, both the container and virtual machine isolation environments

114 Chapter 6. Performance Analysis

Figure 6.26: Virtual memory stressor results (write64 method) - This shows results of the vm
stressor in different environments using the write64 operation. This test writes 32 x 64 bit
chunks to the allocated memory buffers per operation. Unlike the flip methods, the write64
method does incur a 3-7% loss compared to the native performance. In this test, the virtual
machine environment typically out-performed the containerized environment. These results
are shown in Table 6.16.

experienced an 8-10% loss in performance compared to the native environment. When
using the switch stressor, the container environment suffered a massive performance loss
(around 70%) for all configurations. The virtual environment fared much better and had
a maximum of 16% loss for a quad-core configuration and lower overheads for fewer active
cores. Interestingly, the virtual machine environment again out-performed the container
environment for all of the context switching stress tests.

This overhead in the container environment is likely because containers are a form of operat-
ing system virtualization where all isolation is enforced at the kernel level. The kernel creates
a new namespace with separate copies of internal data structures and uses this to build the
isolated environment for containerized processes. So, rapid context switching between these

6.5. Results 115

Table 6.16: Virtual memory stressor performance results - This table shows the performance
comparison of the vm memory stressor executing in different environments. Several different
methods were tested for this stressor. The flip and incdec methods both showed no perfor-
mance overhead in the different environments, while the read64 and write64 methods had a
2-7% overhead for various configurations. For the write64 tests, the virtual machine tests
out-performed the containerized tests. When executing all available stressor methods (all),
there was no overhead for most of the tested configurations.

Test Operations/second Overhead

Method Cores Native Docker Virtual Docker Virtual Difference

all 1 53759.84 53714.37 53835.01 0.08% -0.14% -0.22%
2 107497.71 107398.37 107587.93 0.09% -0.08% -0.18%
3 161258.86 161064.61 161250.30 0.12% 0.01% -0.12%
4 215008.42 214759.74 209140.14 0.12% 2.73% 2.61%

flip 1 29290.73 29266.79 29337.76 0.08% -0.16% -0.24%
2 58578.04 58519.92 58606.60 0.10% -0.05% -0.15%
3 87872.15 87770.81 87867.07 0.12% 0.01% -0.11%
4 117166.05 117027.65 117155.44 0.12% 0.01% -0.11%

incdec 1 130178.51 130076.75 130398.97 0.08% -0.17% -0.25%
2 260348.80 260107.27 261219.07 0.09% -0.33% -0.43%
3 390502.60 390174.95 392280.71 0.08% -0.46% -0.54%
4 520710.66 520502.35 523519.11 0.04% -0.54% -0.58%

read64 1 1226.54 1172.53 1329.12 4.40% -8.36% -12.77%
2 2449.96 2352.69 2349.90 3.97% 4.08% 0.11%
3 3658.43 3516.53 3492.49 3.88% 4.54% 0.66%
4 4724.87 4595.07 4487.93 2.75% 5.01% 2.27%

write64 1 1428.53 1377.21 1480.05 3.59% -3.61% -7.20%
2 2857.18 2734.81 2750.66 4.28% 3.73% -0.55%
3 4277.76 4000.89 4135.32 6.47% 3.33% -3.14%
4 5686.34 5299.80 5380.73 6.80% 5.37% -1.42%

namespaces and loading the appropriate data structures can create significant overhead for
the system. For the virtualized environment, context switches for the guest kernel cause

116 Chapter 6. Performance Analysis

Figure 6.27: Context switching stressor results - This shows the results of the switch stressor
executed in different isolation environments. This test forces context switching to occur by
sending messages to child processes through pipes. For this test, the container environment
incurred a massive overhead (around 70%) versus the native system performance. The
virtual environment fared much better and had a 16% maximum overhead for a quad-core
configuration. Table 6.17 shows the results of the switch stressor tests.

overhead in terms of the hypervisor. The guest kernel would schedule the process to execute
on a virtual CPU and the hypervisor would then schedule the process on a host CPU and
switch that CPU to a virtualized mode. But, context switches in the guest and host envi-
ronments are similar since no namespaces are used in the environment. In SDR applications
with a large number of threads (and therefore more context switching), overhead from the
context switching could significantly affect the overall waveform throughput.

6.5. Results 117

Table 6.17: Context switching stressor performance results - This table shows the perfor-
mance of the context switching stressors (switch and context) in different isolation environ-
ments. The goal of these tests was stressing the kernel performance through forcing context
switches between threads and processes. Both the container and virtual machine environ-
ments show significantly higher performance overheads than the CPU and memory stressors.
Specifically for the switch stressor, the container environment incurs a 70% loss in perfor-
mance compared to the native performance. In all tests, the virtual machine environment
out-performs the container environment.

Test Operations/second Overhead

Stressor Cores Native Docker Virtual Docker Virtual Difference

switch 1 228181.78 70903.21 216485.55 68.93% 5.13% -63.80%
2 434138.77 132341.08 401205.75 69.52% 7.59% -61.93%
3 647606.59 198102.47 562901.63 69.41% 13.08% -56.33%
4 855894.06 263420.09 713725.88 69.22% 16.61% -52.61%

context 1 1523.73 1362.69 1378.25 10.57% 9.55% -1.02%
2 1530.35 1374.76 1402.31 10.17% 8.37% -1.80%
3 1530.39 1376.95 1403.44 10.03% 8.30% -1.73%
4 1532.51 1381.67 1401.78 9.84% 8.53% -1.31%

Split Flowgraphs

Since the ultimate goal of our defense-in-depth architecture is splitting a monolithic SDR
waveform into multiple isolated segments, the final set of performance tests focused on the
impact performance of the split flowgraphs. The overhead of a SDR waveform using a
defense-in-depth architecture will be unique to that application based on the chosen isola-
tion and IPC methods. However, the test results shown below do help provide a general
understanding of how this architecture will affect application performance.

For these tests, the Null_Test and GFSK_Loopback flowgraphs used in previous tests were
divided into separate sub-flowgraphs and these sub-flowgraphs were connected using the IPC
methods described earlier in Section 6.3.4. Flowgraphs were tested in the native environment
to measure the overhead of the added IPC channel and also in separate container environ-
ments to measure the overhead of both the added isolation and IPC channels. Also, all tests
were executed with 4 active CPU cores that were not hyperthreaded. Setting up the shared
IPC channels was straightforward since the container environment shares the same host ker-
nel and can also share parts of the filesystem. Additional blocks were also written for the
GNU Radio flowgraph to implement the domain socket and named pipes IPC mechanisms

118 Chapter 6. Performance Analysis

in the flowgraph.

Figure 6.28: Split Null_Test flowgraph performance - This plot shows the throughput com-
parison of the Null_Test flowgraph in a split configuration (multiple processes) with different
IPC mechanisms used to connect the sub-flowgraphs. The left-most category (None) shows
the results for the default monolithic flowgraph with 2 extra copy blocks added to mirror
the additional GNU Radio buffers added with the IPC blocks in the split flowgraphs. The
colors correspond to how each test is launched and is described in Section 6.3.4. The blue
and green lines show indicates tests executed in the native environment and orange indicates
tests with each flowgraph in a separate container. These results are also shown in Table
6.18.

The results for the split Null_Test flowgraph are shown in Figure 6.28 and Table 6.18. Here,
the performance of the split flowgraph configurations is compared to the performance of
the original monolithic flowgraph (IPC is None). The monolithic flowgraph included two
additional copy blocks added to the flowgraph which mirrored the additional blocks required
due to the IPC mechanisms. This ensures the number of GNU Radio buffers allocated is
similar between all tested flowgraphs.

6.5. Results 119

Table 6.18: Split Null_Test flowgraph performance - This table shows the throughput of the
Null_Test flowgraph in a split configuration with different IPC mechanisms connecting the
flowgraph (TCP, Domain Sockets, and Pipes). These tests measure the impact of splitting
the flowgraph into separate segments using the defense-in-depth approach and compare this
to the native performance. In this case, the Null_Test flowgraph suffers a very large perfor-
mance loss when executing as split flowgraphs in separate containers. Using Pipes to connect
the separate flowgraphs provided the best performance out of the tested IPC mechanisms.

