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Abstract. Soil and plant responses to climate change can be quantified in controlled settings. However,
the complexity of climate projections often leads researchers to evaluate ecosystem response based on gen-
eral trends, rather than specific climate model outputs. Climate projections capture spatial and temporal
climate extremes and variability that are lost when using mean climate trends. In addition, application of
climate projections in experimental settings remains limited. Our objective was to develop a framework to
incorporate statistically downscaled climate model projections into the design of temperature and precipi-
tation treatments for ecological experiments. To demonstrate the utility of experimental treatments derived
from climate projections, we used wetlands in the Great Plains as a model ecosystem for evaluating plant
and soil responses. Spatial and temporal projections were selected to capture variability and intensity of
projected future conditions for exemplary purposes. To illustrate climate projection application for ecologi-
cal experiments, we developed temperature and precipitation treatments based on moderate-emissions
scenario climate outputs (i.e., RCP4.5–650 ppm CO2 equivalent). Our temperature treatments captured
weekly trends that represented cool, average, and warm temperature predictions, and our daily precipita-
tion treatments mimicked various seasonal precipitation trends and extreme events projected for the late
21st century. Treatments were applied to two short-term controlled experiments evaluating (1) plant germi-
nation (temperature treatment applied in growth chamber) and (2) soil nitrogen cycling (precipitation
treatment applied in greenhouse) responses to projected future conditions in the Great Plains. Our
approach provides flexibility for selecting appropriate and precise climate model outputs to design experi-
mental treatments. Using these techniques, ecologists can better incorporate variation in climate model
projections for experimentally evaluating ecosystem responses to future climate conditions, reduce uncer-
tainty in predictive ecological models, and apply predicted outcomes when making management and pol-
icy decisions.
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INTRODUCTION

Ecosystems face substantial threats due to
increased atmospheric greenhouse gas concen-
trations and, subsequently, global and regional
climate change (Hughes 2000, Wuethrich 2000,
Walther et al. 2002). Impacts of increasing tem-
perature, shifting precipitation patterns, and
increased frequency and severity of extreme pre-
cipitation events have been documented in ter-
restrial, aquatic, natural, and anthropogenic
ecosystems, and the consequences of climate
change will likely be exacerbated in the 21st cen-
tury (IPCC 2014, Melillo et al. 2014). Declines in
soil moisture and increased temperature have
decreased net primary production and biodiver-
sity in terrestrial ecosystems, simultaneously
reducing forest and grassland capacity to store
carbon in vegetative biomass (Polley et al. 2013,
Pe~nuelas et al. 2017). Aquatic flora and fauna
have been impacted directly by atmospheric
warming (Covich et al. 1997, Poff et al. 2002) and
have experienced climate change effects associ-
ated with alterations to surrounding terrestrial
ecosystems (Meyer et al. 1999). In addition to
altering the physical environment of ecosystems,
climate change is likely to have a cascading influ-
ence on organisms (humans and wildlife, alike)
that rely on ecosystems services such as food
resources (Briske et al. 2015, Howard et al. 2018),
refugia (Parmesan and Yohe 2003, Root et al.
2003, Haddad et al. 2015) and water supply and
quality (Meyer et al. 1999, Gosling and Arnell
2016, V€or€osmarty et al. 2016).

Broad landscape-scale changes in natural
ecosystems will likely be driven by small-scale
changes to vegetation and soil processes, such as
plant community composition and function, res-
piration, gas emissions, and biogeochemical
cycling. Plant diversity is expected to decline
(Bellard et al. 2012), causing phenotypical
changes, shifts in distribution, and possible
extinction for some taxa (Thuiller et al. 2005,
Kelly and Goulden 2008). However, plant pro-
duction is expected to increase with elevated
atmospheric CO2 (Parton et al. 1995, Kukal and
Irmak 2018). Ecosystem carbon flux, based on
the balance between photosynthesis and respira-
tion, is controlled by atmospheric CO2 levels,
temperature, and nutrient availability, and thus,
may respond variably to changing climate

drivers (Raich and Tufekciogul 2000, Schlesinger
and Andrews 2000, Ryan 2008). Nitrogen cycling
is also expected to be impacted by climate dri-
vers, but to a lesser extent than carbon cycling
(Pastor and Post 1986, Vitousek et al. 1997, Gal-
loway et al. 2004). While trends have been
observed over the past 40 yr in a changing cli-
mate, it is much more challenging to predict how
plant and soil processes may be impacted in the
coming decades.
When field observations are not readily acces-