Test Overhead

IPC Environment Throughput (Msps) Overall Container

None Default 677.50 - -

TCP Multiprocessing 585.39 13.60% -
Separate Processes 575.15 15.11% -

Separate Containers 365.78 46.01% 37.51%

Domain Socket Multiprocessing 765.52 -12.99% -
Separate Processes 759.10 -12.04% -

Separate Containers 416.69 38.50% 45.57%

Pipe Multiprocessing 588.42 13.15% -
Separate Processes 578.29 14.64% -

Separate Containers 453.76 33.02% 22.89%

Considering only the IPC overhead of the split flowgraphs, the TCP and named pipes meth-
ods showed 13-15% lower performance when compared to the monolithic flowgraph, and in-
terestingly, the domain socket performance exceeded the monolithic native performance by
12%. When executing each sub-flowgraph in a separate container, all three tested IPC meth-
ods showed a large overhead (33-46%) with the named pipes mechanism showing the best
performance (33% overhead) of the three. Also, the container performance using named pipes
shows around a 26% overhead when compared with the original two copy block Null_Test
flowgraph performance executing in the container environment (shown back in Table 6.7.

The Null_Test flowgraph does not do any signal processing and is really only stressing the
memory performance of the GNU Radio flowgraph in separate containers and connected
over an IPC channel. These flowgraphs showed high overhead when compared to the sin-
gle monolithic flowgraph in the native and container environments, but still out-performed
the single flowgraph executing in the virtual machine environment. The tests with the
GFSK_Loopback shown next give a better indication of the overhead for an actual waveform

120 Chapter 6. Performance Analysis

using the defense-in-depth architecture and using container isolation.

Figure 6.29: Split GFSK_Loopback flowgraph performance - This plot shows the throughput
comparison of the GFSK_Loopback flowgraph in a split configuration (multiple processes)
with different IPC mechanisms used to connect the sub-flowgraphs. The colors correspond
to how each test is launched and is described in Section 6.3.4. The blue and green lines
show indicates tests executed in the native environment and orange indicates tests with each
flowgraph in a separate container. These results are also shown in Table 6.19.

The results for the split GFSK_Loopback flowgraph are shown in Figure 6.29 and Table
6.19. These tests were executed in the same fashion as the Null_Test tests shown previously.
Compared to the Null_Test results, the overhead in the split GFSK_Loopback flowgraph due
to the IPC channel is lower and overall less than 10%. The named pipes IPC method again
show the best overall performance with less than 3% overhead for the multi-process native
tests. Moving the sub-flowgraphs into separate containers does add more overhead, but the
loss in performance is still less than 8% for this configuration. Like the Null_Test flowgraph,
all of the containerized, split flowgraph tests still out-performed the virtual machine tests
for the original monolithic flowgraph shown in Table 6.9.

6.5. Results 121

Table 6.19: Split GFSK_Loopback flowgraph performance - This table shows the throughput
of the GFSK_Loopback flowgraph in a split configuration with different IPC mechanisms
connecting the flowgraph (TCP, Domain Sockets, and Pipes). These tests measure the
impact of splitting the flowgraph into separate segments using the defense-in-depth approach
and compare this to the native performance. Depending on the IPC mechanism used, this
flowgraph can incur a large performance overhead when executing as separate flowgraphs in
different containers (around 20% for TCP). Using Pipes to connect the separate flowgraphs
provided the best performance and only resulted in an 8% loss in performance.

Test Overhead

IPC Environment Throughput (MBps) Overall Container

None Default 1.77 - -

TCP Multiprocessing 1.60 9.40% -
Separate Processes 1.61 9.12% -

Separate Containers 1.42 19.37% 11.00%

Domain Socket Multiprocessing 1.66 5.78% -
Separate Processes 1.65 6.34% -

Separate Containers 1.56 11.95% 6.55%

Pipe Multiprocessing 1.72 2.38% -
Separate Processes 1.72 2.55% -

Separate Containers 1.63 7.93% 5.68%

One small difference to note is the split GFSK_Loopback flowgraph did not include extra copy
blocks for the native tests for mirroring the additional GNU Radio buffers and IPC blocks
that exist for the split flowgraphs. If the no IPC native flowgraph did include these extra
two copy blocks, its performance would slightly decrease which also reduces the overhead of
the split flowgraph configurations.

6.5.4 Additional Takeaways

There are several additional takeaways to consider in the context of all of the different test
results.

1. On average, all of the GNU Radio flowgraphs tested on single-core virtual machines
out-performed the same flowgraphs executing within a container. (The multi-core

122 Chapter 6. Performance Analysis

container flowgraphs usually out-performed the virtual machines.)
One possible explanation for this behavior on single core configurations is indicated
by the overhead of the context switching stressors within containerized environments.
These stressors surprisingly showed that the overhead for context switching in a con-
tainerized system is greater than in virtualized environments; the switch stressor
showed a significant (almost 60% greater overhead on average) for containers over
virtual machines. Based on how containers are implemented, there is additional over-
head involved with the kernel scheduling containerized processes and threads due to
the separate namespaces and data structures that need to be processed. In a virtual-
ized environment, the guest kernel does not have this overhead of switching between
namespaces (since no containers are executing in the guest). If a virtualized kernel is
allowed to execute without significant interruption by the host hypervisor, then the
performance could more closely match that of the native system.
GNU Radio flowgraphs use a thread-per-block scheduler to better utilize multi-core
systems. So, rapid context switches between the threads in the flowgraph occur which
could cause the additional overhead for the container tests. Reducing the amount of
context switching within a flowgraph could help improve the overall performance of
the waveform.

2. The GNU Radio framework is not well optimized for executing within multi-core virtual
machines.
While the performance of flowgraphs in virtual machines does slightly increase as
the number of cores increases, this increase is minimal in comparison to the native
and container environments. Even though there is minimal parallelism that can be
achieved with the Null_Test simple flowgraph, the native and container tests do show
a 4x performance increase moving to a dual-core configuration. Increasing the number
of active cores beyond this does not significantly change the performance since there
is a limited number of threads to execute.
But, for the virtual machine environment the overhead for the multi-core systems
greatly increases with additional cores. The most significant increase in overhead is
with the Null_Test flowgraph (with no copy blocks) which jumps from practically
no overhead on a single core virtual machine to 70-80% overhead for two or more
cores. The flowgraph’s performance never significantly increases past the baseline
performance of a single core for multi-core tests. On a containerized system the highest
overhead for the same flowgraph is 12%. When the flowgraph does have multiple
copy blocks, there is a performance increase when adding additional cores, but this
performance increase is minimal when compared to the increase of the native and
containerized environments. This increase is also due to the additional threads in the
flowgraph, so there is some advantage with multi-core systems. A similar behavior is
observable in the GFSK_Loopback and Bytes_Loopback flowgraphs where the virtual
machine environment sees 15-30% overhead for multi-core configurations while the

6.5. Results 123

containerized version shows only 1-2% overhead for the same flowgraph.
There is likely a major bottleneck within the GNU Radio framework that is not op-
timized for execution in a virtual environment, which causes a significant loss of per-
formance compared to containers. If the framework could be better optimized for
execution within a virtual machine environment, the overhead of using virtual ma-
chines may be significantly reduced and more comparable to the performance of the
containerized version.

3. Even though GNU Radio applications have a higher overhead when executing with
multi-core virtual machines, the overhead for single cores is relatively small. The
main intent of our security architecture is isolating every component of the waveform,
either individually or in a small group, into separate environments. If the required
resources for a block is relatively small, isolating this block within a single core virtual
machine may not impact the overall throughput of the waveform that significantly.
As the waveform is divided into smaller components, the overall parallelism of each
partial flowgraph is reduced, so the overhead of the multi-core environments may
become less critical. The single-core environments incurred a relatively low overhead,
so executing multiple partial waveforms in single-core virtual environments may be a
feasible solution with little overhead compared to the native environment.

4. There could be multiple types of optimization that can be applied to individual systems
to reduce the overhead of the defense-in-depth solution. For example, multiple other
IPC mechanisms exist that have not been tested; some of these may have even less
overhead.

6.5.5 Conclusions

There are a few conclusions that can be drawn from the results of our performance tests.
First, the performance overhead for implementing SDRs using the defense-in-depth archi-
tecture and isolating components within the waveform can be minimal due to the isolation
itself. Most of the LiquidDSP and stressor tests showed little to no performance overhead
for either the container of virtual machine environments. The GNU Radio container tests
with the single flowgraphs also showed relatively low performance overhead when executing
in the containerized environment. Since the main intent of the defense-in-depth architecture
is segmenting waveforms into smaller isolated environments, the IPC connections between
these environments will also add some overhead to the system. Our example test waveforms
using this type of configuration also did not show significant performance loss with IPC
mechanisms like named pipes. These results validate that the defense-in-depth architecture
for SDRs is a feasible approach for developing secure systems, and production systems should
be designed in this manner moving forward.