sible, such as under future climate scenarios,
plant and soil responses to changing conditions
can be predicted using models generated by
combining measured responses of natural sys-
tems (e.g., plant community composition, soil
respiration) under simulated climate drivers such
as increased temperature and changing precipi-
tation trends (Cramer et al. 2001, Beaumont et al.
2008, Sofaer et al. 2017). Ecologists widely recog-
nize the importance of capturing climate
extremes and spatial and temporal variability
when evaluating response of ecological processes
to climate change in modeling efforts (Easterling
2000, Easterling et al. 2000, Klein Tank et al.
2009, Bateman et al. 2012, Helmuth et al. 2014);
however, approaches incorporating these trends
in experimental settings remain limited.
Environmental conditions expected to occur

with projected climate change can, to a certain
extent, be simulated in controlled settings to bet-
ter identify soil and plant process responses (Ste-
wart et al. 2013, Medlyn et al. 2015). Controlled
experiments allow researchers to hold environ-
mental variables constant and observe the effects
of specific climate drivers on a variable of interest
(e.g., CH4 emissions, primary production,
organic carbon fractionation, species richness).
Experiments of this type are typically conducted
in greenhouses, growth chambers, constructed
facilities, or in field settings where environmental
variables can be manipulated (e.g., rainout shel-
ters for drought studies). Experiments conducted
in controlled environments have been used to
evaluate impacts of climate change in terrestrial
(Fay et al. 2008, Harden et al. 2017) and aquatic
settings (Weltzin et al. 2000, Sommer and
Lengfellner 2008). However, most studies fail to
capture temporal variability associated with
future temperature and precipitation scenarios.
Instead, studies commonly increase or decrease
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variables to achieve mean projected values for
the duration of an experiment. With increased
accessibility to output from atmosphere–ocean
global climate models (AOGCMs), it is likely
advantageous for experimental scientists to use
their simulated projections to design experiments
and evaluate impacts of climate change on
ecosystems (Barsugli et al. 2013, Harris et al.
2014, Sofaer et al. 2017).

Our objective was to develop a framework for
creating empirical data- and projection-derived
treatments that can be used in controlled experi-
ments evaluating plant and soil responses to pro-
jected climate change. To demonstrate application
of this framework, we evaluated plant germina-
tion and soil nitrogen cycles in simulated playa
wetland mesocosm units. Playa wetlands are
ubiquitous throughout the Southern Great Plains,
USA, and provide crucial ecosystem services to
the region, such as aquifer recharge, wildlife habi-
tat, nutrient filtration from agricultural runoff,
and floral and faunal biodiversity (Smith 2003,
Smith et al. 2011). Great Plains climate is charac-
terized as highly variable (Melillo et al. 2014) and
differs between the northern (Nebraska) and
southern (Texas) extent of the playa region. We
hypothesized that playa plant and soil processes
may readily adapt to extreme conditions of the
future. However, even slight perturbations to
plant and soil function could have detrimental
impacts when combined with other anthro-
pogenic threats to playas (e.g., sedimentation,
invasive species encroachment, hydrologic modi-
fication; Matthews 2008, Bartuszevige et al. 2012,
Johnson et al. 2012, Tsai et al. 2012). While our

experimental work is ongoing, here we present a
proof of concept with selected results comparing
historical climate conditions with three sets of
future climate conditions for two locations in the
playa region. We selected Nebraska and Texas in
order to capture latitudinal differences in playa
wetland and climate characteristics within the
Great Plains.

MATERIALS AND METHODS

Future climate projections and historical data:
background
Several institutions worldwide archive output

from AOGCMs, more commonly referred to as
global climate models (GCMs). Climate projections
used to inform the IPCC Fourth and Fifth Assess-
ment Reports are known as Coupled Model Inter-
comparison Project phase 3 (CMIP3) and phase 5
(CMIP5), respectively. Statistically downscaled cli-
mate projections from CMIP3 and CMIP5 are
available for several future time periods through
the end of the 21st century and may be accessed at
https://gdo-dcp.ucllnl.org/downscaled_cmip_pro
jections/dcpInterface.html (Reclamation 2013) or
https://cida.usgs.gov/gdp/ (Blodgett et al. 2011).
The use of these projections by researchers and
decision-makers can assist with evaluating
impacts of climate change through controlled
experiments (Maurer et al. 2007). Emissions sce-
nario terminology differs based on CMIP phase
(Table 1), and CMIP3 and CMIP5 output may be
obtained in monthly or daily time frames. Spa-
tially, statistically downscaled CMIP3 and CMIP5
datasets are 12 km in resolution; however,

Table 1. Overview of emission and concentration scenarios for Coupled Model Intercomparison Project (CMIP) 3
and 5 (CMIP5) projection datasets, respectively, projected at year 2100 (Meehl et al. 2007, van Vuuren et al.
2011).

Scenario CO2 equivalent (ppm) Description

CMIP3
B1 550 Low emissions
A1b 700 Moderate emissions
A2 820 High emissions

CMIP5
RCP2.6 490 Radiative forcing peaks and declines by 2100 (van Vuuren et al. 2006, 2007)
RCP4.5 650 Radiative forcing stabilizes by 2100 at 4.5 W/m2 (Smith and Wigley 2006,

Clarke et al. 2007, Wise et al. 2009)
RCP6.0 850 Radiative forcing stabilizes by 2100 at 6 W/m2 (Fujino et al. 2006, Hijoka et al. 2008)
RCP8.5 1370 Radiative forcing continues to rise by 2100 (Riahi et al. 2007)
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atmospheric scientists often statistically down-
scale datasets to local scales (<1 km resolution) to
capture details that may be lost during spatial
averaging of gridded data (Wood and Leung
2004). Temperature attributes vary slightly
between CMIP3 (average daily temperature) and
CMIP5 (daily minimum and maximum tempera-
tures) datasets, whereas precipitation (mm/d) is
reported similarly for CMIP3 and CMIP5 projec-
tions. Additional hydrology attributes, such as
runoff and humidity, are accessible through
Reclamation (2013) and Blodgett et al. (2011), but
are not discussed in this study. Here, we discuss
techniques for incorporating temperature and
precipitation attributes into controlled experi-
ments using CMIP5 downscaled climate outputs.
Similar methods for CMIP3 model outputs are
discussed in Tabor and Williams (2010).

Statistical downscaling is often used to adjust
climate model outputs (e.g., precipitation and
temperature) based on bias found between pro-
jected and observed values during a period of
historical observation at a given spatial location
(Gutmann et al. 2014). The spatial and temporal
extents of projections dictate the appropriate
downscaling method (Teutschbein and Seibert
2012, Kim et al. 2015). Monthly CMIP3 and
CMIP5 projections are commonly downscaled
using bias-corrected spatial disaggregation
(BCSD) methods, and daily data are downscaled
using bias correction constructed analogs
(BCCA) methods (Maurer and Hidalgo 2008).
Daily CMIP5 projections may also be down-
scaled using localized constructed analogs
(LOCA; Pierce et al. 2015). Daily projections pro-
duced using CMIP5 BCCA and LOCA produce
fairly comparable daily downscaled temperature
projections, except in arid regions, whereas
LOCA projects spatial precipitation patterns
more accurately than BCCA (Maurer and
Hidalgo 2008, Pierce et al. 2014). Projections
downscaled using BCSD, BCCA, and LOCA
techniques, as well as other less common down-
scaling methods, are available at Reclamation
(2013) and Blodgett et al. (2011). For more
exhaustive details regarding statistical downscal-
ing methods, see Abatzoglou and Brown (2012),
Schoof (2013), and Gutmann et al. (2014).

Climate model projections are widely available
for use, but understanding the types of output
available and maximizing the appropriateness of

projection manipulations is necessary to accu-
rately evaluate ecosystem responses to climate
change (Beaumont et al. 2008, Barsugli et al.
2013). When downloading climate projections, it
is important to obtain historical and future pro-
jections for each AOGCM output to curate an
appropriate dataset (Ekstr€om et al. 2015). Com-
plementary historical observation data can be
found through the National Centers for Environ-
mental Information (NCEI; https://www.ncdc.
noaa.gov/cdo-web/datatools/findstation), formerly
the National Climatic Data Center (NCDC). We
used a long-term dataset (>30 yr) of historical
observations for Hastings, Nebraska (GHCND:
USC00253660), and Lubbock, Texas (GHCND:
USC00415410), to represent historical climate
conditions.
Once historical observations and model projec-