Second, the virtual machine environment does significant overhead to the performance of

124 Chapter 6. Performance Analysis

GNU Radio flowgraphs in multi-threaded/multi-core applications. Virtual machines provide
significantly more isolation overall than containers due to the guest environments, so the
extra overhead is expected. However, other test results (multi-core containers) indicate that
GNU Radio is not optimized for virtual machine environments which suggests there are be
methods to optimize how a flowgraph is executed within a virtual machine and significantly
improve performance for multi-core configurations. If developing a high-assurance radio
system, this is still a feasible isolation option even with the higher overhead since security is
the main design requirement of the system.

Third, each unique system will require different trade-offs and configurations in terms of
isolation or performance when implementing a defense-in-depth architecture. As more wire-
less systems transition to SDR implementations, security becomes a major concern, so some
type of isolation should always be implemented within waveforms. For example, virtual ma-
chines likely create too much overhead to be acceptable security mechanisms for applications
requiring very high-performance. In these situations, containers provide a more lightweight
solution that could add security to the application but still achieve high-performance. On
the other hand, security is a primary requirement for high-assurance systems, so virtual
machines provide a better solution even if the resulting performance overhead is very high.

Sometimes a hybrid approach can provide the best overall solution and balance of security
and performance. For example, containers could be used to isolate lower security risk com-
ponents that require higher performance and throughput, and virtual machines could isolate
the higher risk components within the system. Typically, the highest risk components within
a waveform are the higher layer network blocks in the OSI stack. Lower level blocks like the
physical layer require more overall performance but also can be less of a security risk since
these layers process the signal and samples rather than data.

6.6 Summary

One of the main issues to consider when developing a SDR application with the defense-in-
depth architecture is the trade-offs between overall processing performance and security of
the system. As more isolation is added within the waveform itself, the amount of processing
overhead increases which reduces overall performance. We specifically focused on measuring
the maximum throughput of different waveforms in both a containerized and virtualized
environment to understand and characterize the overhead due to each. Depending on the
requirements for a specific application, the overhead for some environments may prevent
it from being a feasible solution. Some performance loss may be acceptable for high-risk
components in order to gain the additional security from the isolation, but not all software
radio applications can tolerate the loss in overall performance.

In this chapter, we tested two common isolation environments, container (Docker) and vir-
tual machines (VirtualBox), by executing several different flowgraphs and stressor utilities

6.6. Summary 125

in order to measure the maximum throughput. Our results show that in most cases, the per-
formance impact of the isolation environment can be minimal in result in a small percentage
(less than 5%) loss due to overhead. However, not all applications are optimized for some
environments and, in this case, we showed that some GNU Radio flowgraphs had additional
bottlenecks that significantly limited their performance in virtual environments. We also
tested the performance of split flowgraphs that were connected with different types of IPC
to better simulate an application using the defense-in-depth architecture. Generally speak-
ing however, the overall performance overhead of using isolation environments for software
radio waveforms can be minimal, so the defense-in-depth architecture should be the basis of
communication systems moving forward.

Chapter 7

Example Implementations

In this chapter, we present some of the challenges to integrating the defense-in-depth model
into existing frameworks and present several methods of building a waveform based on our
model and using the GNU Radio framework and Linux Containers. We focus on the GNU
Radio platform since it is one of the most popular open source frameworks can be used to
implement many different types of radio applications. Containers provide the main isolation
mechanism for each of these approaches mainly because it provides additional security with
a low amount of additional performance overhead.

7.1 Applications

Cloud Radio Access Networks

The main concept behind the Cloud-RAN is separating the monolithic base-station into
smaller services that can be co-located into a centralized cloud infrastructure rather than
being geographically separated. This allows the system to better handle demand and be
able to scale itself to meet increasing network traffic or high user demand during peak hours
of congestion on the network or RF spectrum. Since all of the core network components
are all co-located, this also greatly reduces the latency and increases the total bandwidth
available to the core network itself. Cloud-RANs, specifically, are a perfect candidate for
this architecture because the base-stations are already virtualized and executing within a
centralized data center. The key to building a secure C-RAN network is ensuring that each
virtual base-station is fully isolated from the underlying environment. We show an example
implementation of a virtual base-station and C-RAN in Figure 7.1.

Virtualization Ground Station

The concept of a virtualized ground station is a key component to supporting future Ground-
Stations-as-a-Service. The goal with this concept is providing an infrastructure and frame-
work that allows customers to develop software waveforms for various spacecraft that can
execute on the virtualized ground station. No matter what physical hardware actually exists
at a specific location, the interface would all be the same.

126

7.1. Applications 127

Linux 10G Nic Monitor10G Nic

Manager

Virtual Box

Embedded Linux

OpenBTS

Virtual Box

Embedded Linux

OpenBTS

NN

Backhaul SDN

Linux 10G Nic Monitor10G Nic

Manager

Virtual Box

Embedded Linux

OpenBTS

Virtual Box

Embedded Linux

OpenBTS

NN

Backhaul SDN

Linux 10G Nic Monitor10G Nic

Manager

Virtual Box

Embedded Linux

OpenBTS

Virtual Box

Embedded Linux

srsLTE

NN

Backhaul SDN

Virtual Secure Base Stations Remote Radio Heads

Figure 7.1: Example CRAN (Cloud Radio Access Network) architecture. Example of a
software radio system in a Cloud Radio Access Network built using the defense-in-depth
approach for secure SDRs.

Core to this concept is allowing third-party waveforms to execute on ground station hard-
ware. Our defense-in-depth model is a perfect approach for ensuring that vulnerabilities or
malicious code that exists within the third party waveforms are unable to affect either the
underlying platform or other customer’s applications and data. By isolating each application
within its own domain, it is also possible that multiple customer’s waveforms can execute at
the same time for a specific pass completely independently of each other.

This can be further extended into a model like the Cloud-RAN to develop distributed ground
stations. In this case, the main computing resources are centrally located, while the physical
antennas and radio hardware would be distributed geographically.

7.1.1 Example Implementation

The intent of this defense-in-depth architecture is separating all of the components of a
communications system into isolated environments for added security. However, the specifics
of how components are separated within an implementation is dependent on many factors
such as the security and performance requirements. As such, applications developed using
this architecture can differ heavily between implementations.

A simplistic form of this architecture is executing a radio waveform as a monolithic applica-

128 Chapter 7. Example Implementations

tion within a single isolated environment. A downside to this methodology is an exploit of
a component in the waveform can compromise the entire instance. However, the isolation
environment would prevent the attack from compromising the underlying host and therefore
other radio applications.

C-RAN architectures already follow this simplistic version since each base-station is virtu-
alized in a datacenter. An example implementation of a virtual base-station is shown in
Figure 7.1. In this example implementation, two software radio based, cellular network ap-
plications (srsLTE [23] and OpenBTS [22]) are executing on a host with Oracle’s VirtualBox
platform [14] providing isolation between the applications (with a hardened Linux kernel
as the guest). Each environment is bridged through VirtualBox’s built-in network stack to
Ettus Research Universal Software Radio Peripherals (USRPs) [75] that can support optical
connections back to the host system. VirtualBox’s built-in network stack bridges the VM’s
network interface to the host device allowing the software radio to access the hardware. The
network stack also allows for creating host-only networks that allow the application environ-
ments to communicate together or connect to other services. A firewall can monitor traffic
between the software waveforms on the virtual machines as well as monitor network traffic
to the remote radio head devices.

However, this simplistic approach does not accomplish the full intent of the architecture
which is to isolate all components of the radio into separate environments. Another example,
based on the example application used to demonstrate the effect of an exploit on a waveform
(shown in Figure 4.5), is more secure implementation where components like the frame_sync
and router blocks are placed within their own virtual environments. Since the source block
for this flowgraph only handles transporting samples, it is a lower risk and can execute in
a container. The same VirtualBox network stacks could implement the IPC functionality
used to connect the frame_sync and router blocks together. In this example, if the exploit
demonstrated earlier were attempted, it would only affect the virtual environment executing
the router block rather than the full waveform.

7.2 Challenges

The main challenges to building a waveform using our defense-in-depth methodology deal
with managing the now distributed nature of the waveform. Specifically, this includes process
management, data flow management, and scheduling. Since different components of the
waveform are now executing in isolated environments, there must be some mechanism that
exists to start each portion of the application, as well as, providing the connections between
components.