tions are obtained, projected future climate
model outputs may be corrected for bias before
being used to design experimental ecological
treatments. Bias correction may not be needed on
all downscaled climate projections, especially if
downscaled using LOCA techniques. Tempera-
ture and precipitation projections are most accu-
rately corrected for local bias separately due to
inherent differences in their distributions (Schoof
and Pryor 2001). Temperature can typically be
corrected to match monthly mean historical and
projected temperature values using a delta cor-
rection method (Quilb�e et al. 2008); however,
more complex correction methods are appropri-
ate if delta correction methods reduce variability
in temperature projections. Several bias correc-
tion methods incorporating parametric or non-
parametric transformations can be used to
correct precipitation projections (Gudmundsson
et al. 2012, Lafon et al. 2013). Parametric bias
correction methods may be appropriate for
monthly precipitation projections, but due to the
gamma distribution of daily precipitation projec-
tions (Richardson 1981), nonparametric transfor-
mations better capture the error associated with
climate model outputs (Gudmundsson et al.
2012). Empirical quantile mapping and gamma-
based (rainfall distribution) quantile mapping
are two nonparametric bias correction methods
commonly used to adjust daily precipitation pro-
jections from regional climate model outputs
(Lafon et al. 2013). Gamma-based quantile map-
ping has been reported as less sensitive to
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differences in climate projection time frame and
emissions scenarios, when compared to empiri-
cal quantile mapping (Lafon et al. 2013).

Future climate projections and historical data:
approach utilized

Great Plains playa wetlands served as a model
ecosystem to demonstrate how climate model
projections may be used to predict plant and
soil response to future climate conditions. The
framework we developed to create empirical
data-derived treatments for use in controlled
experiments is summarized in Fig. 1. For all
future climate projections, we aimed to capture
variability within a given climate scenario, rather
than assess variability associated with low-,
moderate-, and high-emissions scenarios. A
moderate-emissions scenario, CMIP5 RCP4.5,
was selected to assess the impact of future cli-
mate conditions on our model ecosystem. Within

RCP4.5, we selected models that captured
within-scenario variability. For instance, models
for temperature studies represented cool, aver-
age, and warm projections for RCP4.5 and mod-
els selected for precipitation studies represented
relatively dry, average, and wet projections for
RCP4.5. Within-emissions scenario variability for
nineteen AOGCMs which met our selection crite-
ria for two locations in the playa wetlands can be
observed in Figs. 2, 3.
Our first experimental study involved evaluat-

ing the influence of climate change-induced tem-
perature alterations on playa plant germination.
Therefore, we applied our framework for using
downscaled climate model projections to develop
temperature treatments from local weather station
data (historical climate, 1986–2015) and three
CMIP5-BCCA AOGCMs for the RCP4.5 emissions
scenario (2070–2099) that could be imposed
within a temperature-controlled growth chamber.

Fig. 1. Suggested flow diagram for using climate model data to create climate treatments for ecological experi-
ments. Because each ecological experiment may have unique research questions and scope, details are intention-
ally omitted from blue boxes to provide a general framework. Detailed techniques used in this study are
described in green boxes, but specific data and methods may not be suitable for all ecological experiments.
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Climate projections were downscaled to a
specific location in the playa regions of Nebraska
(GHCND:US00253660; 40.608, 98.427) and Texas
(GHCND:USC00415410; 33.657, 101.824) using
delta correction techniques (Quilb�e et al. 2008),
which are commonly used to adjust temperature

data. We assessed daily temperature maximum
(Tmax) and minimum (Tmin) values from nine-
teen AOGCMs (Table 2) and selected the follow-
ing three models to capture variability within the
RCP4.5 emissions scenario: (1) least temperature
change from historical climate (considering

Fig. 2. Overall change between observed (1986–2015) and RCP4.5 projected (2070–2099) maximum daily tem-
perature values for Nebraska (a) and Texas (b) and minimum daily temperature values for Nebraska (c) and
Texas (d) for 19 atmosphere–ocean global climate models (see Table 2). Box plots represent the median model
(horizontal line), interquartile range of model values (box), range of model values (whiskers), and outliers
outside 1.5 interquartile range (dots).
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average monthly maximum and minimum tem-
perature values for Nebraska and Texas); (2)
greatest temperature change from historical cli-
mate; and (3) a model which represents the aver-
age temperature change across the AOGCMs
assessed. We used historical and projected 30-yr
average daily maximum (Tmax) and minimum
(Tmin) temperatures reported for each model to

develop experimental treatments. We aggregated
daily temperature observations and projections
into weekly treatments to simulate temporal con-
ditions over the first four weeks of germination
(e.g., 30-yr average Tmax values from 1 to 7
March for Texas location were averaged to create
Week 1 Tmax treatment conditions; 30-yr aver-
age Tmin values from 1 to 7 March for Texas

Fig. 3. Monthly percent change from historical (1986–2015) to projected (2070–2099) for precipitation in
Nebraska (a) and Texas (b), and number of days without precipitation for Nebraska (c) and Texas (d) point loca-
tions for 19 atmosphere–ocean global climate models (Table 2) downscaled using gamma-based quantile map-
ping. Box plots represent the median model (horizontal line), interquartile range of model values (box), range of
model values (whiskers), and outliers outside 1.5 interquartile range (dots).
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location were averaged to create Week 1 Tmin
temperature conditions). Growth chamber set-
tings reflected diurnal temperature cycles for the
months of April and March for Nebraska and
Texas, respectively (Appendix S1: Table S1). Four
climatic temperature treatments (historical,
future cool, future average, and future warm)
were represented in four-week germination stud-
ies, separated by state (Fig. 4). Because playa
plant germination is primarily driven by soil
moisture (Haukos and Smith 2001) and heat
units (Swanton et al. 2000), we did not incorpo-
rate daily temperature variability in our experi-
mental design; however, this approach may not
be suitable for every ecological experiment.

Our second experiment involved assessing the
impact of precipitation changes on soil nitrogen
cycling within wetlands of the Great Plains. To
develop appropriate precipitation/hydrologic
treatments that would simulate future climate
projections and could be used in a greenhouse

setting, we once again applied our framework
for using downscaled climate model outputs to
develop appropriate treatments. Treatments
were based on historical precipitation patterns
(1986–2015) and future precipitation projections
(2070–2099) using CMIP5-BCCA AOGCMs for
the RCP4.5 emissions scenario for the wetland
growing season (April–October).
We corrected precipitation data from nineteen

AOGCMs (Table 2) to remove excess drizzle days
(<0.25 mm precipitation) and used gamma-based
quantile mapping to accurately capture extreme
events (Teutschbein and Seibert 2012, Gautam
et al. 2018). We selected gamma-based quantile
mapping as a bias correction technique as it has
been reported as less sensitive to differences in cli-
mate projection time frame and emissions scenar-
ios, when compared to empirical quantile
mapping (Lafon et al. 2013). Comprehensive bias
correction details for precipitation adjustments can
be found in Gautam et al. (2018). After adjusting

Table 2. Atmosphere–ocean global climate models for CMIP5-BCCA RCP4.5 downscaled data for years
2070–2099 (Reclamation 2013).

Model no. Modeling center Simulations

1 Commonwealth Scientific and Industrial Research Organization
(CSIRO) and Bureau of Meteorology (BOM)

ACCESS1-0.1

2 Beijing Climate Center, China Meteorological Administration BCC-CSM1-1.1
3 Canadian Centre for Climate Modelling and Analysis CANESM2.1
4 National Center for Atmospheric Research CCSM4.1
5 Community Earth System Model Contributors CESM1-BGC.1
6 Centre National de Recherches Meteorologiques/Centre Europeen

de Recherche et Formation Avancee en Calcul Scientifique
CNRM-CM5.1

7 CSIRO in collaboration with Queensland Climate Change Centre
of Excellence

CSIRO-MK3-6-0.1

8 NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G.1
9 NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M.1
10 Institute for Numerical Mathematics INMCM4.1
11 Institut Pierre-Simon Laplace IPSL-CM5A-LR.1
12 Institut Pierre-Simon Laplace IPSL-CM5A-MR.1
13 Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute, and National Institute
for Environmental Studies

MIROC-ESM.1

14 Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute, and National
Institute for Environmental Studies

MIROC-ESM-CHEM.1

15 Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute, and National
Institute for Environmental Studies

MIROC5.1

16 Max Planck Institute for Meteorology MPI-ESM-LR.1
17 Max Planck Institute for Meteorology MPI-ESM-MR.1
18 Meteorological Research Institute MRI-CGCM3.1
19 Norwegian Climate Centre NORESM1-M.1

Notes: CMIP5, Coupled Model Intercomparison Project phase 5; BCCA, bias correction constructed analogs.
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projections, we selected three models based on the
following criteria for years 2070–2099: (1) an aver-
age model, representing the most typical precipita-
tion conditions projected in RCP4.5 scenarios; (2)
a model that contained the longest period of
no-precipitation days over the course of the

growing season (based on 30-yr averages for
Nebraska and Texas locations); and (3) a model
that contained the greatest number of runoff-indu-
cing precipitation events (Uden et al. 2015) during
the growing season (based on 30-yr averages for
Nebraska and Texas locations). We then used