7.2. Challenges 129

GNU Radio versus REDHAWK

For our implementations provided in this chapter, we chose to use the GNU Radio frame-
work as the basis for our applications. This raises the question of why it makes sense to
choose GNU Radio instead of choosing the REDHAWK framework, which is already built
for distributed systems. Our main motivation for choosing GNU Radio over REDHAWK is
based on the underlying scheduler models and data flow models used by the REDHAWK
framework versus GNU Radio. This is the biggest difference between the two frameworks.

REDHAWK applications are distributed, by nature, and are mainly designed to execute on
systems that provide a significant amount of computing resources, such as a datacenter. GNU
Radio, on the other hand, is designed to execute a single monolithic flowgraph that could be
executed on resource-constrained, embedded systems. To that extent, both frameworks use
very different scheduler models: REDHAWK utilizes a process-per-block model and GNU
Radio uses a thread-per-block model.

• Process-per-block: This is the main scheduling model used for the REDHAWK
framework. Each component within a REDHAWK application is executed as its own
process that is launched by a Device Manager process that is running on each Node
of a REDHAWK Domain. This model has the advantage that a failure in a specific
component of the system will only crash its respective process and will not affect the
overall executing application.

• Thread-per-block: This is the scheduling model used by the GNU Radio Framework,
and is typically the default model used for SDR applications. In this model, a waveform
or application runs as a single process on the system and executes separate threads
for each component or block in the waveform, which are created by the main thread
and can be scheduled independently by the underlying operating system Unlike the
process-per-block model, if a fault occurs in one of the child threads in the system
(usually a component), the operating system will abort that process which causes the
entire application to crash.

Since REDHAWK is already designed to targeted distributed systems, it would be rather
straightforward to build a waveform using the defense-in-depth approach. In fact, the
process-per-block model already provides a decent amount of isolation between components
in an executing waveform. As we mentioned before, if a fault or exploit occurs within a spe-
cific component, only that specific component will crash rather than the entire waveform.
However, if an exploit such as the stack buffer overflow exploit existed in a REDHAWK
implementation, the attacker could still easily compromise the system. The process-per-
block isolation will not provide a significant enough isolation to contain that type of attack.
Improving the amount of isolation within a REDHAWK application can be accomplished in
a variety of ways. Each node within the application can be defined as a different isolated se-
curity zone and can be executed either in a container, a virtual machine, or another physical

130 Chapter 7. Example Implementations

machine altogether. Since REDHAWK already utilizes the CORBA framework to connect
different components together, the data flow simply relies on the network connections be-
tween the different containers or machines that are executing each node.

Depending on the sensitivity level of each component or its risk factor, different levels of
isolation can be achieved depending on the specific implementation for that node. Executing
each node on an individual, physical system provides the most isolation, while nodes residing
containers would provide the least. The tradeoff to isolation is performance; if nodes exe-
cuting on physically separate systems would result in less throughput and higher latency for
the entire application. A second tradeoff to consider in this case is the available resources of
each system executing a specific node. If multiple nodes are executing on the same system
in either virtual machines or containers, there may be additional computing overhead with
scheduling components to execute. Components and nodes executing by themselves on a
single physical system may not exhaust available resources and the limiting factor for per-
formance would be the specific component’s throughput. Components on a shared node may
not be able to execute at their full performance due to overhead from the shared isolation
mechanisms (i.e. multiple virtual machines).

The biggest issue with choosing the REDHAWK framework is that it is designed as a dis-
tributed system and not suitable for embedded systems. Part of the goal for our research
is to apply this model to waveforms that would execute in an embedded environment, so
computing resources are at a premium. With REDHAWK, one of the biggest issues is the use
of the CORBA framework; each component in the system is interconnected to other blocks
over the network stack. Compared to GNU Radio, this provides a significant performance
overhead compared to GNU Radio’s shared buffers model. Since each GNU Radio block
executes in a thread rather than a process, the scheduler simply creates buffers that are
shared between the different blocks. For our implementations, GNU Radio provides the best
approach, because we can use a process-per-zone scheduling model where the blocks within a
specific security zone are all executing in the same process. If a block is a very high security
risk, it can be executed alone in a process, which would mirror the REDHAWK scheduling
model. This methodology gives the advantage that low-risk blocks in the same security
domain can execute with the lowest amount of overhead between them, which reduces the
overall latency of the system and increases the overall performance.

In this section, we present three different methods of implementing a waveform based on the
defense-in-depth model using the GNU Radio framework. Each method has its own tradeoffs
concerning scheduling and data flow, which are discussed as well.

7.2.1 Networking Based

Our first method uses a similar design philosophy to that of REDHAWK. While each security
zone runs in a single process rather than process-per-block, the data connection between each
zone is handled through the network stack. Using this method requires no additional changes

7.2. Challenges 131

to the core of the GNU Radio framework as GNU Radio already supports multiple methods
for connecting flowgraphs through the network stack, such as Socket PDUs, UDP, TCP,
and ZeroMQ These networking blocks can be configured in GNU Radio to execute in either
client or server mode, which defines their behavior once the flowgraph starts. A container
would be started for each specific section of the flowgraph and the networking blocks would
be configured to connect using the container’s bridge network connection.

Advantages

• The simplest method to construct a defense-in-depth waveform using the existing
blocks in GNU Radio.

• Requires no modification to the GNU Radio runtime.

Disadvantages

• Connections between different zones use the networking stack similar to REDHAWK,
which would increase the amount of latency and overhead in the system. Each connec-
tion between zones requires at least a source and sink networking blocks which means
there are multiple memory copy operations between buffers in the waveform.

• Requires splitting an existing flowgraph and adding new network blocks to each sepa-
rate flowgraph.

• Requires a user to manually configure the network connections at design time unless
an external script provides parameters to the flowgraph at startup.

• Moving a block into a separate zone requires adding several new networking blocks
between it and any downstream blocks.

To simplify the process of starting an application using this method, an external script can
be used to manage much of the process of creating and starting containers and connecting
specific waveforms together. The main disadvantage of this method is using GNU Radio’s
networking functionality between flowgraphs executing in different security zones. A variant
of this method utilizes pipes or domain sockets rather than the full network stack. Container
applications can set up a temporary file system that can be shared by multiple containers.
Each container can use the shared file system to create the pipe or domain socket that can
then be opened by the downstream flowgraph. Using pipes rather than the entire network
stack will improve the overall performance. However, this variant still requires additional
source and sink blocks in each flowgraph which increases the latency over the non-segregated
waveform. For example, each of the additional blocks in the flowgraph must perform a
memory copy operation to move data from the GNU Radio buffer to the output network

132 Chapter 7. Example Implementations

buffer or pipe. However, this is still preferable to REDHAWK’s process-per-block model
since it does not require the networking connections between every block in the waveform.

7.2.2 Custom Buffers Based

Our second method does require some modification to the GNU Radio runtime to enable
blocks to allocate custom buffers rather than letting the runtime itself allocate each buffer
for a block. We have previously done some work to enable this support in GNU Radio
mainly to better support using Graphics Processing Units (GPUs) to accelerate the signal
processing functionality. An example of how the custom buffer feature was designed for
GPUs is shown in Figure 7.3 and Figure 7.2 shows an example without custom buffers. This
method includes defining a new buffer type that uses the shared memory faculties in the
operating system to share the buffer between two different sub-flowgraphs in the waveform.

Host

GPU

Null Source Multiply Const Null Sink

Kernel

Me
mc

py
() M

em
cpy()

1 2 3

CUDA

GR Runtime

Figure 7.2: Example of a GNU Radio flowgraph without custom buffer support for GPUs -
Each GPU based block must copy memory from the GNU Radio buffer to the GPU buffer
before execution. The network based method for a secure GNU Radio waveform would
require similar memory operations.

With only the custom buffer support changes in the GNU Radio runtime, the rest of the
functionality for this method can be included in a separate out-of-tree module. The custom
buffer method can be integrated into a flowgraph in two major ways. If the flowgraph is
built using custom blocks, then the developer can simply create and pass the custom buffer
to the runtime when the flowgraph is constructed. However, if the flowgraph is using only
built-in blocks, a similar mechanism to the network based method would need to be used.
In this case, a source and sink block that supported the shared memory blocks could be
added to the flowgraph for each external connection. The advantage of this method over
the networking method is the reduced number of memory operations during execution. In

7.2. Challenges 133

GPU

Host

Null Source Multiply Const Null Sink

Kernel

cudaHostAlloc()

multiply_const->allocate_upstream_output_buffer()
multiply_const->allocate_output_buffer()

cudaHostAlloc()1

GR Runtime

Figure 7.3: Example of a GNU Radio flowgraph with custom buffer support for GPUs -
Each GPU based block in the waveform can allocate memory that is shared with the GPU,
avoiding additional memory copy operations from GNU Radio owned buffers to the GPU
owned buffers.

our previous GPU work enabling custom buffers, a block could specify whether it would
allocate and own its upstream or downstream buffer. Because of this, a source block could
allocate its downstream buffer as the shared memory buffer and a sink block could allocate
its upstream buffer as a shared memory buffer. In that situation, the corresponding blocks in
the flowgraph would be reading and writing directly from the shared buffers, so no additional
memory copy operations are required.