Fig. 4. Temperature treatments for a germination study using soil collected in Nebraska (April, a) and Texas
(March, b) for historical data and scenarios based on downscaled CMIP5-BCCA atmosphere–ocean general circu-
lation models for the RCP4.5 emissions scenarios (2070–2099)—future average, warm future, and cool future.
Bars represent daily temperature range. CMIP5, Coupled Model Intercomparison Project phase 5; BCCA, bias
correction constructed analogs.
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precipitation projections to determine the timing
and amounts of water applied to experimental
units as a means to simulate altered hydroperiods
during the dominant growing season (1 April–31
October), based on a typical year within historical
observations and future projections.

To simulate temporal variability associated
with drought events and inherent daily precipita-
tion patterns, we selected a year with the lowest
deviation from average model conditions over
the wetland growing season (Fig. 5); however,

these techniques led to discrepancies in rainfall
totals used for this experiment. To obtain a year
of precipitation to use for the historical observa-
tions and future projections, we selected a year
that varied the least from the 30-yr averages on a
monthly basis. On a monthly basis, this meant
that the precipitation patterns were similar in the
selected year compared to the 30-yr average, but
the daily patterns and cumulative rainfall
amounts did not necessarily align with our stated
criteria. For instance, our future average model

Fig. 5. Precipitation treatments for a greenhouse study for soil collected in Nebraska (a) and Texas (b) for his-
torical data and scenarios based on downscaled CMIP5-BCCA atmosphere–ocean general circulation models for
the RCP4.5 emissions scenarios (2070–2099)—future average, wet future, and dry future. Precipitation treatments
followed 28 d of constant moisture to allow for uniform germination conditions. CMIP5, Coupled Model Inter-
comparison Project phase 5; BCCA, bias correction constructed analogs.
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produced less cumulative rainfall over the grow-
ing season than the future dry model for
Nebraska. In our study, “wet,” “average,” and
“dry” refer to the trend from the selected model,
rather than the year of observations or projections
used in the greenhouse study. These criteria
should likely be developed independently for
each ecological experiment, and the techniques
used in this study may not be best suited for all
situations.

Evaluating plant and soil response to climate
treatments

Germination experiment.—The germination
study was conducted to evaluate the response of
playa wetland vegetation to changing climate
conditions. Temperature treatments consisted of
weekly aggregated temperatures for historical,
future cool, future average, and future warm
temperatures as described previously. Bulk soil
was collected from the surface 15 cm in transi-
tional zones (between basin floor and upland) in
six playa wetlands, three in Nebraska and three
in Texas. Soil was dried at 23°C, ground to pass
through 2-mm sieve, and homogenized for each
wetland separately. Prior to the germination
study, soils were packed into containers at a bulk
density representative for each wetland, as deter-
mined by core samples collected on site. For each
four-week temperature period in the germination
study, we held soil moisture constant at 60%
water-filled pore space and planted barnyard-
grass (Echinochloa crusgali L.) seed at a density of
145 kg/ha. We counted germinated plants on the
first day of germination and on the last day of
each four-week experiment. We used generalized
mixed-effects logistic regression models to test
the effect of temperature on germination percent-
age (fitted with a binomial distribution) with ran-
dom intercept term fit for sampling location.
Analyses were conducted in R software package
lme4 (Bates et al. 2015), and packages effects and
ggplot2 were used to visualize predicted germi-
nation percentage with regression model esti-
mates (Fox 2003, Wickham 2016).

Soil nitrogen cycling experiment.—To assess how
projected climate change will affect playa soil
nitrogen cycling, we conducted a greenhouse
experiment to mimic the growing season in
Nebraska and Texas playas under various

hydrologic conditions. Intact soil cores collected
from transition zones around the outer rim of ten
playas were subjected to four climate treatments
(historical, future wet, future average, and future
cool) described previously. Precipitation treat-
ments were applied daily to reflect historical and
projected future daily rainfall events (mm/d). We
were unable to control for temperature or atmo-
spheric CO2 in greenhouse settings; however, soil
and ambient air temperatures were continuously
monitored throughout experiment (Appendix S2:
Fig. S1). Monthly soil samples were collected to
assess shifts in biogeochemical cycling. To
demonstrate the utility of assessing biogeochemi-
cal response using climate projections, we pre-
sent inorganic nitrogen results. Nitrate (NO3

�-N)
and nitrite (NO2

�-N) were extracted using 1 M
potassium chloride solution (Reddy et al. 2013)
and quantified using Lachat QuikChem Methods
for nitrate determination (Lachat Instruments,
Milwaukee, Wisconsin, USA). Statistical analyses
were completed using repeated-measures mixed-
effects linear models in R software package lme4
(Bates et al. 2015). Packages effects and ggplot2
were used to visualize predicted inorganic nitro-
gen with regression model estimates (Fox 2003,
Wickham 2016).