Advantages

• Reduces the amount of memory copy operations over the network based approach.
Upstream and downstream blocks would be able to directly access the shared buffers.

• Once custom buffer support is enabled and the blocks are created, it can be straight-
forward to connect multiple sub-flowgraphs.

Disadvantages

• Does require some additional modifications to the GNU Radio runtime.

• Requires additional blocks to exist in each sub-flowgraph for connecting to the up-
stream and downstream zones.

134 Chapter 7. Example Implementations

• Requires splitting an existing flowgraph and adding new network blocks to each sepa-
rate flowgraph.

• Requires a user to manually add blocks to configure the specific zones.

• Moving a block into a separate zone requires adding several new networking blocks
between it and any downstream blocks.

7.2.3 Shared Memory Based

The final method for containerizing GNU Radio builds upon the previous method. In this
case, we heavily modify the GNU Radio runtime such that it can directly allocate shared
memory blocks rather than requiring additional separate blocks. The GNU Radio Compan-
ion can also be modified to directly allocate each sub-flowgraph within its own security zone
and setup and allocate the shared buffers between each sub-flowgraph. The main challenge
in this methodology is handing the signaling between flowgraphs.

Advantages

• Directly allocate shared memory buffers between sub-flowgraphs.

• Reduces the amount of memory copy operations over the network based approach.
Upstream and downstream blocks would be able to directly access the shared buffers.

• Does not require modification to built-in blocks or new blocks added to the flowgraph.

• Creating secure zones could be done directly in the GNU Radio Companion or the
main flowgraph.

Disadvantages

• Requires significant modification of the GNU Radio runtime and scheduler so it is aware
of the shared memory blocks and the other schedulers running in child processes.

7.3 GNU Radio Defense-in-Depth Framework

One of the byproducts of the test framework presented in the previous chapters is that it also
serves as the basis for developing a framework for deploying GNU Radio applications with our
defense-in-depth architecture. The primary goal for this security framework was providing
a nearly identical interface to developing flowgraphs using the defense-in-depth model as

7.3. GNU Radio Defense-in-Depth Framework 135

Front
End

Driver

Zone 1 Zone 2

Isolated Zones

Zone 3

Defense-in-Depth Flowgraph (User Created)

Start Control IPC Buffer GNU Radio Buffer
Block (User) IPC Block (Auto) Low Risk Medium Risk High RiskControl

Zone 1 Zone 2 Zone 3

Flowgraph Proxy Flowgraph ProxyFlowgraph Proxy

Figure 7.4: Defense-in-Depth GNU Radio Framework - This is an example of a container-
ized GNU Radio waveform using our framework. In this case, the Flowgraph controller is
responsible for launching different container environments which each automatically start
the waveform proxy. Once executing, the controller can then remotely build GNU Radio
waveforms and automatically add the proper inter-process communication blocks for the
waveform to operate properly.

normal GNU Radio flowgraphs. This helps to significantly reduce the work required to port
flowgraphs to the new model. Basically, this security framework acts as an additional proxy
layer to GNU Radio flowgraphs executing in an isolated environment. A diagram of the
basic components of this new framework is shown in Figure 7.4.

7.3.1 Components

Our security framework utilizes a similar architecture to the test framework presented earlier.
It is also developed in Python and heavily utilizes the Pyro4 package. The main components
of the framework include the isolation images, environment managers, remote flowgraph
proxy, and finally the local flowgraph controller, zones, and block classes.

• Similar to the testing framework, the security framework also requires pre-configured
isolation environments that have GNU Radio and any other out-of-tree modules or
dependencies installed in the system. The security framework, specifically the flow-

136 Chapter 7. Example Implementations

graph proxy, must also be installed and configured to automatically execute once the
environment is launched. When launching the environments, the security framework
can dynamically configure any resource limitations that were selected by the user.

• The environment managers are effectively the same as the experiment classes from
the testing framework. These consist of all the required code to start and configure
the isolation environments for the flowgraph components. Each environment class
manages a single type of isolation and uses the appropriate API to start each image
and configure the network or device access required for the flowgraph.

• The remote flowgraph proxy is similar in concept to the worker proxy from the test
framework as it allows for remotely executing GNU Radio flowgraphs. The major
difference between this and the worker proxy and GNU Radio worker is that flowgraphs
can be dynamically constructed and do not have to be preinstalled in the image.
Blocks are added to the remote flowgraph by specifying the block’s module name and
passing any arguments that are normally passed to the block constructor. The remote
flowgraph then attempts to dynamically load the appropriate module and allocate the
requested block with the given settings. Once the block is created, other functions can
be used to remotely call functions on the allocated block.

• The local flowgraph and block classes are the main classes a developer would inherit
from and interact with when developing an application with the security framework.
These classes serve two major roles: 1) they serve as interfaces to the remote proxies
and flowgraphs and 2) manage the overall execution of the application (starting, stop-
ping, interconnecting different zones, etc). The zones represent the executing isolation
environment as serve as proxies to handle different aspects of each environment such
as adding blocks or configuring the system.
The block classes are returned by the zones or the flowgraph controller when adding
new blocks to a zone and serve as proxies to the remote blocks themselves. Any
function called on the local block class is automatically forwarded to the appropriate
remote block and the return value passed back to the calling function. These block
classes dynamically create instance methods so the block’s API is nearly identical to
that of the remote block; certain functions normally available in GNU Radio blocks
cannot be called remotely due to their implementation. This should not be an issue
for most implementations.
Finally, the flowgraph controller is responsible for managing the overall execution of
the flowgraph. This includes automatically setting up the IPC mechanisms and blocks
between the different zones to connect the entire flowgraph. The specific IPC mecha-
nism used can be defined by the user, but the user does not need to directly manage
the IPC mechanisms themselves.

The security framework is intended to be very straightforward and nearly identical to use as
normal GNU Radio Python flowgraphs. The only major difference between a normal GNU

7.4. Summary 137

Radio flowgraph and the security flowgraph is the requirement to first create zones before
blocks can be added to the zone. The isolation environment may take a significant amount of
time to initialize, so the setup of the security framework is overall longer than a normal GNU
Radio flowgraph. Once the isolation environment is running, the framework will connect to
the remote flowgraph proxy and allow new blocks to be added to the environment. Since the
framework itself is implemented in Python and relies on the Pyro4 package for implementing
the proxy, C + + flowgraphs are not supported. However, the blocks themselves can be
written in either Python or C++ just like a normal GNU Radio flowgraph. Also, unlike the
test framework, there are no configuration files. Building a flowgraph consists of creating
a class that inherits from the controller flowgraph class (which itself implements the same
API as a normal GNU Radio top_block, but does inherit from the top_block), adding the
appropriate zones to the controller flowgraph, adding the appropriate blocks to the zones,
and connecting and starting the flowgraph like a normal GNU Radio flowgraph.

7.4 Summary

In this section, we have addressed some of the challenges associated with developing a de-
fense in depth implementation such as process management, data flow management, and
scheduling. We also presented three different methodologies for implementing such a wave-
form using the GNU Radio framework and Linux Containers. Each of the described methods
has advantages and disadvantages such as the amount of integration required in the GNU
Radio framework and the overhead associated with executing separate, but interconnected
flowgraphs in an isolated environment.

Chapter 8

Conclusions

8.1 Summary

As the industry shifts more toward implementing wireless communication systems com-
pletely in software rather than hardware, there are new attack vectors that exist against
vulnerabilities in those systems. Many times research in wireless security is focused more on
the specific wireless protocols or protection schemes rather than the radio implementations
themselves. Since software radios typically have a much faster development life cycle versus
their hardware counterparts, these common types of mistakes can be easily overlooked dur-
ing development and exist in production systems. While many defenses have been developed
against common vulnerabilities and are implemented in desktop systems, many embedded
systems either do not have the same defenses or they are improperly configured leaving them
vulnerable to attack. Secure coding strategies is the most effective method to combat these
vulnerabilities, but it is difficult to catch every bug that may lead to a vulnerability in a
very complex system,

In this dissertation, we discuss how these vulnerabilities can be used to attack a host system
and we demonstrate an example exploit of a vulnerability in a software radio implementation
simulating a basic IoT sensor node using GNU Radio. A correctly constructed frame trans-
mitted by an attacker would allow them to inject shellcode into the executing waveform and
completely hijack its execution context. We also present several recent examples of hackers
attacking the wireless firmware on the co-processors of embedded and mobile devices and
using these exploits to ultimately control the host platform.

We then present a survey of the different types of security threats that exist against software
radio as well as some of the existing research in securing software radios. Much of this re-
search focuses on securing the waveform download process, securing the radio configuration,
or enforcing the correct policy for the specific system. Some research has focused on building
models for secure radios, but these models fail to address the possibility of a waveform being
compromised.

We then present our defense-in-depth architecture for building secure software radios which
uses separation mechanisms to isolate every component within the radio. The goal of this
architecture is to provide a minimal, secure core that the rest of a software radio can be
built upon. By reducing the core of the system to a minimal Trusted Computing Base and

138

8.2. Future Work 139

isolation every component in the system, the effectiveness of an exploit against a particular
component in the system will be greatly reduced.

Our model introduces a new security plane to systems which provides the isolation mech-
anism for all other components as well as some device and policy management, and the
inter-process communication for connecting components within the system. The specific
isolation mechanism will vary due to performance requirements and available hardware sup-
port. Examples of these mechanisms include virtualization, containers, sandboxing, and
microkernels. The control logic is responsible for managing, monitoring, and updating the
system. The application/service layer is where the main body of an implement exists; any
software waveforms, system services, and end-user applications would exist at this layer.

The goal of developing this architecture is creating a secure model for software radios that
can be implemented in a variety of different manners. We show an example of how this can
be applied to GNU Radio flowgraphs for building secure SDR applications.

8.2 Future Work

The research presented in this dissertation focuses on the architecture for secure SDR systems
and the initial performance characterization of that architecture. The breadth of wireless
systems and SDR security is massive and the work here only barely examines it. There are
several directions moving forward for additional work based on this research. Here, we pro-
vide a few future directions mainly focused on performance evaluation, system optimization,
and architecture application.

8.2.1 Performance Evaluation

Our work focused mainly on maximum flowgraph throughput within different isolation en-
vironments, but there are many more performance aspects to consider. The next big step
moving forward would be evaluating the throughput analysis for different inter-process com-
munications mechanisms, and focusing on a latency analysis incurred for the environments
and IPC mechanisms. Latency analysis is a more complicated measurement that is highly
dependent on the system configuration.

Additional performance research could also consider more software frameworks/applications,
computing hardware, software configurations, or environments based on the initial perfor-
mance evaluations presented here. We only characterized flowgraph performance on desktop
operating systems and hardware, but many production systems would likely execute on em-
bedded or cloud-computing hardware which could prove to have different overheads based
on system support. Other research could consider the type of operating system for both the
host and guest environments, such as real-time operating systems for guest environments,

140 Chapter 8. Conclusions

and the performance impact of executing multiple isolation environments simultaneously.
We chose only to test the LiquidDSP and GNU Radio SDR frameworks, but many more
applications and frameworks exist like srsLTE for developing SDR base-stations.

8.2.2 System Optimization

Our results presented for GNU Radio indicate that the scheduler is not well optimized for
virtual environments. There is likely optimization that could be completed within the GNU
Radio runtime to improve the overall performance and reduce the overall overhead in virtual
environments; this could focus either on the buffering system or scheduler itself depending
on what is the major bottleneck.

Many of the future performance tests mentioned above could also apply to system opti-
mization by determining what are the best system configurations that provide the highest
performance. Though, if the isolated application is still capable of meeting performance
requirements, optimization may not be the highest priority. Other optimization tasks could
include optimized implementations for IPC between isolated zones and optimized resource
scheduling for guest environments.

8.2.3 System Implementations

Another major future direction moving forward is implementing the architecture in pro-
duction systems and future applications. The architecture is mainly focused on SDRs, but
any wireless system with a software component or interface can use this approach. Also,
non-wireless networking systems could be developed in a similar manner for added security;
this includes technologies such as Software Defined Networks (SDNs) and Network Function
Virtualization (NFV).

Many embedded systems are resource constrained and might not be able to support operating
systems that provide even lightweight isolation systems like containers. Another approach
such as a micro-kernel or separation kernel would be the best option for isolation but, many
times this is a more complex effort due to the lack of full frameworks like GNU Radio.
Having a framework like GNU Radio capable of executing with real-time operating systems
or micro-kernels would be an interesting research path moving forward.

Bibliography

[1] A. Nordrum. The internet of fewer things [news]. IEEE Spectrum, 53(10):12–13,
October 2016.

[2] Mark Hung. Leading the iot - gartner insights on how to lead in a connected world.
Technical report, Gartner, 2017.

[3] Ericsson mobility report. Technical report, Ericsson, June 2019.

[4] Jason M. McGinthy. Solutions for Internet of Things Security Challenges: Trust and
Authentication. PhD thesis, Virginia Tech, 2019.

[5] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani. Demystifying
iot security: An exhaustive survey on iot vulnerabilities and a first empirical look on
internet-scale iot exploitations. IEEE Communications Surveys Tutorials, 21(3):2702–
2733, thirdquarter 2019.

[6] Nvidia sdr (software defined radio) technology: The modem innovation inside nvidia
i500 and tegra 4i. Technical report, NVIDIA, 2013.

[7] J. Mitola. The software radio architecture. IEEE Communications Magazine, 33(5):26–
38, May 1995.

[8] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. Less is more: Quantify-
ing the security benefits of debloating web applications. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1697–1714, Santa Clara, CA, August 2019.
USENIX Association.

[9] Pranav S Ambavkar, Pranit U Patil, BB Meshram, and Pamu Kumar Swamy. Wpa
exploitation in the world of wireless network. Int J Adv Res Comput Eng Technol,
1(4):609–618, 2012.

[10] F.T. Sheldon, John Mark Weber, Seong-Moo Yoo, and W. David Pan. The insecurity
of wireless networks. Security Privacy, IEEE, 10(4):54–61, July 2012.

[11] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse
in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1313–1328, New York, NY, USA, 2017.
ACM.

[12] Joshua Wright and Johnny Cache. Hacking Exposed Wireless: Wireless Security Secrets
& Solutions. McGraw-Hill Education Group, 3rd edition, 2015.

141

142 BIBLIOGRAPHY

[13] A. Scott, T. J. Hardy, R. K. Martin, and R. W. Thomas. What are the roles of elec-
tronic and cyber warfare in cognitive radio security? In 2011 IEEE 54th International
Midwest Symposium on Circuits and Systems (MWSCAS), pages 1–4, Aug 2011.

[14] Oracle vm virtualbox. https://www.virtualbox.org, 2019.

[15] Docker. https://www.docker.com, 2019.

[16] J. Mitola. Software radio architecture: a mathematical perspective. IEEE Journal on
Selected Areas in Communications, 17(4):514–538, April 1999.

[17] Yuan Lin, Hyunseok Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and
K. Flautner. Soda: A low-power architecture for software radio. In 33rd International
Symposium on Computer Architecture (ISCA’06), pages 89–101, 2006.

[18] M. Woh, Y. Lin, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, R. Bruce, D. Kershaw,
A. Reid, M. Wilder, and K. Flautner. From soda to scotch: The evolution of a
wireless baseband processor. In 2008 41st IEEE/ACM International Symposium on
Microarchitecture, pages 152–163, Nov 2008.

[19] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner. Anysp:
Anytime anywhere anyway signal processing. IEEE Micro, 30(1):81–91, Jan 2010.

[20] Y. Chen, S. Lu, H. S. Kim, D. Blaauw, R. G. Dreslinski, and T. Mudge. A low
power software-defined-radio baseband processor for the internet of things. In 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 40–51, March 2016.

[21] B. Bloessl, M. Segata, C. Sommer, and F. Dressler. Towards an open source ieee
802.11p stack: A full sdr-based transceiver in gnu radio. In 2013 IEEE Vehicular
Networking Conference, pages 143–149, Dec 2013.

[22] Range Networks. OpenBTS. https://github.com/RangeNetworks/openbts, 2019.

[23] Software Radio Systems. srsLTE. https://github.com/srsLTE/srsLTE, 2019.