RESULTS

This framework allowed us to incorporate a
range of temperature projections into a con-
trolled growth chamber experiment. In Nebraska
and Texas, minimum and maximum tempera-
tures are projected to increase in each month of
the year (Fig. 2) based on 19 AOGCMs available
at RCP4.5. During the germination months of
March for Texas and April for Nebraska, average
temperature is expected to increase by a range of
1.0–3.8°C for Texas and 0.1–4.5°C in Nebraska.
For our future temperature projection treat-
ments, we selected the INMCM4.1 (#10 Future
Cool; Volodin et al. 2010), IPSL-CM5A-LR.1
GCM (#11 Future Average; Dufresne et al. 2013),
and MIROC5.1 (#15 Future Warm; Watanabe
et al. 2011). These models captured the range of
temperatures expected for the Great Plains under
the RCP4.5 emissions scenario (Fig. 4). After bias
correction, the future cool model (INMCM4.1)
projected a mean temperature change of �0.9°C
to 3.1°C for Nebraska germination period and
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�0.1°C to 1.9°C for Texas germination period.
The average future model (IPSL-CM5A-LR.1
GCM) projected a temperature change in
Nebraska of 0.1°C–4.8°C and 0.9°C–2.2°C in
Texas. The warm future model (MIROC5.1) pro-
jected a temperature change of 3.2°C–5.2 °C for
Nebraska germination period and 0.9°C–1.9°C
for Texas germination period.

Although temperature conditions derived
from the climate models used in the germination
experiment did not vary significantly between all
treatments based on the standard error of 30-year
average conditions, germination was impacted
by increased temperatures and temporal variabil-
ity associated with future climate conditions
(Fig. 6). In Nebraska, future temperature condi-
tions reduced germination abundance when soil
moisture and seed bank density were held con-
stant. In contrast, Texas samples exhibited
greater germination percentage under warm
future temperatures. We found that germination
commenced at air temperatures between 9.0°C
and 29.0°C, with peak germination rate at
21.4°C; however, this was likely constrained by
our experimental design because peak germina-
tion may occur at higher temperatures if experi-
mental conditions allowed (Swanton et al. 2000).

We were also interested in response of playa
soil processes to hydroperiod changes associated
with altered precipitation regimes in a changing
climate. Precipitation is projected to increase dur-
ing winter months in Nebraska and decrease
during spring, summer, and fall months (Fig. 3).
Rainfall is projected to decrease throughout the
entire year in Texas, but greatest decreases may
be seen in early summer. Each of three models
selected to capture variability in monthly precipi-
tation and number of dry days reflected
decreased precipitation throughout the growing
season compared to historical conditions
(CESM1-BGC.1, Hurrell et al. 2013; MIROC-
ESM-CHEM.1, Watanabe et al. 2011; and MPI-
ESM-LR.1, Giorgetta et al. 2013). Based on our
selection techniques, the future average treat-
ment had less cumulative precipitation over the
growing period for Nebraska than the future dry
treatment; however, the temporal conditions of
these two treatments mimicked the overall
model projections for end-of-century projections
and were selected regardless of the discrepancy
(Fig. 5).

Application of precipitation treatments derived
from climate model outputs within the green-
house experiment indicated nitrogen cycling
response to climate conditions (Fig. 7). For
Nebraska samples, inorganic nitrogen concentra-
tions under future average and future wet condi-
tions were significantly greater than historical
baseline conditions in experimental months 4 and
5. During these months, very few plants were
actively growing in mesocosm units representing
future climate conditions, whereas plant commu-
nities remained robust for historical mesocosm
units. Inorganic nitrogen concentrations were
similar in Texas samples; however, future dry
conditions only produced significantly greater
nitrate and nitrite during experimental month 4
(Fig. 7). There were no differences in nitrate and
nitrite concentrations between future and histori-
cal conditions for experimental months 1, 2, 3,
and 6 for Nebraska samples and experimental
months 1, 2, 3, 5, and 6 for Texas samples.

DISCUSSION

Historically, climate change studies have used
percentile changes or general temporal and spa-
tial assumptions to develop experimental treat-
ments evaluating ecosystem response to climate
change (Weltzin et al. 2000, Sommer et al. 2007,
Fay et al. 2008, Harden et al. 2017). However,
here we present a method that reduces error by
adjusting downscaled projections using histori-
cal observations while simultaneously captur-
ing temporal variability and extreme events
projected in future climates. We were able to
assess variability of each bias-corrected down-
scaled model output but comparing individual
AOGCM outputs with mean outputs from each
emissions scenario (RCP4.5 in this case). In doing
so, we selected models that captured low, moder-
ate, and high changes in temperature or precipi-
tation conditions within an emissions scenario.
When selecting temperature treatments, we were
able to utilize a thirty-year average prediction,
thus allowing us to assess the standard error of
averaging over this time period. For precipita-
tion, we selected an individual year from a
thirty-year period to capture daily precipitation
trends, but we could assess error by comparing
output from the selected year to thirty-year aver-
age trends.
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While the specific results of our ecological
experiments are not the primary outcome of this
paper, the germination and greenhouse studies
demonstrate how climate projections may be

developed for and applied in experimental set-
tings. We predicted that barnyardgrass would be
fairly resistant to temperature and soil moisture
changes associated with future climate projections

Fig. 6. Model-predicted germination proportion as a function of climate scenario for Nebraska (a) and Texas
(b). Error bars represent a 95% confidence interval. Letters designate differences at P < 0.05.

 ❖ www.esajournals.org 13 September 2019 ❖ Volume 10(9) ❖ Article e02857

EMERGING TECHNOLOGIES OWEN ET AL.



because it has been found to continuously
emerge throughout the early growing season
in playa wetlands (Haukos and Smith 2001).
Based on our study results, overall germina-
tion percentage or temporal emergence pat-
terns will likely be impacted by temperature
conditions associated with projected climate
change. Other playa plants requiring more
specific soil moisture and temperature condi-
tions for germination to occur may be more
or less competitive in future climate conditions
(Haukos and Smith 2001). The framework
developed here may be used to further assess
these plant community dynamics in controlled
ecological experiments.

Similarly, we were able to capture temporal
differences in inorganic nitrogen concentrations
associated with various hydrologic treatments.
Inorganic nitrogen availability is impacted by
mineralization and denitrification pathways,
which are influenced by soil moisture and pre-
cipitation, plant uptake, microbial activity, and
substrate availability (Havlin et al. 2005). Using
our framework, we were able to identify specific
months of the growing season where differences
existed between inorganic nitrogen concentra-
tions in historical and future climate conditions.
This information can be used to further explore
plant, microbial, and other environmental factors
that may be causing these differences to exist. In

Fig. 7. Model-predicted sum of nitrate-N and nitrite-N concentration ([NO3
�-N] + [NO2

�-N]) as a function of
climate scenario for Nebraska (a) and Texas (b). Error bars represent a 95% confidence interval. Significant differ-
ences from historic reference level denoted at P < 0.05 (�), P < 0.01 (��), and P < 0.001 (���) for comparisons
within categories separated by dashed lines.
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germination and greenhouse studies, controlled
environments allowed ample opportunities for
additional data collection (not described in this
manuscript) to better understand the impacts of
changing climate drivers on plant and soil
ecosystem response. These data can be used to
reduce uncertainty in predictive ecological mod-
eling by improving parameterization of ecosys-
tem response variables (i.e., germination and soil
nitrogen cycling) and guide future experiments.

Changing climatic conditions have increased
the need for cross-disciplinary partnerships cap-
able of addressing ecosystem threats. Future cli-
mate conditions are likely to directly impact
ecosystem function and services and may also
combine with existing ecosystem threats to exac-
erbate other anthropogenic pressures (Hughes
2000, Wuethrich 2000, Walther et al. 2002).
Through collaborative efforts among ecologists,
soil scientists, and climatologists, we were able to
develop realistic treatment conditions in an
experimental framework that will enhance
understanding of ecological alterations caused
by climate change. Climate model projections are
openly accessible to all scientists and, after cor-
recting for bias associated with downscaling, can
be used to simulate future climate conditions in a
variety of controlled experiments. With increas-
ing technology used to develop projected future
climate model outputs, scientists can use projec-
tions to capture emissions scenario variability
and better understand how ecosystems and asso-
ciated processes will respond to climate change.
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