[24] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano,
Cristina Cano, and Doug J. Leith. srslte: An open-source platform for lte evolu-
tion and experimentation. In Proceedings of the Tenth ACM International Workshop
on Wireless Network Testbeds, Experimental Evaluation, and Characterization, WiN-
TECH ’16, pages 25–32, New York, NY, USA, 2016. ACM.

[25] Johannes Pohl and Andreas Noack. Universal Radio Hacker: A Suite for Wireless
Protocol Analysis. In Proceedings of the 2017 Workshop on Internet of Things Security
and Privacy, IoTS&P ’17, pages 59–60, New York, NY, USA, 2017. ACM.

https://www.virtualbox.org
https://www.docker.com
https://github.com/RangeNetworks/openbts
https://github.com/srsLTE/srsLTE

BIBLIOGRAPHY 143

[26] Jean-Michel Picod, Arnaud Lebrun, and Jonathan-Christofer Demay. Bringing Soft-
ware Defined Radio to the Penetration Testing Community. 2014.

[27] E. Blossom. Gnu radio: Tools for exploring the radio frequency spectrum. Linux
Journal, June 2012.

[28] GNU Radio. https://www.gnuradio.org, 2019.

[29] Redhawk. https://redhawksdr.github.io/, 2019.

[30] Joseph D. Gaeddert. LiquidDSP. http://liquidsdr.org, 2019.

[31] Alexandru Csete. Gqrx SDR. http://gqrx.dk, 2019.

[32] Kevin Reid. shinysdr. https://kpreid.github.io/shinysdr/, 2019.

[33] Eugene Grayver. Why SDR?, pages 9–35. Springer New York, New York, NY, 2013.

[34] J. Mitola and G. Q. Maguire. Cognitive radio: making software radios more personal.
IEEE Personal Communications, 6(4):13–18, Aug 1999.

[35] Ashwin Amanna and Jeffrey H Reed. Survey of cognitive radio architectures. In IEEE
SoutheastCon 2010 (SoutheastCon), Proceedings of the, pages 292–297. IEEE, 2010.

[36] A. B. MacKenzie, J. H. Reed, P. Athanas, C. W. Bostian, R. M. Buehrer, L. A. DaSilva,
S. W. Ellingson, Y. T. Hou, M. Hsiao, J. Park, C. Patterson, S. Raman, and C. R.
C. M. da Silva. Cognitive radio and networking research at virginia tech. Proceedings
of the IEEE, 97(4):660–688, April 2009.

[37] J. Wu, Z. Zhang, Y. Hong, and Y. Wen. Cloud radio access network (c-ran): a primer.
IEEE Network, 29(1):35–41, Jan 2015.

[38] E. Grayver, A. Chin, J. Hsu, S. Stanev, D. Kun, and A. Parower. Software defined
radio for small satellites. In 2015 IEEE Aerospace Conference, pages 1–9, March 2015.

[39] Daniel Estévez. Introducing gr-satellites. https://destevez.net/2016/08/
introducing-gr-satellites/, August 2016.

[40] S. Hitefield, Z. Leffke, M. Fowler, and R. W. McGwier. System overview of the virginia
tech ground station. In 2016 IEEE Aerospace Conference, pages 1–13, March 2016.

[41] J. A. Stankovic. Research directions for the internet of things. IEEE Internet of Things
Journal, 1(1):3–9, Feb 2014.

[42] NIST. Common vulnerability scoring system. https://nvd.nist.gov/
vuln-metrics/cvss, 2019.

https://www.gnuradio.org
https://redhawksdr.github.io/
http://liquidsdr.org
http://gqrx.dk
https://kpreid.github.io/shinysdr/
https://destevez.net/2016/08/introducing-gr-satellites/
https://destevez.net/2016/08/introducing-gr-satellites/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss

144 BIBLIOGRAPHY

[43] Jerome H. Saltzer. Protection and the control of information sharing in multics. Com-
mun. ACM, 17(7):388–402, July 1974.

[44] J. M. Rushby. Design and verification of secure systems. SIGOPS Oper. Syst. Rev.,
15(5):12–21, December 1981.

[45] Jim Alves-Foss, Carol Taylor, and Paul Oman. A multi-layered approach to security
in high assurance systems., 01 2004.

[46] Jon Erickson. Hacking: The Art of Exploitation, 2nd Edition. No Starch Press, San
Francisco, CA, USA, second edition, 2008.

[47] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler. Heartbleed 101. IEEE Security
Privacy, 12(4):63–67, July 2014.

[48] Pax Non-Executable Stack (NX). https://pax.grsecurity.net/docs/noexec.txt.

[49] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced Operating
System Security Through Efficient and Fine-grained Address Space Randomization.
In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12),
pages 475–490, Bellevue, WA, 2012. USENIX.

[50] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings
of the 7th Conference on USENIX Security Symposium - Volume 7, SSYM’98, pages
5–5, 1998.

[51] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings of
the 11th ACM Conference on Computer and Communications Security, CCS ’04, pages
298–307, New York, NY, USA, 2004. ACM.

[52] Mendel Rosenblum, Tal Garfinkel, and Tal Garfinkel. Virtual machine monitors: Cur-
rent technology and future trends. Computer, 38(5):39–47, May 2005.

[53] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peter-
son. Container-based operating system virtualization: A scalable, high-performance
alternative to hypervisors. SIGOPS Oper. Syst. Rev., 41(3):275–287, March 2007.

[54] Marc L. Lichtman. Antifragile Communications. PhD thesis, Virginia Tech, 2016.

[55] G. Baldini, T. Sturman, AR. Biswas, R. Leschhorn, G. Godor, and M. Street. Security
aspects in software defined radio and cognitive radio networks: A survey and a way
ahead. Communications Surveys Tutorials, IEEE, 14(2):355–379, Second 2012.

https://pax.grsecurity.net/docs/noexec.txt

BIBLIOGRAPHY 145

[56] Telecommunication networks security requirements. Technical Report E.408, ITU-T,
May 2004.

[57] Raquel L. Hill, Suvda Myagmar, and Roy Campbell. Threat analysis of GNU software
radio. In W. W. Lu, editor, Proceedings - 6th World Wireless Congress, WWC, pages
383–388. 2005.

[58] Ralf-Philipp Weinmann. Baseband Attacks: Remote Exploitation of Memory Corrup-
tions in Cellular Protocol Stacks. In Proceedings of the 6th USENIX Conference on
Offensive Technologies, WOOT’12, pages 2–2, Bellevue, WA, 2012. USENIX Associa-
tion.

[59] Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 1), April
2017.

[60] Nitay Artenstein. BROADPWN: Remotely Compromising Android and iOS Via a Bug
in Broadco’S Wi-Fi Chipsets, July 2017.

[61] Ben Seri and Gregory Vishnepolsky. BlueBorne - Technical Report. Technical Report,
Armis.

[62] L. B. Michael, M. J. Mihaljevic, S. Haruyama, and R. Kohno. A framework for secure
download for software-defined radio. IEEE Communications Magazine, 40(7):88–96,
July 2002.

[63] Alessandro Brawerman, Douglas Blough, and Benny Bing. Securing the Download
of Radio Configuration Files for Software Defined Radio Devices. In Proceedings of
the Second International Workshop on Mobility Management &Amp; Wireless Access
Protocols, MobiWac ’04, pages 98–105, New York, NY, USA, 2004. ACM.

[64] H. Uchikawa, K. Umebayashi, and R. Kohn. Secure download system based on software
defined radio composed of FPGAs. In The 13th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, volume 1, pages 437–441 vol.1,
September 2002.

[65] T. Doan M. Togooch J. Takada K. Sakaguchi, C. Fung Lam and K. Araki. Acu and
rsm based radio spectrum management for realization of flexible software defined radio
world. IEICE Trans. Communications E Series B, 86(12):3417–3424, December 2003.

[66] AG. Fragkiadakis, E.Z. Tragos, and IG. Askoxylakis. A Survey on Security Threats
and Detection Techniques in Cognitive Radio Networks. Communications Surveys
Tutorials, IEEE, 15(1):428–445, 2013.

[67] A. Attar, H. Tang, A. V. Vasilakos, F. R. Yu, and V. C. M. Leung. A Survey of Security
Challenges in Cognitive Radio Networks: Solutions and Future Research Directions.
Proceedings of the IEEE, 100(12):3172–3186, December 2012.

146 BIBLIOGRAPHY

[68] J. M. Park, J. H. Reed, A. A. Beex, T. C. Clancy, V. Kumar, and B. Bahrak. Security
and Enforcement in Spectrum Sharing. Proceedings of the IEEE, 102(3):270–281,
March 2014.

[69] Y. Zhang, G. Xu, and X. Geng. Security Threats in Cognitive Radio Networks. In
2008 10th IEEE International Conference on High Performance Computing and Com-
munications, pages 1036–1041, September 2008.

[70] Eimear M Gallery and Chris J Mitchell. Trusted computing technologies and their use
in the provision of high assurance SDR platforms. 2006.

[71] Chunxiao Li, A. Raghunathan, and N. K. Jha. An architecture for secure software
defined radio. In 2009 Design, Automation Test in Europe Conference Exhibition,
pages 448–453, April 2009.

[72] David Murotake and Antonio Martín. A high assurance wireless computing system
(hawcs®) architecture for software defined radios and wireless mobile platforms. 2009.

[73] S. Hitefield, V. Nguyen, C. Carlson, T. O’Shea, and T. Clancy. Demonstrated llc-
layer attack and defense strategies for wireless communication systems. In 2014 IEEE
Conference on Communications and Network Security, pages 60–66, Oct 2014.

[74] S. D. Hitefield, M. Fowler, and T. C. Clancy. Exploiting buffer overflow vulnerabil-
ities in software defined radios. In 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1921–1927, July 2018.

[75] Ettus Research. Usrp x310 high performance software defined radio. https://www.
ettus.com/all-products/x310-kit/.

[76] Kernel-based virtual machine. https://www.linux-kvm.org/page/Main_Page, 2018.

[77] Kubernetes. https://kubernetes.io, 2018.

[78] Katacontainers. https://katacontainers.io, 2018.

[79] Firecracker - MicroVMs. https://firecracker-microvm.github.io, 2019.

[80] Selinux. http://selinuxproject.org/page/Main_Page, 2018.

[81] Apparmor. https://wiki.ubuntu.com/AppArmor, 2018.

[82] S. H. VanderLeest. The open source, formally-proven sel4 microkernel: Considerations
for use in avionics. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), pages 1–9, Sep. 2016.

https://www.ettus.com/all-products/x310-kit/
https://www.ettus.com/all-products/x310-kit/
https://www.linux-kvm.org/page/Main_Page
https://kubernetes.io
https://katacontainers.io
https://firecracker-microvm.github.io
http://selinuxproject.org/page/Main_Page
https://wiki.ubuntu.com/AppArmor

BIBLIOGRAPHY 147

[83] Kathleen Fisher. Using formal methods to enable more secure vehicles: Darpa’s hacms
program. SIGPLAN Not., 49(9):1–1, August 2014.

[84] H. Liang, Q. Hao, M. Li, and Y. Zhang. Semantics-based anomaly detection of pro-
cesses in linux containers. In 2016 International Conference on Identification, Infor-
mation and Knowledge in the Internet of Things (IIKI), pages 60–63, Oct 2016.

[85] A. S. Abed, T. C. Clancy, and D. S. Levy. Applying bag of system calls for anoma-
lous behavior detection of applications in linux containers. In 2015 IEEE Globecom
Workshops (GC Wkshps), pages 1–5, Dec 2015.

[86] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing the
semantic gap in virtual machine introspection. In 2011 IEEE Symposium on Security
and Privacy, pages 297–312, May 2011.

[87] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. HYPERSHELL: A practical hyper-
visor layer guest OS shell for automated in-vm management. In 2014 USENIX An-
nual Technical Conference (USENIX ATC 14), pages 85–96, Philadelphia, PA, 2014.
USENIX Association.

[88] Yaml: Yaml ain’t markup language. https://yaml.org.

[89] Pallets Project. Jinja template engine. https://www.palletsprojects.com/p/
jinja/.

[90] Pyro - Python Remote Objects. https://pythonhosted.org/Pyro4/.

[91] Colin Ian King. stress-ng: A stress-testing swiss army knife. https://elinux.org/
images/5/5c/Lyon-stress-ng-presentation-oct-2019.pdf, October 2019.

[92] Stress-ng manual page. https://manpages.ubuntu.com/manpages/artful/man1/
stress-ng.1.html.

[93] Unix Domain Socket - Linux Programmer’s Manual. http://man7.org/linux/
man-pages/man7/unix.7.html, 2019.

[94] FIFO - Linux Programmer’s Manual. http://man7.org/linux/man-pages/man7/
fifo.7.html, 2019.

[95] Intel. Intel Turbo Boost Technology in Intel CoreTM Microarchitecture (Nehalem)
Based Processors. Technical report, November 2008.

[96] Sparsh Mittal. A survey of techniques for improving energy efficiency in embedded
computing systems. CoRR, abs/1401.0765, 2014.

[97] Marr, Deborah T.; Binns, Frank; Hill, David L.; Hinton, Glenn; Koufaty, David A.;
Miller, J. Alan; Upton, Michael. Hyper-Threading Technology Architecture and Mi-
croarchitecture. Technical report, 2002.

https://yaml.org
https://www.palletsprojects.com/p/jinja/
https://www.palletsprojects.com/p/jinja/
https://pythonhosted.org/Pyro4/
https://elinux.org/images/5/5c/Lyon-stress-ng-presentation-oct-2019.pdf
https://elinux.org/images/5/5c/Lyon-stress-ng-presentation-oct-2019.pdf
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
http://man7.org/linux/man-pages/man7/unix.7.html
http://man7.org/linux/man-pages/man7/unix.7.html
http://man7.org/linux/man-pages/man7/fifo.7.html
http://man7.org/linux/man-pages/man7/fifo.7.html

148 BIBLIOGRAPHY

[98] D. Koufaty and D. T. Marr. Hyperthreading technology in the netburst microarchi-
tecture. IEEE Micro, 23(2):56–65, March 2003.

[99] N. West, D. Geiger, and G. Scheets. Accelerating software radio on arm: Adding neon
support to volk. In 2015 IEEE Radio and Wireless Symposium (RWS), pages 174–176,
Jan 2015.

[100] Vector-Optimized Library of Kernels. http://libvolk.org, 2019.

[101] Gregory Lento. Optimizing Performance with Intel Advanced Vector Extensions. Tech-
nical report, Intel, September 2014.

http://libvolk.org

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Software Trend
	New Attack Surface
	CyberElectronic Warfare

	Motivation
	Contributions
	Publications
	Dissertation Outline

	Background
	Software Defined Radio
	Frameworks

	Emerging Technologies
	Cognitive Radios
	Cloud Radio Access Networks
	Satellite Communications
	Sensor Networks

	Principles of Security
	Confidentiality, Integrity, Availability
	Principle of Least Privilege
	Multi-Layer Security/Defense-in-Depth

	Vulnerabilities
	Buffer Overflows
	Shellcode Injection
	Defenses
	Integer Overflows
	Off-By-One
	Privilege Escalation

	Virtualization
	Hardware Virtualization
	Operating System Virtualization

	Related Work
	Security Issues in Software Radio
	Wireless Firmware Exploits
	Cellular (GSM) Baseband Exploit
	Broadcom Wi-Fi Exploit
	BlueBourne Exploit

	SDR Security Models
	Limitations of Existing Approaches
	Summary

	Exploiting Software Defined Radios
	Control Flow Manipulation
	Un-sanitized Control Parameters
	Buffer Overflows
	Heap Overflow Exploit

	Stack Overflow Exploit
	Summary

	Defense-in-Depth Architecture for Software Radios
	Overview
	Security Plane
	Isolation
	Device Drivers
	Inter-Process/Domain Communication
	Monitoring
	Policy Enforcement

	Control Plane
	Data/Application Plane
	Policy Management
	Layered Defenses
	Challenges
	Summary

	Performance Analysis
	Overhead Characterization
	Testing Framework
	Components
	Workflow
	Test Configurations

	Test Waveforms
	GNU Radio Flowgraphs
	LiquidDSP Waveforms
	Stress-ng Tests
	Split Flowgraphs

	Testing Challenges
	Frequency Scaling
	Hyperthreading
	Sample Count
	VOLK Profile
	Randnf() Function
	Software Configurations
	Takeaways

	Results
	GNU Radio Results
	LiquidDSP Results
	Stressor Results
	Additional Takeaways
	Conclusions

	Summary

	Example Implementations
	Applications
	Example Implementation

	Challenges
	Networking Based
	Custom Buffers Based
	Shared Memory Based

	GNU Radio Defense-in-Depth Framework
	Components

	Summary

	Conclusions
	Summary
	Future Work
	Performance Evaluation
	System Optimization
	System Implementations

	Bibliography

